mm: memcg/slab: synchronize access to kmem_cache dying flag using a spinlock
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
039363f3
CL
20#include <asm/cacheflush.h>
21#include <asm/tlbflush.h>
22#include <asm/page.h>
2633d7a0 23#include <linux/memcontrol.h>
928cec9c
AR
24
25#define CREATE_TRACE_POINTS
f1b6eb6e 26#include <trace/events/kmem.h>
039363f3 27
97d06609
CL
28#include "slab.h"
29
30enum slab_state slab_state;
18004c5d
CL
31LIST_HEAD(slab_caches);
32DEFINE_MUTEX(slab_mutex);
9b030cb8 33struct kmem_cache *kmem_cache;
97d06609 34
2d891fbc
KC
35#ifdef CONFIG_HARDENED_USERCOPY
36bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38module_param(usercopy_fallback, bool, 0400);
39MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41#endif
42
657dc2f9
TH
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
423c929c
JK
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 53 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 54
230e9fc2 55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 56 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 60 */
7660a6fd 61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
62
63static int __init setup_slab_nomerge(char *str)
64{
7660a6fd 65 slab_nomerge = true;
423c929c
JK
66 return 1;
67}
68
69#ifdef CONFIG_SLUB
70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71#endif
72
73__setup("slab_nomerge", setup_slab_nomerge);
74
07f361b2
JK
75/*
76 * Determine the size of a slab object
77 */
78unsigned int kmem_cache_size(struct kmem_cache *s)
79{
80 return s->object_size;
81}
82EXPORT_SYMBOL(kmem_cache_size);
83
77be4b13 84#ifdef CONFIG_DEBUG_VM
f4957d5b 85static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 86{
039363f3
CL
87 if (!name || in_interrupt() || size < sizeof(void *) ||
88 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 return -EINVAL;
039363f3 91 }
b920536a 92
20cea968 93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
94 return 0;
95}
96#else
f4957d5b 97static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
98{
99 return 0;
100}
20cea968
CL
101#endif
102
484748f0
CL
103void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
104{
105 size_t i;
106
ca257195
JDB
107 for (i = 0; i < nr; i++) {
108 if (s)
109 kmem_cache_free(s, p[i]);
110 else
111 kfree(p[i]);
112 }
484748f0
CL
113}
114
865762a8 115int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
116 void **p)
117{
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
865762a8 124 return 0;
484748f0
CL
125 }
126 }
865762a8 127 return i;
484748f0
CL
128}
129
84c07d11 130#ifdef CONFIG_MEMCG_KMEM
510ded33
TH
131
132LIST_HEAD(slab_root_caches);
63b02ef7 133static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
510ded33 134
f7ce3190 135void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 136{
9eeadc8b 137 s->memcg_params.root_cache = NULL;
f7ce3190 138 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 139 INIT_LIST_HEAD(&s->memcg_params.children);
92ee383f 140 s->memcg_params.dying = false;
f7ce3190
VD
141}
142
143static int init_memcg_params(struct kmem_cache *s,
c03914b7 144 struct kmem_cache *root_cache)
f7ce3190
VD
145{
146 struct memcg_cache_array *arr;
33a690c4 147
9eeadc8b 148 if (root_cache) {
f7ce3190 149 s->memcg_params.root_cache = root_cache;
9eeadc8b 150 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 151 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 152 return 0;
f7ce3190 153 }
33a690c4 154
f7ce3190 155 slab_init_memcg_params(s);
33a690c4 156
f7ce3190
VD
157 if (!memcg_nr_cache_ids)
158 return 0;
33a690c4 159
f80c7dab
JW
160 arr = kvzalloc(sizeof(struct memcg_cache_array) +
161 memcg_nr_cache_ids * sizeof(void *),
162 GFP_KERNEL);
f7ce3190
VD
163 if (!arr)
164 return -ENOMEM;
33a690c4 165
f7ce3190 166 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
167 return 0;
168}
169
f7ce3190 170static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 171{
f7ce3190 172 if (is_root_cache(s))
f80c7dab
JW
173 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
174}
175
176static void free_memcg_params(struct rcu_head *rcu)
177{
178 struct memcg_cache_array *old;
179
180 old = container_of(rcu, struct memcg_cache_array, rcu);
181 kvfree(old);
33a690c4
VD
182}
183
f7ce3190 184static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 185{
f7ce3190 186 struct memcg_cache_array *old, *new;
6f817f4c 187
f80c7dab
JW
188 new = kvzalloc(sizeof(struct memcg_cache_array) +
189 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 190 if (!new)
6f817f4c
VD
191 return -ENOMEM;
192
f7ce3190
VD
193 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
194 lockdep_is_held(&slab_mutex));
195 if (old)
196 memcpy(new->entries, old->entries,
197 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 198
f7ce3190
VD
199 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
200 if (old)
f80c7dab 201 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
202 return 0;
203}
204
55007d84
GC
205int memcg_update_all_caches(int num_memcgs)
206{
207 struct kmem_cache *s;
208 int ret = 0;
55007d84 209
05257a1a 210 mutex_lock(&slab_mutex);
510ded33 211 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 212 ret = update_memcg_params(s, num_memcgs);
55007d84 213 /*
55007d84
GC
214 * Instead of freeing the memory, we'll just leave the caches
215 * up to this point in an updated state.
216 */
217 if (ret)
05257a1a 218 break;
55007d84 219 }
55007d84
GC
220 mutex_unlock(&slab_mutex);
221 return ret;
222}
657dc2f9 223
c03914b7 224void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
657dc2f9 225{
510ded33
TH
226 if (is_root_cache(s)) {
227 list_add(&s->root_caches_node, &slab_root_caches);
228 } else {
c03914b7 229 s->memcg_params.memcg = memcg;
510ded33
TH
230 list_add(&s->memcg_params.children_node,
231 &s->memcg_params.root_cache->memcg_params.children);
232 list_add(&s->memcg_params.kmem_caches_node,
233 &s->memcg_params.memcg->kmem_caches);
234 }
235}
236
237static void memcg_unlink_cache(struct kmem_cache *s)
238{
239 if (is_root_cache(s)) {
240 list_del(&s->root_caches_node);
241 } else {
242 list_del(&s->memcg_params.children_node);
243 list_del(&s->memcg_params.kmem_caches_node);
244 }
657dc2f9 245}
33a690c4 246#else
f7ce3190 247static inline int init_memcg_params(struct kmem_cache *s,
c03914b7 248 struct kmem_cache *root_cache)
33a690c4
VD
249{
250 return 0;
251}
252
f7ce3190 253static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
254{
255}
657dc2f9 256
510ded33 257static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
258{
259}
84c07d11 260#endif /* CONFIG_MEMCG_KMEM */
55007d84 261
692ae74a
BL
262/*
263 * Figure out what the alignment of the objects will be given a set of
264 * flags, a user specified alignment and the size of the objects.
