Merge tag 'x86_urgent_for_v5.12_rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3
GC
19#include <linux/seq_file.h>
20#include <linux/proc_fs.h>
fcf8a1e4 21#include <linux/debugfs.h>
e86f8b09 22#include <linux/kasan.h>
039363f3
CL
23#include <asm/cacheflush.h>
24#include <asm/tlbflush.h>
25#include <asm/page.h>
2633d7a0 26#include <linux/memcontrol.h>
928cec9c
AR
27
28#define CREATE_TRACE_POINTS
f1b6eb6e 29#include <trace/events/kmem.h>
039363f3 30
44405099
LL
31#include "internal.h"
32
97d06609
CL
33#include "slab.h"
34
35enum slab_state slab_state;
18004c5d
CL
36LIST_HEAD(slab_caches);
37DEFINE_MUTEX(slab_mutex);
9b030cb8 38struct kmem_cache *kmem_cache;
97d06609 39
2d891fbc
KC
40#ifdef CONFIG_HARDENED_USERCOPY
41bool usercopy_fallback __ro_after_init =
42 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
43module_param(usercopy_fallback, bool, 0400);
44MODULE_PARM_DESC(usercopy_fallback,
45 "WARN instead of reject usercopy whitelist violations");
46#endif
47
657dc2f9
TH
48static LIST_HEAD(slab_caches_to_rcu_destroy);
49static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
50static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
51 slab_caches_to_rcu_destroy_workfn);
52
423c929c
JK
53/*
54 * Set of flags that will prevent slab merging
55 */
56#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 57 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
e86f8b09 58 SLAB_FAILSLAB | kasan_never_merge())
423c929c 59
230e9fc2 60#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 61 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
62
63/*
64 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 65 */
7660a6fd 66static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
67
68static int __init setup_slab_nomerge(char *str)
69{
7660a6fd 70 slab_nomerge = true;
423c929c
JK
71 return 1;
72}
73
74#ifdef CONFIG_SLUB
75__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76#endif
77
78__setup("slab_nomerge", setup_slab_nomerge);
79
07f361b2
JK
80/*
81 * Determine the size of a slab object
82 */
83unsigned int kmem_cache_size(struct kmem_cache *s)
84{
85 return s->object_size;
86}
87EXPORT_SYMBOL(kmem_cache_size);
88
77be4b13 89#ifdef CONFIG_DEBUG_VM
f4957d5b 90static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 91{
039363f3
CL
92 if (!name || in_interrupt() || size < sizeof(void *) ||
93 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
94 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 return -EINVAL;
039363f3 96 }
b920536a 97
20cea968 98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
99 return 0;
100}
101#else
f4957d5b 102static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
103{
104 return 0;
105}
20cea968
CL
106#endif
107
484748f0
CL
108void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109{
110 size_t i;
111
ca257195
JDB
112 for (i = 0; i < nr; i++) {
113 if (s)
114 kmem_cache_free(s, p[i]);
115 else
116 kfree(p[i]);
117 }
484748f0
CL
118}
119
865762a8 120int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
121 void **p)
122{
123 size_t i;
124
125 for (i = 0; i < nr; i++) {
126 void *x = p[i] = kmem_cache_alloc(s, flags);
127 if (!x) {
128 __kmem_cache_free_bulk(s, i, p);
865762a8 129 return 0;
484748f0
CL
130 }
131 }
865762a8 132 return i;
484748f0
CL
133}
134
692ae74a
BL
135/*
136 * Figure out what the alignment of the objects will be given a set of
137 * flags, a user specified alignment and the size of the objects.
138 */
f4957d5b
AD
139static unsigned int calculate_alignment(slab_flags_t flags,
140 unsigned int align, unsigned int size)
692ae74a
BL
141{
142 /*
143 * If the user wants hardware cache aligned objects then follow that
144 * suggestion if the object is sufficiently large.
145 *
146 * The hardware cache alignment cannot override the specified
147 * alignment though. If that is greater then use it.
148 */
149 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 150 unsigned int ralign;
692ae74a
BL
151
152 ralign = cache_line_size();
153 while (size <= ralign / 2)
154 ralign /= 2;
155 align = max(align, ralign);
156 }
157
158 if (align < ARCH_SLAB_MINALIGN)
159 align = ARCH_SLAB_MINALIGN;
160
161 return ALIGN(align, sizeof(void *));
162}
163
423c929c
JK
164/*
165 * Find a mergeable slab cache
166 */
167int slab_unmergeable(struct kmem_cache *s)
168{
169 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
170 return 1;
171
423c929c
JK
172 if (s->ctor)
173 return 1;
174
8eb8284b
DW
175 if (s->usersize)
176 return 1;
177
423c929c
JK
178 /*
179 * We may have set a slab to be unmergeable during bootstrap.
