Merge tag 'efi-fixes-for-v6.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3
GC
19#include <linux/seq_file.h>
20#include <linux/proc_fs.h>
fcf8a1e4 21#include <linux/debugfs.h>
e86f8b09 22#include <linux/kasan.h>
039363f3
CL
23#include <asm/cacheflush.h>
24#include <asm/tlbflush.h>
25#include <asm/page.h>
2633d7a0 26#include <linux/memcontrol.h>
5cf909c5 27#include <linux/stackdepot.h>
928cec9c 28
44405099 29#include "internal.h"
97d06609
CL
30#include "slab.h"
31
b347aa7b
VA
32#define CREATE_TRACE_POINTS
33#include <trace/events/kmem.h>
34
97d06609 35enum slab_state slab_state;
18004c5d
CL
36LIST_HEAD(slab_caches);
37DEFINE_MUTEX(slab_mutex);
9b030cb8 38struct kmem_cache *kmem_cache;
97d06609 39
657dc2f9
TH
40static LIST_HEAD(slab_caches_to_rcu_destroy);
41static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 slab_caches_to_rcu_destroy_workfn);
44
423c929c
JK
45/*
46 * Set of flags that will prevent slab merging
47 */
48#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
e86f8b09 50 SLAB_FAILSLAB | kasan_never_merge())
423c929c 51
230e9fc2 52#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
54
55/*
56 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 57 */
7660a6fd 58static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
59
60static int __init setup_slab_nomerge(char *str)
61{
7660a6fd 62 slab_nomerge = true;
423c929c
JK
63 return 1;
64}
65
82edd9d5
RA
66static int __init setup_slab_merge(char *str)
67{
68 slab_nomerge = false;
69 return 1;
70}
71
423c929c
JK
72#ifdef CONFIG_SLUB
73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82edd9d5 74__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
423c929c
JK
75#endif
76
77__setup("slab_nomerge", setup_slab_nomerge);
82edd9d5 78__setup("slab_merge", setup_slab_merge);
423c929c 79
07f361b2
JK
80/*
81 * Determine the size of a slab object
82 */
83unsigned int kmem_cache_size(struct kmem_cache *s)
84{
85 return s->object_size;
86}
87EXPORT_SYMBOL(kmem_cache_size);
88
77be4b13 89#ifdef CONFIG_DEBUG_VM
f4957d5b 90static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 91{
74c1d3e0 92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
77be4b13
SK
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 return -EINVAL;
039363f3 95 }
b920536a 96
20cea968 97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
98 return 0;
99}
100#else
f4957d5b 101static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
102{
103 return 0;
104}
20cea968
CL
105#endif
106
692ae74a
BL
107/*
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
110 */
f4957d5b
AD
111static unsigned int calculate_alignment(slab_flags_t flags,
112 unsigned int align, unsigned int size)
692ae74a
BL
113{
114 /*
115 * If the user wants hardware cache aligned objects then follow that
116 * suggestion if the object is sufficiently large.
117 *
118 * The hardware cache alignment cannot override the specified
119 * alignment though. If that is greater then use it.
120 */
121 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 122 unsigned int ralign;
692ae74a
BL
123
124 ralign = cache_line_size();
125 while (size <= ralign / 2)
126 ralign /= 2;
127 align = max(align, ralign);
128 }
129
d949a815 130 align = max(align, arch_slab_minalign());
692ae74a
BL
131
132 return ALIGN(align, sizeof(void *));
133}
134
423c929c
JK
135/*
136 * Find a mergeable slab cache
137 */
138int slab_unmergeable(struct kmem_cache *s)
139{
140 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
141 return 1;
142
423c929c
JK
143 if (s->ctor)
144 return 1;
145
346907ce 146#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
147 if (s->usersize)
148 return 1;
346907ce 149#endif
8eb8284b 150
423c929c
JK
151 /*
152 * We may have set a slab to be unmergeable during bootstrap.
153 */
154 if (s->refcount < 0)
155 return 1;
156
157 return 0;
158}
159
f4957d5b 160struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 161 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
162{
163 struct kmem_cache *s;
164
c6e28895 165 if (slab_nomerge)
423c929c
JK
166 return NULL;
167
168 if (ctor)
169 return NULL;
170
171 size = ALIGN(size, sizeof(void *));
172 align = calculate_alignment(flags, align, size);
173 size = ALIGN(size, align);
37540008 174 flags = kmem_cache_flags(size, flags, name);
423c929c 175
c6e28895
GM
176 if (flags & SLAB_NEVER_MERGE)
177 return NULL;
178
c7094406 179 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
180 if (slab_unmergeable(s))
181 continue;
182
183 if (size > s->size)
184 continue;
185
186 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
187 continue;
188 /*
189 * Check if alignment is compatible.
190 * Courtesy of Adrian Drzewiecki
191 */
192 if ((s->size & ~(align - 1)) != s->size)
193 continue;
194
195 if (s->size - size >= sizeof(void *))
196 continue;
197
95069ac8
JK
198 if (IS_ENABLED(CONFIG_SLAB) && align &&
199 (align > s->align || s->align % align))
200 continue;
201
423c929c
JK
202 return s;
203 }
204 return NULL;
205}
206
c9a77a79 207static struct kmem_cache *create_cache(const char *name,
613a5eb5 208 unsigned int object_size, unsigned int align,
7bbdb81e
AD
209 slab_flags_t flags, unsigned int useroffset,
210 unsigned int usersize, void (*ctor)(void *),
9855609b 211 struct kmem_cache *root_cache)
794b1248
VD
212{
213 struct kmem_cache *s;
214 int err;
215
8eb8284b
DW
216 if (WARN_ON(useroffset + usersize > object_size))
217 useroffset = usersize = 0;
218
794b1248
VD
219 err = -ENOMEM;
220 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
221 if (!s)
222 goto out;
223
224 s->name = name;
613a5eb5 225 s->size = s->object_size = object_size;
794b1248
VD
226 s->align = align;
227 s->ctor = ctor;
346907ce 228#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
229 s->useroffset = useroffset;
230 s->usersize = usersize;
346907ce 231#endif
794b1248 232
794b1248
VD
233 err = __kmem_cache_create(s, flags);
234 if (err)
235 goto out_free_cache;
236
237 s->refcount = 1;
238 list_add(&s->list, &slab_caches);
794b1248
VD
239out:
240 if (err)
241 return ERR_PTR(err);
242 return s;
243
244out_free_cache:
7c4da061 245 kmem_cache_free(kmem_cache, s);
794b1248
VD
246 goto out;
247}
45906855 248
f496990f
MR
249/**
250 * kmem_cache_create_usercopy - Create a cache with a region suitable
251 * for copying to userspace
77be4b13
SK
252 * @name: A string which is used in /proc/slabinfo to identify this cache.
