powerpc/mm/radix: Update pte fragment count from 16 to 256 on radix
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/compiler.h>
14#include <linux/module.h>
20cea968
CL
15#include <linux/cpu.h>
16#include <linux/uaccess.h>
b7454ad3
GC
17#include <linux/seq_file.h>
18#include <linux/proc_fs.h>
039363f3
CL
19#include <asm/cacheflush.h>
20#include <asm/tlbflush.h>
21#include <asm/page.h>
2633d7a0 22#include <linux/memcontrol.h>
928cec9c
AR
23
24#define CREATE_TRACE_POINTS
f1b6eb6e 25#include <trace/events/kmem.h>
039363f3 26
97d06609
CL
27#include "slab.h"
28
29enum slab_state slab_state;
18004c5d
CL
30LIST_HEAD(slab_caches);
31DEFINE_MUTEX(slab_mutex);
9b030cb8 32struct kmem_cache *kmem_cache;
97d06609 33
2d891fbc
KC
34#ifdef CONFIG_HARDENED_USERCOPY
35bool usercopy_fallback __ro_after_init =
36 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
37module_param(usercopy_fallback, bool, 0400);
38MODULE_PARM_DESC(usercopy_fallback,
39 "WARN instead of reject usercopy whitelist violations");
40#endif
41
657dc2f9
TH
42static LIST_HEAD(slab_caches_to_rcu_destroy);
43static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
44static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
45 slab_caches_to_rcu_destroy_workfn);
46
423c929c
JK
47/*
48 * Set of flags that will prevent slab merging
49 */
50#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 51 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 52 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 53
230e9fc2 54#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
75f296d9 55 SLAB_ACCOUNT)
423c929c
JK
56
57/*
58 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 59 */
7660a6fd 60static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
61
62static int __init setup_slab_nomerge(char *str)
63{
7660a6fd 64 slab_nomerge = true;
423c929c
JK
65 return 1;
66}
67
68#ifdef CONFIG_SLUB
69__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
70#endif
71
72__setup("slab_nomerge", setup_slab_nomerge);
73
07f361b2
JK
74/*
75 * Determine the size of a slab object
76 */
77unsigned int kmem_cache_size(struct kmem_cache *s)
78{
79 return s->object_size;
80}
81EXPORT_SYMBOL(kmem_cache_size);
82
77be4b13 83#ifdef CONFIG_DEBUG_VM
794b1248 84static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
85{
86 struct kmem_cache *s = NULL;
87
039363f3
CL
88 if (!name || in_interrupt() || size < sizeof(void *) ||
89 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 return -EINVAL;
039363f3 92 }
b920536a 93
20cea968
CL
94 list_for_each_entry(s, &slab_caches, list) {
95 char tmp;
96 int res;
97
98 /*
99 * This happens when the module gets unloaded and doesn't
100 * destroy its slab cache and no-one else reuses the vmalloc
101 * area of the module. Print a warning.
102 */
103 res = probe_kernel_address(s->name, tmp);
104 if (res) {
77be4b13 105 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
106 s->object_size);
107 continue;
108 }
20cea968
CL
109 }
110
111 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
112 return 0;
113}
114#else
794b1248 115static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
116{
117 return 0;
118}
20cea968
CL
119#endif
120
484748f0
CL
121void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
122{
123 size_t i;
124
ca257195
JDB
125 for (i = 0; i < nr; i++) {
126 if (s)
127 kmem_cache_free(s, p[i]);
128 else
129 kfree(p[i]);
130 }
484748f0
CL
131}
132
865762a8 133int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
134 void **p)
135{
136 size_t i;
137
138 for (i = 0; i < nr; i++) {
139 void *x = p[i] = kmem_cache_alloc(s, flags);
140 if (!x) {
141 __kmem_cache_free_bulk(s, i, p);
865762a8 142 return 0;
484748f0
CL
143 }
144 }
865762a8 145 return i;
484748f0
CL
146}
147
127424c8 148#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
149
150LIST_HEAD(slab_root_caches);
151
f7ce3190 152void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 153{
9eeadc8b 154 s->memcg_params.root_cache = NULL;
f7ce3190 155 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 156 INIT_LIST_HEAD(&s->memcg_params.children);
f7ce3190
VD
157}
158
159static int init_memcg_params(struct kmem_cache *s,
160 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
161{
162 struct memcg_cache_array *arr;
33a690c4 163
9eeadc8b 164 if (root_cache) {
f7ce3190 165 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
166 s->memcg_params.memcg = memcg;
167 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 168 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 169 return 0;
f7ce3190 170 }
33a690c4 171
f7ce3190 172 slab_init_memcg_params(s);
33a690c4 173
f7ce3190
VD
174 if (!memcg_nr_cache_ids)
175 return 0;
33a690c4 176
f80c7dab
JW
177 arr = kvzalloc(sizeof(struct memcg_cache_array) +
178 memcg_nr_cache_ids * sizeof(void *),
179 GFP_KERNEL);
f7ce3190
VD
180 if (!arr)
181 return -ENOMEM;
33a690c4 182
f7ce3190 183 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
184 return 0;
185}
186
f7ce3190 187static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 188{
f7ce3190 189 if (is_root_cache(s))
f80c7dab
JW
190 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
191}
192
193static void free_memcg_params(struct rcu_head *rcu)
194{
195 struct memcg_cache_array *old;
196
197 old = container_of(rcu, struct memcg_cache_array, rcu);
198 kvfree(old);
33a690c4
VD
199}
200
f7ce3190 201static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 202{
f7ce3190 203 struct memcg_cache_array *old, *new;
6f817f4c 204
f80c7dab
JW
205 new = kvzalloc(sizeof(struct memcg_cache_array) +
206 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 207 if (!new)
6f817f4c
VD
208 return -ENOMEM;
209
f7ce3190
VD
210 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
211 lockdep_is_held(&slab_mutex));
212 if (old)
213 memcpy(new->entries, old->entries,
214 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 215
f7ce3190
VD
216 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
217 if (old)
f80c7dab 218 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
219 return 0;
220}
221
55007d84
GC
222int memcg_update_all_caches(int num_memcgs)
223{
224 struct kmem_cache *s;
225 int ret = 0;
55007d84 226
05257a1a 227 mutex_lock(&slab_mutex);
510ded33 228 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 229 ret = update_memcg_params(s, num_memcgs);
55007d84 230 /*
55007d84
GC
231 * Instead of freeing the memory, we'll just leave the caches
232 * up to this point in an updated state.
