slab: kmalloc_size_roundup() must not return 0 for non-zero size
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3 19#include <linux/seq_file.h>
963e84b0 20#include <linux/dma-mapping.h>
b035f5a6 21#include <linux/swiotlb.h>
b7454ad3 22#include <linux/proc_fs.h>
fcf8a1e4 23#include <linux/debugfs.h>
e86f8b09 24#include <linux/kasan.h>
039363f3
CL
25#include <asm/cacheflush.h>
26#include <asm/tlbflush.h>
27#include <asm/page.h>
2633d7a0 28#include <linux/memcontrol.h>
5cf909c5 29#include <linux/stackdepot.h>
928cec9c 30
44405099 31#include "internal.h"
97d06609
CL
32#include "slab.h"
33
b347aa7b
VA
34#define CREATE_TRACE_POINTS
35#include <trace/events/kmem.h>
36
97d06609 37enum slab_state slab_state;
18004c5d
CL
38LIST_HEAD(slab_caches);
39DEFINE_MUTEX(slab_mutex);
9b030cb8 40struct kmem_cache *kmem_cache;
97d06609 41
657dc2f9
TH
42static LIST_HEAD(slab_caches_to_rcu_destroy);
43static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
44static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
45 slab_caches_to_rcu_destroy_workfn);
46
423c929c
JK
47/*
48 * Set of flags that will prevent slab merging
49 */
50#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 51 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
d0bf7d57 52 SLAB_FAILSLAB | SLAB_NO_MERGE | kasan_never_merge())
423c929c 53
230e9fc2 54#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 55 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
56
57/*
58 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 59 */
7660a6fd 60static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
61
62static int __init setup_slab_nomerge(char *str)
63{
7660a6fd 64 slab_nomerge = true;
423c929c
JK
65 return 1;
66}
67
82edd9d5
RA
68static int __init setup_slab_merge(char *str)
69{
70 slab_nomerge = false;
71 return 1;
72}
73
423c929c
JK
74#ifdef CONFIG_SLUB
75__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82edd9d5 76__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
423c929c
JK
77#endif
78
79__setup("slab_nomerge", setup_slab_nomerge);
82edd9d5 80__setup("slab_merge", setup_slab_merge);
423c929c 81
07f361b2
JK
82/*
83 * Determine the size of a slab object
84 */
85unsigned int kmem_cache_size(struct kmem_cache *s)
86{
87 return s->object_size;
88}
89EXPORT_SYMBOL(kmem_cache_size);
90
77be4b13 91#ifdef CONFIG_DEBUG_VM
f4957d5b 92static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 93{
74c1d3e0 94 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
77be4b13
SK
95 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
96 return -EINVAL;
039363f3 97 }
b920536a 98
20cea968 99 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
100 return 0;
101}
102#else
f4957d5b 103static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
104{
105 return 0;
106}
20cea968
CL
107#endif
108
692ae74a
BL
109/*
110 * Figure out what the alignment of the objects will be given a set of
111 * flags, a user specified alignment and the size of the objects.
112 */
f4957d5b
AD
113static unsigned int calculate_alignment(slab_flags_t flags,
114 unsigned int align, unsigned int size)
692ae74a
BL
115{
116 /*
117 * If the user wants hardware cache aligned objects then follow that
118 * suggestion if the object is sufficiently large.
119 *
120 * The hardware cache alignment cannot override the specified
121 * alignment though. If that is greater then use it.
122 */
123 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 124 unsigned int ralign;
692ae74a
BL
125
126 ralign = cache_line_size();
127 while (size <= ralign / 2)
128 ralign /= 2;
129 align = max(align, ralign);
130 }
131
d949a815 132 align = max(align, arch_slab_minalign());
692ae74a
BL
133
134 return ALIGN(align, sizeof(void *));
135}
136
423c929c
JK
137/*
138 * Find a mergeable slab cache
139 */
140int slab_unmergeable(struct kmem_cache *s)
141{
142 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
143 return 1;
144
423c929c
JK
145 if (s->ctor)
146 return 1;
147
346907ce 148#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
149 if (s->usersize)
150 return 1;
346907ce 151#endif
8eb8284b 152
423c929c
JK
153 /*
154 * We may have set a slab to be unmergeable during bootstrap.
155 */
156 if (s->refcount < 0)
157 return 1;
158
159 return 0;
160}
161
f4957d5b 162struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 163 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
164{
165 struct kmem_cache *s;
166
c6e28895 167 if (slab_nomerge)
423c929c
JK
168 return NULL;
169
170 if (ctor)
171 return NULL;
172
173 size = ALIGN(size, sizeof(void *));
174 align = calculate_alignment(flags, align, size);
175 size = ALIGN(size, align);
37540008 176 flags = kmem_cache_flags(size, flags, name);
423c929c 177
c6e28895
GM
178 if (flags & SLAB_NEVER_MERGE)
179 return NULL;
180
c7094406 181 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
182 if (slab_unmergeable(s))
183 continue;
184
185 if (size > s->size)
186 continue;
187
188 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
189 continue;
190 /*
191 * Check if alignment is compatible.
192 * Courtesy of Adrian Drzewiecki
193 */
194 if ((s->size & ~(align - 1)) != s->size)
195 continue;
196
197 if (s->size - size >= sizeof(void *))
198 continue;
199
95069ac8
JK
200 if (IS_ENABLED(CONFIG_SLAB) && align &&
201 (align > s->align || s->align % align))
202 continue;
203
423c929c
JK
204 return s;
205 }
206 return NULL;
207}
208
c9a77a79 209static struct kmem_cache *create_cache(const char *name,
613a5eb5 210 unsigned int object_size, unsigned int align,
7bbdb81e
AD
211 slab_flags_t flags, unsigned int useroffset,
212 unsigned int usersize, void (*ctor)(void *),
9855609b 213 struct kmem_cache *root_cache)
794b1248
VD
214{
215 struct kmem_cache *s;
216 int err;
217
8eb8284b
DW
218 if (WARN_ON(useroffset + usersize > object_size))
219 useroffset = usersize = 0;
220
794b1248
VD
221 err = -ENOMEM;
222 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
223 if (!s)
224 goto out;
225
226 s->name = name;
613a5eb5 227 s->size = s->object_size = object_size;
794b1248
VD
228 s->align = align;
229 s->ctor = ctor;
346907ce 230#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
231 s->useroffset = useroffset;
232 s->usersize = usersize;
346907ce 233#endif
794b1248 234
794b1248
VD
235 err = __kmem_cache_create(s, flags);
236 if (err)
237 goto out_free_cache;
238
239 s->refcount = 1;
240 list_add(&s->list, &slab_caches);
794b1248
VD
241 return s;
242
243out_free_cache:
7c4da061 244 kmem_cache_free(kmem_cache, s);
b9dad156
ZL
245out:
246 return ERR_PTR(err);
794b1248 247}
45906855 248
f496990f
MR
249/**
250 * kmem_cache_create_usercopy - Create a cache with a region suitable
251 * for copying to userspace
77be4b13
SK
252 * @name: A string which is used in /proc/slabinfo to identify this cache.