253 * @size: The size of objects to be created in this cache.
254 * @align: The required alignment for the objects.
255 * @flags: SLAB flags
8eb8284b
DW
256 * @useroffset: Usercopy region offset
257 * @usersize: Usercopy region size
77be4b13
SK
258 * @ctor: A constructor for the objects.
259 *
77be4b13
SK
260 * Cannot be called within a interrupt, but can be interrupted.
261 * The @ctor is run when new pages are allocated by the cache.
262 *
263 * The flags are
264 *
265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
266 * to catch references to uninitialised memory.
267 *
f496990f 268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
269 * for buffer overruns.
270 *
271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
272 * cacheline. This can be beneficial if you're counting cycles as closely
273 * as davem.
f496990f
MR
274 *
275 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 276 */
2633d7a0 277struct kmem_cache *
f4957d5b
AD
278kmem_cache_create_usercopy(const char *name,
279 unsigned int size, unsigned int align,
7bbdb81e
AD
280 slab_flags_t flags,
281 unsigned int useroffset, unsigned int usersize,
8eb8284b 282 void (*ctor)(void *))
77be4b13 283{
40911a79 284 struct kmem_cache *s = NULL;
3dec16ea 285 const char *cache_name;
3965fc36 286 int err;
039363f3 287
afe0c26d
VB
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * If no slub_debug was enabled globally, the static key is not yet
291 * enabled by setup_slub_debug(). Enable it if the cache is being
292 * created with any of the debugging flags passed explicitly.
5cf909c5
OG
293 * It's also possible that this is the first cache created with
294 * SLAB_STORE_USER and we should init stack_depot for it.
afe0c26d
VB
295 */
296 if (flags & SLAB_DEBUG_FLAGS)
297 static_branch_enable(&slub_debug_enabled);
5cf909c5
OG
298 if (flags & SLAB_STORE_USER)
299 stack_depot_init();
afe0c26d
VB
300#endif
301
77be4b13 302 mutex_lock(&slab_mutex);
686d550d 303
794b1248 304 err = kmem_cache_sanity_check(name, size);
3aa24f51 305 if (err) {
3965fc36 306 goto out_unlock;
3aa24f51 307 }
686d550d 308
e70954fd
TG
309 /* Refuse requests with allocator specific flags */
310 if (flags & ~SLAB_FLAGS_PERMITTED) {
311 err = -EINVAL;
312 goto out_unlock;
313 }
314
d8843922
GC
315 /*
316 * Some allocators will constraint the set of valid flags to a subset
317 * of all flags. We expect them to define CACHE_CREATE_MASK in this
318 * case, and we'll just provide them with a sanitized version of the
319 * passed flags.
320 */
321 flags &= CACHE_CREATE_MASK;
686d550d 322
8eb8284b 323 /* Fail closed on bad usersize of useroffset values. */
346907ce
VB
324 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
325 WARN_ON(!usersize && useroffset) ||
8eb8284b
DW
326 WARN_ON(size < usersize || size - usersize < useroffset))
327 usersize = useroffset = 0;
328
329 if (!usersize)
330 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 331 if (s)
3965fc36 332 goto out_unlock;
2633d7a0 333
3dec16ea 334 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
335 if (!cache_name) {
336 err = -ENOMEM;
337 goto out_unlock;
338 }
7c9adf5a 339
613a5eb5 340 s = create_cache(cache_name, size,
c9a77a79 341 calculate_alignment(flags, align, size),
9855609b 342 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
343 if (IS_ERR(s)) {
344 err = PTR_ERR(s);
3dec16ea 345 kfree_const(cache_name);
794b1248 346 }
3965fc36
VD
347
348out_unlock:
20cea968 349 mutex_unlock(&slab_mutex);
03afc0e2 350
ba3253c7 351 if (err) {
686d550d 352 if (flags & SLAB_PANIC)
4acaa7d5 353 panic("%s: Failed to create slab '%s'. Error %d\n",
354 __func__, name, err);
686d550d 355 else {
4acaa7d5 356 pr_warn("%s(%s) failed with error %d\n",
357 __func__, name, err);
686d550d
CL
358 dump_stack();
359 }
686d550d
CL
360 return NULL;
361 }
039363f3
CL
362 return s;
363}
8eb8284b
DW
364EXPORT_SYMBOL(kmem_cache_create_usercopy);
365
f496990f
MR
366/**
367 * kmem_cache_create - Create a cache.
368 * @name: A string which is used in /proc/slabinfo to identify this cache.
369 * @size: The size of objects to be created in this cache.
370 * @align: The required alignment for the objects.
371 * @flags: SLAB flags
372 * @ctor: A constructor for the objects.
373 *
374 * Cannot be called within a interrupt, but can be interrupted.
375 * The @ctor is run when new pages are allocated by the cache.
376 *
377 * The flags are
378 *
379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
380 * to catch references to uninitialised memory.
381 *
382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
383 * for buffer overruns.
384 *
385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
386 * cacheline. This can be beneficial if you're counting cycles as closely
387 * as davem.
388 *
389 * Return: a pointer to the cache on success, NULL on failure.
