Merge tag 'vfs-6.7.misc' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
[linux-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3 19#include <linux/seq_file.h>
963e84b0 20#include <linux/dma-mapping.h>
b035f5a6 21#include <linux/swiotlb.h>
b7454ad3 22#include <linux/proc_fs.h>
fcf8a1e4 23#include <linux/debugfs.h>
e86f8b09 24#include <linux/kasan.h>
039363f3
CL
25#include <asm/cacheflush.h>
26#include <asm/tlbflush.h>
27#include <asm/page.h>
2633d7a0 28#include <linux/memcontrol.h>
5cf909c5 29#include <linux/stackdepot.h>
928cec9c 30
44405099 31#include "internal.h"
97d06609
CL
32#include "slab.h"
33
b347aa7b
VA
34#define CREATE_TRACE_POINTS
35#include <trace/events/kmem.h>
36
97d06609 37enum slab_state slab_state;
18004c5d
CL
38LIST_HEAD(slab_caches);
39DEFINE_MUTEX(slab_mutex);
9b030cb8 40struct kmem_cache *kmem_cache;
97d06609 41
657dc2f9
TH
42static LIST_HEAD(slab_caches_to_rcu_destroy);
43static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
44static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
45 slab_caches_to_rcu_destroy_workfn);
46
423c929c
JK
47/*
48 * Set of flags that will prevent slab merging
49 */
50#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 51 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
d0bf7d57 52 SLAB_FAILSLAB | SLAB_NO_MERGE | kasan_never_merge())
423c929c 53
230e9fc2 54#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 55 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
56
57/*
58 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 59 */
7660a6fd 60static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
61
62static int __init setup_slab_nomerge(char *str)
63{
7660a6fd 64 slab_nomerge = true;
423c929c
JK
65 return 1;
66}
67
82edd9d5
RA
68static int __init setup_slab_merge(char *str)
69{
70 slab_nomerge = false;
71 return 1;
72}
73
423c929c
JK
74#ifdef CONFIG_SLUB
75__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82edd9d5 76__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
423c929c
JK
77#endif
78
79__setup("slab_nomerge", setup_slab_nomerge);
82edd9d5 80__setup("slab_merge", setup_slab_merge);
423c929c 81
07f361b2
JK
82/*
83 * Determine the size of a slab object
84 */
85unsigned int kmem_cache_size(struct kmem_cache *s)
86{
87 return s->object_size;
88}
89EXPORT_SYMBOL(kmem_cache_size);
90
77be4b13 91#ifdef CONFIG_DEBUG_VM
f4957d5b 92static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 93{
74c1d3e0 94 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
77be4b13
SK
95 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
96 return -EINVAL;
039363f3 97 }
b920536a 98
20cea968 99 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
100 return 0;
101}
102#else
f4957d5b 103static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
104{
105 return 0;
106}
20cea968
CL
107#endif
108
692ae74a
BL
109/*
110 * Figure out what the alignment of the objects will be given a set of
111 * flags, a user specified alignment and the size of the objects.
112 */
f4957d5b
AD
113static unsigned int calculate_alignment(slab_flags_t flags,
114 unsigned int align, unsigned int size)
692ae74a
BL
115{
116 /*
117 * If the user wants hardware cache aligned objects then follow that
118 * suggestion if the object is sufficiently large.
119 *
120 * The hardware cache alignment cannot override the specified
121 * alignment though. If that is greater then use it.
122 */
123 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 124 unsigned int ralign;
692ae74a
BL
125
126 ralign = cache_line_size();
127 while (size <= ralign / 2)
128 ralign /= 2;
129 align = max(align, ralign);
130 }
131
d949a815 132 align = max(align, arch_slab_minalign());
692ae74a
BL
133
134 return ALIGN(align, sizeof(void *));
135}
136
423c929c
JK
137/*
138 * Find a mergeable slab cache
139 */
140int slab_unmergeable(struct kmem_cache *s)
141{
142 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
143 return 1;
144
423c929c
JK
145 if (s->ctor)
146 return 1;
147
346907ce 148#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
149 if (s->usersize)
150 return 1;
346907ce 151#endif
8eb8284b 152
423c929c
JK
153 /*
154 * We may have set a slab to be unmergeable during bootstrap.
155 */
156 if (s->refcount < 0)
157 return 1;
158
159 return 0;
160}
161
f4957d5b 162struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 163 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
164{
165 struct kmem_cache *s;
166
c6e28895 167 if (slab_nomerge)
423c929c
JK
168 return NULL;
169
170 if (ctor)
171 return NULL;
172
173 size = ALIGN(size, sizeof(void *));
174 align = calculate_alignment(flags, align, size);
175 size = ALIGN(size, align);
37540008 176 flags = kmem_cache_flags(size, flags, name);
423c929c 177
c6e28895
GM
178 if (flags & SLAB_NEVER_MERGE)
179 return NULL;
180
c7094406 181 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
182 if (slab_unmergeable(s))
183 continue;
184
185 if (size > s->size)
186 continue;
187
188 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
189 continue;
190 /*
191 * Check if alignment is compatible.
192 * Courtesy of Adrian Drzewiecki
193 */
194 if ((s->size & ~(align - 1)) != s->size)
195 continue;
196
197 if (s->size - size >= sizeof(void *))
198 continue;
199
95069ac8
JK
200 if (IS_ENABLED(CONFIG_SLAB) && align &&
201 (align > s->align || s->align % align))
202 continue;
203
423c929c
JK
204 return s;
205 }
206 return NULL;
207}
208
c9a77a79 209static struct kmem_cache *create_cache(const char *name,
613a5eb5 210 unsigned int object_size, unsigned int align,
7bbdb81e
AD
211 slab_flags_t flags, unsigned int useroffset,
212 unsigned int usersize, void (*ctor)(void *),
9855609b 213 struct kmem_cache *root_cache)
794b1248
VD
214{
215 struct kmem_cache *s;
216 int err;
217
8eb8284b
DW
218 if (WARN_ON(useroffset + usersize > object_size))
219 useroffset = usersize = 0;
220
794b1248
VD
221 err = -ENOMEM;
222 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
223 if (!s)
224 goto out;
225
226 s->name = name;
613a5eb5 227 s->size = s->object_size = object_size;
794b1248
VD
228 s->align = align;
229 s->ctor = ctor;
346907ce 230#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
231 s->useroffset = useroffset;
232 s->usersize = usersize;
346907ce 233#endif
794b1248 234
794b1248
VD
235 err = __kmem_cache_create(s, flags);
236 if (err)
237 goto out_free_cache;
238
239 s->refcount = 1;
240 list_add(&s->list, &slab_caches);
794b1248
VD
241 return s;
242
243out_free_cache:
7c4da061 244 kmem_cache_free(kmem_cache, s);
b9dad156
ZL
245out:
246 return ERR_PTR(err);
794b1248 247}
45906855 248
f496990f
MR
249/**
250 * kmem_cache_create_usercopy - Create a cache with a region suitable
251 * for copying to userspace
77be4b13
SK
252 * @name: A string which is used in /proc/slabinfo to identify this cache.