265 */
f4957d5b
AD
266static unsigned int calculate_alignment(slab_flags_t flags,
267 unsigned int align, unsigned int size)
692ae74a
BL
268{
269 /*
270 * If the user wants hardware cache aligned objects then follow that
271 * suggestion if the object is sufficiently large.
272 *
273 * The hardware cache alignment cannot override the specified
274 * alignment though. If that is greater then use it.
275 */
276 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 277 unsigned int ralign;
692ae74a
BL
278
279 ralign = cache_line_size();
280 while (size <= ralign / 2)
281 ralign /= 2;
282 align = max(align, ralign);
283 }
284
285 if (align < ARCH_SLAB_MINALIGN)
286 align = ARCH_SLAB_MINALIGN;
287
288 return ALIGN(align, sizeof(void *));
289}
290
423c929c
JK
291/*
292 * Find a mergeable slab cache
293 */
294int slab_unmergeable(struct kmem_cache *s)
295{
296 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
297 return 1;
298
299 if (!is_root_cache(s))
300 return 1;
301
302 if (s->ctor)
303 return 1;
304
8eb8284b
DW
305 if (s->usersize)
306 return 1;
307
423c929c
JK
308 /*
309 * We may have set a slab to be unmergeable during bootstrap.
310 */
311 if (s->refcount < 0)
312 return 1;
313
314 return 0;
315}
316
f4957d5b 317struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 318 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
319{
320 struct kmem_cache *s;
321
c6e28895 322 if (slab_nomerge)
423c929c
JK
323 return NULL;
324
325 if (ctor)
326 return NULL;
327
328 size = ALIGN(size, sizeof(void *));
329 align = calculate_alignment(flags, align, size);
330 size = ALIGN(size, align);
331 flags = kmem_cache_flags(size, flags, name, NULL);
332
c6e28895
GM
333 if (flags & SLAB_NEVER_MERGE)
334 return NULL;
335
510ded33 336 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
337 if (slab_unmergeable(s))
338 continue;
339
340 if (size > s->size)
341 continue;
342
343 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
344 continue;
345 /*
346 * Check if alignment is compatible.
347 * Courtesy of Adrian Drzewiecki
348 */
349 if ((s->size & ~(align - 1)) != s->size)
350 continue;
351
352 if (s->size - size >= sizeof(void *))
353 continue;
354
95069ac8
JK
355 if (IS_ENABLED(CONFIG_SLAB) && align &&
356 (align > s->align || s->align % align))
357 continue;
358
423c929c
JK
359 return s;
360 }
361 return NULL;
362}
363
c9a77a79 364static struct kmem_cache *create_cache(const char *name,
613a5eb5 365 unsigned int object_size, unsigned int align,
7bbdb81e
AD
366 slab_flags_t flags, unsigned int useroffset,
367 unsigned int usersize, void (*ctor)(void *),
c9a77a79 368 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
369{
370 struct kmem_cache *s;
371 int err;
372
8eb8284b
DW
373 if (WARN_ON(useroffset + usersize > object_size))
374 useroffset = usersize = 0;
375
794b1248
VD
376 err = -ENOMEM;
377 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
378 if (!s)
379 goto out;
380
381 s->name = name;
613a5eb5 382 s->size = s->object_size = object_size;
794b1248
VD
383 s->align = align;
384 s->ctor = ctor;
8eb8284b
DW
385 s->useroffset = useroffset;
386 s->usersize = usersize;
794b1248 387
c03914b7 388 err = init_memcg_params(s, root_cache);
794b1248
VD
389 if (err)
390 goto out_free_cache;
391
392 err = __kmem_cache_create(s, flags);
393 if (err)
394 goto out_free_cache;
395
396 s->refcount = 1;
397 list_add(&s->list, &slab_caches);
c03914b7 398 memcg_link_cache(s, memcg);
794b1248
VD
399out:
400 if (err)
401 return ERR_PTR(err);
402 return s;
403
404out_free_cache:
f7ce3190 405 destroy_memcg_params(s);
7c4da061 406 kmem_cache_free(kmem_cache, s);
794b1248
VD
407 goto out;
408}
45906855 409
f496990f
MR
410/**
411 * kmem_cache_create_usercopy - Create a cache with a region suitable
412 * for copying to userspace
77be4b13
SK
413 * @name: A string which is used in /proc/slabinfo to identify this cache.
414 * @size: The size of objects to be created in this cache.
415 * @align: The required alignment for the objects.
416 * @flags: SLAB flags
8eb8284b
DW
417 * @useroffset: Usercopy region offset
418 * @usersize: Usercopy region size
77be4b13
SK
419 * @ctor: A constructor for the objects.
420 *
77be4b13
SK
421 * Cannot be called within a interrupt, but can be interrupted.
422 * The @ctor is run when new pages are allocated by the cache.
423 *
424 * The flags are
425 *
426 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
427 * to catch references to uninitialised memory.
428 *
f496990f 429 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
430 * for buffer overruns.
431 *
432 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
433 * cacheline. This can be beneficial if you're counting cycles as closely
434 * as davem.
f496990f
MR
435 *
436 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 437 */
2633d7a0 438struct kmem_cache *
f4957d5b
AD
439kmem_cache_create_usercopy(const char *name,
440 unsigned int size, unsigned int align,
7bbdb81e
AD
441 slab_flags_t flags,
442 unsigned int useroffset, unsigned int usersize,
8eb8284b 443 void (*ctor)(void *))
77be4b13 444{
40911a79 445 struct kmem_cache *s = NULL;
3dec16ea 446 const char *cache_name;
3965fc36 447 int err;
039363f3 448
77be4b13 449 get_online_cpus();
03afc0e2 450 get_online_mems();
05257a1a 451 memcg_get_cache_ids();
03afc0e2 452
77be4b13 453 mutex_lock(&slab_mutex);
686d550d 454
794b1248 455 err = kmem_cache_sanity_check(name, size);
3aa24f51 456 if (err) {
3965fc36 457 goto out_unlock;
3aa24f51 458 }
686d550d 459
e70954fd
TG
460 /* Refuse requests with allocator specific flags */
461 if (flags & ~SLAB_FLAGS_PERMITTED) {
462 err = -EINVAL;
463 goto out_unlock;
464 }
465
d8843922
GC
466 /*
467 * Some allocators will constraint the set of valid flags to a subset
468 * of all flags. We expect them to define CACHE_CREATE_MASK in this
469 * case, and we'll just provide them with a sanitized version of the
470 * passed flags.