390 */
8eb8284b 391struct kmem_cache *
f4957d5b 392kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
393 slab_flags_t flags, void (*ctor)(void *))
394{
6d07d1cd 395 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
396 ctor);
397}
794b1248 398EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 399
0495e337
WL
400#ifdef SLAB_SUPPORTS_SYSFS
401/*
402 * For a given kmem_cache, kmem_cache_destroy() should only be called
403 * once or there will be a use-after-free problem. The actual deletion
404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
405 * protection. So they are now done without holding those locks.
406 *
407 * Note that there will be a slight delay in the deletion of sysfs files
408 * if kmem_cache_release() is called indrectly from a work function.
409 */
410static void kmem_cache_release(struct kmem_cache *s)
411{
412 sysfs_slab_unlink(s);
413 sysfs_slab_release(s);
414}
415#else
416static void kmem_cache_release(struct kmem_cache *s)
417{
418 slab_kmem_cache_release(s);
419}
420#endif
421
657dc2f9 422static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 423{
657dc2f9
TH
424 LIST_HEAD(to_destroy);
425 struct kmem_cache *s, *s2;
d5b3cf71 426
657dc2f9 427 /*
5f0d5a3a 428 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 429 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 430 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
431 * while freeing the pages, so the kmem_caches should be freed only
432 * after the pending RCU operations are finished. As rcu_barrier()
433 * is a pretty slow operation, we batch all pending destructions
434 * asynchronously.
435 */
436 mutex_lock(&slab_mutex);
437 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
438 mutex_unlock(&slab_mutex);
d5b3cf71 439
657dc2f9
TH
440 if (list_empty(&to_destroy))
441 return;
442
443 rcu_barrier();
444
445 list_for_each_entry_safe(s, s2, &to_destroy, list) {
64dd6849 446 debugfs_slab_release(s);
d3fb45f3 447 kfence_shutdown_cache(s);
0495e337 448 kmem_cache_release(s);
657dc2f9 449 }
d5b3cf71
VD
450}
451
657dc2f9 452static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 453{
f9fa1d91
GT
454 /* free asan quarantined objects */
455 kasan_cache_shutdown(s);
456
657dc2f9
TH
457 if (__kmem_cache_shutdown(s) != 0)
458 return -EBUSY;
d5b3cf71 459
657dc2f9 460 list_del(&s->list);
d5b3cf71 461
5f0d5a3a 462 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
463 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
464 schedule_work(&slab_caches_to_rcu_destroy_work);
465 } else {
d3fb45f3 466 kfence_shutdown_cache(s);
64dd6849 467 debugfs_slab_release(s);
d5b3cf71 468 }
657dc2f9
TH
469
470 return 0;
d5b3cf71
VD
471}
472
41a21285
CL
473void slab_kmem_cache_release(struct kmem_cache *s)
474{
52b4b950 475 __kmem_cache_release(s);
3dec16ea 476 kfree_const(s->name);
41a21285
CL
477 kmem_cache_free(kmem_cache, s);
478}
479
945cf2b6
CL
480void kmem_cache_destroy(struct kmem_cache *s)
481{
0495e337 482 int refcnt;
d71608a8 483 bool rcu_set;
0495e337 484
bed0a9b5 485 if (unlikely(!s) || !kasan_check_byte(s))
3942d299
SS
486 return;
487
5a836bf6 488 cpus_read_lock();
945cf2b6 489 mutex_lock(&slab_mutex);
b8529907 490
d71608a8
FT
491 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
492
0495e337
WL
493 refcnt = --s->refcount;
494 if (refcnt)
b8529907
VD
495 goto out_unlock;
496
7302e91f
ME
497 WARN(shutdown_cache(s),
498 "%s %s: Slab cache still has objects when called from %pS",
499 __func__, s->name, (void *)_RET_IP_);
b8529907
VD
500out_unlock:
501 mutex_unlock(&slab_mutex);
5a836bf6 502 cpus_read_unlock();
d71608a8 503 if (!refcnt && !rcu_set)
0495e337 504 kmem_cache_release(s);
945cf2b6
CL
505}
506EXPORT_SYMBOL(kmem_cache_destroy);
507
03afc0e2
VD
508/**
509 * kmem_cache_shrink - Shrink a cache.
510 * @cachep: The cache to shrink.
511 *
512 * Releases as many slabs as possible for a cache.
513 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
514 *
515 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
516 */
517int kmem_cache_shrink(struct kmem_cache *cachep)
518{
55834c59 519 kasan_cache_shrink(cachep);
7e1fa93d 520
610f9c00 521 return __kmem_cache_shrink(cachep);
03afc0e2
VD
522}
523EXPORT_SYMBOL(kmem_cache_shrink);
524
fda90124 525bool slab_is_available(void)
97d06609
CL
526{
527 return slab_state >= UP;
528}
b7454ad3 529
5bb1bb35 530#ifdef CONFIG_PRINTK
8e7f37f2
PM
531/**
532 * kmem_valid_obj - does the pointer reference a valid slab object?
533 * @object: pointer to query.
534 *
535 * Return: %true if the pointer is to a not-yet-freed object from
536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
537 * is to an already-freed object, and %false otherwise.
538 */
539bool kmem_valid_obj(void *object)
540{
7213230a 541 struct folio *folio;
8e7f37f2
PM
542
543 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
544 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
545 return false;
7213230a
MWO
546 folio = virt_to_folio(object);
547 return folio_test_slab(folio);
8e7f37f2 548}
0d3dd2c8 549EXPORT_SYMBOL_GPL(kmem_valid_obj);
8e7f37f2 550
2dfe63e6
ME
551static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
552{
553 if (__kfence_obj_info(kpp, object, slab))
554 return;
555 __kmem_obj_info(kpp, object, slab);
556}
557
8e7f37f2
PM
558/**
559 * kmem_dump_obj - Print available slab provenance information
560 * @object: slab object for which to find provenance information.
561 *
562 * This function uses pr_cont(), so that the caller is expected to have
563 * printed out whatever preamble is appropriate. The provenance information
564 * depends on the type of object and on how much debugging is enabled.
