mm/slub: only zero requested size of buffer for kzalloc when debug enabled
[linux-2.6-block.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
d122019b
MWO
8/* Reuses the bits in struct page */
9struct slab {
10 unsigned long __page_flags;
401fb12c
VB
11
12#if defined(CONFIG_SLAB)
13
d122019b
MWO
14 union {
15 struct list_head slab_list;
401fb12c
VB
16 struct rcu_head rcu_head;
17 };
18 struct kmem_cache *slab_cache;
19 void *freelist; /* array of free object indexes */
20 void *s_mem; /* first object */
21 unsigned int active;
22
23#elif defined(CONFIG_SLUB)
24
25 union {
26 struct list_head slab_list;
27 struct rcu_head rcu_head;
9c01e9af 28#ifdef CONFIG_SLUB_CPU_PARTIAL
401fb12c 29 struct {
d122019b 30 struct slab *next;
d122019b 31 int slabs; /* Nr of slabs left */
d122019b 32 };
9c01e9af 33#endif
d122019b 34 };
401fb12c 35 struct kmem_cache *slab_cache;
d122019b
MWO
36 /* Double-word boundary */
37 void *freelist; /* first free object */
38 union {
401fb12c
VB
39 unsigned long counters;
40 struct {
d122019b
MWO
41 unsigned inuse:16;
42 unsigned objects:15;
43 unsigned frozen:1;
44 };
45 };
401fb12c
VB
46 unsigned int __unused;
47
48#elif defined(CONFIG_SLOB)
49
50 struct list_head slab_list;
51 void *__unused_1;
52 void *freelist; /* first free block */
b01af5c0
HY
53 long units;
54 unsigned int __unused_2;
401fb12c
VB
55
56#else
57#error "Unexpected slab allocator configured"
58#endif
d122019b 59
d122019b
MWO
60 atomic_t __page_refcount;
61#ifdef CONFIG_MEMCG
62 unsigned long memcg_data;
63#endif
64};
65
66#define SLAB_MATCH(pg, sl) \
67 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
68SLAB_MATCH(flags, __page_flags);
69SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
401fb12c 70#ifndef CONFIG_SLOB
d122019b 71SLAB_MATCH(rcu_head, rcu_head);
401fb12c 72#endif
d122019b
MWO
73SLAB_MATCH(_refcount, __page_refcount);
74#ifdef CONFIG_MEMCG
75SLAB_MATCH(memcg_data, memcg_data);
76#endif
77#undef SLAB_MATCH
78static_assert(sizeof(struct slab) <= sizeof(struct page));
79
80/**
81 * folio_slab - Converts from folio to slab.
82 * @folio: The folio.
83 *
84 * Currently struct slab is a different representation of a folio where
85 * folio_test_slab() is true.
86 *
87 * Return: The slab which contains this folio.
88 */
89#define folio_slab(folio) (_Generic((folio), \
90 const struct folio *: (const struct slab *)(folio), \
91 struct folio *: (struct slab *)(folio)))
92
93/**
94 * slab_folio - The folio allocated for a slab
95 * @slab: The slab.
96 *
97 * Slabs are allocated as folios that contain the individual objects and are
98 * using some fields in the first struct page of the folio - those fields are
99 * now accessed by struct slab. It is occasionally necessary to convert back to
100 * a folio in order to communicate with the rest of the mm. Please use this
101 * helper function instead of casting yourself, as the implementation may change
102 * in the future.
103 */
104#define slab_folio(s) (_Generic((s), \
105 const struct slab *: (const struct folio *)s, \
106 struct slab *: (struct folio *)s))
107
108/**
109 * page_slab - Converts from first struct page to slab.
110 * @p: The first (either head of compound or single) page of slab.
111 *
112 * A temporary wrapper to convert struct page to struct slab in situations where
113 * we know the page is the compound head, or single order-0 page.
114 *
115 * Long-term ideally everything would work with struct slab directly or go
116 * through folio to struct slab.
117 *
118 * Return: The slab which contains this page
119 */
120#define page_slab(p) (_Generic((p), \
121 const struct page *: (const struct slab *)(p), \
122 struct page *: (struct slab *)(p)))
123
124/**
125 * slab_page - The first struct page allocated for a slab
126 * @slab: The slab.
127 *
128 * A convenience wrapper for converting slab to the first struct page of the
129 * underlying folio, to communicate with code not yet converted to folio or
130 * struct slab.
