Merge tag 'pci-v6.16-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-block.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
89c2d061
VB
4
5#include <linux/reciprocal_div.h>
6#include <linux/list_lru.h>
7#include <linux/local_lock.h>
8#include <linux/random.h>
9#include <linux/kobject.h>
10#include <linux/sched/mm.h>
11#include <linux/memcontrol.h>
89c2d061
VB
12#include <linux/kfence.h>
13#include <linux/kasan.h>
14
97d06609
CL
15/*
16 * Internal slab definitions
17 */
18
6801be4f
PZ
19#ifdef CONFIG_64BIT
20# ifdef system_has_cmpxchg128
21# define system_has_freelist_aba() system_has_cmpxchg128()
22# define try_cmpxchg_freelist try_cmpxchg128
23# endif
24#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128
25typedef u128 freelist_full_t;
26#else /* CONFIG_64BIT */
27# ifdef system_has_cmpxchg64
28# define system_has_freelist_aba() system_has_cmpxchg64()
29# define try_cmpxchg_freelist try_cmpxchg64
30# endif
31#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64
32typedef u64 freelist_full_t;
33#endif /* CONFIG_64BIT */
34
35#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
36#undef system_has_freelist_aba
37#endif
38
39/*
40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
41 * problems with cmpxchg of just a pointer.
42 */
43typedef union {
44 struct {
45 void *freelist;
46 unsigned long counter;
47 };
48 freelist_full_t full;
49} freelist_aba_t;
50
d122019b
MWO
51/* Reuses the bits in struct page */
52struct slab {
53 unsigned long __page_flags;
401fb12c 54
401fb12c 55 struct kmem_cache *slab_cache;
d122019b 56 union {
401fb12c 57 struct {
130d4df5
VB
58 union {
59 struct list_head slab_list;
60#ifdef CONFIG_SLUB_CPU_PARTIAL
61 struct {
62 struct slab *next;
63 int slabs; /* Nr of slabs left */
64 };
65#endif
66 };
67 /* Double-word boundary */
130d4df5 68 union {
130d4df5 69 struct {
6801be4f
PZ
70 void *freelist; /* first free object */
71 union {
72 unsigned long counters;
73 struct {
74 unsigned inuse:16;
75 unsigned objects:15;
dbc16915 76 /*
77 * If slab debugging is enabled then the
78 * frozen bit can be reused to indicate
79 * that the slab was corrupted
80 */
6801be4f
PZ
81 unsigned frozen:1;
82 };
83 };
130d4df5 84 };
6801be4f
PZ
85#ifdef system_has_freelist_aba
86 freelist_aba_t freelist_counter;
87#endif
130d4df5 88 };
d122019b 89 };
130d4df5 90 struct rcu_head rcu_head;
d122019b 91 };
401fb12c 92
46df8e73 93 unsigned int __page_type;
d122019b 94 atomic_t __page_refcount;
21c690a3
SB
95#ifdef CONFIG_SLAB_OBJ_EXT
96 unsigned long obj_exts;
d122019b
MWO
97#endif
98};
99
100#define SLAB_MATCH(pg, sl) \
101 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
102SLAB_MATCH(flags, __page_flags);
130d4df5 103SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
d122019b 104SLAB_MATCH(_refcount, __page_refcount);
a52c6330 105#ifdef CONFIG_MEMCG
21c690a3 106SLAB_MATCH(memcg_data, obj_exts);
a52c6330
AST
107#elif defined(CONFIG_SLAB_OBJ_EXT)
108SLAB_MATCH(_unused_slab_obj_exts, obj_exts);
d122019b
MWO
109#endif
110#undef SLAB_MATCH
111static_assert(sizeof(struct slab) <= sizeof(struct page));
a9e0b9f2 112#if defined(system_has_freelist_aba)
6801be4f 113static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
130d4df5 114#endif
d122019b
MWO
115
116/**
117 * folio_slab - Converts from folio to slab.
