slab: Remove __malloc attribute from realloc functions
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3
GC
19#include <linux/seq_file.h>
20#include <linux/proc_fs.h>
fcf8a1e4 21#include <linux/debugfs.h>
e86f8b09 22#include <linux/kasan.h>
039363f3
CL
23#include <asm/cacheflush.h>
24#include <asm/tlbflush.h>
25#include <asm/page.h>
2633d7a0 26#include <linux/memcontrol.h>
5cf909c5 27#include <linux/stackdepot.h>
928cec9c 28
44405099 29#include "internal.h"
97d06609
CL
30#include "slab.h"
31
b347aa7b
VA
32#define CREATE_TRACE_POINTS
33#include <trace/events/kmem.h>
34
97d06609 35enum slab_state slab_state;
18004c5d
CL
36LIST_HEAD(slab_caches);
37DEFINE_MUTEX(slab_mutex);
9b030cb8 38struct kmem_cache *kmem_cache;
97d06609 39
657dc2f9
TH
40static LIST_HEAD(slab_caches_to_rcu_destroy);
41static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 slab_caches_to_rcu_destroy_workfn);
44
423c929c
JK
45/*
46 * Set of flags that will prevent slab merging
47 */
48#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
e86f8b09 50 SLAB_FAILSLAB | kasan_never_merge())
423c929c 51
230e9fc2 52#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
54
55/*
56 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 57 */
7660a6fd 58static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
59
60static int __init setup_slab_nomerge(char *str)
61{
7660a6fd 62 slab_nomerge = true;
423c929c
JK
63 return 1;
64}
65
82edd9d5
RA
66static int __init setup_slab_merge(char *str)
67{
68 slab_nomerge = false;
69 return 1;
70}
71
423c929c
JK
72#ifdef CONFIG_SLUB
73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82edd9d5 74__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
423c929c
JK
75#endif
76
77__setup("slab_nomerge", setup_slab_nomerge);
82edd9d5 78__setup("slab_merge", setup_slab_merge);
423c929c 79
07f361b2
JK
80/*
81 * Determine the size of a slab object
82 */
83unsigned int kmem_cache_size(struct kmem_cache *s)
84{
85 return s->object_size;
86}
87EXPORT_SYMBOL(kmem_cache_size);
88
77be4b13 89#ifdef CONFIG_DEBUG_VM
f4957d5b 90static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 91{
74c1d3e0 92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
77be4b13
SK
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 return -EINVAL;
039363f3 95 }
b920536a 96
20cea968 97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
98 return 0;
99}
100#else
f4957d5b 101static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
102{
103 return 0;
104}
20cea968
CL
105#endif
106
692ae74a
BL
107/*
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
110 */
f4957d5b
AD
111static unsigned int calculate_alignment(slab_flags_t flags,
112 unsigned int align, unsigned int size)
692ae74a
BL
113{
114 /*
115 * If the user wants hardware cache aligned objects then follow that
116 * suggestion if the object is sufficiently large.
117 *
118 * The hardware cache alignment cannot override the specified
119 * alignment though. If that is greater then use it.
120 */
121 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 122 unsigned int ralign;
692ae74a
BL
123
124 ralign = cache_line_size();
125 while (size <= ralign / 2)
126 ralign /= 2;
127 align = max(align, ralign);
128 }
129
d949a815 130 align = max(align, arch_slab_minalign());
692ae74a
BL
131
132 return ALIGN(align, sizeof(void *));
133}
134
423c929c
JK
135/*
136 * Find a mergeable slab cache
137 */
138int slab_unmergeable(struct kmem_cache *s)
139{
140 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
141 return 1;
142
423c929c
JK
143 if (s->ctor)
144 return 1;
145
8eb8284b
DW
146 if (s->usersize)
147 return 1;
148
423c929c
JK
149 /*
150 * We may have set a slab to be unmergeable during bootstrap.
151 */
152 if (s->refcount < 0)
153 return 1;
154
155 return 0;
156}
157
f4957d5b 158struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 159 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
160{
161 struct kmem_cache *s;
162
c6e28895 163 if (slab_nomerge)
423c929c
JK
164 return NULL;
165
166 if (ctor)
167 return NULL;
168
169 size = ALIGN(size, sizeof(void *));
170 align = calculate_alignment(flags, align, size);
171 size = ALIGN(size, align);
37540008 172 flags = kmem_cache_flags(size, flags, name);
423c929c 173
c6e28895
GM
174 if (flags & SLAB_NEVER_MERGE)
175 return NULL;
176
c7094406 177 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
178 if (slab_unmergeable(s))
179 continue;
180
181 if (size > s->size)
182 continue;
183
184 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
185 continue;
186 /*
187 * Check if alignment is compatible.