180 */
181 if (s->refcount < 0)
182 return 1;
183
184 return 0;
185}
186
f4957d5b 187struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 188 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
189{
190 struct kmem_cache *s;
191
c6e28895 192 if (slab_nomerge)
423c929c
JK
193 return NULL;
194
195 if (ctor)
196 return NULL;
197
198 size = ALIGN(size, sizeof(void *));
199 align = calculate_alignment(flags, align, size);
200 size = ALIGN(size, align);
37540008 201 flags = kmem_cache_flags(size, flags, name);
423c929c 202
c6e28895
GM
203 if (flags & SLAB_NEVER_MERGE)
204 return NULL;
205
c7094406 206 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
207 if (slab_unmergeable(s))
208 continue;
209
210 if (size > s->size)
211 continue;
212
213 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
214 continue;
215 /*
216 * Check if alignment is compatible.
217 * Courtesy of Adrian Drzewiecki
218 */
219 if ((s->size & ~(align - 1)) != s->size)
220 continue;
221
222 if (s->size - size >= sizeof(void *))
223 continue;
224
95069ac8
JK
225 if (IS_ENABLED(CONFIG_SLAB) && align &&
226 (align > s->align || s->align % align))
227 continue;
228
423c929c
JK
229 return s;
230 }
231 return NULL;
232}
233
c9a77a79 234static struct kmem_cache *create_cache(const char *name,
613a5eb5 235 unsigned int object_size, unsigned int align,
7bbdb81e
AD
236 slab_flags_t flags, unsigned int useroffset,
237 unsigned int usersize, void (*ctor)(void *),
9855609b 238 struct kmem_cache *root_cache)
794b1248
VD
239{
240 struct kmem_cache *s;
241 int err;
242
8eb8284b
DW
243 if (WARN_ON(useroffset + usersize > object_size))
244 useroffset = usersize = 0;
245
794b1248
VD
246 err = -ENOMEM;
247 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
248 if (!s)
249 goto out;
250
251 s->name = name;
613a5eb5 252 s->size = s->object_size = object_size;
794b1248
VD
253 s->align = align;
254 s->ctor = ctor;
8eb8284b
DW
255 s->useroffset = useroffset;
256 s->usersize = usersize;
794b1248 257
794b1248
VD
258 err = __kmem_cache_create(s, flags);
259 if (err)
260 goto out_free_cache;
261
262 s->refcount = 1;
263 list_add(&s->list, &slab_caches);
794b1248
VD
264out:
265 if (err)
266 return ERR_PTR(err);
267 return s;
268
269out_free_cache:
7c4da061 270 kmem_cache_free(kmem_cache, s);
794b1248
VD
271 goto out;
272}
45906855 273
f496990f
MR
274/**
275 * kmem_cache_create_usercopy - Create a cache with a region suitable
276 * for copying to userspace
77be4b13
SK
277 * @name: A string which is used in /proc/slabinfo to identify this cache.
278 * @size: The size of objects to be created in this cache.
279 * @align: The required alignment for the objects.
280 * @flags: SLAB flags
8eb8284b
DW
281 * @useroffset: Usercopy region offset
282 * @usersize: Usercopy region size
77be4b13
SK
283 * @ctor: A constructor for the objects.
284 *
77be4b13
SK
285 * Cannot be called within a interrupt, but can be interrupted.
286 * The @ctor is run when new pages are allocated by the cache.
287 *
288 * The flags are
289 *
290 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
291 * to catch references to uninitialised memory.
292 *
f496990f 293 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
294 * for buffer overruns.
295 *
296 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
297 * cacheline. This can be beneficial if you're counting cycles as closely
298 * as davem.
f496990f
MR
299 *
300 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 301 */
2633d7a0 302struct kmem_cache *
f4957d5b
AD
303kmem_cache_create_usercopy(const char *name,
304 unsigned int size, unsigned int align,
7bbdb81e
AD
305 slab_flags_t flags,
306 unsigned int useroffset, unsigned int usersize,
8eb8284b 307 void (*ctor)(void *))
77be4b13 308{
40911a79 309 struct kmem_cache *s = NULL;
3dec16ea 310 const char *cache_name;
3965fc36 311 int err;
039363f3 312
77be4b13 313 mutex_lock(&slab_mutex);
686d550d 314
794b1248 315 err = kmem_cache_sanity_check(name, size);
3aa24f51 316 if (err) {
3965fc36 317 goto out_unlock;
3aa24f51 318 }
686d550d 319
e70954fd
TG
320 /* Refuse requests with allocator specific flags */
321 if (flags & ~SLAB_FLAGS_PERMITTED) {
322 err = -EINVAL;
323 goto out_unlock;
324 }
325
d8843922
GC
326 /*
327 * Some allocators will constraint the set of valid flags to a subset
328 * of all flags. We expect them to define CACHE_CREATE_MASK in this
329 * case, and we'll just provide them with a sanitized version of the
330 * passed flags.
