Merge tag 'livepatching-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
fcf8a1e4 20#include <linux/debugfs.h>
039363f3
CL
21#include <asm/cacheflush.h>
22#include <asm/tlbflush.h>
23#include <asm/page.h>
2633d7a0 24#include <linux/memcontrol.h>
928cec9c
AR
25
26#define CREATE_TRACE_POINTS
f1b6eb6e 27#include <trace/events/kmem.h>
039363f3 28
97d06609
CL
29#include "slab.h"
30
31enum slab_state slab_state;
18004c5d
CL
32LIST_HEAD(slab_caches);
33DEFINE_MUTEX(slab_mutex);
9b030cb8 34struct kmem_cache *kmem_cache;
97d06609 35
2d891fbc
KC
36#ifdef CONFIG_HARDENED_USERCOPY
37bool usercopy_fallback __ro_after_init =
38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
39module_param(usercopy_fallback, bool, 0400);
40MODULE_PARM_DESC(usercopy_fallback,
41 "WARN instead of reject usercopy whitelist violations");
42#endif
43
657dc2f9
TH
44static LIST_HEAD(slab_caches_to_rcu_destroy);
45static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
46static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
47 slab_caches_to_rcu_destroy_workfn);
48
423c929c
JK
49/*
50 * Set of flags that will prevent slab merging
51 */
52#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 54 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 55
230e9fc2 56#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
58
59/*
60 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 61 */
7660a6fd 62static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
63
64static int __init setup_slab_nomerge(char *str)
65{
7660a6fd 66 slab_nomerge = true;
423c929c
JK
67 return 1;
68}
69
70#ifdef CONFIG_SLUB
71__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
72#endif
73
74__setup("slab_nomerge", setup_slab_nomerge);
75
07f361b2
JK
76/*
77 * Determine the size of a slab object
78 */
79unsigned int kmem_cache_size(struct kmem_cache *s)
80{
81 return s->object_size;
82}
83EXPORT_SYMBOL(kmem_cache_size);
84
77be4b13 85#ifdef CONFIG_DEBUG_VM
f4957d5b 86static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 87{
039363f3
CL
88 if (!name || in_interrupt() || size < sizeof(void *) ||
89 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 return -EINVAL;
039363f3 92 }
b920536a 93
20cea968 94 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
95 return 0;
96}
97#else
f4957d5b 98static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
99{
100 return 0;
101}
20cea968
CL
102#endif
103
484748f0
CL
104void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
105{
106 size_t i;
107
ca257195
JDB
108 for (i = 0; i < nr; i++) {
109 if (s)
110 kmem_cache_free(s, p[i]);
111 else
112 kfree(p[i]);
113 }
484748f0
CL
114}
115
865762a8 116int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
117 void **p)
118{
119 size_t i;
120
121 for (i = 0; i < nr; i++) {
122 void *x = p[i] = kmem_cache_alloc(s, flags);
123 if (!x) {
124 __kmem_cache_free_bulk(s, i, p);
865762a8 125 return 0;
484748f0
CL
126 }
127 }
865762a8 128 return i;
484748f0
CL
129}
130
84c07d11 131#ifdef CONFIG_MEMCG_KMEM
510ded33
TH
132
133LIST_HEAD(slab_root_caches);
63b02ef7 134static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
510ded33 135
f0a3a24b
RG
136static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
137
f7ce3190 138void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 139{
9eeadc8b 140 s->memcg_params.root_cache = NULL;
f7ce3190 141 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 142 INIT_LIST_HEAD(&s->memcg_params.children);
92ee383f 143 s->memcg_params.dying = false;
f7ce3190
VD
144}
145
146static int init_memcg_params(struct kmem_cache *s,
c03914b7 147 struct kmem_cache *root_cache)
f7ce3190
VD
148{
149 struct memcg_cache_array *arr;
33a690c4 150
9eeadc8b 151 if (root_cache) {
f0a3a24b
RG
152 int ret = percpu_ref_init(&s->memcg_params.refcnt,
153 kmemcg_cache_shutdown,
154 0, GFP_KERNEL);
155 if (ret)
156 return ret;
157
f7ce3190 158 s->memcg_params.root_cache = root_cache;
9eeadc8b 159 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 161 return 0;
f7ce3190 162 }
33a690c4 163
f7ce3190 164 slab_init_memcg_params(s);
33a690c4 165
f7ce3190
VD
166 if (!memcg_nr_cache_ids)
167 return 0;
33a690c4 168
f80c7dab
JW
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
f7ce3190
VD
172 if (!arr)
173 return -ENOMEM;
33a690c4 174
f7ce3190 175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
176 return 0;
177}
178
f7ce3190 179static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 180{
b749ecfa 181 if (is_root_cache(s)) {
f80c7dab 182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
b749ecfa
RG
183 } else {
184 mem_cgroup_put(s->memcg_params.memcg);
185 WRITE_ONCE(s->memcg_params.memcg, NULL);
f0a3a24b 186 percpu_ref_exit(&s->memcg_params.refcnt);
b749ecfa 187 }
f80c7dab
JW
188}
189
190static void free_memcg_params(struct rcu_head *rcu)
191{
192 struct memcg_cache_array *old;
193
194 old = container_of(rcu, struct memcg_cache_array, rcu);
195 kvfree(old);
33a690c4
VD
196}
197
f7ce3190 198static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 199{
f7ce3190 200 struct memcg_cache_array *old, *new;
6f817f4c 201
f80c7dab
JW
202 new = kvzalloc(sizeof(struct memcg_cache_array) +
203 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 204 if (!new)
6f817f4c
VD
205 return -ENOMEM;
206
f7ce3190
VD
207 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
208 lockdep_is_held(&slab_mutex));
209 if (old)
210 memcpy(new->entries, old->entries,
211 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 212
f7ce3190
VD
213 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
214 if (old)
f80c7dab 215 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
216 return 0;
217}
218
55007d84
GC
219int memcg_update_all_caches(int num_memcgs)
220{
221 struct kmem_cache *s;
222 int ret = 0;
55007d84 223
05257a1a 224 mutex_lock(&slab_mutex);
510ded33 225 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 226 ret = update_memcg_params(s, num_memcgs);
55007d84 227 /*
55007d84
GC
228 * Instead of freeing the memory, we'll just leave the caches
229 * up to this point in an updated state.
230 */
231 if (ret)
05257a1a 232 break;
55007d84 233 }
55007d84
GC
234 mutex_unlock(&slab_mutex);
235 return ret;
236}
657dc2f9 237
c03914b7 238void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
657dc2f9 239{
510ded33
TH
240 if (is_root_cache(s)) {
241 list_add(&s->root_caches_node, &slab_root_caches);
242 } else {
f0a3a24b 243 css_get(&memcg->css);
c03914b7 244 s->memcg_params.memcg = memcg;
510ded33
TH
245 list_add(&s->memcg_params.children_node,
246 &s->memcg_params.root_cache->memcg_params.children);
247 list_add(&s->memcg_params.kmem_caches_node,
248 &s->memcg_params.memcg->kmem_caches);
249 }
250}
251
252static void memcg_unlink_cache(struct kmem_cache *s)
253{
254 if (is_root_cache(s)) {
255 list_del(&s->root_caches_node);
256 } else {
257 list_del(&s->memcg_params.children_node);
258 list_del(&s->memcg_params.kmem_caches_node);
259 }
657dc2f9 260}
33a690c4 261#else
f7ce3190 262static inline int init_memcg_params(struct kmem_cache *s,
c03914b7 263 struct kmem_cache *root_cache)
33a690c4
VD
264{
265 return 0;
266}
267
f7ce3190 268static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
269{
270}
657dc2f9 271
510ded33 272static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
273{
274}
84c07d11 275#endif /* CONFIG_MEMCG_KMEM */
55007d84 276
692ae74a
BL
277/*
278 * Figure out what the alignment of the objects will be given a set of
279 * flags, a user specified alignment and the size of the objects.