233 */
234 if (ret)
05257a1a 235 break;
55007d84 236 }
55007d84
GC
237 mutex_unlock(&slab_mutex);
238 return ret;
239}
657dc2f9 240
510ded33 241void memcg_link_cache(struct kmem_cache *s)
657dc2f9 242{
510ded33
TH
243 if (is_root_cache(s)) {
244 list_add(&s->root_caches_node, &slab_root_caches);
245 } else {
246 list_add(&s->memcg_params.children_node,
247 &s->memcg_params.root_cache->memcg_params.children);
248 list_add(&s->memcg_params.kmem_caches_node,
249 &s->memcg_params.memcg->kmem_caches);
250 }
251}
252
253static void memcg_unlink_cache(struct kmem_cache *s)
254{
255 if (is_root_cache(s)) {
256 list_del(&s->root_caches_node);
257 } else {
258 list_del(&s->memcg_params.children_node);
259 list_del(&s->memcg_params.kmem_caches_node);
260 }
657dc2f9 261}
33a690c4 262#else
f7ce3190
VD
263static inline int init_memcg_params(struct kmem_cache *s,
264 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
265{
266 return 0;
267}
268
f7ce3190 269static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
270{
271}
657dc2f9 272
510ded33 273static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
274{
275}
127424c8 276#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 277
692ae74a
BL
278/*
279 * Figure out what the alignment of the objects will be given a set of
280 * flags, a user specified alignment and the size of the objects.
281 */
282static unsigned long calculate_alignment(unsigned long flags,
283 unsigned long align, unsigned long size)
284{
285 /*
286 * If the user wants hardware cache aligned objects then follow that
287 * suggestion if the object is sufficiently large.
288 *
289 * The hardware cache alignment cannot override the specified
290 * alignment though. If that is greater then use it.
291 */
292 if (flags & SLAB_HWCACHE_ALIGN) {
293 unsigned long ralign;
294
295 ralign = cache_line_size();
296 while (size <= ralign / 2)
297 ralign /= 2;
298 align = max(align, ralign);
299 }
300
301 if (align < ARCH_SLAB_MINALIGN)
302 align = ARCH_SLAB_MINALIGN;
303
304 return ALIGN(align, sizeof(void *));
305}
306
423c929c
JK
307/*
308 * Find a mergeable slab cache
309 */
310int slab_unmergeable(struct kmem_cache *s)
311{
312 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
313 return 1;
314
315 if (!is_root_cache(s))
316 return 1;
317
318 if (s->ctor)
319 return 1;
320
8eb8284b
DW
321 if (s->usersize)
322 return 1;
323
423c929c
JK
324 /*
325 * We may have set a slab to be unmergeable during bootstrap.
326 */
327 if (s->refcount < 0)
328 return 1;
329
330 return 0;
331}
332
333struct kmem_cache *find_mergeable(size_t size, size_t align,
d50112ed 334 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
335{
336 struct kmem_cache *s;
337
c6e28895 338 if (slab_nomerge)
423c929c
JK
339 return NULL;
340
341 if (ctor)
342 return NULL;
343
344 size = ALIGN(size, sizeof(void *));
345 align = calculate_alignment(flags, align, size);
346 size = ALIGN(size, align);
347 flags = kmem_cache_flags(size, flags, name, NULL);
348
c6e28895
GM
349 if (flags & SLAB_NEVER_MERGE)
350 return NULL;
351
510ded33 352 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
353 if (slab_unmergeable(s))
354 continue;
355
356 if (size > s->size)
357 continue;
358
359 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
360 continue;
361 /*
362 * Check if alignment is compatible.
363 * Courtesy of Adrian Drzewiecki
364 */
365 if ((s->size & ~(align - 1)) != s->size)
366 continue;
367
368 if (s->size - size >= sizeof(void *))
369 continue;
370
95069ac8
JK
371 if (IS_ENABLED(CONFIG_SLAB) && align &&
372 (align > s->align || s->align % align))
373 continue;
374
423c929c
JK
375 return s;
376 }
377 return NULL;
378}
379
c9a77a79
VD
380static struct kmem_cache *create_cache(const char *name,
381 size_t object_size, size_t size, size_t align,
8eb8284b
DW
382 slab_flags_t flags, size_t useroffset,
383 size_t usersize, void (*ctor)(void *),
c9a77a79 384 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
385{
386 struct kmem_cache *s;
387 int err;
388
8eb8284b
DW
389 if (WARN_ON(useroffset + usersize > object_size))
390 useroffset = usersize = 0;
391
794b1248
VD
392 err = -ENOMEM;
393 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
394 if (!s)
395 goto out;
396
397 s->name = name;
398 s->object_size = object_size;
399 s->size = size;
400 s->align = align;
401 s->ctor = ctor;
8eb8284b
DW
402 s->useroffset = useroffset;
403 s->usersize = usersize;
794b1248 404
f7ce3190 405 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
406 if (err)
407 goto out_free_cache;
408
409 err = __kmem_cache_create(s, flags);
410 if (err)
411 goto out_free_cache;
412
413 s->refcount = 1;
414 list_add(&s->list, &slab_caches);
510ded33 415 memcg_link_cache(s);
794b1248
VD
416out:
417 if (err)
418 return ERR_PTR(err);
419 return s;
420
421out_free_cache:
f7ce3190 422 destroy_memcg_params(s);
7c4da061 423 kmem_cache_free(kmem_cache, s);
794b1248
VD
424 goto out;
425}
45906855 426
77be4b13 427/*
8eb8284b 428 * kmem_cache_create_usercopy - Create a cache.