188 * Courtesy of Adrian Drzewiecki
189 */
190 if ((s->size & ~(align - 1)) != s->size)
191 continue;
192
193 if (s->size - size >= sizeof(void *))
194 continue;
195
95069ac8
JK
196 if (IS_ENABLED(CONFIG_SLAB) && align &&
197 (align > s->align || s->align % align))
198 continue;
199
423c929c
JK
200 return s;
201 }
202 return NULL;
203}
204
c9a77a79 205static struct kmem_cache *create_cache(const char *name,
613a5eb5 206 unsigned int object_size, unsigned int align,
7bbdb81e
AD
207 slab_flags_t flags, unsigned int useroffset,
208 unsigned int usersize, void (*ctor)(void *),
9855609b 209 struct kmem_cache *root_cache)
794b1248
VD
210{
211 struct kmem_cache *s;
212 int err;
213
8eb8284b
DW
214 if (WARN_ON(useroffset + usersize > object_size))
215 useroffset = usersize = 0;
216
794b1248
VD
217 err = -ENOMEM;
218 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
219 if (!s)
220 goto out;
221
222 s->name = name;
613a5eb5 223 s->size = s->object_size = object_size;
794b1248
VD
224 s->align = align;
225 s->ctor = ctor;
8eb8284b
DW
226 s->useroffset = useroffset;
227 s->usersize = usersize;
794b1248 228
794b1248
VD
229 err = __kmem_cache_create(s, flags);
230 if (err)
231 goto out_free_cache;
232
233 s->refcount = 1;
234 list_add(&s->list, &slab_caches);
794b1248
VD
235out:
236 if (err)
237 return ERR_PTR(err);
238 return s;
239
240out_free_cache:
7c4da061 241 kmem_cache_free(kmem_cache, s);
794b1248
VD
242 goto out;
243}
45906855 244
f496990f
MR
245/**
246 * kmem_cache_create_usercopy - Create a cache with a region suitable
247 * for copying to userspace
77be4b13
SK
248 * @name: A string which is used in /proc/slabinfo to identify this cache.
249 * @size: The size of objects to be created in this cache.
250 * @align: The required alignment for the objects.
251 * @flags: SLAB flags
8eb8284b
DW
252 * @useroffset: Usercopy region offset
253 * @usersize: Usercopy region size
77be4b13
SK
254 * @ctor: A constructor for the objects.
255 *
77be4b13
SK
256 * Cannot be called within a interrupt, but can be interrupted.
257 * The @ctor is run when new pages are allocated by the cache.
258 *
259 * The flags are
260 *
261 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
262 * to catch references to uninitialised memory.
263 *
f496990f 264 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
265 * for buffer overruns.
266 *
267 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
268 * cacheline. This can be beneficial if you're counting cycles as closely
269 * as davem.
f496990f
MR
270 *
271 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 272 */
2633d7a0 273struct kmem_cache *
f4957d5b
AD
274kmem_cache_create_usercopy(const char *name,
275 unsigned int size, unsigned int align,
7bbdb81e
AD
276 slab_flags_t flags,
277 unsigned int useroffset, unsigned int usersize,
8eb8284b 278 void (*ctor)(void *))
77be4b13 279{
40911a79 280 struct kmem_cache *s = NULL;
3dec16ea 281 const char *cache_name;
3965fc36 282 int err;
039363f3 283
afe0c26d
VB
284#ifdef CONFIG_SLUB_DEBUG
285 /*
286 * If no slub_debug was enabled globally, the static key is not yet
287 * enabled by setup_slub_debug(). Enable it if the cache is being
288 * created with any of the debugging flags passed explicitly.
5cf909c5
OG
289 * It's also possible that this is the first cache created with
290 * SLAB_STORE_USER and we should init stack_depot for it.
afe0c26d
VB
291 */
292 if (flags & SLAB_DEBUG_FLAGS)
293 static_branch_enable(&slub_debug_enabled);
5cf909c5
OG
294 if (flags & SLAB_STORE_USER)
295 stack_depot_init();
afe0c26d
VB
296#endif
297
77be4b13 298 mutex_lock(&slab_mutex);
686d550d 299
794b1248 300 err = kmem_cache_sanity_check(name, size);
3aa24f51 301 if (err) {
3965fc36 302 goto out_unlock;
3aa24f51 303 }
686d550d 304
e70954fd
TG
305 /* Refuse requests with allocator specific flags */
306 if (flags & ~SLAB_FLAGS_PERMITTED) {
307 err = -EINVAL;
308 goto out_unlock;
309 }
310
d8843922
GC
311 /*
312 * Some allocators will constraint the set of valid flags to a subset
313 * of all flags. We expect them to define CACHE_CREATE_MASK in this
314 * case, and we'll just provide them with a sanitized version of the
315 * passed flags.
316 */
317 flags &= CACHE_CREATE_MASK;
686d550d 318
8eb8284b
DW
319 /* Fail closed on bad usersize of useroffset values. */
320 if (WARN_ON(!usersize && useroffset) ||
321 WARN_ON(size < usersize || size - usersize < useroffset))
322 usersize = useroffset = 0;
323
324 if (!usersize)
325 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 326 if (s)
3965fc36 327 goto out_unlock;
2633d7a0 328
3dec16ea 329 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
330 if (!cache_name) {
331 err = -ENOMEM;
332 goto out_unlock;
333 }
7c9adf5a 334
613a5eb5 335 s = create_cache(cache_name, size,
c9a77a79 336 calculate_alignment(flags, align, size),
9855609b 337 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
338 if (IS_ERR(s)) {
339 err = PTR_ERR(s);
3dec16ea 340 kfree_const(cache_name);
794b1248 341 }
3965fc36
VD
342
343out_unlock:
20cea968 344 mutex_unlock(&slab_mutex);
03afc0e2 345
ba3253c7 346 if (err) {
686d550d 347 if (flags & SLAB_PANIC)
4acaa7d5 348 panic("%s: Failed to create slab '%s'. Error %d\n",
349 __func__, name, err);
686d550d 350 else {
4acaa7d5 351 pr_warn("%s(%s) failed with error %d\n",
352 __func__, name, err);
686d550d
CL
353 dump_stack();
354 }
686d550d
CL
355 return NULL;
356 }
039363f3
CL
357 return s;
358}
8eb8284b
DW
359EXPORT_SYMBOL(kmem_cache_create_usercopy);
360
f496990f
MR
361/**
362 * kmem_cache_create - Create a cache.