471 */
472 flags &= CACHE_CREATE_MASK;
686d550d 473
8eb8284b
DW
474 /* Fail closed on bad usersize of useroffset values. */
475 if (WARN_ON(!usersize && useroffset) ||
476 WARN_ON(size < usersize || size - usersize < useroffset))
477 usersize = useroffset = 0;
478
479 if (!usersize)
480 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 481 if (s)
3965fc36 482 goto out_unlock;
2633d7a0 483
3dec16ea 484 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
485 if (!cache_name) {
486 err = -ENOMEM;
487 goto out_unlock;
488 }
7c9adf5a 489
613a5eb5 490 s = create_cache(cache_name, size,
c9a77a79 491 calculate_alignment(flags, align, size),
8eb8284b 492 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
493 if (IS_ERR(s)) {
494 err = PTR_ERR(s);
3dec16ea 495 kfree_const(cache_name);
794b1248 496 }
3965fc36
VD
497
498out_unlock:
20cea968 499 mutex_unlock(&slab_mutex);
03afc0e2 500
05257a1a 501 memcg_put_cache_ids();
03afc0e2 502 put_online_mems();
20cea968
CL
503 put_online_cpus();
504
ba3253c7 505 if (err) {
686d550d
CL
506 if (flags & SLAB_PANIC)
507 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
508 name, err);
509 else {
1170532b 510 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
511 name, err);
512 dump_stack();
513 }
686d550d
CL
514 return NULL;
515 }
039363f3
CL
516 return s;
517}
8eb8284b
DW
518EXPORT_SYMBOL(kmem_cache_create_usercopy);
519
f496990f
MR
520/**
521 * kmem_cache_create - Create a cache.
522 * @name: A string which is used in /proc/slabinfo to identify this cache.
523 * @size: The size of objects to be created in this cache.
524 * @align: The required alignment for the objects.
525 * @flags: SLAB flags
526 * @ctor: A constructor for the objects.
527 *
528 * Cannot be called within a interrupt, but can be interrupted.
529 * The @ctor is run when new pages are allocated by the cache.
530 *
531 * The flags are
532 *
533 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
534 * to catch references to uninitialised memory.
535 *
536 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
537 * for buffer overruns.
538 *
539 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
540 * cacheline. This can be beneficial if you're counting cycles as closely
541 * as davem.
542 *
543 * Return: a pointer to the cache on success, NULL on failure.
544 */
8eb8284b 545struct kmem_cache *
f4957d5b 546kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
547 slab_flags_t flags, void (*ctor)(void *))
548{
6d07d1cd 549 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
550 ctor);
551}
794b1248 552EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 553
657dc2f9 554static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 555{
657dc2f9
TH
556 LIST_HEAD(to_destroy);
557 struct kmem_cache *s, *s2;
d5b3cf71 558
657dc2f9 559 /*
5f0d5a3a 560 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
561 * @slab_caches_to_rcu_destroy list. The slab pages are freed
562 * through RCU and and the associated kmem_cache are dereferenced
563 * while freeing the pages, so the kmem_caches should be freed only
564 * after the pending RCU operations are finished. As rcu_barrier()
565 * is a pretty slow operation, we batch all pending destructions
566 * asynchronously.
567 */
568 mutex_lock(&slab_mutex);
569 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
570 mutex_unlock(&slab_mutex);
d5b3cf71 571
657dc2f9
TH
572 if (list_empty(&to_destroy))
573 return;
574
575 rcu_barrier();
576
577 list_for_each_entry_safe(s, s2, &to_destroy, list) {
578#ifdef SLAB_SUPPORTS_SYSFS
579 sysfs_slab_release(s);
580#else
581 slab_kmem_cache_release(s);
582#endif
583 }
d5b3cf71
VD
584}
585
657dc2f9 586static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 587{
f9fa1d91
GT
588 /* free asan quarantined objects */
589 kasan_cache_shutdown(s);
590
657dc2f9
TH
591 if (__kmem_cache_shutdown(s) != 0)
592 return -EBUSY;
d5b3cf71 593
510ded33 594 memcg_unlink_cache(s);
657dc2f9 595 list_del(&s->list);
d5b3cf71 596
5f0d5a3a 597 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
598#ifdef SLAB_SUPPORTS_SYSFS
599 sysfs_slab_unlink(s);
600#endif
657dc2f9
TH
601 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
602 schedule_work(&slab_caches_to_rcu_destroy_work);
603 } else {
d5b3cf71 604#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 605 sysfs_slab_unlink(s);
bf5eb3de 606 sysfs_slab_release(s);
d5b3cf71
VD
607#else
608 slab_kmem_cache_release(s);
609#endif
610 }
657dc2f9
TH
611
612 return 0;
d5b3cf71
VD
613}
614
84c07d11 615#ifdef CONFIG_MEMCG_KMEM
794b1248 616/*
776ed0f0 617 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
618 * @memcg: The memory cgroup the new cache is for.
619 * @root_cache: The parent of the new cache.
620 *
621 * This function attempts to create a kmem cache that will serve allocation
622 * requests going from @memcg to @root_cache. The new cache inherits properties
623 * from its parent.
624 */
d5b3cf71
VD
625void memcg_create_kmem_cache(struct mem_cgroup *memcg,
626 struct kmem_cache *root_cache)
2633d7a0 627{
3e0350a3 628 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 629 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 630 struct memcg_cache_array *arr;
bd673145 631 struct kmem_cache *s = NULL;
794b1248 632 char *cache_name;
f7ce3190 633 int idx;
794b1248
VD
634
635 get_online_cpus();
03afc0e2
VD
636 get_online_mems();
637
794b1248
VD
638 mutex_lock(&slab_mutex);
639
2a4db7eb 640 /*
567e9ab2 641 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
642 * creation work was pending.