77be4b13
SK
429 * @name: A string which is used in /proc/slabinfo to identify this cache.
430 * @size: The size of objects to be created in this cache.
431 * @align: The required alignment for the objects.
432 * @flags: SLAB flags
8eb8284b
DW
433 * @useroffset: Usercopy region offset
434 * @usersize: Usercopy region size
77be4b13
SK
435 * @ctor: A constructor for the objects.
436 *
437 * Returns a ptr to the cache on success, NULL on failure.
438 * Cannot be called within a interrupt, but can be interrupted.
439 * The @ctor is run when new pages are allocated by the cache.
440 *
441 * The flags are
442 *
443 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
444 * to catch references to uninitialised memory.
445 *
446 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
447 * for buffer overruns.
448 *
449 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
450 * cacheline. This can be beneficial if you're counting cycles as closely
451 * as davem.
452 */
2633d7a0 453struct kmem_cache *
8eb8284b
DW
454kmem_cache_create_usercopy(const char *name, size_t size, size_t align,
455 slab_flags_t flags, size_t useroffset, size_t usersize,
456 void (*ctor)(void *))
77be4b13 457{
40911a79 458 struct kmem_cache *s = NULL;
3dec16ea 459 const char *cache_name;
3965fc36 460 int err;
039363f3 461
77be4b13 462 get_online_cpus();
03afc0e2 463 get_online_mems();
05257a1a 464 memcg_get_cache_ids();
03afc0e2 465
77be4b13 466 mutex_lock(&slab_mutex);
686d550d 467
794b1248 468 err = kmem_cache_sanity_check(name, size);
3aa24f51 469 if (err) {
3965fc36 470 goto out_unlock;
3aa24f51 471 }
686d550d 472
e70954fd
TG
473 /* Refuse requests with allocator specific flags */
474 if (flags & ~SLAB_FLAGS_PERMITTED) {
475 err = -EINVAL;
476 goto out_unlock;
477 }
478
d8843922
GC
479 /*
480 * Some allocators will constraint the set of valid flags to a subset
481 * of all flags. We expect them to define CACHE_CREATE_MASK in this
482 * case, and we'll just provide them with a sanitized version of the
483 * passed flags.
484 */
485 flags &= CACHE_CREATE_MASK;
686d550d 486
8eb8284b
DW
487 /* Fail closed on bad usersize of useroffset values. */
488 if (WARN_ON(!usersize && useroffset) ||
489 WARN_ON(size < usersize || size - usersize < useroffset))
490 usersize = useroffset = 0;
491
492 if (!usersize)
493 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 494 if (s)
3965fc36 495 goto out_unlock;
2633d7a0 496
3dec16ea 497 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
498 if (!cache_name) {
499 err = -ENOMEM;
500 goto out_unlock;
501 }
7c9adf5a 502
c9a77a79
VD
503 s = create_cache(cache_name, size, size,
504 calculate_alignment(flags, align, size),
8eb8284b 505 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
506 if (IS_ERR(s)) {
507 err = PTR_ERR(s);
3dec16ea 508 kfree_const(cache_name);
794b1248 509 }
3965fc36
VD
510
511out_unlock:
20cea968 512 mutex_unlock(&slab_mutex);
03afc0e2 513
05257a1a 514 memcg_put_cache_ids();
03afc0e2 515 put_online_mems();
20cea968
CL
516 put_online_cpus();
517
ba3253c7 518 if (err) {
686d550d
CL
519 if (flags & SLAB_PANIC)
520 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
521 name, err);
522 else {
1170532b 523 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
524 name, err);
525 dump_stack();
526 }
686d550d
CL
527 return NULL;
528 }
039363f3
CL
529 return s;
530}
8eb8284b
DW
531EXPORT_SYMBOL(kmem_cache_create_usercopy);
532
533struct kmem_cache *
534kmem_cache_create(const char *name, size_t size, size_t align,
535 slab_flags_t flags, void (*ctor)(void *))
536{
6d07d1cd 537 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
538 ctor);
539}
794b1248 540EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 541
657dc2f9 542static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 543{
657dc2f9
TH
544 LIST_HEAD(to_destroy);
545 struct kmem_cache *s, *s2;
d5b3cf71 546
657dc2f9 547 /*
5f0d5a3a 548 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
549 * @slab_caches_to_rcu_destroy list. The slab pages are freed
550 * through RCU and and the associated kmem_cache are dereferenced
551 * while freeing the pages, so the kmem_caches should be freed only
552 * after the pending RCU operations are finished. As rcu_barrier()
553 * is a pretty slow operation, we batch all pending destructions
554 * asynchronously.