253 * @size: The size of objects to be created in this cache.
254 * @align: The required alignment for the objects.
255 * @flags: SLAB flags
8eb8284b
DW
256 * @useroffset: Usercopy region offset
257 * @usersize: Usercopy region size
77be4b13
SK
258 * @ctor: A constructor for the objects.
259 *
77be4b13
SK
260 * Cannot be called within a interrupt, but can be interrupted.
261 * The @ctor is run when new pages are allocated by the cache.
262 *
263 * The flags are
264 *
265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
266 * to catch references to uninitialised memory.
267 *
f496990f 268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
269 * for buffer overruns.
270 *
271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
272 * cacheline. This can be beneficial if you're counting cycles as closely
273 * as davem.
f496990f
MR
274 *
275 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 276 */
2633d7a0 277struct kmem_cache *
f4957d5b
AD
278kmem_cache_create_usercopy(const char *name,
279 unsigned int size, unsigned int align,
7bbdb81e
AD
280 slab_flags_t flags,
281 unsigned int useroffset, unsigned int usersize,
8eb8284b 282 void (*ctor)(void *))
77be4b13 283{
40911a79 284 struct kmem_cache *s = NULL;
3dec16ea 285 const char *cache_name;
3965fc36 286 int err;
039363f3 287
afe0c26d
VB
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * If no slub_debug was enabled globally, the static key is not yet
291 * enabled by setup_slub_debug(). Enable it if the cache is being
292 * created with any of the debugging flags passed explicitly.
5cf909c5
OG
293 * It's also possible that this is the first cache created with
294 * SLAB_STORE_USER and we should init stack_depot for it.
afe0c26d
VB
295 */
296 if (flags & SLAB_DEBUG_FLAGS)
297 static_branch_enable(&slub_debug_enabled);
5cf909c5
OG
298 if (flags & SLAB_STORE_USER)
299 stack_depot_init();
afe0c26d
VB
300#endif
301
77be4b13 302 mutex_lock(&slab_mutex);
686d550d 303
794b1248 304 err = kmem_cache_sanity_check(name, size);
3aa24f51 305 if (err) {
3965fc36 306 goto out_unlock;
3aa24f51 307 }
686d550d 308
e70954fd
TG
309 /* Refuse requests with allocator specific flags */
310 if (flags & ~SLAB_FLAGS_PERMITTED) {
311 err = -EINVAL;
312 goto out_unlock;
313 }
314
d8843922
GC
315 /*
316 * Some allocators will constraint the set of valid flags to a subset
317 * of all flags. We expect them to define CACHE_CREATE_MASK in this
318 * case, and we'll just provide them with a sanitized version of the
319 * passed flags.
320 */
321 flags &= CACHE_CREATE_MASK;
686d550d 322
8eb8284b 323 /* Fail closed on bad usersize of useroffset values. */
346907ce
VB
324 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
325 WARN_ON(!usersize && useroffset) ||
8eb8284b
DW
326 WARN_ON(size < usersize || size - usersize < useroffset))
327 usersize = useroffset = 0;
328
329 if (!usersize)
330 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 331 if (s)
3965fc36 332 goto out_unlock;
2633d7a0 333
3dec16ea 334 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
335 if (!cache_name) {
336 err = -ENOMEM;
337 goto out_unlock;
338 }
7c9adf5a 339
613a5eb5 340 s = create_cache(cache_name, size,
c9a77a79 341 calculate_alignment(flags, align, size),
9855609b 342 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
343 if (IS_ERR(s)) {
344 err = PTR_ERR(s);
3dec16ea 345 kfree_const(cache_name);
794b1248 346 }
3965fc36
VD
347
348out_unlock:
20cea968 349 mutex_unlock(&slab_mutex);
03afc0e2 350
ba3253c7 351 if (err) {
686d550d 352 if (flags & SLAB_PANIC)
4acaa7d5 353 panic("%s: Failed to create slab '%s'. Error %d\n",
354 __func__, name, err);
686d550d 355 else {
4acaa7d5 356 pr_warn("%s(%s) failed with error %d\n",
357 __func__, name, err);
686d550d
CL
358 dump_stack();
359 }
686d550d
CL
360 return NULL;
361 }
039363f3
CL
362 return s;
363}
8eb8284b
DW
364EXPORT_SYMBOL(kmem_cache_create_usercopy);
365
f496990f
MR
366/**
367 * kmem_cache_create - Create a cache.
368 * @name: A string which is used in /proc/slabinfo to identify this cache.
369 * @size: The size of objects to be created in this cache.
370 * @align: The required alignment for the objects.
371 * @flags: SLAB flags
372 * @ctor: A constructor for the objects.
373 *
374 * Cannot be called within a interrupt, but can be interrupted.
375 * The @ctor is run when new pages are allocated by the cache.
376 *
377 * The flags are
378 *
379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
380 * to catch references to uninitialised memory.
381 *
382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
383 * for buffer overruns.
384 *
385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
386 * cacheline. This can be beneficial if you're counting cycles as closely
387 * as davem.
388 *
389 * Return: a pointer to the cache on success, NULL on failure.
390 */
8eb8284b 391struct kmem_cache *
f4957d5b 392kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
393 slab_flags_t flags, void (*ctor)(void *))
394{
6d07d1cd 395 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
396 ctor);
397}
794b1248 398EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 399
0495e337
WL
400#ifdef SLAB_SUPPORTS_SYSFS
401/*
402 * For a given kmem_cache, kmem_cache_destroy() should only be called
403 * once or there will be a use-after-free problem. The actual deletion
404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
405 * protection. So they are now done without holding those locks.