565 * For a slab-cache object, the fact that it is a slab object is printed,
566 * and, if available, the slab name, return address, and stack trace from
e548eaa1 567 * the allocation and last free path of that object.
8e7f37f2
PM
568 *
569 * This function will splat if passed a pointer to a non-slab object.
570 * If you are not sure what type of object you have, you should instead
571 * use mem_dump_obj().
572 */
573void kmem_dump_obj(void *object)
574{
575 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
576 int i;
7213230a 577 struct slab *slab;
8e7f37f2
PM
578 unsigned long ptroffset;
579 struct kmem_obj_info kp = { };
580
581 if (WARN_ON_ONCE(!virt_addr_valid(object)))
582 return;
7213230a
MWO
583 slab = virt_to_slab(object);
584 if (WARN_ON_ONCE(!slab)) {
8e7f37f2
PM
585 pr_cont(" non-slab memory.\n");
586 return;
587 }
7213230a 588 kmem_obj_info(&kp, object, slab);
8e7f37f2
PM
589 if (kp.kp_slab_cache)
590 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
591 else
592 pr_cont(" slab%s", cp);
2dfe63e6
ME
593 if (is_kfence_address(object))
594 pr_cont(" (kfence)");
8e7f37f2
PM
595 if (kp.kp_objp)
596 pr_cont(" start %px", kp.kp_objp);
597 if (kp.kp_data_offset)
598 pr_cont(" data offset %lu", kp.kp_data_offset);
599 if (kp.kp_objp) {
600 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
601 pr_cont(" pointer offset %lu", ptroffset);
602 }
346907ce
VB
603 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
604 pr_cont(" size %u", kp.kp_slab_cache->object_size);
8e7f37f2
PM
605 if (kp.kp_ret)
606 pr_cont(" allocated at %pS\n", kp.kp_ret);
607 else
608 pr_cont("\n");
609 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
610 if (!kp.kp_stack[i])
611 break;
612 pr_info(" %pS\n", kp.kp_stack[i]);
613 }
e548eaa1
MS
614
615 if (kp.kp_free_stack[0])
616 pr_cont(" Free path:\n");
617
618 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
619 if (!kp.kp_free_stack[i])
620 break;
621 pr_info(" %pS\n", kp.kp_free_stack[i]);
622 }
623
8e7f37f2 624}
0d3dd2c8 625EXPORT_SYMBOL_GPL(kmem_dump_obj);
5bb1bb35 626#endif
8e7f37f2 627
45530c44
CL
628#ifndef CONFIG_SLOB
629/* Create a cache during boot when no slab services are available yet */
361d575e
AD
630void __init create_boot_cache(struct kmem_cache *s, const char *name,
631 unsigned int size, slab_flags_t flags,
632 unsigned int useroffset, unsigned int usersize)
45530c44
CL
633{
634 int err;
59bb4798 635 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
636
637 s->name = name;
638 s->size = s->object_size = size;
59bb4798
VB
639
640 /*
641 * For power of two sizes, guarantee natural alignment for kmalloc
642 * caches, regardless of SL*B debugging options.
643 */
644 if (is_power_of_2(size))
645 align = max(align, size);
646 s->align = calculate_alignment(flags, align, size);
647
346907ce 648#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
649 s->useroffset = useroffset;
650 s->usersize = usersize;
346907ce 651#endif
f7ce3190 652
45530c44
CL
653 err = __kmem_cache_create(s, flags);
654
655 if (err)
361d575e 656 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
657 name, size, err);
658
659 s->refcount = -1; /* Exempt from merging for now */
660}
661
55de8b9c
AD
662struct kmem_cache *__init create_kmalloc_cache(const char *name,
663 unsigned int size, slab_flags_t flags,
664 unsigned int useroffset, unsigned int usersize)
45530c44
CL
665{
666 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
667
668 if (!s)
669 panic("Out of memory when creating slab %s\n", name);
670
6edf2576
FT
671 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
672 usersize);
45530c44
CL
673 list_add(&s->list, &slab_caches);
674 s->refcount = 1;
675 return s;
676}
677
cc252eae 678struct kmem_cache *
a07057dc
AB
679kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
680{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
681EXPORT_SYMBOL(kmalloc_caches);
682
2c59dd65
CL
683/*
684 * Conversion table for small slabs sizes / 8 to the index in the
685 * kmalloc array. This is necessary for slabs < 192 since we have non power
686 * of two cache sizes there. The size of larger slabs can be determined using
687 * fls.
688 */
d5f86655 689static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
690 3, /* 8 */
691 4, /* 16 */
692 5, /* 24 */
693 5, /* 32 */
694 6, /* 40 */
695 6, /* 48 */
696 6, /* 56 */
697 6, /* 64 */
698 1, /* 72 */
699 1, /* 80 */
700 1, /* 88 */
701 1, /* 96 */
702 7, /* 104 */
703 7, /* 112 */
704 7, /* 120 */
705 7, /* 128 */
706 2, /* 136 */
707 2, /* 144 */
708 2, /* 152 */
709 2, /* 160 */
710 2, /* 168 */
711 2, /* 176 */
712 2, /* 184 */
713 2 /* 192 */
714};
715
ac914d08 716static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
717{
718 return (bytes - 1) / 8;
719}
720
721/*
722 * Find the kmem_cache structure that serves a given size of
723 * allocation
724 */
725struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
726{
d5f86655 727 unsigned int index;
2c59dd65
CL
728
729 if (size <= 192) {
730 if (!size)
731 return ZERO_SIZE_PTR;
732
733 index = size_index[size_index_elem(size)];
61448479 734 } else {
221d7da6 735 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 736 return NULL;
2c59dd65 737 index = fls(size - 1);
61448479 738 }
2c59dd65 739
cc252eae 740 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
741}
742
05a94065
KC
743size_t kmalloc_size_roundup(size_t size)
744{
745 struct kmem_cache *c;
746
747 /* Short-circuit the 0 size case. */
748 if (unlikely(size == 0))
749 return 0;
750 /* Short-circuit saturated "too-large" case. */
751 if (unlikely(size == SIZE_MAX))
752 return SIZE_MAX;
753 /* Above the smaller buckets, size is a multiple of page size. */
754 if (size > KMALLOC_MAX_CACHE_SIZE)
755 return PAGE_SIZE << get_order(size);
756
757 /* The flags don't matter since size_index is common to all. */
758 c = kmalloc_slab(size, GFP_KERNEL);
759 return c ? c->object_size : 0;
760}
761EXPORT_SYMBOL(kmalloc_size_roundup);
762
cb5d9fb3 763#ifdef CONFIG_ZONE_DMA
494c1dfe
WL
764#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
765#else
766#define KMALLOC_DMA_NAME(sz)
767#endif
768
769#ifdef CONFIG_MEMCG_KMEM
770#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
cb5d9fb3 771#else
494c1dfe
WL
772#define KMALLOC_CGROUP_NAME(sz)
773#endif
774
2f7c1c13
VB
775#ifndef CONFIG_SLUB_TINY
776#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
777#else
778#define KMALLOC_RCL_NAME(sz)
779#endif
780
cb5d9fb3
PL
781#define INIT_KMALLOC_INFO(__size, __short_size) \
782{ \
783 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
2f7c1c13 784 KMALLOC_RCL_NAME(__short_size) \
494c1dfe
WL
785 KMALLOC_CGROUP_NAME(__short_size) \
786 KMALLOC_DMA_NAME(__short_size) \
cb5d9fb3
PL
787 .size = __size, \
788}
cb5d9fb3 789
4066c33d
GG
790/*
791 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
d6a71648
HY
792 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
793 * kmalloc-2M.