253 * @size: The size of objects to be created in this cache.
254 * @align: The required alignment for the objects.
255 * @flags: SLAB flags
8eb8284b
DW
256 * @useroffset: Usercopy region offset
257 * @usersize: Usercopy region size
77be4b13
SK
258 * @ctor: A constructor for the objects.
259 *
77be4b13
SK
260 * Cannot be called within a interrupt, but can be interrupted.
261 * The @ctor is run when new pages are allocated by the cache.
262 *
263 * The flags are
264 *
265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
266 * to catch references to uninitialised memory.
267 *
f496990f 268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
269 * for buffer overruns.
270 *
271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
272 * cacheline. This can be beneficial if you're counting cycles as closely
273 * as davem.
f496990f
MR
274 *
275 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 276 */
2633d7a0 277struct kmem_cache *
f4957d5b
AD
278kmem_cache_create_usercopy(const char *name,
279 unsigned int size, unsigned int align,
7bbdb81e
AD
280 slab_flags_t flags,
281 unsigned int useroffset, unsigned int usersize,
8eb8284b 282 void (*ctor)(void *))
77be4b13 283{
40911a79 284 struct kmem_cache *s = NULL;
3dec16ea 285 const char *cache_name;
3965fc36 286 int err;
039363f3 287
afe0c26d
VB
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * If no slub_debug was enabled globally, the static key is not yet
291 * enabled by setup_slub_debug(). Enable it if the cache is being
292 * created with any of the debugging flags passed explicitly.
5cf909c5
OG
293 * It's also possible that this is the first cache created with
294 * SLAB_STORE_USER and we should init stack_depot for it.
afe0c26d
VB
295 */
296 if (flags & SLAB_DEBUG_FLAGS)
297 static_branch_enable(&slub_debug_enabled);
5cf909c5
OG
298 if (flags & SLAB_STORE_USER)
299 stack_depot_init();
afe0c26d
VB
300#endif
301
77be4b13 302 mutex_lock(&slab_mutex);
686d550d 303
794b1248 304 err = kmem_cache_sanity_check(name, size);
3aa24f51 305 if (err) {
3965fc36 306 goto out_unlock;
3aa24f51 307 }
686d550d 308
e70954fd
TG
309 /* Refuse requests with allocator specific flags */
310 if (flags & ~SLAB_FLAGS_PERMITTED) {
311 err = -EINVAL;
312 goto out_unlock;
313 }
314
d8843922
GC
315 /*
316 * Some allocators will constraint the set of valid flags to a subset
317 * of all flags. We expect them to define CACHE_CREATE_MASK in this
318 * case, and we'll just provide them with a sanitized version of the
319 * passed flags.
320 */
321 flags &= CACHE_CREATE_MASK;
686d550d 322
8eb8284b 323 /* Fail closed on bad usersize of useroffset values. */
346907ce
VB
324 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
325 WARN_ON(!usersize && useroffset) ||
8eb8284b
DW
326 WARN_ON(size < usersize || size - usersize < useroffset))
327 usersize = useroffset = 0;
328
329 if (!usersize)
330 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 331 if (s)
3965fc36 332 goto out_unlock;
2633d7a0 333
3dec16ea 334 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
335 if (!cache_name) {
336 err = -ENOMEM;
337 goto out_unlock;
338 }
7c9adf5a 339
613a5eb5 340 s = create_cache(cache_name, size,
c9a77a79 341 calculate_alignment(flags, align, size),
9855609b 342 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
343 if (IS_ERR(s)) {
344 err = PTR_ERR(s);
3dec16ea 345 kfree_const(cache_name);
794b1248 346 }
3965fc36
VD
347
348out_unlock:
20cea968 349 mutex_unlock(&slab_mutex);
03afc0e2 350
ba3253c7 351 if (err) {
686d550d 352 if (flags & SLAB_PANIC)
4acaa7d5 353 panic("%s: Failed to create slab '%s'. Error %d\n",
354 __func__, name, err);
686d550d 355 else {
4acaa7d5 356 pr_warn("%s(%s) failed with error %d\n",
357 __func__, name, err);
686d550d
CL
358 dump_stack();
359 }
686d550d
CL
360 return NULL;
361 }
039363f3
CL
362 return s;
363}
8eb8284b
DW
364EXPORT_SYMBOL(kmem_cache_create_usercopy);
365
f496990f
MR
366/**
367 * kmem_cache_create - Create a cache.
368 * @name: A string which is used in /proc/slabinfo to identify this cache.
369 * @size: The size of objects to be created in this cache.
370 * @align: The required alignment for the objects.
371 * @flags: SLAB flags
372 * @ctor: A constructor for the objects.
373 *
374 * Cannot be called within a interrupt, but can be interrupted.
375 * The @ctor is run when new pages are allocated by the cache.
376 *
377 * The flags are
378 *
379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
380 * to catch references to uninitialised memory.
381 *
382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
383 * for buffer overruns.
384 *
385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
386 * cacheline. This can be beneficial if you're counting cycles as closely
387 * as davem.
388 *
389 * Return: a pointer to the cache on success, NULL on failure.
390 */
8eb8284b 391struct kmem_cache *
f4957d5b 392kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
393 slab_flags_t flags, void (*ctor)(void *))
394{
6d07d1cd 395 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
396 ctor);
397}
794b1248 398EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 399
0495e337
WL
400#ifdef SLAB_SUPPORTS_SYSFS
401/*
402 * For a given kmem_cache, kmem_cache_destroy() should only be called
403 * once or there will be a use-after-free problem. The actual deletion
404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
405 * protection. So they are now done without holding those locks.