280 */
f4957d5b
AD
281static unsigned int calculate_alignment(slab_flags_t flags,
282 unsigned int align, unsigned int size)
692ae74a
BL
283{
284 /*
285 * If the user wants hardware cache aligned objects then follow that
286 * suggestion if the object is sufficiently large.
287 *
288 * The hardware cache alignment cannot override the specified
289 * alignment though. If that is greater then use it.
290 */
291 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 292 unsigned int ralign;
692ae74a
BL
293
294 ralign = cache_line_size();
295 while (size <= ralign / 2)
296 ralign /= 2;
297 align = max(align, ralign);
298 }
299
300 if (align < ARCH_SLAB_MINALIGN)
301 align = ARCH_SLAB_MINALIGN;
302
303 return ALIGN(align, sizeof(void *));
304}
305
423c929c
JK
306/*
307 * Find a mergeable slab cache
308 */
309int slab_unmergeable(struct kmem_cache *s)
310{
311 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
312 return 1;
313
314 if (!is_root_cache(s))
315 return 1;
316
317 if (s->ctor)
318 return 1;
319
8eb8284b
DW
320 if (s->usersize)
321 return 1;
322
423c929c
JK
323 /*
324 * We may have set a slab to be unmergeable during bootstrap.
325 */
326 if (s->refcount < 0)
327 return 1;
328
d38a2b7a
MS
329#ifdef CONFIG_MEMCG_KMEM
330 /*
331 * Skip the dying kmem_cache.
332 */
333 if (s->memcg_params.dying)
334 return 1;
335#endif
336
423c929c
JK
337 return 0;
338}
339
f4957d5b 340struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 341 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
342{
343 struct kmem_cache *s;
344
c6e28895 345 if (slab_nomerge)
423c929c
JK
346 return NULL;
347
348 if (ctor)
349 return NULL;
350
351 size = ALIGN(size, sizeof(void *));
352 align = calculate_alignment(flags, align, size);
353 size = ALIGN(size, align);
354 flags = kmem_cache_flags(size, flags, name, NULL);
355
c6e28895
GM
356 if (flags & SLAB_NEVER_MERGE)
357 return NULL;
358
510ded33 359 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
360 if (slab_unmergeable(s))
361 continue;
362
363 if (size > s->size)
364 continue;
365
366 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
367 continue;
368 /*
369 * Check if alignment is compatible.
370 * Courtesy of Adrian Drzewiecki
371 */
372 if ((s->size & ~(align - 1)) != s->size)
373 continue;
374
375 if (s->size - size >= sizeof(void *))
376 continue;
377
95069ac8
JK
378 if (IS_ENABLED(CONFIG_SLAB) && align &&
379 (align > s->align || s->align % align))
380 continue;
381
423c929c
JK
382 return s;
383 }
384 return NULL;
385}
386
c9a77a79 387static struct kmem_cache *create_cache(const char *name,
613a5eb5 388 unsigned int object_size, unsigned int align,
7bbdb81e
AD
389 slab_flags_t flags, unsigned int useroffset,
390 unsigned int usersize, void (*ctor)(void *),
c9a77a79 391 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
392{
393 struct kmem_cache *s;
394 int err;
395
8eb8284b
DW
396 if (WARN_ON(useroffset + usersize > object_size))
397 useroffset = usersize = 0;
398
794b1248
VD
399 err = -ENOMEM;
400 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
401 if (!s)
402 goto out;
403
404 s->name = name;
613a5eb5 405 s->size = s->object_size = object_size;
794b1248
VD
406 s->align = align;
407 s->ctor = ctor;
8eb8284b
DW
408 s->useroffset = useroffset;
409 s->usersize = usersize;
794b1248 410
c03914b7 411 err = init_memcg_params(s, root_cache);
794b1248
VD
412 if (err)
413 goto out_free_cache;
414
415 err = __kmem_cache_create(s, flags);
416 if (err)
417 goto out_free_cache;
418
419 s->refcount = 1;
420 list_add(&s->list, &slab_caches);
c03914b7 421 memcg_link_cache(s, memcg);
794b1248
VD
422out:
423 if (err)
424 return ERR_PTR(err);
425 return s;
426
427out_free_cache:
f7ce3190 428 destroy_memcg_params(s);
7c4da061 429 kmem_cache_free(kmem_cache, s);
794b1248
VD
430 goto out;
431}
45906855 432
f496990f
MR
433/**
434 * kmem_cache_create_usercopy - Create a cache with a region suitable
435 * for copying to userspace
77be4b13
SK
436 * @name: A string which is used in /proc/slabinfo to identify this cache.
437 * @size: The size of objects to be created in this cache.
438 * @align: The required alignment for the objects.
439 * @flags: SLAB flags
8eb8284b
DW
440 * @useroffset: Usercopy region offset
441 * @usersize: Usercopy region size
77be4b13
SK
442 * @ctor: A constructor for the objects.
443 *
77be4b13
SK
444 * Cannot be called within a interrupt, but can be interrupted.
445 * The @ctor is run when new pages are allocated by the cache.
446 *
447 * The flags are
448 *
449 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
450 * to catch references to uninitialised memory.
451 *
f496990f 452 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
453 * for buffer overruns.
454 *
455 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
456 * cacheline. This can be beneficial if you're counting cycles as closely
457 * as davem.
f496990f
MR
458 *
459 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 460 */
2633d7a0 461struct kmem_cache *
f4957d5b
AD
462kmem_cache_create_usercopy(const char *name,
463 unsigned int size, unsigned int align,
7bbdb81e
AD
464 slab_flags_t flags,
465 unsigned int useroffset, unsigned int usersize,
8eb8284b 466 void (*ctor)(void *))
77be4b13 467{
40911a79 468 struct kmem_cache *s = NULL;
3dec16ea 469 const char *cache_name;
3965fc36 470 int err;
039363f3 471
77be4b13 472 get_online_cpus();
03afc0e2 473 get_online_mems();
05257a1a 474 memcg_get_cache_ids();
03afc0e2 475
77be4b13 476 mutex_lock(&slab_mutex);
686d550d 477
794b1248 478 err = kmem_cache_sanity_check(name, size);
3aa24f51 479 if (err) {
3965fc36 480 goto out_unlock;
3aa24f51 481 }
686d550d 482
e70954fd
TG
483 /* Refuse requests with allocator specific flags */
484 if (flags & ~SLAB_FLAGS_PERMITTED) {
485 err = -EINVAL;
486 goto out_unlock;
487 }
488
d8843922
GC
489 /*
490 * Some allocators will constraint the set of valid flags to a subset
491 * of all flags. We expect them to define CACHE_CREATE_MASK in this
492 * case, and we'll just provide them with a sanitized version of the
493 * passed flags.