406 *
407 * Note that there will be a slight delay in the deletion of sysfs files
408 * if kmem_cache_release() is called indrectly from a work function.
409 */
410static void kmem_cache_release(struct kmem_cache *s)
411{
412 sysfs_slab_unlink(s);
413 sysfs_slab_release(s);
414}
415#else
416static void kmem_cache_release(struct kmem_cache *s)
417{
418 slab_kmem_cache_release(s);
419}
420#endif
421
657dc2f9 422static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 423{
657dc2f9
TH
424 LIST_HEAD(to_destroy);
425 struct kmem_cache *s, *s2;
d5b3cf71 426
657dc2f9 427 /*
5f0d5a3a 428 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 429 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 430 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
431 * while freeing the pages, so the kmem_caches should be freed only
432 * after the pending RCU operations are finished. As rcu_barrier()
433 * is a pretty slow operation, we batch all pending destructions
434 * asynchronously.
435 */
436 mutex_lock(&slab_mutex);
437 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
438 mutex_unlock(&slab_mutex);
d5b3cf71 439
657dc2f9
TH
440 if (list_empty(&to_destroy))
441 return;
442
443 rcu_barrier();
444
445 list_for_each_entry_safe(s, s2, &to_destroy, list) {
64dd6849 446 debugfs_slab_release(s);
d3fb45f3 447 kfence_shutdown_cache(s);
0495e337 448 kmem_cache_release(s);
657dc2f9 449 }
d5b3cf71
VD
450}
451
657dc2f9 452static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 453{
f9fa1d91
GT
454 /* free asan quarantined objects */
455 kasan_cache_shutdown(s);
456
657dc2f9
TH
457 if (__kmem_cache_shutdown(s) != 0)
458 return -EBUSY;
d5b3cf71 459
657dc2f9 460 list_del(&s->list);
d5b3cf71 461
5f0d5a3a 462 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
463 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
464 schedule_work(&slab_caches_to_rcu_destroy_work);
465 } else {
d3fb45f3 466 kfence_shutdown_cache(s);
64dd6849 467 debugfs_slab_release(s);
d5b3cf71 468 }
657dc2f9
TH
469
470 return 0;
d5b3cf71
VD
471}
472
41a21285
CL
473void slab_kmem_cache_release(struct kmem_cache *s)
474{
52b4b950 475 __kmem_cache_release(s);
3dec16ea 476 kfree_const(s->name);
41a21285
CL
477 kmem_cache_free(kmem_cache, s);
478}
479
945cf2b6
CL
480void kmem_cache_destroy(struct kmem_cache *s)
481{
46a9ea66 482 int err = -EBUSY;
d71608a8 483 bool rcu_set;
0495e337 484
bed0a9b5 485 if (unlikely(!s) || !kasan_check_byte(s))
3942d299
SS
486 return;
487
5a836bf6 488 cpus_read_lock();
945cf2b6 489 mutex_lock(&slab_mutex);
b8529907 490
d71608a8
FT
491 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
492
46a9ea66
RA
493 s->refcount--;
494 if (s->refcount)
b8529907
VD
495 goto out_unlock;
496
46a9ea66
RA
497 err = shutdown_cache(s);
498 WARN(err, "%s %s: Slab cache still has objects when called from %pS",
7302e91f 499 __func__, s->name, (void *)_RET_IP_);
b8529907
VD
500out_unlock:
501 mutex_unlock(&slab_mutex);
5a836bf6 502 cpus_read_unlock();
46a9ea66 503 if (!err && !rcu_set)
0495e337 504 kmem_cache_release(s);
945cf2b6
CL
505}
506EXPORT_SYMBOL(kmem_cache_destroy);
507
03afc0e2
VD
508/**
509 * kmem_cache_shrink - Shrink a cache.
510 * @cachep: The cache to shrink.
511 *
512 * Releases as many slabs as possible for a cache.
513 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
514 *
515 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
516 */
517int kmem_cache_shrink(struct kmem_cache *cachep)
518{
55834c59 519 kasan_cache_shrink(cachep);
7e1fa93d 520
610f9c00 521 return __kmem_cache_shrink(cachep);
03afc0e2
VD
522}
523EXPORT_SYMBOL(kmem_cache_shrink);
524
fda90124 525bool slab_is_available(void)
97d06609
CL
526{
527 return slab_state >= UP;
528}
b7454ad3 529
5bb1bb35 530#ifdef CONFIG_PRINTK
8e7f37f2
PM
531/**
532 * kmem_valid_obj - does the pointer reference a valid slab object?
533 * @object: pointer to query.
534 *
535 * Return: %true if the pointer is to a not-yet-freed object from
536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
537 * is to an already-freed object, and %false otherwise.
538 */
539bool kmem_valid_obj(void *object)
540{
7213230a 541 struct folio *folio;
8e7f37f2
PM
542
543 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
544 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
545 return false;
7213230a
MWO
546 folio = virt_to_folio(object);
547 return folio_test_slab(folio);
8e7f37f2 548}
0d3dd2c8 549EXPORT_SYMBOL_GPL(kmem_valid_obj);
8e7f37f2 550
2dfe63e6
ME
551static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
552{
553 if (__kfence_obj_info(kpp, object, slab))
554 return;
555 __kmem_obj_info(kpp, object, slab);
556}
557
8e7f37f2
PM
558/**
559 * kmem_dump_obj - Print available slab provenance information
560 * @object: slab object for which to find provenance information.
561 *
562 * This function uses pr_cont(), so that the caller is expected to have
563 * printed out whatever preamble is appropriate. The provenance information
564 * depends on the type of object and on how much debugging is enabled.
565 * For a slab-cache object, the fact that it is a slab object is printed,
566 * and, if available, the slab name, return address, and stack trace from
e548eaa1 567 * the allocation and last free path of that object.
8e7f37f2
PM
568 *
569 * This function will splat if passed a pointer to a non-slab object.
570 * If you are not sure what type of object you have, you should instead
571 * use mem_dump_obj().