4066c33d 794 */
af3b5f87 795const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
796 INIT_KMALLOC_INFO(0, 0),
797 INIT_KMALLOC_INFO(96, 96),
798 INIT_KMALLOC_INFO(192, 192),
799 INIT_KMALLOC_INFO(8, 8),
800 INIT_KMALLOC_INFO(16, 16),
801 INIT_KMALLOC_INFO(32, 32),
802 INIT_KMALLOC_INFO(64, 64),
803 INIT_KMALLOC_INFO(128, 128),
804 INIT_KMALLOC_INFO(256, 256),
805 INIT_KMALLOC_INFO(512, 512),
806 INIT_KMALLOC_INFO(1024, 1k),
807 INIT_KMALLOC_INFO(2048, 2k),
808 INIT_KMALLOC_INFO(4096, 4k),
809 INIT_KMALLOC_INFO(8192, 8k),
810 INIT_KMALLOC_INFO(16384, 16k),
811 INIT_KMALLOC_INFO(32768, 32k),
812 INIT_KMALLOC_INFO(65536, 64k),
813 INIT_KMALLOC_INFO(131072, 128k),
814 INIT_KMALLOC_INFO(262144, 256k),
815 INIT_KMALLOC_INFO(524288, 512k),
816 INIT_KMALLOC_INFO(1048576, 1M),
d6a71648 817 INIT_KMALLOC_INFO(2097152, 2M)
4066c33d
GG
818};
819
f97d5f63 820/*
34cc6990
DS
821 * Patch up the size_index table if we have strange large alignment
822 * requirements for the kmalloc array. This is only the case for
823 * MIPS it seems. The standard arches will not generate any code here.
824 *
825 * Largest permitted alignment is 256 bytes due to the way we
826 * handle the index determination for the smaller caches.
827 *
828 * Make sure that nothing crazy happens if someone starts tinkering
829 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 830 */
34cc6990 831void __init setup_kmalloc_cache_index_table(void)
f97d5f63 832{
ac914d08 833 unsigned int i;
f97d5f63 834
2c59dd65 835 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
7d6b6cc3 836 !is_power_of_2(KMALLOC_MIN_SIZE));
2c59dd65
CL
837
838 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 839 unsigned int elem = size_index_elem(i);
2c59dd65
CL
840
841 if (elem >= ARRAY_SIZE(size_index))
842 break;
843 size_index[elem] = KMALLOC_SHIFT_LOW;
844 }
845
846 if (KMALLOC_MIN_SIZE >= 64) {
847 /*
0b8f0d87 848 * The 96 byte sized cache is not used if the alignment
2c59dd65
CL
849 * is 64 byte.
850 */
851 for (i = 64 + 8; i <= 96; i += 8)
852 size_index[size_index_elem(i)] = 7;
853
854 }
855
856 if (KMALLOC_MIN_SIZE >= 128) {
857 /*
858 * The 192 byte sized cache is not used if the alignment
859 * is 128 byte. Redirect kmalloc to use the 256 byte cache
860 * instead.
861 */
862 for (i = 128 + 8; i <= 192; i += 8)
863 size_index[size_index_elem(i)] = 8;
864 }
34cc6990
DS
865}
866
1291523f 867static void __init
13657d0a 868new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 869{
2f7c1c13 870 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
1291523f 871 flags |= SLAB_RECLAIM_ACCOUNT;
494c1dfe 872 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
17c17367 873 if (mem_cgroup_kmem_disabled()) {
494c1dfe
WL
874 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
875 return;
876 }
877 flags |= SLAB_ACCOUNT;
33647783
OK
878 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
879 flags |= SLAB_CACHE_DMA;
494c1dfe 880 }
1291523f 881
cb5d9fb3
PL
882 kmalloc_caches[type][idx] = create_kmalloc_cache(
883 kmalloc_info[idx].name[type],
6c0c21ad
DW
884 kmalloc_info[idx].size, flags, 0,
885 kmalloc_info[idx].size);
13e680fb
WL
886
887 /*
888 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
889 * KMALLOC_NORMAL caches.
890 */
891 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
892 kmalloc_caches[type][idx]->refcount = -1;
a9730fca
CL
893}
894
34cc6990
DS
895/*
896 * Create the kmalloc array. Some of the regular kmalloc arrays
897 * may already have been created because they were needed to
898 * enable allocations for slab creation.