331 */
332 flags &= CACHE_CREATE_MASK;
686d550d 333
8eb8284b
DW
334 /* Fail closed on bad usersize of useroffset values. */
335 if (WARN_ON(!usersize && useroffset) ||
336 WARN_ON(size < usersize || size - usersize < useroffset))
337 usersize = useroffset = 0;
338
339 if (!usersize)
340 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 341 if (s)
3965fc36 342 goto out_unlock;
2633d7a0 343
3dec16ea 344 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
345 if (!cache_name) {
346 err = -ENOMEM;
347 goto out_unlock;
348 }
7c9adf5a 349
613a5eb5 350 s = create_cache(cache_name, size,
c9a77a79 351 calculate_alignment(flags, align, size),
9855609b 352 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
353 if (IS_ERR(s)) {
354 err = PTR_ERR(s);
3dec16ea 355 kfree_const(cache_name);
794b1248 356 }
3965fc36
VD
357
358out_unlock:
20cea968 359 mutex_unlock(&slab_mutex);
03afc0e2 360
ba3253c7 361 if (err) {
686d550d
CL
362 if (flags & SLAB_PANIC)
363 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
364 name, err);
365 else {
1170532b 366 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
367 name, err);
368 dump_stack();
369 }
686d550d
CL
370 return NULL;
371 }
039363f3
CL
372 return s;
373}
8eb8284b
DW
374EXPORT_SYMBOL(kmem_cache_create_usercopy);
375
f496990f
MR
376/**
377 * kmem_cache_create - Create a cache.
378 * @name: A string which is used in /proc/slabinfo to identify this cache.
379 * @size: The size of objects to be created in this cache.
380 * @align: The required alignment for the objects.
381 * @flags: SLAB flags
382 * @ctor: A constructor for the objects.
383 *
384 * Cannot be called within a interrupt, but can be interrupted.
385 * The @ctor is run when new pages are allocated by the cache.
386 *
387 * The flags are
388 *
389 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
390 * to catch references to uninitialised memory.
391 *
392 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
393 * for buffer overruns.
394 *
395 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
396 * cacheline. This can be beneficial if you're counting cycles as closely
397 * as davem.
398 *
399 * Return: a pointer to the cache on success, NULL on failure.
400 */
8eb8284b 401struct kmem_cache *
f4957d5b 402kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
403 slab_flags_t flags, void (*ctor)(void *))
404{
6d07d1cd 405 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
406 ctor);
407}
794b1248 408EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 409
657dc2f9 410static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 411{
657dc2f9
TH
412 LIST_HEAD(to_destroy);
413 struct kmem_cache *s, *s2;
d5b3cf71 414
657dc2f9 415 /*
5f0d5a3a 416 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 417 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 418 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
419 * while freeing the pages, so the kmem_caches should be freed only
420 * after the pending RCU operations are finished. As rcu_barrier()
421 * is a pretty slow operation, we batch all pending destructions
422 * asynchronously.
423 */
424 mutex_lock(&slab_mutex);
425 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
426 mutex_unlock(&slab_mutex);
d5b3cf71 427
657dc2f9
TH
428 if (list_empty(&to_destroy))
429 return;
430
431 rcu_barrier();
432
433 list_for_each_entry_safe(s, s2, &to_destroy, list) {
d3fb45f3 434 kfence_shutdown_cache(s);
657dc2f9
TH
435#ifdef SLAB_SUPPORTS_SYSFS
436 sysfs_slab_release(s);
437#else
438 slab_kmem_cache_release(s);
439#endif
440 }
d5b3cf71
VD
441}
442
657dc2f9 443static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 444{
f9fa1d91
GT
445 /* free asan quarantined objects */
446 kasan_cache_shutdown(s);
447
657dc2f9
TH
448 if (__kmem_cache_shutdown(s) != 0)
449 return -EBUSY;
d5b3cf71 450
657dc2f9 451 list_del(&s->list);
d5b3cf71 452
5f0d5a3a 453 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
d50d82fa
MP
454#ifdef SLAB_SUPPORTS_SYSFS
455 sysfs_slab_unlink(s);
456#endif
657dc2f9
TH
457 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
458 schedule_work(&slab_caches_to_rcu_destroy_work);
459 } else {
d3fb45f3 460 kfence_shutdown_cache(s);
d5b3cf71 461#ifdef SLAB_SUPPORTS_SYSFS
d50d82fa 462 sysfs_slab_unlink(s);
bf5eb3de 463 sysfs_slab_release(s);
d5b3cf71
VD
464#else
465 slab_kmem_cache_release(s);
466#endif
467 }
657dc2f9
TH
468
469 return 0;
d5b3cf71
VD
470}
471
41a21285
CL
472void slab_kmem_cache_release(struct kmem_cache *s)
473{
52b4b950 474 __kmem_cache_release(s);
3dec16ea 475 kfree_const(s->name);
41a21285
CL
476 kmem_cache_free(kmem_cache, s);
477}
478
945cf2b6
CL
479void kmem_cache_destroy(struct kmem_cache *s)
480{
d60fdcc9 481 int err;
d5b3cf71 482
3942d299
SS
483 if (unlikely(!s))
484 return;
485
945cf2b6 486 mutex_lock(&slab_mutex);
b8529907 487
945cf2b6 488 s->refcount--;
b8529907
VD
489 if (s->refcount)
490 goto out_unlock;
491
10befea9 492 err = shutdown_cache(s);
cd918c55 493 if (err) {
756a025f
JP
494 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
495 s->name);
cd918c55
VD
496 dump_stack();
497 }
b8529907
VD
498out_unlock:
499 mutex_unlock(&slab_mutex);
945cf2b6
CL
500}
501EXPORT_SYMBOL(kmem_cache_destroy);
502
03afc0e2
VD
503/**
504 * kmem_cache_shrink - Shrink a cache.