131 */
132#define slab_page(s) folio_page(slab_folio(s), 0)
133
134/*
135 * If network-based swap is enabled, sl*b must keep track of whether pages
136 * were allocated from pfmemalloc reserves.
137 */
138static inline bool slab_test_pfmemalloc(const struct slab *slab)
139{
140 return folio_test_active((struct folio *)slab_folio(slab));
141}
142
143static inline void slab_set_pfmemalloc(struct slab *slab)
144{
145 folio_set_active(slab_folio(slab));
146}
147
148static inline void slab_clear_pfmemalloc(struct slab *slab)
149{
150 folio_clear_active(slab_folio(slab));
151}
152
153static inline void __slab_clear_pfmemalloc(struct slab *slab)
154{
155 __folio_clear_active(slab_folio(slab));
156}
157
158static inline void *slab_address(const struct slab *slab)
159{
160 return folio_address(slab_folio(slab));
161}
162
163static inline int slab_nid(const struct slab *slab)
164{
165 return folio_nid(slab_folio(slab));
166}
167
168static inline pg_data_t *slab_pgdat(const struct slab *slab)
169{
170 return folio_pgdat(slab_folio(slab));
171}
172
173static inline struct slab *virt_to_slab(const void *addr)
174{
175 struct folio *folio = virt_to_folio(addr);
176
177 if (!folio_test_slab(folio))
178 return NULL;
179
180 return folio_slab(folio);
181}
182
183static inline int slab_order(const struct slab *slab)
184{
185 return folio_order((struct folio *)slab_folio(slab));
186}
187
188static inline size_t slab_size(const struct slab *slab)
189{
190 return PAGE_SIZE << slab_order(slab);
191}
192
07f361b2
JK
193#ifdef CONFIG_SLOB
194/*
195 * Common fields provided in kmem_cache by all slab allocators
196 * This struct is either used directly by the allocator (SLOB)
197 * or the allocator must include definitions for all fields
198 * provided in kmem_cache_common in their definition of kmem_cache.
199 *
200 * Once we can do anonymous structs (C11 standard) we could put a
201 * anonymous struct definition in these allocators so that the
202 * separate allocations in the kmem_cache structure of SLAB and
203 * SLUB is no longer needed.
204 */
205struct kmem_cache {
206 unsigned int object_size;/* The original size of the object */
207 unsigned int size; /* The aligned/padded/added on size */
208 unsigned int align; /* Alignment as calculated */
d50112ed 209 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
210 unsigned int useroffset;/* Usercopy region offset */
211 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
212 const char *name; /* Slab name for sysfs */
213 int refcount; /* Use counter */
214 void (*ctor)(void *); /* Called on object slot creation */
215 struct list_head list; /* List of all slab caches on the system */
216};
217
218#endif /* CONFIG_SLOB */
219
220#ifdef CONFIG_SLAB
221#include <linux/slab_def.h>
222#endif
223
224#ifdef CONFIG_SLUB
225#include <linux/slub_def.h>
226#endif
227
228#include <linux/memcontrol.h>
11c7aec2 229#include <linux/fault-inject.h>
11c7aec2
JDB
230#include <linux/kasan.h>
231#include <linux/kmemleak.h>
7c00fce9 232#include <linux/random.h>
d92a8cfc 233#include <linux/sched/mm.h>
88f2ef73 234#include <linux/list_lru.h>
07f361b2 235
97d06609
CL
236/*
237 * State of the slab allocator.
238 *
239 * This is used to describe the states of the allocator during bootup.
240 * Allocators use this to gradually bootstrap themselves. Most allocators
241 * have the problem that the structures used for managing slab caches are
242 * allocated from slab caches themselves.