572 */
573void kmem_dump_obj(void *object)
574{
575 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
576 int i;
7213230a 577 struct slab *slab;
8e7f37f2
PM
578 unsigned long ptroffset;
579 struct kmem_obj_info kp = { };
580
581 if (WARN_ON_ONCE(!virt_addr_valid(object)))
582 return;
7213230a
MWO
583 slab = virt_to_slab(object);
584 if (WARN_ON_ONCE(!slab)) {
8e7f37f2
PM
585 pr_cont(" non-slab memory.\n");
586 return;
587 }
7213230a 588 kmem_obj_info(&kp, object, slab);
8e7f37f2
PM
589 if (kp.kp_slab_cache)
590 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
591 else
592 pr_cont(" slab%s", cp);
2dfe63e6
ME
593 if (is_kfence_address(object))
594 pr_cont(" (kfence)");
8e7f37f2
PM
595 if (kp.kp_objp)
596 pr_cont(" start %px", kp.kp_objp);
597 if (kp.kp_data_offset)
598 pr_cont(" data offset %lu", kp.kp_data_offset);
599 if (kp.kp_objp) {
600 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
601 pr_cont(" pointer offset %lu", ptroffset);
602 }
346907ce
VB
603 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
604 pr_cont(" size %u", kp.kp_slab_cache->object_size);
8e7f37f2
PM
605 if (kp.kp_ret)
606 pr_cont(" allocated at %pS\n", kp.kp_ret);
607 else
608 pr_cont("\n");
609 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
610 if (!kp.kp_stack[i])
611 break;
612 pr_info(" %pS\n", kp.kp_stack[i]);
613 }
e548eaa1
MS
614
615 if (kp.kp_free_stack[0])
616 pr_cont(" Free path:\n");
617
618 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
619 if (!kp.kp_free_stack[i])
620 break;
621 pr_info(" %pS\n", kp.kp_free_stack[i]);
622 }
623
8e7f37f2 624}
0d3dd2c8 625EXPORT_SYMBOL_GPL(kmem_dump_obj);
5bb1bb35 626#endif
8e7f37f2 627
45530c44 628/* Create a cache during boot when no slab services are available yet */
361d575e
AD
629void __init create_boot_cache(struct kmem_cache *s, const char *name,
630 unsigned int size, slab_flags_t flags,
631 unsigned int useroffset, unsigned int usersize)
45530c44
CL
632{
633 int err;
59bb4798 634 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
635
636 s->name = name;
637 s->size = s->object_size = size;
59bb4798
VB
638
639 /*
640 * For power of two sizes, guarantee natural alignment for kmalloc
641 * caches, regardless of SL*B debugging options.
642 */
643 if (is_power_of_2(size))
644 align = max(align, size);
645 s->align = calculate_alignment(flags, align, size);
646
346907ce 647#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
648 s->useroffset = useroffset;
649 s->usersize = usersize;
346907ce 650#endif
f7ce3190 651
45530c44
CL
652 err = __kmem_cache_create(s, flags);
653
654 if (err)
361d575e 655 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
656 name, size, err);
657
658 s->refcount = -1; /* Exempt from merging for now */
659}
660
0c474d31
CM
661static struct kmem_cache *__init create_kmalloc_cache(const char *name,
662 unsigned int size,
663 slab_flags_t flags)
45530c44
CL
664{
665 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
666
667 if (!s)
668 panic("Out of memory when creating slab %s\n", name);
669
0c474d31 670 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
45530c44
CL
671 list_add(&s->list, &slab_caches);
672 s->refcount = 1;
673 return s;
674}
675
cc252eae 676struct kmem_cache *
a07057dc
AB
677kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
678{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
679EXPORT_SYMBOL(kmalloc_caches);
680
3c615294
GR
681#ifdef CONFIG_RANDOM_KMALLOC_CACHES
682unsigned long random_kmalloc_seed __ro_after_init;
683EXPORT_SYMBOL(random_kmalloc_seed);
684#endif
685
2c59dd65
CL
686/*
687 * Conversion table for small slabs sizes / 8 to the index in the
688 * kmalloc array. This is necessary for slabs < 192 since we have non power
689 * of two cache sizes there. The size of larger slabs can be determined using
690 * fls.
691 */
d5f86655 692static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
693 3, /* 8 */
694 4, /* 16 */
695 5, /* 24 */
696 5, /* 32 */
697 6, /* 40 */
698 6, /* 48 */
699 6, /* 56 */
700 6, /* 64 */
701 1, /* 72 */
702 1, /* 80 */
703 1, /* 88 */
704 1, /* 96 */
705 7, /* 104 */
706 7, /* 112 */
707 7, /* 120 */
708 7, /* 128 */
709 2, /* 136 */
710 2, /* 144 */
711 2, /* 152 */
712 2, /* 160 */
713 2, /* 168 */
714 2, /* 176 */
715 2, /* 184 */
716 2 /* 192 */
717};
718
ac914d08 719static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
720{
721 return (bytes - 1) / 8;
722}
723
724/*
725 * Find the kmem_cache structure that serves a given size of
726 * allocation
727 */
3c615294 728struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags, unsigned long caller)
2c59dd65 729{
d5f86655 730 unsigned int index;
2c59dd65
CL
731
732 if (size <= 192) {
733 if (!size)
734 return ZERO_SIZE_PTR;
735
736 index = size_index[size_index_elem(size)];
61448479 737 } else {
221d7da6 738 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 739 return NULL;
2c59dd65 740 index = fls(size - 1);
61448479 741 }
2c59dd65 742
3c615294 743 return kmalloc_caches[kmalloc_type(flags, caller)][index];
2c59dd65
CL
744}
745
05a94065
KC
746size_t kmalloc_size_roundup(size_t size)
747{
8446a4de
DL
748 if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
749 /*
750 * The flags don't matter since size_index is common to all.
751 * Neither does the caller for just getting ->object_size.
752 */
753 return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
754 }
755
05a94065 756 /* Above the smaller buckets, size is a multiple of page size. */
8446a4de 757 if (size && size <= KMALLOC_MAX_SIZE)
05a94065
KC
758 return PAGE_SIZE << get_order(size);
759
3c615294 760 /*
8446a4de
DL
761 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
762 * and very large size - kmalloc() may fail.