118 * @folio: The folio.
119 *
120 * Currently struct slab is a different representation of a folio where
121 * folio_test_slab() is true.
122 *
123 * Return: The slab which contains this folio.
124 */
125#define folio_slab(folio) (_Generic((folio), \
126 const struct folio *: (const struct slab *)(folio), \
127 struct folio *: (struct slab *)(folio)))
128
129/**
130 * slab_folio - The folio allocated for a slab
2da76e9e 131 * @s: The slab.
d122019b
MWO
132 *
133 * Slabs are allocated as folios that contain the individual objects and are
134 * using some fields in the first struct page of the folio - those fields are
135 * now accessed by struct slab. It is occasionally necessary to convert back to
136 * a folio in order to communicate with the rest of the mm. Please use this
137 * helper function instead of casting yourself, as the implementation may change
138 * in the future.
139 */
140#define slab_folio(s) (_Generic((s), \
141 const struct slab *: (const struct folio *)s, \
142 struct slab *: (struct folio *)s))
143
144/**
145 * page_slab - Converts from first struct page to slab.
146 * @p: The first (either head of compound or single) page of slab.
147 *
148 * A temporary wrapper to convert struct page to struct slab in situations where
149 * we know the page is the compound head, or single order-0 page.
150 *
151 * Long-term ideally everything would work with struct slab directly or go
152 * through folio to struct slab.
153 *
154 * Return: The slab which contains this page
155 */
156#define page_slab(p) (_Generic((p), \
157 const struct page *: (const struct slab *)(p), \
158 struct page *: (struct slab *)(p)))
159
160/**
161 * slab_page - The first struct page allocated for a slab
2da76e9e 162 * @s: The slab.
d122019b
MWO
163 *
164 * A convenience wrapper for converting slab to the first struct page of the
165 * underlying folio, to communicate with code not yet converted to folio or
166 * struct slab.
167 */
168#define slab_page(s) folio_page(slab_folio(s), 0)
169
170/*
171 * If network-based swap is enabled, sl*b must keep track of whether pages
172 * were allocated from pfmemalloc reserves.
173 */
174static inline bool slab_test_pfmemalloc(const struct slab *slab)
175{
4d2bcefa 176 return folio_test_active(slab_folio(slab));
d122019b
MWO
177}
178
179static inline void slab_set_pfmemalloc(struct slab *slab)
180{
181 folio_set_active(slab_folio(slab));
182}
183
184static inline void slab_clear_pfmemalloc(struct slab *slab)
185{
186 folio_clear_active(slab_folio(slab));
187}
188
189static inline void __slab_clear_pfmemalloc(struct slab *slab)
190{
191 __folio_clear_active(slab_folio(slab));
192}
193
194static inline void *slab_address(const struct slab *slab)
195{
196 return folio_address(slab_folio(slab));
197}
198
199static inline int slab_nid(const struct slab *slab)
200{
201 return folio_nid(slab_folio(slab));
202}
203
204static inline pg_data_t *slab_pgdat(const struct slab *slab)
205{
206 return folio_pgdat(slab_folio(slab));
207}
208
209static inline struct slab *virt_to_slab(const void *addr)
210{
211 struct folio *folio = virt_to_folio(addr);
212
213 if (!folio_test_slab(folio))
214 return NULL;
215
216 return folio_slab(folio);
217}
218
219static inline int slab_order(const struct slab *slab)
220{
4d2bcefa 221 return folio_order(slab_folio(slab));
d122019b
MWO
222}
223
224static inline size_t slab_size(const struct slab *slab)
225{
226 return PAGE_SIZE << slab_order(slab);
227}
228
19975f83
VB
229#ifdef CONFIG_SLUB_CPU_PARTIAL
230#define slub_percpu_partial(c) ((c)->partial)
231
232#define slub_set_percpu_partial(c, p) \
233({ \
234 slub_percpu_partial(c) = (p)->next; \
235})
236
237#define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c))
238#else
239#define slub_percpu_partial(c) NULL
240
241#define slub_set_percpu_partial(c, p)
242
243#define slub_percpu_partial_read_once(c) NULL
244#endif // CONFIG_SLUB_CPU_PARTIAL
245
246/*
247 * Word size structure that can be atomically updated or read and that
248 * contains both the order and the number of objects that a slab of the
249 * given order would contain.