555 */
556 mutex_lock(&slab_mutex);
557 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
558 mutex_unlock(&slab_mutex);
d5b3cf71 559
657dc2f9
TH
560 if (list_empty(&to_destroy))
561 return;
562
563 rcu_barrier();
564
565 list_for_each_entry_safe(s, s2, &to_destroy, list) {
566#ifdef SLAB_SUPPORTS_SYSFS
567 sysfs_slab_release(s);
568#else
569 slab_kmem_cache_release(s);
570#endif
571 }
d5b3cf71
VD
572}
573
657dc2f9 574static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 575{
f9fa1d91
GT
576 /* free asan quarantined objects */
577 kasan_cache_shutdown(s);
578
657dc2f9
TH
579 if (__kmem_cache_shutdown(s) != 0)
580 return -EBUSY;
d5b3cf71 581
510ded33 582 memcg_unlink_cache(s);
657dc2f9 583 list_del(&s->list);
d5b3cf71 584
5f0d5a3a 585 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
586 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
587 schedule_work(&slab_caches_to_rcu_destroy_work);
588 } else {
d5b3cf71 589#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 590 sysfs_slab_release(s);
d5b3cf71
VD
591#else
592 slab_kmem_cache_release(s);
593#endif
594 }
657dc2f9
TH
595
596 return 0;
d5b3cf71
VD
597}
598
127424c8 599#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 600/*
776ed0f0 601 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
602 * @memcg: The memory cgroup the new cache is for.
603 * @root_cache: The parent of the new cache.
604 *
605 * This function attempts to create a kmem cache that will serve allocation
606 * requests going from @memcg to @root_cache. The new cache inherits properties
607 * from its parent.
608 */
d5b3cf71
VD
609void memcg_create_kmem_cache(struct mem_cgroup *memcg,
610 struct kmem_cache *root_cache)
2633d7a0 611{
3e0350a3 612 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 613 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 614 struct memcg_cache_array *arr;
bd673145 615 struct kmem_cache *s = NULL;
794b1248 616 char *cache_name;
f7ce3190 617 int idx;
794b1248
VD
618
619 get_online_cpus();
03afc0e2
VD
620 get_online_mems();
621
794b1248
VD
622 mutex_lock(&slab_mutex);
623
2a4db7eb 624 /*
567e9ab2 625 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
626 * creation work was pending.
627 */
b6ecd2de 628 if (memcg->kmem_state != KMEM_ONLINE)
2a4db7eb
VD
629 goto out_unlock;
630
f7ce3190
VD
631 idx = memcg_cache_id(memcg);
632 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
633 lockdep_is_held(&slab_mutex));
634
d5b3cf71
VD
635 /*
636 * Since per-memcg caches are created asynchronously on first
637 * allocation (see memcg_kmem_get_cache()), several threads can try to
638 * create the same cache, but only one of them may succeed.
639 */
f7ce3190 640 if (arr->entries[idx])
d5b3cf71
VD
641 goto out_unlock;
642
f1008365 643 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
644 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
645 css->serial_nr, memcg_name_buf);
794b1248
VD
646 if (!cache_name)
647 goto out_unlock;
648
c9a77a79
VD
649 s = create_cache(cache_name, root_cache->object_size,
650 root_cache->size, root_cache->align,
f773e36d 651 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 652 root_cache->useroffset, root_cache->usersize,
f773e36d 653 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
654 /*
655 * If we could not create a memcg cache, do not complain, because
656 * that's not critical at all as we can always proceed with the root
657 * cache.
658 */
bd673145 659 if (IS_ERR(s)) {
794b1248 660 kfree(cache_name);
d5b3cf71 661 goto out_unlock;
bd673145 662 }
794b1248 663
d5b3cf71
VD
664 /*
665 * Since readers won't lock (see cache_from_memcg_idx()), we need a
666 * barrier here to ensure nobody will see the kmem_cache partially
667 * initialized.
668 */
669 smp_wmb();
f7ce3190 670 arr->entries[idx] = s;
d5b3cf71 671
794b1248
VD
672out_unlock:
673 mutex_unlock(&slab_mutex);
03afc0e2
VD
674
675 put_online_mems();
794b1248 676 put_online_cpus();
2633d7a0 677}
b8529907 678
01fb58bc
TH
679static void kmemcg_deactivate_workfn(struct work_struct *work)
680{
681 struct kmem_cache *s = container_of(work, struct kmem_cache,
682 memcg_params.deact_work);
683
684 get_online_cpus();
685 get_online_mems();
686
687 mutex_lock(&slab_mutex);
688
689 s->memcg_params.deact_fn(s);
690
691 mutex_unlock(&slab_mutex);
692
693 put_online_mems();
694 put_online_cpus();
695
696 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
697 css_put(&s->memcg_params.memcg->css);
698}
699
700static void kmemcg_deactivate_rcufn(struct rcu_head *head)
701{
702 struct kmem_cache *s = container_of(head, struct kmem_cache,
703 memcg_params.deact_rcu_head);
704
705 /*
706 * We need to grab blocking locks. Bounce to ->deact_work. The
707 * work item shares the space with the RCU head and can't be
708 * initialized eariler.
709 */
710 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
17cc4dfe 711 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
01fb58bc
TH
712}
713
714/**
715 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
716 * sched RCU grace period
717 * @s: target kmem_cache
718 * @deact_fn: deactivation function to call
719 *
720 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
721 * held after a sched RCU grace period. The slab is guaranteed to stay
722 * alive until @deact_fn is finished. This is to be used from
723 * __kmemcg_cache_deactivate().
724 */
725void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
726 void (*deact_fn)(struct kmem_cache *))
727{
728 if (WARN_ON_ONCE(is_root_cache(s)) ||
729 WARN_ON_ONCE(s->memcg_params.deact_fn))
730 return;
731
732 /* pin memcg so that @s doesn't get destroyed in the middle */
733 css_get(&s->memcg_params.memcg->css);
734
735 s->memcg_params.deact_fn = deact_fn;
736 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
737}
738
2a4db7eb
VD
739void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
740{
741 int idx;
742 struct memcg_cache_array *arr;
d6e0b7fa 743 struct kmem_cache *s, *c;
2a4db7eb
VD
744
745 idx = memcg_cache_id(memcg);
746
d6e0b7fa
VD
747 get_online_cpus();
748 get_online_mems();
749
2a4db7eb 750 mutex_lock(&slab_mutex);
510ded33 751 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
752 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
753 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
754 c = arr->entries[idx];
755 if (!c)
756 continue;
757
c9fc5864 758 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
759 arr->entries[idx] = NULL;
760 }
761 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
762
763 put_online_mems();
764 put_online_cpus();
2a4db7eb
VD
765}
766
d5b3cf71 767void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 768{
d5b3cf71 769 struct kmem_cache *s, *s2;
b8529907 770
d5b3cf71
VD
771 get_online_cpus();
772 get_online_mems();
b8529907 773
b8529907 774 mutex_lock(&slab_mutex);
bc2791f8
TH
775 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
776 memcg_params.kmem_caches_node) {
d5b3cf71
VD
777 /*
778 * The cgroup is about to be freed and therefore has no charges
779 * left. Hence, all its caches must be empty by now.