643 */
57033297 644 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
645 goto out_unlock;
646
f7ce3190
VD
647 idx = memcg_cache_id(memcg);
648 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
649 lockdep_is_held(&slab_mutex));
650
d5b3cf71
VD
651 /*
652 * Since per-memcg caches are created asynchronously on first
653 * allocation (see memcg_kmem_get_cache()), several threads can try to
654 * create the same cache, but only one of them may succeed.
655 */
f7ce3190 656 if (arr->entries[idx])
d5b3cf71
VD
657 goto out_unlock;
658
f1008365 659 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
660 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
661 css->serial_nr, memcg_name_buf);
794b1248
VD
662 if (!cache_name)
663 goto out_unlock;
664
c9a77a79 665 s = create_cache(cache_name, root_cache->object_size,
613a5eb5 666 root_cache->align,
f773e36d 667 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 668 root_cache->useroffset, root_cache->usersize,
f773e36d 669 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
670 /*
671 * If we could not create a memcg cache, do not complain, because
672 * that's not critical at all as we can always proceed with the root
673 * cache.
674 */
bd673145 675 if (IS_ERR(s)) {
794b1248 676 kfree(cache_name);
d5b3cf71 677 goto out_unlock;
bd673145 678 }
794b1248 679
d5b3cf71
VD
680 /*
681 * Since readers won't lock (see cache_from_memcg_idx()), we need a
682 * barrier here to ensure nobody will see the kmem_cache partially
683 * initialized.
684 */
685 smp_wmb();
f7ce3190 686 arr->entries[idx] = s;
d5b3cf71 687
794b1248
VD
688out_unlock:
689 mutex_unlock(&slab_mutex);
03afc0e2
VD
690
691 put_online_mems();
794b1248 692 put_online_cpus();
2633d7a0 693}
b8529907 694
0b14e8aa 695static void kmemcg_workfn(struct work_struct *work)
01fb58bc
TH
696{
697 struct kmem_cache *s = container_of(work, struct kmem_cache,
0b14e8aa 698 memcg_params.work);
01fb58bc
TH
699
700 get_online_cpus();
701 get_online_mems();
702
703 mutex_lock(&slab_mutex);
704
0b14e8aa 705 s->memcg_params.work_fn(s);
01fb58bc
TH
706
707 mutex_unlock(&slab_mutex);
708
709 put_online_mems();
710 put_online_cpus();
711
43486694 712 /* done, put the ref from kmemcg_cache_deactivate() */
01fb58bc
TH
713 css_put(&s->memcg_params.memcg->css);
714}
715
0b14e8aa 716static void kmemcg_rcufn(struct rcu_head *head)
01fb58bc
TH
717{
718 struct kmem_cache *s = container_of(head, struct kmem_cache,
0b14e8aa 719 memcg_params.rcu_head);
01fb58bc
TH
720
721 /*
0b14e8aa 722 * We need to grab blocking locks. Bounce to ->work. The
01fb58bc
TH
723 * work item shares the space with the RCU head and can't be
724 * initialized eariler.
725 */
0b14e8aa
RG
726 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
727 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
01fb58bc
TH
728}
729
43486694 730static void kmemcg_cache_deactivate(struct kmem_cache *s)
01fb58bc
TH
731{
732 if (WARN_ON_ONCE(is_root_cache(s)) ||
0b14e8aa 733 WARN_ON_ONCE(s->memcg_params.work_fn))
01fb58bc
TH
734 return;
735
43486694
RG
736 __kmemcg_cache_deactivate(s);
737
63b02ef7
RG
738 /*
739 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
740 * flag and make sure that no new kmem_cache deactivation tasks
741 * are queued (see flush_memcg_workqueue() ).
742 */
743 spin_lock_irq(&memcg_kmem_wq_lock);
92ee383f 744 if (s->memcg_params.root_cache->memcg_params.dying)
63b02ef7 745 goto unlock;
92ee383f 746
01fb58bc
TH
747 /* pin memcg so that @s doesn't get destroyed in the middle */
748 css_get(&s->memcg_params.memcg->css);
749
43486694 750 s->memcg_params.work_fn = __kmemcg_cache_deactivate_after_rcu;
0b14e8aa 751 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
63b02ef7
RG
752unlock:
753 spin_unlock_irq(&memcg_kmem_wq_lock);
01fb58bc
TH
754}
755
2a4db7eb
VD
756void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
757{
758 int idx;
759 struct memcg_cache_array *arr;
d6e0b7fa 760 struct kmem_cache *s, *c;
2a4db7eb
VD
761
762 idx = memcg_cache_id(memcg);
763
d6e0b7fa
VD
764 get_online_cpus();
765 get_online_mems();
766
2a4db7eb 767 mutex_lock(&slab_mutex);
510ded33 768 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
769 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
770 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
771 c = arr->entries[idx];
772 if (!c)
773 continue;
774
43486694 775 kmemcg_cache_deactivate(c);
2a4db7eb
VD
776 arr->entries[idx] = NULL;
777 }
778 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
779
780 put_online_mems();
781 put_online_cpus();
2a4db7eb
VD
782}
783
d5b3cf71 784void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 785{
d5b3cf71 786 struct kmem_cache *s, *s2;
b8529907 787
d5b3cf71
VD
788 get_online_cpus();
789 get_online_mems();
b8529907 790
b8529907 791 mutex_lock(&slab_mutex);
bc2791f8
TH
792 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
793 memcg_params.kmem_caches_node) {
d5b3cf71
VD
794 /*
795 * The cgroup is about to be freed and therefore has no charges
796 * left. Hence, all its caches must be empty by now.
797 */
657dc2f9 798 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
799 }
800 mutex_unlock(&slab_mutex);
b8529907 801
d5b3cf71
VD
802 put_online_mems();
803 put_online_cpus();
b8529907 804}
d60fdcc9 805
657dc2f9 806static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
807{
808 struct memcg_cache_array *arr;
809 struct kmem_cache *c, *c2;
810 LIST_HEAD(busy);
811 int i;
812
813 BUG_ON(!is_root_cache(s));
814
815 /*
816 * First, shutdown active caches, i.e. caches that belong to online
817 * memory cgroups.
818 */
819 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
820 lockdep_is_held(&slab_mutex));
821 for_each_memcg_cache_index(i) {
822 c = arr->entries[i];
823 if (!c)
824 continue;
657dc2f9 825 if (shutdown_cache(c))
d60fdcc9
VD
826 /*
827 * The cache still has objects. Move it to a temporary
828 * list so as not to try to destroy it for a second
829 * time while iterating over inactive caches below.