899 */
d50112ed 900void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 901{
13657d0a
PL
902 int i;
903 enum kmalloc_cache_type type;
34cc6990 904
494c1dfe
WL
905 /*
906 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
907 */
33647783 908 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
1291523f
VB
909 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
910 if (!kmalloc_caches[type][i])
911 new_kmalloc_cache(i, type, flags);
f97d5f63 912
1291523f
VB
913 /*
914 * Caches that are not of the two-to-the-power-of size.
915 * These have to be created immediately after the
916 * earlier power of two caches
917 */
918 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
919 !kmalloc_caches[type][1])
920 new_kmalloc_cache(1, type, flags);
921 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
922 !kmalloc_caches[type][2])
923 new_kmalloc_cache(2, type, flags);
924 }
8a965b3b
CL
925 }
926
f97d5f63
CL
927 /* Kmalloc array is now usable */
928 slab_state = UP;
f97d5f63 929}
d6a71648
HY
930
931void free_large_kmalloc(struct folio *folio, void *object)
932{
933 unsigned int order = folio_order(folio);
934
935 if (WARN_ON_ONCE(order == 0))
936 pr_warn_once("object pointer: 0x%p\n", object);
937
938 kmemleak_free(object);
939 kasan_kfree_large(object);
27bc50fc 940 kmsan_kfree_large(object);
d6a71648
HY
941
942 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
943 -(PAGE_SIZE << order));
944 __free_pages(folio_page(folio, 0), order);
945}
b1405135
HY
946
947static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
948static __always_inline
949void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
950{
951 struct kmem_cache *s;
952 void *ret;
953
954 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
955 ret = __kmalloc_large_node(size, flags, node);
32868715 956 trace_kmalloc(caller, ret, size,
11e9734b 957 PAGE_SIZE << get_order(size), flags, node);
b1405135
HY
958 return ret;
959 }
960
961 s = kmalloc_slab(size, flags);
962
963 if (unlikely(ZERO_OR_NULL_PTR(s)))
964 return s;
965
966 ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
967 ret = kasan_kmalloc(s, ret, size, flags);
32868715 968 trace_kmalloc(caller, ret, size, s->size, flags, node);
b1405135
HY
969 return ret;
970}
971
972void *__kmalloc_node(size_t size, gfp_t flags, int node)
973{
974 return __do_kmalloc_node(size, flags, node, _RET_IP_);
975}
976EXPORT_SYMBOL(__kmalloc_node);
977
978void *__kmalloc(size_t size, gfp_t flags)
979{
980 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
981}
982EXPORT_SYMBOL(__kmalloc);
983
984void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
985 int node, unsigned long caller)
986{
987 return __do_kmalloc_node(size, flags, node, caller);
988}
989EXPORT_SYMBOL(__kmalloc_node_track_caller);
990
991/**
992 * kfree - free previously allocated memory
993 * @object: pointer returned by kmalloc.
994 *
995 * If @object is NULL, no operation is performed.
996 *
997 * Don't free memory not originally allocated by kmalloc()
998 * or you will run into trouble.
999 */
1000void kfree(const void *object)
1001{
1002 struct folio *folio;
1003 struct slab *slab;
1004 struct kmem_cache *s;
1005
1006 trace_kfree(_RET_IP_, object);
1007
1008 if (unlikely(ZERO_OR_NULL_PTR(object)))
1009 return;
1010
1011 folio = virt_to_folio(object);
1012 if (unlikely(!folio_test_slab(folio))) {
1013 free_large_kmalloc(folio, (void *)object);
1014 return;
1015 }
1016
1017 slab = folio_slab(folio);
1018 s = slab->slab_cache;
1019 __kmem_cache_free(s, (void *)object, _RET_IP_);
1020}
1021EXPORT_SYMBOL(kfree);
1022
445d41d7
VB
1023/**
1024 * __ksize -- Report full size of underlying allocation
a2076201 1025 * @object: pointer to the object
445d41d7
VB
1026 *
1027 * This should only be used internally to query the true size of allocations.
1028 * It is not meant to be a way to discover the usable size of an allocation
1029 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1030 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1031 * and/or FORTIFY_SOURCE.
1032 *
a2076201 1033 * Return: size of the actual memory used by @object in bytes
445d41d7 1034 */
b1405135
HY
1035size_t __ksize(const void *object)
1036{
1037 struct folio *folio;
1038
1039 if (unlikely(object == ZERO_SIZE_PTR))
1040 return 0;
1041
1042 folio = virt_to_folio(object);
1043
d5eff736
HY
1044 if (unlikely(!folio_test_slab(folio))) {
1045 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1046 return 0;
1047 if (WARN_ON(object != folio_address(folio)))
1048 return 0;
b1405135 1049 return folio_size(folio);
d5eff736 1050 }
b1405135 1051
946fa0db
FT
1052#ifdef CONFIG_SLUB_DEBUG
1053 skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1054#endif
1055
b1405135
HY
1056 return slab_ksize(folio_slab(folio)->slab_cache);
1057}
26a40990 1058
26a40990
HY
1059void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1060{
1061 void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1062 size, _RET_IP_);
1063
2c1d697f 1064 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
26a40990
HY
1065
1066 ret = kasan_kmalloc(s, ret, size, gfpflags);
1067 return ret;
1068}
1069EXPORT_SYMBOL(kmalloc_trace);
1070
1071void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1072 int node, size_t size)
1073{
1074 void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1075
2c1d697f 1076 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
26a40990
HY
1077
1078 ret = kasan_kmalloc(s, ret, size, gfpflags);
1079 return ret;
1080}
1081EXPORT_SYMBOL(kmalloc_node_trace);
45530c44
CL
1082#endif /* !CONFIG_SLOB */
1083
44405099
LL
1084gfp_t kmalloc_fix_flags(gfp_t flags)
1085{
1086 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1087
1088 flags &= ~GFP_SLAB_BUG_MASK;
1089 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1090 invalid_mask, &invalid_mask, flags, &flags);
1091 dump_stack();
1092
1093 return flags;
1094}
1095
cea371f4
VD
1096/*
1097 * To avoid unnecessary overhead, we pass through large allocation requests
1098 * directly to the page allocator. We use __GFP_COMP, because we will need to
1099 * know the allocation order to free the pages properly in kfree.