3c615294 763 */
8446a4de
DL
764 return size;
765
05a94065
KC
766}
767EXPORT_SYMBOL(kmalloc_size_roundup);
768
cb5d9fb3 769#ifdef CONFIG_ZONE_DMA
494c1dfe
WL
770#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
771#else
772#define KMALLOC_DMA_NAME(sz)
773#endif
774
775#ifdef CONFIG_MEMCG_KMEM
776#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
cb5d9fb3 777#else
494c1dfe
WL
778#define KMALLOC_CGROUP_NAME(sz)
779#endif
780
2f7c1c13
VB
781#ifndef CONFIG_SLUB_TINY
782#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
783#else
784#define KMALLOC_RCL_NAME(sz)
785#endif
786
3c615294
GR
787#ifdef CONFIG_RANDOM_KMALLOC_CACHES
788#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
789#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
790#define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz,
791#define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz,
792#define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz,
793#define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz,
794#define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz,
795#define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz,
796#define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz,
797#define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz,
798#define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz,
799#define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
800#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
801#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
802#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
803#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
804#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
805#else // CONFIG_RANDOM_KMALLOC_CACHES
806#define KMALLOC_RANDOM_NAME(N, sz)
807#endif
808
cb5d9fb3
PL
809#define INIT_KMALLOC_INFO(__size, __short_size) \
810{ \
811 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
2f7c1c13 812 KMALLOC_RCL_NAME(__short_size) \
494c1dfe
WL
813 KMALLOC_CGROUP_NAME(__short_size) \
814 KMALLOC_DMA_NAME(__short_size) \
3c615294 815 KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \
cb5d9fb3
PL
816 .size = __size, \
817}
cb5d9fb3 818
4066c33d
GG
819/*
820 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
d6a71648
HY
821 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
822 * kmalloc-2M.
4066c33d 823 */
af3b5f87 824const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
825 INIT_KMALLOC_INFO(0, 0),
826 INIT_KMALLOC_INFO(96, 96),
827 INIT_KMALLOC_INFO(192, 192),
828 INIT_KMALLOC_INFO(8, 8),
829 INIT_KMALLOC_INFO(16, 16),
830 INIT_KMALLOC_INFO(32, 32),
831 INIT_KMALLOC_INFO(64, 64),
832 INIT_KMALLOC_INFO(128, 128),
833 INIT_KMALLOC_INFO(256, 256),
834 INIT_KMALLOC_INFO(512, 512),
835 INIT_KMALLOC_INFO(1024, 1k),
836 INIT_KMALLOC_INFO(2048, 2k),
837 INIT_KMALLOC_INFO(4096, 4k),
838 INIT_KMALLOC_INFO(8192, 8k),
839 INIT_KMALLOC_INFO(16384, 16k),
840 INIT_KMALLOC_INFO(32768, 32k),
841 INIT_KMALLOC_INFO(65536, 64k),
842 INIT_KMALLOC_INFO(131072, 128k),
843 INIT_KMALLOC_INFO(262144, 256k),
844 INIT_KMALLOC_INFO(524288, 512k),
845 INIT_KMALLOC_INFO(1048576, 1M),
d6a71648 846 INIT_KMALLOC_INFO(2097152, 2M)
4066c33d
GG
847};
848
f97d5f63 849/*
34cc6990
DS
850 * Patch up the size_index table if we have strange large alignment
851 * requirements for the kmalloc array. This is only the case for
852 * MIPS it seems. The standard arches will not generate any code here.
853 *
854 * Largest permitted alignment is 256 bytes due to the way we
855 * handle the index determination for the smaller caches.
856 *
857 * Make sure that nothing crazy happens if someone starts tinkering
858 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 859 */
34cc6990 860void __init setup_kmalloc_cache_index_table(void)
f97d5f63 861{
ac914d08 862 unsigned int i;
f97d5f63 863
2c59dd65 864 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
7d6b6cc3 865 !is_power_of_2(KMALLOC_MIN_SIZE));
2c59dd65
CL
866
867 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 868 unsigned int elem = size_index_elem(i);
2c59dd65
CL
869
870 if (elem >= ARRAY_SIZE(size_index))
871 break;
872 size_index[elem] = KMALLOC_SHIFT_LOW;
873 }
874
875 if (KMALLOC_MIN_SIZE >= 64) {
876 /*
0b8f0d87 877 * The 96 byte sized cache is not used if the alignment
2c59dd65
CL
878 * is 64 byte.
879 */
880 for (i = 64 + 8; i <= 96; i += 8)
881 size_index[size_index_elem(i)] = 7;
882
883 }
884
885 if (KMALLOC_MIN_SIZE >= 128) {
886 /*
887 * The 192 byte sized cache is not used if the alignment
888 * is 128 byte. Redirect kmalloc to use the 256 byte cache
889 * instead.
890 */
891 for (i = 128 + 8; i <= 192; i += 8)
892 size_index[size_index_elem(i)] = 8;
893 }
34cc6990
DS
894}
895
963e84b0
CM
896static unsigned int __kmalloc_minalign(void)
897{
b035f5a6
CM
898#ifdef CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC
899 if (io_tlb_default_mem.nslabs)
900 return ARCH_KMALLOC_MINALIGN;
901#endif
963e84b0
CM
902 return dma_get_cache_alignment();
903}
904
0c474d31 905void __init
13657d0a 906new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 907{
963e84b0
CM
908 unsigned int minalign = __kmalloc_minalign();
909 unsigned int aligned_size = kmalloc_info[idx].size;
910 int aligned_idx = idx;
911
2f7c1c13 912 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
1291523f 913 flags |= SLAB_RECLAIM_ACCOUNT;
494c1dfe 914 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
17c17367 915 if (mem_cgroup_kmem_disabled()) {
494c1dfe
WL
916 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
917 return;
918 }
919 flags |= SLAB_ACCOUNT;
33647783
OK
920 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
921 flags |= SLAB_CACHE_DMA;
494c1dfe 922 }
1291523f 923
3c615294
GR
924#ifdef CONFIG_RANDOM_KMALLOC_CACHES
925 if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
926 flags |= SLAB_NO_MERGE;
927#endif
928
13e680fb
WL
929 /*
930 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
931 * KMALLOC_NORMAL caches.