505 * @cachep: The cache to shrink.
506 *
507 * Releases as many slabs as possible for a cache.
508 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
509 *
510 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
511 */
512int kmem_cache_shrink(struct kmem_cache *cachep)
513{
514 int ret;
515
7e1fa93d 516
55834c59 517 kasan_cache_shrink(cachep);
c9fc5864 518 ret = __kmem_cache_shrink(cachep);
7e1fa93d 519
03afc0e2
VD
520 return ret;
521}
522EXPORT_SYMBOL(kmem_cache_shrink);
523
fda90124 524bool slab_is_available(void)
97d06609
CL
525{
526 return slab_state >= UP;
527}
b7454ad3 528
8e7f37f2
PM
529/**
530 * kmem_valid_obj - does the pointer reference a valid slab object?
531 * @object: pointer to query.
532 *
533 * Return: %true if the pointer is to a not-yet-freed object from
534 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
535 * is to an already-freed object, and %false otherwise.
536 */
537bool kmem_valid_obj(void *object)
538{
539 struct page *page;
540
541 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
542 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
543 return false;
544 page = virt_to_head_page(object);
545 return PageSlab(page);
546}
547
548/**
549 * kmem_dump_obj - Print available slab provenance information
550 * @object: slab object for which to find provenance information.
551 *
552 * This function uses pr_cont(), so that the caller is expected to have
553 * printed out whatever preamble is appropriate. The provenance information
554 * depends on the type of object and on how much debugging is enabled.
555 * For a slab-cache object, the fact that it is a slab object is printed,
556 * and, if available, the slab name, return address, and stack trace from
557 * the allocation of that object.
558 *
559 * This function will splat if passed a pointer to a non-slab object.
560 * If you are not sure what type of object you have, you should instead
561 * use mem_dump_obj().
562 */
563void kmem_dump_obj(void *object)
564{
565 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
566 int i;
567 struct page *page;
568 unsigned long ptroffset;
569 struct kmem_obj_info kp = { };
570
571 if (WARN_ON_ONCE(!virt_addr_valid(object)))
572 return;
573 page = virt_to_head_page(object);
574 if (WARN_ON_ONCE(!PageSlab(page))) {
575 pr_cont(" non-slab memory.\n");
576 return;
577 }
578 kmem_obj_info(&kp, object, page);
579 if (kp.kp_slab_cache)
580 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
581 else
582 pr_cont(" slab%s", cp);
583 if (kp.kp_objp)
584 pr_cont(" start %px", kp.kp_objp);
585 if (kp.kp_data_offset)
586 pr_cont(" data offset %lu", kp.kp_data_offset);
587 if (kp.kp_objp) {
588 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
589 pr_cont(" pointer offset %lu", ptroffset);
590 }
591 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
592 pr_cont(" size %u", kp.kp_slab_cache->usersize);
593 if (kp.kp_ret)
594 pr_cont(" allocated at %pS\n", kp.kp_ret);
595 else
596 pr_cont("\n");
597 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
598 if (!kp.kp_stack[i])
599 break;
600 pr_info(" %pS\n", kp.kp_stack[i]);
601 }
602}
603
45530c44
CL
604#ifndef CONFIG_SLOB
605/* Create a cache during boot when no slab services are available yet */
361d575e
AD
606void __init create_boot_cache(struct kmem_cache *s, const char *name,
607 unsigned int size, slab_flags_t flags,
608 unsigned int useroffset, unsigned int usersize)
45530c44
CL
609{
610 int err;
59bb4798 611 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
612
613 s->name = name;
614 s->size = s->object_size = size;
59bb4798
VB
615
616 /*
617 * For power of two sizes, guarantee natural alignment for kmalloc
618 * caches, regardless of SL*B debugging options.
619 */
620 if (is_power_of_2(size))
621 align = max(align, size);
622 s->align = calculate_alignment(flags, align, size);
623
8eb8284b
DW
624 s->useroffset = useroffset;
625 s->usersize = usersize;
f7ce3190 626
45530c44
CL
627 err = __kmem_cache_create(s, flags);
628
629 if (err)
361d575e 630 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
631 name, size, err);
632
633 s->refcount = -1; /* Exempt from merging for now */
634}
635
55de8b9c
AD
636struct kmem_cache *__init create_kmalloc_cache(const char *name,
637 unsigned int size, slab_flags_t flags,
638 unsigned int useroffset, unsigned int usersize)
45530c44
CL
639{
640 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
641
642 if (!s)
643 panic("Out of memory when creating slab %s\n", name);
644
6c0c21ad 645 create_boot_cache(s, name, size, flags, useroffset, usersize);
92850134 646 kasan_cache_create_kmalloc(s);
45530c44
CL
647 list_add(&s->list, &slab_caches);
648 s->refcount = 1;
649 return s;
650}
651
cc252eae 652struct kmem_cache *
a07057dc
AB
653kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
654{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
9425c58e
CL
655EXPORT_SYMBOL(kmalloc_caches);
656
2c59dd65
CL
657/*
658 * Conversion table for small slabs sizes / 8 to the index in the
659 * kmalloc array. This is necessary for slabs < 192 since we have non power
660 * of two cache sizes there. The size of larger slabs can be determined using
661 * fls.