406 *
407 * Note that there will be a slight delay in the deletion of sysfs files
408 * if kmem_cache_release() is called indrectly from a work function.
409 */
410static void kmem_cache_release(struct kmem_cache *s)
411{
412 sysfs_slab_unlink(s);
413 sysfs_slab_release(s);
414}
415#else
416static void kmem_cache_release(struct kmem_cache *s)
417{
418 slab_kmem_cache_release(s);
419}
420#endif
421
657dc2f9 422static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 423{
657dc2f9
TH
424 LIST_HEAD(to_destroy);
425 struct kmem_cache *s, *s2;
d5b3cf71 426
657dc2f9 427 /*
5f0d5a3a 428 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 429 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 430 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
431 * while freeing the pages, so the kmem_caches should be freed only
432 * after the pending RCU operations are finished. As rcu_barrier()
433 * is a pretty slow operation, we batch all pending destructions
434 * asynchronously.
435 */
436 mutex_lock(&slab_mutex);
437 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
438 mutex_unlock(&slab_mutex);
d5b3cf71 439
657dc2f9
TH
440 if (list_empty(&to_destroy))
441 return;
442
443 rcu_barrier();
444
445 list_for_each_entry_safe(s, s2, &to_destroy, list) {
64dd6849 446 debugfs_slab_release(s);
d3fb45f3 447 kfence_shutdown_cache(s);
0495e337 448 kmem_cache_release(s);
657dc2f9 449 }
d5b3cf71
VD
450}
451
657dc2f9 452static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 453{
f9fa1d91
GT
454 /* free asan quarantined objects */
455 kasan_cache_shutdown(s);
456
657dc2f9
TH
457 if (__kmem_cache_shutdown(s) != 0)
458 return -EBUSY;
d5b3cf71 459
657dc2f9 460 list_del(&s->list);
d5b3cf71 461
5f0d5a3a 462 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
463 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
464 schedule_work(&slab_caches_to_rcu_destroy_work);
465 } else {
d3fb45f3 466 kfence_shutdown_cache(s);
64dd6849 467 debugfs_slab_release(s);
d5b3cf71 468 }
657dc2f9
TH
469
470 return 0;
d5b3cf71
VD
471}
472
41a21285
CL
473void slab_kmem_cache_release(struct kmem_cache *s)
474{
52b4b950 475 __kmem_cache_release(s);
3dec16ea 476 kfree_const(s->name);
41a21285
CL
477 kmem_cache_free(kmem_cache, s);
478}
479
945cf2b6
CL
480void kmem_cache_destroy(struct kmem_cache *s)
481{
46a9ea66 482 int err = -EBUSY;
d71608a8 483 bool rcu_set;
0495e337 484
bed0a9b5 485 if (unlikely(!s) || !kasan_check_byte(s))
3942d299
SS
486 return;
487
5a836bf6 488 cpus_read_lock();
945cf2b6 489 mutex_lock(&slab_mutex);
b8529907 490
d71608a8
FT
491 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
492
46a9ea66
RA
493 s->refcount--;
494 if (s->refcount)
b8529907
VD
495 goto out_unlock;
496
46a9ea66
RA
497 err = shutdown_cache(s);
498 WARN(err, "%s %s: Slab cache still has objects when called from %pS",
7302e91f 499 __func__, s->name, (void *)_RET_IP_);
b8529907
VD
500out_unlock:
501 mutex_unlock(&slab_mutex);
5a836bf6 502 cpus_read_unlock();
46a9ea66 503 if (!err && !rcu_set)
0495e337 504 kmem_cache_release(s);
945cf2b6
CL
505}
506EXPORT_SYMBOL(kmem_cache_destroy);
507
03afc0e2
VD
508/**
509 * kmem_cache_shrink - Shrink a cache.
510 * @cachep: The cache to shrink.
511 *
512 * Releases as many slabs as possible for a cache.
513 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
514 *
515 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
516 */
517int kmem_cache_shrink(struct kmem_cache *cachep)
518{
55834c59 519 kasan_cache_shrink(cachep);
7e1fa93d 520
610f9c00 521 return __kmem_cache_shrink(cachep);
03afc0e2
VD
522}
523EXPORT_SYMBOL(kmem_cache_shrink);
524
fda90124 525bool slab_is_available(void)
97d06609
CL
526{
527 return slab_state >= UP;
528}
b7454ad3 529
5bb1bb35 530#ifdef CONFIG_PRINTK
8e7f37f2
PM
531/**
532 * kmem_valid_obj - does the pointer reference a valid slab object?
533 * @object: pointer to query.
534 *
535 * Return: %true if the pointer is to a not-yet-freed object from
536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
537 * is to an already-freed object, and %false otherwise.
538 */
539bool kmem_valid_obj(void *object)
540{
7213230a 541 struct folio *folio;
8e7f37f2
PM
542
543 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
544 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
545 return false;
7213230a
MWO
546 folio = virt_to_folio(object);
547 return folio_test_slab(folio);
8e7f37f2 548}
0d3dd2c8 549EXPORT_SYMBOL_GPL(kmem_valid_obj);
8e7f37f2 550
2dfe63e6
ME
551static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
552{
553 if (__kfence_obj_info(kpp, object, slab))
554 return;
555 __kmem_obj_info(kpp, object, slab);
556}
557
8e7f37f2
PM
558/**
559 * kmem_dump_obj - Print available slab provenance information
560 * @object: slab object for which to find provenance information.
561 *
562 * This function uses pr_cont(), so that the caller is expected to have
563 * printed out whatever preamble is appropriate. The provenance information
564 * depends on the type of object and on how much debugging is enabled.
565 * For a slab-cache object, the fact that it is a slab object is printed,
566 * and, if available, the slab name, return address, and stack trace from
e548eaa1 567 * the allocation and last free path of that object.
8e7f37f2
PM
568 *
569 * This function will splat if passed a pointer to a non-slab object.
570 * If you are not sure what type of object you have, you should instead
571 * use mem_dump_obj().