363 * @name: A string which is used in /proc/slabinfo to identify this cache.
364 * @size: The size of objects to be created in this cache.
365 * @align: The required alignment for the objects.
366 * @flags: SLAB flags
367 * @ctor: A constructor for the objects.
368 *
369 * Cannot be called within a interrupt, but can be interrupted.
370 * The @ctor is run when new pages are allocated by the cache.
371 *
372 * The flags are
373 *
374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375 * to catch references to uninitialised memory.
376 *
377 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378 * for buffer overruns.
379 *
380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381 * cacheline. This can be beneficial if you're counting cycles as closely
382 * as davem.
383 *
384 * Return: a pointer to the cache on success, NULL on failure.
385 */
8eb8284b 386struct kmem_cache *
f4957d5b 387kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
388 slab_flags_t flags, void (*ctor)(void *))
389{
6d07d1cd 390 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
391 ctor);
392}
794b1248 393EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 394
0495e337
WL
395#ifdef SLAB_SUPPORTS_SYSFS
396/*
397 * For a given kmem_cache, kmem_cache_destroy() should only be called
398 * once or there will be a use-after-free problem. The actual deletion
399 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
400 * protection. So they are now done without holding those locks.
401 *
402 * Note that there will be a slight delay in the deletion of sysfs files
403 * if kmem_cache_release() is called indrectly from a work function.
404 */
405static void kmem_cache_release(struct kmem_cache *s)
406{
407 sysfs_slab_unlink(s);
408 sysfs_slab_release(s);
409}
410#else
411static void kmem_cache_release(struct kmem_cache *s)
412{
413 slab_kmem_cache_release(s);
414}
415#endif
416
657dc2f9 417static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 418{
657dc2f9
TH
419 LIST_HEAD(to_destroy);
420 struct kmem_cache *s, *s2;
d5b3cf71 421
657dc2f9 422 /*
5f0d5a3a 423 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 424 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 425 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
426 * while freeing the pages, so the kmem_caches should be freed only
427 * after the pending RCU operations are finished. As rcu_barrier()
428 * is a pretty slow operation, we batch all pending destructions
429 * asynchronously.
430 */
431 mutex_lock(&slab_mutex);
432 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
433 mutex_unlock(&slab_mutex);
d5b3cf71 434
657dc2f9
TH
435 if (list_empty(&to_destroy))
436 return;
437
438 rcu_barrier();
439
440 list_for_each_entry_safe(s, s2, &to_destroy, list) {
64dd6849 441 debugfs_slab_release(s);
d3fb45f3 442 kfence_shutdown_cache(s);
0495e337 443 kmem_cache_release(s);
657dc2f9 444 }
d5b3cf71
VD
445}
446
657dc2f9 447static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 448{
f9fa1d91
GT
449 /* free asan quarantined objects */
450 kasan_cache_shutdown(s);
451
657dc2f9
TH
452 if (__kmem_cache_shutdown(s) != 0)
453 return -EBUSY;
d5b3cf71 454
657dc2f9 455 list_del(&s->list);
d5b3cf71 456
5f0d5a3a 457 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
458 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
459 schedule_work(&slab_caches_to_rcu_destroy_work);
460 } else {
d3fb45f3 461 kfence_shutdown_cache(s);
64dd6849 462 debugfs_slab_release(s);
d5b3cf71 463 }
657dc2f9
TH
464
465 return 0;
d5b3cf71
VD
466}
467
41a21285
CL
468void slab_kmem_cache_release(struct kmem_cache *s)
469{
52b4b950 470 __kmem_cache_release(s);
3dec16ea 471 kfree_const(s->name);
41a21285
CL
472 kmem_cache_free(kmem_cache, s);
473}
474
945cf2b6
CL
475void kmem_cache_destroy(struct kmem_cache *s)
476{
0495e337 477 int refcnt;
d71608a8 478 bool rcu_set;
0495e337 479
bed0a9b5 480 if (unlikely(!s) || !kasan_check_byte(s))
3942d299
SS
481 return;
482
5a836bf6 483 cpus_read_lock();
945cf2b6 484 mutex_lock(&slab_mutex);
b8529907 485
d71608a8
FT
486 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
487
0495e337
WL
488 refcnt = --s->refcount;
489 if (refcnt)
b8529907
VD
490 goto out_unlock;
491
7302e91f
ME
492 WARN(shutdown_cache(s),
493 "%s %s: Slab cache still has objects when called from %pS",
494 __func__, s->name, (void *)_RET_IP_);
b8529907
VD
495out_unlock:
496 mutex_unlock(&slab_mutex);
5a836bf6 497 cpus_read_unlock();
d71608a8 498 if (!refcnt && !rcu_set)
0495e337 499 kmem_cache_release(s);
945cf2b6
CL
500}
501EXPORT_SYMBOL(kmem_cache_destroy);
502
03afc0e2
VD
503/**
504 * kmem_cache_shrink - Shrink a cache.