1100 */
45530c44 1101
b1405135 1102static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
52383431 1103{
52383431 1104 struct page *page;
a0c3b940
HY
1105 void *ptr = NULL;
1106 unsigned int order = get_order(size);
52383431 1107
44405099
LL
1108 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1109 flags = kmalloc_fix_flags(flags);
1110
52383431 1111 flags |= __GFP_COMP;
a0c3b940
HY
1112 page = alloc_pages_node(node, flags, order);
1113 if (page) {
1114 ptr = page_address(page);
96403bfe
MS
1115 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1116 PAGE_SIZE << order);
6a486c0a 1117 }
a0c3b940
HY
1118
1119 ptr = kasan_kmalloc_large(ptr, size, flags);
1120 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1121 kmemleak_alloc(ptr, size, 1, flags);
27bc50fc 1122 kmsan_kmalloc_large(ptr, size, flags);
a0c3b940
HY
1123
1124 return ptr;
1125}
bf37d791 1126
c4cab557
HY
1127void *kmalloc_large(size_t size, gfp_t flags)
1128{
b1405135 1129 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
c4cab557 1130
2c1d697f
HY
1131 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1132 flags, NUMA_NO_NODE);
52383431
VD
1133 return ret;
1134}
c4cab557 1135EXPORT_SYMBOL(kmalloc_large);
52383431 1136
bf37d791 1137void *kmalloc_large_node(size_t size, gfp_t flags, int node)
f1b6eb6e 1138{
b1405135 1139 void *ret = __kmalloc_large_node(size, flags, node);
bf37d791 1140
2c1d697f
HY
1141 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1142 flags, node);
f1b6eb6e
CL
1143 return ret;
1144}
a0c3b940 1145EXPORT_SYMBOL(kmalloc_large_node);
45530c44 1146
7c00fce9
TG
1147#ifdef CONFIG_SLAB_FREELIST_RANDOM
1148/* Randomize a generic freelist */
1149static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 1150 unsigned int count)
7c00fce9 1151{
7c00fce9 1152 unsigned int rand;
302d55d5 1153 unsigned int i;
7c00fce9
TG
1154
1155 for (i = 0; i < count; i++)
1156 list[i] = i;
1157
1158 /* Fisher-Yates shuffle */
1159 for (i = count - 1; i > 0; i--) {
1160 rand = prandom_u32_state(state);
1161 rand %= (i + 1);
1162 swap(list[i], list[rand]);
1163 }
1164}
1165
1166/* Create a random sequence per cache */
1167int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1168 gfp_t gfp)
1169{
1170 struct rnd_state state;
1171
1172 if (count < 2 || cachep->random_seq)
1173 return 0;
1174
1175 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1176 if (!cachep->random_seq)
1177 return -ENOMEM;
1178
1179 /* Get best entropy at this stage of boot */
1180 prandom_seed_state(&state, get_random_long());
1181
1182 freelist_randomize(&state, cachep->random_seq, count);
1183 return 0;
1184}
1185
1186/* Destroy the per-cache random freelist sequence */
1187void cache_random_seq_destroy(struct kmem_cache *cachep)
1188{
1189 kfree(cachep->random_seq);
1190 cachep->random_seq = NULL;
1191}
1192#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1193
5b365771 1194#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1195#ifdef CONFIG_SLAB
0825a6f9 1196#define SLABINFO_RIGHTS (0600)
e9b4db2b 1197#else
0825a6f9 1198#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1199#endif
1200
b047501c 1201static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1202{
1203 /*
1204 * Output format version, so at least we can change it
1205 * without _too_ many complaints.
1206 */
1207#ifdef CONFIG_DEBUG_SLAB
1208 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1209#else
1210 seq_puts(m, "slabinfo - version: 2.1\n");
1211#endif
756a025f 1212 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1213 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1214 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1215#ifdef CONFIG_DEBUG_SLAB
756a025f 1216 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1217 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1218#endif
1219 seq_putc(m, '\n');
1220}
1221
c29b5b3d 1222static void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1223{
b7454ad3 1224 mutex_lock(&slab_mutex);
c7094406 1225 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1226}
1227
c29b5b3d 1228static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1229{
c7094406 1230 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1231}
1232
c29b5b3d 1233static void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1234{
1235 mutex_unlock(&slab_mutex);
1236}
1237
b047501c 1238static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1239{
0d7561c6
GC
1240 struct slabinfo sinfo;
1241
1242 memset(&sinfo, 0, sizeof(sinfo));
1243 get_slabinfo(s, &sinfo);
1244
1245 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1246 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1247 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1248
1249 seq_printf(m, " : tunables %4u %4u %4u",
1250 sinfo.limit, sinfo.batchcount, sinfo.shared);
1251 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1252 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1253 slabinfo_show_stats(m, s);
1254 seq_putc(m, '\n');
b7454ad3
GC
1255}
1256
1df3b26f 1257static int slab_show(struct seq_file *m, void *p)
749c5415 1258{
c7094406 1259 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1260
c7094406 1261 if (p == slab_caches.next)
1df3b26f 1262 print_slabinfo_header(m);
10befea9 1263 cache_show(s, m);
b047501c
VD
1264 return 0;
1265}
1266
852d8be0
YS
1267void dump_unreclaimable_slab(void)
1268{
7714304f 1269 struct kmem_cache *s;
852d8be0
YS
1270 struct slabinfo sinfo;
1271
1272 /*
1273 * Here acquiring slab_mutex is risky since we don't prefer to get
1274 * sleep in oom path. But, without mutex hold, it may introduce a
1275 * risk of crash.
1276 * Use mutex_trylock to protect the list traverse, dump nothing
1277 * without acquiring the mutex.
