Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
039363f3 CL |
2 | /* |
3 | * Slab allocator functions that are independent of the allocator strategy | |
4 | * | |
786d5cc2 | 5 | * (C) 2012 Christoph Lameter <cl@gentwo.org> |
039363f3 CL |
6 | */ |
7 | #include <linux/slab.h> | |
8 | ||
9 | #include <linux/mm.h> | |
10 | #include <linux/poison.h> | |
11 | #include <linux/interrupt.h> | |
12 | #include <linux/memory.h> | |
1c99ba29 | 13 | #include <linux/cache.h> |
039363f3 | 14 | #include <linux/compiler.h> |
d3fb45f3 | 15 | #include <linux/kfence.h> |
039363f3 | 16 | #include <linux/module.h> |
20cea968 CL |
17 | #include <linux/cpu.h> |
18 | #include <linux/uaccess.h> | |
b7454ad3 | 19 | #include <linux/seq_file.h> |
963e84b0 | 20 | #include <linux/dma-mapping.h> |
b035f5a6 | 21 | #include <linux/swiotlb.h> |
b7454ad3 | 22 | #include <linux/proc_fs.h> |
fcf8a1e4 | 23 | #include <linux/debugfs.h> |
6011be59 | 24 | #include <linux/kmemleak.h> |
e86f8b09 | 25 | #include <linux/kasan.h> |
039363f3 CL |
26 | #include <asm/cacheflush.h> |
27 | #include <asm/tlbflush.h> | |
28 | #include <asm/page.h> | |
2633d7a0 | 29 | #include <linux/memcontrol.h> |
5cf909c5 | 30 | #include <linux/stackdepot.h> |
bbe658d6 | 31 | #include <trace/events/rcu.h> |
928cec9c | 32 | |
bbe658d6 | 33 | #include "../kernel/rcu/rcu.h" |
44405099 | 34 | #include "internal.h" |
97d06609 CL |
35 | #include "slab.h" |
36 | ||
b347aa7b VA |
37 | #define CREATE_TRACE_POINTS |
38 | #include <trace/events/kmem.h> | |
39 | ||
97d06609 | 40 | enum slab_state slab_state; |
18004c5d CL |
41 | LIST_HEAD(slab_caches); |
42 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 43 | struct kmem_cache *kmem_cache; |
97d06609 | 44 | |
423c929c JK |
45 | /* |
46 | * Set of flags that will prevent slab merging | |
47 | */ | |
48 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
5f0d5a3a | 49 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
96d8dbb6 | 50 | SLAB_FAILSLAB | SLAB_NO_MERGE) |
423c929c | 51 | |
230e9fc2 | 52 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
6d6ea1e9 | 53 | SLAB_CACHE_DMA32 | SLAB_ACCOUNT) |
423c929c JK |
54 | |
55 | /* | |
56 | * Merge control. If this is set then no merging of slab caches will occur. | |
423c929c | 57 | */ |
7660a6fd | 58 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
423c929c JK |
59 | |
60 | static int __init setup_slab_nomerge(char *str) | |
61 | { | |
7660a6fd | 62 | slab_nomerge = true; |
423c929c JK |
63 | return 1; |
64 | } | |
65 | ||
82edd9d5 RA |
66 | static int __init setup_slab_merge(char *str) |
67 | { | |
68 | slab_nomerge = false; | |
69 | return 1; | |
70 | } | |
71 | ||
423c929c | 72 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); |
82edd9d5 | 73 | __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); |
423c929c JK |
74 | |
75 | __setup("slab_nomerge", setup_slab_nomerge); | |
82edd9d5 | 76 | __setup("slab_merge", setup_slab_merge); |
423c929c | 77 | |
07f361b2 JK |
78 | /* |
79 | * Determine the size of a slab object | |
80 | */ | |
81 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
82 | { | |
83 | return s->object_size; | |
84 | } | |
85 | EXPORT_SYMBOL(kmem_cache_size); | |
86 | ||
77be4b13 | 87 | #ifdef CONFIG_DEBUG_VM |
4c395296 PF |
88 | |
89 | static bool kmem_cache_is_duplicate_name(const char *name) | |
90 | { | |
91 | struct kmem_cache *s; | |
92 | ||
93 | list_for_each_entry(s, &slab_caches, list) { | |
94 | if (!strcmp(s->name, name)) | |
95 | return true; | |
96 | } | |
97 | ||
98 | return false; | |
99 | } | |
100 | ||
f4957d5b | 101 | static int kmem_cache_sanity_check(const char *name, unsigned int size) |
039363f3 | 102 | { |
74c1d3e0 | 103 | if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { |
77be4b13 SK |
104 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
105 | return -EINVAL; | |
039363f3 | 106 | } |
b920536a | 107 | |
4c395296 PF |
108 | /* Duplicate names will confuse slabtop, et al */ |
109 | WARN(kmem_cache_is_duplicate_name(name), | |
110 | "kmem_cache of name '%s' already exists\n", name); | |
111 | ||
20cea968 | 112 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
77be4b13 SK |
113 | return 0; |
114 | } | |
115 | #else | |
f4957d5b | 116 | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) |
77be4b13 SK |
117 | { |
118 | return 0; | |
119 | } | |
20cea968 CL |
120 | #endif |
121 | ||
692ae74a BL |
122 | /* |
123 | * Figure out what the alignment of the objects will be given a set of | |
124 | * flags, a user specified alignment and the size of the objects. | |
125 | */ | |
f4957d5b AD |
126 | static unsigned int calculate_alignment(slab_flags_t flags, |
127 | unsigned int align, unsigned int size) | |
692ae74a BL |
128 | { |
129 | /* | |
130 | * If the user wants hardware cache aligned objects then follow that | |
131 | * suggestion if the object is sufficiently large. | |
132 | * | |
133 | * The hardware cache alignment cannot override the specified | |
134 | * alignment though. If that is greater then use it. | |
135 | */ | |
136 | if (flags & SLAB_HWCACHE_ALIGN) { | |
f4957d5b | 137 | unsigned int ralign; |
692ae74a BL |
138 | |
139 | ralign = cache_line_size(); | |
140 | while (size <= ralign / 2) | |
141 | ralign /= 2; | |
142 | align = max(align, ralign); | |
143 | } | |
144 | ||
d949a815 | 145 | align = max(align, arch_slab_minalign()); |
692ae74a BL |
146 | |
147 | return ALIGN(align, sizeof(void *)); | |
148 | } | |
149 | ||
423c929c JK |
150 | /* |
151 | * Find a mergeable slab cache | |
152 | */ | |
153 | int slab_unmergeable(struct kmem_cache *s) | |
154 | { | |
155 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
156 | return 1; | |
157 | ||
423c929c JK |
158 | if (s->ctor) |
159 | return 1; | |
160 | ||
346907ce | 161 | #ifdef CONFIG_HARDENED_USERCOPY |
8eb8284b DW |
162 | if (s->usersize) |
163 | return 1; | |
346907ce | 164 | #endif |
8eb8284b | 165 | |
423c929c JK |
166 | /* |
167 | * We may have set a slab to be unmergeable during bootstrap. | |
168 | */ | |
169 | if (s->refcount < 0) | |
170 | return 1; | |
171 | ||
172 | return 0; | |
173 | } | |
174 | ||
f4957d5b | 175 | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, |
d50112ed | 176 | slab_flags_t flags, const char *name, void (*ctor)(void *)) |
423c929c JK |
177 | { |
178 | struct kmem_cache *s; | |
179 | ||
c6e28895 | 180 | if (slab_nomerge) |
423c929c JK |
181 | return NULL; |
182 | ||
183 | if (ctor) | |
184 | return NULL; | |
185 | ||
303cd693 | 186 | flags = kmem_cache_flags(flags, name); |
423c929c | 187 | |
c6e28895 GM |
188 | if (flags & SLAB_NEVER_MERGE) |
189 | return NULL; | |
190 | ||
e02147cb X |
191 | size = ALIGN(size, sizeof(void *)); |
192 | align = calculate_alignment(flags, align, size); | |
193 | size = ALIGN(size, align); | |
194 | ||
c7094406 | 195 | list_for_each_entry_reverse(s, &slab_caches, list) { |
423c929c JK |
196 | if (slab_unmergeable(s)) |
197 | continue; | |
198 | ||
199 | if (size > s->size) | |
200 | continue; | |
201 | ||
202 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
203 | continue; | |
204 | /* | |
205 | * Check if alignment is compatible. | |
206 | * Courtesy of Adrian Drzewiecki | |
207 | */ | |
208 | if ((s->size & ~(align - 1)) != s->size) | |
209 | continue; | |
210 | ||
211 | if (s->size - size >= sizeof(void *)) | |
212 | continue; | |
213 | ||
214 | return s; | |
215 | } | |
216 | return NULL; | |
217 | } | |
218 | ||
c9a77a79 | 219 | static struct kmem_cache *create_cache(const char *name, |
34410a90 CB |
220 | unsigned int object_size, |
221 | struct kmem_cache_args *args, | |
222 | slab_flags_t flags) | |
794b1248 VD |
223 | { |
224 | struct kmem_cache *s; | |
225 | int err; | |
226 | ||
d345bd2e CB |
227 | /* If a custom freelist pointer is requested make sure it's sane. */ |
228 | err = -EINVAL; | |
34410a90 CB |
229 | if (args->use_freeptr_offset && |
230 | (args->freeptr_offset >= object_size || | |
231 | !(flags & SLAB_TYPESAFE_BY_RCU) || | |
9008fe8f | 232 | !IS_ALIGNED(args->freeptr_offset, __alignof__(freeptr_t)))) |
d345bd2e | 233 | goto out; |
8eb8284b | 234 | |
794b1248 VD |
235 | err = -ENOMEM; |
236 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
237 | if (!s) | |
238 | goto out; | |
3dbe2bad | 239 | err = do_kmem_cache_create(s, name, object_size, args, flags); |
794b1248 VD |
240 | if (err) |
241 | goto out_free_cache; | |
242 | ||
243 | s->refcount = 1; | |
244 | list_add(&s->list, &slab_caches); | |
794b1248 VD |
245 | return s; |
246 | ||
247 | out_free_cache: | |
7c4da061 | 248 | kmem_cache_free(kmem_cache, s); |
b9dad156 ZL |
249 | out: |
250 | return ERR_PTR(err); | |
794b1248 | 251 | } |
45906855 | 252 | |
f496990f | 253 | /** |
4b7ff9ab | 254 | * __kmem_cache_create_args - Create a kmem cache. |
77be4b13 | 255 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
879fb3c2 | 256 | * @object_size: The size of objects to be created in this cache. |
4b7ff9ab VB |
257 | * @args: Additional arguments for the cache creation (see |
258 | * &struct kmem_cache_args). | |
b6da9401 VB |
259 | * @flags: See the desriptions of individual flags. The common ones are listed |
260 | * in the description below. | |
77be4b13 | 261 | * |
4b7ff9ab VB |
262 | * Not to be called directly, use the kmem_cache_create() wrapper with the same |
263 | * parameters. | |
77be4b13 | 264 | * |
b6da9401 VB |
265 | * Commonly used @flags: |
266 | * | |
267 | * &SLAB_ACCOUNT - Account allocations to memcg. | |
268 | * | |
269 | * &SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. | |
270 | * | |
271 | * &SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. | |
272 | * | |
273 | * &SLAB_TYPESAFE_BY_RCU - Slab page (not individual objects) freeing delayed | |
274 | * by a grace period - see the full description before using. | |
275 | * | |
4b7ff9ab | 276 | * Context: Cannot be called within a interrupt, but can be interrupted. |
f496990f MR |
277 | * |
278 | * Return: a pointer to the cache on success, NULL on failure. | |
77be4b13 | 279 | */ |
879fb3c2 CB |
280 | struct kmem_cache *__kmem_cache_create_args(const char *name, |
281 | unsigned int object_size, | |
282 | struct kmem_cache_args *args, | |
283 | slab_flags_t flags) | |
77be4b13 | 284 | { |
40911a79 | 285 | struct kmem_cache *s = NULL; |
3dec16ea | 286 | const char *cache_name; |
3965fc36 | 287 | int err; |
039363f3 | 288 | |
afe0c26d VB |
289 | #ifdef CONFIG_SLUB_DEBUG |
290 | /* | |
671776b3 | 291 | * If no slab_debug was enabled globally, the static key is not yet |