932 */
933 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
d5bf4857
VB
934 flags |= SLAB_NO_MERGE;
935
963e84b0
CM
936 if (minalign > ARCH_KMALLOC_MINALIGN) {
937 aligned_size = ALIGN(aligned_size, minalign);
938 aligned_idx = __kmalloc_index(aligned_size, false);
939 }
940
941 if (!kmalloc_caches[type][aligned_idx])
942 kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
943 kmalloc_info[aligned_idx].name[type],
944 aligned_size, flags);
945 if (idx != aligned_idx)
946 kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
a9730fca
CL
947}
948
34cc6990
DS
949/*
950 * Create the kmalloc array. Some of the regular kmalloc arrays
951 * may already have been created because they were needed to
952 * enable allocations for slab creation.
953 */
d50112ed 954void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 955{
13657d0a
PL
956 int i;
957 enum kmalloc_cache_type type;
34cc6990 958
494c1dfe
WL
959 /*
960 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
961 */
33647783 962 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
1291523f
VB
963 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
964 if (!kmalloc_caches[type][i])
965 new_kmalloc_cache(i, type, flags);
f97d5f63 966
1291523f
VB
967 /*
968 * Caches that are not of the two-to-the-power-of size.
969 * These have to be created immediately after the
970 * earlier power of two caches
971 */
972 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
973 !kmalloc_caches[type][1])
974 new_kmalloc_cache(1, type, flags);
975 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
976 !kmalloc_caches[type][2])
977 new_kmalloc_cache(2, type, flags);
978 }
8a965b3b 979 }
3c615294
GR
980#ifdef CONFIG_RANDOM_KMALLOC_CACHES
981 random_kmalloc_seed = get_random_u64();
982#endif
8a965b3b 983
f97d5f63
CL
984 /* Kmalloc array is now usable */
985 slab_state = UP;
f97d5f63 986}
d6a71648
HY
987
988void free_large_kmalloc(struct folio *folio, void *object)
989{
990 unsigned int order = folio_order(folio);
991
992 if (WARN_ON_ONCE(order == 0))
993 pr_warn_once("object pointer: 0x%p\n", object);
994
995 kmemleak_free(object);
996 kasan_kfree_large(object);
27bc50fc 997 kmsan_kfree_large(object);
d6a71648
HY
998
999 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
1000 -(PAGE_SIZE << order));
1001 __free_pages(folio_page(folio, 0), order);
1002}
b1405135
HY
1003
1004static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
1005static __always_inline
1006void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
1007{
1008 struct kmem_cache *s;
1009 void *ret;
1010
1011 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
1012 ret = __kmalloc_large_node(size, flags, node);
32868715 1013 trace_kmalloc(caller, ret, size,
11e9734b 1014 PAGE_SIZE << get_order(size), flags, node);
b1405135
HY
1015 return ret;
1016 }
1017
3c615294 1018 s = kmalloc_slab(size, flags, caller);
b1405135
HY
1019
1020 if (unlikely(ZERO_OR_NULL_PTR(s)))
1021 return s;
1022
1023 ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
1024 ret = kasan_kmalloc(s, ret, size, flags);
32868715 1025 trace_kmalloc(caller, ret, size, s->size, flags, node);
b1405135
HY
1026 return ret;
1027}
1028
1029void *__kmalloc_node(size_t size, gfp_t flags, int node)
1030{
1031 return __do_kmalloc_node(size, flags, node, _RET_IP_);
1032}
1033EXPORT_SYMBOL(__kmalloc_node);
1034
1035void *__kmalloc(size_t size, gfp_t flags)
1036{
1037 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
1038}
1039EXPORT_SYMBOL(__kmalloc);
1040
1041void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
1042 int node, unsigned long caller)
1043{
1044 return __do_kmalloc_node(size, flags, node, caller);
1045}
1046EXPORT_SYMBOL(__kmalloc_node_track_caller);
1047
1048/**
1049 * kfree - free previously allocated memory
ae65a521 1050 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
b1405135
HY
1051 *
1052 * If @object is NULL, no operation is performed.
b1405135
HY
1053 */
1054void kfree(const void *object)
1055{
1056 struct folio *folio;
1057 struct slab *slab;
1058 struct kmem_cache *s;
1059
1060 trace_kfree(_RET_IP_, object);
1061
1062 if (unlikely(ZERO_OR_NULL_PTR(object)))
1063 return;
1064
1065 folio = virt_to_folio(object);
1066 if (unlikely(!folio_test_slab(folio))) {
1067 free_large_kmalloc(folio, (void *)object);
1068 return;
1069 }
1070
1071 slab = folio_slab(folio);
1072 s = slab->slab_cache;
1073 __kmem_cache_free(s, (void *)object, _RET_IP_);
1074}
1075EXPORT_SYMBOL(kfree);
1076
445d41d7
VB
1077/**
1078 * __ksize -- Report full size of underlying allocation
a2076201 1079 * @object: pointer to the object
445d41d7
VB
1080 *
1081 * This should only be used internally to query the true size of allocations.
1082 * It is not meant to be a way to discover the usable size of an allocation
1083 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1084 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1085 * and/or FORTIFY_SOURCE.
1086 *
a2076201 1087 * Return: size of the actual memory used by @object in bytes
445d41d7 1088 */
b1405135
HY
1089size_t __ksize(const void *object)
1090{
1091 struct folio *folio;
1092
1093 if (unlikely(object == ZERO_SIZE_PTR))
1094 return 0;
1095
1096 folio = virt_to_folio(object);
1097
d5eff736
HY
1098 if (unlikely(!folio_test_slab(folio))) {
1099 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1100 return 0;
1101 if (WARN_ON(object != folio_address(folio)))
1102 return 0;
b1405135 1103 return folio_size(folio);
d5eff736 1104 }
b1405135 1105
946fa0db
FT
1106#ifdef CONFIG_SLUB_DEBUG
1107 skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1108#endif
1109
b1405135
HY
1110 return slab_ksize(folio_slab(folio)->slab_cache);
1111}
26a40990 1112
26a40990
HY
1113void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1114{
1115 void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1116 size, _RET_IP_);
1117
2c1d697f 1118 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
26a40990
HY
1119
1120 ret = kasan_kmalloc(s, ret, size, gfpflags);
1121 return ret;
1122}
1123EXPORT_SYMBOL(kmalloc_trace);
1124
1125void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1126 int node, size_t size)
1127{
1128 void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1129
2c1d697f 1130 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
26a40990
HY
1131
1132 ret = kasan_kmalloc(s, ret, size, gfpflags);
1133 return ret;
1134}
1135EXPORT_SYMBOL(kmalloc_node_trace);
45530c44 1136
44405099
LL
1137gfp_t kmalloc_fix_flags(gfp_t flags)
1138{
1139 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1140
1141 flags &= ~GFP_SLAB_BUG_MASK;
1142 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1143 invalid_mask, &invalid_mask, flags, &flags);
1144 dump_stack();
1145
1146 return flags;
1147}
1148
cea371f4
VD
1149/*
1150 * To avoid unnecessary overhead, we pass through large allocation requests
1151 * directly to the page allocator. We use __GFP_COMP, because we will need to
1152 * know the allocation order to free the pages properly in kfree.