1278 */
1279 if (!mutex_trylock(&slab_mutex)) {
1280 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1281 return;
1282 }
1283
1284 pr_info("Unreclaimable slab info:\n");
1285 pr_info("Name Used Total\n");
1286
7714304f 1287 list_for_each_entry(s, &slab_caches, list) {
10befea9 1288 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1289 continue;
1290
1291 get_slabinfo(s, &sinfo);
1292
1293 if (sinfo.num_objs > 0)
10befea9 1294 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1295 (sinfo.active_objs * s->size) / 1024,
1296 (sinfo.num_objs * s->size) / 1024);
1297 }
1298 mutex_unlock(&slab_mutex);
1299}
1300
b7454ad3
GC
1301/*
1302 * slabinfo_op - iterator that generates /proc/slabinfo
1303 *
1304 * Output layout:
1305 * cache-name
1306 * num-active-objs
1307 * total-objs
1308 * object size
1309 * num-active-slabs
1310 * total-slabs
1311 * num-pages-per-slab
1312 * + further values on SMP and with statistics enabled
1313 */
1314static const struct seq_operations slabinfo_op = {
1df3b26f 1315 .start = slab_start,
276a2439
WL
1316 .next = slab_next,
1317 .stop = slab_stop,
1df3b26f 1318 .show = slab_show,
b7454ad3
GC
1319};
1320
1321static int slabinfo_open(struct inode *inode, struct file *file)
1322{
1323 return seq_open(file, &slabinfo_op);
1324}
1325
97a32539 1326static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1327 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1328 .proc_open = slabinfo_open,
1329 .proc_read = seq_read,
1330 .proc_write = slabinfo_write,
1331 .proc_lseek = seq_lseek,
1332 .proc_release = seq_release,
b7454ad3
GC
1333};
1334
1335static int __init slab_proc_init(void)
1336{
97a32539 1337 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1338 return 0;
1339}
1340module_init(slab_proc_init);
fcf8a1e4 1341
5b365771 1342#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c 1343
9ed9cac1
KC
1344static __always_inline __realloc_size(2) void *
1345__do_krealloc(const void *p, size_t new_size, gfp_t flags)
928cec9c
AR
1346{
1347 void *ret;
fa9ba3aa 1348 size_t ks;
928cec9c 1349
38931d89 1350 /* Check for double-free before calling ksize. */
d12d9ad8
AK
1351 if (likely(!ZERO_OR_NULL_PTR(p))) {
1352 if (!kasan_check_byte(p))
1353 return NULL;
38931d89 1354 ks = ksize(p);
d12d9ad8
AK
1355 } else
1356 ks = 0;
928cec9c 1357
d12d9ad8 1358 /* If the object still fits, repoison it precisely. */
0316bec2 1359 if (ks >= new_size) {
0116523c 1360 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1361 return (void *)p;
0316bec2 1362 }
928cec9c
AR
1363
1364 ret = kmalloc_track_caller(new_size, flags);
d12d9ad8
AK
1365 if (ret && p) {
1366 /* Disable KASAN checks as the object's redzone is accessed. */
1367 kasan_disable_current();
1368 memcpy(ret, kasan_reset_tag(p), ks);
1369 kasan_enable_current();
1370 }
928cec9c
AR
1371
1372 return ret;
1373}
1374
928cec9c
AR
1375/**
1376 * krealloc - reallocate memory. The contents will remain unchanged.
1377 * @p: object to reallocate memory for.
1378 * @new_size: how many bytes of memory are required.
1379 * @flags: the type of memory to allocate.
1380 *
1381 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1382 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1383 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1384 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1385 *
1386 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1387 */
1388void *krealloc(const void *p, size_t new_size, gfp_t flags)
1389{
1390 void *ret;
1391
1392 if (unlikely(!new_size)) {
1393 kfree(p);
1394 return ZERO_SIZE_PTR;
1395 }
1396
1397 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1398 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1399 kfree(p);
1400
1401 return ret;
1402}
1403EXPORT_SYMBOL(krealloc);
1404
1405/**
453431a5 1406 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1407 * @p: object to free memory of
1408 *
1409 * The memory of the object @p points to is zeroed before freed.
453431a5 1410 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1411 *
1412 * Note: this function zeroes the whole allocated buffer which can be a good
1413 * deal bigger than the requested buffer size passed to kmalloc(). So be
1414 * careful when using this function in performance sensitive code.
1415 */
453431a5 1416void kfree_sensitive(const void *p)
928cec9c
AR
1417{
1418 size_t ks;
1419 void *mem = (void *)p;
1420
928cec9c 1421 ks = ksize(mem);
38931d89
KC
1422 if (ks) {
1423 kasan_unpoison_range(mem, ks);
fa9ba3aa 1424 memzero_explicit(mem, ks);
38931d89 1425 }
928cec9c
AR
1426 kfree(mem);
1427}
453431a5 1428EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1429
10d1f8cb
ME
1430size_t ksize(const void *objp)
1431{
0d4ca4c9 1432 /*
38931d89
KC
1433 * We need to first check that the pointer to the object is valid.
1434 * The KASAN report printed from ksize() is more useful, then when
1435 * it's printed later when the behaviour could be undefined due to
1436 * a potential use-after-free or double-free.
0d4ca4c9 1437 *
611806b4
AK
1438 * We use kasan_check_byte(), which is supported for the hardware
1439 * tag-based KASAN mode, unlike kasan_check_read/write().
1440 *
1441 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1442 * ksize() writing to and potentially corrupting the memory region.
1443 *
1444 * We want to perform the check before __ksize(), to avoid potentially
1445 * crashing in __ksize() due to accessing invalid metadata.
1446 */
611806b4 1447 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1448 return 0;
1449
38931d89 1450 return kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1451}
1452EXPORT_SYMBOL(ksize);
1453
928cec9c
AR
1454/* Tracepoints definitions. */
1455EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1456EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
928cec9c
AR
1457EXPORT_TRACEPOINT_SYMBOL(kfree);
1458EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1459
1460int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1461{
1462 if (__should_failslab(s, gfpflags))
1463 return -ENOMEM;
1464 return 0;
1465}
1466ALLOW_ERROR_INJECTION(should_failslab, ERRNO);