662 */
d5f86655 663static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
664 3, /* 8 */
665 4, /* 16 */
666 5, /* 24 */
667 5, /* 32 */
668 6, /* 40 */
669 6, /* 48 */
670 6, /* 56 */
671 6, /* 64 */
672 1, /* 72 */
673 1, /* 80 */
674 1, /* 88 */
675 1, /* 96 */
676 7, /* 104 */
677 7, /* 112 */
678 7, /* 120 */
679 7, /* 128 */
680 2, /* 136 */
681 2, /* 144 */
682 2, /* 152 */
683 2, /* 160 */
684 2, /* 168 */
685 2, /* 176 */
686 2, /* 184 */
687 2 /* 192 */
688};
689
ac914d08 690static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
691{
692 return (bytes - 1) / 8;
693}
694
695/*
696 * Find the kmem_cache structure that serves a given size of
697 * allocation
698 */
699struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
700{
d5f86655 701 unsigned int index;
2c59dd65
CL
702
703 if (size <= 192) {
704 if (!size)
705 return ZERO_SIZE_PTR;
706
707 index = size_index[size_index_elem(size)];
61448479 708 } else {
221d7da6 709 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
61448479 710 return NULL;
2c59dd65 711 index = fls(size - 1);
61448479 712 }
2c59dd65 713
cc252eae 714 return kmalloc_caches[kmalloc_type(flags)][index];
2c59dd65
CL
715}
716
cb5d9fb3
PL
717#ifdef CONFIG_ZONE_DMA
718#define INIT_KMALLOC_INFO(__size, __short_size) \
719{ \
720 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
721 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
722 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
723 .size = __size, \
724}
725#else
726#define INIT_KMALLOC_INFO(__size, __short_size) \
727{ \
728 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
729 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
730 .size = __size, \
731}
732#endif
733
4066c33d
GG
734/*
735 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
736 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
737 * kmalloc-67108864.
738 */
af3b5f87 739const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
740 INIT_KMALLOC_INFO(0, 0),
741 INIT_KMALLOC_INFO(96, 96),
742 INIT_KMALLOC_INFO(192, 192),
743 INIT_KMALLOC_INFO(8, 8),
744 INIT_KMALLOC_INFO(16, 16),
745 INIT_KMALLOC_INFO(32, 32),
746 INIT_KMALLOC_INFO(64, 64),
747 INIT_KMALLOC_INFO(128, 128),
748 INIT_KMALLOC_INFO(256, 256),
749 INIT_KMALLOC_INFO(512, 512),
750 INIT_KMALLOC_INFO(1024, 1k),
751 INIT_KMALLOC_INFO(2048, 2k),
752 INIT_KMALLOC_INFO(4096, 4k),
753 INIT_KMALLOC_INFO(8192, 8k),
754 INIT_KMALLOC_INFO(16384, 16k),
755 INIT_KMALLOC_INFO(32768, 32k),
756 INIT_KMALLOC_INFO(65536, 64k),
757 INIT_KMALLOC_INFO(131072, 128k),
758 INIT_KMALLOC_INFO(262144, 256k),
759 INIT_KMALLOC_INFO(524288, 512k),
760 INIT_KMALLOC_INFO(1048576, 1M),
761 INIT_KMALLOC_INFO(2097152, 2M),
762 INIT_KMALLOC_INFO(4194304, 4M),
763 INIT_KMALLOC_INFO(8388608, 8M),
764 INIT_KMALLOC_INFO(16777216, 16M),
765 INIT_KMALLOC_INFO(33554432, 32M),
766 INIT_KMALLOC_INFO(67108864, 64M)
4066c33d
GG
767};
768
f97d5f63 769/*
34cc6990
DS
770 * Patch up the size_index table if we have strange large alignment
771 * requirements for the kmalloc array. This is only the case for
772 * MIPS it seems. The standard arches will not generate any code here.
773 *
774 * Largest permitted alignment is 256 bytes due to the way we
775 * handle the index determination for the smaller caches.
776 *
777 * Make sure that nothing crazy happens if someone starts tinkering
778 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 779 */
34cc6990 780void __init setup_kmalloc_cache_index_table(void)
f97d5f63 781{
ac914d08 782 unsigned int i;
f97d5f63 783
2c59dd65
CL
784 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
785 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
786
787 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 788 unsigned int elem = size_index_elem(i);
2c59dd65
CL
789
790 if (elem >= ARRAY_SIZE(size_index))
791 break;
792 size_index[elem] = KMALLOC_SHIFT_LOW;
793 }
794
795 if (KMALLOC_MIN_SIZE >= 64) {
796 /*
797 * The 96 byte size cache is not used if the alignment
798 * is 64 byte.
