mm: slab: make slab iterator functions static
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3
GC
19#include <linux/seq_file.h>
20#include <linux/proc_fs.h>
fcf8a1e4 21#include <linux/debugfs.h>
e86f8b09 22#include <linux/kasan.h>
039363f3
CL
23#include <asm/cacheflush.h>
24#include <asm/tlbflush.h>
25#include <asm/page.h>
2633d7a0 26#include <linux/memcontrol.h>
928cec9c
AR
27
28#define CREATE_TRACE_POINTS
f1b6eb6e 29#include <trace/events/kmem.h>
039363f3 30
44405099
LL
31#include "internal.h"
32
97d06609
CL
33#include "slab.h"
34
35enum slab_state slab_state;
18004c5d
CL
36LIST_HEAD(slab_caches);
37DEFINE_MUTEX(slab_mutex);
9b030cb8 38struct kmem_cache *kmem_cache;
97d06609 39
657dc2f9
TH
40static LIST_HEAD(slab_caches_to_rcu_destroy);
41static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 slab_caches_to_rcu_destroy_workfn);
44
423c929c
JK
45/*
46 * Set of flags that will prevent slab merging
47 */
48#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
e86f8b09 50 SLAB_FAILSLAB | kasan_never_merge())
423c929c 51
230e9fc2 52#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
54
55/*
56 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 57 */
7660a6fd 58static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
59
60static int __init setup_slab_nomerge(char *str)
61{
7660a6fd 62 slab_nomerge = true;
423c929c
JK
63 return 1;
64}
65
82edd9d5
RA
66static int __init setup_slab_merge(char *str)
67{
68 slab_nomerge = false;
69 return 1;
70}
71
423c929c
JK
72#ifdef CONFIG_SLUB
73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82edd9d5 74__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
423c929c
JK
75#endif
76
77__setup("slab_nomerge", setup_slab_nomerge);
82edd9d5 78__setup("slab_merge", setup_slab_merge);
423c929c 79
07f361b2
JK
80/*
81 * Determine the size of a slab object
82 */
83unsigned int kmem_cache_size(struct kmem_cache *s)
84{
85 return s->object_size;
86}
87EXPORT_SYMBOL(kmem_cache_size);
88
77be4b13 89#ifdef CONFIG_DEBUG_VM
f4957d5b 90static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 91{
74c1d3e0 92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
77be4b13
SK
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 return -EINVAL;
039363f3 95 }
b920536a 96
20cea968 97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
98 return 0;
99}
100#else
f4957d5b 101static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
102{
103 return 0;
104}
20cea968
CL
105#endif
106
484748f0
CL
107void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
108{
109 size_t i;
110
ca257195
JDB
111 for (i = 0; i < nr; i++) {
112 if (s)
113 kmem_cache_free(s, p[i]);
114 else
115 kfree(p[i]);
116 }
484748f0
CL
117}
118
865762a8 119int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
120 void **p)
121{
122 size_t i;
123
124 for (i = 0; i < nr; i++) {
125 void *x = p[i] = kmem_cache_alloc(s, flags);
126 if (!x) {
127 __kmem_cache_free_bulk(s, i, p);
865762a8 128 return 0;
484748f0
CL
129 }
130 }
865762a8 131 return i;
484748f0
CL
132}
133
692ae74a
BL
134/*
135 * Figure out what the alignment of the objects will be given a set of
136 * flags, a user specified alignment and the size of the objects.
137 */
f4957d5b
AD
138static unsigned int calculate_alignment(slab_flags_t flags,
139 unsigned int align, unsigned int size)
692ae74a
BL
140{
141 /*
142 * If the user wants hardware cache aligned objects then follow that
143 * suggestion if the object is sufficiently large.
144 *
145 * The hardware cache alignment cannot override the specified
146 * alignment though. If that is greater then use it.
147 */
148 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 149 unsigned int ralign;
692ae74a
BL
150
151 ralign = cache_line_size();
152 while (size <= ralign / 2)
153 ralign /= 2;
154 align = max(align, ralign);
155 }
156
157 if (align < ARCH_SLAB_MINALIGN)
158 align = ARCH_SLAB_MINALIGN;
159
160 return ALIGN(align, sizeof(void *));
161}
162
423c929c
JK
163/*
164 * Find a mergeable slab cache
165 */
166int slab_unmergeable(struct kmem_cache *s)
167{
168 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 return 1;
170
423c929c
JK
171 if (s->ctor)
172 return 1;
173
8eb8284b
DW
174 if (s->usersize)
175 return 1;
176
423c929c
JK
177 /*
178 * We may have set a slab to be unmergeable during bootstrap.
179 */
180 if (s->refcount < 0)
181 return 1;
182
183 return 0;
184}
185
f4957d5b 186struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 187 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
188{
189 struct kmem_cache *s;
190
c6e28895 191 if (slab_nomerge)
423c929c
JK
192 return NULL;
193
194 if (ctor)
195 return NULL;
196
197 size = ALIGN(size, sizeof(void *));
198 align = calculate_alignment(flags, align, size);
199 size = ALIGN(size, align);
37540008 200 flags = kmem_cache_flags(size, flags, name);
423c929c 201
c6e28895
GM
202 if (flags & SLAB_NEVER_MERGE)
203 return NULL;
204
c7094406 205 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
206 if (slab_unmergeable(s))
207 continue;
208
209 if (size > s->size)
210 continue;
211
212 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 continue;
214 /*
215 * Check if alignment is compatible.
