slab: reorganize memcg_cache_params
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
657dc2f9
TH
33static LIST_HEAD(slab_caches_to_rcu_destroy);
34static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
35static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
36 slab_caches_to_rcu_destroy_workfn);
37
423c929c
JK
38/*
39 * Set of flags that will prevent slab merging
40 */
41#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 43 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 44
230e9fc2
VD
45#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 SLAB_NOTRACK | SLAB_ACCOUNT)
423c929c
JK
47
48/*
49 * Merge control. If this is set then no merging of slab caches will occur.
50 * (Could be removed. This was introduced to pacify the merge skeptics.)
51 */
52static int slab_nomerge;
53
54static int __init setup_slab_nomerge(char *str)
55{
56 slab_nomerge = 1;
57 return 1;
58}
59
60#ifdef CONFIG_SLUB
61__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62#endif
63
64__setup("slab_nomerge", setup_slab_nomerge);
65
07f361b2
JK
66/*
67 * Determine the size of a slab object
68 */
69unsigned int kmem_cache_size(struct kmem_cache *s)
70{
71 return s->object_size;
72}
73EXPORT_SYMBOL(kmem_cache_size);
74
77be4b13 75#ifdef CONFIG_DEBUG_VM
794b1248 76static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
77{
78 struct kmem_cache *s = NULL;
79
039363f3
CL
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
039363f3 84 }
b920536a 85
20cea968
CL
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
77be4b13 97 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
98 s->object_size);
99 continue;
100 }
20cea968
CL
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
104 return 0;
105}
106#else
794b1248 107static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
108{
109 return 0;
110}
20cea968
CL
111#endif
112
484748f0
CL
113void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114{
115 size_t i;
116
ca257195
JDB
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
484748f0
CL
123}
124
865762a8 125int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
126 void **p)
127{
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
865762a8 134 return 0;
484748f0
CL
135 }
136 }
865762a8 137 return i;
484748f0
CL
138}
139
127424c8 140#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
f7ce3190 141void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 142{
9eeadc8b 143 s->memcg_params.root_cache = NULL;
f7ce3190 144 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 145 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
146}
147
148static int init_memcg_params(struct kmem_cache *s,
149 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
150{
151 struct memcg_cache_array *arr;
33a690c4 152
9eeadc8b 153 if (root_cache) {
f7ce3190 154 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
155 s->memcg_params.memcg = memcg;
156 INIT_LIST_HEAD(&s->memcg_params.children_node);
33a690c4 157 return 0;
f7ce3190 158 }
33a690c4 159
f7ce3190 160 slab_init_memcg_params(s);
33a690c4 161
f7ce3190
VD
162 if (!memcg_nr_cache_ids)
163 return 0;
33a690c4 164
f7ce3190
VD
165 arr = kzalloc(sizeof(struct memcg_cache_array) +
166 memcg_nr_cache_ids * sizeof(void *),
167 GFP_KERNEL);
168 if (!arr)
169 return -ENOMEM;
33a690c4 170
f7ce3190 171 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
172 return 0;
173}
174
f7ce3190 175static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 176{
f7ce3190
VD
177 if (is_root_cache(s))
178 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
179}
180
f7ce3190 181static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 182{
f7ce3190 183 struct memcg_cache_array *old, *new;
6f817f4c 184
f7ce3190
VD
185 if (!is_root_cache(s))
186 return 0;
6f817f4c 187
f7ce3190
VD
188 new = kzalloc(sizeof(struct memcg_cache_array) +
189 new_array_size * sizeof(void *), GFP_KERNEL);
190 if (!new)
6f817f4c
VD
191 return -ENOMEM;
192
f7ce3190
VD
193 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
194 lockdep_is_held(&slab_mutex));
195 if (old)
196 memcpy(new->entries, old->entries,
197 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 198
f7ce3190
VD
199 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
200 if (old)
201 kfree_rcu(old, rcu);
6f817f4c
VD
202 return 0;
203}
204
55007d84
GC
205int memcg_update_all_caches(int num_memcgs)
206{
207 struct kmem_cache *s;
208 int ret = 0;
55007d84 209
05257a1a 210 mutex_lock(&slab_mutex);
55007d84 211 list_for_each_entry(s, &slab_caches, list) {
f7ce3190 212 ret = update_memcg_params(s, num_memcgs);
55007d84 213 /*
55007d84
GC
214 * Instead of freeing the memory, we'll just leave the caches
215 * up to this point in an updated state.