572 */
573void kmem_dump_obj(void *object)
574{
575 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
576 int i;
7213230a 577 struct slab *slab;
8e7f37f2
PM
578 unsigned long ptroffset;
579 struct kmem_obj_info kp = { };
580
581 if (WARN_ON_ONCE(!virt_addr_valid(object)))
582 return;
7213230a
MWO
583 slab = virt_to_slab(object);
584 if (WARN_ON_ONCE(!slab)) {
8e7f37f2
PM
585 pr_cont(" non-slab memory.\n");
586 return;
587 }
7213230a 588 kmem_obj_info(&kp, object, slab);
8e7f37f2
PM
589 if (kp.kp_slab_cache)
590 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
591 else
592 pr_cont(" slab%s", cp);
2dfe63e6
ME
593 if (is_kfence_address(object))
594 pr_cont(" (kfence)");
8e7f37f2
PM
595 if (kp.kp_objp)
596 pr_cont(" start %px", kp.kp_objp);
597 if (kp.kp_data_offset)
598 pr_cont(" data offset %lu", kp.kp_data_offset);
599 if (kp.kp_objp) {
600 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
601 pr_cont(" pointer offset %lu", ptroffset);
602 }
346907ce
VB
603 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
604 pr_cont(" size %u", kp.kp_slab_cache->object_size);
8e7f37f2
PM
605 if (kp.kp_ret)
606 pr_cont(" allocated at %pS\n", kp.kp_ret);
607 else
608 pr_cont("\n");
609 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
610 if (!kp.kp_stack[i])
611 break;
612 pr_info(" %pS\n", kp.kp_stack[i]);
613 }
e548eaa1
MS
614
615 if (kp.kp_free_stack[0])
616 pr_cont(" Free path:\n");
617
618 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
619 if (!kp.kp_free_stack[i])
620 break;
621 pr_info(" %pS\n", kp.kp_free_stack[i]);
622 }
623
8e7f37f2 624}
0d3dd2c8 625EXPORT_SYMBOL_GPL(kmem_dump_obj);
5bb1bb35 626#endif
8e7f37f2 627
45530c44 628/* Create a cache during boot when no slab services are available yet */
361d575e
AD
629void __init create_boot_cache(struct kmem_cache *s, const char *name,
630 unsigned int size, slab_flags_t flags,
631 unsigned int useroffset, unsigned int usersize)
45530c44
CL
632{
633 int err;
59bb4798 634 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
635
636 s->name = name;
637 s->size = s->object_size = size;
59bb4798
VB
638
639 /*
640 * For power of two sizes, guarantee natural alignment for kmalloc
641 * caches, regardless of SL*B debugging options.
642 */
643 if (is_power_of_2(size))
644 align = max(align, size);
645 s->align = calculate_alignment(flags, align, size);
646
346907ce 647#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
648 s->useroffset = useroffset;
649 s->usersize = usersize;
346907ce 650#endif
f7ce3190 651
45530c44
CL
652 err = __kmem_cache_create(s, flags);
653
654 if (err)
361d575e 655 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
656 name, size, err);
657
658 s->refcount = -1; /* Exempt from merging for now */
659}
660
0c474d31
CM
661static struct kmem_cache *__init create_kmalloc_cache(const char *name,
662 unsigned int size,
663 slab_flags_t flags)
45530c44
CL
664{
665 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
666
667 if (!s)
668 panic("Out of memory when creating slab %s\n", name);
669
0c474d31 670 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
45530c44
CL
671 list_add(&s->list, &slab_caches);
672 s->refcount = 1;
673 return s;
674}
675
cc252eae 676struct kmem_cache *
a07057dc
AB
677kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
678{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
679EXPORT_SYMBOL(kmalloc_caches);
680
3c615294
GR
681#ifdef CONFIG_RANDOM_KMALLOC_CACHES
682unsigned long random_kmalloc_seed __ro_after_init;
683EXPORT_SYMBOL(random_kmalloc_seed);
684#endif
685
2c59dd65
CL
686/*
687 * Conversion table for small slabs sizes / 8 to the index in the
688 * kmalloc array. This is necessary for slabs < 192 since we have non power
689 * of two cache sizes there. The size of larger slabs can be determined using
690 * fls.
691 */
d5f86655 692static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
693 3, /* 8 */
694 4, /* 16 */
695 5, /* 24 */
696 5, /* 32 */
697 6, /* 40 */
698 6, /* 48 */
699 6, /* 56 */
700 6, /* 64 */
701 1, /* 72 */
702 1, /* 80 */
703 1, /* 88 */
704 1, /* 96 */
705 7, /* 104 */
706 7, /* 112 */
707 7, /* 120 */
708 7, /* 128 */
709 2, /* 136 */
710 2, /* 144 */
711 2, /* 152 */
712 2, /* 160 */
713 2, /* 168 */
714 2, /* 176 */
715 2, /* 184 */
716 2 /* 192 */
717};
718
ac914d08 719static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
720{
721 return (bytes - 1) / 8;
722}
723
724/*
725 * Find the kmem_cache structure that serves a given size of
726 * allocation
727 */
3c615294 728struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags, unsigned long caller)
2c59dd65 729{
d5f86655 730 unsigned int index;
2c59dd65
CL
731
732 if (size <= 192) {
733 if (!size)
734 return ZERO_SIZE_PTR;
735
736 index = size_index[size_index_elem(size)];
61448479 737 } else {
221d7da6 738 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 739 return NULL;
2c59dd65 740 index = fls(size - 1);
61448479 741 }
2c59dd65 742
3c615294 743 return kmalloc_caches[kmalloc_type(flags, caller)][index];
2c59dd65
CL
744}
745
05a94065
KC
746size_t kmalloc_size_roundup(size_t size)
747{
8446a4de
DL
748 if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
749 /*
750 * The flags don't matter since size_index is common to all.
751 * Neither does the caller for just getting ->object_size.
752 */
753 return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
754 }
755
05a94065 756 /* Above the smaller buckets, size is a multiple of page size. */
8446a4de 757 if (size && size <= KMALLOC_MAX_SIZE)
05a94065
KC
758 return PAGE_SIZE << get_order(size);
759
3c615294 760 /*
8446a4de
DL
761 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
762 * and very large size - kmalloc() may fail.