799 */
800 for (i = 64 + 8; i <= 96; i += 8)
801 size_index[size_index_elem(i)] = 7;
802
803 }
804
805 if (KMALLOC_MIN_SIZE >= 128) {
806 /*
807 * The 192 byte sized cache is not used if the alignment
808 * is 128 byte. Redirect kmalloc to use the 256 byte cache
809 * instead.
810 */
811 for (i = 128 + 8; i <= 192; i += 8)
812 size_index[size_index_elem(i)] = 8;
813 }
34cc6990
DS
814}
815
1291523f 816static void __init
13657d0a 817new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
a9730fca 818{
cb5d9fb3 819 if (type == KMALLOC_RECLAIM)
1291523f 820 flags |= SLAB_RECLAIM_ACCOUNT;
1291523f 821
cb5d9fb3
PL
822 kmalloc_caches[type][idx] = create_kmalloc_cache(
823 kmalloc_info[idx].name[type],
6c0c21ad
DW
824 kmalloc_info[idx].size, flags, 0,
825 kmalloc_info[idx].size);
a9730fca
CL
826}
827
34cc6990
DS
828/*
829 * Create the kmalloc array. Some of the regular kmalloc arrays
830 * may already have been created because they were needed to
831 * enable allocations for slab creation.
832 */
d50112ed 833void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990 834{
13657d0a
PL
835 int i;
836 enum kmalloc_cache_type type;
34cc6990 837
1291523f
VB
838 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
839 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
840 if (!kmalloc_caches[type][i])
841 new_kmalloc_cache(i, type, flags);
f97d5f63 842
1291523f
VB
843 /*
844 * Caches that are not of the two-to-the-power-of size.
845 * These have to be created immediately after the
846 * earlier power of two caches
847 */
848 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
849 !kmalloc_caches[type][1])
850 new_kmalloc_cache(1, type, flags);
851 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
852 !kmalloc_caches[type][2])
853 new_kmalloc_cache(2, type, flags);
854 }
8a965b3b
CL
855 }
856
f97d5f63
CL
857 /* Kmalloc array is now usable */
858 slab_state = UP;
859
f97d5f63
CL
860#ifdef CONFIG_ZONE_DMA
861 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
cc252eae 862 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
f97d5f63
CL
863
864 if (s) {
cc252eae 865 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
cb5d9fb3 866 kmalloc_info[i].name[KMALLOC_DMA],
dc0a7f75 867 kmalloc_info[i].size,
49f2d241
VB
868 SLAB_CACHE_DMA | flags, 0,
869 kmalloc_info[i].size);
f97d5f63
CL
870 }
871 }
872#endif
873}
45530c44
CL
874#endif /* !CONFIG_SLOB */
875
44405099
LL
876gfp_t kmalloc_fix_flags(gfp_t flags)
877{
878 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
879
880 flags &= ~GFP_SLAB_BUG_MASK;
881 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
882 invalid_mask, &invalid_mask, flags, &flags);
883 dump_stack();
884
885 return flags;
886}
887
cea371f4
VD
888/*
889 * To avoid unnecessary overhead, we pass through large allocation requests
890 * directly to the page allocator. We use __GFP_COMP, because we will need to
891 * know the allocation order to free the pages properly in kfree.
892 */
52383431
VD
893void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
894{
6a486c0a 895 void *ret = NULL;
52383431
VD
896 struct page *page;
897
44405099
LL
898 if (unlikely(flags & GFP_SLAB_BUG_MASK))
899 flags = kmalloc_fix_flags(flags);
900
52383431 901 flags |= __GFP_COMP;
4949148a 902 page = alloc_pages(flags, order);
6a486c0a
VB
903 if (likely(page)) {
904 ret = page_address(page);
96403bfe
MS
905 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
906 PAGE_SIZE << order);
6a486c0a 907 }
0116523c 908 ret = kasan_kmalloc_large(ret, size, flags);
a2f77575 909 /* As ret might get tagged, call kmemleak hook after KASAN. */
53128245 910 kmemleak_alloc(ret, size, 1, flags);
52383431
VD
911 return ret;
912}
913EXPORT_SYMBOL(kmalloc_order);
914
f1b6eb6e
CL
915#ifdef CONFIG_TRACING
916void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
917{
918 void *ret = kmalloc_order(size, flags, order);
919 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
920 return ret;
921}
922EXPORT_SYMBOL(kmalloc_order_trace);
923#endif
45530c44 924
7c00fce9
TG
925#ifdef CONFIG_SLAB_FREELIST_RANDOM
926/* Randomize a generic freelist */
927static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 928 unsigned int count)
7c00fce9 929{
7c00fce9 930 unsigned int rand;
302d55d5 931 unsigned int i;
7c00fce9
TG
932
933 for (i = 0; i < count; i++)
934 list[i] = i;
935
936 /* Fisher-Yates shuffle */
937 for (i = count - 1; i > 0; i--) {
938 rand = prandom_u32_state(state);
939 rand %= (i + 1);
940 swap(list[i], list[rand]);
941 }
942}
943
944/* Create a random sequence per cache */
945int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
946 gfp_t gfp)
947{
948 struct rnd_state state;
949
950 if (count < 2 || cachep->random_seq)
951 return 0;
952
953 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
954 if (!cachep->random_seq)
955 return -ENOMEM;
956
957 /* Get best entropy at this stage of boot */
958 prandom_seed_state(&state, get_random_long());
959
960 freelist_randomize(&state, cachep->random_seq, count);
961 return 0;
962}
963
964/* Destroy the per-cache random freelist sequence */
965void cache_random_seq_destroy(struct kmem_cache *cachep)
966{
967 kfree(cachep->random_seq);
968 cachep->random_seq = NULL;
969}
970#endif /* CONFIG_SLAB_FREELIST_RANDOM */
971
5b365771 972#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 973#ifdef CONFIG_SLAB
0825a6f9 974#define SLABINFO_RIGHTS (0600)
e9b4db2b 975#else
0825a6f9 976#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
977#endif
978
b047501c 979static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
980{
981 /*
982 * Output format version, so at least we can change it
983 * without _too_ many complaints.