494 */
495 flags &= CACHE_CREATE_MASK;
686d550d 496
8eb8284b
DW
497 /* Fail closed on bad usersize of useroffset values. */
498 if (WARN_ON(!usersize && useroffset) ||
499 WARN_ON(size < usersize || size - usersize < useroffset))
500 usersize = useroffset = 0;
501
502 if (!usersize)
503 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 504 if (s)
3965fc36 505 goto out_unlock;
2633d7a0 506
3dec16ea 507 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
508 if (!cache_name) {
509 err = -ENOMEM;
510 goto out_unlock;
511 }
7c9adf5a 512
613a5eb5 513 s = create_cache(cache_name, size,
c9a77a79 514 calculate_alignment(flags, align, size),
8eb8284b 515 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
516 if (IS_ERR(s)) {
517 err = PTR_ERR(s);
3dec16ea 518 kfree_const(cache_name);
794b1248 519 }
3965fc36
VD
520
521out_unlock:
20cea968 522 mutex_unlock(&slab_mutex);
03afc0e2 523
05257a1a 524 memcg_put_cache_ids();
03afc0e2 525 put_online_mems();
20cea968
CL
526 put_online_cpus();
527
ba3253c7 528 if (err) {
686d550d
CL
529 if (flags & SLAB_PANIC)
530 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
531 name, err);
532 else {
1170532b 533 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
534 name, err);
535 dump_stack();
536 }
686d550d
CL
537 return NULL;
538 }
039363f3
CL
539 return s;
540}
8eb8284b
DW
541EXPORT_SYMBOL(kmem_cache_create_usercopy);
542
f496990f
MR
543/**
544 * kmem_cache_create - Create a cache.
545 * @name: A string which is used in /proc/slabinfo to identify this cache.
546 * @size: The size of objects to be created in this cache.
547 * @align: The required alignment for the objects.
548 * @flags: SLAB flags
549 * @ctor: A constructor for the objects.
550 *
551 * Cannot be called within a interrupt, but can be interrupted.
552 * The @ctor is run when new pages are allocated by the cache.
553 *
554 * The flags are
555 *
556 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
557 * to catch references to uninitialised memory.
558 *
559 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
560 * for buffer overruns.
561 *
562 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
563 * cacheline. This can be beneficial if you're counting cycles as closely
564 * as davem.
565 *
566 * Return: a pointer to the cache on success, NULL on failure.
567 */
8eb8284b 568struct kmem_cache *
f4957d5b 569kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
570 slab_flags_t flags, void (*ctor)(void *))
571{
6d07d1cd 572 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
573 ctor);
574}
794b1248 575EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 576
657dc2f9 577static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 578{
657dc2f9
TH
579 LIST_HEAD(to_destroy);
580 struct kmem_cache *s, *s2;
d5b3cf71 581
657dc2f9 582 /*
5f0d5a3a 583 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
584 * @slab_caches_to_rcu_destroy list. The slab pages are freed
585 * through RCU and and the associated kmem_cache are dereferenced
586 * while freeing the pages, so the kmem_caches should be freed only
587 * after the pending RCU operations are finished. As rcu_barrier()
588 * is a pretty slow operation, we batch all pending destructions
589 * asynchronously.
590 */
591 mutex_lock(&slab_mutex);
592 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
593 mutex_unlock(&slab_mutex);
d5b3cf71 594
657dc2f9
TH
595 if (list_empty(&to_destroy))
596 return;
597
598 rcu_barrier();
599
600 list_for_each_entry_safe(s, s2, &to_destroy, list) {
601#ifdef SLAB_SUPPORTS_SYSFS
602 sysfs_slab_release(s);
603#else
604 slab_kmem_cache_release(s);
605#endif
606 }
d5b3cf71
VD
607}
608
657dc2f9 609static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 610{
f9fa1d91
GT
611 /* free asan quarantined objects */
612 kasan_cache_shutdown(s);
613
657dc2f9
TH
614 if (__kmem_cache_shutdown(s) != 0)
615 return -EBUSY;
d5b3cf71 616
510ded33 617 memcg_unlink_cache(s);
657dc2f9 618 list_del(&s->list);
d5b3cf71 619
5f0d5a3a 620 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
621#ifdef SLAB_SUPPORTS_SYSFS
622 sysfs_slab_unlink(s);
623#endif
657dc2f9
TH
624 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
625 schedule_work(&slab_caches_to_rcu_destroy_work);
626 } else {
d5b3cf71 627#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 628 sysfs_slab_unlink(s);
bf5eb3de 629 sysfs_slab_release(s);
d5b3cf71
VD
630#else
631 slab_kmem_cache_release(s);
632#endif
633 }
657dc2f9
TH
634
635 return 0;
d5b3cf71
VD
636}
637
84c07d11 638#ifdef CONFIG_MEMCG_KMEM
794b1248 639/*
776ed0f0 640 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
641 * @memcg: The memory cgroup the new cache is for.
642 * @root_cache: The parent of the new cache.
643 *
644 * This function attempts to create a kmem cache that will serve allocation
645 * requests going from @memcg to @root_cache. The new cache inherits properties
646 * from its parent.
647 */
d5b3cf71
VD
648void memcg_create_kmem_cache(struct mem_cgroup *memcg,
649 struct kmem_cache *root_cache)
2633d7a0 650{
3e0350a3 651 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 652 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 653 struct memcg_cache_array *arr;
bd673145 654 struct kmem_cache *s = NULL;
794b1248 655 char *cache_name;
f7ce3190 656 int idx;
794b1248
VD
657
658 get_online_cpus();
03afc0e2
VD
659 get_online_mems();
660
794b1248
VD
661 mutex_lock(&slab_mutex);
662
2a4db7eb 663 /*
567e9ab2 664 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
665 * creation work was pending.
666 */
57033297 667 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
668 goto out_unlock;
669
f7ce3190
VD
670 idx = memcg_cache_id(memcg);
671 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
672 lockdep_is_held(&slab_mutex));
673
d5b3cf71
VD
674 /*
675 * Since per-memcg caches are created asynchronously on first
676 * allocation (see memcg_kmem_get_cache()), several threads can try to
677 * create the same cache, but only one of them may succeed.
678 */
f7ce3190 679 if (arr->entries[idx])
d5b3cf71
VD
680 goto out_unlock;
681
f1008365 682 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
683 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
684 css->serial_nr, memcg_name_buf);
794b1248
VD
685 if (!cache_name)
686 goto out_unlock;
687
c9a77a79 688 s = create_cache(cache_name, root_cache->object_size,
613a5eb5 689 root_cache->align,
f773e36d 690 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 691 root_cache->useroffset, root_cache->usersize,
f773e36d 692 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
693 /*
694 * If we could not create a memcg cache, do not complain, because
695 * that's not critical at all as we can always proceed with the root
696 * cache.
697 */
bd673145 698 if (IS_ERR(s)) {
794b1248 699 kfree(cache_name);
d5b3cf71 700 goto out_unlock;
bd673145 701 }
794b1248 702
d5b3cf71 703 /*
f0a3a24b 704 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
d5b3cf71
VD
705 * barrier here to ensure nobody will see the kmem_cache partially
706 * initialized.
