Merge tag 'dmaengine-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3
GC
19#include <linux/seq_file.h>
20#include <linux/proc_fs.h>
fcf8a1e4 21#include <linux/debugfs.h>
e86f8b09 22#include <linux/kasan.h>
039363f3
CL
23#include <asm/cacheflush.h>
24#include <asm/tlbflush.h>
25#include <asm/page.h>
2633d7a0 26#include <linux/memcontrol.h>
928cec9c
AR
27
28#define CREATE_TRACE_POINTS
f1b6eb6e 29#include <trace/events/kmem.h>
039363f3 30
44405099
LL
31#include "internal.h"
32
97d06609
CL
33#include "slab.h"
34
35enum slab_state slab_state;
18004c5d
CL
36LIST_HEAD(slab_caches);
37DEFINE_MUTEX(slab_mutex);
9b030cb8 38struct kmem_cache *kmem_cache;
97d06609 39
2d891fbc
KC
40#ifdef CONFIG_HARDENED_USERCOPY
41bool usercopy_fallback __ro_after_init =
42 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
43module_param(usercopy_fallback, bool, 0400);
44MODULE_PARM_DESC(usercopy_fallback,
45 "WARN instead of reject usercopy whitelist violations");
46#endif
47
657dc2f9
TH
48static LIST_HEAD(slab_caches_to_rcu_destroy);
49static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
50static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
51 slab_caches_to_rcu_destroy_workfn);
52
423c929c
JK
53/*
54 * Set of flags that will prevent slab merging
55 */
56#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 57 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
e86f8b09 58 SLAB_FAILSLAB | kasan_never_merge())
423c929c 59
230e9fc2 60#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 61 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
62
63/*
64 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 65 */
7660a6fd 66static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
67
68static int __init setup_slab_nomerge(char *str)
69{
7660a6fd 70 slab_nomerge = true;
423c929c
JK
71 return 1;
72}
73
82edd9d5
RA
74static int __init setup_slab_merge(char *str)
75{
76 slab_nomerge = false;
77 return 1;
78}
79
423c929c
JK
80#ifdef CONFIG_SLUB
81__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82edd9d5 82__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
423c929c
JK
83#endif
84
85__setup("slab_nomerge", setup_slab_nomerge);
82edd9d5 86__setup("slab_merge", setup_slab_merge);
423c929c 87
07f361b2
JK
88/*
89 * Determine the size of a slab object
90 */
91unsigned int kmem_cache_size(struct kmem_cache *s)
92{
93 return s->object_size;
94}
95EXPORT_SYMBOL(kmem_cache_size);
96
77be4b13 97#ifdef CONFIG_DEBUG_VM
f4957d5b 98static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 99{
039363f3
CL
100 if (!name || in_interrupt() || size < sizeof(void *) ||
101 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
102 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
103 return -EINVAL;
039363f3 104 }
b920536a 105
20cea968 106 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
107 return 0;
108}
109#else
f4957d5b 110static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
111{
112 return 0;
113}
20cea968
CL
114#endif
115
484748f0
CL
116void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
117{
118 size_t i;
119
ca257195
JDB
120 for (i = 0; i < nr; i++) {
121 if (s)
122 kmem_cache_free(s, p[i]);
123 else
124 kfree(p[i]);
125 }
484748f0
CL
126}
127
865762a8 128int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
129 void **p)
130{
131 size_t i;
132
133 for (i = 0; i < nr; i++) {
134 void *x = p[i] = kmem_cache_alloc(s, flags);
135 if (!x) {
136 __kmem_cache_free_bulk(s, i, p);
865762a8 137 return 0;
484748f0
CL
138 }
139 }
865762a8 140 return i;
484748f0
CL
141}
142
692ae74a
BL
143/*
144 * Figure out what the alignment of the objects will be given a set of
145 * flags, a user specified alignment and the size of the objects.
146 */
f4957d5b
AD
147static unsigned int calculate_alignment(slab_flags_t flags,
148 unsigned int align, unsigned int size)
692ae74a
BL
149{
150 /*
151 * If the user wants hardware cache aligned objects then follow that
152 * suggestion if the object is sufficiently large.
153 *
154 * The hardware cache alignment cannot override the specified
155 * alignment though. If that is greater then use it.
156 */
157 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 158 unsigned int ralign;
692ae74a
BL
159
160 ralign = cache_line_size();
161 while (size <= ralign / 2)
162 ralign /= 2;
163 align = max(align, ralign);
164 }
165
166 if (align < ARCH_SLAB_MINALIGN)
167 align = ARCH_SLAB_MINALIGN;
168
169 return ALIGN(align, sizeof(void *));
170}
171
423c929c
JK
172/*
173 * Find a mergeable slab cache
174 */
175int slab_unmergeable(struct kmem_cache *s)
176{
177 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
178 return 1;
179
423c929c
JK
180 if (s->ctor)
181 return 1;
182
8eb8284b
DW
183 if (s->usersize)
184 return 1;
185
423c929c
JK
186 /*
187 * We may have set a slab to be unmergeable during bootstrap.