216 */
217 if (ret)
05257a1a 218 break;
55007d84 219 }
55007d84
GC
220 mutex_unlock(&slab_mutex);
221 return ret;
222}
657dc2f9
TH
223
224static void unlink_memcg_cache(struct kmem_cache *s)
225{
9eeadc8b 226 list_del(&s->memcg_params.children_node);
657dc2f9 227}
33a690c4 228#else
f7ce3190
VD
229static inline int init_memcg_params(struct kmem_cache *s,
230 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
231{
232 return 0;
233}
234
f7ce3190 235static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
236{
237}
657dc2f9
TH
238
239static inline void unlink_memcg_cache(struct kmem_cache *s)
240{
241}
127424c8 242#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 243
423c929c
JK
244/*
245 * Find a mergeable slab cache
246 */
247int slab_unmergeable(struct kmem_cache *s)
248{
249 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
250 return 1;
251
252 if (!is_root_cache(s))
253 return 1;
254
255 if (s->ctor)
256 return 1;
257
258 /*
259 * We may have set a slab to be unmergeable during bootstrap.
260 */
261 if (s->refcount < 0)
262 return 1;
263
264 return 0;
265}
266
267struct kmem_cache *find_mergeable(size_t size, size_t align,
268 unsigned long flags, const char *name, void (*ctor)(void *))
269{
270 struct kmem_cache *s;
271
c6e28895 272 if (slab_nomerge)
423c929c
JK
273 return NULL;
274
275 if (ctor)
276 return NULL;
277
278 size = ALIGN(size, sizeof(void *));
279 align = calculate_alignment(flags, align, size);
280 size = ALIGN(size, align);
281 flags = kmem_cache_flags(size, flags, name, NULL);
282
c6e28895
GM
283 if (flags & SLAB_NEVER_MERGE)
284 return NULL;
285
54362057 286 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
287 if (slab_unmergeable(s))
288 continue;
289
290 if (size > s->size)
291 continue;
292
293 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
294 continue;
295 /*
296 * Check if alignment is compatible.
297 * Courtesy of Adrian Drzewiecki
298 */
299 if ((s->size & ~(align - 1)) != s->size)
300 continue;
301
302 if (s->size - size >= sizeof(void *))
303 continue;
304
95069ac8
JK
305 if (IS_ENABLED(CONFIG_SLAB) && align &&
306 (align > s->align || s->align % align))
307 continue;
308
423c929c
JK
309 return s;
310 }
311 return NULL;
312}
313
45906855
CL
314/*
315 * Figure out what the alignment of the objects will be given a set of
316 * flags, a user specified alignment and the size of the objects.
317 */
318unsigned long calculate_alignment(unsigned long flags,
319 unsigned long align, unsigned long size)
320{
321 /*
322 * If the user wants hardware cache aligned objects then follow that
323 * suggestion if the object is sufficiently large.
324 *
325 * The hardware cache alignment cannot override the specified
326 * alignment though. If that is greater then use it.
327 */
328 if (flags & SLAB_HWCACHE_ALIGN) {
329 unsigned long ralign = cache_line_size();
330 while (size <= ralign / 2)
331 ralign /= 2;
332 align = max(align, ralign);
333 }
334
335 if (align < ARCH_SLAB_MINALIGN)
336 align = ARCH_SLAB_MINALIGN;
337
338 return ALIGN(align, sizeof(void *));
339}
340
c9a77a79
VD
341static struct kmem_cache *create_cache(const char *name,
342 size_t object_size, size_t size, size_t align,
343 unsigned long flags, void (*ctor)(void *),
344 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
345{
346 struct kmem_cache *s;
347 int err;
348
349 err = -ENOMEM;
350 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
351 if (!s)
352 goto out;
353
354 s->name = name;
355 s->object_size = object_size;
356 s->size = size;
357 s->align = align;
358 s->ctor = ctor;
359
f7ce3190 360 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
361 if (err)
362 goto out_free_cache;
363
364 err = __kmem_cache_create(s, flags);
365 if (err)
366 goto out_free_cache;
367
368 s->refcount = 1;
369 list_add(&s->list, &slab_caches);
794b1248
VD
370out:
371 if (err)
372 return ERR_PTR(err);
373 return s;
374
375out_free_cache:
f7ce3190 376 destroy_memcg_params(s);
7c4da061 377 kmem_cache_free(kmem_cache, s);
794b1248
VD
378 goto out;
379}
45906855 380
77be4b13
SK
381/*
382 * kmem_cache_create - Create a cache.
383 * @name: A string which is used in /proc/slabinfo to identify this cache.
384 * @size: The size of objects to be created in this cache.
385 * @align: The required alignment for the objects.
386 * @flags: SLAB flags
387 * @ctor: A constructor for the objects.
388 *
389 * Returns a ptr to the cache on success, NULL on failure.
390 * Cannot be called within a interrupt, but can be interrupted.
391 * The @ctor is run when new pages are allocated by the cache.
392 *
393 * The flags are
394 *
395 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
396 * to catch references to uninitialised memory.
397 *
398 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
399 * for buffer overruns.
400 *
401 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
402 * cacheline. This can be beneficial if you're counting cycles as closely
403 * as davem.