1153 */
45530c44 1154
b1405135 1155static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
52383431 1156{
52383431 1157 struct page *page;
a0c3b940
HY
1158 void *ptr = NULL;
1159 unsigned int order = get_order(size);
52383431 1160
44405099
LL
1161 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1162 flags = kmalloc_fix_flags(flags);
1163
52383431 1164 flags |= __GFP_COMP;
a0c3b940
HY
1165 page = alloc_pages_node(node, flags, order);
1166 if (page) {
1167 ptr = page_address(page);
96403bfe
MS
1168 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1169 PAGE_SIZE << order);
6a486c0a 1170 }
a0c3b940
HY
1171
1172 ptr = kasan_kmalloc_large(ptr, size, flags);
1173 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1174 kmemleak_alloc(ptr, size, 1, flags);
27bc50fc 1175 kmsan_kmalloc_large(ptr, size, flags);
a0c3b940
HY
1176
1177 return ptr;
1178}
bf37d791 1179
c4cab557
HY
1180void *kmalloc_large(size_t size, gfp_t flags)
1181{
b1405135 1182 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
c4cab557 1183
2c1d697f
HY
1184 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1185 flags, NUMA_NO_NODE);
52383431
VD
1186 return ret;
1187}
c4cab557 1188EXPORT_SYMBOL(kmalloc_large);
52383431 1189
bf37d791 1190void *kmalloc_large_node(size_t size, gfp_t flags, int node)
f1b6eb6e 1191{
b1405135 1192 void *ret = __kmalloc_large_node(size, flags, node);
bf37d791 1193
2c1d697f
HY
1194 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1195 flags, node);
f1b6eb6e
CL
1196 return ret;
1197}
a0c3b940 1198EXPORT_SYMBOL(kmalloc_large_node);
45530c44 1199
7c00fce9
TG
1200#ifdef CONFIG_SLAB_FREELIST_RANDOM
1201/* Randomize a generic freelist */
ffe4dfe0 1202static void freelist_randomize(unsigned int *list,
302d55d5 1203 unsigned int count)
7c00fce9 1204{
7c00fce9 1205 unsigned int rand;
302d55d5 1206 unsigned int i;
7c00fce9
TG
1207
1208 for (i = 0; i < count; i++)
1209 list[i] = i;
1210
1211 /* Fisher-Yates shuffle */
1212 for (i = count - 1; i > 0; i--) {
ffe4dfe0 1213 rand = get_random_u32_below(i + 1);
7c00fce9
TG
1214 swap(list[i], list[rand]);
1215 }
1216}
1217
1218/* Create a random sequence per cache */
1219int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1220 gfp_t gfp)
1221{
7c00fce9
TG
1222
1223 if (count < 2 || cachep->random_seq)
1224 return 0;
1225
1226 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1227 if (!cachep->random_seq)
1228 return -ENOMEM;
1229
ffe4dfe0 1230 freelist_randomize(cachep->random_seq, count);
7c00fce9
TG
1231 return 0;
1232}
1233
1234/* Destroy the per-cache random freelist sequence */
1235void cache_random_seq_destroy(struct kmem_cache *cachep)
1236{
1237 kfree(cachep->random_seq);
1238 cachep->random_seq = NULL;
1239}
1240#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1241
5b365771 1242#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1243#ifdef CONFIG_SLAB
0825a6f9 1244#define SLABINFO_RIGHTS (0600)
e9b4db2b 1245#else
0825a6f9 1246#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1247#endif
1248
b047501c 1249static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1250{
1251 /*
1252 * Output format version, so at least we can change it
1253 * without _too_ many complaints.
1254 */
1255#ifdef CONFIG_DEBUG_SLAB
1256 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1257#else
1258 seq_puts(m, "slabinfo - version: 2.1\n");
1259#endif
756a025f 1260 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1261 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1262 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1263#ifdef CONFIG_DEBUG_SLAB
756a025f 1264 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1265 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1266#endif
1267 seq_putc(m, '\n');
1268}
1269
c29b5b3d 1270static void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1271{
b7454ad3 1272 mutex_lock(&slab_mutex);
c7094406 1273 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1274}
1275
c29b5b3d 1276static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1277{
c7094406 1278 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1279}
1280
c29b5b3d 1281static void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1282{
1283 mutex_unlock(&slab_mutex);
1284}
1285
b047501c 1286static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1287{
0d7561c6
GC
1288 struct slabinfo sinfo;
1289
1290 memset(&sinfo, 0, sizeof(sinfo));
1291 get_slabinfo(s, &sinfo);
1292
1293 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1294 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1295 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1296
1297 seq_printf(m, " : tunables %4u %4u %4u",
1298 sinfo.limit, sinfo.batchcount, sinfo.shared);
1299 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1300 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1301 slabinfo_show_stats(m, s);
1302 seq_putc(m, '\n');
b7454ad3
GC
1303}
1304
1df3b26f 1305static int slab_show(struct seq_file *m, void *p)
749c5415 1306{
c7094406 1307 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1308
c7094406 1309 if (p == slab_caches.next)
1df3b26f 1310 print_slabinfo_header(m);
10befea9 1311 cache_show(s, m);
b047501c
VD
1312 return 0;
1313}
1314
852d8be0
YS
1315void dump_unreclaimable_slab(void)
1316{
7714304f 1317 struct kmem_cache *s;
852d8be0
YS
1318 struct slabinfo sinfo;
1319
1320 /*
1321 * Here acquiring slab_mutex is risky since we don't prefer to get
1322 * sleep in oom path. But, without mutex hold, it may introduce a
1323 * risk of crash.