216 * Courtesy of Adrian Drzewiecki
217 */
218 if ((s->size & ~(align - 1)) != s->size)
219 continue;
220
221 if (s->size - size >= sizeof(void *))
222 continue;
223
95069ac8
JK
224 if (IS_ENABLED(CONFIG_SLAB) && align &&
225 (align > s->align || s->align % align))
226 continue;
227
423c929c
JK
228 return s;
229 }
230 return NULL;
231}
232
c9a77a79 233static struct kmem_cache *create_cache(const char *name,
613a5eb5 234 unsigned int object_size, unsigned int align,
7bbdb81e
AD
235 slab_flags_t flags, unsigned int useroffset,
236 unsigned int usersize, void (*ctor)(void *),
9855609b 237 struct kmem_cache *root_cache)
794b1248
VD
238{
239 struct kmem_cache *s;
240 int err;
241
8eb8284b
DW
242 if (WARN_ON(useroffset + usersize > object_size))
243 useroffset = usersize = 0;
244
794b1248
VD
245 err = -ENOMEM;
246 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 if (!s)
248 goto out;
249
250 s->name = name;
613a5eb5 251 s->size = s->object_size = object_size;
794b1248
VD
252 s->align = align;
253 s->ctor = ctor;
8eb8284b
DW
254 s->useroffset = useroffset;
255 s->usersize = usersize;
794b1248 256
794b1248
VD
257 err = __kmem_cache_create(s, flags);
258 if (err)
259 goto out_free_cache;
260
261 s->refcount = 1;
262 list_add(&s->list, &slab_caches);
794b1248
VD
263out:
264 if (err)
265 return ERR_PTR(err);
266 return s;
267
268out_free_cache:
7c4da061 269 kmem_cache_free(kmem_cache, s);
794b1248
VD
270 goto out;
271}
45906855 272
f496990f
MR
273/**
274 * kmem_cache_create_usercopy - Create a cache with a region suitable
275 * for copying to userspace
77be4b13
SK
276 * @name: A string which is used in /proc/slabinfo to identify this cache.
277 * @size: The size of objects to be created in this cache.
278 * @align: The required alignment for the objects.
279 * @flags: SLAB flags
8eb8284b
DW
280 * @useroffset: Usercopy region offset
281 * @usersize: Usercopy region size
77be4b13
SK
282 * @ctor: A constructor for the objects.
283 *
77be4b13
SK
284 * Cannot be called within a interrupt, but can be interrupted.
285 * The @ctor is run when new pages are allocated by the cache.
286 *
287 * The flags are
288 *
289 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290 * to catch references to uninitialised memory.
291 *
f496990f 292 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
293 * for buffer overruns.
294 *
295 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296 * cacheline. This can be beneficial if you're counting cycles as closely
297 * as davem.
f496990f
MR
298 *
299 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 300 */
2633d7a0 301struct kmem_cache *
f4957d5b
AD
302kmem_cache_create_usercopy(const char *name,
303 unsigned int size, unsigned int align,
7bbdb81e
AD
304 slab_flags_t flags,
305 unsigned int useroffset, unsigned int usersize,
8eb8284b 306 void (*ctor)(void *))
77be4b13 307{
40911a79 308 struct kmem_cache *s = NULL;
3dec16ea 309 const char *cache_name;
3965fc36 310 int err;
039363f3 311
afe0c26d
VB
312#ifdef CONFIG_SLUB_DEBUG
313 /*
314 * If no slub_debug was enabled globally, the static key is not yet
315 * enabled by setup_slub_debug(). Enable it if the cache is being
316 * created with any of the debugging flags passed explicitly.
317 */
318 if (flags & SLAB_DEBUG_FLAGS)
319 static_branch_enable(&slub_debug_enabled);
320#endif
321
77be4b13 322 mutex_lock(&slab_mutex);
686d550d 323
794b1248 324 err = kmem_cache_sanity_check(name, size);
3aa24f51 325 if (err) {
3965fc36 326 goto out_unlock;
3aa24f51 327 }
686d550d 328
e70954fd
TG
329 /* Refuse requests with allocator specific flags */
330 if (flags & ~SLAB_FLAGS_PERMITTED) {
331 err = -EINVAL;
332 goto out_unlock;
333 }
334
d8843922
GC
335 /*
336 * Some allocators will constraint the set of valid flags to a subset
337 * of all flags. We expect them to define CACHE_CREATE_MASK in this
338 * case, and we'll just provide them with a sanitized version of the
339 * passed flags.