250 */
251struct kmem_cache_order_objects {
252 unsigned int x;
253};
254
255/*
256 * Slab cache management.
257 */
258struct kmem_cache {
259#ifndef CONFIG_SLUB_TINY
260 struct kmem_cache_cpu __percpu *cpu_slab;
261#endif
262 /* Used for retrieving partial slabs, etc. */
263 slab_flags_t flags;
264 unsigned long min_partial;
265 unsigned int size; /* Object size including metadata */
266 unsigned int object_size; /* Object size without metadata */
267 struct reciprocal_value reciprocal_size;
268 unsigned int offset; /* Free pointer offset */
269#ifdef CONFIG_SLUB_CPU_PARTIAL
270 /* Number of per cpu partial objects to keep around */
271 unsigned int cpu_partial;
272 /* Number of per cpu partial slabs to keep around */
273 unsigned int cpu_partial_slabs;
274#endif
275 struct kmem_cache_order_objects oo;
276
277 /* Allocation and freeing of slabs */
278 struct kmem_cache_order_objects min;
279 gfp_t allocflags; /* gfp flags to use on each alloc */
280 int refcount; /* Refcount for slab cache destroy */
281 void (*ctor)(void *object); /* Object constructor */
282 unsigned int inuse; /* Offset to metadata */
283 unsigned int align; /* Alignment */
284 unsigned int red_left_pad; /* Left redzone padding size */
285 const char *name; /* Name (only for display!) */
286 struct list_head list; /* List of slab caches */
287#ifdef CONFIG_SYSFS
288 struct kobject kobj; /* For sysfs */
289#endif
290#ifdef CONFIG_SLAB_FREELIST_HARDENED
291 unsigned long random;
292#endif
293
294#ifdef CONFIG_NUMA
295 /*
296 * Defragmentation by allocating from a remote node.
297 */
298 unsigned int remote_node_defrag_ratio;
299#endif
300
301#ifdef CONFIG_SLAB_FREELIST_RANDOM
302 unsigned int *random_seq;
303#endif
304
305#ifdef CONFIG_KASAN_GENERIC
306 struct kasan_cache kasan_info;
307#endif
308
309#ifdef CONFIG_HARDENED_USERCOPY
310 unsigned int useroffset; /* Usercopy region offset */
311 unsigned int usersize; /* Usercopy region size */
312#endif
313
314 struct kmem_cache_node *node[MAX_NUMNODES];
315};
316
317#if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
77ced98f 318#define SLAB_SUPPORTS_SYSFS 1
19975f83
VB
319void sysfs_slab_unlink(struct kmem_cache *s);
320void sysfs_slab_release(struct kmem_cache *s);
321#else
322static inline void sysfs_slab_unlink(struct kmem_cache *s) { }
323static inline void sysfs_slab_release(struct kmem_cache *s) { }
324#endif
325
326void *fixup_red_left(struct kmem_cache *s, void *p);
327
328static inline void *nearest_obj(struct kmem_cache *cache,
329 const struct slab *slab, void *x)
330{
331 void *object = x - (x - slab_address(slab)) % cache->size;
332 void *last_object = slab_address(slab) +
333 (slab->objects - 1) * cache->size;
334 void *result = (unlikely(object > last_object)) ? last_object : object;
335
336 result = fixup_red_left(cache, result);
337 return result;
338}
339
340/* Determine object index from a given position */
341static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
342 void *addr, void *obj)
343{
344 return reciprocal_divide(kasan_reset_tag(obj) - addr,
345 cache->reciprocal_size);
346}
347
348static inline unsigned int obj_to_index(const struct kmem_cache *cache,
349 const struct slab *slab, void *obj)
350{
351 if (is_kfence_address(obj))
352 return 0;
353 return __obj_to_index(cache, slab_address(slab), obj);
354}
355
356static inline int objs_per_slab(const struct kmem_cache *cache,
357 const struct slab *slab)
358{
359 return slab->objects;
360}
07f361b2 361
97d06609
CL
362/*
363 * State of the slab allocator.