3c615294 763 */
8446a4de
DL
764 return size;
765
05a94065
KC
766}
767EXPORT_SYMBOL(kmalloc_size_roundup);
768
cb5d9fb3 769#ifdef CONFIG_ZONE_DMA
494c1dfe
WL
770#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
771#else
772#define KMALLOC_DMA_NAME(sz)
773#endif
774
775#ifdef CONFIG_MEMCG_KMEM
776#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
cb5d9fb3 777#else
494c1dfe
WL
778#define KMALLOC_CGROUP_NAME(sz)
779#endif
780
2f7c1c13
VB
781#ifndef CONFIG_SLUB_TINY
782#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
783#else
784#define KMALLOC_RCL_NAME(sz)
785#endif
786
3c615294
GR
787#ifdef CONFIG_RANDOM_KMALLOC_CACHES
788#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
789#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
790#define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz,
791#define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz,
792#define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz,
793#define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz,
794#define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz,
795#define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz,
796#define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz,
797#define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz,
798#define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz,
799#define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
800#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
801#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
802#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
803#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
804#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
805#else // CONFIG_RANDOM_KMALLOC_CACHES
806#define KMALLOC_RANDOM_NAME(N, sz)
807#endif
808
cb5d9fb3
PL
809#define INIT_KMALLOC_INFO(__size, __short_size) \
810{ \
811 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
2f7c1c13 812 KMALLOC_RCL_NAME(__short_size) \
494c1dfe
WL
813 KMALLOC_CGROUP_NAME(__short_size) \
814 KMALLOC_DMA_NAME(__short_size) \
3c615294 815 KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \
cb5d9fb3
PL
816 .size = __size, \
817}
cb5d9fb3 818
4066c33d
GG
819/*
820 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
d6a71648
HY
821 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
822 * kmalloc-2M.
4066c33d 823 */
af3b5f87 824const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
825 INIT_KMALLOC_INFO(0, 0),
826 INIT_KMALLOC_INFO(96, 96),
827 INIT_KMALLOC_INFO(192, 192),
828 INIT_KMALLOC_INFO(8, 8),
829 INIT_KMALLOC_INFO(16, 16),
830 INIT_KMALLOC_INFO(32, 32),
831 INIT_KMALLOC_INFO(64, 64),
832 INIT_KMALLOC_INFO(128, 128),
833 INIT_KMALLOC_INFO(256, 256),
834 INIT_KMALLOC_INFO(512, 512),
835 INIT_KMALLOC_INFO(1024, 1k),
836 INIT_KMALLOC_INFO(2048, 2k),
837 INIT_KMALLOC_INFO(4096, 4k),
838 INIT_KMALLOC_INFO(8192, 8k),
839 INIT_KMALLOC_INFO(16384, 16k),
840 INIT_KMALLOC_INFO(32768, 32k),
841 INIT_KMALLOC_INFO(65536, 64k),
842 INIT_KMALLOC_INFO(131072, 128k),
843 INIT_KMALLOC_INFO(262144, 256k),
844 INIT_KMALLOC_INFO(524288, 512k),
845 INIT_KMALLOC_INFO(1048576, 1M),
d6a71648 846 INIT_KMALLOC_INFO(2097152, 2M)
4066c33d
GG
847};
848
f97d5f63 849/*
34cc6990
DS
850 * Patch up the size_index table if we have strange large alignment
851 * requirements for the kmalloc array. This is only the case for
852 * MIPS it seems. The standard arches will not generate any code here.
853 *
854 * Largest permitted alignment is 256 bytes due to the way we
855 * handle the index determination for the smaller caches.
856 *
857 * Make sure that nothing crazy happens if someone starts tinkering
858 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 859 */
34cc6990 860void __init setup_kmalloc_cache_index_table(void)
f97d5f63 861{
ac914d08 862 unsigned int i;
f97d5f63 863
2c59dd65 864 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
7d6b6cc3 865 !is_power_of_2(KMALLOC_MIN_SIZE));
2c59dd65
CL
866
867 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 868 unsigned int elem = size_index_elem(i);
2c59dd65
CL
869
870 if (elem >= ARRAY_SIZE(size_index))
871 break;
872 size_index[elem] = KMALLOC_SHIFT_LOW;
873 }
874
875 if (KMALLOC_MIN_SIZE >= 64) {
876 /*
0b8f0d87 877 * The 96 byte sized cache is not used if the alignment
2c59dd65
CL
878 * is 64 byte.
879 */
880 for (i = 64 + 8; i <= 96; i += 8)
881 size_index[size_index_elem(i)] = 7;
882
883 }
884
885 if (KMALLOC_MIN_SIZE >= 128) {
886 /*
887 * The 192 byte sized cache is not used if the alignment
888 * is 128 byte. Redirect kmalloc to use the 256 byte cache
889 * instead.
890 */
891 for (i = 128 + 8; i <= 192; i += 8)
892 size_index[size_index_elem(i)] = 8;
893 }
34cc6990
DS
894}
895
963e84b0
CM
896static unsigned int __kmalloc_minalign(void)
897{
c15cdea5
CM
898 unsigned int minalign = dma_get_cache_alignment();
899
05ee7741
PT
900 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
901 is_swiotlb_allocated())
c15cdea5
CM
902 minalign = ARCH_KMALLOC_MINALIGN;
903
904 return max(minalign, arch_slab_minalign());
963e84b0
CM
905}
906
0c474d31 907void __init
13657d0a 908new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 909{
963e84b0
CM
910 unsigned int minalign = __kmalloc_minalign();
911 unsigned int aligned_size = kmalloc_info[idx].size;
912 int aligned_idx = idx;
913
2f7c1c13 914 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
1291523f 915 flags |= SLAB_RECLAIM_ACCOUNT;
494c1dfe 916 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
17c17367 917 if (mem_cgroup_kmem_disabled()) {
494c1dfe
WL
918 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
919 return;
920 }
921 flags |= SLAB_ACCOUNT;
33647783
OK
922 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
923 flags |= SLAB_CACHE_DMA;
494c1dfe 924 }
1291523f 925
3c615294
GR
926#ifdef CONFIG_RANDOM_KMALLOC_CACHES
927 if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
928 flags |= SLAB_NO_MERGE;
929#endif
930
13e680fb
WL
931 /*
932 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
933 * KMALLOC_NORMAL caches.