188 */
189 if (s->refcount < 0)
190 return 1;
191
192 return 0;
193}
194
f4957d5b 195struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 196 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
197{
198 struct kmem_cache *s;
199
c6e28895 200 if (slab_nomerge)
423c929c
JK
201 return NULL;
202
203 if (ctor)
204 return NULL;
205
206 size = ALIGN(size, sizeof(void *));
207 align = calculate_alignment(flags, align, size);
208 size = ALIGN(size, align);
37540008 209 flags = kmem_cache_flags(size, flags, name);
423c929c 210
c6e28895
GM
211 if (flags & SLAB_NEVER_MERGE)
212 return NULL;
213
c7094406 214 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
215 if (slab_unmergeable(s))
216 continue;
217
218 if (size > s->size)
219 continue;
220
221 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
222 continue;
223 /*
224 * Check if alignment is compatible.
225 * Courtesy of Adrian Drzewiecki
226 */
227 if ((s->size & ~(align - 1)) != s->size)
228 continue;
229
230 if (s->size - size >= sizeof(void *))
231 continue;
232
95069ac8
JK
233 if (IS_ENABLED(CONFIG_SLAB) && align &&
234 (align > s->align || s->align % align))
235 continue;
236
423c929c
JK
237 return s;
238 }
239 return NULL;
240}
241
c9a77a79 242static struct kmem_cache *create_cache(const char *name,
613a5eb5 243 unsigned int object_size, unsigned int align,
7bbdb81e
AD
244 slab_flags_t flags, unsigned int useroffset,
245 unsigned int usersize, void (*ctor)(void *),
9855609b 246 struct kmem_cache *root_cache)
794b1248
VD
247{
248 struct kmem_cache *s;
249 int err;
250
8eb8284b
DW
251 if (WARN_ON(useroffset + usersize > object_size))
252 useroffset = usersize = 0;
253
794b1248
VD
254 err = -ENOMEM;
255 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
256 if (!s)
257 goto out;
258
259 s->name = name;
613a5eb5 260 s->size = s->object_size = object_size;
794b1248
VD
261 s->align = align;
262 s->ctor = ctor;
8eb8284b
DW
263 s->useroffset = useroffset;
264 s->usersize = usersize;
794b1248 265
794b1248
VD
266 err = __kmem_cache_create(s, flags);
267 if (err)
268 goto out_free_cache;
269
270 s->refcount = 1;
271 list_add(&s->list, &slab_caches);
794b1248
VD
272out:
273 if (err)
274 return ERR_PTR(err);
275 return s;
276
277out_free_cache:
7c4da061 278 kmem_cache_free(kmem_cache, s);
794b1248
VD
279 goto out;
280}
45906855 281
f496990f
MR
282/**
283 * kmem_cache_create_usercopy - Create a cache with a region suitable
284 * for copying to userspace
77be4b13
SK
285 * @name: A string which is used in /proc/slabinfo to identify this cache.
286 * @size: The size of objects to be created in this cache.
287 * @align: The required alignment for the objects.
288 * @flags: SLAB flags
8eb8284b
DW
289 * @useroffset: Usercopy region offset
290 * @usersize: Usercopy region size
77be4b13
SK
291 * @ctor: A constructor for the objects.
292 *
77be4b13
SK
293 * Cannot be called within a interrupt, but can be interrupted.
294 * The @ctor is run when new pages are allocated by the cache.
295 *
296 * The flags are
297 *
298 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
299 * to catch references to uninitialised memory.
300 *
f496990f 301 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
302 * for buffer overruns.
303 *
304 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
305 * cacheline. This can be beneficial if you're counting cycles as closely
306 * as davem.
f496990f
MR
307 *
308 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 309 */
2633d7a0 310struct kmem_cache *
f4957d5b
AD
311kmem_cache_create_usercopy(const char *name,
312 unsigned int size, unsigned int align,
7bbdb81e
AD
313 slab_flags_t flags,
314 unsigned int useroffset, unsigned int usersize,
8eb8284b 315 void (*ctor)(void *))
77be4b13 316{
40911a79 317 struct kmem_cache *s = NULL;
3dec16ea 318 const char *cache_name;
3965fc36 319 int err;
039363f3 320
77be4b13 321 mutex_lock(&slab_mutex);
686d550d 322
794b1248 323 err = kmem_cache_sanity_check(name, size);
3aa24f51 324 if (err) {
3965fc36 325 goto out_unlock;
3aa24f51 326 }
686d550d 327
e70954fd
TG
328 /* Refuse requests with allocator specific flags */
329 if (flags & ~SLAB_FLAGS_PERMITTED) {
330 err = -EINVAL;
331 goto out_unlock;
332 }
333
d8843922
GC
334 /*
335 * Some allocators will constraint the set of valid flags to a subset
336 * of all flags. We expect them to define CACHE_CREATE_MASK in this
337 * case, and we'll just provide them with a sanitized version of the
338 * passed flags.