364 *
365 * This is used to describe the states of the allocator during bootup.
366 * Allocators use this to gradually bootstrap themselves. Most allocators
367 * have the problem that the structures used for managing slab caches are
368 * allocated from slab caches themselves.
369 */
370enum slab_state {
371 DOWN, /* No slab functionality yet */
372 PARTIAL, /* SLUB: kmem_cache_node available */
97d06609
CL
373 UP, /* Slab caches usable but not all extras yet */
374 FULL /* Everything is working */
375};
376
377extern enum slab_state slab_state;
378
18004c5d
CL
379/* The slab cache mutex protects the management structures during changes */
380extern struct mutex slab_mutex;
9b030cb8
CL
381
382/* The list of all slab caches on the system */
18004c5d
CL
383extern struct list_head slab_caches;
384
9b030cb8
CL
385/* The slab cache that manages slab cache information */
386extern struct kmem_cache *kmem_cache;
387
af3b5f87
VB
388/* A table of kmalloc cache names and sizes */
389extern const struct kmalloc_info_struct {
cb5d9fb3 390 const char *name[NR_KMALLOC_TYPES];
55de8b9c 391 unsigned int size;
af3b5f87
VB
392} kmalloc_info[];
393
f97d5f63 394/* Kmalloc array related functions */
34cc6990 395void setup_kmalloc_cache_index_table(void);
66b3dc1f 396void create_kmalloc_caches(void);
2c59dd65 397
5a9d31d9
VB
398extern u8 kmalloc_size_index[24];
399
400static inline unsigned int size_index_elem(unsigned int bytes)
401{
402 return (bytes - 1) / 8;
403}
404
405/*
406 * Find the kmem_cache structure that serves a given size of
407 * allocation
408 *
409 * This assumes size is larger than zero and not larger than
410 * KMALLOC_MAX_CACHE_SIZE and the caller must check that.
411 */
412static inline struct kmem_cache *
67f2df3b 413kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller)
5a9d31d9
VB
414{
415 unsigned int index;
416
67f2df3b
KC
417 if (!b)
418 b = &kmalloc_caches[kmalloc_type(flags, caller)];
5a9d31d9
VB
419 if (size <= 192)
420 index = kmalloc_size_index[size_index_elem(size)];
421 else
422 index = fls(size - 1);
423
67f2df3b 424 return (*b)[index];
5a9d31d9 425}
ed4cd17e 426
44405099 427gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 428
9b030cb8 429/* Functions provided by the slab allocators */
3dbe2bad
CB
430int do_kmem_cache_create(struct kmem_cache *s, const char *name,
431 unsigned int size, struct kmem_cache_args *args,
432 slab_flags_t flags);
97d06609 433
89c2d061 434void __init kmem_cache_init(void);
45530c44 435extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
436 unsigned int size, slab_flags_t flags,
437 unsigned int useroffset, unsigned int usersize);
45530c44 438
423c929c 439int slab_unmergeable(struct kmem_cache *s);
f4957d5b 440struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 441 slab_flags_t flags, const char *name, void (*ctor)(void *));
2633d7a0 442struct kmem_cache *
f4957d5b 443__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 444 slab_flags_t flags, void (*ctor)(void *));
423c929c 445
303cd693 446slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name);
cbb79694 447
bb944290
FT
448static inline bool is_kmalloc_cache(struct kmem_cache *s)
449{
bb944290 450 return (s->flags & SLAB_KMALLOC);
bb944290 451}
cbb79694 452
9028cdeb
SB
453static inline bool is_kmalloc_normal(struct kmem_cache *s)
454{
455 if (!is_kmalloc_cache(s))
456 return false;
457 return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT));
458}
459
6d6ea1e9
NB
460#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
461 SLAB_CACHE_DMA32 | SLAB_PANIC | \
12f4888c
KB
462 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \
463 SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
464 SLAB_TEMPORARY | SLAB_ACCOUNT | \
465 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
d8843922 466
d8843922 467#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 468 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922 469
12f4888c 470#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS)
e70954fd 471
f9e13c0a 472bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 473int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 474void __kmem_cache_release(struct kmem_cache *);