404 */
2633d7a0 405struct kmem_cache *
794b1248
VD
406kmem_cache_create(const char *name, size_t size, size_t align,
407 unsigned long flags, void (*ctor)(void *))
77be4b13 408{
40911a79 409 struct kmem_cache *s = NULL;
3dec16ea 410 const char *cache_name;
3965fc36 411 int err;
039363f3 412
77be4b13 413 get_online_cpus();
03afc0e2 414 get_online_mems();
05257a1a 415 memcg_get_cache_ids();
03afc0e2 416
77be4b13 417 mutex_lock(&slab_mutex);
686d550d 418
794b1248 419 err = kmem_cache_sanity_check(name, size);
3aa24f51 420 if (err) {
3965fc36 421 goto out_unlock;
3aa24f51 422 }
686d550d 423
e70954fd
TG
424 /* Refuse requests with allocator specific flags */
425 if (flags & ~SLAB_FLAGS_PERMITTED) {
426 err = -EINVAL;
427 goto out_unlock;
428 }
429
d8843922
GC
430 /*
431 * Some allocators will constraint the set of valid flags to a subset
432 * of all flags. We expect them to define CACHE_CREATE_MASK in this
433 * case, and we'll just provide them with a sanitized version of the
434 * passed flags.
435 */
436 flags &= CACHE_CREATE_MASK;
686d550d 437
794b1248
VD
438 s = __kmem_cache_alias(name, size, align, flags, ctor);
439 if (s)
3965fc36 440 goto out_unlock;
2633d7a0 441
3dec16ea 442 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
443 if (!cache_name) {
444 err = -ENOMEM;
445 goto out_unlock;
446 }
7c9adf5a 447
c9a77a79
VD
448 s = create_cache(cache_name, size, size,
449 calculate_alignment(flags, align, size),
450 flags, ctor, NULL, NULL);
794b1248
VD
451 if (IS_ERR(s)) {
452 err = PTR_ERR(s);
3dec16ea 453 kfree_const(cache_name);
794b1248 454 }
3965fc36
VD
455
456out_unlock:
20cea968 457 mutex_unlock(&slab_mutex);
03afc0e2 458
05257a1a 459 memcg_put_cache_ids();
03afc0e2 460 put_online_mems();
20cea968
CL
461 put_online_cpus();
462
ba3253c7 463 if (err) {
686d550d
CL
464 if (flags & SLAB_PANIC)
465 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
466 name, err);
467 else {
1170532b 468 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
469 name, err);
470 dump_stack();
471 }
686d550d
CL
472 return NULL;
473 }
039363f3
CL
474 return s;
475}
794b1248 476EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 477
657dc2f9 478static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 479{
657dc2f9
TH
480 LIST_HEAD(to_destroy);
481 struct kmem_cache *s, *s2;
d5b3cf71 482
657dc2f9
TH
483 /*
484 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
485 * @slab_caches_to_rcu_destroy list. The slab pages are freed
486 * through RCU and and the associated kmem_cache are dereferenced
487 * while freeing the pages, so the kmem_caches should be freed only
488 * after the pending RCU operations are finished. As rcu_barrier()
489 * is a pretty slow operation, we batch all pending destructions
490 * asynchronously.
491 */
492 mutex_lock(&slab_mutex);
493 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
494 mutex_unlock(&slab_mutex);
d5b3cf71 495
657dc2f9
TH
496 if (list_empty(&to_destroy))
497 return;
498
499 rcu_barrier();
500
501 list_for_each_entry_safe(s, s2, &to_destroy, list) {
502#ifdef SLAB_SUPPORTS_SYSFS
503 sysfs_slab_release(s);
504#else
505 slab_kmem_cache_release(s);
506#endif
507 }
d5b3cf71
VD
508}
509
657dc2f9 510static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 511{
657dc2f9
TH
512 if (__kmem_cache_shutdown(s) != 0)
513 return -EBUSY;
d5b3cf71 514
657dc2f9
TH
515 list_del(&s->list);
516 if (!is_root_cache(s))
517 unlink_memcg_cache(s);
d5b3cf71 518
657dc2f9
TH
519 if (s->flags & SLAB_DESTROY_BY_RCU) {
520 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
521 schedule_work(&slab_caches_to_rcu_destroy_work);
522 } else {
d5b3cf71 523#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 524 sysfs_slab_release(s);
d5b3cf71
VD
525#else
526 slab_kmem_cache_release(s);
527#endif
528 }
657dc2f9
TH
529
530 return 0;
d5b3cf71
VD
531}
532
127424c8 533#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 534/*
776ed0f0 535 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
536 * @memcg: The memory cgroup the new cache is for.
537 * @root_cache: The parent of the new cache.
538 *
539 * This function attempts to create a kmem cache that will serve allocation
540 * requests going from @memcg to @root_cache. The new cache inherits properties
541 * from its parent.