780 */
657dc2f9 781 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
782 }
783 mutex_unlock(&slab_mutex);
b8529907 784
d5b3cf71
VD
785 put_online_mems();
786 put_online_cpus();
b8529907 787}
d60fdcc9 788
657dc2f9 789static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
790{
791 struct memcg_cache_array *arr;
792 struct kmem_cache *c, *c2;
793 LIST_HEAD(busy);
794 int i;
795
796 BUG_ON(!is_root_cache(s));
797
798 /*
799 * First, shutdown active caches, i.e. caches that belong to online
800 * memory cgroups.
801 */
802 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
803 lockdep_is_held(&slab_mutex));
804 for_each_memcg_cache_index(i) {
805 c = arr->entries[i];
806 if (!c)
807 continue;
657dc2f9 808 if (shutdown_cache(c))
d60fdcc9
VD
809 /*
810 * The cache still has objects. Move it to a temporary
811 * list so as not to try to destroy it for a second
812 * time while iterating over inactive caches below.
813 */
9eeadc8b 814 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
815 else
816 /*
817 * The cache is empty and will be destroyed soon. Clear
818 * the pointer to it in the memcg_caches array so that
819 * it will never be accessed even if the root cache
820 * stays alive.
821 */
822 arr->entries[i] = NULL;
823 }
824
825 /*
826 * Second, shutdown all caches left from memory cgroups that are now
827 * offline.
828 */
9eeadc8b
TH
829 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
830 memcg_params.children_node)
657dc2f9 831 shutdown_cache(c);
d60fdcc9 832
9eeadc8b 833 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
834
835 /*
836 * A cache being destroyed must be empty. In particular, this means
837 * that all per memcg caches attached to it must be empty too.
838 */
9eeadc8b 839 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
840 return -EBUSY;
841 return 0;
842}
843#else
657dc2f9 844static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
845{
846 return 0;
847}
127424c8 848#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 849
41a21285
CL
850void slab_kmem_cache_release(struct kmem_cache *s)
851{
52b4b950 852 __kmem_cache_release(s);
f7ce3190 853 destroy_memcg_params(s);
3dec16ea 854 kfree_const(s->name);
41a21285
CL
855 kmem_cache_free(kmem_cache, s);
856}
857
945cf2b6
CL
858void kmem_cache_destroy(struct kmem_cache *s)
859{
d60fdcc9 860 int err;
d5b3cf71 861
3942d299
SS
862 if (unlikely(!s))
863 return;
864
945cf2b6 865 get_online_cpus();
03afc0e2
VD
866 get_online_mems();
867
945cf2b6 868 mutex_lock(&slab_mutex);
b8529907 869
945cf2b6 870 s->refcount--;
b8529907
VD
871 if (s->refcount)
872 goto out_unlock;
873
657dc2f9 874 err = shutdown_memcg_caches(s);
d60fdcc9 875 if (!err)
657dc2f9 876 err = shutdown_cache(s);
b8529907 877
cd918c55 878 if (err) {
756a025f
JP
879 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
880 s->name);
cd918c55
VD
881 dump_stack();
882 }
b8529907
VD
883out_unlock:
884 mutex_unlock(&slab_mutex);
d5b3cf71 885
03afc0e2 886 put_online_mems();
945cf2b6
CL
887 put_online_cpus();
888}
889EXPORT_SYMBOL(kmem_cache_destroy);
890
03afc0e2
VD
891/**
892 * kmem_cache_shrink - Shrink a cache.
893 * @cachep: The cache to shrink.
894 *
895 * Releases as many slabs as possible for a cache.
896 * To help debugging, a zero exit status indicates all slabs were released.
897 */
898int kmem_cache_shrink(struct kmem_cache *cachep)
899{
900 int ret;
901
902 get_online_cpus();
903 get_online_mems();
55834c59 904 kasan_cache_shrink(cachep);
c9fc5864 905 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
906 put_online_mems();
907 put_online_cpus();
908 return ret;
909}
910EXPORT_SYMBOL(kmem_cache_shrink);
911
fda90124 912bool slab_is_available(void)
97d06609
CL
913{
914 return slab_state >= UP;
915}
b7454ad3 916
45530c44
CL
917#ifndef CONFIG_SLOB
918/* Create a cache during boot when no slab services are available yet */
919void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
8eb8284b 920 slab_flags_t flags, size_t useroffset, size_t usersize)
45530c44
CL
921{
922 int err;
923
924 s->name = name;
925 s->size = s->object_size = size;
45906855 926 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
927 s->useroffset = useroffset;
928 s->usersize = usersize;
f7ce3190
VD
929
930 slab_init_memcg_params(s);
931
45530c44
CL
932 err = __kmem_cache_create(s, flags);
933
934 if (err)
31ba7346 935 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
936 name, size, err);
937
938 s->refcount = -1; /* Exempt from merging for now */
939}
940
941struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
6c0c21ad
DW
942 slab_flags_t flags, size_t useroffset,
943 size_t usersize)
45530c44
CL
944{
945 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
946
947 if (!s)
948 panic("Out of memory when creating slab %s\n", name);
949
6c0c21ad 950 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 951 list_add(&s->list, &slab_caches);
510ded33 952 memcg_link_cache(s);
45530c44
CL
953 s->refcount = 1;
954 return s;
955}
956
9425c58e
CL
957struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
958EXPORT_SYMBOL(kmalloc_caches);
959
960#ifdef CONFIG_ZONE_DMA
961struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
962EXPORT_SYMBOL(kmalloc_dma_caches);
963#endif
964
2c59dd65
CL
965/*
966 * Conversion table for small slabs sizes / 8 to the index in the
967 * kmalloc array. This is necessary for slabs < 192 since we have non power
968 * of two cache sizes there. The size of larger slabs can be determined using
969 * fls.