c9fc5864 475int __kmem_cache_shrink(struct kmem_cache *);
41a21285 476void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 477
b7454ad3
GC
478struct seq_file;
479struct file;
b7454ad3 480
0d7561c6
GC
481struct slabinfo {
482 unsigned long active_objs;
483 unsigned long num_objs;
484 unsigned long active_slabs;
485 unsigned long num_slabs;
486 unsigned long shared_avail;
487 unsigned int limit;
488 unsigned int batchcount;
489 unsigned int shared;
490 unsigned int objects_per_slab;
491 unsigned int cache_order;
492};
493
494void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
ba6c496e 495
e42f174e
VB
496#ifdef CONFIG_SLUB_DEBUG
497#ifdef CONFIG_SLUB_DEBUG_ON
498DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
499#else
500DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
501#endif
502extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 503long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
504static inline bool __slub_debug_enabled(void)
505{
506 return static_branch_unlikely(&slub_debug_enabled);
507}
e42f174e
VB
508#else
509static inline void print_tracking(struct kmem_cache *s, void *object)
510{
511}
0d4a062a
ME
512static inline bool __slub_debug_enabled(void)
513{
514 return false;
515}
e42f174e
VB
516#endif
517
518/*
671776b3 519 * Returns true if any of the specified slab_debug flags is enabled for the
e42f174e
VB
520 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
521 * the static key.
522 */
523static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
524{
0d4a062a
ME
525 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
526 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
527 if (__slub_debug_enabled())
e42f174e 528 return s->flags & flags;
e42f174e
VB
529 return false;
530}
531
3f1dd33f
VB
532#if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT)
533bool slab_in_kunit_test(void);
534#else
535static inline bool slab_in_kunit_test(void) { return false; }
536#endif
537
21c690a3
SB
538#ifdef CONFIG_SLAB_OBJ_EXT
539
4b5f8d9a 540/*
21c690a3
SB
541 * slab_obj_exts - get the pointer to the slab object extension vector
542 * associated with a slab.
4b5f8d9a
VB
543 * @slab: a pointer to the slab struct
544 *
21c690a3 545 * Returns a pointer to the object extension vector associated with the slab,
4b5f8d9a
VB
546 * or NULL if no such vector has been associated yet.
547 */
21c690a3 548static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
4b5f8d9a 549{
21c690a3 550 unsigned long obj_exts = READ_ONCE(slab->obj_exts);
4b5f8d9a 551
21c690a3
SB
552#ifdef CONFIG_MEMCG
553 VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS),
4b5f8d9a 554 slab_page(slab));
21c690a3 555 VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab));
21c690a3 556#endif
53ce7203 557 return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK);
4b5f8d9a
VB
558}
559
e6100a45
VB
560int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
561 gfp_t gfp, bool new_slab);
562
21c690a3
SB
563#else /* CONFIG_SLAB_OBJ_EXT */
564
565static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
4b5f8d9a
VB
566{
567 return NULL;
568}
569
21c690a3
SB
570#endif /* CONFIG_SLAB_OBJ_EXT */
571
e6100a45 572static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
286e04b8 573{
e6100a45
VB
574 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
575 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
286e04b8 576}
e6100a45 577
3a3b7fec 578#ifdef CONFIG_MEMCG
e6100a45
VB
579bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
580 gfp_t flags, size_t size, void **p);
581void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
582 void **p, int objects, struct slabobj_ext *obj_exts);
21c690a3 583#endif
b9ce5ef4 584
49d5377b
VB
585void kvfree_rcu_cb(struct rcu_head *head);
586
8dfa9d55
HY
587size_t __ksize(const void *objp);
588
11c7aec2
JDB
589static inline size_t slab_ksize(const struct kmem_cache *s)
590{
a9e0b9f2 591#ifdef CONFIG_SLUB_DEBUG
11c7aec2
JDB
592 /*
593 * Debugging requires use of the padding between object
594 * and whatever may come after it.