934 */
935 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
d5bf4857
VB
936 flags |= SLAB_NO_MERGE;
937
963e84b0
CM
938 if (minalign > ARCH_KMALLOC_MINALIGN) {
939 aligned_size = ALIGN(aligned_size, minalign);
940 aligned_idx = __kmalloc_index(aligned_size, false);
941 }
942
943 if (!kmalloc_caches[type][aligned_idx])
944 kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
945 kmalloc_info[aligned_idx].name[type],
946 aligned_size, flags);
947 if (idx != aligned_idx)
948 kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
a9730fca
CL
949}
950
34cc6990
DS
951/*
952 * Create the kmalloc array. Some of the regular kmalloc arrays
953 * may already have been created because they were needed to
954 * enable allocations for slab creation.
955 */
d50112ed 956void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 957{
13657d0a
PL
958 int i;
959 enum kmalloc_cache_type type;
34cc6990 960
494c1dfe
WL
961 /*
962 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
963 */
33647783 964 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
1291523f
VB
965 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
966 if (!kmalloc_caches[type][i])
967 new_kmalloc_cache(i, type, flags);
f97d5f63 968
1291523f
VB
969 /*
970 * Caches that are not of the two-to-the-power-of size.
971 * These have to be created immediately after the
972 * earlier power of two caches
973 */
974 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
975 !kmalloc_caches[type][1])
976 new_kmalloc_cache(1, type, flags);
977 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
978 !kmalloc_caches[type][2])
979 new_kmalloc_cache(2, type, flags);
980 }
8a965b3b 981 }
3c615294
GR
982#ifdef CONFIG_RANDOM_KMALLOC_CACHES
983 random_kmalloc_seed = get_random_u64();
984#endif
8a965b3b 985
f97d5f63
CL
986 /* Kmalloc array is now usable */
987 slab_state = UP;
f97d5f63 988}
d6a71648
HY
989
990void free_large_kmalloc(struct folio *folio, void *object)
991{
992 unsigned int order = folio_order(folio);
993
994 if (WARN_ON_ONCE(order == 0))
995 pr_warn_once("object pointer: 0x%p\n", object);
996
997 kmemleak_free(object);
998 kasan_kfree_large(object);
27bc50fc 999 kmsan_kfree_large(object);
d6a71648
HY
1000
1001 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
1002 -(PAGE_SIZE << order));
1003 __free_pages(folio_page(folio, 0), order);
1004}
b1405135
HY
1005
1006static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
1007static __always_inline
1008void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
1009{
1010 struct kmem_cache *s;
1011 void *ret;
1012
1013 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
1014 ret = __kmalloc_large_node(size, flags, node);
32868715 1015 trace_kmalloc(caller, ret, size,
11e9734b 1016 PAGE_SIZE << get_order(size), flags, node);
b1405135
HY
1017 return ret;
1018 }
1019
3c615294 1020 s = kmalloc_slab(size, flags, caller);
b1405135
HY
1021
1022 if (unlikely(ZERO_OR_NULL_PTR(s)))
1023 return s;
1024
1025 ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
1026 ret = kasan_kmalloc(s, ret, size, flags);
32868715 1027 trace_kmalloc(caller, ret, size, s->size, flags, node);
b1405135
HY
1028 return ret;
1029}
1030
1031void *__kmalloc_node(size_t size, gfp_t flags, int node)
1032{
1033 return __do_kmalloc_node(size, flags, node, _RET_IP_);
1034}
1035EXPORT_SYMBOL(__kmalloc_node);
1036
1037void *__kmalloc(size_t size, gfp_t flags)
1038{
1039 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
1040}
1041EXPORT_SYMBOL(__kmalloc);
1042
1043void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
1044 int node, unsigned long caller)
1045{
1046 return __do_kmalloc_node(size, flags, node, caller);
1047}
1048EXPORT_SYMBOL(__kmalloc_node_track_caller);
1049
1050/**
1051 * kfree - free previously allocated memory
ae65a521 1052 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
b1405135
HY
1053 *
1054 * If @object is NULL, no operation is performed.
b1405135
HY
1055 */
1056void kfree(const void *object)
1057{
1058 struct folio *folio;
1059 struct slab *slab;
1060 struct kmem_cache *s;
1061
1062 trace_kfree(_RET_IP_, object);
1063
1064 if (unlikely(ZERO_OR_NULL_PTR(object)))
1065 return;
1066
1067 folio = virt_to_folio(object);
1068 if (unlikely(!folio_test_slab(folio))) {
1069 free_large_kmalloc(folio, (void *)object);
1070 return;
1071 }
1072
1073 slab = folio_slab(folio);
1074 s = slab->slab_cache;
1075 __kmem_cache_free(s, (void *)object, _RET_IP_);
1076}
1077EXPORT_SYMBOL(kfree);
1078
445d41d7
VB
1079/**
1080 * __ksize -- Report full size of underlying allocation
a2076201 1081 * @object: pointer to the object
445d41d7
VB
1082 *
1083 * This should only be used internally to query the true size of allocations.
1084 * It is not meant to be a way to discover the usable size of an allocation
1085 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1086 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1087 * and/or FORTIFY_SOURCE.
1088 *
a2076201 1089 * Return: size of the actual memory used by @object in bytes
445d41d7 1090 */
b1405135
HY
1091size_t __ksize(const void *object)
1092{
1093 struct folio *folio;
1094
1095 if (unlikely(object == ZERO_SIZE_PTR))
1096 return 0;
1097
1098 folio = virt_to_folio(object);
1099
d5eff736
HY
1100 if (unlikely(!folio_test_slab(folio))) {
1101 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1102 return 0;
1103 if (WARN_ON(object != folio_address(folio)))
1104 return 0;
b1405135 1105 return folio_size(folio);
d5eff736 1106 }
b1405135 1107
946fa0db
FT
1108#ifdef CONFIG_SLUB_DEBUG
1109 skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1110#endif
1111
b1405135
HY
1112 return slab_ksize(folio_slab(folio)->slab_cache);
1113}
26a40990 1114
26a40990
HY
1115void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1116{
1117 void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1118 size, _RET_IP_);
1119
2c1d697f 1120 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
26a40990
HY
1121
1122 ret = kasan_kmalloc(s, ret, size, gfpflags);
1123 return ret;
1124}
1125EXPORT_SYMBOL(kmalloc_trace);
1126
1127void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1128 int node, size_t size)
1129{
1130 void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1131
2c1d697f 1132 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
26a40990
HY
1133
1134 ret = kasan_kmalloc(s, ret, size, gfpflags);
1135 return ret;
1136}
1137EXPORT_SYMBOL(kmalloc_node_trace);
45530c44 1138
44405099
LL
1139gfp_t kmalloc_fix_flags(gfp_t flags)
1140{
1141 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1142
1143 flags &= ~GFP_SLAB_BUG_MASK;
1144 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1145 invalid_mask, &invalid_mask, flags, &flags);
1146 dump_stack();
1147
1148 return flags;
1149}
1150
cea371f4
VD
1151/*
1152 * To avoid unnecessary overhead, we pass through large allocation requests
1153 * directly to the page allocator. We use __GFP_COMP, because we will need to
1154 * know the allocation order to free the pages properly in kfree.