970 */
971static s8 size_index[24] = {
972 3, /* 8 */
973 4, /* 16 */
974 5, /* 24 */
975 5, /* 32 */
976 6, /* 40 */
977 6, /* 48 */
978 6, /* 56 */
979 6, /* 64 */
980 1, /* 72 */
981 1, /* 80 */
982 1, /* 88 */
983 1, /* 96 */
984 7, /* 104 */
985 7, /* 112 */
986 7, /* 120 */
987 7, /* 128 */
988 2, /* 136 */
989 2, /* 144 */
990 2, /* 152 */
991 2, /* 160 */
992 2, /* 168 */
993 2, /* 176 */
994 2, /* 184 */
995 2 /* 192 */
996};
997
998static inline int size_index_elem(size_t bytes)
999{
1000 return (bytes - 1) / 8;
1001}
1002
1003/*
1004 * Find the kmem_cache structure that serves a given size of
1005 * allocation
1006 */
1007struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1008{
1009 int index;
1010
9de1bc87 1011 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 1012 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 1013 return NULL;
907985f4 1014 }
6286ae97 1015
2c59dd65
CL
1016 if (size <= 192) {
1017 if (!size)
1018 return ZERO_SIZE_PTR;
1019
1020 index = size_index[size_index_elem(size)];
1021 } else
1022 index = fls(size - 1);
1023
1024#ifdef CONFIG_ZONE_DMA
b1e05416 1025 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
1026 return kmalloc_dma_caches[index];
1027
1028#endif
1029 return kmalloc_caches[index];
1030}
1031
4066c33d
GG
1032/*
1033 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1034 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1035 * kmalloc-67108864.
1036 */
af3b5f87 1037const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1038 {NULL, 0}, {"kmalloc-96", 96},
1039 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1040 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1041 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1042 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1043 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1044 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1045 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1046 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1047 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1048 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1049 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1050 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1051 {"kmalloc-67108864", 67108864}
1052};
1053
f97d5f63 1054/*
34cc6990
DS
1055 * Patch up the size_index table if we have strange large alignment
1056 * requirements for the kmalloc array. This is only the case for
1057 * MIPS it seems. The standard arches will not generate any code here.
1058 *
1059 * Largest permitted alignment is 256 bytes due to the way we
1060 * handle the index determination for the smaller caches.
1061 *
1062 * Make sure that nothing crazy happens if someone starts tinkering
1063 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1064 */
34cc6990 1065void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
1066{
1067 int i;
1068
2c59dd65
CL
1069 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1070 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1071
1072 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1073 int elem = size_index_elem(i);
1074
1075 if (elem >= ARRAY_SIZE(size_index))
1076 break;
1077 size_index[elem] = KMALLOC_SHIFT_LOW;
1078 }
1079
1080 if (KMALLOC_MIN_SIZE >= 64) {
1081 /*
1082 * The 96 byte size cache is not used if the alignment
1083 * is 64 byte.
1084 */
1085 for (i = 64 + 8; i <= 96; i += 8)
1086 size_index[size_index_elem(i)] = 7;
1087
1088 }
1089
1090 if (KMALLOC_MIN_SIZE >= 128) {
1091 /*
1092 * The 192 byte sized cache is not used if the alignment
1093 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1094 * instead.
1095 */
1096 for (i = 128 + 8; i <= 192; i += 8)
1097 size_index[size_index_elem(i)] = 8;
1098 }
34cc6990
DS
1099}
1100
d50112ed 1101static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
a9730fca
CL
1102{
1103 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
6c0c21ad
DW
1104 kmalloc_info[idx].size, flags, 0,
1105 kmalloc_info[idx].size);
a9730fca
CL
1106}
1107
34cc6990
DS
1108/*
1109 * Create the kmalloc array. Some of the regular kmalloc arrays
1110 * may already have been created because they were needed to
1111 * enable allocations for slab creation.
1112 */
d50112ed 1113void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990
DS
1114{
1115 int i;
1116
a9730fca
CL
1117 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1118 if (!kmalloc_caches[i])
1119 new_kmalloc_cache(i, flags);
f97d5f63 1120
956e46ef 1121 /*
a9730fca
CL
1122 * Caches that are not of the two-to-the-power-of size.
1123 * These have to be created immediately after the
1124 * earlier power of two caches
956e46ef 1125 */
a9730fca
CL
1126 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1127 new_kmalloc_cache(1, flags);
1128 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1129 new_kmalloc_cache(2, flags);
8a965b3b
CL
1130 }
1131
f97d5f63
CL
1132 /* Kmalloc array is now usable */
1133 slab_state = UP;
1134
f97d5f63
CL
1135#ifdef CONFIG_ZONE_DMA
1136 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1137 struct kmem_cache *s = kmalloc_caches[i];
1138
1139 if (s) {
1140 int size = kmalloc_size(i);
1141 char *n = kasprintf(GFP_NOWAIT,
1142 "dma-kmalloc-%d", size);
1143
1144 BUG_ON(!n);
1145 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
6c0c21ad 1146 size, SLAB_CACHE_DMA | flags, 0, 0);
f97d5f63
CL
1147 }
1148 }
1149#endif
1150}
45530c44
CL
1151#endif /* !CONFIG_SLOB */
1152
cea371f4
VD
1153/*
1154 * To avoid unnecessary overhead, we pass through large allocation requests
1155 * directly to the page allocator. We use __GFP_COMP, because we will need to
1156 * know the allocation order to free the pages properly in kfree.