505 * @cachep: The cache to shrink.
506 *
507 * Releases as many slabs as possible for a cache.
508 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
509 *
510 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
511 */
512int kmem_cache_shrink(struct kmem_cache *cachep)
513{
514 int ret;
515
7e1fa93d 516
55834c59 517 kasan_cache_shrink(cachep);
c9fc5864 518 ret = __kmem_cache_shrink(cachep);
7e1fa93d 519
03afc0e2
VD
520 return ret;
521}
522EXPORT_SYMBOL(kmem_cache_shrink);
523
fda90124 524bool slab_is_available(void)
97d06609
CL
525{
526 return slab_state >= UP;
527}
b7454ad3 528
5bb1bb35 529#ifdef CONFIG_PRINTK
8e7f37f2
PM
530/**
531 * kmem_valid_obj - does the pointer reference a valid slab object?
532 * @object: pointer to query.
533 *
534 * Return: %true if the pointer is to a not-yet-freed object from
535 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
536 * is to an already-freed object, and %false otherwise.
537 */
538bool kmem_valid_obj(void *object)
539{
7213230a 540 struct folio *folio;
8e7f37f2
PM
541
542 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
543 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
544 return false;
7213230a
MWO
545 folio = virt_to_folio(object);
546 return folio_test_slab(folio);
8e7f37f2 547}
0d3dd2c8 548EXPORT_SYMBOL_GPL(kmem_valid_obj);
8e7f37f2 549
2dfe63e6
ME
550static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
551{
552 if (__kfence_obj_info(kpp, object, slab))
553 return;
554 __kmem_obj_info(kpp, object, slab);
555}
556
8e7f37f2
PM
557/**
558 * kmem_dump_obj - Print available slab provenance information
559 * @object: slab object for which to find provenance information.
560 *
561 * This function uses pr_cont(), so that the caller is expected to have
562 * printed out whatever preamble is appropriate. The provenance information
563 * depends on the type of object and on how much debugging is enabled.
564 * For a slab-cache object, the fact that it is a slab object is printed,
565 * and, if available, the slab name, return address, and stack trace from
e548eaa1 566 * the allocation and last free path of that object.
8e7f37f2
PM
567 *
568 * This function will splat if passed a pointer to a non-slab object.
569 * If you are not sure what type of object you have, you should instead
570 * use mem_dump_obj().
571 */
572void kmem_dump_obj(void *object)
573{
574 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
575 int i;
7213230a 576 struct slab *slab;
8e7f37f2
PM
577 unsigned long ptroffset;
578 struct kmem_obj_info kp = { };
579
580 if (WARN_ON_ONCE(!virt_addr_valid(object)))
581 return;
7213230a
MWO
582 slab = virt_to_slab(object);
583 if (WARN_ON_ONCE(!slab)) {
8e7f37f2
PM
584 pr_cont(" non-slab memory.\n");
585 return;
586 }
7213230a 587 kmem_obj_info(&kp, object, slab);
8e7f37f2
PM
588 if (kp.kp_slab_cache)
589 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
590 else
591 pr_cont(" slab%s", cp);
2dfe63e6
ME
592 if (is_kfence_address(object))
593 pr_cont(" (kfence)");
8e7f37f2
PM
594 if (kp.kp_objp)
595 pr_cont(" start %px", kp.kp_objp);
596 if (kp.kp_data_offset)
597 pr_cont(" data offset %lu", kp.kp_data_offset);
598 if (kp.kp_objp) {
599 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
600 pr_cont(" pointer offset %lu", ptroffset);
601 }
602 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
603 pr_cont(" size %u", kp.kp_slab_cache->usersize);
604 if (kp.kp_ret)
605 pr_cont(" allocated at %pS\n", kp.kp_ret);
606 else
607 pr_cont("\n");
608 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
609 if (!kp.kp_stack[i])
610 break;
611 pr_info(" %pS\n", kp.kp_stack[i]);
612 }
e548eaa1
MS
613
614 if (kp.kp_free_stack[0])
615 pr_cont(" Free path:\n");
616
617 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
618 if (!kp.kp_free_stack[i])
619 break;
620 pr_info(" %pS\n", kp.kp_free_stack[i]);
621 }
622
8e7f37f2 623}
0d3dd2c8 624EXPORT_SYMBOL_GPL(kmem_dump_obj);
5bb1bb35 625#endif
8e7f37f2 626
45530c44
CL
627#ifndef CONFIG_SLOB
628/* Create a cache during boot when no slab services are available yet */
361d575e
AD
629void __init create_boot_cache(struct kmem_cache *s, const char *name,
630 unsigned int size, slab_flags_t flags,
631 unsigned int useroffset, unsigned int usersize)
45530c44
CL
632{
633 int err;
59bb4798 634 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
635
636 s->name = name;
637 s->size = s->object_size = size;
59bb4798
VB
638
639 /*
640 * For power of two sizes, guarantee natural alignment for kmalloc
641 * caches, regardless of SL*B debugging options.