707 */
708 smp_wmb();
f7ce3190 709 arr->entries[idx] = s;
d5b3cf71 710
794b1248
VD
711out_unlock:
712 mutex_unlock(&slab_mutex);
03afc0e2
VD
713
714 put_online_mems();
794b1248 715 put_online_cpus();
2633d7a0 716}
b8529907 717
0b14e8aa 718static void kmemcg_workfn(struct work_struct *work)
01fb58bc
TH
719{
720 struct kmem_cache *s = container_of(work, struct kmem_cache,
0b14e8aa 721 memcg_params.work);
01fb58bc
TH
722
723 get_online_cpus();
724 get_online_mems();
725
726 mutex_lock(&slab_mutex);
0b14e8aa 727 s->memcg_params.work_fn(s);
01fb58bc
TH
728 mutex_unlock(&slab_mutex);
729
730 put_online_mems();
731 put_online_cpus();
01fb58bc
TH
732}
733
0b14e8aa 734static void kmemcg_rcufn(struct rcu_head *head)
01fb58bc
TH
735{
736 struct kmem_cache *s = container_of(head, struct kmem_cache,
0b14e8aa 737 memcg_params.rcu_head);
01fb58bc
TH
738
739 /*
0b14e8aa 740 * We need to grab blocking locks. Bounce to ->work. The
01fb58bc 741 * work item shares the space with the RCU head and can't be
b991cee5 742 * initialized earlier.
01fb58bc 743 */
0b14e8aa
RG
744 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
745 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
01fb58bc
TH
746}
747
f0a3a24b
RG
748static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
749{
750 WARN_ON(shutdown_cache(s));
751}
752
753static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
754{
755 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
756 memcg_params.refcnt);
757 unsigned long flags;
758
759 spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
760 if (s->memcg_params.root_cache->memcg_params.dying)
761 goto unlock;
762
763 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
764 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
765 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
766
767unlock:
768 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
769}
770
771static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
772{
773 __kmemcg_cache_deactivate_after_rcu(s);
774 percpu_ref_kill(&s->memcg_params.refcnt);
775}
776
43486694 777static void kmemcg_cache_deactivate(struct kmem_cache *s)
01fb58bc 778{
f0a3a24b 779 if (WARN_ON_ONCE(is_root_cache(s)))
01fb58bc
TH
780 return;
781
43486694 782 __kmemcg_cache_deactivate(s);
fcf8a1e4 783 s->flags |= SLAB_DEACTIVATED;
43486694 784
63b02ef7
RG
785 /*
786 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
787 * flag and make sure that no new kmem_cache deactivation tasks
788 * are queued (see flush_memcg_workqueue() ).
789 */
790 spin_lock_irq(&memcg_kmem_wq_lock);
92ee383f 791 if (s->memcg_params.root_cache->memcg_params.dying)
63b02ef7 792 goto unlock;
92ee383f 793
f0a3a24b 794 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
0b14e8aa 795 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
63b02ef7
RG
796unlock:
797 spin_unlock_irq(&memcg_kmem_wq_lock);
01fb58bc
TH
798}
799
fb2f2b0a
RG
800void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
801 struct mem_cgroup *parent)
2a4db7eb
VD
802{
803 int idx;
804 struct memcg_cache_array *arr;
d6e0b7fa 805 struct kmem_cache *s, *c;
fb2f2b0a 806 unsigned int nr_reparented;
2a4db7eb
VD
807
808 idx = memcg_cache_id(memcg);
809
d6e0b7fa
VD
810 get_online_cpus();
811 get_online_mems();
812
2a4db7eb 813 mutex_lock(&slab_mutex);
510ded33 814 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
815 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
816 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
817 c = arr->entries[idx];
818 if (!c)
819 continue;
820
43486694 821 kmemcg_cache_deactivate(c);
2a4db7eb
VD
822 arr->entries[idx] = NULL;
823 }
fb2f2b0a
RG
824 nr_reparented = 0;
825 list_for_each_entry(s, &memcg->kmem_caches,
826 memcg_params.kmem_caches_node) {
827 WRITE_ONCE(s->memcg_params.memcg, parent);
828 css_put(&memcg->css);
829 nr_reparented++;
830 }
831 if (nr_reparented) {
832 list_splice_init(&memcg->kmem_caches,
833 &parent->kmem_caches);
834 css_get_many(&parent->css, nr_reparented);
835 }
2a4db7eb 836 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
837
838 put_online_mems();
839 put_online_cpus();
2a4db7eb
VD
840}
841
657dc2f9 842static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
843{
844 struct memcg_cache_array *arr;
845 struct kmem_cache *c, *c2;
846 LIST_HEAD(busy);
847 int i;
848
849 BUG_ON(!is_root_cache(s));
850
851 /*
852 * First, shutdown active caches, i.e. caches that belong to online
853 * memory cgroups.
854 */
855 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
856 lockdep_is_held(&slab_mutex));
857 for_each_memcg_cache_index(i) {
858 c = arr->entries[i];
859 if (!c)
860 continue;
657dc2f9 861 if (shutdown_cache(c))
d60fdcc9
VD
862 /*
863 * The cache still has objects. Move it to a temporary
864 * list so as not to try to destroy it for a second
865 * time while iterating over inactive caches below.
866 */
9eeadc8b 867 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
868 else
869 /*
870 * The cache is empty and will be destroyed soon. Clear
871 * the pointer to it in the memcg_caches array so that
872 * it will never be accessed even if the root cache
873 * stays alive.
874 */
875 arr->entries[i] = NULL;
876 }
877
878 /*
879 * Second, shutdown all caches left from memory cgroups that are now
880 * offline.
881 */
9eeadc8b
TH
882 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
883 memcg_params.children_node)
657dc2f9 884 shutdown_cache(c);
d60fdcc9 885
9eeadc8b 886 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
887
888 /*
889 * A cache being destroyed must be empty. In particular, this means
890 * that all per memcg caches attached to it must be empty too.
891 */
9eeadc8b 892 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
893 return -EBUSY;
894 return 0;
895}
92ee383f 896
d38a2b7a 897static void memcg_set_kmem_cache_dying(struct kmem_cache *s)
92ee383f 898{
63b02ef7 899 spin_lock_irq(&memcg_kmem_wq_lock);
92ee383f 900 s->memcg_params.dying = true;
63b02ef7 901 spin_unlock_irq(&memcg_kmem_wq_lock);
d38a2b7a 902}
92ee383f 903
d38a2b7a
MS
904static void flush_memcg_workqueue(struct kmem_cache *s)
905{
92ee383f 906 /*
43486694 907 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
92ee383f
SB
908 * sure all registered rcu callbacks have been invoked.
909 */
43486694 910 rcu_barrier();
92ee383f
SB
911
912 /*
913 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
914 * deactivates the memcg kmem_caches through workqueue. Make sure all
915 * previous workitems on workqueue are processed.
916 */
2fe20210
AH
917 if (likely(memcg_kmem_cache_wq))
918 flush_workqueue(memcg_kmem_cache_wq);
a264df74
RG
919
920 /*
921 * If we're racing with children kmem_cache deactivation, it might
922 * take another rcu grace period to complete their destruction.