984 */
985#ifdef CONFIG_DEBUG_SLAB
986 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
987#else
988 seq_puts(m, "slabinfo - version: 2.1\n");
989#endif
756a025f 990 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
991 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
992 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
993#ifdef CONFIG_DEBUG_SLAB
756a025f 994 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
995 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
996#endif
997 seq_putc(m, '\n');
998}
999
1df3b26f 1000void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1001{
b7454ad3 1002 mutex_lock(&slab_mutex);
c7094406 1003 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1004}
1005
276a2439 1006void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1007{
c7094406 1008 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1009}
1010
276a2439 1011void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1012{
1013 mutex_unlock(&slab_mutex);
1014}
1015
b047501c 1016static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1017{
0d7561c6
GC
1018 struct slabinfo sinfo;
1019
1020 memset(&sinfo, 0, sizeof(sinfo));
1021 get_slabinfo(s, &sinfo);
1022
1023 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1024 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1025 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1026
1027 seq_printf(m, " : tunables %4u %4u %4u",
1028 sinfo.limit, sinfo.batchcount, sinfo.shared);
1029 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1030 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1031 slabinfo_show_stats(m, s);
1032 seq_putc(m, '\n');
b7454ad3
GC
1033}
1034
1df3b26f 1035static int slab_show(struct seq_file *m, void *p)
749c5415 1036{
c7094406 1037 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1038
c7094406 1039 if (p == slab_caches.next)
1df3b26f 1040 print_slabinfo_header(m);
10befea9 1041 cache_show(s, m);
b047501c
VD
1042 return 0;
1043}
1044
852d8be0
YS
1045void dump_unreclaimable_slab(void)
1046{
7714304f 1047 struct kmem_cache *s;
852d8be0
YS
1048 struct slabinfo sinfo;
1049
1050 /*
1051 * Here acquiring slab_mutex is risky since we don't prefer to get
1052 * sleep in oom path. But, without mutex hold, it may introduce a
1053 * risk of crash.
1054 * Use mutex_trylock to protect the list traverse, dump nothing
1055 * without acquiring the mutex.
1056 */
1057 if (!mutex_trylock(&slab_mutex)) {
1058 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1059 return;
1060 }
1061
1062 pr_info("Unreclaimable slab info:\n");
1063 pr_info("Name Used Total\n");
1064
7714304f 1065 list_for_each_entry(s, &slab_caches, list) {
10befea9 1066 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1067 continue;
1068
1069 get_slabinfo(s, &sinfo);
1070
1071 if (sinfo.num_objs > 0)
10befea9 1072 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1073 (sinfo.active_objs * s->size) / 1024,
1074 (sinfo.num_objs * s->size) / 1024);
1075 }
1076 mutex_unlock(&slab_mutex);
1077}
1078
a87425a3 1079#if defined(CONFIG_MEMCG_KMEM)
b047501c
VD
1080int memcg_slab_show(struct seq_file *m, void *p)
1081{
4330a26b
RG
1082 /*
1083 * Deprecated.
1084 * Please, take a look at tools/cgroup/slabinfo.py .