642 */
643 if (is_power_of_2(size))
644 align = max(align, size);
645 s->align = calculate_alignment(flags, align, size);
646
8eb8284b
DW
647 s->useroffset = useroffset;
648 s->usersize = usersize;
f7ce3190 649
45530c44
CL
650 err = __kmem_cache_create(s, flags);
651
652 if (err)
361d575e 653 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
654 name, size, err);
655
656 s->refcount = -1; /* Exempt from merging for now */
657}
658
55de8b9c
AD
659struct kmem_cache *__init create_kmalloc_cache(const char *name,
660 unsigned int size, slab_flags_t flags,
661 unsigned int useroffset, unsigned int usersize)
45530c44
CL
662{
663 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
664
665 if (!s)
666 panic("Out of memory when creating slab %s\n", name);
667
6c0c21ad 668 create_boot_cache(s, name, size, flags, useroffset, usersize);
92850134 669 kasan_cache_create_kmalloc(s);
45530c44
CL
670 list_add(&s->list, &slab_caches);
671 s->refcount = 1;
672 return s;
673}
674
cc252eae 675struct kmem_cache *
a07057dc
AB
676kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
677{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
678EXPORT_SYMBOL(kmalloc_caches);
679
2c59dd65
CL
680/*
681 * Conversion table for small slabs sizes / 8 to the index in the
682 * kmalloc array. This is necessary for slabs < 192 since we have non power
683 * of two cache sizes there. The size of larger slabs can be determined using
684 * fls.
685 */
d5f86655 686static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
687 3, /* 8 */
688 4, /* 16 */
689 5, /* 24 */
690 5, /* 32 */
691 6, /* 40 */
692 6, /* 48 */
693 6, /* 56 */
694 6, /* 64 */
695 1, /* 72 */
696 1, /* 80 */
697 1, /* 88 */
698 1, /* 96 */
699 7, /* 104 */
700 7, /* 112 */
701 7, /* 120 */
702 7, /* 128 */
703 2, /* 136 */
704 2, /* 144 */
705 2, /* 152 */
706 2, /* 160 */
707 2, /* 168 */
708 2, /* 176 */
709 2, /* 184 */
710 2 /* 192 */
711};
712
ac914d08 713static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
714{
715 return (bytes - 1) / 8;
716}
717
718/*
719 * Find the kmem_cache structure that serves a given size of
720 * allocation
721 */
722struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
723{
d5f86655 724 unsigned int index;
2c59dd65
CL
725
726 if (size <= 192) {
727 if (!size)
728 return ZERO_SIZE_PTR;
729
730 index = size_index[size_index_elem(size)];
61448479 731 } else {
221d7da6 732 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 733 return NULL;
2c59dd65 734 index = fls(size - 1);
61448479 735 }
2c59dd65 736
cc252eae 737 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
738}
739
cb5d9fb3 740#ifdef CONFIG_ZONE_DMA
494c1dfe
WL
741#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
742#else
743#define KMALLOC_DMA_NAME(sz)
744#endif
745
746#ifdef CONFIG_MEMCG_KMEM
747#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
cb5d9fb3 748#else
494c1dfe
WL
749#define KMALLOC_CGROUP_NAME(sz)
750#endif
751
cb5d9fb3
PL
752#define INIT_KMALLOC_INFO(__size, __short_size) \
753{ \
754 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
755 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
494c1dfe
WL
756 KMALLOC_CGROUP_NAME(__short_size) \
757 KMALLOC_DMA_NAME(__short_size) \
cb5d9fb3
PL
758 .size = __size, \
759}
cb5d9fb3 760
4066c33d
GG
761/*
762 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
588c7fa0
HY
763 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
764 * kmalloc-32M.
4066c33d 765 */
af3b5f87 766const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
767 INIT_KMALLOC_INFO(0, 0),
768 INIT_KMALLOC_INFO(96, 96),
769 INIT_KMALLOC_INFO(192, 192),
770 INIT_KMALLOC_INFO(8, 8),
771 INIT_KMALLOC_INFO(16, 16),
772 INIT_KMALLOC_INFO(32, 32),
773 INIT_KMALLOC_INFO(64, 64),
774 INIT_KMALLOC_INFO(128, 128),
775 INIT_KMALLOC_INFO(256, 256),
776 INIT_KMALLOC_INFO(512, 512),
777 INIT_KMALLOC_INFO(1024, 1k),
778 INIT_KMALLOC_INFO(2048, 2k),
779 INIT_KMALLOC_INFO(4096, 4k),
780 INIT_KMALLOC_INFO(8192, 8k),
781 INIT_KMALLOC_INFO(16384, 16k),
782 INIT_KMALLOC_INFO(32768, 32k),
783 INIT_KMALLOC_INFO(65536, 64k),
784 INIT_KMALLOC_INFO(131072, 128k),
785 INIT_KMALLOC_INFO(262144, 256k),
786 INIT_KMALLOC_INFO(524288, 512k),
787 INIT_KMALLOC_INFO(1048576, 1M),
788 INIT_KMALLOC_INFO(2097152, 2M),
789 INIT_KMALLOC_INFO(4194304, 4M),
790 INIT_KMALLOC_INFO(8388608, 8M),
791 INIT_KMALLOC_INFO(16777216, 16M),
588c7fa0 792 INIT_KMALLOC_INFO(33554432, 32M)
4066c33d
GG
793};
794
f97d5f63 795/*
34cc6990
DS
796 * Patch up the size_index table if we have strange large alignment
797 * requirements for the kmalloc array. This is only the case for
798 * MIPS it seems. The standard arches will not generate any code here.
799 *
800 * Largest permitted alignment is 256 bytes due to the way we
801 * handle the index determination for the smaller caches.