339 */
340 flags &= CACHE_CREATE_MASK;
686d550d 341
8eb8284b
DW
342 /* Fail closed on bad usersize of useroffset values. */
343 if (WARN_ON(!usersize && useroffset) ||
344 WARN_ON(size < usersize || size - usersize < useroffset))
345 usersize = useroffset = 0;
346
347 if (!usersize)
348 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 349 if (s)
3965fc36 350 goto out_unlock;
2633d7a0 351
3dec16ea 352 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
353 if (!cache_name) {
354 err = -ENOMEM;
355 goto out_unlock;
356 }
7c9adf5a 357
613a5eb5 358 s = create_cache(cache_name, size,
c9a77a79 359 calculate_alignment(flags, align, size),
9855609b 360 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
361 if (IS_ERR(s)) {
362 err = PTR_ERR(s);
3dec16ea 363 kfree_const(cache_name);
794b1248 364 }
3965fc36
VD
365
366out_unlock:
20cea968 367 mutex_unlock(&slab_mutex);
03afc0e2 368
ba3253c7 369 if (err) {
686d550d
CL
370 if (flags & SLAB_PANIC)
371 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
372 name, err);
373 else {
1170532b 374 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
375 name, err);
376 dump_stack();
377 }
686d550d
CL
378 return NULL;
379 }
039363f3
CL
380 return s;
381}
8eb8284b
DW
382EXPORT_SYMBOL(kmem_cache_create_usercopy);
383
f496990f
MR
384/**
385 * kmem_cache_create - Create a cache.
386 * @name: A string which is used in /proc/slabinfo to identify this cache.
387 * @size: The size of objects to be created in this cache.
388 * @align: The required alignment for the objects.
389 * @flags: SLAB flags
390 * @ctor: A constructor for the objects.
391 *
392 * Cannot be called within a interrupt, but can be interrupted.
393 * The @ctor is run when new pages are allocated by the cache.
394 *
395 * The flags are
396 *
397 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
398 * to catch references to uninitialised memory.
399 *
400 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
401 * for buffer overruns.
402 *
403 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
404 * cacheline. This can be beneficial if you're counting cycles as closely
405 * as davem.
406 *
407 * Return: a pointer to the cache on success, NULL on failure.
408 */
8eb8284b 409struct kmem_cache *
f4957d5b 410kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
411 slab_flags_t flags, void (*ctor)(void *))
412{
6d07d1cd 413 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
414 ctor);
415}
794b1248 416EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 417
657dc2f9 418static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 419{
657dc2f9
TH
420 LIST_HEAD(to_destroy);
421 struct kmem_cache *s, *s2;
d5b3cf71 422
657dc2f9 423 /*
5f0d5a3a 424 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 425 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 426 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
427 * while freeing the pages, so the kmem_caches should be freed only
428 * after the pending RCU operations are finished. As rcu_barrier()
429 * is a pretty slow operation, we batch all pending destructions
430 * asynchronously.
431 */
432 mutex_lock(&slab_mutex);
433 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
434 mutex_unlock(&slab_mutex);
d5b3cf71 435
657dc2f9
TH
436 if (list_empty(&to_destroy))
437 return;
438
439 rcu_barrier();
440
441 list_for_each_entry_safe(s, s2, &to_destroy, list) {
d3fb45f3 442 kfence_shutdown_cache(s);
657dc2f9
TH
443#ifdef SLAB_SUPPORTS_SYSFS
444 sysfs_slab_release(s);
445#else
446 slab_kmem_cache_release(s);
447#endif
448 }
d5b3cf71
VD
449}
450
657dc2f9 451static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 452{
f9fa1d91
GT
453 /* free asan quarantined objects */
454 kasan_cache_shutdown(s);
455
657dc2f9
TH
456 if (__kmem_cache_shutdown(s) != 0)
457 return -EBUSY;
d5b3cf71 458
657dc2f9 459 list_del(&s->list);
d5b3cf71 460
5f0d5a3a 461 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
462#ifdef SLAB_SUPPORTS_SYSFS
463 sysfs_slab_unlink(s);
464#endif
657dc2f9
TH
465 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
466 schedule_work(&slab_caches_to_rcu_destroy_work);
467 } else {
d3fb45f3 468 kfence_shutdown_cache(s);
d5b3cf71 469#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 470 sysfs_slab_unlink(s);
bf5eb3de 471 sysfs_slab_release(s);
d5b3cf71
VD
472#else
473 slab_kmem_cache_release(s);
474#endif
475 }
657dc2f9
TH
476
477 return 0;
d5b3cf71
VD
478}
479
41a21285
CL
480void slab_kmem_cache_release(struct kmem_cache *s)
481{
52b4b950 482 __kmem_cache_release(s);
3dec16ea 483 kfree_const(s->name);
41a21285
CL
484 kmem_cache_free(kmem_cache, s);
485}
486
945cf2b6
CL
487void kmem_cache_destroy(struct kmem_cache *s)
488{
d60fdcc9 489 int err;
d5b3cf71 490
3942d299
SS
491 if (unlikely(!s))
492 return;
493
945cf2b6 494 mutex_lock(&slab_mutex);
b8529907 495
945cf2b6 496 s->refcount--;
b8529907
VD
497 if (s->refcount)
498 goto out_unlock;
499
10befea9 500 err = shutdown_cache(s);
cd918c55 501 if (err) {
756a025f
JP
502 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
503 s->name);
cd918c55
VD
504 dump_stack();
505 }
b8529907
VD
506out_unlock:
507 mutex_unlock(&slab_mutex);
945cf2b6
CL
508}
509EXPORT_SYMBOL(kmem_cache_destroy);
510
03afc0e2
VD
511/**
512 * kmem_cache_shrink - Shrink a cache.