1155 */
45530c44 1156
b1405135 1157static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
52383431 1158{
52383431 1159 struct page *page;
a0c3b940
HY
1160 void *ptr = NULL;
1161 unsigned int order = get_order(size);
52383431 1162
44405099
LL
1163 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1164 flags = kmalloc_fix_flags(flags);
1165
52383431 1166 flags |= __GFP_COMP;
a0c3b940
HY
1167 page = alloc_pages_node(node, flags, order);
1168 if (page) {
1169 ptr = page_address(page);
96403bfe
MS
1170 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1171 PAGE_SIZE << order);
6a486c0a 1172 }
a0c3b940
HY
1173
1174 ptr = kasan_kmalloc_large(ptr, size, flags);
1175 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1176 kmemleak_alloc(ptr, size, 1, flags);
27bc50fc 1177 kmsan_kmalloc_large(ptr, size, flags);
a0c3b940
HY
1178
1179 return ptr;
1180}
bf37d791 1181
c4cab557
HY
1182void *kmalloc_large(size_t size, gfp_t flags)
1183{
b1405135 1184 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
c4cab557 1185
2c1d697f
HY
1186 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1187 flags, NUMA_NO_NODE);
52383431
VD
1188 return ret;
1189}
c4cab557 1190EXPORT_SYMBOL(kmalloc_large);
52383431 1191
bf37d791 1192void *kmalloc_large_node(size_t size, gfp_t flags, int node)
f1b6eb6e 1193{
b1405135 1194 void *ret = __kmalloc_large_node(size, flags, node);
bf37d791 1195
2c1d697f
HY
1196 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1197 flags, node);
f1b6eb6e
CL
1198 return ret;
1199}
a0c3b940 1200EXPORT_SYMBOL(kmalloc_large_node);
45530c44 1201
7c00fce9
TG
1202#ifdef CONFIG_SLAB_FREELIST_RANDOM
1203/* Randomize a generic freelist */
ffe4dfe0 1204static void freelist_randomize(unsigned int *list,
302d55d5 1205 unsigned int count)
7c00fce9 1206{
7c00fce9 1207 unsigned int rand;
302d55d5 1208 unsigned int i;
7c00fce9
TG
1209
1210 for (i = 0; i < count; i++)
1211 list[i] = i;
1212
1213 /* Fisher-Yates shuffle */
1214 for (i = count - 1; i > 0; i--) {
ffe4dfe0 1215 rand = get_random_u32_below(i + 1);
7c00fce9
TG
1216 swap(list[i], list[rand]);
1217 }
1218}
1219
1220/* Create a random sequence per cache */
1221int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1222 gfp_t gfp)
1223{
7c00fce9
TG
1224
1225 if (count < 2 || cachep->random_seq)
1226 return 0;
1227
1228 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1229 if (!cachep->random_seq)
1230 return -ENOMEM;
1231
ffe4dfe0 1232 freelist_randomize(cachep->random_seq, count);
7c00fce9
TG
1233 return 0;
1234}
1235
1236/* Destroy the per-cache random freelist sequence */
1237void cache_random_seq_destroy(struct kmem_cache *cachep)
1238{
1239 kfree(cachep->random_seq);
1240 cachep->random_seq = NULL;
1241}
1242#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1243
5b365771 1244#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1245#ifdef CONFIG_SLAB
0825a6f9 1246#define SLABINFO_RIGHTS (0600)
e9b4db2b 1247#else
0825a6f9 1248#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1249#endif
1250
b047501c 1251static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1252{
1253 /*
1254 * Output format version, so at least we can change it
1255 * without _too_ many complaints.
1256 */
1257#ifdef CONFIG_DEBUG_SLAB
1258 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1259#else
1260 seq_puts(m, "slabinfo - version: 2.1\n");
1261#endif
756a025f 1262 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1263 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1264 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1265#ifdef CONFIG_DEBUG_SLAB
756a025f 1266 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1267 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1268#endif
1269 seq_putc(m, '\n');
1270}
1271
c29b5b3d 1272static void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1273{
b7454ad3 1274 mutex_lock(&slab_mutex);
c7094406 1275 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1276}
1277
c29b5b3d 1278static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1279{
c7094406 1280 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1281}
1282
c29b5b3d 1283static void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1284{
1285 mutex_unlock(&slab_mutex);
1286}
1287
b047501c 1288static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1289{
0d7561c6
GC
1290 struct slabinfo sinfo;
1291
1292 memset(&sinfo, 0, sizeof(sinfo));
1293 get_slabinfo(s, &sinfo);
1294
1295 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1296 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1297 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1298
1299 seq_printf(m, " : tunables %4u %4u %4u",
1300 sinfo.limit, sinfo.batchcount, sinfo.shared);
1301 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1302 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1303 slabinfo_show_stats(m, s);
1304 seq_putc(m, '\n');
b7454ad3
GC
1305}
1306
1df3b26f 1307static int slab_show(struct seq_file *m, void *p)
749c5415 1308{
c7094406 1309 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1310
c7094406 1311 if (p == slab_caches.next)
1df3b26f 1312 print_slabinfo_header(m);
10befea9 1313 cache_show(s, m);
b047501c
VD
1314 return 0;
1315}
1316
852d8be0
YS
1317void dump_unreclaimable_slab(void)
1318{
7714304f 1319 struct kmem_cache *s;
852d8be0
YS
1320 struct slabinfo sinfo;
1321
1322 /*
1323 * Here acquiring slab_mutex is risky since we don't prefer to get
1324 * sleep in oom path. But, without mutex hold, it may introduce a
1325 * risk of crash.