595 */
596 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
597 return s->object_size;
a9e0b9f2 598#endif
80a9201a
AP
599 if (s->flags & SLAB_KASAN)
600 return s->object_size;
11c7aec2
JDB
601 /*
602 * If we have the need to store the freelist pointer
603 * back there or track user information then we can
604 * only use the space before that information.
605 */
5f0d5a3a 606 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
607 return s->inuse;
608 /*
609 * Else we can use all the padding etc for the allocation
610 */
611 return s->size;
11c7aec2
JDB
612}
613
a9e0b9f2 614#ifdef CONFIG_SLUB_DEBUG
852d8be0
YS
615void dump_unreclaimable_slab(void);
616#else
617static inline void dump_unreclaimable_slab(void)
618{
619}
620#endif
621
55834c59
AP
622void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
623
7c00fce9
TG
624#ifdef CONFIG_SLAB_FREELIST_RANDOM
625int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
626 gfp_t gfp);
627void cache_random_seq_destroy(struct kmem_cache *cachep);
628#else
629static inline int cache_random_seq_create(struct kmem_cache *cachep,
630 unsigned int count, gfp_t gfp)
631{
632 return 0;
633}
634static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
635#endif /* CONFIG_SLAB_FREELIST_RANDOM */
636
6471384a
AP
637static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
638{
51cba1eb
KC
639 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
640 &init_on_alloc)) {
6471384a
AP
641 if (c->ctor)
642 return false;
643 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
644 return flags & __GFP_ZERO;
645 return true;
646 }
647 return flags & __GFP_ZERO;
648}
649
650static inline bool slab_want_init_on_free(struct kmem_cache *c)
651{
51cba1eb
KC
652 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
653 &init_on_free))
6471384a
AP
654 return !(c->ctor ||
655 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
656 return false;
657}
658
64dd6849
FM
659#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
660void debugfs_slab_release(struct kmem_cache *);
661#else
662static inline void debugfs_slab_release(struct kmem_cache *s) { }
663#endif
664
5bb1bb35 665#ifdef CONFIG_PRINTK
8e7f37f2
PM
666#define KS_ADDRS_COUNT 16
667struct kmem_obj_info {
668 void *kp_ptr;
7213230a 669 struct slab *kp_slab;
8e7f37f2
PM
670 void *kp_objp;
671 unsigned long kp_data_offset;
672 struct kmem_cache *kp_slab_cache;
673 void *kp_ret;
674 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 675 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2 676};
2dfe63e6 677void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
5bb1bb35 678#endif
8e7f37f2 679
0b3eb091
MWO
680void __check_heap_object(const void *ptr, unsigned long n,
681 const struct slab *slab, bool to_user);
0b3eb091 682
fb5eda0d
FT
683static inline bool slub_debug_orig_size(struct kmem_cache *s)
684{
685 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
686 (s->flags & SLAB_KMALLOC));
687}
688
946fa0db
FT
689#ifdef CONFIG_SLUB_DEBUG
690void skip_orig_size_check(struct kmem_cache *s, const void *object);
691#endif
692
5240ab40 693#endif /* MM_SLAB_H */