542 */
d5b3cf71
VD
543void memcg_create_kmem_cache(struct mem_cgroup *memcg,
544 struct kmem_cache *root_cache)
2633d7a0 545{
3e0350a3 546 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 547 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 548 struct memcg_cache_array *arr;
bd673145 549 struct kmem_cache *s = NULL;
794b1248 550 char *cache_name;
f7ce3190 551 int idx;
794b1248
VD
552
553 get_online_cpus();
03afc0e2
VD
554 get_online_mems();
555
794b1248
VD
556 mutex_lock(&slab_mutex);
557
2a4db7eb 558 /*
567e9ab2 559 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
560 * creation work was pending.
561 */
b6ecd2de 562 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
563 goto out_unlock;
564
f7ce3190
VD
565 idx = memcg_cache_id(memcg);
566 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
567 lockdep_is_held(&slab_mutex));
568
d5b3cf71
VD
569 /*
570 * Since per-memcg caches are created asynchronously on first
571 * allocation (see memcg_kmem_get_cache()), several threads can try to
572 * create the same cache, but only one of them may succeed.
573 */
f7ce3190 574 if (arr->entries[idx])
d5b3cf71
VD
575 goto out_unlock;
576
f1008365 577 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
578 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
579 css->serial_nr, memcg_name_buf);
794b1248
VD
580 if (!cache_name)
581 goto out_unlock;
582
c9a77a79
VD
583 s = create_cache(cache_name, root_cache->object_size,
584 root_cache->size, root_cache->align,
f773e36d
GT
585 root_cache->flags & CACHE_CREATE_MASK,
586 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
587 /*
588 * If we could not create a memcg cache, do not complain, because
589 * that's not critical at all as we can always proceed with the root
590 * cache.
591 */
bd673145 592 if (IS_ERR(s)) {
794b1248 593 kfree(cache_name);
d5b3cf71 594 goto out_unlock;
bd673145 595 }
794b1248 596
9eeadc8b
TH
597 list_add(&s->memcg_params.children_node,
598 &root_cache->memcg_params.children);
426589f5 599
d5b3cf71
VD
600 /*
601 * Since readers won't lock (see cache_from_memcg_idx()), we need a
602 * barrier here to ensure nobody will see the kmem_cache partially
603 * initialized.
604 */
605 smp_wmb();
f7ce3190 606 arr->entries[idx] = s;
d5b3cf71 607
794b1248
VD
608out_unlock:
609 mutex_unlock(&slab_mutex);
03afc0e2
VD
610
611 put_online_mems();
794b1248 612 put_online_cpus();
2633d7a0 613}
b8529907 614
2a4db7eb
VD
615void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
616{
617 int idx;
618 struct memcg_cache_array *arr;
d6e0b7fa 619 struct kmem_cache *s, *c;
2a4db7eb
VD
620
621 idx = memcg_cache_id(memcg);
622
d6e0b7fa
VD
623 get_online_cpus();
624 get_online_mems();
625
2a4db7eb
VD
626 mutex_lock(&slab_mutex);
627 list_for_each_entry(s, &slab_caches, list) {
628 if (!is_root_cache(s))
629 continue;
630
631 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
632 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
633 c = arr->entries[idx];
634 if (!c)
635 continue;
636
290b6a58 637 __kmem_cache_shrink(c, true);
2a4db7eb
VD
638 arr->entries[idx] = NULL;
639 }
640 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
641
642 put_online_mems();
643 put_online_cpus();
2a4db7eb
VD
644}
645
d5b3cf71 646void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 647{
d5b3cf71 648 struct kmem_cache *s, *s2;
b8529907 649
d5b3cf71
VD
650 get_online_cpus();
651 get_online_mems();
b8529907 652
b8529907 653 mutex_lock(&slab_mutex);
d5b3cf71 654 list_for_each_entry_safe(s, s2, &slab_caches, list) {
f7ce3190 655 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
d5b3cf71
VD
656 continue;
657 /*
658 * The cgroup is about to be freed and therefore has no charges
659 * left. Hence, all its caches must be empty by now.
660 */
657dc2f9 661 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
662 }
663 mutex_unlock(&slab_mutex);
b8529907 664
d5b3cf71
VD
665 put_online_mems();
666 put_online_cpus();
b8529907 667}
d60fdcc9 668
657dc2f9 669static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
670{
671 struct memcg_cache_array *arr;
672 struct kmem_cache *c, *c2;
673 LIST_HEAD(busy);
674 int i;
675
676 BUG_ON(!is_root_cache(s));
677
678 /*
679 * First, shutdown active caches, i.e. caches that belong to online
680 * memory cgroups.
681 */
682 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
683 lockdep_is_held(&slab_mutex));
684 for_each_memcg_cache_index(i) {
685 c = arr->entries[i];
686 if (!c)
687 continue;
657dc2f9 688 if (shutdown_cache(c))
d60fdcc9
VD
689 /*
690 * The cache still has objects. Move it to a temporary
691 * list so as not to try to destroy it for a second
692 * time while iterating over inactive caches below.