243 */
244enum slab_state {
245 DOWN, /* No slab functionality yet */
246 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 247 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
248 UP, /* Slab caches usable but not all extras yet */
249 FULL /* Everything is working */
250};
251
252extern enum slab_state slab_state;
253
18004c5d
CL
254/* The slab cache mutex protects the management structures during changes */
255extern struct mutex slab_mutex;
9b030cb8
CL
256
257/* The list of all slab caches on the system */
18004c5d
CL
258extern struct list_head slab_caches;
259
9b030cb8
CL
260/* The slab cache that manages slab cache information */
261extern struct kmem_cache *kmem_cache;
262
af3b5f87
VB
263/* A table of kmalloc cache names and sizes */
264extern const struct kmalloc_info_struct {
cb5d9fb3 265 const char *name[NR_KMALLOC_TYPES];
55de8b9c 266 unsigned int size;
af3b5f87
VB
267} kmalloc_info[];
268
f97d5f63
CL
269#ifndef CONFIG_SLOB
270/* Kmalloc array related functions */
34cc6990 271void setup_kmalloc_cache_index_table(void);
d50112ed 272void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
273
274/* Find the kmalloc slab corresponding for a certain size */
275struct kmem_cache *kmalloc_slab(size_t, gfp_t);
ed4cd17e
HY
276
277void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
278 int node, size_t orig_size,
279 unsigned long caller);
280void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
f97d5f63
CL
281#endif
282
44405099 283gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 284
9b030cb8 285/* Functions provided by the slab allocators */
d50112ed 286int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 287
55de8b9c
AD
288struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
289 slab_flags_t flags, unsigned int useroffset,
290 unsigned int usersize);
45530c44 291extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
292 unsigned int size, slab_flags_t flags,
293 unsigned int useroffset, unsigned int usersize);
45530c44 294
423c929c 295int slab_unmergeable(struct kmem_cache *s);
f4957d5b 296struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 297 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 298#ifndef CONFIG_SLOB
2633d7a0 299struct kmem_cache *
f4957d5b 300__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 301 slab_flags_t flags, void (*ctor)(void *));
423c929c 302
0293d1fd 303slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 304 slab_flags_t flags, const char *name);
cbb79694 305#else
2633d7a0 306static inline struct kmem_cache *
f4957d5b 307__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 308 slab_flags_t flags, void (*ctor)(void *))
cbb79694 309{ return NULL; }
423c929c 310
0293d1fd 311static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 312 slab_flags_t flags, const char *name)
423c929c
JK
313{
314 return flags;
315}
cbb79694
CL
316#endif
317
318
d8843922 319/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
320#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
321 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 322 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
323
324#if defined(CONFIG_DEBUG_SLAB)
325#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
326#elif defined(CONFIG_SLUB_DEBUG)
327#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 328 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
329#else
330#define SLAB_DEBUG_FLAGS (0)
331#endif
332
333#if defined(CONFIG_SLAB)
334#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 335 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 336 SLAB_ACCOUNT)
d8843922
GC
337#elif defined(CONFIG_SLUB)
338#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
a285909f 339 SLAB_TEMPORARY | SLAB_ACCOUNT | SLAB_NO_USER_FLAGS)
d8843922 340#else
34dbc3aa 341#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
d8843922
GC
342#endif
343
e70954fd 344/* Common flags available with current configuration */
d8843922
GC
345#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
346
e70954fd
TG
347/* Common flags permitted for kmem_cache_create */
348#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
349 SLAB_RED_ZONE | \
350 SLAB_POISON | \
351 SLAB_STORE_USER | \
352 SLAB_TRACE | \
353 SLAB_CONSISTENCY_CHECKS | \
354 SLAB_MEM_SPREAD | \
355 SLAB_NOLEAKTRACE | \
356 SLAB_RECLAIM_ACCOUNT | \
357 SLAB_TEMPORARY | \
a285909f
HY
358 SLAB_ACCOUNT | \
359 SLAB_NO_USER_FLAGS)
e70954fd 360
f9e13c0a 361bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 362int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 363void __kmem_cache_release(struct kmem_cache *);
c9fc5864 364int __kmem_cache_shrink(struct kmem_cache *);
41a21285 365void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 366
b7454ad3
GC
367struct seq_file;
368struct file;
b7454ad3 369
0d7561c6
GC
370struct slabinfo {
371 unsigned long active_objs;
372 unsigned long num_objs;
373 unsigned long active_slabs;
374 unsigned long num_slabs;
375 unsigned long shared_avail;
376 unsigned int limit;
377 unsigned int batchcount;
378 unsigned int shared;
379 unsigned int objects_per_slab;
380 unsigned int cache_order;
381};
382
383void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
384void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
385ssize_t slabinfo_write(struct file *file, const char __user *buffer,
386 size_t count, loff_t *ppos);
ba6c496e 387
1a984c4e 388static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
6cea1d56
RG
389{
390 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 391 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
392}
393
e42f174e
VB
394#ifdef CONFIG_SLUB_DEBUG
395#ifdef CONFIG_SLUB_DEBUG_ON
396DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
397#else
398DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
399#endif
400extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 401long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
402static inline bool __slub_debug_enabled(void)
403{
404 return static_branch_unlikely(&slub_debug_enabled);
405}
e42f174e
VB
406#else
407static inline void print_tracking(struct kmem_cache *s, void *object)
408{
409}
0d4a062a
ME
410static inline bool __slub_debug_enabled(void)
411{
412 return false;
413}
e42f174e
VB
414#endif
415
416/*
417 * Returns true if any of the specified slub_debug flags is enabled for the
418 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
419 * the static key.