1085 */
b047501c 1086 return 0;
749c5415 1087}
b047501c 1088#endif
749c5415 1089
b7454ad3
GC
1090/*
1091 * slabinfo_op - iterator that generates /proc/slabinfo
1092 *
1093 * Output layout:
1094 * cache-name
1095 * num-active-objs
1096 * total-objs
1097 * object size
1098 * num-active-slabs
1099 * total-slabs
1100 * num-pages-per-slab
1101 * + further values on SMP and with statistics enabled
1102 */
1103static const struct seq_operations slabinfo_op = {
1df3b26f 1104 .start = slab_start,
276a2439
WL
1105 .next = slab_next,
1106 .stop = slab_stop,
1df3b26f 1107 .show = slab_show,
b7454ad3
GC
1108};
1109
1110static int slabinfo_open(struct inode *inode, struct file *file)
1111{
1112 return seq_open(file, &slabinfo_op);
1113}
1114
97a32539 1115static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1116 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1117 .proc_open = slabinfo_open,
1118 .proc_read = seq_read,
1119 .proc_write = slabinfo_write,
1120 .proc_lseek = seq_lseek,
1121 .proc_release = seq_release,
b7454ad3
GC
1122};
1123
1124static int __init slab_proc_init(void)
1125{
97a32539 1126 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1127 return 0;
1128}
1129module_init(slab_proc_init);
fcf8a1e4 1130
5b365771 1131#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1132
1133static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1134 gfp_t flags)
1135{
1136 void *ret;
fa9ba3aa 1137 size_t ks;
928cec9c 1138
d12d9ad8
AK
1139 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1140 if (likely(!ZERO_OR_NULL_PTR(p))) {
1141 if (!kasan_check_byte(p))
1142 return NULL;
1143 ks = kfence_ksize(p) ?: __ksize(p);
1144 } else
1145 ks = 0;
928cec9c 1146
d12d9ad8 1147 /* If the object still fits, repoison it precisely. */
0316bec2 1148 if (ks >= new_size) {
0116523c 1149 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1150 return (void *)p;
0316bec2 1151 }
928cec9c
AR
1152
1153 ret = kmalloc_track_caller(new_size, flags);
d12d9ad8
AK
1154 if (ret && p) {
1155 /* Disable KASAN checks as the object's redzone is accessed. */
1156 kasan_disable_current();
1157 memcpy(ret, kasan_reset_tag(p), ks);
1158 kasan_enable_current();
1159 }
928cec9c
AR
1160
1161 return ret;
1162}
1163
928cec9c
AR
1164/**
1165 * krealloc - reallocate memory. The contents will remain unchanged.
1166 * @p: object to reallocate memory for.
1167 * @new_size: how many bytes of memory are required.
1168 * @flags: the type of memory to allocate.
1169 *
1170 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1171 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1172 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1173 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1174 *
1175 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c
AR
1176 */
1177void *krealloc(const void *p, size_t new_size, gfp_t flags)
1178{
1179 void *ret;
1180
1181 if (unlikely(!new_size)) {
1182 kfree(p);
1183 return ZERO_SIZE_PTR;
1184 }
1185
1186 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1187 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1188 kfree(p);
1189
1190 return ret;
1191}
1192EXPORT_SYMBOL(krealloc);
1193
1194/**
453431a5 1195 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1196 * @p: object to free memory of
1197 *
1198 * The memory of the object @p points to is zeroed before freed.
453431a5 1199 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1200 *
1201 * Note: this function zeroes the whole allocated buffer which can be a good
1202 * deal bigger than the requested buffer size passed to kmalloc(). So be
1203 * careful when using this function in performance sensitive code.
1204 */
453431a5 1205void kfree_sensitive(const void *p)
928cec9c
AR
1206{
1207 size_t ks;
1208 void *mem = (void *)p;
1209
928cec9c 1210 ks = ksize(mem);
fa9ba3aa
WK
1211 if (ks)
1212 memzero_explicit(mem, ks);
928cec9c
AR
1213 kfree(mem);
1214}
453431a5 1215EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1216
10d1f8cb
ME
1217/**
1218 * ksize - get the actual amount of memory allocated for a given object
1219 * @objp: Pointer to the object
1220 *
1221 * kmalloc may internally round up allocations and return more memory
1222 * than requested. ksize() can be used to determine the actual amount of
1223 * memory allocated. The caller may use this additional memory, even though
1224 * a smaller amount of memory was initially specified with the kmalloc call.
1225 * The caller must guarantee that objp points to a valid object previously
1226 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1227 * must not be freed during the duration of the call.
1228 *
1229 * Return: size of the actual memory used by @objp in bytes
1230 */
1231size_t ksize(const void *objp)
1232{
0d4ca4c9
ME
1233 size_t size;
1234
0d4ca4c9 1235 /*
611806b4
AK
1236 * We need to first check that the pointer to the object is valid, and
1237 * only then unpoison the memory. The report printed from ksize() is
1238 * more useful, then when it's printed later when the behaviour could
1239 * be undefined due to a potential use-after-free or double-free.
0d4ca4c9 1240 *
611806b4
AK
1241 * We use kasan_check_byte(), which is supported for the hardware
1242 * tag-based KASAN mode, unlike kasan_check_read/write().
1243 *
1244 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1245 * ksize() writing to and potentially corrupting the memory region.
1246 *
1247 * We want to perform the check before __ksize(), to avoid potentially
1248 * crashing in __ksize() due to accessing invalid metadata.
1249 */
611806b4 1250 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1251 return 0;
1252
d3fb45f3 1253 size = kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1254 /*
1255 * We assume that ksize callers could use whole allocated area,
1256 * so we need to unpoison this area.
1257 */
cebd0eb2 1258 kasan_unpoison_range(objp, size);
10d1f8cb
ME
1259 return size;
1260}
1261EXPORT_SYMBOL(ksize);
1262
928cec9c
AR
1263/* Tracepoints definitions. */
1264EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1265EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1266EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1267EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1268EXPORT_TRACEPOINT_SYMBOL(kfree);
1269EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1270
1271int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1272{
1273 if (__should_failslab(s, gfpflags))
1274 return -ENOMEM;
1275 return 0;
1276}
1277ALLOW_ERROR_INJECTION(should_failslab, ERRNO);