923 * At this moment the corresponding percpu_ref_kill() call should be
924 * done, but it might take another rcu grace period to complete
925 * switching to the atomic mode.
926 * Please, note that we check without grabbing the slab_mutex. It's safe
927 * because at this moment the children list can't grow.
928 */
929 if (!list_empty(&s->memcg_params.children))
930 rcu_barrier();
92ee383f 931}
d60fdcc9 932#else
657dc2f9 933static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
934{
935 return 0;
936}
84c07d11 937#endif /* CONFIG_MEMCG_KMEM */
97d06609 938
41a21285
CL
939void slab_kmem_cache_release(struct kmem_cache *s)
940{
52b4b950 941 __kmem_cache_release(s);
f7ce3190 942 destroy_memcg_params(s);
3dec16ea 943 kfree_const(s->name);
41a21285
CL
944 kmem_cache_free(kmem_cache, s);
945}
946
945cf2b6
CL
947void kmem_cache_destroy(struct kmem_cache *s)
948{
d60fdcc9 949 int err;
d5b3cf71 950
3942d299
SS
951 if (unlikely(!s))
952 return;
953
945cf2b6 954 get_online_cpus();
03afc0e2
VD
955 get_online_mems();
956
945cf2b6 957 mutex_lock(&slab_mutex);
b8529907 958
945cf2b6 959 s->refcount--;
b8529907
VD
960 if (s->refcount)
961 goto out_unlock;
962
d38a2b7a
MS
963#ifdef CONFIG_MEMCG_KMEM
964 memcg_set_kmem_cache_dying(s);
965
966 mutex_unlock(&slab_mutex);
967
968 put_online_mems();
969 put_online_cpus();
970
971 flush_memcg_workqueue(s);
972
973 get_online_cpus();
974 get_online_mems();
975
976 mutex_lock(&slab_mutex);
977#endif
978
657dc2f9 979 err = shutdown_memcg_caches(s);
d60fdcc9 980 if (!err)
657dc2f9 981 err = shutdown_cache(s);
b8529907 982
cd918c55 983 if (err) {
756a025f
JP
984 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
985 s->name);
cd918c55
VD
986 dump_stack();
987 }
b8529907
VD
988out_unlock:
989 mutex_unlock(&slab_mutex);
d5b3cf71 990
03afc0e2 991 put_online_mems();
945cf2b6
CL
992 put_online_cpus();
993}
994EXPORT_SYMBOL(kmem_cache_destroy);
995
03afc0e2
VD
996/**
997 * kmem_cache_shrink - Shrink a cache.
998 * @cachep: The cache to shrink.
999 *
1000 * Releases as many slabs as possible for a cache.
1001 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
1002 *
1003 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
1004 */
1005int kmem_cache_shrink(struct kmem_cache *cachep)
1006{
1007 int ret;
1008
1009 get_online_cpus();
1010 get_online_mems();
55834c59 1011 kasan_cache_shrink(cachep);
c9fc5864 1012 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
1013 put_online_mems();
1014 put_online_cpus();
1015 return ret;
1016}
1017EXPORT_SYMBOL(kmem_cache_shrink);
1018
04f768a3
WL
1019/**
1020 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
1021 * @s: The cache pointer
1022 */
1023void kmem_cache_shrink_all(struct kmem_cache *s)
1024{
1025 struct kmem_cache *c;
1026
1027 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
1028 kmem_cache_shrink(s);
1029 return;
1030 }
1031
1032 get_online_cpus();
1033 get_online_mems();
1034 kasan_cache_shrink(s);
1035 __kmem_cache_shrink(s);
1036
1037 /*
1038 * We have to take the slab_mutex to protect from the memcg list
1039 * modification.
1040 */
1041 mutex_lock(&slab_mutex);
1042 for_each_memcg_cache(c, s) {
1043 /*
1044 * Don't need to shrink deactivated memcg caches.
1045 */
1046 if (s->flags & SLAB_DEACTIVATED)
1047 continue;
1048 kasan_cache_shrink(c);
1049 __kmem_cache_shrink(c);
1050 }
1051 mutex_unlock(&slab_mutex);
1052 put_online_mems();
1053 put_online_cpus();
1054}
1055
fda90124 1056bool slab_is_available(void)
97d06609
CL
1057{
1058 return slab_state >= UP;
1059}
b7454ad3 1060
45530c44
CL
1061#ifndef CONFIG_SLOB
1062/* Create a cache during boot when no slab services are available yet */
361d575e
AD
1063void __init create_boot_cache(struct kmem_cache *s, const char *name,
1064 unsigned int size, slab_flags_t flags,
1065 unsigned int useroffset, unsigned int usersize)
45530c44
CL
1066{
1067 int err;
59bb4798 1068 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
1069
1070 s->name = name;
1071 s->size = s->object_size = size;
59bb4798
VB
1072
1073 /*
1074 * For power of two sizes, guarantee natural alignment for kmalloc
1075 * caches, regardless of SL*B debugging options.
1076 */
1077 if (is_power_of_2(size))
1078 align = max(align, size);
1079 s->align = calculate_alignment(flags, align, size);
1080
8eb8284b
DW
1081 s->useroffset = useroffset;
1082 s->usersize = usersize;
f7ce3190
VD
1083
1084 slab_init_memcg_params(s);
1085
45530c44
CL
1086 err = __kmem_cache_create(s, flags);
1087
1088 if (err)
361d575e 1089 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
1090 name, size, err);
1091
1092 s->refcount = -1; /* Exempt from merging for now */
1093}
1094
55de8b9c
AD
1095struct kmem_cache *__init create_kmalloc_cache(const char *name,
1096 unsigned int size, slab_flags_t flags,
1097 unsigned int useroffset, unsigned int usersize)
45530c44
CL
1098{
1099 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1100
1101 if (!s)
1102 panic("Out of memory when creating slab %s\n", name);
1103
6c0c21ad 1104 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 1105 list_add(&s->list, &slab_caches);
c03914b7 1106 memcg_link_cache(s, NULL);
45530c44
CL
1107 s->refcount = 1;
1108 return s;
1109}
1110
cc252eae 1111struct kmem_cache *
a07057dc
AB
1112kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1113{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
1114EXPORT_SYMBOL(kmalloc_caches);
1115
2c59dd65
CL
1116/*
1117 * Conversion table for small slabs sizes / 8 to the index in the
1118 * kmalloc array. This is necessary for slabs < 192 since we have non power
1119 * of two cache sizes there. The size of larger slabs can be determined using
1120 * fls.