1157 */
52383431
VD
1158void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1159{
1160 void *ret;
1161 struct page *page;
1162
1163 flags |= __GFP_COMP;
4949148a 1164 page = alloc_pages(flags, order);
52383431
VD
1165 ret = page ? page_address(page) : NULL;
1166 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1167 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1168 return ret;
1169}
1170EXPORT_SYMBOL(kmalloc_order);
1171
f1b6eb6e
CL
1172#ifdef CONFIG_TRACING
1173void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1174{
1175 void *ret = kmalloc_order(size, flags, order);
1176 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1177 return ret;
1178}
1179EXPORT_SYMBOL(kmalloc_order_trace);
1180#endif
45530c44 1181
7c00fce9
TG
1182#ifdef CONFIG_SLAB_FREELIST_RANDOM
1183/* Randomize a generic freelist */
1184static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1185 size_t count)
1186{
1187 size_t i;
1188 unsigned int rand;
1189
1190 for (i = 0; i < count; i++)
1191 list[i] = i;
1192
1193 /* Fisher-Yates shuffle */
1194 for (i = count - 1; i > 0; i--) {
1195 rand = prandom_u32_state(state);
1196 rand %= (i + 1);
1197 swap(list[i], list[rand]);
1198 }
1199}
1200
1201/* Create a random sequence per cache */
1202int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1203 gfp_t gfp)
1204{
1205 struct rnd_state state;
1206
1207 if (count < 2 || cachep->random_seq)
1208 return 0;
1209
1210 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1211 if (!cachep->random_seq)
1212 return -ENOMEM;
1213
1214 /* Get best entropy at this stage of boot */
1215 prandom_seed_state(&state, get_random_long());
1216
1217 freelist_randomize(&state, cachep->random_seq, count);
1218 return 0;
1219}
1220
1221/* Destroy the per-cache random freelist sequence */
1222void cache_random_seq_destroy(struct kmem_cache *cachep)
1223{
1224 kfree(cachep->random_seq);
1225 cachep->random_seq = NULL;
1226}
1227#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1228
5b365771 1229#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b
WL
1230#ifdef CONFIG_SLAB
1231#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1232#else
1233#define SLABINFO_RIGHTS S_IRUSR
1234#endif
1235
b047501c 1236static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1237{
1238 /*
1239 * Output format version, so at least we can change it
1240 * without _too_ many complaints.
1241 */
1242#ifdef CONFIG_DEBUG_SLAB
1243 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1244#else
1245 seq_puts(m, "slabinfo - version: 2.1\n");
1246#endif
756a025f 1247 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1248 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1249 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1250#ifdef CONFIG_DEBUG_SLAB
756a025f 1251 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1252 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1253#endif
1254 seq_putc(m, '\n');
1255}
1256
1df3b26f 1257void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1258{
b7454ad3 1259 mutex_lock(&slab_mutex);
510ded33 1260 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1261}
1262
276a2439 1263void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1264{
510ded33 1265 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1266}
1267
276a2439 1268void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1269{
1270 mutex_unlock(&slab_mutex);
1271}
1272
749c5415
GC
1273static void
1274memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1275{
1276 struct kmem_cache *c;
1277 struct slabinfo sinfo;
749c5415
GC
1278
1279 if (!is_root_cache(s))
1280 return;
1281
426589f5 1282 for_each_memcg_cache(c, s) {
749c5415
GC
1283 memset(&sinfo, 0, sizeof(sinfo));
1284 get_slabinfo(c, &sinfo);
1285
1286 info->active_slabs += sinfo.active_slabs;
1287 info->num_slabs += sinfo.num_slabs;
1288 info->shared_avail += sinfo.shared_avail;
1289 info->active_objs += sinfo.active_objs;
1290 info->num_objs += sinfo.num_objs;
1291 }
1292}
1293
b047501c 1294static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1295{
0d7561c6
GC
1296 struct slabinfo sinfo;
1297
1298 memset(&sinfo, 0, sizeof(sinfo));
1299 get_slabinfo(s, &sinfo);
1300
749c5415
GC
1301 memcg_accumulate_slabinfo(s, &sinfo);
1302
0d7561c6 1303 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1304 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1305 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1306
1307 seq_printf(m, " : tunables %4u %4u %4u",
1308 sinfo.limit, sinfo.batchcount, sinfo.shared);
1309 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1310 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1311 slabinfo_show_stats(m, s);
1312 seq_putc(m, '\n');
b7454ad3
GC
1313}
1314
1df3b26f 1315static int slab_show(struct seq_file *m, void *p)
749c5415 1316{
510ded33 1317 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1318
510ded33 1319 if (p == slab_root_caches.next)
1df3b26f 1320 print_slabinfo_header(m);
510ded33 1321 cache_show(s, m);
b047501c
VD
1322 return 0;
1323}
1324
852d8be0
YS
1325void dump_unreclaimable_slab(void)
1326{
1327 struct kmem_cache *s, *s2;
1328 struct slabinfo sinfo;
1329
1330 /*
1331 * Here acquiring slab_mutex is risky since we don't prefer to get
1332 * sleep in oom path. But, without mutex hold, it may introduce a
1333 * risk of crash.
1334 * Use mutex_trylock to protect the list traverse, dump nothing
1335 * without acquiring the mutex.