802 *
803 * Make sure that nothing crazy happens if someone starts tinkering
804 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 805 */
34cc6990 806void __init setup_kmalloc_cache_index_table(void)
f97d5f63 807{
ac914d08 808 unsigned int i;
f97d5f63 809
2c59dd65 810 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
7d6b6cc3 811 !is_power_of_2(KMALLOC_MIN_SIZE));
2c59dd65
CL
812
813 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 814 unsigned int elem = size_index_elem(i);
2c59dd65
CL
815
816 if (elem >= ARRAY_SIZE(size_index))
817 break;
818 size_index[elem] = KMALLOC_SHIFT_LOW;
819 }
820
821 if (KMALLOC_MIN_SIZE >= 64) {
822 /*
0b8f0d87 823 * The 96 byte sized cache is not used if the alignment
2c59dd65
CL
824 * is 64 byte.
825 */
826 for (i = 64 + 8; i <= 96; i += 8)
827 size_index[size_index_elem(i)] = 7;
828
829 }
830
831 if (KMALLOC_MIN_SIZE >= 128) {
832 /*
833 * The 192 byte sized cache is not used if the alignment
834 * is 128 byte. Redirect kmalloc to use the 256 byte cache
835 * instead.
836 */
837 for (i = 128 + 8; i <= 192; i += 8)
838 size_index[size_index_elem(i)] = 8;
839 }
34cc6990
DS
840}
841
1291523f 842static void __init
13657d0a 843new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 844{
494c1dfe 845 if (type == KMALLOC_RECLAIM) {
1291523f 846 flags |= SLAB_RECLAIM_ACCOUNT;
494c1dfe 847 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
17c17367 848 if (mem_cgroup_kmem_disabled()) {
494c1dfe
WL
849 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
850 return;
851 }
852 flags |= SLAB_ACCOUNT;
33647783
OK
853 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
854 flags |= SLAB_CACHE_DMA;
494c1dfe 855 }
1291523f 856
cb5d9fb3
PL
857 kmalloc_caches[type][idx] = create_kmalloc_cache(
858 kmalloc_info[idx].name[type],
6c0c21ad
DW
859 kmalloc_info[idx].size, flags, 0,
860 kmalloc_info[idx].size);
13e680fb
WL
861
862 /*
863 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
864 * KMALLOC_NORMAL caches.
865 */
866 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
867 kmalloc_caches[type][idx]->refcount = -1;
a9730fca
CL
868}
869
34cc6990
DS
870/*
871 * Create the kmalloc array. Some of the regular kmalloc arrays
872 * may already have been created because they were needed to
873 * enable allocations for slab creation.
874 */
d50112ed 875void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 876{
13657d0a
PL
877 int i;
878 enum kmalloc_cache_type type;
34cc6990 879
494c1dfe
WL
880 /*
881 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
882 */
33647783 883 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
1291523f
VB
884 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
885 if (!kmalloc_caches[type][i])
886 new_kmalloc_cache(i, type, flags);
f97d5f63 887
1291523f
VB
888 /*
889 * Caches that are not of the two-to-the-power-of size.
890 * These have to be created immediately after the
891 * earlier power of two caches
892 */
893 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
894 !kmalloc_caches[type][1])
895 new_kmalloc_cache(1, type, flags);
896 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
897 !kmalloc_caches[type][2])
898 new_kmalloc_cache(2, type, flags);
899 }
8a965b3b
CL
900 }
901
f97d5f63
CL
902 /* Kmalloc array is now usable */
903 slab_state = UP;
f97d5f63 904}
45530c44
CL
905#endif /* !CONFIG_SLOB */
906
44405099
LL
907gfp_t kmalloc_fix_flags(gfp_t flags)
908{
909 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
910
911 flags &= ~GFP_SLAB_BUG_MASK;
912 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
913 invalid_mask, &invalid_mask, flags, &flags);
914 dump_stack();
915
916 return flags;
917}
918
cea371f4
VD
919/*
920 * To avoid unnecessary overhead, we pass through large allocation requests
921 * directly to the page allocator. We use __GFP_COMP, because we will need to
922 * know the allocation order to free the pages properly in kfree.