afe0c26d VB |
292 | * enabled by setup_slub_debug(). Enable it if the cache is being |
293 | * created with any of the debugging flags passed explicitly. | |
5cf909c5 OG |
294 | * It's also possible that this is the first cache created with |
295 | * SLAB_STORE_USER and we should init stack_depot for it. | |
afe0c26d VB |
296 | */ |
297 | if (flags & SLAB_DEBUG_FLAGS) | |
298 | static_branch_enable(&slub_debug_enabled); | |
5cf909c5 OG |
299 | if (flags & SLAB_STORE_USER) |
300 | stack_depot_init(); | |
12f4888c KB |
301 | #else |
302 | flags &= ~SLAB_DEBUG_FLAGS; | |
afe0c26d VB |
303 | #endif |
304 | ||
77be4b13 | 305 | mutex_lock(&slab_mutex); |
686d550d | 306 | |
879fb3c2 | 307 | err = kmem_cache_sanity_check(name, object_size); |
3aa24f51 | 308 | if (err) { |
3965fc36 | 309 | goto out_unlock; |
3aa24f51 | 310 | } |
686d550d | 311 | |
e70954fd TG |
312 | if (flags & ~SLAB_FLAGS_PERMITTED) { |
313 | err = -EINVAL; | |
314 | goto out_unlock; | |
315 | } | |
316 | ||
8eb8284b | 317 | /* Fail closed on bad usersize of useroffset values. */ |
346907ce | 318 | if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) || |
879fb3c2 CB |
319 | WARN_ON(!args->usersize && args->useroffset) || |
320 | WARN_ON(object_size < args->usersize || | |
321 | object_size - args->usersize < args->useroffset)) | |
322 | args->usersize = args->useroffset = 0; | |
323 | ||
324 | if (!args->usersize) | |
325 | s = __kmem_cache_alias(name, object_size, args->align, flags, | |
326 | args->ctor); | |
794b1248 | 327 | if (s) |
3965fc36 | 328 | goto out_unlock; |
2633d7a0 | 329 | |
3dec16ea | 330 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
331 | if (!cache_name) { |
332 | err = -ENOMEM; | |
333 | goto out_unlock; | |
334 | } | |
7c9adf5a | 335 | |
34410a90 CB |
336 | args->align = calculate_alignment(flags, args->align, object_size); |
337 | s = create_cache(cache_name, object_size, args, flags); | |
794b1248 VD |
338 | if (IS_ERR(s)) { |
339 | err = PTR_ERR(s); | |
3dec16ea | 340 | kfree_const(cache_name); |
794b1248 | 341 | } |
3965fc36 VD |
342 | |
343 | out_unlock: | |
20cea968 | 344 | mutex_unlock(&slab_mutex); |
03afc0e2 | 345 | |
ba3253c7 | 346 | if (err) { |
686d550d | 347 | if (flags & SLAB_PANIC) |
4acaa7d5 | 348 | panic("%s: Failed to create slab '%s'. Error %d\n", |
349 | __func__, name, err); | |
686d550d | 350 | else { |
4acaa7d5 | 351 | pr_warn("%s(%s) failed with error %d\n", |
352 | __func__, name, err); | |
686d550d CL |
353 | dump_stack(); |
354 | } | |
686d550d CL |
355 | return NULL; |
356 | } | |
039363f3 CL |
357 | return s; |
358 | } | |
879fb3c2 | 359 | EXPORT_SYMBOL(__kmem_cache_create_args); |
2633d7a0 | 360 | |
b32801d1 KC |
361 | static struct kmem_cache *kmem_buckets_cache __ro_after_init; |
362 | ||
363 | /** | |
364 | * kmem_buckets_create - Create a set of caches that handle dynamic sized | |
365 | * allocations via kmem_buckets_alloc() | |
366 | * @name: A prefix string which is used in /proc/slabinfo to identify this | |
367 | * cache. The individual caches with have their sizes as the suffix. | |
368 | * @flags: SLAB flags (see kmem_cache_create() for details). | |
369 | * @useroffset: Starting offset within an allocation that may be copied | |
370 | * to/from userspace. | |
371 | * @usersize: How many bytes, starting at @useroffset, may be copied | |
372 | * to/from userspace. | |
373 | * @ctor: A constructor for the objects, run when new allocations are made. | |
374 | * | |
375 | * Cannot be called within an interrupt, but can be interrupted. | |
376 | * | |
377 | * Return: a pointer to the cache on success, NULL on failure. When | |
378 | * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and | |
379 | * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc(). | |
380 | * (i.e. callers only need to check for NULL on failure.) | |
381 | */ | |
382 | kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, | |
383 | unsigned int useroffset, | |
384 | unsigned int usersize, | |
385 | void (*ctor)(void *)) | |
386 | { | |
9c9201af KD |
387 | unsigned long mask = 0; |
388 | unsigned int idx; | |
b32801d1 | 389 | kmem_buckets *b; |
9c9201af KD |
390 | |
391 | BUILD_BUG_ON(ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]) > BITS_PER_LONG); | |
b32801d1 KC |
392 | |
393 | /* | |
394 | * When the separate buckets API is not built in, just return | |
395 | * a non-NULL value for the kmem_buckets pointer, which will be | |
396 | * unused when performing allocations. | |
397 | */ | |
398 | if (!IS_ENABLED(CONFIG_SLAB_BUCKETS)) | |
399 | return ZERO_SIZE_PTR; | |
400 | ||
401 | if (WARN_ON(!kmem_buckets_cache)) | |
402 | return NULL; | |
403 | ||
404 | b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO); | |
405 | if (WARN_ON(!b)) | |
406 | return NULL; | |
407 | ||
408 | flags |= SLAB_NO_MERGE; | |
409 | ||
410 | for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) { | |
411 | char *short_size, *cache_name; | |
412 | unsigned int cache_useroffset, cache_usersize; | |
9c9201af | 413 | unsigned int size, aligned_idx; |
b32801d1 KC |
414 | |
415 | if (!kmalloc_caches[KMALLOC_NORMAL][idx]) | |
416 | continue; | |
417 | ||
418 | size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size; | |
419 | if (!size) | |
420 | continue; | |
421 | ||
422 | short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-'); | |
423 | if (WARN_ON(!short_size)) | |
424 | goto fail; | |
425 | ||
b32801d1 KC |
426 | if (useroffset >= size) { |
427 | cache_useroffset = 0; | |
428 | cache_usersize = 0; | |
429 | } else { | |
430 | cache_useroffset = useroffset; | |
431 | cache_usersize = min(size - cache_useroffset, usersize); | |
432 | } | |
9c9201af KD |
433 | |
434 | aligned_idx = __kmalloc_index(size, false); | |
435 | if (!(*b)[aligned_idx]) { | |
436 | cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1); | |
437 | if (WARN_ON(!cache_name)) | |
438 | goto fail; | |
439 | (*b)[aligned_idx] = kmem_cache_create_usercopy(cache_name, size, | |
b32801d1 KC |
440 | 0, flags, cache_useroffset, |
441 | cache_usersize, ctor); | |
9c9201af KD |
442 | kfree(cache_name); |
443 | if (WARN_ON(!(*b)[aligned_idx])) | |
444 | goto fail; | |
445 | set_bit(aligned_idx, &mask); | |
446 | } | |
447 | if (idx != aligned_idx) | |
448 | (*b)[idx] = (*b)[aligned_idx]; | |
b32801d1 KC |
449 | } |
450 | ||
451 | return b; | |
452 | ||
453 | fail: | |
9c9201af | 454 | for_each_set_bit(idx, &mask, ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL])) |
b32801d1 | 455 | kmem_cache_destroy((*b)[idx]); |
3beb2fb6 | 456 | kmem_cache_free(kmem_buckets_cache, b); |
b32801d1 KC |
457 | |
458 | return NULL; | |
459 | } | |
460 | EXPORT_SYMBOL(kmem_buckets_create); | |
461 | ||
0495e337 WL |
462 | /* |
463 | * For a given kmem_cache, kmem_cache_destroy() should only be called | |
464 | * once or there will be a use-after-free problem. The actual deletion | |
465 | * and release of the kobject does not need slab_mutex or cpu_hotplug_lock | |
466 | * protection. So they are now done without holding those locks. | |
0495e337 WL |
467 | */ |
468 | static void kmem_cache_release(struct kmem_cache *s) | |
469 | { | |
f77d0cda | 470 | kfence_shutdown_cache(s); |
4ec10268 | 471 | if (__is_defined(SLAB_SUPPORTS_SYSFS) && slab_state >= FULL) |
011568eb | 472 | sysfs_slab_release(s); |
4ec10268 | 473 | else |
011568eb | 474 | slab_kmem_cache_release(s); |
d5b3cf71 VD |
475 | } |
476 | ||
41a21285 CL |
477 | void slab_kmem_cache_release(struct kmem_cache *s) |
478 | { | |
52b4b950 | 479 | __kmem_cache_release(s); |
3dec16ea | 480 | kfree_const(s->name); |
41a21285 CL |
481 | kmem_cache_free(kmem_cache, s); |
482 | } | |
483 | ||
945cf2b6 CL |
484 | void kmem_cache_destroy(struct kmem_cache *s) |
485 | { | |
4ec10268 | 486 | int err; |
0495e337 | 487 | |
bed0a9b5 | 488 | if (unlikely(!s) || !kasan_check_byte(s)) |
3942d299 SS |
489 | return; |
490 | ||
6c6c47b0 VB |
491 | /* in-flight kfree_rcu()'s may include objects from our cache */ |
492 | kvfree_rcu_barrier(); | |
493 | ||
b8c8ba73 JH |
494 | if (IS_ENABLED(CONFIG_SLUB_RCU_DEBUG) && |
495 | (s->flags & SLAB_TYPESAFE_BY_RCU)) { | |
496 | /* | |
497 | * Under CONFIG_SLUB_RCU_DEBUG, when objects in a | |
498 | * SLAB_TYPESAFE_BY_RCU slab are freed, SLUB will internally | |
499 | * defer their freeing with call_rcu(). | |
500 | * Wait for such call_rcu() invocations here before actually | |
501 | * destroying the cache. | |
502 | * | |
503 | * It doesn't matter that we haven't looked at the slab refcount | |
504 | * yet - slabs with SLAB_TYPESAFE_BY_RCU can't be merged, so | |
505 | * the refcount should be 1 here. | |
506 | */ | |
507 | rcu_barrier(); | |
508 | } | |
509 | ||
5a836bf6 | 510 | cpus_read_lock(); |
945cf2b6 | 511 | mutex_lock(&slab_mutex); |
b8529907 | 512 | |
46a9ea66 | 513 | s->refcount--; |
4ec10268 VB |
514 | if (s->refcount) { |
515 | mutex_unlock(&slab_mutex); | |
516 | cpus_read_unlock(); | |
517 | return; | |
518 | } | |
b8529907 | 519 | |
b5959789 VB |
520 | /* free asan quarantined objects */ |
521 | kasan_cache_shutdown(s); | |
522 | ||
523 | err = __kmem_cache_shutdown(s); | |
3f1dd33f VB |
524 | if (!slab_in_kunit_test()) |
525 | WARN(err, "%s %s: Slab cache still has objects when called from %pS", | |
526 | __func__, s->name, (void *)_RET_IP_); | |
b5959789 | 527 | |
b5959789 VB |
528 | list_del(&s->list); |
529 | ||
b8529907 | 530 | mutex_unlock(&slab_mutex); |
5a836bf6 | 531 | cpus_read_unlock(); |
4ec10268 VB |
532 | |
533 | if (slab_state >= FULL) | |
534 | sysfs_slab_unlink(s); | |
535 | debugfs_slab_release(s); | |
536 | ||
537 | if (err) | |
538 | return; | |
539 | ||
2eb14c1c VB |
540 | if (s->flags & SLAB_TYPESAFE_BY_RCU) |
541 | rcu_barrier(); | |
542 | ||
543 | kmem_cache_release(s); | |
945cf2b6 CL |
544 | } |
545 | EXPORT_SYMBOL(kmem_cache_destroy); | |
546 | ||
03afc0e2 VD |
547 | /** |
548 | * kmem_cache_shrink - Shrink a cache. | |
549 | * @cachep: The cache to shrink. | |
550 | * | |
551 | * Releases as many slabs as possible for a cache. | |
552 | * To help debugging, a zero exit status indicates all slabs were released. | |
a862f68a MR |
553 | * |
554 | * Return: %0 if all slabs were released, non-zero otherwise | |
03afc0e2 VD |
555 | */ |
556 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
557 | { | |
55834c59 | 558 | kasan_cache_shrink(cachep); |
7e1fa93d | 559 | |
610f9c00 | 560 | return __kmem_cache_shrink(cachep); |
03afc0e2 VD |