340 */
341 flags &= CACHE_CREATE_MASK;
686d550d 342
8eb8284b
DW
343 /* Fail closed on bad usersize of useroffset values. */
344 if (WARN_ON(!usersize && useroffset) ||
345 WARN_ON(size < usersize || size - usersize < useroffset))
346 usersize = useroffset = 0;
347
348 if (!usersize)
349 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 350 if (s)
3965fc36 351 goto out_unlock;
2633d7a0 352
3dec16ea 353 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
354 if (!cache_name) {
355 err = -ENOMEM;
356 goto out_unlock;
357 }
7c9adf5a 358
613a5eb5 359 s = create_cache(cache_name, size,
c9a77a79 360 calculate_alignment(flags, align, size),
9855609b 361 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
362 if (IS_ERR(s)) {
363 err = PTR_ERR(s);
3dec16ea 364 kfree_const(cache_name);
794b1248 365 }
3965fc36
VD
366
367out_unlock:
20cea968 368 mutex_unlock(&slab_mutex);
03afc0e2 369
ba3253c7 370 if (err) {
686d550d 371 if (flags & SLAB_PANIC)
4acaa7d5 372 panic("%s: Failed to create slab '%s'. Error %d\n",
373 __func__, name, err);
686d550d 374 else {
4acaa7d5 375 pr_warn("%s(%s) failed with error %d\n",
376 __func__, name, err);
686d550d
CL
377 dump_stack();
378 }
686d550d
CL
379 return NULL;
380 }
039363f3
CL
381 return s;
382}
8eb8284b
DW
383EXPORT_SYMBOL(kmem_cache_create_usercopy);
384
f496990f
MR
385/**
386 * kmem_cache_create - Create a cache.
387 * @name: A string which is used in /proc/slabinfo to identify this cache.
388 * @size: The size of objects to be created in this cache.
389 * @align: The required alignment for the objects.
390 * @flags: SLAB flags
391 * @ctor: A constructor for the objects.
392 *
393 * Cannot be called within a interrupt, but can be interrupted.
394 * The @ctor is run when new pages are allocated by the cache.
395 *
396 * The flags are
397 *
398 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
399 * to catch references to uninitialised memory.
400 *
401 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
402 * for buffer overruns.
403 *
404 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
405 * cacheline. This can be beneficial if you're counting cycles as closely
406 * as davem.
407 *
408 * Return: a pointer to the cache on success, NULL on failure.
409 */
8eb8284b 410struct kmem_cache *
f4957d5b 411kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
412 slab_flags_t flags, void (*ctor)(void *))
413{
6d07d1cd 414 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
415 ctor);
416}
794b1248 417EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 418
657dc2f9 419static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 420{
657dc2f9
TH
421 LIST_HEAD(to_destroy);
422 struct kmem_cache *s, *s2;
d5b3cf71 423
657dc2f9 424 /*
5f0d5a3a 425 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 426 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 427 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
428 * while freeing the pages, so the kmem_caches should be freed only
429 * after the pending RCU operations are finished. As rcu_barrier()
430 * is a pretty slow operation, we batch all pending destructions
431 * asynchronously.
432 */
433 mutex_lock(&slab_mutex);
434 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
435 mutex_unlock(&slab_mutex);
d5b3cf71 436
657dc2f9
TH
437 if (list_empty(&to_destroy))
438 return;
439
440 rcu_barrier();
441
442 list_for_each_entry_safe(s, s2, &to_destroy, list) {
64dd6849 443 debugfs_slab_release(s);
d3fb45f3 444 kfence_shutdown_cache(s);
657dc2f9
TH
445#ifdef SLAB_SUPPORTS_SYSFS
446 sysfs_slab_release(s);
447#else
448 slab_kmem_cache_release(s);
449#endif
450 }
d5b3cf71
VD
451}
452
657dc2f9 453static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 454{
f9fa1d91
GT
455 /* free asan quarantined objects */
456 kasan_cache_shutdown(s);
457
657dc2f9
TH
458 if (__kmem_cache_shutdown(s) != 0)
459 return -EBUSY;
d5b3cf71 460
657dc2f9 461 list_del(&s->list);
d5b3cf71 462
5f0d5a3a 463 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
464#ifdef SLAB_SUPPORTS_SYSFS
465 sysfs_slab_unlink(s);
466#endif
657dc2f9
TH
467 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
468 schedule_work(&slab_caches_to_rcu_destroy_work);
469 } else {
d3fb45f3 470 kfence_shutdown_cache(s);
64dd6849 471 debugfs_slab_release(s);
d5b3cf71 472#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 473 sysfs_slab_unlink(s);
bf5eb3de 474 sysfs_slab_release(s);
d5b3cf71
VD
475#else
476 slab_kmem_cache_release(s);
477#endif
478 }
657dc2f9
TH
479
480 return 0;
d5b3cf71
VD
481}
482
41a21285
CL
483void slab_kmem_cache_release(struct kmem_cache *s)
484{
52b4b950 485 __kmem_cache_release(s);
3dec16ea 486 kfree_const(s->name);
41a21285
CL
487 kmem_cache_free(kmem_cache, s);
488}
489
945cf2b6
CL
490void kmem_cache_destroy(struct kmem_cache *s)
491{
3942d299
SS
492 if (unlikely(!s))
493 return;
494
5a836bf6 495 cpus_read_lock();
945cf2b6 496 mutex_lock(&slab_mutex);
b8529907 497
945cf2b6 498 s->refcount--;
b8529907
VD
499 if (s->refcount)
500 goto out_unlock;
501
7302e91f
ME
502 WARN(shutdown_cache(s),
503 "%s %s: Slab cache still has objects when called from %pS",
504 __func__, s->name, (void *)_RET_IP_);
b8529907
VD
505out_unlock:
506 mutex_unlock(&slab_mutex);
5a836bf6 507 cpus_read_unlock();
945cf2b6
CL
508}
509EXPORT_SYMBOL(kmem_cache_destroy);
510
03afc0e2
VD
511/**
512 * kmem_cache_shrink - Shrink a cache.