513 * @cachep: The cache to shrink.
514 *
515 * Releases as many slabs as possible for a cache.
516 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
517 *
518 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
519 */
520int kmem_cache_shrink(struct kmem_cache *cachep)
521{
522 int ret;
523
7e1fa93d 524
55834c59 525 kasan_cache_shrink(cachep);
c9fc5864 526 ret = __kmem_cache_shrink(cachep);
7e1fa93d 527
03afc0e2
VD
528 return ret;
529}
530EXPORT_SYMBOL(kmem_cache_shrink);
531
fda90124 532bool slab_is_available(void)
97d06609
CL
533{
534 return slab_state >= UP;
535}
b7454ad3 536
5bb1bb35 537#ifdef CONFIG_PRINTK
8e7f37f2
PM
538/**
539 * kmem_valid_obj - does the pointer reference a valid slab object?
540 * @object: pointer to query.
541 *
542 * Return: %true if the pointer is to a not-yet-freed object from
543 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
544 * is to an already-freed object, and %false otherwise.
545 */
546bool kmem_valid_obj(void *object)
547{
548 struct page *page;
549
550 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
551 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
552 return false;
553 page = virt_to_head_page(object);
554 return PageSlab(page);
555}
0d3dd2c8 556EXPORT_SYMBOL_GPL(kmem_valid_obj);
8e7f37f2
PM
557
558/**
559 * kmem_dump_obj - Print available slab provenance information
560 * @object: slab object for which to find provenance information.
561 *
562 * This function uses pr_cont(), so that the caller is expected to have
563 * printed out whatever preamble is appropriate. The provenance information
564 * depends on the type of object and on how much debugging is enabled.
565 * For a slab-cache object, the fact that it is a slab object is printed,
566 * and, if available, the slab name, return address, and stack trace from
567 * the allocation of that object.
568 *
569 * This function will splat if passed a pointer to a non-slab object.
570 * If you are not sure what type of object you have, you should instead
571 * use mem_dump_obj().
572 */
573void kmem_dump_obj(void *object)
574{
575 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
576 int i;
577 struct page *page;
578 unsigned long ptroffset;
579 struct kmem_obj_info kp = { };
580
581 if (WARN_ON_ONCE(!virt_addr_valid(object)))
582 return;
583 page = virt_to_head_page(object);
584 if (WARN_ON_ONCE(!PageSlab(page))) {
585 pr_cont(" non-slab memory.\n");
586 return;
587 }
588 kmem_obj_info(&kp, object, page);
589 if (kp.kp_slab_cache)
590 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
591 else
592 pr_cont(" slab%s", cp);
593 if (kp.kp_objp)
594 pr_cont(" start %px", kp.kp_objp);
595 if (kp.kp_data_offset)
596 pr_cont(" data offset %lu", kp.kp_data_offset);
597 if (kp.kp_objp) {
598 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
599 pr_cont(" pointer offset %lu", ptroffset);
600 }
601 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
602 pr_cont(" size %u", kp.kp_slab_cache->usersize);
603 if (kp.kp_ret)
604 pr_cont(" allocated at %pS\n", kp.kp_ret);
605 else
606 pr_cont("\n");
607 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
608 if (!kp.kp_stack[i])
609 break;
610 pr_info(" %pS\n", kp.kp_stack[i]);
611 }
612}
0d3dd2c8 613EXPORT_SYMBOL_GPL(kmem_dump_obj);
5bb1bb35 614#endif
8e7f37f2 615
45530c44
CL
616#ifndef CONFIG_SLOB
617/* Create a cache during boot when no slab services are available yet */
361d575e
AD
618void __init create_boot_cache(struct kmem_cache *s, const char *name,
619 unsigned int size, slab_flags_t flags,
620 unsigned int useroffset, unsigned int usersize)
45530c44
CL
621{
622 int err;
59bb4798 623 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
624
625 s->name = name;
626 s->size = s->object_size = size;
59bb4798
VB
627
628 /*
629 * For power of two sizes, guarantee natural alignment for kmalloc
630 * caches, regardless of SL*B debugging options.
631 */
632 if (is_power_of_2(size))
633 align = max(align, size);
634 s->align = calculate_alignment(flags, align, size);
635
8eb8284b
DW
636 s->useroffset = useroffset;
637 s->usersize = usersize;
f7ce3190 638
45530c44
CL
639 err = __kmem_cache_create(s, flags);
640
641 if (err)
361d575e 642 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
643 name, size, err);
644
645 s->refcount = -1; /* Exempt from merging for now */
646}
647
55de8b9c
AD
648struct kmem_cache *__init create_kmalloc_cache(const char *name,
649 unsigned int size, slab_flags_t flags,
650 unsigned int useroffset, unsigned int usersize)
45530c44
CL
651{
652 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
653
654 if (!s)
655 panic("Out of memory when creating slab %s\n", name);
656
6c0c21ad 657 create_boot_cache(s, name, size, flags, useroffset, usersize);
92850134 658 kasan_cache_create_kmalloc(s);
45530c44
CL
659 list_add(&s->list, &slab_caches);
660 s->refcount = 1;
661 return s;
662}
663
cc252eae 664struct kmem_cache *
a07057dc
AB
665kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
666{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
667EXPORT_SYMBOL(kmalloc_caches);
668
2c59dd65
CL
669/*
670 * Conversion table for small slabs sizes / 8 to the index in the
671 * kmalloc array. This is necessary for slabs < 192 since we have non power
672 * of two cache sizes there. The size of larger slabs can be determined using
673 * fls.