561 | } |
562 | EXPORT_SYMBOL(kmem_cache_shrink); | |
563 | ||
fda90124 | 564 | bool slab_is_available(void) |
97d06609 CL |
565 | { |
566 | return slab_state >= UP; | |
567 | } | |
b7454ad3 | 568 | |
5bb1bb35 | 569 | #ifdef CONFIG_PRINTK |
2dfe63e6 ME |
570 | static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
571 | { | |
572 | if (__kfence_obj_info(kpp, object, slab)) | |
573 | return; | |
574 | __kmem_obj_info(kpp, object, slab); | |
575 | } | |
576 | ||
8e7f37f2 PM |
577 | /** |
578 | * kmem_dump_obj - Print available slab provenance information | |
579 | * @object: slab object for which to find provenance information. | |
580 | * | |
581 | * This function uses pr_cont(), so that the caller is expected to have | |
582 | * printed out whatever preamble is appropriate. The provenance information | |
583 | * depends on the type of object and on how much debugging is enabled. | |
584 | * For a slab-cache object, the fact that it is a slab object is printed, | |
585 | * and, if available, the slab name, return address, and stack trace from | |
e548eaa1 | 586 | * the allocation and last free path of that object. |
8e7f37f2 | 587 | * |
6e284c55 ZL |
588 | * Return: %true if the pointer is to a not-yet-freed object from |
589 | * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer | |
590 | * is to an already-freed object, and %false otherwise. | |
8e7f37f2 | 591 | */ |
6e284c55 | 592 | bool kmem_dump_obj(void *object) |
8e7f37f2 PM |
593 | { |
594 | char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; | |
595 | int i; | |
7213230a | 596 | struct slab *slab; |
8e7f37f2 PM |
597 | unsigned long ptroffset; |
598 | struct kmem_obj_info kp = { }; | |
599 | ||
6e284c55 ZL |
600 | /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ |
601 | if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) | |
602 | return false; | |
7213230a | 603 | slab = virt_to_slab(object); |
6e284c55 ZL |
604 | if (!slab) |
605 | return false; | |
606 | ||
7213230a | 607 | kmem_obj_info(&kp, object, slab); |
8e7f37f2 PM |
608 | if (kp.kp_slab_cache) |
609 | pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); | |
610 | else | |
611 | pr_cont(" slab%s", cp); | |
2dfe63e6 ME |
612 | if (is_kfence_address(object)) |
613 | pr_cont(" (kfence)"); | |
8e7f37f2 PM |
614 | if (kp.kp_objp) |
615 | pr_cont(" start %px", kp.kp_objp); | |
616 | if (kp.kp_data_offset) | |
617 | pr_cont(" data offset %lu", kp.kp_data_offset); | |
618 | if (kp.kp_objp) { | |
619 | ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; | |
620 | pr_cont(" pointer offset %lu", ptroffset); | |
621 | } | |
346907ce VB |
622 | if (kp.kp_slab_cache && kp.kp_slab_cache->object_size) |
623 | pr_cont(" size %u", kp.kp_slab_cache->object_size); | |
8e7f37f2 PM |
624 | if (kp.kp_ret) |
625 | pr_cont(" allocated at %pS\n", kp.kp_ret); | |
626 | else | |
627 | pr_cont("\n"); | |
628 | for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { | |
629 | if (!kp.kp_stack[i]) | |
630 | break; | |
631 | pr_info(" %pS\n", kp.kp_stack[i]); | |
632 | } | |
e548eaa1 MS |
633 | |
634 | if (kp.kp_free_stack[0]) | |
635 | pr_cont(" Free path:\n"); | |
636 | ||
637 | for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { | |
638 | if (!kp.kp_free_stack[i]) | |
639 | break; | |
640 | pr_info(" %pS\n", kp.kp_free_stack[i]); | |
641 | } | |
642 | ||
6e284c55 | 643 | return true; |
8e7f37f2 | 644 | } |
0d3dd2c8 | 645 | EXPORT_SYMBOL_GPL(kmem_dump_obj); |
5bb1bb35 | 646 | #endif |
8e7f37f2 | 647 | |
45530c44 | 648 | /* Create a cache during boot when no slab services are available yet */ |
361d575e AD |
649 | void __init create_boot_cache(struct kmem_cache *s, const char *name, |
650 | unsigned int size, slab_flags_t flags, | |
651 | unsigned int useroffset, unsigned int usersize) | |
45530c44 CL |
652 | { |
653 | int err; | |
59bb4798 | 654 | unsigned int align = ARCH_KMALLOC_MINALIGN; |
3dbe2bad | 655 | struct kmem_cache_args kmem_args = {}; |
59bb4798 VB |
656 | |
657 | /* | |
ad59baa3 VB |
658 | * kmalloc caches guarantee alignment of at least the largest |
659 | * power-of-two divisor of the size. For power-of-two sizes, | |
660 | * it is the size itself. | |
59bb4798 | 661 | */ |
ad59baa3 VB |
662 | if (flags & SLAB_KMALLOC) |
663 | align = max(align, 1U << (ffs(size) - 1)); | |
3dbe2bad | 664 | kmem_args.align = calculate_alignment(flags, align, size); |
59bb4798 | 665 | |
346907ce | 666 | #ifdef CONFIG_HARDENED_USERCOPY |
3dbe2bad CB |
667 | kmem_args.useroffset = useroffset; |
668 | kmem_args.usersize = usersize; | |
346907ce | 669 | #endif |
f7ce3190 | 670 | |
3dbe2bad | 671 | err = do_kmem_cache_create(s, name, size, &kmem_args, flags); |
45530c44 CL |
672 | |
673 | if (err) | |
361d575e | 674 | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
45530c44 CL |
675 | name, size, err); |
676 | ||
677 | s->refcount = -1; /* Exempt from merging for now */ | |
678 | } | |
679 | ||
0c474d31 CM |
680 | static struct kmem_cache *__init create_kmalloc_cache(const char *name, |
681 | unsigned int size, | |
682 | slab_flags_t flags) | |
45530c44 CL |
683 | { |
684 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
685 | ||
686 | if (!s) | |
687 | panic("Out of memory when creating slab %s\n", name); | |
688 | ||
0c474d31 | 689 | create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size); |
45530c44 CL |
690 | list_add(&s->list, &slab_caches); |
691 | s->refcount = 1; | |
692 | return s; | |
693 | } | |
694 | ||
72e0fe22 | 695 | kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init = |
2947a456 | 696 | { /* initialization for https://llvm.org/pr42570 */ }; |
9425c58e CL |
697 | EXPORT_SYMBOL(kmalloc_caches); |
698 | ||
3c615294 GR |
699 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
700 | unsigned long random_kmalloc_seed __ro_after_init; | |
701 | EXPORT_SYMBOL(random_kmalloc_seed); | |
702 | #endif | |
703 | ||
2c59dd65 CL |
704 | /* |
705 | * Conversion table for small slabs sizes / 8 to the index in the | |
706 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
707 | * of two cache sizes there. The size of larger slabs can be determined using | |
708 | * fls. | |
709 | */ | |
5a9d31d9 | 710 | u8 kmalloc_size_index[24] __ro_after_init = { |
2c59dd65 CL |
711 | 3, /* 8 */ |
712 | 4, /* 16 */ | |
713 | 5, /* 24 */ | |
714 | 5, /* 32 */ | |
715 | 6, /* 40 */ | |
716 | 6, /* 48 */ | |
717 | 6, /* 56 */ | |
718 | 6, /* 64 */ | |
719 | 1, /* 72 */ | |
720 | 1, /* 80 */ | |
721 | 1, /* 88 */ | |
722 | 1, /* 96 */ | |
723 | 7, /* 104 */ | |
724 | 7, /* 112 */ | |
725 | 7, /* 120 */ | |
726 | 7, /* 128 */ | |
727 | 2, /* 136 */ | |
728 | 2, /* 144 */ | |
729 | 2, /* 152 */ | |
730 | 2, /* 160 */ | |
731 | 2, /* 168 */ | |
732 | 2, /* 176 */ | |
733 | 2, /* 184 */ | |
734 | 2 /* 192 */ | |
735 | }; | |
736 | ||
05a94065 KC |
737 | size_t kmalloc_size_roundup(size_t size) |
738 | { | |
8446a4de DL |
739 | if (size && size <= KMALLOC_MAX_CACHE_SIZE) { |
740 | /* | |
741 | * The flags don't matter since size_index is common to all. | |
742 | * Neither does the caller for just getting ->object_size. | |
743 | */ | |
67f2df3b | 744 | return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size; |
8446a4de DL |
745 | } |
746 | ||
05a94065 | 747 | /* Above the smaller buckets, size is a multiple of page size. */ |
8446a4de | 748 | if (size && size <= KMALLOC_MAX_SIZE) |
05a94065 KC |
749 | return PAGE_SIZE << get_order(size); |
750 | ||
3c615294 | 751 | /* |
8446a4de DL |
752 | * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR |
753 | * and very large size - kmalloc() may fail. | |
3c615294 | 754 | */ |
8446a4de DL |
755 | return size; |
756 | ||
05a94065 KC |
757 | } |
758 | EXPORT_SYMBOL(kmalloc_size_roundup); | |
759 | ||
cb5d9fb3 | 760 | #ifdef CONFIG_ZONE_DMA |
494c1dfe WL |
761 | #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, |
762 | #else | |
763 | #define KMALLOC_DMA_NAME(sz) | |
764 | #endif | |
765 | ||
3a3b7fec | 766 | #ifdef CONFIG_MEMCG |
494c1dfe | 767 | #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, |
cb5d9fb3 | 768 | #else |
494c1dfe WL |
769 | #define KMALLOC_CGROUP_NAME(sz) |
770 | #endif | |
771 | ||
2f7c1c13 VB |
772 | #ifndef CONFIG_SLUB_TINY |
773 | #define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz, | |
774 | #else | |
775 | #define KMALLOC_RCL_NAME(sz) | |
776 | #endif | |
777 | ||
3c615294 GR |
778 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
779 | #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b | |
780 | #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz) | |
781 | #define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz, | |
782 | #define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz, | |
783 | #define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz, | |
784 | #define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz, | |
785 | #define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz, | |
786 | #define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz, | |
787 | #define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz, | |
788 | #define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz, | |
789 | #define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz, | |
790 | #define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz, | |
791 | #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz, | |
792 | #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz, | |
793 | #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz, | |
794 | #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz, | |
795 | #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz, | |
796 | #else // CONFIG_RANDOM_KMALLOC_CACHES | |
797 | #define KMALLOC_RANDOM_NAME(N, sz) | |
798 | #endif | |
799 | ||
cb5d9fb3 PL |
800 | #define INIT_KMALLOC_INFO(__size, __short_size) \ |
801 | { \ | |
802 | .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ | |
2f7c1c13 | 803 | KMALLOC_RCL_NAME(__short_size) \ |
494c1dfe WL |
804 | KMALLOC_CGROUP_NAME(__short_size) \ |
805 | KMALLOC_DMA_NAME(__short_size) \ | |
3c615294 | 806 | KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \ |
cb5d9fb3 PL |
807 | .size = __size, \ |
808 | } | |
cb5d9fb3 | 809 | |
4066c33d | 810 | /* |
671776b3 | 811 | * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time. |
d6a71648 HY |
812 | * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is |
813 | * kmalloc-2M. | |
4066c33d | 814 | */ |
af3b5f87 | 815 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