513 * @cachep: The cache to shrink.
514 *
515 * Releases as many slabs as possible for a cache.
516 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
517 *
518 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
519 */
520int kmem_cache_shrink(struct kmem_cache *cachep)
521{
522 int ret;
523
7e1fa93d 524
55834c59 525 kasan_cache_shrink(cachep);
c9fc5864 526 ret = __kmem_cache_shrink(cachep);
7e1fa93d 527
03afc0e2
VD
528 return ret;
529}
530EXPORT_SYMBOL(kmem_cache_shrink);
531
fda90124 532bool slab_is_available(void)
97d06609
CL
533{
534 return slab_state >= UP;
535}
b7454ad3 536
5bb1bb35 537#ifdef CONFIG_PRINTK
8e7f37f2
PM
538/**
539 * kmem_valid_obj - does the pointer reference a valid slab object?
540 * @object: pointer to query.
541 *
542 * Return: %true if the pointer is to a not-yet-freed object from
543 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
544 * is to an already-freed object, and %false otherwise.
545 */
546bool kmem_valid_obj(void *object)
547{
548 struct page *page;
549
550 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
551 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
552 return false;
553 page = virt_to_head_page(object);
554 return PageSlab(page);
555}
0d3dd2c8 556EXPORT_SYMBOL_GPL(kmem_valid_obj);
8e7f37f2
PM
557
558/**
559 * kmem_dump_obj - Print available slab provenance information
560 * @object: slab object for which to find provenance information.
561 *
562 * This function uses pr_cont(), so that the caller is expected to have
563 * printed out whatever preamble is appropriate. The provenance information
564 * depends on the type of object and on how much debugging is enabled.
565 * For a slab-cache object, the fact that it is a slab object is printed,
566 * and, if available, the slab name, return address, and stack trace from
e548eaa1 567 * the allocation and last free path of that object.
8e7f37f2
PM
568 *
569 * This function will splat if passed a pointer to a non-slab object.
570 * If you are not sure what type of object you have, you should instead
571 * use mem_dump_obj().
572 */
573void kmem_dump_obj(void *object)
574{
575 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
576 int i;
577 struct page *page;
578 unsigned long ptroffset;
579 struct kmem_obj_info kp = { };
580
581 if (WARN_ON_ONCE(!virt_addr_valid(object)))
582 return;
583 page = virt_to_head_page(object);
584 if (WARN_ON_ONCE(!PageSlab(page))) {
585 pr_cont(" non-slab memory.\n");
586 return;
587 }
588 kmem_obj_info(&kp, object, page);
589 if (kp.kp_slab_cache)
590 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
591 else
592 pr_cont(" slab%s", cp);
593 if (kp.kp_objp)
594 pr_cont(" start %px", kp.kp_objp);
595 if (kp.kp_data_offset)
596 pr_cont(" data offset %lu", kp.kp_data_offset);
597 if (kp.kp_objp) {
598 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
599 pr_cont(" pointer offset %lu", ptroffset);
600 }
601 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
602 pr_cont(" size %u", kp.kp_slab_cache->usersize);
603 if (kp.kp_ret)
604 pr_cont(" allocated at %pS\n", kp.kp_ret);
605 else
606 pr_cont("\n");
607 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
608 if (!kp.kp_stack[i])
609 break;
610 pr_info(" %pS\n", kp.kp_stack[i]);
611 }
e548eaa1
MS
612
613 if (kp.kp_free_stack[0])
614 pr_cont(" Free path:\n");
615
616 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
617 if (!kp.kp_free_stack[i])
618 break;
619 pr_info(" %pS\n", kp.kp_free_stack[i]);
620 }
621
8e7f37f2 622}
0d3dd2c8 623EXPORT_SYMBOL_GPL(kmem_dump_obj);
5bb1bb35 624#endif
8e7f37f2 625
45530c44
CL
626#ifndef CONFIG_SLOB
627/* Create a cache during boot when no slab services are available yet */
361d575e
AD
628void __init create_boot_cache(struct kmem_cache *s, const char *name,
629 unsigned int size, slab_flags_t flags,
630 unsigned int useroffset, unsigned int usersize)
45530c44
CL
631{
632 int err;
59bb4798 633 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
634
635 s->name = name;
636 s->size = s->object_size = size;
59bb4798
VB
637
638 /*
639 * For power of two sizes, guarantee natural alignment for kmalloc
640 * caches, regardless of SL*B debugging options.