674 */
d5f86655 675static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
676 3, /* 8 */
677 4, /* 16 */
678 5, /* 24 */
679 5, /* 32 */
680 6, /* 40 */
681 6, /* 48 */
682 6, /* 56 */
683 6, /* 64 */
684 1, /* 72 */
685 1, /* 80 */
686 1, /* 88 */
687 1, /* 96 */
688 7, /* 104 */
689 7, /* 112 */
690 7, /* 120 */
691 7, /* 128 */
692 2, /* 136 */
693 2, /* 144 */
694 2, /* 152 */
695 2, /* 160 */
696 2, /* 168 */
697 2, /* 176 */
698 2, /* 184 */
699 2 /* 192 */
700};
701
ac914d08 702static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
703{
704 return (bytes - 1) / 8;
705}
706
707/*
708 * Find the kmem_cache structure that serves a given size of
709 * allocation
710 */
711struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
712{
d5f86655 713 unsigned int index;
2c59dd65
CL
714
715 if (size <= 192) {
716 if (!size)
717 return ZERO_SIZE_PTR;
718
719 index = size_index[size_index_elem(size)];
61448479 720 } else {
221d7da6 721 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 722 return NULL;
2c59dd65 723 index = fls(size - 1);
61448479 724 }
2c59dd65 725
cc252eae 726 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
727}
728
cb5d9fb3
PL
729#ifdef CONFIG_ZONE_DMA
730#define INIT_KMALLOC_INFO(__size, __short_size) \
731{ \
732 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
733 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
734 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
735 .size = __size, \
736}
737#else
738#define INIT_KMALLOC_INFO(__size, __short_size) \
739{ \
740 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
741 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
742 .size = __size, \
743}
744#endif
745
4066c33d
GG
746/*
747 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
748 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
749 * kmalloc-67108864.
750 */
af3b5f87 751const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
752 INIT_KMALLOC_INFO(0, 0),
753 INIT_KMALLOC_INFO(96, 96),
754 INIT_KMALLOC_INFO(192, 192),
755 INIT_KMALLOC_INFO(8, 8),
756 INIT_KMALLOC_INFO(16, 16),
757 INIT_KMALLOC_INFO(32, 32),
758 INIT_KMALLOC_INFO(64, 64),
759 INIT_KMALLOC_INFO(128, 128),
760 INIT_KMALLOC_INFO(256, 256),
761 INIT_KMALLOC_INFO(512, 512),
762 INIT_KMALLOC_INFO(1024, 1k),
763 INIT_KMALLOC_INFO(2048, 2k),
764 INIT_KMALLOC_INFO(4096, 4k),
765 INIT_KMALLOC_INFO(8192, 8k),
766 INIT_KMALLOC_INFO(16384, 16k),
767 INIT_KMALLOC_INFO(32768, 32k),
768 INIT_KMALLOC_INFO(65536, 64k),
769 INIT_KMALLOC_INFO(131072, 128k),
770 INIT_KMALLOC_INFO(262144, 256k),
771 INIT_KMALLOC_INFO(524288, 512k),
772 INIT_KMALLOC_INFO(1048576, 1M),
773 INIT_KMALLOC_INFO(2097152, 2M),
774 INIT_KMALLOC_INFO(4194304, 4M),
775 INIT_KMALLOC_INFO(8388608, 8M),
776 INIT_KMALLOC_INFO(16777216, 16M),
777 INIT_KMALLOC_INFO(33554432, 32M),
778 INIT_KMALLOC_INFO(67108864, 64M)
4066c33d
GG
779};
780
f97d5f63 781/*
34cc6990
DS
782 * Patch up the size_index table if we have strange large alignment
783 * requirements for the kmalloc array. This is only the case for
784 * MIPS it seems. The standard arches will not generate any code here.
785 *
786 * Largest permitted alignment is 256 bytes due to the way we
787 * handle the index determination for the smaller caches.
788 *
789 * Make sure that nothing crazy happens if someone starts tinkering
790 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 791 */
34cc6990 792void __init setup_kmalloc_cache_index_table(void)
f97d5f63 793{
ac914d08 794 unsigned int i;
f97d5f63 795
2c59dd65
CL
796 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
797 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
798
799 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 800 unsigned int elem = size_index_elem(i);
2c59dd65
CL
801
802 if (elem >= ARRAY_SIZE(size_index))
803 break;
804 size_index[elem] = KMALLOC_SHIFT_LOW;
805 }
806
807 if (KMALLOC_MIN_SIZE >= 64) {
808 /*
809 * The 96 byte size cache is not used if the alignment
810 * is 64 byte.