cb5d9fb3 PL |
816 | INIT_KMALLOC_INFO(0, 0), |
817 | INIT_KMALLOC_INFO(96, 96), | |
818 | INIT_KMALLOC_INFO(192, 192), | |
819 | INIT_KMALLOC_INFO(8, 8), | |
820 | INIT_KMALLOC_INFO(16, 16), | |
821 | INIT_KMALLOC_INFO(32, 32), | |
822 | INIT_KMALLOC_INFO(64, 64), | |
823 | INIT_KMALLOC_INFO(128, 128), | |
824 | INIT_KMALLOC_INFO(256, 256), | |
825 | INIT_KMALLOC_INFO(512, 512), | |
826 | INIT_KMALLOC_INFO(1024, 1k), | |
827 | INIT_KMALLOC_INFO(2048, 2k), | |
828 | INIT_KMALLOC_INFO(4096, 4k), | |
829 | INIT_KMALLOC_INFO(8192, 8k), | |
830 | INIT_KMALLOC_INFO(16384, 16k), | |
831 | INIT_KMALLOC_INFO(32768, 32k), | |
832 | INIT_KMALLOC_INFO(65536, 64k), | |
833 | INIT_KMALLOC_INFO(131072, 128k), | |
834 | INIT_KMALLOC_INFO(262144, 256k), | |
835 | INIT_KMALLOC_INFO(524288, 512k), | |
836 | INIT_KMALLOC_INFO(1048576, 1M), | |
d6a71648 | 837 | INIT_KMALLOC_INFO(2097152, 2M) |
4066c33d GG |
838 | }; |
839 | ||
f97d5f63 | 840 | /* |
34cc6990 DS |
841 | * Patch up the size_index table if we have strange large alignment |
842 | * requirements for the kmalloc array. This is only the case for | |
843 | * MIPS it seems. The standard arches will not generate any code here. | |
844 | * | |
845 | * Largest permitted alignment is 256 bytes due to the way we | |
846 | * handle the index determination for the smaller caches. | |
847 | * | |
848 | * Make sure that nothing crazy happens if someone starts tinkering | |
849 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 850 | */ |
34cc6990 | 851 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 | 852 | { |
ac914d08 | 853 | unsigned int i; |
f97d5f63 | 854 | |
2c59dd65 | 855 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
7d6b6cc3 | 856 | !is_power_of_2(KMALLOC_MIN_SIZE)); |
2c59dd65 CL |
857 | |
858 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
ac914d08 | 859 | unsigned int elem = size_index_elem(i); |
2c59dd65 | 860 | |
5a9d31d9 | 861 | if (elem >= ARRAY_SIZE(kmalloc_size_index)) |
2c59dd65 | 862 | break; |
5a9d31d9 | 863 | kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW; |
2c59dd65 CL |
864 | } |
865 | ||
866 | if (KMALLOC_MIN_SIZE >= 64) { | |
867 | /* | |
0b8f0d87 | 868 | * The 96 byte sized cache is not used if the alignment |
2c59dd65 CL |
869 | * is 64 byte. |
870 | */ | |
871 | for (i = 64 + 8; i <= 96; i += 8) | |
5a9d31d9 | 872 | kmalloc_size_index[size_index_elem(i)] = 7; |
2c59dd65 CL |
873 | |
874 | } | |
875 | ||
876 | if (KMALLOC_MIN_SIZE >= 128) { | |
877 | /* | |
878 | * The 192 byte sized cache is not used if the alignment | |
879 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
880 | * instead. | |
881 | */ | |
882 | for (i = 128 + 8; i <= 192; i += 8) | |
5a9d31d9 | 883 | kmalloc_size_index[size_index_elem(i)] = 8; |
2c59dd65 | 884 | } |
34cc6990 DS |
885 | } |
886 | ||
963e84b0 CM |
887 | static unsigned int __kmalloc_minalign(void) |
888 | { | |
c15cdea5 CM |
889 | unsigned int minalign = dma_get_cache_alignment(); |
890 | ||
05ee7741 PT |
891 | if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && |
892 | is_swiotlb_allocated()) | |
c15cdea5 CM |
893 | minalign = ARCH_KMALLOC_MINALIGN; |
894 | ||
895 | return max(minalign, arch_slab_minalign()); | |
963e84b0 CM |
896 | } |
897 | ||
66b3dc1f ZY |
898 | static void __init |
899 | new_kmalloc_cache(int idx, enum kmalloc_cache_type type) | |
a9730fca | 900 | { |
66b3dc1f | 901 | slab_flags_t flags = 0; |
963e84b0 CM |
902 | unsigned int minalign = __kmalloc_minalign(); |
903 | unsigned int aligned_size = kmalloc_info[idx].size; | |
904 | int aligned_idx = idx; | |
905 | ||
2f7c1c13 | 906 | if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) { |
1291523f | 907 | flags |= SLAB_RECLAIM_ACCOUNT; |
3a3b7fec | 908 | } else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) { |
17c17367 | 909 | if (mem_cgroup_kmem_disabled()) { |
494c1dfe WL |
910 | kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; |
911 | return; | |
912 | } | |
913 | flags |= SLAB_ACCOUNT; | |
33647783 OK |
914 | } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { |
915 | flags |= SLAB_CACHE_DMA; | |
494c1dfe | 916 | } |
1291523f | 917 | |
3c615294 GR |
918 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
919 | if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END) | |
920 | flags |= SLAB_NO_MERGE; | |
921 | #endif | |
922 | ||
13e680fb | 923 | /* |
3a3b7fec | 924 | * If CONFIG_MEMCG is enabled, disable cache merging for |
13e680fb WL |
925 | * KMALLOC_NORMAL caches. |
926 | */ | |
3a3b7fec | 927 | if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL)) |
d5bf4857 VB |
928 | flags |= SLAB_NO_MERGE; |
929 | ||
963e84b0 CM |
930 | if (minalign > ARCH_KMALLOC_MINALIGN) { |
931 | aligned_size = ALIGN(aligned_size, minalign); | |
932 | aligned_idx = __kmalloc_index(aligned_size, false); | |
933 | } | |
934 | ||
935 | if (!kmalloc_caches[type][aligned_idx]) | |
936 | kmalloc_caches[type][aligned_idx] = create_kmalloc_cache( | |
937 | kmalloc_info[aligned_idx].name[type], | |
938 | aligned_size, flags); | |
939 | if (idx != aligned_idx) | |
940 | kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx]; | |
a9730fca CL |
941 | } |
942 | ||
34cc6990 DS |
943 | /* |
944 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
945 | * may already have been created because they were needed to | |
946 | * enable allocations for slab creation. | |
947 | */ | |
66b3dc1f | 948 | void __init create_kmalloc_caches(void) |
34cc6990 | 949 | { |
13657d0a PL |
950 | int i; |
951 | enum kmalloc_cache_type type; | |
34cc6990 | 952 | |
494c1dfe | 953 | /* |
3a3b7fec | 954 | * Including KMALLOC_CGROUP if CONFIG_MEMCG defined |
494c1dfe | 955 | */ |
33647783 | 956 | for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { |
306c4ac9 | 957 | /* Caches that are NOT of the two-to-the-power-of size. */ |
7338999c | 958 | if (KMALLOC_MIN_SIZE <= 32) |
306c4ac9 | 959 | new_kmalloc_cache(1, type); |
7338999c | 960 | if (KMALLOC_MIN_SIZE <= 64) |
306c4ac9 HL |
961 | new_kmalloc_cache(2, type); |
962 | ||
963 | /* Caches that are of the two-to-the-power-of size. */ | |
7338999c HL |
964 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) |
965 | new_kmalloc_cache(i, type); | |
8a965b3b | 966 | } |
3c615294 GR |
967 | #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
968 | random_kmalloc_seed = get_random_u64(); | |
969 | #endif | |
8a965b3b | 970 | |
f97d5f63 CL |
971 | /* Kmalloc array is now usable */ |
972 | slab_state = UP; | |
b32801d1 KC |
973 | |
974 | if (IS_ENABLED(CONFIG_SLAB_BUCKETS)) | |
975 | kmem_buckets_cache = kmem_cache_create("kmalloc_buckets", | |
976 | sizeof(kmem_buckets), | |
977 | 0, SLAB_NO_MERGE, NULL); | |
f97d5f63 | 978 | } |
d6a71648 | 979 | |
445d41d7 VB |
980 | /** |
981 | * __ksize -- Report full size of underlying allocation | |
a2076201 | 982 | * @object: pointer to the object |
445d41d7 VB |
983 | * |
984 | * This should only be used internally to query the true size of allocations. | |
985 | * It is not meant to be a way to discover the usable size of an allocation | |
986 | * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond | |
987 | * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, | |
988 | * and/or FORTIFY_SOURCE. | |
989 | * | |
a2076201 | 990 | * Return: size of the actual memory used by @object in bytes |
445d41d7 | 991 | */ |
b1405135 HY |
992 | size_t __ksize(const void *object) |
993 | { | |
994 | struct folio *folio; | |
995 | ||
996 | if (unlikely(object == ZERO_SIZE_PTR)) | |
997 | return 0; | |
998 | ||
999 | folio = virt_to_folio(object); | |
1000 | ||
d5eff736 HY |
1001 | if (unlikely(!folio_test_slab(folio))) { |
1002 | if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE)) | |
1003 | return 0; | |
1004 | if (WARN_ON(object != folio_address(folio))) | |
1005 | return 0; | |
b1405135 | 1006 | return folio_size(folio); |
d5eff736 | 1007 | } |
b1405135 | 1008 | |
946fa0db FT |
1009 | #ifdef CONFIG_SLUB_DEBUG |
1010 | skip_orig_size_check(folio_slab(folio)->slab_cache, object); | |
1011 | #endif | |
1012 | ||
b1405135 HY |
1013 | return slab_ksize(folio_slab(folio)->slab_cache); |
1014 | } | |
26a40990 | 1015 | |
44405099 LL |
1016 | gfp_t kmalloc_fix_flags(gfp_t flags) |
1017 | { | |
1018 | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; | |
1019 | ||
1020 | flags &= ~GFP_SLAB_BUG_MASK; | |
1021 | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | |
1022 | invalid_mask, &invalid_mask, flags, &flags); | |
1023 | dump_stack(); | |
1024 | ||
1025 | return flags; | |
1026 | } | |
1027 | ||
7c00fce9 TG |
1028 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
1029 | /* Randomize a generic freelist */ | |
ffe4dfe0 | 1030 | static void freelist_randomize(unsigned int *list, |
302d55d5 | 1031 | unsigned int count) |
7c00fce9 | 1032 | { |
7c00fce9 | 1033 | unsigned int rand; |
302d55d5 | 1034 | unsigned int i; |
7c00fce9 TG |
1035 | |
1036 | for (i = 0; i < count; i++) | |
1037 | list[i] = i; | |
1038 | ||
1039 | /* Fisher-Yates shuffle */ | |
1040 | for (i = count - 1; i > 0; i--) { | |
ffe4dfe0 | 1041 | rand = get_random_u32_below(i + 1); |
7c00fce9 TG |
1042 | swap(list[i], list[rand]); |
1043 | } | |
1044 | } | |
1045 | ||
1046 | /* Create a random sequence per cache */ | |
1047 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
1048 | gfp_t gfp) | |
1049 | { | |
7c00fce9 TG |
1050 | |
1051 | if (count < 2 || cachep->random_seq) | |
1052 | return 0; | |
1053 | ||
1054 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | |
1055 | if (!cachep->random_seq) | |
1056 | return -ENOMEM; | |
1057 | ||
ffe4dfe0 | 1058 | freelist_randomize(cachep->random_seq, count); |
7c00fce9 TG |
1059 | return 0; |
1060 | } | |
1061 | ||
1062 | /* Destroy the per-cache random freelist sequence */ | |
1063 | void cache_random_seq_destroy(struct kmem_cache *cachep) | |
1064 | { | |
1065 | kfree(cachep->random_seq); | |
1066 | cachep->random_seq = NULL; | |
1067 | } | |
1068 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
1069 | ||
a9e0b9f2 | 1070 | #ifdef CONFIG_SLUB_DEBUG |
0825a6f9 | 1071 | #define SLABINFO_RIGHTS (0400) |
e9b4db2b | 1072 | |
b047501c | 1073 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1074 | { |
1075 | /* | |
1076 | * Output format version, so at least we can change it | |
1077 | * without _too_ many complaints. | |
1078 | */ | |
bcee6e2a | 1079 | seq_puts(m, "slabinfo - version: 2.1\n"); |