641 */
642 if (is_power_of_2(size))
643 align = max(align, size);
644 s->align = calculate_alignment(flags, align, size);
645
8eb8284b
DW
646 s->useroffset = useroffset;
647 s->usersize = usersize;
f7ce3190 648
45530c44
CL
649 err = __kmem_cache_create(s, flags);
650
651 if (err)
361d575e 652 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
653 name, size, err);
654
655 s->refcount = -1; /* Exempt from merging for now */
656}
657
55de8b9c
AD
658struct kmem_cache *__init create_kmalloc_cache(const char *name,
659 unsigned int size, slab_flags_t flags,
660 unsigned int useroffset, unsigned int usersize)
45530c44
CL
661{
662 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
663
664 if (!s)
665 panic("Out of memory when creating slab %s\n", name);
666
6c0c21ad 667 create_boot_cache(s, name, size, flags, useroffset, usersize);
92850134 668 kasan_cache_create_kmalloc(s);
45530c44
CL
669 list_add(&s->list, &slab_caches);
670 s->refcount = 1;
671 return s;
672}
673
cc252eae 674struct kmem_cache *
a07057dc
AB
675kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
676{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
677EXPORT_SYMBOL(kmalloc_caches);
678
2c59dd65
CL
679/*
680 * Conversion table for small slabs sizes / 8 to the index in the
681 * kmalloc array. This is necessary for slabs < 192 since we have non power
682 * of two cache sizes there. The size of larger slabs can be determined using
683 * fls.
684 */
d5f86655 685static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
686 3, /* 8 */
687 4, /* 16 */
688 5, /* 24 */
689 5, /* 32 */
690 6, /* 40 */
691 6, /* 48 */
692 6, /* 56 */
693 6, /* 64 */
694 1, /* 72 */
695 1, /* 80 */
696 1, /* 88 */
697 1, /* 96 */
698 7, /* 104 */
699 7, /* 112 */
700 7, /* 120 */
701 7, /* 128 */
702 2, /* 136 */
703 2, /* 144 */
704 2, /* 152 */
705 2, /* 160 */
706 2, /* 168 */
707 2, /* 176 */
708 2, /* 184 */
709 2 /* 192 */
710};
711
ac914d08 712static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
713{
714 return (bytes - 1) / 8;
715}
716
717/*
718 * Find the kmem_cache structure that serves a given size of
719 * allocation
720 */
721struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
722{
d5f86655 723 unsigned int index;
2c59dd65
CL
724
725 if (size <= 192) {
726 if (!size)
727 return ZERO_SIZE_PTR;
728
729 index = size_index[size_index_elem(size)];
61448479 730 } else {
221d7da6 731 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 732 return NULL;
2c59dd65 733 index = fls(size - 1);
61448479 734 }
2c59dd65 735
cc252eae 736 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
737}
738
cb5d9fb3 739#ifdef CONFIG_ZONE_DMA
494c1dfe
WL
740#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
741#else
742#define KMALLOC_DMA_NAME(sz)
743#endif
744
745#ifdef CONFIG_MEMCG_KMEM
746#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
cb5d9fb3 747#else
494c1dfe
WL
748#define KMALLOC_CGROUP_NAME(sz)
749#endif
750
cb5d9fb3
PL
751#define INIT_KMALLOC_INFO(__size, __short_size) \
752{ \
753 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
754 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
494c1dfe
WL
755 KMALLOC_CGROUP_NAME(__short_size) \
756 KMALLOC_DMA_NAME(__short_size) \
cb5d9fb3
PL
757 .size = __size, \
758}
cb5d9fb3 759
4066c33d
GG
760/*
761 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
588c7fa0
HY
762 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
763 * kmalloc-32M.
4066c33d 764 */
af3b5f87 765const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
766 INIT_KMALLOC_INFO(0, 0),
767 INIT_KMALLOC_INFO(96, 96),
768 INIT_KMALLOC_INFO(192, 192),
769 INIT_KMALLOC_INFO(8, 8),
770 INIT_KMALLOC_INFO(16, 16),
771 INIT_KMALLOC_INFO(32, 32),
772 INIT_KMALLOC_INFO(64, 64),
773 INIT_KMALLOC_INFO(128, 128),
774 INIT_KMALLOC_INFO(256, 256),
775 INIT_KMALLOC_INFO(512, 512),
776 INIT_KMALLOC_INFO(1024, 1k),
777 INIT_KMALLOC_INFO(2048, 2k),
778 INIT_KMALLOC_INFO(4096, 4k),
779 INIT_KMALLOC_INFO(8192, 8k),
780 INIT_KMALLOC_INFO(16384, 16k),
781 INIT_KMALLOC_INFO(32768, 32k),
782 INIT_KMALLOC_INFO(65536, 64k),
783 INIT_KMALLOC_INFO(131072, 128k),
784 INIT_KMALLOC_INFO(262144, 256k),
785 INIT_KMALLOC_INFO(524288, 512k),
786 INIT_KMALLOC_INFO(1048576, 1M),
787 INIT_KMALLOC_INFO(2097152, 2M),
788 INIT_KMALLOC_INFO(4194304, 4M),
789 INIT_KMALLOC_INFO(8388608, 8M),
790 INIT_KMALLOC_INFO(16777216, 16M),
588c7fa0 791 INIT_KMALLOC_INFO(33554432, 32M)
4066c33d
GG
792};
793
f97d5f63 794/*
34cc6990
DS
795 * Patch up the size_index table if we have strange large alignment
796 * requirements for the kmalloc array. This is only the case for
797 * MIPS it seems. The standard arches will not generate any code here.
798 *
799 * Largest permitted alignment is 256 bytes due to the way we
800 * handle the index determination for the smaller caches.