420 */
421static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
422{
0d4a062a
ME
423 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
424 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
425 if (__slub_debug_enabled())
e42f174e 426 return s->flags & flags;
e42f174e
VB
427 return false;
428}
429
84c07d11 430#ifdef CONFIG_MEMCG_KMEM
4b5f8d9a
VB
431/*
432 * slab_objcgs - get the object cgroups vector associated with a slab
433 * @slab: a pointer to the slab struct
434 *
435 * Returns a pointer to the object cgroups vector associated with the slab,
436 * or NULL if no such vector has been associated yet.
437 */
438static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
439{
440 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
441
442 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
443 slab_page(slab));
444 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
445
446 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
447}
448
449int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
450 gfp_t gfp, bool new_slab);
fdbcb2a6
WL
451void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
452 enum node_stat_item idx, int nr);
286e04b8 453
4b5f8d9a 454static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8 455{
4b5f8d9a
VB
456 kfree(slab_objcgs(slab));
457 slab->memcg_data = 0;
286e04b8
RG
458}
459
f2fe7b09
RG
460static inline size_t obj_full_size(struct kmem_cache *s)
461{
462 /*
463 * For each accounted object there is an extra space which is used
464 * to store obj_cgroup membership. Charge it too.
465 */
466 return s->size + sizeof(struct obj_cgroup *);
467}
468
becaba65
RG
469/*
470 * Returns false if the allocation should fail.
471 */
472static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 473 struct list_lru *lru,
becaba65
RG
474 struct obj_cgroup **objcgp,
475 size_t objects, gfp_t flags)
f2fe7b09 476{
9855609b
RG
477 struct obj_cgroup *objcg;
478
becaba65
RG
479 if (!memcg_kmem_enabled())
480 return true;
481
482 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
483 return true;
484
9855609b
RG
485 objcg = get_obj_cgroup_from_current();
486 if (!objcg)
becaba65 487 return true;
9855609b 488
88f2ef73
MS
489 if (lru) {
490 int ret;
491 struct mem_cgroup *memcg;
492
493 memcg = get_mem_cgroup_from_objcg(objcg);
494 ret = memcg_list_lru_alloc(memcg, lru, flags);
495 css_put(&memcg->css);
496
497 if (ret)
498 goto out;
f2fe7b09
RG
499 }
500
88f2ef73
MS
501 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
502 goto out;
503
becaba65
RG
504 *objcgp = objcg;
505 return true;
88f2ef73
MS
506out:
507 obj_cgroup_put(objcg);
508 return false;
f2fe7b09
RG
509}
510
964d4bd3
RG
511static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
512 struct obj_cgroup *objcg,
10befea9
RG
513 gfp_t flags, size_t size,
514 void **p)
964d4bd3 515{
4b5f8d9a 516 struct slab *slab;
964d4bd3
RG
517 unsigned long off;
518 size_t i;
519
becaba65 520 if (!memcg_kmem_enabled() || !objcg)
10befea9
RG
521 return;
522
964d4bd3
RG
523 for (i = 0; i < size; i++) {
524 if (likely(p[i])) {
4b5f8d9a 525 slab = virt_to_slab(p[i]);
10befea9 526
4b5f8d9a
VB
527 if (!slab_objcgs(slab) &&
528 memcg_alloc_slab_cgroups(slab, s, flags,
2e9bd483 529 false)) {
10befea9
RG
530 obj_cgroup_uncharge(objcg, obj_full_size(s));
531 continue;
532 }
533
4b5f8d9a 534 off = obj_to_index(s, slab, p[i]);
964d4bd3 535 obj_cgroup_get(objcg);
4b5f8d9a
VB
536 slab_objcgs(slab)[off] = objcg;
537 mod_objcg_state(objcg, slab_pgdat(slab),
f2fe7b09
RG
538 cache_vmstat_idx(s), obj_full_size(s));
539 } else {
540 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
541 }
542 }
543 obj_cgroup_put(objcg);
964d4bd3
RG
544}
545
b77d5b1b 546static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
d1b2cf6c 547 void **p, int objects)
964d4bd3 548{
270c6a71 549 struct obj_cgroup **objcgs;
d1b2cf6c 550 int i;
964d4bd3 551