756a025f | 1080 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
bcee6e2a GC |
1081 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
1082 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
bcee6e2a GC |
1083 | seq_putc(m, '\n'); |
1084 | } | |
1085 | ||
c29b5b3d | 1086 | static void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1087 | { |
b7454ad3 | 1088 | mutex_lock(&slab_mutex); |
c7094406 | 1089 | return seq_list_start(&slab_caches, *pos); |
b7454ad3 GC |
1090 | } |
1091 | ||
c29b5b3d | 1092 | static void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 | 1093 | { |
c7094406 | 1094 | return seq_list_next(p, &slab_caches, pos); |
b7454ad3 GC |
1095 | } |
1096 | ||
c29b5b3d | 1097 | static void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1098 | { |
1099 | mutex_unlock(&slab_mutex); | |
1100 | } | |
1101 | ||
b047501c | 1102 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1103 | { |
0d7561c6 GC |
1104 | struct slabinfo sinfo; |
1105 | ||
1106 | memset(&sinfo, 0, sizeof(sinfo)); | |
1107 | get_slabinfo(s, &sinfo); | |
1108 | ||
1109 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
10befea9 | 1110 | s->name, sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1111 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1112 | ||
1113 | seq_printf(m, " : tunables %4u %4u %4u", | |
1114 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1115 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1116 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
0d7561c6 | 1117 | seq_putc(m, '\n'); |
b7454ad3 GC |
1118 | } |
1119 | ||
1df3b26f | 1120 | static int slab_show(struct seq_file *m, void *p) |
749c5415 | 1121 | { |
c7094406 | 1122 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); |
749c5415 | 1123 | |
c7094406 | 1124 | if (p == slab_caches.next) |
1df3b26f | 1125 | print_slabinfo_header(m); |
10befea9 | 1126 | cache_show(s, m); |
b047501c VD |
1127 | return 0; |
1128 | } | |
1129 | ||
852d8be0 YS |
1130 | void dump_unreclaimable_slab(void) |
1131 | { | |
7714304f | 1132 | struct kmem_cache *s; |
852d8be0 YS |
1133 | struct slabinfo sinfo; |
1134 | ||
1135 | /* | |
1136 | * Here acquiring slab_mutex is risky since we don't prefer to get | |
1137 | * sleep in oom path. But, without mutex hold, it may introduce a | |
1138 | * risk of crash. | |
1139 | * Use mutex_trylock to protect the list traverse, dump nothing | |
1140 | * without acquiring the mutex. | |
1141 | */ | |
1142 | if (!mutex_trylock(&slab_mutex)) { | |
1143 | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | |
1144 | return; | |
1145 | } | |
1146 | ||
1147 | pr_info("Unreclaimable slab info:\n"); | |
1148 | pr_info("Name Used Total\n"); | |
1149 | ||
7714304f | 1150 | list_for_each_entry(s, &slab_caches, list) { |
10befea9 | 1151 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
852d8be0 YS |
1152 | continue; |
1153 | ||
1154 | get_slabinfo(s, &sinfo); | |
1155 | ||
1156 | if (sinfo.num_objs > 0) | |
10befea9 | 1157 | pr_info("%-17s %10luKB %10luKB\n", s->name, |
852d8be0 YS |
1158 | (sinfo.active_objs * s->size) / 1024, |
1159 | (sinfo.num_objs * s->size) / 1024); | |
1160 | } | |
1161 | mutex_unlock(&slab_mutex); | |
1162 | } | |
1163 | ||
b7454ad3 GC |
1164 | /* |
1165 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1166 | * | |
1167 | * Output layout: | |
1168 | * cache-name | |
1169 | * num-active-objs | |
1170 | * total-objs | |
1171 | * object size | |
1172 | * num-active-slabs | |
1173 | * total-slabs | |
1174 | * num-pages-per-slab | |
1175 | * + further values on SMP and with statistics enabled | |
1176 | */ | |
1177 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1178 | .start = slab_start, |
276a2439 WL |
1179 | .next = slab_next, |
1180 | .stop = slab_stop, | |
1df3b26f | 1181 | .show = slab_show, |
b7454ad3 GC |
1182 | }; |
1183 | ||
1184 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1185 | { | |
1186 | return seq_open(file, &slabinfo_op); | |
1187 | } | |
1188 | ||
97a32539 | 1189 | static const struct proc_ops slabinfo_proc_ops = { |
d919b33d | 1190 | .proc_flags = PROC_ENTRY_PERMANENT, |
97a32539 AD |
1191 | .proc_open = slabinfo_open, |
1192 | .proc_read = seq_read, | |
97a32539 AD |
1193 | .proc_lseek = seq_lseek, |
1194 | .proc_release = seq_release, | |
b7454ad3 GC |
1195 | }; |
1196 | ||
1197 | static int __init slab_proc_init(void) | |
1198 | { | |
97a32539 | 1199 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); |
b7454ad3 GC |
1200 | return 0; |
1201 | } | |
1202 | module_init(slab_proc_init); | |
fcf8a1e4 | 1203 | |
a9e0b9f2 | 1204 | #endif /* CONFIG_SLUB_DEBUG */ |
928cec9c | 1205 | |
928cec9c | 1206 | /** |
453431a5 | 1207 | * kfree_sensitive - Clear sensitive information in memory before freeing |
928cec9c AR |
1208 | * @p: object to free memory of |
1209 | * | |
1210 | * The memory of the object @p points to is zeroed before freed. | |
453431a5 | 1211 | * If @p is %NULL, kfree_sensitive() does nothing. |
928cec9c AR |
1212 | * |
1213 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1214 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1215 | * careful when using this function in performance sensitive code. | |
1216 | */ | |
453431a5 | 1217 | void kfree_sensitive(const void *p) |
928cec9c AR |
1218 | { |
1219 | size_t ks; | |
1220 | void *mem = (void *)p; | |
1221 | ||
928cec9c | 1222 | ks = ksize(mem); |
38931d89 KC |
1223 | if (ks) { |
1224 | kasan_unpoison_range(mem, ks); | |
fa9ba3aa | 1225 | memzero_explicit(mem, ks); |
38931d89 | 1226 | } |
928cec9c AR |
1227 | kfree(mem); |
1228 | } | |
453431a5 | 1229 | EXPORT_SYMBOL(kfree_sensitive); |
928cec9c | 1230 | |
10d1f8cb ME |
1231 | size_t ksize(const void *objp) |
1232 | { | |
0d4ca4c9 | 1233 | /* |
38931d89 KC |
1234 | * We need to first check that the pointer to the object is valid. |
1235 | * The KASAN report printed from ksize() is more useful, then when | |
1236 | * it's printed later when the behaviour could be undefined due to | |
1237 | * a potential use-after-free or double-free. | |
0d4ca4c9 | 1238 | * |
611806b4 AK |
1239 | * We use kasan_check_byte(), which is supported for the hardware |
1240 | * tag-based KASAN mode, unlike kasan_check_read/write(). | |
1241 | * | |
1242 | * If the pointed to memory is invalid, we return 0 to avoid users of | |
0d4ca4c9 ME |
1243 | * ksize() writing to and potentially corrupting the memory region. |
1244 | * | |
1245 | * We want to perform the check before __ksize(), to avoid potentially | |
1246 | * crashing in __ksize() due to accessing invalid metadata. | |
1247 | */ | |
611806b4 | 1248 | if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) |
0d4ca4c9 ME |
1249 | return 0; |
1250 | ||
38931d89 | 1251 | return kfence_ksize(objp) ?: __ksize(objp); |
10d1f8cb ME |
1252 | } |
1253 | EXPORT_SYMBOL(ksize); | |
1254 | ||
a992d7a3 NK |
1255 | #ifdef CONFIG_BPF_SYSCALL |
1256 | #include <linux/btf.h> | |
1257 | ||
1258 | __bpf_kfunc_start_defs(); | |
1259 | ||
1260 | __bpf_kfunc struct kmem_cache *bpf_get_kmem_cache(u64 addr) | |
1261 | { | |
1262 | struct slab *slab; | |
1263 | ||
1264 | if (!virt_addr_valid((void *)(long)addr)) | |
1265 | return NULL; | |
1266 | ||
1267 | slab = virt_to_slab((void *)(long)addr); | |
1268 | return slab ? slab->slab_cache : NULL; | |
1269 | } | |
1270 | ||
1271 | __bpf_kfunc_end_defs(); | |
1272 | #endif /* CONFIG_BPF_SYSCALL */ | |
1273 | ||
928cec9c AR |
1274 | /* Tracepoints definitions. */ |
1275 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1276 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
928cec9c AR |
1277 | EXPORT_TRACEPOINT_SYMBOL(kfree); |
1278 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | |
4f6923fb | 1279 | |
c9f8f124 | 1280 | #ifndef CONFIG_KVFREE_RCU_BATCHED |
b14ff274 VB |
1281 | |
1282 | void kvfree_call_rcu(struct rcu_head *head, void *ptr) | |
1283 | { | |
1284 | if (head) { | |
1285 | kasan_record_aux_stack(ptr); | |
49d5377b | 1286 | call_rcu(head, kvfree_rcu_cb); |
b14ff274 VB |
1287 | return; |
1288 | } | |
1289 | ||
1290 | // kvfree_rcu(one_arg) call. | |
1291 | might_sleep(); | |
1292 | synchronize_rcu(); | |
1293 | kvfree(ptr); | |
1294 | } | |
1295 | EXPORT_SYMBOL_GPL(kvfree_call_rcu); | |
1296 | ||
c9f8f124 VB |
1297 | void __init kvfree_rcu_init(void) |
1298 | { | |
1299 | } | |
1300 | ||
1301 | #else /* CONFIG_KVFREE_RCU_BATCHED */ | |
b14ff274 | 1302 | |
bbe658d6 URS |
1303 | /* |
1304 | * This rcu parameter is runtime-read-only. It reflects | |
1305 | * a minimum allowed number of objects which can be cached | |
1306 | * per-CPU. Object size is equal to one page. This value | |
1307 | * can be changed at boot time. | |
1308 | */ | |
1309 | static int rcu_min_cached_objs = 5; | |
1310 | module_param(rcu_min_cached_objs, int, 0444); | |
1311 | ||
1312 | // A page shrinker can ask for pages to be freed to make them | |
1313 | // available for other parts of the system. This usually happens | |
1314 | // under low memory conditions, and in that case we should also | |
1315 | // defer page-cache filling for a short time period. | |
1316 | // | |
1317 | // The default value is 5 seconds, which is long enough to reduce | |
1318 | // interference with the shrinker while it asks other systems to | |
1319 | // drain their caches. | |
1320 | static int rcu_delay_page_cache_fill_msec = 5000; | |
1321 | module_param(rcu_delay_page_cache_fill_msec, int, 0444); | |
1322 | ||
dfd3df31 URS |
1323 | static struct workqueue_struct *rcu_reclaim_wq; |
1324 | ||
bbe658d6 URS |
1325 | /* Maximum number of jiffies to wait before draining a batch. */ |
1326 | #define KFREE_DRAIN_JIFFIES (5 * HZ) | |
1327 | #define KFREE_N_BATCHES 2 | |
1328 | #define FREE_N_CHANNELS 2 | |
1329 | ||
1330 | /** | |
1331 | * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers | |
1332 | * @list: List node. All blocks are linked between each other | |
1333 | * @gp_snap: Snapshot of RCU state for objects placed to this bulk | |
1334 | * @nr_records: Number of active pointers in the array | |
1335 | * @records: Array of the kvfree_rcu() pointers | |
1336 | */ | |
1337 | struct kvfree_rcu_bulk_data { | |
1338 | struct list_head list; | |
1339 | struct rcu_gp_oldstate gp_snap; | |
1340 | unsigned long nr_records; | |
1341 | void *records[] __counted_by(nr_records); | |
1342 | }; | |
1343 | ||
1344 | /* | |
1345 | * This macro defines how many entries the "records" array | |
1346 | * will contain. It is based on the fact that the size of | |