801 *
802 * Make sure that nothing crazy happens if someone starts tinkering
803 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 804 */
34cc6990 805void __init setup_kmalloc_cache_index_table(void)
f97d5f63 806{
ac914d08 807 unsigned int i;
f97d5f63 808
2c59dd65
CL
809 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
810 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
811
812 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 813 unsigned int elem = size_index_elem(i);
2c59dd65
CL
814
815 if (elem >= ARRAY_SIZE(size_index))
816 break;
817 size_index[elem] = KMALLOC_SHIFT_LOW;
818 }
819
820 if (KMALLOC_MIN_SIZE >= 64) {
821 /*
822 * The 96 byte size cache is not used if the alignment
823 * is 64 byte.
824 */
825 for (i = 64 + 8; i <= 96; i += 8)
826 size_index[size_index_elem(i)] = 7;
827
828 }
829
830 if (KMALLOC_MIN_SIZE >= 128) {
831 /*
832 * The 192 byte sized cache is not used if the alignment
833 * is 128 byte. Redirect kmalloc to use the 256 byte cache
834 * instead.
835 */
836 for (i = 128 + 8; i <= 192; i += 8)
837 size_index[size_index_elem(i)] = 8;
838 }
34cc6990
DS
839}
840
1291523f 841static void __init
13657d0a 842new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 843{
494c1dfe 844 if (type == KMALLOC_RECLAIM) {
1291523f 845 flags |= SLAB_RECLAIM_ACCOUNT;
494c1dfe
WL
846 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
847 if (cgroup_memory_nokmem) {
848 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
849 return;
850 }
851 flags |= SLAB_ACCOUNT;
852 }
1291523f 853
cb5d9fb3
PL
854 kmalloc_caches[type][idx] = create_kmalloc_cache(
855 kmalloc_info[idx].name[type],
6c0c21ad
DW
856 kmalloc_info[idx].size, flags, 0,
857 kmalloc_info[idx].size);
13e680fb
WL
858
859 /*
860 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
861 * KMALLOC_NORMAL caches.
862 */
863 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
864 kmalloc_caches[type][idx]->refcount = -1;
a9730fca
CL
865}
866
34cc6990
DS
867/*
868 * Create the kmalloc array. Some of the regular kmalloc arrays
869 * may already have been created because they were needed to
870 * enable allocations for slab creation.
871 */
d50112ed 872void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 873{
13657d0a
PL
874 int i;
875 enum kmalloc_cache_type type;
34cc6990 876
494c1dfe
WL
877 /*
878 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
879 */
1291523f
VB
880 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
881 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
882 if (!kmalloc_caches[type][i])
883 new_kmalloc_cache(i, type, flags);
f97d5f63 884
1291523f
VB
885 /*
886 * Caches that are not of the two-to-the-power-of size.
887 * These have to be created immediately after the
888 * earlier power of two caches
889 */
890 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
891 !kmalloc_caches[type][1])
892 new_kmalloc_cache(1, type, flags);
893 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
894 !kmalloc_caches[type][2])
895 new_kmalloc_cache(2, type, flags);
896 }
8a965b3b
CL
897 }
898
f97d5f63
CL
899 /* Kmalloc array is now usable */
900 slab_state = UP;
901
f97d5f63
CL
902#ifdef CONFIG_ZONE_DMA
903 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 904 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
905
906 if (s) {
cc252eae 907 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
cb5d9fb3 908 kmalloc_info[i].name[KMALLOC_DMA],
dc0a7f75 909 kmalloc_info[i].size,
49f2d241
VB
910 SLAB_CACHE_DMA | flags, 0,
911 kmalloc_info[i].size);
f97d5f63
CL
912 }
913 }
914#endif
915}
45530c44
CL
916#endif /* !CONFIG_SLOB */
917
44405099
LL
918gfp_t kmalloc_fix_flags(gfp_t flags)
919{
920 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
921
922 flags &= ~GFP_SLAB_BUG_MASK;
923 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
924 invalid_mask, &invalid_mask, flags, &flags);
925 dump_stack();
926
927 return flags;
928}
929
cea371f4
VD
930/*
931 * To avoid unnecessary overhead, we pass through large allocation requests
932 * directly to the page allocator. We use __GFP_COMP, because we will need to
933 * know the allocation order to free the pages properly in kfree.