830 */
9eeadc8b 831 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
832 else
833 /*
834 * The cache is empty and will be destroyed soon. Clear
835 * the pointer to it in the memcg_caches array so that
836 * it will never be accessed even if the root cache
837 * stays alive.
838 */
839 arr->entries[i] = NULL;
840 }
841
842 /*
843 * Second, shutdown all caches left from memory cgroups that are now
844 * offline.
845 */
9eeadc8b
TH
846 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
847 memcg_params.children_node)
657dc2f9 848 shutdown_cache(c);
d60fdcc9 849
9eeadc8b 850 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
851
852 /*
853 * A cache being destroyed must be empty. In particular, this means
854 * that all per memcg caches attached to it must be empty too.
855 */
9eeadc8b 856 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
857 return -EBUSY;
858 return 0;
859}
92ee383f
SB
860
861static void flush_memcg_workqueue(struct kmem_cache *s)
862{
63b02ef7 863 spin_lock_irq(&memcg_kmem_wq_lock);
92ee383f 864 s->memcg_params.dying = true;
63b02ef7 865 spin_unlock_irq(&memcg_kmem_wq_lock);
92ee383f
SB
866
867 /*
43486694 868 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
92ee383f
SB
869 * sure all registered rcu callbacks have been invoked.
870 */
43486694 871 rcu_barrier();
92ee383f
SB
872
873 /*
874 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
875 * deactivates the memcg kmem_caches through workqueue. Make sure all
876 * previous workitems on workqueue are processed.
877 */
878 flush_workqueue(memcg_kmem_cache_wq);
879}
d60fdcc9 880#else
657dc2f9 881static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
882{
883 return 0;
884}
92ee383f
SB
885
886static inline void flush_memcg_workqueue(struct kmem_cache *s)
887{
888}
84c07d11 889#endif /* CONFIG_MEMCG_KMEM */
97d06609 890
41a21285
CL
891void slab_kmem_cache_release(struct kmem_cache *s)
892{
52b4b950 893 __kmem_cache_release(s);
f7ce3190 894 destroy_memcg_params(s);
3dec16ea 895 kfree_const(s->name);
41a21285
CL
896 kmem_cache_free(kmem_cache, s);
897}
898
945cf2b6
CL
899void kmem_cache_destroy(struct kmem_cache *s)
900{
d60fdcc9 901 int err;
d5b3cf71 902
3942d299
SS
903 if (unlikely(!s))
904 return;
905
92ee383f
SB
906 flush_memcg_workqueue(s);
907
945cf2b6 908 get_online_cpus();
03afc0e2
VD
909 get_online_mems();
910
945cf2b6 911 mutex_lock(&slab_mutex);
b8529907 912
945cf2b6 913 s->refcount--;
b8529907
VD
914 if (s->refcount)
915 goto out_unlock;
916
657dc2f9 917 err = shutdown_memcg_caches(s);
d60fdcc9 918 if (!err)
657dc2f9 919 err = shutdown_cache(s);
b8529907 920
cd918c55 921 if (err) {
756a025f
JP
922 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
923 s->name);
cd918c55
VD
924 dump_stack();
925 }
b8529907
VD
926out_unlock:
927 mutex_unlock(&slab_mutex);
d5b3cf71 928
03afc0e2 929 put_online_mems();
945cf2b6
CL
930 put_online_cpus();
931}
932EXPORT_SYMBOL(kmem_cache_destroy);
933
03afc0e2
VD
934/**
935 * kmem_cache_shrink - Shrink a cache.
936 * @cachep: The cache to shrink.
937 *
938 * Releases as many slabs as possible for a cache.
939 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
940 *
941 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
942 */
943int kmem_cache_shrink(struct kmem_cache *cachep)
944{
945 int ret;
946
947 get_online_cpus();
948 get_online_mems();
55834c59 949 kasan_cache_shrink(cachep);
c9fc5864 950 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
951 put_online_mems();
952 put_online_cpus();
953 return ret;
954}
955EXPORT_SYMBOL(kmem_cache_shrink);
956
fda90124 957bool slab_is_available(void)
97d06609
CL
958{
959 return slab_state >= UP;
960}
b7454ad3 961
45530c44
CL
962#ifndef CONFIG_SLOB
963/* Create a cache during boot when no slab services are available yet */
361d575e
AD
964void __init create_boot_cache(struct kmem_cache *s, const char *name,
965 unsigned int size, slab_flags_t flags,
966 unsigned int useroffset, unsigned int usersize)
45530c44
CL
967{
968 int err;
969
970 s->name = name;
971 s->size = s->object_size = size;
45906855 972 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
973 s->useroffset = useroffset;
974 s->usersize = usersize;
f7ce3190
VD
975
976 slab_init_memcg_params(s);
977
45530c44
CL
978 err = __kmem_cache_create(s, flags);
979
980 if (err)
361d575e 981 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
982 name, size, err);
983
984 s->refcount = -1; /* Exempt from merging for now */
985}
986
55de8b9c
AD
987struct kmem_cache *__init create_kmalloc_cache(const char *name,
988 unsigned int size, slab_flags_t flags,
989 unsigned int useroffset, unsigned int usersize)
45530c44
CL
990{
991 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
992
993 if (!s)
994 panic("Out of memory when creating slab %s\n", name);
995
6c0c21ad 996 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 997 list_add(&s->list, &slab_caches);
c03914b7 998 memcg_link_cache(s, NULL);
45530c44
CL
999 s->refcount = 1;
1000 return s;
1001}
1002
cc252eae
VB
1003struct kmem_cache *
1004kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
1005EXPORT_SYMBOL(kmalloc_caches);
1006
2c59dd65
CL
1007/*
1008 * Conversion table for small slabs sizes / 8 to the index in the
1009 * kmalloc array. This is necessary for slabs < 192 since we have non power
1010 * of two cache sizes there. The size of larger slabs can be determined using
1011 * fls.