1347 | * kvfree_rcu_bulk_data structure becomes exactly one page. | |
1348 | */ | |
1349 | #define KVFREE_BULK_MAX_ENTR \ | |
1350 | ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) | |
1351 | ||
1352 | /** | |
1353 | * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests | |
1354 | * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period | |
1355 | * @head_free: List of kfree_rcu() objects waiting for a grace period | |
1356 | * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. | |
1357 | * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period | |
1358 | * @krcp: Pointer to @kfree_rcu_cpu structure | |
1359 | */ | |
1360 | ||
1361 | struct kfree_rcu_cpu_work { | |
1362 | struct rcu_work rcu_work; | |
1363 | struct rcu_head *head_free; | |
1364 | struct rcu_gp_oldstate head_free_gp_snap; | |
1365 | struct list_head bulk_head_free[FREE_N_CHANNELS]; | |
1366 | struct kfree_rcu_cpu *krcp; | |
1367 | }; | |
1368 | ||
1369 | /** | |
1370 | * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period | |
1371 | * @head: List of kfree_rcu() objects not yet waiting for a grace period | |
1372 | * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" | |
1373 | * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period | |
1374 | * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period | |
1375 | * @lock: Synchronize access to this structure | |
1376 | * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES | |
1377 | * @initialized: The @rcu_work fields have been initialized | |
1378 | * @head_count: Number of objects in rcu_head singular list | |
1379 | * @bulk_count: Number of objects in bulk-list | |
1380 | * @bkvcache: | |
1381 | * A simple cache list that contains objects for reuse purpose. | |
1382 | * In order to save some per-cpu space the list is singular. | |
1383 | * Even though it is lockless an access has to be protected by the | |
1384 | * per-cpu lock. | |
1385 | * @page_cache_work: A work to refill the cache when it is empty | |
1386 | * @backoff_page_cache_fill: Delay cache refills | |
1387 | * @work_in_progress: Indicates that page_cache_work is running | |
1388 | * @hrtimer: A hrtimer for scheduling a page_cache_work | |
1389 | * @nr_bkv_objs: number of allocated objects at @bkvcache. | |
1390 | * | |
1391 | * This is a per-CPU structure. The reason that it is not included in | |
1392 | * the rcu_data structure is to permit this code to be extracted from | |
1393 | * the RCU files. Such extraction could allow further optimization of | |
1394 | * the interactions with the slab allocators. | |
1395 | */ | |
1396 | struct kfree_rcu_cpu { | |
1397 | // Objects queued on a linked list | |
1398 | // through their rcu_head structures. | |
1399 | struct rcu_head *head; | |
1400 | unsigned long head_gp_snap; | |
1401 | atomic_t head_count; | |
1402 | ||
1403 | // Objects queued on a bulk-list. | |
1404 | struct list_head bulk_head[FREE_N_CHANNELS]; | |
1405 | atomic_t bulk_count[FREE_N_CHANNELS]; | |
1406 | ||
1407 | struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; | |
1408 | raw_spinlock_t lock; | |
1409 | struct delayed_work monitor_work; | |
1410 | bool initialized; | |
1411 | ||
1412 | struct delayed_work page_cache_work; | |
1413 | atomic_t backoff_page_cache_fill; | |
1414 | atomic_t work_in_progress; | |
1415 | struct hrtimer hrtimer; | |
1416 | ||
1417 | struct llist_head bkvcache; | |
1418 | int nr_bkv_objs; | |
1419 | }; | |
1420 | ||
1421 | static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { | |
1422 | .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), | |
1423 | }; | |
1424 | ||
1425 | static __always_inline void | |
1426 | debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) | |
1427 | { | |
1428 | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD | |
1429 | int i; | |
1430 | ||
1431 | for (i = 0; i < bhead->nr_records; i++) | |
1432 | debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); | |
1433 | #endif | |
1434 | } | |
1435 | ||
1436 | static inline struct kfree_rcu_cpu * | |
1437 | krc_this_cpu_lock(unsigned long *flags) | |
1438 | { | |
1439 | struct kfree_rcu_cpu *krcp; | |
1440 | ||
1441 | local_irq_save(*flags); // For safely calling this_cpu_ptr(). | |
1442 | krcp = this_cpu_ptr(&krc); | |
1443 | raw_spin_lock(&krcp->lock); | |
1444 | ||
1445 | return krcp; | |
1446 | } | |
1447 | ||
1448 | static inline void | |
1449 | krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) | |
1450 | { | |
1451 | raw_spin_unlock_irqrestore(&krcp->lock, flags); | |
1452 | } | |
1453 | ||
1454 | static inline struct kvfree_rcu_bulk_data * | |
1455 | get_cached_bnode(struct kfree_rcu_cpu *krcp) | |
1456 | { | |
1457 | if (!krcp->nr_bkv_objs) | |
1458 | return NULL; | |
1459 | ||
1460 | WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); | |
1461 | return (struct kvfree_rcu_bulk_data *) | |
1462 | llist_del_first(&krcp->bkvcache); | |
1463 | } | |
1464 | ||
1465 | static inline bool | |
1466 | put_cached_bnode(struct kfree_rcu_cpu *krcp, | |
1467 | struct kvfree_rcu_bulk_data *bnode) | |
1468 | { | |
1469 | // Check the limit. | |
1470 | if (krcp->nr_bkv_objs >= rcu_min_cached_objs) | |
1471 | return false; | |
1472 | ||
1473 | llist_add((struct llist_node *) bnode, &krcp->bkvcache); | |
1474 | WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); | |
1475 | return true; | |
1476 | } | |
1477 | ||
1478 | static int | |
1479 | drain_page_cache(struct kfree_rcu_cpu *krcp) | |
1480 | { | |
1481 | unsigned long flags; | |
1482 | struct llist_node *page_list, *pos, *n; | |
1483 | int freed = 0; | |
1484 | ||
1485 | if (!rcu_min_cached_objs) | |
1486 | return 0; | |
1487 | ||
1488 | raw_spin_lock_irqsave(&krcp->lock, flags); | |
1489 | page_list = llist_del_all(&krcp->bkvcache); | |
1490 | WRITE_ONCE(krcp->nr_bkv_objs, 0); | |
1491 | raw_spin_unlock_irqrestore(&krcp->lock, flags); | |
1492 | ||
1493 | llist_for_each_safe(pos, n, page_list) { | |
1494 | free_page((unsigned long)pos); | |
1495 | freed++; | |
1496 | } | |
1497 | ||
1498 | return freed; | |
1499 | } | |
1500 | ||
1501 | static void | |
1502 | kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, | |
1503 | struct kvfree_rcu_bulk_data *bnode, int idx) | |
1504 | { | |
1505 | unsigned long flags; | |
1506 | int i; | |
1507 | ||
1508 | if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { | |
1509 | debug_rcu_bhead_unqueue(bnode); | |
1510 | rcu_lock_acquire(&rcu_callback_map); | |
1511 | if (idx == 0) { // kmalloc() / kfree(). | |
1512 | trace_rcu_invoke_kfree_bulk_callback( | |
1513 | "slab", bnode->nr_records, | |
1514 | bnode->records); | |
1515 | ||
1516 | kfree_bulk(bnode->nr_records, bnode->records); | |
1517 | } else { // vmalloc() / vfree(). | |
1518 | for (i = 0; i < bnode->nr_records; i++) { | |
1519 | trace_rcu_invoke_kvfree_callback( | |
1520 | "slab", bnode->records[i], 0); | |
1521 | ||
1522 | vfree(bnode->records[i]); | |
1523 | } | |
1524 | } | |
1525 | rcu_lock_release(&rcu_callback_map); | |
1526 | } | |
1527 | ||
1528 | raw_spin_lock_irqsave(&krcp->lock, flags); | |
1529 | if (put_cached_bnode(krcp, bnode)) | |
1530 | bnode = NULL; | |
1531 | raw_spin_unlock_irqrestore(&krcp->lock, flags); | |
1532 | ||
1533 | if (bnode) | |
1534 | free_page((unsigned long) bnode); | |
1535 | ||
1536 | cond_resched_tasks_rcu_qs(); | |
1537 | } | |
1538 | ||
1539 | static void | |
1540 | kvfree_rcu_list(struct rcu_head *head) | |
1541 | { | |
1542 | struct rcu_head *next; | |
1543 | ||
1544 | for (; head; head = next) { | |
1545 | void *ptr = (void *) head->func; | |
1546 | unsigned long offset = (void *) head - ptr; | |
1547 | ||
1548 | next = head->next; | |
1549 | debug_rcu_head_unqueue((struct rcu_head *)ptr); | |
1550 | rcu_lock_acquire(&rcu_callback_map); | |
1551 | trace_rcu_invoke_kvfree_callback("slab", head, offset); | |
1552 | ||
49d5377b | 1553 | kvfree(ptr); |
bbe658d6 URS |
1554 | |
1555 | rcu_lock_release(&rcu_callback_map); | |
1556 | cond_resched_tasks_rcu_qs(); | |
1557 | } | |
1558 | } | |
1559 | ||
1560 | /* | |
1561 | * This function is invoked in workqueue context after a grace period. | |
1562 | * It frees all the objects queued on ->bulk_head_free or ->head_free. | |
1563 | */ | |
1564 | static void kfree_rcu_work(struct work_struct *work) | |
1565 | { | |
1566 | unsigned long flags; | |
1567 | struct kvfree_rcu_bulk_data *bnode, *n; | |
1568 | struct list_head bulk_head[FREE_N_CHANNELS]; | |
1569 | struct rcu_head *head; | |
1570 | struct kfree_rcu_cpu *krcp; | |
1571 | struct kfree_rcu_cpu_work *krwp; | |
1572 | struct rcu_gp_oldstate head_gp_snap; | |
1573 | int i; | |
1574 | ||
1575 | krwp = container_of(to_rcu_work(work), | |
1576 | struct kfree_rcu_cpu_work, rcu_work); | |
1577 | krcp = krwp->krcp; | |
1578 | ||
1579 | raw_spin_lock_irqsave(&krcp->lock, flags); | |
1580 | // Channels 1 and 2. | |
1581 | for (i = 0; i < FREE_N_CHANNELS; i++) | |
1582 | list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); | |
1583 | ||
1584 | // Channel 3. | |
1585 | head = krwp->head_free; | |
1586 | krwp->head_free = NULL; | |
1587 | head_gp_snap = krwp->head_free_gp_snap; | |
1588 | raw_spin_unlock_irqrestore(&krcp->lock, flags); | |
1589 | ||
1590 | // Handle the first two channels. | |
1591 | for (i = 0; i < FREE_N_CHANNELS; i++) { | |
1592 | // Start from the tail page, so a GP is likely passed for it. | |
1593 | list_for_each_entry_safe(bnode, n, &bulk_head[i], list) | |
1594 | kvfree_rcu_bulk(krcp, bnode, i); | |
1595 | } | |
1596 | ||
1597 | /* | |
1598 | * This is used when the "bulk" path can not be used for the | |
1599 | * double-argument of kvfree_rcu(). This happens when the | |
1600 | * page-cache is empty, which means that objects are instead | |
1601 | * queued on a linked list through their rcu_head structures. | |
1602 | * This list is named "Channel 3". | |
1603 | */ | |
1604 | if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) | |
1605 | kvfree_rcu_list(head); | |
1606 | } | |
1607 | ||
1608 | static bool | |
1609 | need_offload_krc(struct kfree_rcu_cpu *krcp) | |
1610 | { | |
1611 | int i; | |
1612 | ||
1613 | for (i = 0; i < FREE_N_CHANNELS; i++) | |
1614 | if (!list_empty(&krcp->bulk_head[i])) | |
1615 | return true; | |
1616 | ||
1617 | return !!READ_ONCE(krcp->head); | |
1618 | } | |
1619 | ||
1620 | static bool | |
1621 | need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) | |
1622 | { | |
1623 | int i; | |
1624 | ||
1625 | for (i = 0; i < FREE_N_CHANNELS; i++) | |