10befea9
RG
552 if (!memcg_kmem_enabled())
553 return;
554
b77d5b1b
MS
555 objcgs = slab_objcgs(slab);
556 if (!objcgs)
557 return;
f2fe7b09 558
b77d5b1b
MS
559 for (i = 0; i < objects; i++) {
560 struct obj_cgroup *objcg;
561 unsigned int off;
10befea9 562
4b5f8d9a 563 off = obj_to_index(s, slab, p[i]);
270c6a71 564 objcg = objcgs[off];
d1b2cf6c
BR
565 if (!objcg)
566 continue;
f2fe7b09 567
270c6a71 568 objcgs[off] = NULL;
d1b2cf6c 569 obj_cgroup_uncharge(objcg, obj_full_size(s));
4b5f8d9a 570 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
d1b2cf6c
BR
571 -obj_full_size(s));
572 obj_cgroup_put(objcg);
573 }
964d4bd3
RG
574}
575
84c07d11 576#else /* CONFIG_MEMCG_KMEM */
4b5f8d9a
VB
577static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
578{
579 return NULL;
580}
581
9855609b 582static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
583{
584 return NULL;
585}
586
4b5f8d9a 587static inline int memcg_alloc_slab_cgroups(struct slab *slab,
2e9bd483 588 struct kmem_cache *s, gfp_t gfp,
4b5f8d9a 589 bool new_slab)
286e04b8
RG
590{
591 return 0;
592}
593
4b5f8d9a 594static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8
RG
595{
596}
597
becaba65 598static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 599 struct list_lru *lru,
becaba65
RG
600 struct obj_cgroup **objcgp,
601 size_t objects, gfp_t flags)
f2fe7b09 602{
becaba65 603 return true;
f2fe7b09
RG
604}
605
964d4bd3
RG
606static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
607 struct obj_cgroup *objcg,
10befea9
RG
608 gfp_t flags, size_t size,
609 void **p)
964d4bd3
RG
610{
611}
612
b77d5b1b 613static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
d1b2cf6c 614 void **p, int objects)
964d4bd3
RG
615{
616}
84c07d11 617#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 618
401fb12c 619#ifndef CONFIG_SLOB
a64b5378
KC
620static inline struct kmem_cache *virt_to_cache(const void *obj)
621{
82c1775d 622 struct slab *slab;
a64b5378 623
82c1775d
MWO
624 slab = virt_to_slab(obj);
625 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
a64b5378
KC
626 __func__))
627 return NULL;
82c1775d 628 return slab->slab_cache;
a64b5378
KC
629}
630
b918653b
MWO
631static __always_inline void account_slab(struct slab *slab, int order,
632 struct kmem_cache *s, gfp_t gfp)
6cea1d56 633{
2e9bd483 634 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
4b5f8d9a 635 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2e9bd483 636
b918653b 637 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 638 PAGE_SIZE << order);
6cea1d56
RG
639}
640
b918653b
MWO
641static __always_inline void unaccount_slab(struct slab *slab, int order,
642 struct kmem_cache *s)
6cea1d56 643{
10befea9 644 if (memcg_kmem_enabled())
4b5f8d9a 645 memcg_free_slab_cgroups(slab);
9855609b 646
b918653b 647 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 648 -(PAGE_SIZE << order));
6cea1d56
RG
649}
650
e42f174e
VB
651static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
652{
653 struct kmem_cache *cachep;
654
655 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
656 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
657 return s;
658
659 cachep = virt_to_cache(x);
10befea9 660 if (WARN(cachep && cachep != s,
e42f174e
VB
661 "%s: Wrong slab cache. %s but object is from %s\n",
662 __func__, s->name, cachep->name))
663 print_tracking(cachep, x);
664 return cachep;
665}
d6a71648
HY
666
667void free_large_kmalloc(struct folio *folio, void *object);
668
401fb12c 669#endif /* CONFIG_SLOB */
e42f174e 670
8dfa9d55
HY
671size_t __ksize(const void *objp);
672
11c7aec2
JDB
673static inline size_t slab_ksize(const struct kmem_cache *s)
674{
675#ifndef CONFIG_SLUB
676 return s->object_size;
677
678#else /* CONFIG_SLUB */
679# ifdef CONFIG_SLUB_DEBUG
680 /*
681 * Debugging requires use of the padding between object
682 * and whatever may come after it.