1012 */
d5f86655 1013static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
1014 3, /* 8 */
1015 4, /* 16 */
1016 5, /* 24 */
1017 5, /* 32 */
1018 6, /* 40 */
1019 6, /* 48 */
1020 6, /* 56 */
1021 6, /* 64 */
1022 1, /* 72 */
1023 1, /* 80 */
1024 1, /* 88 */
1025 1, /* 96 */
1026 7, /* 104 */
1027 7, /* 112 */
1028 7, /* 120 */
1029 7, /* 128 */
1030 2, /* 136 */
1031 2, /* 144 */
1032 2, /* 152 */
1033 2, /* 160 */
1034 2, /* 168 */
1035 2, /* 176 */
1036 2, /* 184 */
1037 2 /* 192 */
1038};
1039
ac914d08 1040static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
1041{
1042 return (bytes - 1) / 8;
1043}
1044
1045/*
1046 * Find the kmem_cache structure that serves a given size of
1047 * allocation
1048 */
1049struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1050{
d5f86655 1051 unsigned int index;
2c59dd65
CL
1052
1053 if (size <= 192) {
1054 if (!size)
1055 return ZERO_SIZE_PTR;
1056
1057 index = size_index[size_index_elem(size)];
61448479 1058 } else {
221d7da6 1059 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 1060 return NULL;
2c59dd65 1061 index = fls(size - 1);
61448479 1062 }
2c59dd65 1063
cc252eae 1064 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
1065}
1066
4066c33d
GG
1067/*
1068 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1069 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1070 * kmalloc-67108864.
1071 */
af3b5f87 1072const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1073 {NULL, 0}, {"kmalloc-96", 96},
1074 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1075 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1076 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1077 {"kmalloc-256", 256}, {"kmalloc-512", 512},
f0d77874
VB
1078 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1079 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1080 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1081 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1082 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1083 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1084 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1085 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1086 {"kmalloc-64M", 67108864}
4066c33d
GG
1087};
1088
f97d5f63 1089/*
34cc6990
DS
1090 * Patch up the size_index table if we have strange large alignment
1091 * requirements for the kmalloc array. This is only the case for
1092 * MIPS it seems. The standard arches will not generate any code here.
1093 *
1094 * Largest permitted alignment is 256 bytes due to the way we
1095 * handle the index determination for the smaller caches.
1096 *
1097 * Make sure that nothing crazy happens if someone starts tinkering
1098 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1099 */
34cc6990 1100void __init setup_kmalloc_cache_index_table(void)
f97d5f63 1101{
ac914d08 1102 unsigned int i;
f97d5f63 1103
2c59dd65
CL
1104 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1105 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1106
1107 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 1108 unsigned int elem = size_index_elem(i);
2c59dd65
CL
1109
1110 if (elem >= ARRAY_SIZE(size_index))
1111 break;
1112 size_index[elem] = KMALLOC_SHIFT_LOW;
1113 }
1114
1115 if (KMALLOC_MIN_SIZE >= 64) {
1116 /*
1117 * The 96 byte size cache is not used if the alignment
1118 * is 64 byte.
1119 */
1120 for (i = 64 + 8; i <= 96; i += 8)
1121 size_index[size_index_elem(i)] = 7;
1122
1123 }
1124
1125 if (KMALLOC_MIN_SIZE >= 128) {
1126 /*
1127 * The 192 byte sized cache is not used if the alignment
1128 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1129 * instead.
1130 */
1131 for (i = 128 + 8; i <= 192; i += 8)
1132 size_index[size_index_elem(i)] = 8;
1133 }
34cc6990
DS
1134}
1135
f0d77874
VB
1136static const char *
1137kmalloc_cache_name(const char *prefix, unsigned int size)
1138{
1139
1140 static const char units[3] = "\0kM";
1141 int idx = 0;
1142
1143 while (size >= 1024 && (size % 1024 == 0)) {
1144 size /= 1024;
1145 idx++;
1146 }
1147
1148 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1149}
1150
1291523f
VB
1151static void __init
1152new_kmalloc_cache(int idx, int type, slab_flags_t flags)
a9730fca 1153{
1291523f
VB
1154 const char *name;
1155
1156 if (type == KMALLOC_RECLAIM) {
1157 flags |= SLAB_RECLAIM_ACCOUNT;
f0d77874 1158 name = kmalloc_cache_name("kmalloc-rcl",
1291523f
VB
1159 kmalloc_info[idx].size);
1160 BUG_ON(!name);
1161 } else {
1162 name = kmalloc_info[idx].name;
1163 }
1164
1165 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
6c0c21ad
DW
1166 kmalloc_info[idx].size, flags, 0,
1167 kmalloc_info[idx].size);
a9730fca
CL
1168}
1169
34cc6990
DS
1170/*
1171 * Create the kmalloc array. Some of the regular kmalloc arrays
1172 * may already have been created because they were needed to
1173 * enable allocations for slab creation.
1174 */
d50112ed 1175void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 1176{
1291523f 1177 int i, type;
34cc6990 1178
1291523f
VB
1179 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1180 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1181 if (!kmalloc_caches[type][i])
1182 new_kmalloc_cache(i, type, flags);
f97d5f63 1183
1291523f
VB
1184 /*
1185 * Caches that are not of the two-to-the-power-of size.
1186 * These have to be created immediately after the
1187 * earlier power of two caches
1188 */
1189 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1190 !kmalloc_caches[type][1])
1191 new_kmalloc_cache(1, type, flags);
1192 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1193 !kmalloc_caches[type][2])
1194 new_kmalloc_cache(2, type, flags);
1195 }
8a965b3b
CL
1196 }
1197
f97d5f63
CL
1198 /* Kmalloc array is now usable */
1199 slab_state = UP;
1200
f97d5f63
CL
1201#ifdef CONFIG_ZONE_DMA
1202 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 1203 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
1204
1205 if (s) {
0be70327 1206 unsigned int size = kmalloc_size(i);
f0d77874 1207 const char *n = kmalloc_cache_name("dma-kmalloc", size);
f97d5f63
CL
1208
1209 BUG_ON(!n);
cc252eae
VB
1210 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1211 n, size, SLAB_CACHE_DMA | flags, 0, 0);
f97d5f63
CL
1212 }
1213 }
1214#endif
1215}
45530c44
CL
1216#endif /* !CONFIG_SLOB */
1217
cea371f4
VD
1218/*
1219 * To avoid unnecessary overhead, we pass through large allocation requests
1220 * directly to the page allocator. We use __GFP_COMP, because we will need to
1221 * know the allocation order to free the pages properly in kfree.