1626 | if (!list_empty(&krwp->bulk_head_free[i])) | |
1627 | return true; | |
1628 | ||
1629 | return !!krwp->head_free; | |
1630 | } | |
1631 | ||
1632 | static int krc_count(struct kfree_rcu_cpu *krcp) | |
1633 | { | |
1634 | int sum = atomic_read(&krcp->head_count); | |
1635 | int i; | |
1636 | ||
1637 | for (i = 0; i < FREE_N_CHANNELS; i++) | |
1638 | sum += atomic_read(&krcp->bulk_count[i]); | |
1639 | ||
1640 | return sum; | |
1641 | } | |
1642 | ||
1643 | static void | |
1644 | __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) | |
1645 | { | |
1646 | long delay, delay_left; | |
1647 | ||
1648 | delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; | |
1649 | if (delayed_work_pending(&krcp->monitor_work)) { | |
1650 | delay_left = krcp->monitor_work.timer.expires - jiffies; | |
1651 | if (delay < delay_left) | |
dfd3df31 | 1652 | mod_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); |
bbe658d6 URS |
1653 | return; |
1654 | } | |
dfd3df31 | 1655 | queue_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); |
bbe658d6 URS |
1656 | } |
1657 | ||
1658 | static void | |
1659 | schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) | |
1660 | { | |
1661 | unsigned long flags; | |
1662 | ||
1663 | raw_spin_lock_irqsave(&krcp->lock, flags); | |
1664 | __schedule_delayed_monitor_work(krcp); | |
1665 | raw_spin_unlock_irqrestore(&krcp->lock, flags); | |
1666 | } | |
1667 | ||
1668 | static void | |
1669 | kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) | |
1670 | { | |
1671 | struct list_head bulk_ready[FREE_N_CHANNELS]; | |
1672 | struct kvfree_rcu_bulk_data *bnode, *n; | |
1673 | struct rcu_head *head_ready = NULL; | |
1674 | unsigned long flags; | |
1675 | int i; | |
1676 | ||
1677 | raw_spin_lock_irqsave(&krcp->lock, flags); | |
1678 | for (i = 0; i < FREE_N_CHANNELS; i++) { | |
1679 | INIT_LIST_HEAD(&bulk_ready[i]); | |
1680 | ||
1681 | list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { | |
1682 | if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) | |
1683 | break; | |
1684 | ||
1685 | atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); | |
1686 | list_move(&bnode->list, &bulk_ready[i]); | |
1687 | } | |
1688 | } | |
1689 | ||
1690 | if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { | |
1691 | head_ready = krcp->head; | |
1692 | atomic_set(&krcp->head_count, 0); | |
1693 | WRITE_ONCE(krcp->head, NULL); | |
1694 | } | |
1695 | raw_spin_unlock_irqrestore(&krcp->lock, flags); | |
1696 | ||
1697 | for (i = 0; i < FREE_N_CHANNELS; i++) { | |
1698 | list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) | |
1699 | kvfree_rcu_bulk(krcp, bnode, i); | |
1700 | } | |
1701 | ||
1702 | if (head_ready) | |
1703 | kvfree_rcu_list(head_ready); | |
1704 | } | |
1705 | ||
1706 | /* | |
1707 | * Return: %true if a work is queued, %false otherwise. | |
1708 | */ | |
1709 | static bool | |
1710 | kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp) | |
1711 | { | |
1712 | unsigned long flags; | |
1713 | bool queued = false; | |
1714 | int i, j; | |
1715 | ||
1716 | raw_spin_lock_irqsave(&krcp->lock, flags); | |
1717 | ||
1718 | // Attempt to start a new batch. | |
1719 | for (i = 0; i < KFREE_N_BATCHES; i++) { | |
1720 | struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); | |
1721 | ||
1722 | // Try to detach bulk_head or head and attach it, only when | |
1723 | // all channels are free. Any channel is not free means at krwp | |
1724 | // there is on-going rcu work to handle krwp's free business. | |
1725 | if (need_wait_for_krwp_work(krwp)) | |
1726 | continue; | |
1727 | ||
1728 | // kvfree_rcu_drain_ready() might handle this krcp, if so give up. | |
1729 | if (need_offload_krc(krcp)) { | |
1730 | // Channel 1 corresponds to the SLAB-pointer bulk path. | |
1731 | // Channel 2 corresponds to vmalloc-pointer bulk path. | |
1732 | for (j = 0; j < FREE_N_CHANNELS; j++) { | |
1733 | if (list_empty(&krwp->bulk_head_free[j])) { | |
1734 | atomic_set(&krcp->bulk_count[j], 0); | |
1735 | list_replace_init(&krcp->bulk_head[j], | |
1736 | &krwp->bulk_head_free[j]); | |
1737 | } | |
1738 | } | |
1739 | ||
1740 | // Channel 3 corresponds to both SLAB and vmalloc | |
1741 | // objects queued on the linked list. | |
1742 | if (!krwp->head_free) { | |
1743 | krwp->head_free = krcp->head; | |
1744 | get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); | |
1745 | atomic_set(&krcp->head_count, 0); | |
1746 | WRITE_ONCE(krcp->head, NULL); | |
1747 | } | |
1748 | ||
1749 | // One work is per one batch, so there are three | |
1750 | // "free channels", the batch can handle. Break | |
1751 | // the loop since it is done with this CPU thus | |
1752 | // queuing an RCU work is _always_ success here. | |
dfd3df31 | 1753 | queued = queue_rcu_work(rcu_reclaim_wq, &krwp->rcu_work); |
bbe658d6 URS |
1754 | WARN_ON_ONCE(!queued); |
1755 | break; | |
1756 | } | |
1757 | } | |
1758 | ||
1759 | raw_spin_unlock_irqrestore(&krcp->lock, flags); | |
1760 | return queued; | |
1761 | } | |
1762 | ||
1763 | /* | |
1764 | * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. | |
1765 | */ | |
1766 | static void kfree_rcu_monitor(struct work_struct *work) | |
1767 | { | |
1768 | struct kfree_rcu_cpu *krcp = container_of(work, | |
1769 | struct kfree_rcu_cpu, monitor_work.work); | |
1770 | ||
1771 | // Drain ready for reclaim. | |
1772 | kvfree_rcu_drain_ready(krcp); | |
1773 | ||
1774 | // Queue a batch for a rest. | |
1775 | kvfree_rcu_queue_batch(krcp); | |
1776 | ||
1777 | // If there is nothing to detach, it means that our job is | |
1778 | // successfully done here. In case of having at least one | |
1779 | // of the channels that is still busy we should rearm the | |
1780 | // work to repeat an attempt. Because previous batches are | |
1781 | // still in progress. | |
1782 | if (need_offload_krc(krcp)) | |
1783 | schedule_delayed_monitor_work(krcp); | |
1784 | } | |
1785 | ||
1786 | static void fill_page_cache_func(struct work_struct *work) | |
1787 | { | |
1788 | struct kvfree_rcu_bulk_data *bnode; | |
1789 | struct kfree_rcu_cpu *krcp = | |
1790 | container_of(work, struct kfree_rcu_cpu, | |
1791 | page_cache_work.work); | |
1792 | unsigned long flags; | |
1793 | int nr_pages; | |
1794 | bool pushed; | |
1795 | int i; | |
1796 | ||
1797 | nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? | |
1798 | 1 : rcu_min_cached_objs; | |
1799 | ||
1800 | for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { | |
1801 | bnode = (struct kvfree_rcu_bulk_data *) | |
1802 | __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); | |
1803 | ||
1804 | if (!bnode) | |
1805 | break; | |
1806 | ||
1807 | raw_spin_lock_irqsave(&krcp->lock, flags); | |
1808 | pushed = put_cached_bnode(krcp, bnode); | |
1809 | raw_spin_unlock_irqrestore(&krcp->lock, flags); | |
1810 | ||
1811 | if (!pushed) { | |
1812 | free_page((unsigned long) bnode); | |
1813 | break; | |
1814 | } | |
1815 | } | |
1816 | ||
1817 | atomic_set(&krcp->work_in_progress, 0); | |
1818 | atomic_set(&krcp->backoff_page_cache_fill, 0); | |
1819 | } | |
1820 | ||
1821 | // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() | |
1822 | // state specified by flags. If can_alloc is true, the caller must | |
1823 | // be schedulable and not be holding any locks or mutexes that might be | |
1824 | // acquired by the memory allocator or anything that it might invoke. | |
1825 | // Returns true if ptr was successfully recorded, else the caller must | |
1826 | // use a fallback. | |
1827 | static inline bool | |
1828 | add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, | |
1829 | unsigned long *flags, void *ptr, bool can_alloc) | |
1830 | { | |
1831 | struct kvfree_rcu_bulk_data *bnode; | |
1832 | int idx; | |
1833 | ||
1834 | *krcp = krc_this_cpu_lock(flags); | |
1835 | if (unlikely(!(*krcp)->initialized)) | |
1836 | return false; | |
1837 | ||
1838 | idx = !!is_vmalloc_addr(ptr); | |
1839 | bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], | |
1840 | struct kvfree_rcu_bulk_data, list); | |
1841 | ||
1842 | /* Check if a new block is required. */ | |
1843 | if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { | |
1844 | bnode = get_cached_bnode(*krcp); | |
1845 | if (!bnode && can_alloc) { | |
1846 | krc_this_cpu_unlock(*krcp, *flags); | |
1847 | ||
1848 | // __GFP_NORETRY - allows a light-weight direct reclaim | |
1849 | // what is OK from minimizing of fallback hitting point of | |
1850 | // view. Apart of that it forbids any OOM invoking what is | |
1851 | // also beneficial since we are about to release memory soon. | |
1852 | // | |
1853 | // __GFP_NOMEMALLOC - prevents from consuming of all the | |
1854 | // memory reserves. Please note we have a fallback path. | |
1855 | // | |
1856 | // __GFP_NOWARN - it is supposed that an allocation can | |
1857 | // be failed under low memory or high memory pressure | |
1858 | // scenarios. | |
1859 | bnode = (struct kvfree_rcu_bulk_data *) | |
1860 | __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); | |
1861 | raw_spin_lock_irqsave(&(*krcp)->lock, *flags); | |
1862 | } | |
1863 | ||
1864 | if (!bnode) | |
1865 | return false; | |
1866 | ||
1867 | // Initialize the new block and attach it. | |
1868 | bnode->nr_records = 0; | |
1869 | list_add(&bnode->list, &(*krcp)->bulk_head[idx]); | |
1870 | } | |
1871 | ||
1872 | // Finally insert and update the GP for this page. | |
1873 | bnode->nr_records++; | |
1874 | bnode->records[bnode->nr_records - 1] = ptr; | |
1875 | get_state_synchronize_rcu_full(&bnode->gp_snap); | |
1876 | atomic_inc(&(*krcp)->bulk_count[idx]); | |
1877 | ||
1878 | return true; | |
1879 | } | |
1880 | ||
bbe658d6 URS |
1881 | static enum hrtimer_restart |
1882 | schedule_page_work_fn(struct hrtimer *t) | |
1883 | { | |
1884 | struct kfree_rcu_cpu *krcp = | |
1885 | container_of(t, struct kfree_rcu_cpu, hrtimer); | |
1886 | ||
1887 | queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); | |
1888 | return HRTIMER_NORESTART; | |
1889 | } | |
1890 | ||
1891 | static void | |
1892 | run_page_cache_worker(struct kfree_rcu_cpu *krcp) | |
1893 | { | |
1894 | // If cache disabled, bail out. | |
1895 | if (!rcu_min_cached_objs) | |
1896 | return; | |
1897 | ||
1898 | if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && | |
1899 | !atomic_xchg(&krcp->work_in_progress, 1)) { | |
1900 | if (atomic_read(&krcp->backoff_page_cache_fill)) { | |
dfd3df31 | 1901 | queue_delayed_work(rcu_reclaim_wq, |