1336 */
1337 if (!mutex_trylock(&slab_mutex)) {
1338 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1339 return;
1340 }
1341
1342 pr_info("Unreclaimable slab info:\n");
1343 pr_info("Name Used Total\n");
1344
1345 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1346 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1347 continue;
1348
1349 get_slabinfo(s, &sinfo);
1350
1351 if (sinfo.num_objs > 0)
1352 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1353 (sinfo.active_objs * s->size) / 1024,
1354 (sinfo.num_objs * s->size) / 1024);
1355 }
1356 mutex_unlock(&slab_mutex);
1357}
1358
5b365771 1359#if defined(CONFIG_MEMCG)
bc2791f8
TH
1360void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1361{
1362 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1363
1364 mutex_lock(&slab_mutex);
1365 return seq_list_start(&memcg->kmem_caches, *pos);
1366}
1367
1368void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1369{
1370 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1371
1372 return seq_list_next(p, &memcg->kmem_caches, pos);
1373}
1374
1375void memcg_slab_stop(struct seq_file *m, void *p)
1376{
1377 mutex_unlock(&slab_mutex);
1378}
1379
b047501c
VD
1380int memcg_slab_show(struct seq_file *m, void *p)
1381{
bc2791f8
TH
1382 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1383 memcg_params.kmem_caches_node);
b047501c
VD
1384 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1385
bc2791f8 1386 if (p == memcg->kmem_caches.next)
b047501c 1387 print_slabinfo_header(m);
bc2791f8 1388 cache_show(s, m);
b047501c 1389 return 0;
749c5415 1390}
b047501c 1391#endif
749c5415 1392
b7454ad3
GC
1393/*
1394 * slabinfo_op - iterator that generates /proc/slabinfo
1395 *
1396 * Output layout:
1397 * cache-name
1398 * num-active-objs
1399 * total-objs
1400 * object size
1401 * num-active-slabs
1402 * total-slabs
1403 * num-pages-per-slab
1404 * + further values on SMP and with statistics enabled
1405 */
1406static const struct seq_operations slabinfo_op = {
1df3b26f 1407 .start = slab_start,
276a2439
WL
1408 .next = slab_next,
1409 .stop = slab_stop,
1df3b26f 1410 .show = slab_show,
b7454ad3
GC
1411};
1412
1413static int slabinfo_open(struct inode *inode, struct file *file)
1414{
1415 return seq_open(file, &slabinfo_op);
1416}
1417
1418static const struct file_operations proc_slabinfo_operations = {
1419 .open = slabinfo_open,
1420 .read = seq_read,
1421 .write = slabinfo_write,
1422 .llseek = seq_lseek,
1423 .release = seq_release,
1424};
1425
1426static int __init slab_proc_init(void)
1427{
e9b4db2b
WL
1428 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1429 &proc_slabinfo_operations);
b7454ad3
GC
1430 return 0;
1431}
1432module_init(slab_proc_init);
5b365771 1433#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1434
1435static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1436 gfp_t flags)
1437{
1438 void *ret;
1439 size_t ks = 0;
1440
1441 if (p)
1442 ks = ksize(p);
1443
0316bec2 1444 if (ks >= new_size) {
505f5dcb 1445 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1446 return (void *)p;
0316bec2 1447 }
928cec9c
AR
1448
1449 ret = kmalloc_track_caller(new_size, flags);
1450 if (ret && p)
1451 memcpy(ret, p, ks);
1452
1453 return ret;
1454}
1455
1456/**
1457 * __krealloc - like krealloc() but don't free @p.
1458 * @p: object to reallocate memory for.
1459 * @new_size: how many bytes of memory are required.
1460 * @flags: the type of memory to allocate.
1461 *
1462 * This function is like krealloc() except it never frees the originally
1463 * allocated buffer. Use this if you don't want to free the buffer immediately
1464 * like, for example, with RCU.
1465 */
1466void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1467{
1468 if (unlikely(!new_size))
1469 return ZERO_SIZE_PTR;
1470
1471 return __do_krealloc(p, new_size, flags);
1472
1473}
1474EXPORT_SYMBOL(__krealloc);
1475
1476/**
1477 * krealloc - reallocate memory. The contents will remain unchanged.
1478 * @p: object to reallocate memory for.
1479 * @new_size: how many bytes of memory are required.
1480 * @flags: the type of memory to allocate.
1481 *
1482 * The contents of the object pointed to are preserved up to the
1483 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1484 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1485 * %NULL pointer, the object pointed to is freed.
1486 */
1487void *krealloc(const void *p, size_t new_size, gfp_t flags)
1488{
1489 void *ret;
1490
1491 if (unlikely(!new_size)) {
1492 kfree(p);
1493 return ZERO_SIZE_PTR;
1494 }
1495
1496 ret = __do_krealloc(p, new_size, flags);
1497 if (ret && p != ret)
1498 kfree(p);
1499
1500 return ret;
1501}
1502EXPORT_SYMBOL(krealloc);
1503
1504/**
1505 * kzfree - like kfree but zero memory
1506 * @p: object to free memory of
1507 *
1508 * The memory of the object @p points to is zeroed before freed.
1509 * If @p is %NULL, kzfree() does nothing.
1510 *
1511 * Note: this function zeroes the whole allocated buffer which can be a good
1512 * deal bigger than the requested buffer size passed to kmalloc(). So be
1513 * careful when using this function in performance sensitive code.
1514 */
1515void kzfree(const void *p)
1516{
1517 size_t ks;
1518 void *mem = (void *)p;
1519
1520 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1521 return;
1522 ks = ksize(mem);
1523 memset(mem, 0, ks);
1524 kfree(mem);
1525}
1526EXPORT_SYMBOL(kzfree);
1527
1528/* Tracepoints definitions. */
1529EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1530EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1531EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1532EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1533EXPORT_TRACEPOINT_SYMBOL(kfree);
1534EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);