693 */
9eeadc8b 694 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
695 else
696 /*
697 * The cache is empty and will be destroyed soon. Clear
698 * the pointer to it in the memcg_caches array so that
699 * it will never be accessed even if the root cache
700 * stays alive.
701 */
702 arr->entries[i] = NULL;
703 }
704
705 /*
706 * Second, shutdown all caches left from memory cgroups that are now
707 * offline.
708 */
9eeadc8b
TH
709 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
710 memcg_params.children_node)
657dc2f9 711 shutdown_cache(c);
d60fdcc9 712
9eeadc8b 713 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
714
715 /*
716 * A cache being destroyed must be empty. In particular, this means
717 * that all per memcg caches attached to it must be empty too.
718 */
9eeadc8b 719 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
720 return -EBUSY;
721 return 0;
722}
723#else
657dc2f9 724static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
725{
726 return 0;
727}
127424c8 728#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 729
41a21285
CL
730void slab_kmem_cache_release(struct kmem_cache *s)
731{
52b4b950 732 __kmem_cache_release(s);
f7ce3190 733 destroy_memcg_params(s);
3dec16ea 734 kfree_const(s->name);
41a21285
CL
735 kmem_cache_free(kmem_cache, s);
736}
737
945cf2b6
CL
738void kmem_cache_destroy(struct kmem_cache *s)
739{
d60fdcc9 740 int err;
d5b3cf71 741
3942d299
SS
742 if (unlikely(!s))
743 return;
744
945cf2b6 745 get_online_cpus();
03afc0e2
VD
746 get_online_mems();
747
55834c59 748 kasan_cache_destroy(s);
945cf2b6 749 mutex_lock(&slab_mutex);
b8529907 750
945cf2b6 751 s->refcount--;
b8529907
VD
752 if (s->refcount)
753 goto out_unlock;
754
657dc2f9 755 err = shutdown_memcg_caches(s);
d60fdcc9 756 if (!err)
657dc2f9 757 err = shutdown_cache(s);
b8529907 758
cd918c55 759 if (err) {
756a025f
JP
760 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
761 s->name);
cd918c55
VD
762 dump_stack();
763 }
b8529907
VD
764out_unlock:
765 mutex_unlock(&slab_mutex);
d5b3cf71 766
03afc0e2 767 put_online_mems();
945cf2b6
CL
768 put_online_cpus();
769}
770EXPORT_SYMBOL(kmem_cache_destroy);
771
03afc0e2
VD
772/**
773 * kmem_cache_shrink - Shrink a cache.
774 * @cachep: The cache to shrink.
775 *
776 * Releases as many slabs as possible for a cache.
777 * To help debugging, a zero exit status indicates all slabs were released.
778 */
779int kmem_cache_shrink(struct kmem_cache *cachep)
780{
781 int ret;
782
783 get_online_cpus();
784 get_online_mems();
55834c59 785 kasan_cache_shrink(cachep);
290b6a58 786 ret = __kmem_cache_shrink(cachep, false);
03afc0e2
VD
787 put_online_mems();
788 put_online_cpus();
789 return ret;
790}
791EXPORT_SYMBOL(kmem_cache_shrink);
792
fda90124 793bool slab_is_available(void)
97d06609
CL
794{
795 return slab_state >= UP;
796}
b7454ad3 797
45530c44
CL
798#ifndef CONFIG_SLOB
799/* Create a cache during boot when no slab services are available yet */
800void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
801 unsigned long flags)
802{
803 int err;
804
805 s->name = name;
806 s->size = s->object_size = size;
45906855 807 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
808
809 slab_init_memcg_params(s);
810
45530c44
CL
811 err = __kmem_cache_create(s, flags);
812
813 if (err)
31ba7346 814 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
815 name, size, err);
816
817 s->refcount = -1; /* Exempt from merging for now */
818}
819
820struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
821 unsigned long flags)
822{
823 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
824
825 if (!s)
826 panic("Out of memory when creating slab %s\n", name);
827
828 create_boot_cache(s, name, size, flags);
829 list_add(&s->list, &slab_caches);
830 s->refcount = 1;
831 return s;
832}
833
9425c58e
CL
834struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
835EXPORT_SYMBOL(kmalloc_caches);
836
837#ifdef CONFIG_ZONE_DMA
838struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
839EXPORT_SYMBOL(kmalloc_dma_caches);
840#endif
841
2c59dd65
CL
842/*
843 * Conversion table for small slabs sizes / 8 to the index in the
844 * kmalloc array. This is necessary for slabs < 192 since we have non power
845 * of two cache sizes there. The size of larger slabs can be determined using
846 * fls.