1121 */
d5f86655 1122static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
1123 3, /* 8 */
1124 4, /* 16 */
1125 5, /* 24 */
1126 5, /* 32 */
1127 6, /* 40 */
1128 6, /* 48 */
1129 6, /* 56 */
1130 6, /* 64 */
1131 1, /* 72 */
1132 1, /* 80 */
1133 1, /* 88 */
1134 1, /* 96 */
1135 7, /* 104 */
1136 7, /* 112 */
1137 7, /* 120 */
1138 7, /* 128 */
1139 2, /* 136 */
1140 2, /* 144 */
1141 2, /* 152 */
1142 2, /* 160 */
1143 2, /* 168 */
1144 2, /* 176 */
1145 2, /* 184 */
1146 2 /* 192 */
1147};
1148
ac914d08 1149static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
1150{
1151 return (bytes - 1) / 8;
1152}
1153
1154/*
1155 * Find the kmem_cache structure that serves a given size of
1156 * allocation
1157 */
1158struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1159{
d5f86655 1160 unsigned int index;
2c59dd65
CL
1161
1162 if (size <= 192) {
1163 if (!size)
1164 return ZERO_SIZE_PTR;
1165
1166 index = size_index[size_index_elem(size)];
61448479 1167 } else {
221d7da6 1168 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 1169 return NULL;
2c59dd65 1170 index = fls(size - 1);
61448479 1171 }
2c59dd65 1172
cc252eae 1173 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
1174}
1175
cb5d9fb3
PL
1176#ifdef CONFIG_ZONE_DMA
1177#define INIT_KMALLOC_INFO(__size, __short_size) \
1178{ \
1179 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
1180 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
1181 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
1182 .size = __size, \
1183}
1184#else
1185#define INIT_KMALLOC_INFO(__size, __short_size) \
1186{ \
1187 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
1188 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
1189 .size = __size, \
1190}
1191#endif
1192
4066c33d
GG
1193/*
1194 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1195 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1196 * kmalloc-67108864.
1197 */
af3b5f87 1198const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
1199 INIT_KMALLOC_INFO(0, 0),
1200 INIT_KMALLOC_INFO(96, 96),
1201 INIT_KMALLOC_INFO(192, 192),
1202 INIT_KMALLOC_INFO(8, 8),
1203 INIT_KMALLOC_INFO(16, 16),
1204 INIT_KMALLOC_INFO(32, 32),
1205 INIT_KMALLOC_INFO(64, 64),
1206 INIT_KMALLOC_INFO(128, 128),
1207 INIT_KMALLOC_INFO(256, 256),
1208 INIT_KMALLOC_INFO(512, 512),
1209 INIT_KMALLOC_INFO(1024, 1k),
1210 INIT_KMALLOC_INFO(2048, 2k),
1211 INIT_KMALLOC_INFO(4096, 4k),
1212 INIT_KMALLOC_INFO(8192, 8k),
1213 INIT_KMALLOC_INFO(16384, 16k),
1214 INIT_KMALLOC_INFO(32768, 32k),
1215 INIT_KMALLOC_INFO(65536, 64k),
1216 INIT_KMALLOC_INFO(131072, 128k),
1217 INIT_KMALLOC_INFO(262144, 256k),
1218 INIT_KMALLOC_INFO(524288, 512k),
1219 INIT_KMALLOC_INFO(1048576, 1M),
1220 INIT_KMALLOC_INFO(2097152, 2M),
1221 INIT_KMALLOC_INFO(4194304, 4M),
1222 INIT_KMALLOC_INFO(8388608, 8M),
1223 INIT_KMALLOC_INFO(16777216, 16M),
1224 INIT_KMALLOC_INFO(33554432, 32M),
1225 INIT_KMALLOC_INFO(67108864, 64M)
4066c33d
GG
1226};
1227
f97d5f63 1228/*
34cc6990
DS
1229 * Patch up the size_index table if we have strange large alignment
1230 * requirements for the kmalloc array. This is only the case for
1231 * MIPS it seems. The standard arches will not generate any code here.
1232 *
1233 * Largest permitted alignment is 256 bytes due to the way we
1234 * handle the index determination for the smaller caches.
1235 *
1236 * Make sure that nothing crazy happens if someone starts tinkering
1237 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1238 */
34cc6990 1239void __init setup_kmalloc_cache_index_table(void)
f97d5f63 1240{
ac914d08 1241 unsigned int i;
f97d5f63 1242
2c59dd65
CL
1243 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1244 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1245
1246 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 1247 unsigned int elem = size_index_elem(i);
2c59dd65
CL
1248
1249 if (elem >= ARRAY_SIZE(size_index))
1250 break;
1251 size_index[elem] = KMALLOC_SHIFT_LOW;
1252 }
1253
1254 if (KMALLOC_MIN_SIZE >= 64) {
1255 /*
1256 * The 96 byte size cache is not used if the alignment
1257 * is 64 byte.
1258 */
1259 for (i = 64 + 8; i <= 96; i += 8)
1260 size_index[size_index_elem(i)] = 7;
1261
1262 }
1263
1264 if (KMALLOC_MIN_SIZE >= 128) {
1265 /*
1266 * The 192 byte sized cache is not used if the alignment
1267 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1268 * instead.
1269 */
1270 for (i = 128 + 8; i <= 192; i += 8)
1271 size_index[size_index_elem(i)] = 8;
1272 }
34cc6990
DS
1273}
1274
1291523f 1275static void __init
13657d0a 1276new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 1277{
cb5d9fb3 1278 if (type == KMALLOC_RECLAIM)
1291523f 1279 flags |= SLAB_RECLAIM_ACCOUNT;
1291523f 1280
cb5d9fb3
PL
1281 kmalloc_caches[type][idx] = create_kmalloc_cache(
1282 kmalloc_info[idx].name[type],
6c0c21ad
DW
1283 kmalloc_info[idx].size, flags, 0,
1284 kmalloc_info[idx].size);
a9730fca
CL
1285}
1286
34cc6990
DS
1287/*
1288 * Create the kmalloc array. Some of the regular kmalloc arrays
1289 * may already have been created because they were needed to
1290 * enable allocations for slab creation.
1291 */
d50112ed 1292void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 1293{
13657d0a
PL
1294 int i;
1295 enum kmalloc_cache_type type;
34cc6990 1296
1291523f
VB
1297 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1298 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1299 if (!kmalloc_caches[type][i])
1300 new_kmalloc_cache(i, type, flags);
f97d5f63 1301
1291523f
VB
1302 /*
1303 * Caches that are not of the two-to-the-power-of size.
1304 * These have to be created immediately after the
1305 * earlier power of two caches
1306 */
1307 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1308 !kmalloc_caches[type][1])
1309 new_kmalloc_cache(1, type, flags);
1310 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1311 !kmalloc_caches[type][2])
1312 new_kmalloc_cache(2, type, flags);
1313 }
8a965b3b
CL
1314 }
1315
f97d5f63
CL
1316 /* Kmalloc array is now usable */
1317 slab_state = UP;
1318
f97d5f63
CL
1319#ifdef CONFIG_ZONE_DMA
1320 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 1321 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
1322
1323 if (s) {
cc252eae 1324 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
cb5d9fb3 1325 kmalloc_info[i].name[KMALLOC_DMA],
dc0a7f75 1326 kmalloc_info[i].size,
49f2d241
VB
1327 SLAB_CACHE_DMA | flags, 0,
1328 kmalloc_info[i].size);
f97d5f63
CL
1329 }
1330 }
1331#endif
1332}
45530c44
CL
1333#endif /* !CONFIG_SLOB */
1334
cea371f4
VD
1335/*
1336 * To avoid unnecessary overhead, we pass through large allocation requests
1337 * directly to the page allocator. We use __GFP_COMP, because we will need to
1338 * know the allocation order to free the pages properly in kfree.