bbe658d6 URS |
1902 | &krcp->page_cache_work, |
1903 | msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); | |
1904 | } else { | |
53867760 NC |
1905 | hrtimer_setup(&krcp->hrtimer, schedule_page_work_fn, CLOCK_MONOTONIC, |
1906 | HRTIMER_MODE_REL); | |
bbe658d6 URS |
1907 | hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); |
1908 | } | |
1909 | } | |
1910 | } | |
1911 | ||
1912 | void __init kfree_rcu_scheduler_running(void) | |
1913 | { | |
1914 | int cpu; | |
1915 | ||
1916 | for_each_possible_cpu(cpu) { | |
1917 | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | |
1918 | ||
1919 | if (need_offload_krc(krcp)) | |
1920 | schedule_delayed_monitor_work(krcp); | |
1921 | } | |
1922 | } | |
1923 | ||
1924 | /* | |
1925 | * Queue a request for lazy invocation of the appropriate free routine | |
1926 | * after a grace period. Please note that three paths are maintained, | |
1927 | * two for the common case using arrays of pointers and a third one that | |
1928 | * is used only when the main paths cannot be used, for example, due to | |
1929 | * memory pressure. | |
1930 | * | |
1931 | * Each kvfree_call_rcu() request is added to a batch. The batch will be drained | |
1932 | * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will | |
1933 | * be free'd in workqueue context. This allows us to: batch requests together to | |
1934 | * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. | |
1935 | */ | |
1936 | void kvfree_call_rcu(struct rcu_head *head, void *ptr) | |
1937 | { | |
1938 | unsigned long flags; | |
1939 | struct kfree_rcu_cpu *krcp; | |
1940 | bool success; | |
1941 | ||
1942 | /* | |
1943 | * Please note there is a limitation for the head-less | |
1944 | * variant, that is why there is a clear rule for such | |
1945 | * objects: it can be used from might_sleep() context | |
1946 | * only. For other places please embed an rcu_head to | |
1947 | * your data. | |
1948 | */ | |
1949 | if (!head) | |
1950 | might_sleep(); | |
1951 | ||
1952 | // Queue the object but don't yet schedule the batch. | |
1953 | if (debug_rcu_head_queue(ptr)) { | |
1954 | // Probable double kfree_rcu(), just leak. | |
1955 | WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", | |
1956 | __func__, head); | |
1957 | ||
1958 | // Mark as success and leave. | |
1959 | return; | |
1960 | } | |
1961 | ||
9c5968db | 1962 | kasan_record_aux_stack(ptr); |
bbe658d6 URS |
1963 | success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); |
1964 | if (!success) { | |
1965 | run_page_cache_worker(krcp); | |
1966 | ||
1967 | if (head == NULL) | |
1968 | // Inline if kvfree_rcu(one_arg) call. | |
1969 | goto unlock_return; | |
1970 | ||
1971 | head->func = ptr; | |
1972 | head->next = krcp->head; | |
1973 | WRITE_ONCE(krcp->head, head); | |
1974 | atomic_inc(&krcp->head_count); | |
1975 | ||
1976 | // Take a snapshot for this krcp. | |
1977 | krcp->head_gp_snap = get_state_synchronize_rcu(); | |
1978 | success = true; | |
1979 | } | |
1980 | ||
1981 | /* | |
1982 | * The kvfree_rcu() caller considers the pointer freed at this point | |
1983 | * and likely removes any references to it. Since the actual slab | |
1984 | * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore | |
1985 | * this object (no scanning or false positives reporting). | |
1986 | */ | |
1987 | kmemleak_ignore(ptr); | |
1988 | ||
1989 | // Set timer to drain after KFREE_DRAIN_JIFFIES. | |
1990 | if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) | |
1991 | __schedule_delayed_monitor_work(krcp); | |
1992 | ||
1993 | unlock_return: | |
1994 | krc_this_cpu_unlock(krcp, flags); | |
1995 | ||
1996 | /* | |
1997 | * Inline kvfree() after synchronize_rcu(). We can do | |
1998 | * it from might_sleep() context only, so the current | |
1999 | * CPU can pass the QS state. | |
2000 | */ | |
2001 | if (!success) { | |
2002 | debug_rcu_head_unqueue((struct rcu_head *) ptr); | |
2003 | synchronize_rcu(); | |
2004 | kvfree(ptr); | |
2005 | } | |
2006 | } | |
2007 | EXPORT_SYMBOL_GPL(kvfree_call_rcu); | |
2008 | ||
2009 | /** | |
2010 | * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete. | |
2011 | * | |
2012 | * Note that a single argument of kvfree_rcu() call has a slow path that | |
2013 | * triggers synchronize_rcu() following by freeing a pointer. It is done | |
2014 | * before the return from the function. Therefore for any single-argument | |
2015 | * call that will result in a kfree() to a cache that is to be destroyed | |
2016 | * during module exit, it is developer's responsibility to ensure that all | |
2017 | * such calls have returned before the call to kmem_cache_destroy(). | |
2018 | */ | |
2019 | void kvfree_rcu_barrier(void) | |
2020 | { | |
2021 | struct kfree_rcu_cpu_work *krwp; | |
2022 | struct kfree_rcu_cpu *krcp; | |
2023 | bool queued; | |
2024 | int i, cpu; | |
2025 | ||
2026 | /* | |
2027 | * Firstly we detach objects and queue them over an RCU-batch | |
2028 | * for all CPUs. Finally queued works are flushed for each CPU. | |
2029 | * | |
2030 | * Please note. If there are outstanding batches for a particular | |
2031 | * CPU, those have to be finished first following by queuing a new. | |
2032 | */ | |
2033 | for_each_possible_cpu(cpu) { | |
2034 | krcp = per_cpu_ptr(&krc, cpu); | |
2035 | ||
2036 | /* | |
2037 | * Check if this CPU has any objects which have been queued for a | |
2038 | * new GP completion. If not(means nothing to detach), we are done | |
2039 | * with it. If any batch is pending/running for this "krcp", below | |
2040 | * per-cpu flush_rcu_work() waits its completion(see last step). | |
2041 | */ | |
2042 | if (!need_offload_krc(krcp)) | |
2043 | continue; | |
2044 | ||
2045 | while (1) { | |
2046 | /* | |
2047 | * If we are not able to queue a new RCU work it means: | |
2048 | * - batches for this CPU are still in flight which should | |
2049 | * be flushed first and then repeat; | |
2050 | * - no objects to detach, because of concurrency. | |
2051 | */ | |
2052 | queued = kvfree_rcu_queue_batch(krcp); | |
2053 | ||
2054 | /* | |
2055 | * Bail out, if there is no need to offload this "krcp" | |
2056 | * anymore. As noted earlier it can run concurrently. | |
2057 | */ | |
2058 | if (queued || !need_offload_krc(krcp)) | |
2059 | break; | |
2060 | ||
2061 | /* There are ongoing batches. */ | |
2062 | for (i = 0; i < KFREE_N_BATCHES; i++) { | |
2063 | krwp = &(krcp->krw_arr[i]); | |
2064 | flush_rcu_work(&krwp->rcu_work); | |
2065 | } | |
2066 | } | |
2067 | } | |
2068 | ||
2069 | /* | |
2070 | * Now we guarantee that all objects are flushed. | |
2071 | */ | |
2072 | for_each_possible_cpu(cpu) { | |
2073 | krcp = per_cpu_ptr(&krc, cpu); | |
2074 | ||
2075 | /* | |
2076 | * A monitor work can drain ready to reclaim objects | |
2077 | * directly. Wait its completion if running or pending. | |
2078 | */ | |
2079 | cancel_delayed_work_sync(&krcp->monitor_work); | |
2080 | ||
2081 | for (i = 0; i < KFREE_N_BATCHES; i++) { | |
2082 | krwp = &(krcp->krw_arr[i]); | |
2083 | flush_rcu_work(&krwp->rcu_work); | |
2084 | } | |
2085 | } | |
2086 | } | |
2087 | EXPORT_SYMBOL_GPL(kvfree_rcu_barrier); | |
2088 | ||
bbe658d6 URS |
2089 | static unsigned long |
2090 | kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | |
2091 | { | |
2092 | int cpu; | |
2093 | unsigned long count = 0; | |
2094 | ||
2095 | /* Snapshot count of all CPUs */ | |
2096 | for_each_possible_cpu(cpu) { | |
2097 | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | |
2098 | ||
2099 | count += krc_count(krcp); | |
2100 | count += READ_ONCE(krcp->nr_bkv_objs); | |
2101 | atomic_set(&krcp->backoff_page_cache_fill, 1); | |
2102 | } | |
2103 | ||
2104 | return count == 0 ? SHRINK_EMPTY : count; | |
2105 | } | |
2106 | ||
2107 | static unsigned long | |
2108 | kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | |
2109 | { | |
2110 | int cpu, freed = 0; | |
2111 | ||
2112 | for_each_possible_cpu(cpu) { | |
2113 | int count; | |
2114 | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | |
2115 | ||
2116 | count = krc_count(krcp); | |
2117 | count += drain_page_cache(krcp); | |
2118 | kfree_rcu_monitor(&krcp->monitor_work.work); | |
2119 | ||
2120 | sc->nr_to_scan -= count; | |
2121 | freed += count; | |
2122 | ||
2123 | if (sc->nr_to_scan <= 0) | |
2124 | break; | |
2125 | } | |
2126 | ||
2127 | return freed == 0 ? SHRINK_STOP : freed; | |
2128 | } | |
2129 | ||
2130 | void __init kvfree_rcu_init(void) | |
2131 | { | |
2132 | int cpu; | |
2133 | int i, j; | |
2134 | struct shrinker *kfree_rcu_shrinker; | |
2135 | ||
dfd3df31 URS |
2136 | rcu_reclaim_wq = alloc_workqueue("kvfree_rcu_reclaim", |
2137 | WQ_UNBOUND | WQ_MEM_RECLAIM, 0); | |
2138 | WARN_ON(!rcu_reclaim_wq); | |
2139 | ||
bbe658d6 URS |
2140 | /* Clamp it to [0:100] seconds interval. */ |
2141 | if (rcu_delay_page_cache_fill_msec < 0 || | |
2142 | rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { | |
2143 | ||
2144 | rcu_delay_page_cache_fill_msec = | |
2145 | clamp(rcu_delay_page_cache_fill_msec, 0, | |
2146 | (int) (100 * MSEC_PER_SEC)); | |
2147 | ||
2148 | pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", | |
2149 | rcu_delay_page_cache_fill_msec); | |
2150 | } | |
2151 | ||
2152 | for_each_possible_cpu(cpu) { | |
2153 | struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); | |
2154 | ||
2155 | for (i = 0; i < KFREE_N_BATCHES; i++) { | |
2156 | INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); | |
2157 | krcp->krw_arr[i].krcp = krcp; | |
2158 | ||
2159 | for (j = 0; j < FREE_N_CHANNELS; j++) | |
2160 | INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); | |
2161 | } | |
2162 | ||
2163 | for (i = 0; i < FREE_N_CHANNELS; i++) | |
2164 | INIT_LIST_HEAD(&krcp->bulk_head[i]); | |
2165 | ||
2166 | INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); | |
2167 | INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); | |
2168 | krcp->initialized = true; | |
2169 | } | |
2170 | ||
2171 | kfree_rcu_shrinker = shrinker_alloc(0, "slab-kvfree-rcu"); | |
2172 | if (!kfree_rcu_shrinker) { | |
2173 | pr_err("Failed to allocate kfree_rcu() shrinker!\n"); | |
2174 | return; | |
2175 | } | |
2176 | ||
2177 | kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; | |
2178 | kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; | |
2179 | ||
2180 | shrinker_register(kfree_rcu_shrinker); | |
2181 | } | |
c9f8f124 VB |
2182 | |
2183 | #endif /* CONFIG_KVFREE_RCU_BATCHED */ | |
2184 |