847 */
848static s8 size_index[24] = {
849 3, /* 8 */
850 4, /* 16 */
851 5, /* 24 */
852 5, /* 32 */
853 6, /* 40 */
854 6, /* 48 */
855 6, /* 56 */
856 6, /* 64 */
857 1, /* 72 */
858 1, /* 80 */
859 1, /* 88 */
860 1, /* 96 */
861 7, /* 104 */
862 7, /* 112 */
863 7, /* 120 */
864 7, /* 128 */
865 2, /* 136 */
866 2, /* 144 */
867 2, /* 152 */
868 2, /* 160 */
869 2, /* 168 */
870 2, /* 176 */
871 2, /* 184 */
872 2 /* 192 */
873};
874
875static inline int size_index_elem(size_t bytes)
876{
877 return (bytes - 1) / 8;
878}
879
880/*
881 * Find the kmem_cache structure that serves a given size of
882 * allocation
883 */
884struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
885{
886 int index;
887
9de1bc87 888 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 889 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 890 return NULL;
907985f4 891 }
6286ae97 892
2c59dd65
CL
893 if (size <= 192) {
894 if (!size)
895 return ZERO_SIZE_PTR;
896
897 index = size_index[size_index_elem(size)];
898 } else
899 index = fls(size - 1);
900
901#ifdef CONFIG_ZONE_DMA
b1e05416 902 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
903 return kmalloc_dma_caches[index];
904
905#endif
906 return kmalloc_caches[index];
907}
908
4066c33d
GG
909/*
910 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
911 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
912 * kmalloc-67108864.
913 */
af3b5f87 914const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
915 {NULL, 0}, {"kmalloc-96", 96},
916 {"kmalloc-192", 192}, {"kmalloc-8", 8},
917 {"kmalloc-16", 16}, {"kmalloc-32", 32},
918 {"kmalloc-64", 64}, {"kmalloc-128", 128},
919 {"kmalloc-256", 256}, {"kmalloc-512", 512},
920 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
921 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
922 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
923 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
924 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
925 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
926 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
927 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
928 {"kmalloc-67108864", 67108864}
929};
930
f97d5f63 931/*
34cc6990
DS
932 * Patch up the size_index table if we have strange large alignment
933 * requirements for the kmalloc array. This is only the case for
934 * MIPS it seems. The standard arches will not generate any code here.
935 *
936 * Largest permitted alignment is 256 bytes due to the way we
937 * handle the index determination for the smaller caches.
938 *
939 * Make sure that nothing crazy happens if someone starts tinkering
940 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 941 */
34cc6990 942void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
943{
944 int i;
945
2c59dd65
CL
946 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
947 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
948
949 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
950 int elem = size_index_elem(i);
951
952 if (elem >= ARRAY_SIZE(size_index))
953 break;
954 size_index[elem] = KMALLOC_SHIFT_LOW;
955 }
956
957 if (KMALLOC_MIN_SIZE >= 64) {
958 /*
959 * The 96 byte size cache is not used if the alignment
960 * is 64 byte.
961 */
962 for (i = 64 + 8; i <= 96; i += 8)
963 size_index[size_index_elem(i)] = 7;
964
965 }
966
967 if (KMALLOC_MIN_SIZE >= 128) {
968 /*
969 * The 192 byte sized cache is not used if the alignment
970 * is 128 byte. Redirect kmalloc to use the 256 byte cache
971 * instead.
972 */
973 for (i = 128 + 8; i <= 192; i += 8)
974 size_index[size_index_elem(i)] = 8;
975 }
34cc6990
DS
976}
977
ae6f2462 978static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
979{
980 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
981 kmalloc_info[idx].size, flags);
982}
983
34cc6990
DS
984/*
985 * Create the kmalloc array. Some of the regular kmalloc arrays
986 * may already have been created because they were needed to
987 * enable allocations for slab creation.
988 */
989void __init create_kmalloc_caches(unsigned long flags)
990{
991 int i;
992
a9730fca
CL
993 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
994 if (!kmalloc_caches[i])
995 new_kmalloc_cache(i, flags);
f97d5f63 996
956e46ef 997 /*
a9730fca
CL
998 * Caches that are not of the two-to-the-power-of size.
999 * These have to be created immediately after the
1000 * earlier power of two caches
956e46ef 1001 */
a9730fca
CL
1002 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1003 new_kmalloc_cache(1, flags);
1004 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1005 new_kmalloc_cache(2, flags);
8a965b3b
CL
1006 }
1007
f97d5f63
CL
1008 /* Kmalloc array is now usable */
1009 slab_state = UP;
1010
f97d5f63
CL
1011#ifdef CONFIG_ZONE_DMA
1012 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1013 struct kmem_cache *s = kmalloc_caches[i];
1014
1015 if (s) {
1016 int size = kmalloc_size(i);
1017 char *n = kasprintf(GFP_NOWAIT,
1018 "dma-kmalloc-%d", size);
1019
1020 BUG_ON(!n);
1021 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1022 size, SLAB_CACHE_DMA | flags);
1023 }
1024 }
1025#endif
1026}
45530c44
CL
1027#endif /* !CONFIG_SLOB */
1028
cea371f4
VD
1029/*
1030 * To avoid unnecessary overhead, we pass through large allocation requests
1031 * directly to the page allocator. We use __GFP_COMP, because we will need to
1032 * know the allocation order to free the pages properly in kfree.