1324 * Use mutex_trylock to protect the list traverse, dump nothing
1325 * without acquiring the mutex.
1326 */
1327 if (!mutex_trylock(&slab_mutex)) {
1328 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1329 return;
1330 }
1331
1332 pr_info("Unreclaimable slab info:\n");
1333 pr_info("Name Used Total\n");
1334
7714304f 1335 list_for_each_entry(s, &slab_caches, list) {
10befea9 1336 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1337 continue;
1338
1339 get_slabinfo(s, &sinfo);
1340
1341 if (sinfo.num_objs > 0)
10befea9 1342 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1343 (sinfo.active_objs * s->size) / 1024,
1344 (sinfo.num_objs * s->size) / 1024);
1345 }
1346 mutex_unlock(&slab_mutex);
1347}
1348
b7454ad3
GC
1349/*
1350 * slabinfo_op - iterator that generates /proc/slabinfo
1351 *
1352 * Output layout:
1353 * cache-name
1354 * num-active-objs
1355 * total-objs
1356 * object size
1357 * num-active-slabs
1358 * total-slabs
1359 * num-pages-per-slab
1360 * + further values on SMP and with statistics enabled
1361 */
1362static const struct seq_operations slabinfo_op = {
1df3b26f 1363 .start = slab_start,
276a2439
WL
1364 .next = slab_next,
1365 .stop = slab_stop,
1df3b26f 1366 .show = slab_show,
b7454ad3
GC
1367};
1368
1369static int slabinfo_open(struct inode *inode, struct file *file)
1370{
1371 return seq_open(file, &slabinfo_op);
1372}
1373
97a32539 1374static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1375 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1376 .proc_open = slabinfo_open,
1377 .proc_read = seq_read,
1378 .proc_write = slabinfo_write,
1379 .proc_lseek = seq_lseek,
1380 .proc_release = seq_release,
b7454ad3
GC
1381};
1382
1383static int __init slab_proc_init(void)
1384{
97a32539 1385 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1386 return 0;
1387}
1388module_init(slab_proc_init);
fcf8a1e4 1389
5b365771 1390#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c 1391
9ed9cac1
KC
1392static __always_inline __realloc_size(2) void *
1393__do_krealloc(const void *p, size_t new_size, gfp_t flags)
928cec9c
AR
1394{
1395 void *ret;
fa9ba3aa 1396 size_t ks;
928cec9c 1397
38931d89 1398 /* Check for double-free before calling ksize. */
d12d9ad8
AK
1399 if (likely(!ZERO_OR_NULL_PTR(p))) {
1400 if (!kasan_check_byte(p))
1401 return NULL;
38931d89 1402 ks = ksize(p);
d12d9ad8
AK
1403 } else
1404 ks = 0;
928cec9c 1405
d12d9ad8 1406 /* If the object still fits, repoison it precisely. */
0316bec2 1407 if (ks >= new_size) {
0116523c 1408 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1409 return (void *)p;
0316bec2 1410 }
928cec9c
AR
1411
1412 ret = kmalloc_track_caller(new_size, flags);
d12d9ad8
AK
1413 if (ret && p) {
1414 /* Disable KASAN checks as the object's redzone is accessed. */
1415 kasan_disable_current();
1416 memcpy(ret, kasan_reset_tag(p), ks);
1417 kasan_enable_current();
1418 }
928cec9c
AR
1419
1420 return ret;
1421}
1422
928cec9c
AR
1423/**
1424 * krealloc - reallocate memory. The contents will remain unchanged.
1425 * @p: object to reallocate memory for.
1426 * @new_size: how many bytes of memory are required.
1427 * @flags: the type of memory to allocate.
1428 *
1429 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1430 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1431 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1432 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1433 *
1434 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1435 */
1436void *krealloc(const void *p, size_t new_size, gfp_t flags)
1437{
1438 void *ret;
1439
1440 if (unlikely(!new_size)) {
1441 kfree(p);
1442 return ZERO_SIZE_PTR;
1443 }
1444
1445 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1446 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1447 kfree(p);
1448
1449 return ret;
1450}
1451EXPORT_SYMBOL(krealloc);
1452
1453/**
453431a5 1454 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1455 * @p: object to free memory of
1456 *
1457 * The memory of the object @p points to is zeroed before freed.
453431a5 1458 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1459 *
1460 * Note: this function zeroes the whole allocated buffer which can be a good
1461 * deal bigger than the requested buffer size passed to kmalloc(). So be
1462 * careful when using this function in performance sensitive code.
1463 */
453431a5 1464void kfree_sensitive(const void *p)
928cec9c
AR
1465{
1466 size_t ks;
1467 void *mem = (void *)p;
1468
928cec9c 1469 ks = ksize(mem);
38931d89
KC
1470 if (ks) {
1471 kasan_unpoison_range(mem, ks);
fa9ba3aa 1472 memzero_explicit(mem, ks);
38931d89 1473 }
928cec9c
AR
1474 kfree(mem);
1475}
453431a5 1476EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1477
10d1f8cb
ME
1478size_t ksize(const void *objp)
1479{
0d4ca4c9 1480 /*
38931d89
KC
1481 * We need to first check that the pointer to the object is valid.
1482 * The KASAN report printed from ksize() is more useful, then when
1483 * it's printed later when the behaviour could be undefined due to
1484 * a potential use-after-free or double-free.
0d4ca4c9 1485 *
611806b4
AK
1486 * We use kasan_check_byte(), which is supported for the hardware
1487 * tag-based KASAN mode, unlike kasan_check_read/write().
1488 *
1489 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1490 * ksize() writing to and potentially corrupting the memory region.
1491 *
1492 * We want to perform the check before __ksize(), to avoid potentially
1493 * crashing in __ksize() due to accessing invalid metadata.
1494 */
611806b4 1495 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1496 return 0;
1497
38931d89 1498 return kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1499}
1500EXPORT_SYMBOL(ksize);
1501
928cec9c
AR
1502/* Tracepoints definitions. */
1503EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1504EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
928cec9c
AR
1505EXPORT_TRACEPOINT_SYMBOL(kfree);
1506EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1507
1508int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1509{
1510 if (__should_failslab(s, gfpflags))
1511 return -ENOMEM;
1512 return 0;
1513}
1514ALLOW_ERROR_INJECTION(should_failslab, ERRNO);