1222 */
52383431
VD
1223void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1224{
1225 void *ret;
1226 struct page *page;
1227
1228 flags |= __GFP_COMP;
4949148a 1229 page = alloc_pages(flags, order);
52383431 1230 ret = page ? page_address(page) : NULL;
0116523c 1231 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 1232 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 1233 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
1234 return ret;
1235}
1236EXPORT_SYMBOL(kmalloc_order);
1237
f1b6eb6e
CL
1238#ifdef CONFIG_TRACING
1239void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1240{
1241 void *ret = kmalloc_order(size, flags, order);
1242 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1243 return ret;
1244}
1245EXPORT_SYMBOL(kmalloc_order_trace);
1246#endif
45530c44 1247
7c00fce9
TG
1248#ifdef CONFIG_SLAB_FREELIST_RANDOM
1249/* Randomize a generic freelist */
1250static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 1251 unsigned int count)
7c00fce9 1252{
7c00fce9 1253 unsigned int rand;
302d55d5 1254 unsigned int i;
7c00fce9
TG
1255
1256 for (i = 0; i < count; i++)
1257 list[i] = i;
1258
1259 /* Fisher-Yates shuffle */
1260 for (i = count - 1; i > 0; i--) {
1261 rand = prandom_u32_state(state);
1262 rand %= (i + 1);
1263 swap(list[i], list[rand]);
1264 }
1265}
1266
1267/* Create a random sequence per cache */
1268int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1269 gfp_t gfp)
1270{
1271 struct rnd_state state;
1272
1273 if (count < 2 || cachep->random_seq)
1274 return 0;
1275
1276 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1277 if (!cachep->random_seq)
1278 return -ENOMEM;
1279
1280 /* Get best entropy at this stage of boot */
1281 prandom_seed_state(&state, get_random_long());
1282
1283 freelist_randomize(&state, cachep->random_seq, count);
1284 return 0;
1285}
1286
1287/* Destroy the per-cache random freelist sequence */
1288void cache_random_seq_destroy(struct kmem_cache *cachep)
1289{
1290 kfree(cachep->random_seq);
1291 cachep->random_seq = NULL;
1292}
1293#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1294
5b365771 1295#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1296#ifdef CONFIG_SLAB
0825a6f9 1297#define SLABINFO_RIGHTS (0600)
e9b4db2b 1298#else
0825a6f9 1299#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1300#endif
1301
b047501c 1302static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1303{
1304 /*
1305 * Output format version, so at least we can change it
1306 * without _too_ many complaints.
1307 */
1308#ifdef CONFIG_DEBUG_SLAB
1309 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1310#else
1311 seq_puts(m, "slabinfo - version: 2.1\n");
1312#endif
756a025f 1313 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1314 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1315 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1316#ifdef CONFIG_DEBUG_SLAB
756a025f 1317 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1318 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1319#endif
1320 seq_putc(m, '\n');
1321}
1322
1df3b26f 1323void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1324{
b7454ad3 1325 mutex_lock(&slab_mutex);
510ded33 1326 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1327}
1328
276a2439 1329void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1330{
510ded33 1331 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1332}
1333
276a2439 1334void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1335{
1336 mutex_unlock(&slab_mutex);
1337}
1338
749c5415
GC
1339static void
1340memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1341{
1342 struct kmem_cache *c;
1343 struct slabinfo sinfo;
749c5415
GC
1344
1345 if (!is_root_cache(s))
1346 return;
1347
426589f5 1348 for_each_memcg_cache(c, s) {
749c5415
GC
1349 memset(&sinfo, 0, sizeof(sinfo));
1350 get_slabinfo(c, &sinfo);
1351
1352 info->active_slabs += sinfo.active_slabs;
1353 info->num_slabs += sinfo.num_slabs;
1354 info->shared_avail += sinfo.shared_avail;
1355 info->active_objs += sinfo.active_objs;
1356 info->num_objs += sinfo.num_objs;
1357 }
1358}
1359
b047501c 1360static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1361{
0d7561c6
GC
1362 struct slabinfo sinfo;
1363
1364 memset(&sinfo, 0, sizeof(sinfo));
1365 get_slabinfo(s, &sinfo);
1366
749c5415
GC
1367 memcg_accumulate_slabinfo(s, &sinfo);
1368
0d7561c6 1369 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1370 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1371 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1372
1373 seq_printf(m, " : tunables %4u %4u %4u",
1374 sinfo.limit, sinfo.batchcount, sinfo.shared);
1375 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1376 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1377 slabinfo_show_stats(m, s);
1378 seq_putc(m, '\n');
b7454ad3
GC
1379}
1380
1df3b26f 1381static int slab_show(struct seq_file *m, void *p)
749c5415 1382{
510ded33 1383 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1384
510ded33 1385 if (p == slab_root_caches.next)
1df3b26f 1386 print_slabinfo_header(m);
510ded33 1387 cache_show(s, m);
b047501c
VD
1388 return 0;
1389}
1390
852d8be0
YS
1391void dump_unreclaimable_slab(void)
1392{
1393 struct kmem_cache *s, *s2;
1394 struct slabinfo sinfo;
1395
1396 /*
1397 * Here acquiring slab_mutex is risky since we don't prefer to get
1398 * sleep in oom path. But, without mutex hold, it may introduce a
1399 * risk of crash.
1400 * Use mutex_trylock to protect the list traverse, dump nothing
1401 * without acquiring the mutex.