923 */
52383431
VD
924void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
925{
6a486c0a 926 void *ret = NULL;
52383431
VD
927 struct page *page;
928
44405099
LL
929 if (unlikely(flags & GFP_SLAB_BUG_MASK))
930 flags = kmalloc_fix_flags(flags);
931
52383431 932 flags |= __GFP_COMP;
4949148a 933 page = alloc_pages(flags, order);
6a486c0a
VB
934 if (likely(page)) {
935 ret = page_address(page);
96403bfe
MS
936 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
937 PAGE_SIZE << order);
6a486c0a 938 }
0116523c 939 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 940 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 941 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
942 return ret;
943}
944EXPORT_SYMBOL(kmalloc_order);
945
f1b6eb6e
CL
946#ifdef CONFIG_TRACING
947void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
948{
949 void *ret = kmalloc_order(size, flags, order);
b347aa7b 950 trace_kmalloc(_RET_IP_, ret, NULL, size, PAGE_SIZE << order, flags);
f1b6eb6e
CL
951 return ret;
952}
953EXPORT_SYMBOL(kmalloc_order_trace);
954#endif
45530c44 955
7c00fce9
TG
956#ifdef CONFIG_SLAB_FREELIST_RANDOM
957/* Randomize a generic freelist */
958static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 959 unsigned int count)
7c00fce9 960{
7c00fce9 961 unsigned int rand;
302d55d5 962 unsigned int i;
7c00fce9
TG
963
964 for (i = 0; i < count; i++)
965 list[i] = i;
966
967 /* Fisher-Yates shuffle */
968 for (i = count - 1; i > 0; i--) {
969 rand = prandom_u32_state(state);
970 rand %= (i + 1);
971 swap(list[i], list[rand]);
972 }
973}
974
975/* Create a random sequence per cache */
976int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
977 gfp_t gfp)
978{
979 struct rnd_state state;
980
981 if (count < 2 || cachep->random_seq)
982 return 0;
983
984 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
985 if (!cachep->random_seq)
986 return -ENOMEM;
987
988 /* Get best entropy at this stage of boot */
989 prandom_seed_state(&state, get_random_long());
990
991 freelist_randomize(&state, cachep->random_seq, count);
992 return 0;
993}
994
995/* Destroy the per-cache random freelist sequence */
996void cache_random_seq_destroy(struct kmem_cache *cachep)
997{
998 kfree(cachep->random_seq);
999 cachep->random_seq = NULL;
1000}
1001#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1002
5b365771 1003#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1004#ifdef CONFIG_SLAB
0825a6f9 1005#define SLABINFO_RIGHTS (0600)
e9b4db2b 1006#else
0825a6f9 1007#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1008#endif
1009
b047501c 1010static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1011{
1012 /*
1013 * Output format version, so at least we can change it
1014 * without _too_ many complaints.
1015 */
1016#ifdef CONFIG_DEBUG_SLAB
1017 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1018#else
1019 seq_puts(m, "slabinfo - version: 2.1\n");
1020#endif
756a025f 1021 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1022 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1023 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1024#ifdef CONFIG_DEBUG_SLAB
756a025f 1025 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1026 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1027#endif
1028 seq_putc(m, '\n');
1029}
1030
c29b5b3d 1031static void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1032{
b7454ad3 1033 mutex_lock(&slab_mutex);
c7094406 1034 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1035}
1036
c29b5b3d 1037static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1038{
c7094406 1039 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1040}
1041
c29b5b3d 1042static void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1043{
1044 mutex_unlock(&slab_mutex);
1045}
1046
b047501c 1047static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1048{
0d7561c6
GC
1049 struct slabinfo sinfo;
1050
1051 memset(&sinfo, 0, sizeof(sinfo));
1052 get_slabinfo(s, &sinfo);
1053
1054 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1055 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1056 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1057
1058 seq_printf(m, " : tunables %4u %4u %4u",
1059 sinfo.limit, sinfo.batchcount, sinfo.shared);
1060 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1061 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1062 slabinfo_show_stats(m, s);
1063 seq_putc(m, '\n');
b7454ad3
GC
1064}
1065
1df3b26f 1066static int slab_show(struct seq_file *m, void *p)
749c5415 1067{
c7094406 1068 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1069
c7094406 1070 if (p == slab_caches.next)
1df3b26f 1071 print_slabinfo_header(m);
10befea9 1072 cache_show(s, m);
b047501c
VD
1073 return 0;
1074}
1075
852d8be0
YS
1076void dump_unreclaimable_slab(void)
1077{
7714304f 1078 struct kmem_cache *s;
852d8be0
YS
1079 struct slabinfo sinfo;
1080
1081 /*
1082 * Here acquiring slab_mutex is risky since we don't prefer to get
1083 * sleep in oom path. But, without mutex hold, it may introduce a
1084 * risk of crash.
1085 * Use mutex_trylock to protect the list traverse, dump nothing
1086 * without acquiring the mutex.
1087 */
1088 if (!mutex_trylock(&slab_mutex)) {
1089 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1090 return;
1091 }
1092
1093 pr_info("Unreclaimable slab info:\n");
1094 pr_info("Name Used Total\n");
1095
7714304f 1096 list_for_each_entry(s, &slab_caches, list) {
10befea9 1097 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1098 continue;
1099
1100 get_slabinfo(s, &sinfo);
1101
1102 if (sinfo.num_objs > 0)
10befea9 1103 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1104 (sinfo.active_objs * s->size) / 1024,
1105 (sinfo.num_objs * s->size) / 1024);
1106 }
1107 mutex_unlock(&slab_mutex);
1108}
1109
b7454ad3
GC
1110/*
1111 * slabinfo_op - iterator that generates /proc/slabinfo
1112 *
1113 * Output layout:
1114 * cache-name
1115 * num-active-objs
1116 * total-objs
1117 * object size
1118 * num-active-slabs
1119 * total-slabs
1120 * num-pages-per-slab
1121 * + further values on SMP and with statistics enabled
1122 */