811 */
812 for (i = 64 + 8; i <= 96; i += 8)
813 size_index[size_index_elem(i)] = 7;
814
815 }
816
817 if (KMALLOC_MIN_SIZE >= 128) {
818 /*
819 * The 192 byte sized cache is not used if the alignment
820 * is 128 byte. Redirect kmalloc to use the 256 byte cache
821 * instead.
822 */
823 for (i = 128 + 8; i <= 192; i += 8)
824 size_index[size_index_elem(i)] = 8;
825 }
34cc6990
DS
826}
827
1291523f 828static void __init
13657d0a 829new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 830{
cb5d9fb3 831 if (type == KMALLOC_RECLAIM)
1291523f 832 flags |= SLAB_RECLAIM_ACCOUNT;
1291523f 833
cb5d9fb3
PL
834 kmalloc_caches[type][idx] = create_kmalloc_cache(
835 kmalloc_info[idx].name[type],
6c0c21ad
DW
836 kmalloc_info[idx].size, flags, 0,
837 kmalloc_info[idx].size);
a9730fca
CL
838}
839
34cc6990
DS
840/*
841 * Create the kmalloc array. Some of the regular kmalloc arrays
842 * may already have been created because they were needed to
843 * enable allocations for slab creation.
844 */
d50112ed 845void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 846{
13657d0a
PL
847 int i;
848 enum kmalloc_cache_type type;
34cc6990 849
1291523f
VB
850 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
851 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
852 if (!kmalloc_caches[type][i])
853 new_kmalloc_cache(i, type, flags);
f97d5f63 854
1291523f
VB
855 /*
856 * Caches that are not of the two-to-the-power-of size.
857 * These have to be created immediately after the
858 * earlier power of two caches
859 */
860 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
861 !kmalloc_caches[type][1])
862 new_kmalloc_cache(1, type, flags);
863 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
864 !kmalloc_caches[type][2])
865 new_kmalloc_cache(2, type, flags);
866 }
8a965b3b
CL
867 }
868
f97d5f63
CL
869 /* Kmalloc array is now usable */
870 slab_state = UP;
871
f97d5f63
CL
872#ifdef CONFIG_ZONE_DMA
873 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 874 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
875
876 if (s) {
cc252eae 877 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
cb5d9fb3 878 kmalloc_info[i].name[KMALLOC_DMA],
dc0a7f75 879 kmalloc_info[i].size,
49f2d241
VB
880 SLAB_CACHE_DMA | flags, 0,
881 kmalloc_info[i].size);
f97d5f63
CL
882 }
883 }
884#endif
885}
45530c44
CL
886#endif /* !CONFIG_SLOB */
887
44405099
LL
888gfp_t kmalloc_fix_flags(gfp_t flags)
889{
890 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
891
892 flags &= ~GFP_SLAB_BUG_MASK;
893 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
894 invalid_mask, &invalid_mask, flags, &flags);
895 dump_stack();
896
897 return flags;
898}
899
cea371f4
VD
900/*
901 * To avoid unnecessary overhead, we pass through large allocation requests
902 * directly to the page allocator. We use __GFP_COMP, because we will need to
903 * know the allocation order to free the pages properly in kfree.
904 */
52383431
VD
905void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
906{
6a486c0a 907 void *ret = NULL;
52383431
VD
908 struct page *page;
909
44405099
LL
910 if (unlikely(flags & GFP_SLAB_BUG_MASK))
911 flags = kmalloc_fix_flags(flags);
912
52383431 913 flags |= __GFP_COMP;
4949148a 914 page = alloc_pages(flags, order);
6a486c0a
VB
915 if (likely(page)) {
916 ret = page_address(page);
96403bfe
MS
917 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
918 PAGE_SIZE << order);
6a486c0a 919 }
0116523c 920 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 921 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 922 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
923 return ret;
924}
925EXPORT_SYMBOL(kmalloc_order);
926
f1b6eb6e
CL
927#ifdef CONFIG_TRACING
928void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
929{
930 void *ret = kmalloc_order(size, flags, order);
931 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
932 return ret;
933}
934EXPORT_SYMBOL(kmalloc_order_trace);
935#endif
45530c44 936
7c00fce9
TG
937#ifdef CONFIG_SLAB_FREELIST_RANDOM
938/* Randomize a generic freelist */
939static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 940 unsigned int count)
7c00fce9 941{
7c00fce9 942 unsigned int rand;
302d55d5 943 unsigned int i;
7c00fce9
TG
944
945 for (i = 0; i < count; i++)
946 list[i] = i;
947
948 /* Fisher-Yates shuffle */
949 for (i = count - 1; i > 0; i--) {
950 rand = prandom_u32_state(state);
951 rand %= (i + 1);
952 swap(list[i], list[rand]);
953 }
954}
955
956/* Create a random sequence per cache */
957int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
958 gfp_t gfp)
959{
960 struct rnd_state state;
961
962 if (count < 2 || cachep->random_seq)
963 return 0;
964
965 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
966 if (!cachep->random_seq)
967 return -ENOMEM;
968
969 /* Get best entropy at this stage of boot */
970 prandom_seed_state(&state, get_random_long());
971
972 freelist_randomize(&state, cachep->random_seq, count);
973 return 0;
974}
975
976/* Destroy the per-cache random freelist sequence */
977void cache_random_seq_destroy(struct kmem_cache *cachep)
978{
979 kfree(cachep->random_seq);
980 cachep->random_seq = NULL;
981}
982#endif /* CONFIG_SLAB_FREELIST_RANDOM */
983
5b365771 984#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 985#ifdef CONFIG_SLAB
0825a6f9 986#define SLABINFO_RIGHTS (0600)
e9b4db2b 987#else
0825a6f9 988#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
989#endif
990
b047501c 991static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
992{
993 /*
994 * Output format version, so at least we can change it
995 * without _too_ many complaints.