934 */
52383431
VD
935void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
936{
6a486c0a 937 void *ret = NULL;
52383431
VD
938 struct page *page;
939
44405099
LL
940 if (unlikely(flags & GFP_SLAB_BUG_MASK))
941 flags = kmalloc_fix_flags(flags);
942
52383431 943 flags |= __GFP_COMP;
4949148a 944 page = alloc_pages(flags, order);
6a486c0a
VB
945 if (likely(page)) {
946 ret = page_address(page);
96403bfe
MS
947 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
948 PAGE_SIZE << order);
6a486c0a 949 }
0116523c 950 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 951 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 952 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
953 return ret;
954}
955EXPORT_SYMBOL(kmalloc_order);
956
f1b6eb6e
CL
957#ifdef CONFIG_TRACING
958void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
959{
960 void *ret = kmalloc_order(size, flags, order);
961 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
962 return ret;
963}
964EXPORT_SYMBOL(kmalloc_order_trace);
965#endif
45530c44 966
7c00fce9
TG
967#ifdef CONFIG_SLAB_FREELIST_RANDOM
968/* Randomize a generic freelist */
969static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 970 unsigned int count)
7c00fce9 971{
7c00fce9 972 unsigned int rand;
302d55d5 973 unsigned int i;
7c00fce9
TG
974
975 for (i = 0; i < count; i++)
976 list[i] = i;
977
978 /* Fisher-Yates shuffle */
979 for (i = count - 1; i > 0; i--) {
980 rand = prandom_u32_state(state);
981 rand %= (i + 1);
982 swap(list[i], list[rand]);
983 }
984}
985
986/* Create a random sequence per cache */
987int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
988 gfp_t gfp)
989{
990 struct rnd_state state;
991
992 if (count < 2 || cachep->random_seq)
993 return 0;
994
995 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
996 if (!cachep->random_seq)
997 return -ENOMEM;
998
999 /* Get best entropy at this stage of boot */
1000 prandom_seed_state(&state, get_random_long());
1001
1002 freelist_randomize(&state, cachep->random_seq, count);
1003 return 0;
1004}
1005
1006/* Destroy the per-cache random freelist sequence */
1007void cache_random_seq_destroy(struct kmem_cache *cachep)
1008{
1009 kfree(cachep->random_seq);
1010 cachep->random_seq = NULL;
1011}
1012#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1013
5b365771 1014#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1015#ifdef CONFIG_SLAB
0825a6f9 1016#define SLABINFO_RIGHTS (0600)
e9b4db2b 1017#else
0825a6f9 1018#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1019#endif
1020
b047501c 1021static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1022{
1023 /*
1024 * Output format version, so at least we can change it
1025 * without _too_ many complaints.
1026 */
1027#ifdef CONFIG_DEBUG_SLAB
1028 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1029#else
1030 seq_puts(m, "slabinfo - version: 2.1\n");
1031#endif
756a025f 1032 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1033 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1034 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1035#ifdef CONFIG_DEBUG_SLAB
756a025f 1036 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1037 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1038#endif
1039 seq_putc(m, '\n');
1040}
1041
c29b5b3d 1042static void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1043{
b7454ad3 1044 mutex_lock(&slab_mutex);
c7094406 1045 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1046}
1047
c29b5b3d 1048static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1049{
c7094406 1050 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1051}
1052
c29b5b3d 1053static void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1054{
1055 mutex_unlock(&slab_mutex);
1056}
1057
b047501c 1058static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1059{
0d7561c6
GC
1060 struct slabinfo sinfo;
1061
1062 memset(&sinfo, 0, sizeof(sinfo));
1063 get_slabinfo(s, &sinfo);
1064
1065 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1066 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1067 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1068
1069 seq_printf(m, " : tunables %4u %4u %4u",
1070 sinfo.limit, sinfo.batchcount, sinfo.shared);
1071 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1072 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1073 slabinfo_show_stats(m, s);
1074 seq_putc(m, '\n');
b7454ad3
GC
1075}
1076
1df3b26f 1077static int slab_show(struct seq_file *m, void *p)
749c5415 1078{
c7094406 1079 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1080
c7094406 1081 if (p == slab_caches.next)
1df3b26f 1082 print_slabinfo_header(m);
10befea9 1083 cache_show(s, m);
b047501c
VD
1084 return 0;
1085}
1086
852d8be0
YS
1087void dump_unreclaimable_slab(void)
1088{
7714304f 1089 struct kmem_cache *s;
852d8be0
YS
1090 struct slabinfo sinfo;
1091
1092 /*
1093 * Here acquiring slab_mutex is risky since we don't prefer to get
1094 * sleep in oom path. But, without mutex hold, it may introduce a
1095 * risk of crash.
1096 * Use mutex_trylock to protect the list traverse, dump nothing
1097 * without acquiring the mutex.