1123static const struct seq_operations slabinfo_op = {
1df3b26f 1124 .start = slab_start,
276a2439
WL
1125 .next = slab_next,
1126 .stop = slab_stop,
1df3b26f 1127 .show = slab_show,
b7454ad3
GC
1128};
1129
1130static int slabinfo_open(struct inode *inode, struct file *file)
1131{
1132 return seq_open(file, &slabinfo_op);
1133}
1134
97a32539 1135static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1136 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1137 .proc_open = slabinfo_open,
1138 .proc_read = seq_read,
1139 .proc_write = slabinfo_write,
1140 .proc_lseek = seq_lseek,
1141 .proc_release = seq_release,
b7454ad3
GC
1142};
1143
1144static int __init slab_proc_init(void)
1145{
97a32539 1146 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1147 return 0;
1148}
1149module_init(slab_proc_init);
fcf8a1e4 1150
5b365771 1151#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c 1152
9ed9cac1
KC
1153static __always_inline __realloc_size(2) void *
1154__do_krealloc(const void *p, size_t new_size, gfp_t flags)
928cec9c
AR
1155{
1156 void *ret;
fa9ba3aa 1157 size_t ks;
928cec9c 1158
d12d9ad8
AK
1159 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1160 if (likely(!ZERO_OR_NULL_PTR(p))) {
1161 if (!kasan_check_byte(p))
1162 return NULL;
1163 ks = kfence_ksize(p) ?: __ksize(p);
1164 } else
1165 ks = 0;
928cec9c 1166
d12d9ad8 1167 /* If the object still fits, repoison it precisely. */
0316bec2 1168 if (ks >= new_size) {
0116523c 1169 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1170 return (void *)p;
0316bec2 1171 }
928cec9c
AR
1172
1173 ret = kmalloc_track_caller(new_size, flags);
d12d9ad8
AK
1174 if (ret && p) {
1175 /* Disable KASAN checks as the object's redzone is accessed. */
1176 kasan_disable_current();
1177 memcpy(ret, kasan_reset_tag(p), ks);
1178 kasan_enable_current();
1179 }
928cec9c
AR
1180
1181 return ret;
1182}
1183
928cec9c
AR
1184/**
1185 * krealloc - reallocate memory. The contents will remain unchanged.
1186 * @p: object to reallocate memory for.
1187 * @new_size: how many bytes of memory are required.
1188 * @flags: the type of memory to allocate.
1189 *
1190 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1191 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1192 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1193 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1194 *
1195 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1196 */
1197void *krealloc(const void *p, size_t new_size, gfp_t flags)
1198{
1199 void *ret;
1200
1201 if (unlikely(!new_size)) {
1202 kfree(p);
1203 return ZERO_SIZE_PTR;
1204 }
1205
1206 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1207 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1208 kfree(p);
1209
1210 return ret;
1211}
1212EXPORT_SYMBOL(krealloc);
1213
1214/**
453431a5 1215 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1216 * @p: object to free memory of
1217 *
1218 * The memory of the object @p points to is zeroed before freed.
453431a5 1219 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1220 *
1221 * Note: this function zeroes the whole allocated buffer which can be a good
1222 * deal bigger than the requested buffer size passed to kmalloc(). So be
1223 * careful when using this function in performance sensitive code.
1224 */
453431a5 1225void kfree_sensitive(const void *p)
928cec9c
AR
1226{
1227 size_t ks;
1228 void *mem = (void *)p;
1229
928cec9c 1230 ks = ksize(mem);
fa9ba3aa
WK
1231 if (ks)
1232 memzero_explicit(mem, ks);
928cec9c
AR
1233 kfree(mem);
1234}
453431a5 1235EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1236
10d1f8cb
ME
1237/**
1238 * ksize - get the actual amount of memory allocated for a given object
1239 * @objp: Pointer to the object
1240 *
1241 * kmalloc may internally round up allocations and return more memory
1242 * than requested. ksize() can be used to determine the actual amount of
1243 * memory allocated. The caller may use this additional memory, even though
1244 * a smaller amount of memory was initially specified with the kmalloc call.
1245 * The caller must guarantee that objp points to a valid object previously
1246 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1247 * must not be freed during the duration of the call.
1248 *
1249 * Return: size of the actual memory used by @objp in bytes
1250 */
1251size_t ksize(const void *objp)
1252{
0d4ca4c9
ME
1253 size_t size;
1254
0d4ca4c9 1255 /*
611806b4
AK
1256 * We need to first check that the pointer to the object is valid, and
1257 * only then unpoison the memory. The report printed from ksize() is
1258 * more useful, then when it's printed later when the behaviour could
1259 * be undefined due to a potential use-after-free or double-free.
0d4ca4c9 1260 *
611806b4
AK
1261 * We use kasan_check_byte(), which is supported for the hardware
1262 * tag-based KASAN mode, unlike kasan_check_read/write().
1263 *
1264 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1265 * ksize() writing to and potentially corrupting the memory region.
1266 *
1267 * We want to perform the check before __ksize(), to avoid potentially
1268 * crashing in __ksize() due to accessing invalid metadata.
1269 */
611806b4 1270 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1271 return 0;
1272
d3fb45f3 1273 size = kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1274 /*
1275 * We assume that ksize callers could use whole allocated area,
1276 * so we need to unpoison this area.
1277 */
cebd0eb2 1278 kasan_unpoison_range(objp, size);
10d1f8cb
ME
1279 return size;
1280}
1281EXPORT_SYMBOL(ksize);
1282
928cec9c
AR
1283/* Tracepoints definitions. */
1284EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1285EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1286EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1287EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1288EXPORT_TRACEPOINT_SYMBOL(kfree);
1289EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1290
1291int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1292{
1293 if (__should_failslab(s, gfpflags))
1294 return -ENOMEM;
1295 return 0;
1296}
1297ALLOW_ERROR_INJECTION(should_failslab, ERRNO);