996 */
997#ifdef CONFIG_DEBUG_SLAB
998 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
999#else
1000 seq_puts(m, "slabinfo - version: 2.1\n");
1001#endif
756a025f 1002 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1003 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1004 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1005#ifdef CONFIG_DEBUG_SLAB
756a025f 1006 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1007 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1008#endif
1009 seq_putc(m, '\n');
1010}
1011
1df3b26f 1012void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1013{
b7454ad3 1014 mutex_lock(&slab_mutex);
c7094406 1015 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1016}
1017
276a2439 1018void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1019{
c7094406 1020 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1021}
1022
276a2439 1023void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1024{
1025 mutex_unlock(&slab_mutex);
1026}
1027
b047501c 1028static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1029{
0d7561c6
GC
1030 struct slabinfo sinfo;
1031
1032 memset(&sinfo, 0, sizeof(sinfo));
1033 get_slabinfo(s, &sinfo);
1034
1035 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1036 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1037 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1038
1039 seq_printf(m, " : tunables %4u %4u %4u",
1040 sinfo.limit, sinfo.batchcount, sinfo.shared);
1041 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1042 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1043 slabinfo_show_stats(m, s);
1044 seq_putc(m, '\n');
b7454ad3
GC
1045}
1046
1df3b26f 1047static int slab_show(struct seq_file *m, void *p)
749c5415 1048{
c7094406 1049 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1050
c7094406 1051 if (p == slab_caches.next)
1df3b26f 1052 print_slabinfo_header(m);
10befea9 1053 cache_show(s, m);
b047501c
VD
1054 return 0;
1055}
1056
852d8be0
YS
1057void dump_unreclaimable_slab(void)
1058{
7714304f 1059 struct kmem_cache *s;
852d8be0
YS
1060 struct slabinfo sinfo;
1061
1062 /*
1063 * Here acquiring slab_mutex is risky since we don't prefer to get
1064 * sleep in oom path. But, without mutex hold, it may introduce a
1065 * risk of crash.
1066 * Use mutex_trylock to protect the list traverse, dump nothing
1067 * without acquiring the mutex.
1068 */
1069 if (!mutex_trylock(&slab_mutex)) {
1070 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1071 return;
1072 }
1073
1074 pr_info("Unreclaimable slab info:\n");
1075 pr_info("Name Used Total\n");
1076
7714304f 1077 list_for_each_entry(s, &slab_caches, list) {
10befea9 1078 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1079 continue;
1080
1081 get_slabinfo(s, &sinfo);
1082
1083 if (sinfo.num_objs > 0)
10befea9 1084 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1085 (sinfo.active_objs * s->size) / 1024,
1086 (sinfo.num_objs * s->size) / 1024);
1087 }
1088 mutex_unlock(&slab_mutex);
1089}
1090
a87425a3 1091#if defined(CONFIG_MEMCG_KMEM)
b047501c
VD
1092int memcg_slab_show(struct seq_file *m, void *p)
1093{
4330a26b
RG
1094 /*
1095 * Deprecated.
1096 * Please, take a look at tools/cgroup/slabinfo.py .