1098 */
1099 if (!mutex_trylock(&slab_mutex)) {
1100 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1101 return;
1102 }
1103
1104 pr_info("Unreclaimable slab info:\n");
1105 pr_info("Name Used Total\n");
1106
7714304f 1107 list_for_each_entry(s, &slab_caches, list) {
10befea9 1108 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1109 continue;
1110
1111 get_slabinfo(s, &sinfo);
1112
1113 if (sinfo.num_objs > 0)
10befea9 1114 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1115 (sinfo.active_objs * s->size) / 1024,
1116 (sinfo.num_objs * s->size) / 1024);
1117 }
1118 mutex_unlock(&slab_mutex);
1119}
1120
b7454ad3
GC
1121/*
1122 * slabinfo_op - iterator that generates /proc/slabinfo
1123 *
1124 * Output layout:
1125 * cache-name
1126 * num-active-objs
1127 * total-objs
1128 * object size
1129 * num-active-slabs
1130 * total-slabs
1131 * num-pages-per-slab
1132 * + further values on SMP and with statistics enabled
1133 */
1134static const struct seq_operations slabinfo_op = {
1df3b26f 1135 .start = slab_start,
276a2439
WL
1136 .next = slab_next,
1137 .stop = slab_stop,
1df3b26f 1138 .show = slab_show,
b7454ad3
GC
1139};
1140
1141static int slabinfo_open(struct inode *inode, struct file *file)
1142{
1143 return seq_open(file, &slabinfo_op);
1144}
1145
97a32539 1146static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1147 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1148 .proc_open = slabinfo_open,
1149 .proc_read = seq_read,
1150 .proc_write = slabinfo_write,
1151 .proc_lseek = seq_lseek,
1152 .proc_release = seq_release,
b7454ad3
GC
1153};
1154
1155static int __init slab_proc_init(void)
1156{
97a32539 1157 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1158 return 0;
1159}
1160module_init(slab_proc_init);
fcf8a1e4 1161
5b365771 1162#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1163
1164static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1165 gfp_t flags)
1166{
1167 void *ret;
fa9ba3aa 1168 size_t ks;
928cec9c 1169
d12d9ad8
AK
1170 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1171 if (likely(!ZERO_OR_NULL_PTR(p))) {
1172 if (!kasan_check_byte(p))
1173 return NULL;
1174 ks = kfence_ksize(p) ?: __ksize(p);
1175 } else
1176 ks = 0;
928cec9c 1177
d12d9ad8 1178 /* If the object still fits, repoison it precisely. */
0316bec2 1179 if (ks >= new_size) {
0116523c 1180 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1181 return (void *)p;
0316bec2 1182 }
928cec9c
AR
1183
1184 ret = kmalloc_track_caller(new_size, flags);
d12d9ad8
AK
1185 if (ret && p) {
1186 /* Disable KASAN checks as the object's redzone is accessed. */
1187 kasan_disable_current();
1188 memcpy(ret, kasan_reset_tag(p), ks);
1189 kasan_enable_current();
1190 }
928cec9c
AR
1191
1192 return ret;
1193}
1194
928cec9c
AR
1195/**
1196 * krealloc - reallocate memory. The contents will remain unchanged.
1197 * @p: object to reallocate memory for.
1198 * @new_size: how many bytes of memory are required.
1199 * @flags: the type of memory to allocate.
1200 *
1201 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1202 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1203 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1204 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1205 *
1206 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1207 */
1208void *krealloc(const void *p, size_t new_size, gfp_t flags)
1209{
1210 void *ret;
1211
1212 if (unlikely(!new_size)) {
1213 kfree(p);
1214 return ZERO_SIZE_PTR;
1215 }
1216
1217 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1218 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1219 kfree(p);
1220
1221 return ret;
1222}
1223EXPORT_SYMBOL(krealloc);
1224
1225/**
453431a5 1226 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1227 * @p: object to free memory of
1228 *
1229 * The memory of the object @p points to is zeroed before freed.
453431a5 1230 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1231 *
1232 * Note: this function zeroes the whole allocated buffer which can be a good
1233 * deal bigger than the requested buffer size passed to kmalloc(). So be
1234 * careful when using this function in performance sensitive code.
1235 */
453431a5 1236void kfree_sensitive(const void *p)
928cec9c
AR
1237{
1238 size_t ks;
1239 void *mem = (void *)p;
1240
928cec9c 1241 ks = ksize(mem);
fa9ba3aa
WK
1242 if (ks)
1243 memzero_explicit(mem, ks);
928cec9c
AR
1244 kfree(mem);
1245}
453431a5 1246EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1247
10d1f8cb
ME
1248/**
1249 * ksize - get the actual amount of memory allocated for a given object
1250 * @objp: Pointer to the object
1251 *
1252 * kmalloc may internally round up allocations and return more memory
1253 * than requested. ksize() can be used to determine the actual amount of
1254 * memory allocated. The caller may use this additional memory, even though
1255 * a smaller amount of memory was initially specified with the kmalloc call.
1256 * The caller must guarantee that objp points to a valid object previously
1257 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1258 * must not be freed during the duration of the call.
1259 *
1260 * Return: size of the actual memory used by @objp in bytes
1261 */
1262size_t ksize(const void *objp)
1263{
0d4ca4c9
ME
1264 size_t size;
1265
0d4ca4c9 1266 /*
611806b4
AK
1267 * We need to first check that the pointer to the object is valid, and
1268 * only then unpoison the memory. The report printed from ksize() is
1269 * more useful, then when it's printed later when the behaviour could
1270 * be undefined due to a potential use-after-free or double-free.
0d4ca4c9 1271 *
611806b4
AK
1272 * We use kasan_check_byte(), which is supported for the hardware
1273 * tag-based KASAN mode, unlike kasan_check_read/write().
1274 *
1275 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1276 * ksize() writing to and potentially corrupting the memory region.
1277 *
1278 * We want to perform the check before __ksize(), to avoid potentially
1279 * crashing in __ksize() due to accessing invalid metadata.
1280 */
611806b4 1281 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1282 return 0;
1283
d3fb45f3 1284 size = kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1285 /*
1286 * We assume that ksize callers could use whole allocated area,
1287 * so we need to unpoison this area.
1288 */
cebd0eb2 1289 kasan_unpoison_range(objp, size);
10d1f8cb
ME
1290 return size;
1291}
1292EXPORT_SYMBOL(ksize);
1293
928cec9c
AR
1294/* Tracepoints definitions. */
1295EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1296EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1297EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1298EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1299EXPORT_TRACEPOINT_SYMBOL(kfree);
1300EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1301
1302int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1303{
1304 if (__should_failslab(s, gfpflags))
1305 return -ENOMEM;
1306 return 0;
1307}
1308ALLOW_ERROR_INJECTION(should_failslab, ERRNO);