1033 */
52383431
VD
1034void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1035{
1036 void *ret;
1037 struct page *page;
1038
1039 flags |= __GFP_COMP;
4949148a 1040 page = alloc_pages(flags, order);
52383431
VD
1041 ret = page ? page_address(page) : NULL;
1042 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1043 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1044 return ret;
1045}
1046EXPORT_SYMBOL(kmalloc_order);
1047
f1b6eb6e
CL
1048#ifdef CONFIG_TRACING
1049void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1050{
1051 void *ret = kmalloc_order(size, flags, order);
1052 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1053 return ret;
1054}
1055EXPORT_SYMBOL(kmalloc_order_trace);
1056#endif
45530c44 1057
7c00fce9
TG
1058#ifdef CONFIG_SLAB_FREELIST_RANDOM
1059/* Randomize a generic freelist */
1060static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1061 size_t count)
1062{
1063 size_t i;
1064 unsigned int rand;
1065
1066 for (i = 0; i < count; i++)
1067 list[i] = i;
1068
1069 /* Fisher-Yates shuffle */
1070 for (i = count - 1; i > 0; i--) {
1071 rand = prandom_u32_state(state);
1072 rand %= (i + 1);
1073 swap(list[i], list[rand]);
1074 }
1075}
1076
1077/* Create a random sequence per cache */
1078int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1079 gfp_t gfp)
1080{
1081 struct rnd_state state;
1082
1083 if (count < 2 || cachep->random_seq)
1084 return 0;
1085
1086 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1087 if (!cachep->random_seq)
1088 return -ENOMEM;
1089
1090 /* Get best entropy at this stage of boot */
1091 prandom_seed_state(&state, get_random_long());
1092
1093 freelist_randomize(&state, cachep->random_seq, count);
1094 return 0;
1095}
1096
1097/* Destroy the per-cache random freelist sequence */
1098void cache_random_seq_destroy(struct kmem_cache *cachep)
1099{
1100 kfree(cachep->random_seq);
1101 cachep->random_seq = NULL;
1102}
1103#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1104
b7454ad3 1105#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1106
1107#ifdef CONFIG_SLAB
1108#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1109#else
1110#define SLABINFO_RIGHTS S_IRUSR
1111#endif
1112
b047501c 1113static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1114{
1115 /*
1116 * Output format version, so at least we can change it
1117 * without _too_ many complaints.
1118 */
1119#ifdef CONFIG_DEBUG_SLAB
1120 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1121#else
1122 seq_puts(m, "slabinfo - version: 2.1\n");
1123#endif
756a025f 1124 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1125 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1126 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1127#ifdef CONFIG_DEBUG_SLAB
756a025f 1128 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1129 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1130#endif
1131 seq_putc(m, '\n');
1132}
1133
1df3b26f 1134void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1135{
b7454ad3 1136 mutex_lock(&slab_mutex);
b7454ad3
GC
1137 return seq_list_start(&slab_caches, *pos);
1138}
1139
276a2439 1140void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
1141{
1142 return seq_list_next(p, &slab_caches, pos);
1143}
1144
276a2439 1145void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1146{
1147 mutex_unlock(&slab_mutex);
1148}
1149
749c5415
GC
1150static void
1151memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1152{
1153 struct kmem_cache *c;
1154 struct slabinfo sinfo;
749c5415
GC
1155
1156 if (!is_root_cache(s))
1157 return;
1158
426589f5 1159 for_each_memcg_cache(c, s) {
749c5415
GC
1160 memset(&sinfo, 0, sizeof(sinfo));
1161 get_slabinfo(c, &sinfo);
1162
1163 info->active_slabs += sinfo.active_slabs;
1164 info->num_slabs += sinfo.num_slabs;
1165 info->shared_avail += sinfo.shared_avail;
1166 info->active_objs += sinfo.active_objs;
1167 info->num_objs += sinfo.num_objs;
1168 }
1169}
1170
b047501c 1171static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1172{
0d7561c6
GC
1173 struct slabinfo sinfo;
1174
1175 memset(&sinfo, 0, sizeof(sinfo));
1176 get_slabinfo(s, &sinfo);
1177
749c5415
GC
1178 memcg_accumulate_slabinfo(s, &sinfo);
1179
0d7561c6 1180 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1181 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1182 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1183
1184 seq_printf(m, " : tunables %4u %4u %4u",
1185 sinfo.limit, sinfo.batchcount, sinfo.shared);
1186 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1187 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1188 slabinfo_show_stats(m, s);
1189 seq_putc(m, '\n');
b7454ad3
GC
1190}
1191
1df3b26f 1192static int slab_show(struct seq_file *m, void *p)
749c5415
GC
1193{
1194 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1195