1339 */
52383431
VD
1340void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1341{
6a486c0a 1342 void *ret = NULL;
52383431
VD
1343 struct page *page;
1344
1345 flags |= __GFP_COMP;
4949148a 1346 page = alloc_pages(flags, order);
6a486c0a
VB
1347 if (likely(page)) {
1348 ret = page_address(page);
1349 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1350 1 << order);
1351 }
0116523c 1352 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 1353 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 1354 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
1355 return ret;
1356}
1357EXPORT_SYMBOL(kmalloc_order);
1358
f1b6eb6e
CL
1359#ifdef CONFIG_TRACING
1360void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1361{
1362 void *ret = kmalloc_order(size, flags, order);
1363 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1364 return ret;
1365}
1366EXPORT_SYMBOL(kmalloc_order_trace);
1367#endif
45530c44 1368
7c00fce9
TG
1369#ifdef CONFIG_SLAB_FREELIST_RANDOM
1370/* Randomize a generic freelist */
1371static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 1372 unsigned int count)
7c00fce9 1373{
7c00fce9 1374 unsigned int rand;
302d55d5 1375 unsigned int i;
7c00fce9
TG
1376
1377 for (i = 0; i < count; i++)
1378 list[i] = i;
1379
1380 /* Fisher-Yates shuffle */
1381 for (i = count - 1; i > 0; i--) {
1382 rand = prandom_u32_state(state);
1383 rand %= (i + 1);
1384 swap(list[i], list[rand]);
1385 }
1386}
1387
1388/* Create a random sequence per cache */
1389int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1390 gfp_t gfp)
1391{
1392 struct rnd_state state;
1393
1394 if (count < 2 || cachep->random_seq)
1395 return 0;
1396
1397 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1398 if (!cachep->random_seq)
1399 return -ENOMEM;
1400
1401 /* Get best entropy at this stage of boot */
1402 prandom_seed_state(&state, get_random_long());
1403
1404 freelist_randomize(&state, cachep->random_seq, count);
1405 return 0;
1406}
1407
1408/* Destroy the per-cache random freelist sequence */
1409void cache_random_seq_destroy(struct kmem_cache *cachep)
1410{
1411 kfree(cachep->random_seq);
1412 cachep->random_seq = NULL;
1413}
1414#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1415
5b365771 1416#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1417#ifdef CONFIG_SLAB
0825a6f9 1418#define SLABINFO_RIGHTS (0600)
e9b4db2b 1419#else
0825a6f9 1420#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1421#endif
1422
b047501c 1423static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1424{
1425 /*
1426 * Output format version, so at least we can change it
1427 * without _too_ many complaints.
1428 */
1429#ifdef CONFIG_DEBUG_SLAB
1430 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1431#else
1432 seq_puts(m, "slabinfo - version: 2.1\n");
1433#endif
756a025f 1434 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1435 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1436 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1437#ifdef CONFIG_DEBUG_SLAB
756a025f 1438 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1439 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1440#endif
1441 seq_putc(m, '\n');
1442}
1443
1df3b26f 1444void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1445{
b7454ad3 1446 mutex_lock(&slab_mutex);
510ded33 1447 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1448}
1449
276a2439 1450void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1451{
510ded33 1452 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1453}
1454
276a2439 1455void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1456{
1457 mutex_unlock(&slab_mutex);
1458}
1459
749c5415
GC
1460static void
1461memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1462{
1463 struct kmem_cache *c;
1464 struct slabinfo sinfo;
749c5415
GC
1465
1466 if (!is_root_cache(s))
1467 return;
1468
426589f5 1469 for_each_memcg_cache(c, s) {
749c5415
GC
1470 memset(&sinfo, 0, sizeof(sinfo));
1471 get_slabinfo(c, &sinfo);
1472
1473 info->active_slabs += sinfo.active_slabs;
1474 info->num_slabs += sinfo.num_slabs;
1475 info->shared_avail += sinfo.shared_avail;
1476 info->active_objs += sinfo.active_objs;
1477 info->num_objs += sinfo.num_objs;
1478 }
1479}
1480
b047501c 1481static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1482{
0d7561c6
GC
1483 struct slabinfo sinfo;
1484
1485 memset(&sinfo, 0, sizeof(sinfo));
1486 get_slabinfo(s, &sinfo);
1487
749c5415
GC
1488 memcg_accumulate_slabinfo(s, &sinfo);
1489
0d7561c6 1490 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1491 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1492 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1493
1494 seq_printf(m, " : tunables %4u %4u %4u",
1495 sinfo.limit, sinfo.batchcount, sinfo.shared);
1496 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1497 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1498 slabinfo_show_stats(m, s);
1499 seq_putc(m, '\n');
b7454ad3
GC
1500}
1501
1df3b26f 1502static int slab_show(struct seq_file *m, void *p)
749c5415 1503{
510ded33 1504 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1505
510ded33 1506 if (p == slab_root_caches.next)
1df3b26f 1507 print_slabinfo_header(m);
510ded33 1508 cache_show(s, m);
b047501c
VD
1509 return 0;
1510}
1511
852d8be0
YS
1512void dump_unreclaimable_slab(void)
1513{
1514 struct kmem_cache *s, *s2;
1515 struct slabinfo sinfo;
1516
1517 /*
1518 * Here acquiring slab_mutex is risky since we don't prefer to get
1519 * sleep in oom path. But, without mutex hold, it may introduce a
1520 * risk of crash.
1521 * Use mutex_trylock to protect the list traverse, dump nothing
1522 * without acquiring the mutex.
1523 */
1524 if (!mutex_trylock(&slab_mutex)) {
1525 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1526 return;
1527 }
1528
1529 pr_info("Unreclaimable slab info:\n");
1530 pr_info("Name Used Total\n");
1531
1532 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1533 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1534 continue;
1535
1536 get_slabinfo(s, &sinfo);
1537
1538 if (sinfo.num_objs > 0)
1539 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1540 (sinfo.active_objs * s->size) / 1024,
1541 (sinfo.num_objs * s->size) / 1024);
1542 }
1543 mutex_unlock(&slab_mutex);
1544}
1545
a87425a3 1546#if defined(CONFIG_MEMCG_KMEM)
bc2791f8
TH
1547void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1548{
aa9694bb 1549 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bc2791f8
TH
1550
1551 mutex_lock(&slab_mutex);
1552 return seq_list_start(&memcg->kmem_caches, *pos);
1553}
1554
1555void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1556{
aa9694bb 1557 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bc2791f8
TH
1558
1559 return seq_list_next(p, &memcg->kmem_caches, pos);
1560}
1561
1562void memcg_slab_stop(struct seq_file *m, void *p)
1563{
1564 mutex_unlock(&slab_mutex);
1565}
1566
b047501c
VD
1567int memcg_slab_show(struct seq_file *m, void *p)
1568{
bc2791f8
TH
1569 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1570 memcg_params.kmem_caches_node);
aa9694bb 1571 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
b047501c 1572
bc2791f8 1573 if (p == memcg->kmem_caches.next)
b047501c 1574 print_slabinfo_header(m);
bc2791f8 1575 cache_show(s, m);
b047501c 1576 return 0;
749c5415 1577}
b047501c 1578#endif
749c5415 1579
b7454ad3
GC
1580/*
1581 * slabinfo_op - iterator that generates /proc/slabinfo
1582 *
1583 * Output layout:
1584 * cache-name
1585 * num-active-objs
1586 * total-objs
1587 * object size
1588 * num-active-slabs
1589 * total-slabs
1590 * num-pages-per-slab
1591 * + further values on SMP and with statistics enabled
1592 */
1593static const struct seq_operations slabinfo_op = {
1df3b26f 1594 .start = slab_start,
276a2439
WL
1595 .next = slab_next,
1596 .stop = slab_stop,
1df3b26f 1597 .show = slab_show,
b7454ad3
GC
1598};
1599
1600static int slabinfo_open(struct inode *inode, struct file *file)
1601{
1602 return seq_open(file, &slabinfo_op);
1603}
1604
97a32539 1605static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1606 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1607 .proc_open = slabinfo_open,
1608 .proc_read = seq_read,
1609 .proc_write = slabinfo_write,
1610 .proc_lseek = seq_lseek,
1611 .proc_release = seq_release,
b7454ad3
GC
1612};
1613
1614static int __init slab_proc_init(void)
1615{
97a32539 1616 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1617 return 0;
1618}
1619module_init(slab_proc_init);
fcf8a1e4
WL
1620
1621#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1622/*
1623 * Display information about kmem caches that have child memcg caches.