1402 */
1403 if (!mutex_trylock(&slab_mutex)) {
1404 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1405 return;
1406 }
1407
1408 pr_info("Unreclaimable slab info:\n");
1409 pr_info("Name Used Total\n");
1410
1411 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1412 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1413 continue;
1414
1415 get_slabinfo(s, &sinfo);
1416
1417 if (sinfo.num_objs > 0)
1418 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1419 (sinfo.active_objs * s->size) / 1024,
1420 (sinfo.num_objs * s->size) / 1024);
1421 }
1422 mutex_unlock(&slab_mutex);
1423}
1424
5b365771 1425#if defined(CONFIG_MEMCG)
bc2791f8
TH
1426void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1427{
aa9694bb 1428 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bc2791f8
TH
1429
1430 mutex_lock(&slab_mutex);
1431 return seq_list_start(&memcg->kmem_caches, *pos);
1432}
1433
1434void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1435{
aa9694bb 1436 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bc2791f8
TH
1437
1438 return seq_list_next(p, &memcg->kmem_caches, pos);
1439}
1440
1441void memcg_slab_stop(struct seq_file *m, void *p)
1442{
1443 mutex_unlock(&slab_mutex);
1444}
1445
b047501c
VD
1446int memcg_slab_show(struct seq_file *m, void *p)
1447{
bc2791f8
TH
1448 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1449 memcg_params.kmem_caches_node);
aa9694bb 1450 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
b047501c 1451
bc2791f8 1452 if (p == memcg->kmem_caches.next)
b047501c 1453 print_slabinfo_header(m);
bc2791f8 1454 cache_show(s, m);
b047501c 1455 return 0;
749c5415 1456}
b047501c 1457#endif
749c5415 1458
b7454ad3
GC
1459/*
1460 * slabinfo_op - iterator that generates /proc/slabinfo
1461 *
1462 * Output layout:
1463 * cache-name
1464 * num-active-objs
1465 * total-objs
1466 * object size
1467 * num-active-slabs
1468 * total-slabs
1469 * num-pages-per-slab
1470 * + further values on SMP and with statistics enabled
1471 */
1472static const struct seq_operations slabinfo_op = {
1df3b26f 1473 .start = slab_start,
276a2439
WL
1474 .next = slab_next,
1475 .stop = slab_stop,
1df3b26f 1476 .show = slab_show,
b7454ad3
GC
1477};
1478
1479static int slabinfo_open(struct inode *inode, struct file *file)
1480{
1481 return seq_open(file, &slabinfo_op);
1482}
1483
1484static const struct file_operations proc_slabinfo_operations = {
1485 .open = slabinfo_open,
1486 .read = seq_read,
1487 .write = slabinfo_write,
1488 .llseek = seq_lseek,
1489 .release = seq_release,
1490};
1491
1492static int __init slab_proc_init(void)
1493{
e9b4db2b
WL
1494 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1495 &proc_slabinfo_operations);
b7454ad3
GC
1496 return 0;
1497}
1498module_init(slab_proc_init);
5b365771 1499#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1500
1501static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1502 gfp_t flags)
1503{
1504 void *ret;
1505 size_t ks = 0;
1506
1507 if (p)
1508 ks = ksize(p);
1509
0316bec2 1510 if (ks >= new_size) {
0116523c 1511 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1512 return (void *)p;
0316bec2 1513 }
928cec9c
AR
1514
1515 ret = kmalloc_track_caller(new_size, flags);
1516 if (ret && p)
1517 memcpy(ret, p, ks);
1518
1519 return ret;
1520}
1521
1522/**
1523 * __krealloc - like krealloc() but don't free @p.
1524 * @p: object to reallocate memory for.
1525 * @new_size: how many bytes of memory are required.
1526 * @flags: the type of memory to allocate.
1527 *
1528 * This function is like krealloc() except it never frees the originally
1529 * allocated buffer. Use this if you don't want to free the buffer immediately
1530 * like, for example, with RCU.
a862f68a
MR
1531 *
1532 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1533 */
1534void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1535{
1536 if (unlikely(!new_size))
1537 return ZERO_SIZE_PTR;
1538
1539 return __do_krealloc(p, new_size, flags);
1540
1541}
1542EXPORT_SYMBOL(__krealloc);
1543
1544/**
1545 * krealloc - reallocate memory. The contents will remain unchanged.
1546 * @p: object to reallocate memory for.
1547 * @new_size: how many bytes of memory are required.
1548 * @flags: the type of memory to allocate.
1549 *
1550 * The contents of the object pointed to are preserved up to the
1551 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1552 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1553 * %NULL pointer, the object pointed to is freed.
a862f68a
MR
1554 *
1555 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1556 */
1557void *krealloc(const void *p, size_t new_size, gfp_t flags)
1558{
1559 void *ret;
1560
1561 if (unlikely(!new_size)) {
1562 kfree(p);
1563 return ZERO_SIZE_PTR;
1564 }
1565
1566 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1567 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1568 kfree(p);
1569
1570 return ret;
1571}
1572EXPORT_SYMBOL(krealloc);
1573
1574/**
1575 * kzfree - like kfree but zero memory
1576 * @p: object to free memory of
1577 *
1578 * The memory of the object @p points to is zeroed before freed.
1579 * If @p is %NULL, kzfree() does nothing.
1580 *
1581 * Note: this function zeroes the whole allocated buffer which can be a good
1582 * deal bigger than the requested buffer size passed to kmalloc(). So be
1583 * careful when using this function in performance sensitive code.
1584 */
1585void kzfree(const void *p)
1586{
1587 size_t ks;
1588 void *mem = (void *)p;
1589
1590 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1591 return;
1592 ks = ksize(mem);
1593 memset(mem, 0, ks);
1594 kfree(mem);
1595}
1596EXPORT_SYMBOL(kzfree);
1597
10d1f8cb
ME
1598/**
1599 * ksize - get the actual amount of memory allocated for a given object
1600 * @objp: Pointer to the object
1601 *
1602 * kmalloc may internally round up allocations and return more memory
1603 * than requested. ksize() can be used to determine the actual amount of
1604 * memory allocated. The caller may use this additional memory, even though
1605 * a smaller amount of memory was initially specified with the kmalloc call.
1606 * The caller must guarantee that objp points to a valid object previously
1607 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1608 * must not be freed during the duration of the call.
1609 *
1610 * Return: size of the actual memory used by @objp in bytes
1611 */
1612size_t ksize(const void *objp)
1613{
0d4ca4c9
ME
1614 size_t size;
1615
1616 if (WARN_ON_ONCE(!objp))
1617 return 0;
1618 /*
1619 * We need to check that the pointed to object is valid, and only then
1620 * unpoison the shadow memory below. We use __kasan_check_read(), to
1621 * generate a more useful report at the time ksize() is called (rather
1622 * than later where behaviour is undefined due to potential
1623 * use-after-free or double-free).
1624 *
1625 * If the pointed to memory is invalid we return 0, to avoid users of
1626 * ksize() writing to and potentially corrupting the memory region.
1627 *
1628 * We want to perform the check before __ksize(), to avoid potentially
1629 * crashing in __ksize() due to accessing invalid metadata.
1630 */
1631 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1632 return 0;
1633
1634 size = __ksize(objp);
10d1f8cb
ME
1635 /*
1636 * We assume that ksize callers could use whole allocated area,
1637 * so we need to unpoison this area.
1638 */
1639 kasan_unpoison_shadow(objp, size);
1640 return size;
1641}
1642EXPORT_SYMBOL(ksize);
1643
928cec9c
AR
1644/* Tracepoints definitions. */
1645EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1646EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1647EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1648EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1649EXPORT_TRACEPOINT_SYMBOL(kfree);
1650EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1651
1652int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1653{
1654 if (__should_failslab(s, gfpflags))
1655 return -ENOMEM;
1656 return 0;
1657}
1658ALLOW_ERROR_INJECTION(should_failslab, ERRNO);