1326 * Use mutex_trylock to protect the list traverse, dump nothing
1327 * without acquiring the mutex.
1328 */
1329 if (!mutex_trylock(&slab_mutex)) {
1330 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1331 return;
1332 }
1333
1334 pr_info("Unreclaimable slab info:\n");
1335 pr_info("Name Used Total\n");
1336
7714304f 1337 list_for_each_entry(s, &slab_caches, list) {
10befea9 1338 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1339 continue;
1340
1341 get_slabinfo(s, &sinfo);
1342
1343 if (sinfo.num_objs > 0)
10befea9 1344 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1345 (sinfo.active_objs * s->size) / 1024,
1346 (sinfo.num_objs * s->size) / 1024);
1347 }
1348 mutex_unlock(&slab_mutex);
1349}
1350
b7454ad3
GC
1351/*
1352 * slabinfo_op - iterator that generates /proc/slabinfo
1353 *
1354 * Output layout:
1355 * cache-name
1356 * num-active-objs
1357 * total-objs
1358 * object size
1359 * num-active-slabs
1360 * total-slabs
1361 * num-pages-per-slab
1362 * + further values on SMP and with statistics enabled
1363 */
1364static const struct seq_operations slabinfo_op = {
1df3b26f 1365 .start = slab_start,
276a2439
WL
1366 .next = slab_next,
1367 .stop = slab_stop,
1df3b26f 1368 .show = slab_show,
b7454ad3
GC
1369};
1370
1371static int slabinfo_open(struct inode *inode, struct file *file)
1372{
1373 return seq_open(file, &slabinfo_op);
1374}
1375
97a32539 1376static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1377 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1378 .proc_open = slabinfo_open,
1379 .proc_read = seq_read,
1380 .proc_write = slabinfo_write,
1381 .proc_lseek = seq_lseek,
1382 .proc_release = seq_release,
b7454ad3
GC
1383};
1384
1385static int __init slab_proc_init(void)
1386{
97a32539 1387 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1388 return 0;
1389}
1390module_init(slab_proc_init);
fcf8a1e4 1391
5b365771 1392#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c 1393
9ed9cac1
KC
1394static __always_inline __realloc_size(2) void *
1395__do_krealloc(const void *p, size_t new_size, gfp_t flags)
928cec9c
AR
1396{
1397 void *ret;
fa9ba3aa 1398 size_t ks;
928cec9c 1399
38931d89 1400 /* Check for double-free before calling ksize. */
d12d9ad8
AK
1401 if (likely(!ZERO_OR_NULL_PTR(p))) {
1402 if (!kasan_check_byte(p))
1403 return NULL;
38931d89 1404 ks = ksize(p);
d12d9ad8
AK
1405 } else
1406 ks = 0;
928cec9c 1407
d12d9ad8 1408 /* If the object still fits, repoison it precisely. */
0316bec2 1409 if (ks >= new_size) {
0116523c 1410 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1411 return (void *)p;
0316bec2 1412 }
928cec9c
AR
1413
1414 ret = kmalloc_track_caller(new_size, flags);
d12d9ad8
AK
1415 if (ret && p) {
1416 /* Disable KASAN checks as the object's redzone is accessed. */
1417 kasan_disable_current();
1418 memcpy(ret, kasan_reset_tag(p), ks);
1419 kasan_enable_current();
1420 }
928cec9c
AR
1421
1422 return ret;
1423}
1424
928cec9c
AR
1425/**
1426 * krealloc - reallocate memory. The contents will remain unchanged.
1427 * @p: object to reallocate memory for.
1428 * @new_size: how many bytes of memory are required.
1429 * @flags: the type of memory to allocate.
1430 *
1431 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1432 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1433 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1434 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1435 *
1436 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1437 */
1438void *krealloc(const void *p, size_t new_size, gfp_t flags)
1439{
1440 void *ret;
1441
1442 if (unlikely(!new_size)) {
1443 kfree(p);
1444 return ZERO_SIZE_PTR;
1445 }
1446
1447 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1448 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1449 kfree(p);
1450
1451 return ret;
1452}
1453EXPORT_SYMBOL(krealloc);
1454
1455/**
453431a5 1456 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1457 * @p: object to free memory of
1458 *
1459 * The memory of the object @p points to is zeroed before freed.
453431a5 1460 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1461 *
1462 * Note: this function zeroes the whole allocated buffer which can be a good
1463 * deal bigger than the requested buffer size passed to kmalloc(). So be
1464 * careful when using this function in performance sensitive code.
1465 */
453431a5 1466void kfree_sensitive(const void *p)
928cec9c
AR
1467{
1468 size_t ks;
1469 void *mem = (void *)p;
1470
928cec9c 1471 ks = ksize(mem);
38931d89
KC
1472 if (ks) {
1473 kasan_unpoison_range(mem, ks);
fa9ba3aa 1474 memzero_explicit(mem, ks);
38931d89 1475 }
928cec9c
AR
1476 kfree(mem);
1477}
453431a5 1478EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1479
10d1f8cb
ME
1480size_t ksize(const void *objp)
1481{
0d4ca4c9 1482 /*
38931d89
KC
1483 * We need to first check that the pointer to the object is valid.
1484 * The KASAN report printed from ksize() is more useful, then when
1485 * it's printed later when the behaviour could be undefined due to
1486 * a potential use-after-free or double-free.
0d4ca4c9 1487 *
611806b4
AK
1488 * We use kasan_check_byte(), which is supported for the hardware
1489 * tag-based KASAN mode, unlike kasan_check_read/write().
1490 *
1491 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1492 * ksize() writing to and potentially corrupting the memory region.
1493 *
1494 * We want to perform the check before __ksize(), to avoid potentially
1495 * crashing in __ksize() due to accessing invalid metadata.
1496 */
611806b4 1497 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1498 return 0;
1499
38931d89 1500 return kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1501}
1502EXPORT_SYMBOL(ksize);
1503
928cec9c
AR
1504/* Tracepoints definitions. */
1505EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1506EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
928cec9c
AR
1507EXPORT_TRACEPOINT_SYMBOL(kfree);
1508EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1509
1510int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1511{
1512 if (__should_failslab(s, gfpflags))
1513 return -ENOMEM;
1514 return 0;
1515}
1516ALLOW_ERROR_INJECTION(should_failslab, ERRNO);