1df3b26f
VD
1196 if (p == slab_caches.next)
1197 print_slabinfo_header(m);
b047501c
VD
1198 if (is_root_cache(s))
1199 cache_show(s, m);
1200 return 0;
1201}
1202
127424c8 1203#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
b047501c
VD
1204int memcg_slab_show(struct seq_file *m, void *p)
1205{
1206 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1207 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1208
1209 if (p == slab_caches.next)
1210 print_slabinfo_header(m);
f7ce3190 1211 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
b047501c
VD
1212 cache_show(s, m);
1213 return 0;
749c5415 1214}
b047501c 1215#endif
749c5415 1216
b7454ad3
GC
1217/*
1218 * slabinfo_op - iterator that generates /proc/slabinfo
1219 *
1220 * Output layout:
1221 * cache-name
1222 * num-active-objs
1223 * total-objs
1224 * object size
1225 * num-active-slabs
1226 * total-slabs
1227 * num-pages-per-slab
1228 * + further values on SMP and with statistics enabled
1229 */
1230static const struct seq_operations slabinfo_op = {
1df3b26f 1231 .start = slab_start,
276a2439
WL
1232 .next = slab_next,
1233 .stop = slab_stop,
1df3b26f 1234 .show = slab_show,
b7454ad3
GC
1235};
1236
1237static int slabinfo_open(struct inode *inode, struct file *file)
1238{
1239 return seq_open(file, &slabinfo_op);
1240}
1241
1242static const struct file_operations proc_slabinfo_operations = {
1243 .open = slabinfo_open,
1244 .read = seq_read,
1245 .write = slabinfo_write,
1246 .llseek = seq_lseek,
1247 .release = seq_release,
1248};
1249
1250static int __init slab_proc_init(void)
1251{
e9b4db2b
WL
1252 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1253 &proc_slabinfo_operations);
b7454ad3
GC
1254 return 0;
1255}
1256module_init(slab_proc_init);
1257#endif /* CONFIG_SLABINFO */
928cec9c
AR
1258
1259static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1260 gfp_t flags)
1261{
1262 void *ret;
1263 size_t ks = 0;
1264
1265 if (p)
1266 ks = ksize(p);
1267
0316bec2 1268 if (ks >= new_size) {
505f5dcb 1269 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1270 return (void *)p;
0316bec2 1271 }
928cec9c
AR
1272
1273 ret = kmalloc_track_caller(new_size, flags);
1274 if (ret && p)
1275 memcpy(ret, p, ks);
1276
1277 return ret;
1278}
1279
1280/**
1281 * __krealloc - like krealloc() but don't free @p.
1282 * @p: object to reallocate memory for.
1283 * @new_size: how many bytes of memory are required.
1284 * @flags: the type of memory to allocate.
1285 *
1286 * This function is like krealloc() except it never frees the originally
1287 * allocated buffer. Use this if you don't want to free the buffer immediately
1288 * like, for example, with RCU.
1289 */
1290void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1291{
1292 if (unlikely(!new_size))
1293 return ZERO_SIZE_PTR;
1294
1295 return __do_krealloc(p, new_size, flags);
1296
1297}
1298EXPORT_SYMBOL(__krealloc);
1299
1300/**
1301 * krealloc - reallocate memory. The contents will remain unchanged.
1302 * @p: object to reallocate memory for.
1303 * @new_size: how many bytes of memory are required.
1304 * @flags: the type of memory to allocate.
1305 *
1306 * The contents of the object pointed to are preserved up to the
1307 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1308 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1309 * %NULL pointer, the object pointed to is freed.
1310 */
1311void *krealloc(const void *p, size_t new_size, gfp_t flags)
1312{
1313 void *ret;
1314
1315 if (unlikely(!new_size)) {
1316 kfree(p);
1317 return ZERO_SIZE_PTR;
1318 }
1319
1320 ret = __do_krealloc(p, new_size, flags);
1321 if (ret && p != ret)
1322 kfree(p);
1323
1324 return ret;
1325}
1326EXPORT_SYMBOL(krealloc);
1327
1328/**
1329 * kzfree - like kfree but zero memory
1330 * @p: object to free memory of
1331 *
1332 * The memory of the object @p points to is zeroed before freed.
1333 * If @p is %NULL, kzfree() does nothing.
1334 *
1335 * Note: this function zeroes the whole allocated buffer which can be a good
1336 * deal bigger than the requested buffer size passed to kmalloc(). So be
1337 * careful when using this function in performance sensitive code.
1338 */
1339void kzfree(const void *p)
1340{
1341 size_t ks;
1342 void *mem = (void *)p;
1343
1344 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1345 return;
1346 ks = ksize(mem);
1347 memset(mem, 0, ks);
1348 kfree(mem);
1349}
1350EXPORT_SYMBOL(kzfree);
1351
1352/* Tracepoints definitions. */
1353EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1354EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1355EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1356EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1357EXPORT_TRACEPOINT_SYMBOL(kfree);
1358EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);