1097 */
b047501c 1098 return 0;
749c5415 1099}
b047501c 1100#endif
749c5415 1101
b7454ad3
GC
1102/*
1103 * slabinfo_op - iterator that generates /proc/slabinfo
1104 *
1105 * Output layout:
1106 * cache-name
1107 * num-active-objs
1108 * total-objs
1109 * object size
1110 * num-active-slabs
1111 * total-slabs
1112 * num-pages-per-slab
1113 * + further values on SMP and with statistics enabled
1114 */
1115static const struct seq_operations slabinfo_op = {
1df3b26f 1116 .start = slab_start,
276a2439
WL
1117 .next = slab_next,
1118 .stop = slab_stop,
1df3b26f 1119 .show = slab_show,
b7454ad3
GC
1120};
1121
1122static int slabinfo_open(struct inode *inode, struct file *file)
1123{
1124 return seq_open(file, &slabinfo_op);
1125}
1126
97a32539 1127static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1128 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1129 .proc_open = slabinfo_open,
1130 .proc_read = seq_read,
1131 .proc_write = slabinfo_write,
1132 .proc_lseek = seq_lseek,
1133 .proc_release = seq_release,
b7454ad3
GC
1134};
1135
1136static int __init slab_proc_init(void)
1137{
97a32539 1138 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1139 return 0;
1140}
1141module_init(slab_proc_init);
fcf8a1e4 1142
5b365771 1143#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1144
1145static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1146 gfp_t flags)
1147{
1148 void *ret;
fa9ba3aa 1149 size_t ks;
928cec9c 1150
d12d9ad8
AK
1151 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1152 if (likely(!ZERO_OR_NULL_PTR(p))) {
1153 if (!kasan_check_byte(p))
1154 return NULL;
1155 ks = kfence_ksize(p) ?: __ksize(p);
1156 } else
1157 ks = 0;
928cec9c 1158
d12d9ad8 1159 /* If the object still fits, repoison it precisely. */
0316bec2 1160 if (ks >= new_size) {
0116523c 1161 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1162 return (void *)p;
0316bec2 1163 }
928cec9c
AR
1164
1165 ret = kmalloc_track_caller(new_size, flags);
d12d9ad8
AK
1166 if (ret && p) {
1167 /* Disable KASAN checks as the object's redzone is accessed. */
1168 kasan_disable_current();
1169 memcpy(ret, kasan_reset_tag(p), ks);
1170 kasan_enable_current();
1171 }
928cec9c
AR
1172
1173 return ret;
1174}
1175
928cec9c
AR
1176/**
1177 * krealloc - reallocate memory. The contents will remain unchanged.
1178 * @p: object to reallocate memory for.
1179 * @new_size: how many bytes of memory are required.
1180 * @flags: the type of memory to allocate.
1181 *
1182 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1183 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1184 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1185 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1186 *
1187 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1188 */
1189void *krealloc(const void *p, size_t new_size, gfp_t flags)
1190{
1191 void *ret;
1192
1193 if (unlikely(!new_size)) {
1194 kfree(p);
1195 return ZERO_SIZE_PTR;
1196 }
1197
1198 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1199 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1200 kfree(p);
1201
1202 return ret;
1203}
1204EXPORT_SYMBOL(krealloc);
1205
1206/**
453431a5 1207 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1208 * @p: object to free memory of
1209 *
1210 * The memory of the object @p points to is zeroed before freed.
453431a5 1211 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1212 *
1213 * Note: this function zeroes the whole allocated buffer which can be a good
1214 * deal bigger than the requested buffer size passed to kmalloc(). So be
1215 * careful when using this function in performance sensitive code.
1216 */
453431a5 1217void kfree_sensitive(const void *p)
928cec9c
AR
1218{
1219 size_t ks;
1220 void *mem = (void *)p;
1221
928cec9c 1222 ks = ksize(mem);
fa9ba3aa
WK
1223 if (ks)
1224 memzero_explicit(mem, ks);
928cec9c
AR
1225 kfree(mem);
1226}
453431a5 1227EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1228
10d1f8cb
ME
1229/**
1230 * ksize - get the actual amount of memory allocated for a given object
1231 * @objp: Pointer to the object
1232 *
1233 * kmalloc may internally round up allocations and return more memory
1234 * than requested. ksize() can be used to determine the actual amount of
1235 * memory allocated. The caller may use this additional memory, even though
1236 * a smaller amount of memory was initially specified with the kmalloc call.
1237 * The caller must guarantee that objp points to a valid object previously
1238 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1239 * must not be freed during the duration of the call.
1240 *
1241 * Return: size of the actual memory used by @objp in bytes
1242 */
1243size_t ksize(const void *objp)
1244{
0d4ca4c9
ME
1245 size_t size;
1246
0d4ca4c9 1247 /*
611806b4
AK
1248 * We need to first check that the pointer to the object is valid, and
1249 * only then unpoison the memory. The report printed from ksize() is
1250 * more useful, then when it's printed later when the behaviour could
1251 * be undefined due to a potential use-after-free or double-free.
0d4ca4c9 1252 *
611806b4
AK
1253 * We use kasan_check_byte(), which is supported for the hardware
1254 * tag-based KASAN mode, unlike kasan_check_read/write().
1255 *
1256 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1257 * ksize() writing to and potentially corrupting the memory region.
1258 *
1259 * We want to perform the check before __ksize(), to avoid potentially
1260 * crashing in __ksize() due to accessing invalid metadata.
1261 */
611806b4 1262 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1263 return 0;
1264
d3fb45f3 1265 size = kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1266 /*
1267 * We assume that ksize callers could use whole allocated area,
1268 * so we need to unpoison this area.
1269 */
cebd0eb2 1270 kasan_unpoison_range(objp, size);
10d1f8cb
ME
1271 return size;
1272}
1273EXPORT_SYMBOL(ksize);
1274
928cec9c
AR
1275/* Tracepoints definitions. */
1276EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1277EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1278EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1279EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1280EXPORT_TRACEPOINT_SYMBOL(kfree);
1281EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1282
1283int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1284{
1285 if (__should_failslab(s, gfpflags))
1286 return -ENOMEM;
1287 return 0;
1288}
1289ALLOW_ERROR_INJECTION(should_failslab, ERRNO);