1624 */
1625static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1626{
1627 struct kmem_cache *s, *c;
1628 struct slabinfo sinfo;
1629
1630 mutex_lock(&slab_mutex);
1631 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1632 seq_puts(m, " <active_slabs> <num_slabs>\n");
1633 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1634 /*
1635 * Skip kmem caches that don't have any memcg children.
1636 */
1637 if (list_empty(&s->memcg_params.children))
1638 continue;
1639
1640 memset(&sinfo, 0, sizeof(sinfo));
1641 get_slabinfo(s, &sinfo);
1642 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n",
1643 cache_name(s), sinfo.active_objs, sinfo.num_objs,
1644 sinfo.active_slabs, sinfo.num_slabs);
1645
1646 for_each_memcg_cache(c, s) {
1647 struct cgroup_subsys_state *css;
1648 char *status = "";
1649
1650 css = &c->memcg_params.memcg->css;
1651 if (!(css->flags & CSS_ONLINE))
1652 status = ":dead";
1653 else if (c->flags & SLAB_DEACTIVATED)
1654 status = ":deact";
1655
1656 memset(&sinfo, 0, sizeof(sinfo));
1657 get_slabinfo(c, &sinfo);
1658 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1659 cache_name(c), css->id, status,
1660 sinfo.active_objs, sinfo.num_objs,
1661 sinfo.active_slabs, sinfo.num_slabs);
1662 }
1663 }
1664 mutex_unlock(&slab_mutex);
1665 return 0;
1666}
1667DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1668
1669static int __init memcg_slabinfo_init(void)
1670{
1671 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1672 NULL, NULL, &memcg_slabinfo_fops);
1673 return 0;
1674}
1675
1676late_initcall(memcg_slabinfo_init);
1677#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
5b365771 1678#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1679
1680static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1681 gfp_t flags)
1682{
1683 void *ret;
1684 size_t ks = 0;
1685
1686 if (p)
1687 ks = ksize(p);
1688
0316bec2 1689 if (ks >= new_size) {
0116523c 1690 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1691 return (void *)p;
0316bec2 1692 }
928cec9c
AR
1693
1694 ret = kmalloc_track_caller(new_size, flags);
1695 if (ret && p)
1696 memcpy(ret, p, ks);
1697
1698 return ret;
1699}
1700
928cec9c
AR
1701/**
1702 * krealloc - reallocate memory. The contents will remain unchanged.
1703 * @p: object to reallocate memory for.
1704 * @new_size: how many bytes of memory are required.
1705 * @flags: the type of memory to allocate.
1706 *
1707 * The contents of the object pointed to are preserved up to the
1708 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1709 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1710 * %NULL pointer, the object pointed to is freed.
a862f68a
MR
1711 *
1712 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1713 */
1714void *krealloc(const void *p, size_t new_size, gfp_t flags)
1715{
1716 void *ret;
1717
1718 if (unlikely(!new_size)) {
1719 kfree(p);
1720 return ZERO_SIZE_PTR;
1721 }
1722
1723 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1724 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1725 kfree(p);
1726
1727 return ret;
1728}
1729EXPORT_SYMBOL(krealloc);
1730
1731/**
1732 * kzfree - like kfree but zero memory
1733 * @p: object to free memory of
1734 *
1735 * The memory of the object @p points to is zeroed before freed.
1736 * If @p is %NULL, kzfree() does nothing.
1737 *
1738 * Note: this function zeroes the whole allocated buffer which can be a good
1739 * deal bigger than the requested buffer size passed to kmalloc(). So be
1740 * careful when using this function in performance sensitive code.
1741 */
1742void kzfree(const void *p)
1743{
1744 size_t ks;
1745 void *mem = (void *)p;
1746
1747 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1748 return;
1749 ks = ksize(mem);
8982ae52 1750 memzero_explicit(mem, ks);
928cec9c
AR
1751 kfree(mem);
1752}
1753EXPORT_SYMBOL(kzfree);
1754
10d1f8cb
ME
1755/**
1756 * ksize - get the actual amount of memory allocated for a given object
1757 * @objp: Pointer to the object
1758 *
1759 * kmalloc may internally round up allocations and return more memory
1760 * than requested. ksize() can be used to determine the actual amount of
1761 * memory allocated. The caller may use this additional memory, even though
1762 * a smaller amount of memory was initially specified with the kmalloc call.
1763 * The caller must guarantee that objp points to a valid object previously
1764 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1765 * must not be freed during the duration of the call.
1766 *
1767 * Return: size of the actual memory used by @objp in bytes
1768 */
1769size_t ksize(const void *objp)
1770{
0d4ca4c9
ME
1771 size_t size;
1772
1773 if (WARN_ON_ONCE(!objp))
1774 return 0;
1775 /*
1776 * We need to check that the pointed to object is valid, and only then
1777 * unpoison the shadow memory below. We use __kasan_check_read(), to
1778 * generate a more useful report at the time ksize() is called (rather
1779 * than later where behaviour is undefined due to potential
1780 * use-after-free or double-free).
1781 *
1782 * If the pointed to memory is invalid we return 0, to avoid users of
1783 * ksize() writing to and potentially corrupting the memory region.
1784 *
1785 * We want to perform the check before __ksize(), to avoid potentially
1786 * crashing in __ksize() due to accessing invalid metadata.
1787 */
1788 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1789 return 0;
1790
1791 size = __ksize(objp);
10d1f8cb
ME
1792 /*
1793 * We assume that ksize callers could use whole allocated area,
1794 * so we need to unpoison this area.
1795 */
1796 kasan_unpoison_shadow(objp, size);
1797 return size;
1798}
1799EXPORT_SYMBOL(ksize);
1800
928cec9c
AR
1801/* Tracepoints definitions. */
1802EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1803EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1804EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1805EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1806EXPORT_TRACEPOINT_SYMBOL(kfree);
1807EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1808
1809int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1810{
1811 if (__should_failslab(s, gfpflags))
1812 return -ENOMEM;
1813 return 0;
1814}
1815ALLOW_ERROR_INJECTION(should_failslab, ERRNO);