683 */
684 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
685 return s->object_size;
686# endif
80a9201a
AP
687 if (s->flags & SLAB_KASAN)
688 return s->object_size;
11c7aec2
JDB
689 /*
690 * If we have the need to store the freelist pointer
691 * back there or track user information then we can
692 * only use the space before that information.
693 */
5f0d5a3a 694 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
695 return s->inuse;
696 /*
697 * Else we can use all the padding etc for the allocation
698 */
699 return s->size;
700#endif
701}
702
703static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 704 struct list_lru *lru,
964d4bd3
RG
705 struct obj_cgroup **objcgp,
706 size_t size, gfp_t flags)
11c7aec2
JDB
707{
708 flags &= gfp_allowed_mask;
d92a8cfc 709
95d6c701 710 might_alloc(flags);
11c7aec2 711
fab9963a 712 if (should_failslab(s, flags))
11c7aec2
JDB
713 return NULL;
714
88f2ef73 715 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
becaba65 716 return NULL;
45264778
VD
717
718 return s;
11c7aec2
JDB
719}
720
964d4bd3 721static inline void slab_post_alloc_hook(struct kmem_cache *s,
da844b78 722 struct obj_cgroup *objcg, gfp_t flags,
9ce67395
FT
723 size_t size, void **p, bool init,
724 unsigned int orig_size)
11c7aec2 725{
9ce67395 726 unsigned int zero_size = s->object_size;
11c7aec2
JDB
727 size_t i;
728
729 flags &= gfp_allowed_mask;
da844b78 730
9ce67395
FT
731 /*
732 * For kmalloc object, the allocated memory size(object_size) is likely
733 * larger than the requested size(orig_size). If redzone check is
734 * enabled for the extra space, don't zero it, as it will be redzoned
735 * soon. The redzone operation for this extra space could be seen as a
736 * replacement of current poisoning under certain debug option, and
737 * won't break other sanity checks.
738 */
739 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
740 (s->flags & SLAB_KMALLOC))
741 zero_size = orig_size;
742
da844b78
AK
743 /*
744 * As memory initialization might be integrated into KASAN,
745 * kasan_slab_alloc and initialization memset must be
746 * kept together to avoid discrepancies in behavior.
747 *
748 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
749 */
11c7aec2 750 for (i = 0; i < size; i++) {
da844b78
AK
751 p[i] = kasan_slab_alloc(s, p[i], flags, init);
752 if (p[i] && init && !kasan_has_integrated_init())
9ce67395 753 memset(p[i], 0, zero_size);
53128245 754 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 755 s->flags, flags);
68ef169a 756 kmsan_slab_alloc(s, p[i], flags);
11c7aec2 757 }
45264778 758
becaba65 759 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
760}
761
44c5356f 762#ifndef CONFIG_SLOB
ca34956b
CL
763/*
764 * The slab lists for all objects.
765 */
766struct kmem_cache_node {
767 spinlock_t list_lock;
768
769#ifdef CONFIG_SLAB
770 struct list_head slabs_partial; /* partial list first, better asm code */
771 struct list_head slabs_full;
772 struct list_head slabs_free;
bf00bd34
DR
773 unsigned long total_slabs; /* length of all slab lists */
774 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
775 unsigned long free_objects;
776 unsigned int free_limit;
777 unsigned int colour_next; /* Per-node cache coloring */
778 struct array_cache *shared; /* shared per node */
c8522a3a 779 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
780 unsigned long next_reap; /* updated without locking */
781 int free_touched; /* updated without locking */
782#endif
783
784#ifdef CONFIG_SLUB
785 unsigned long nr_partial;
786 struct list_head partial;
787#ifdef CONFIG_SLUB_DEBUG
788 atomic_long_t nr_slabs;
789 atomic_long_t total_objects;
790 struct list_head full;
791#endif
792#endif
793
794};
e25839f6 795
44c5356f
CL
796static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
797{
798 return s->node[node];
799}
800
801/*
802 * Iterator over all nodes. The body will be executed for each node that has
803 * a kmem_cache_node structure allocated (which is true for all online nodes)
804 */
805#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
806 for (__node = 0; __node < nr_node_ids; __node++) \
807 if ((__n = get_node(__s, __node)))
44c5356f
CL
808
809#endif
810
852d8be0
YS
811#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
812void dump_unreclaimable_slab(void);
813#else
814static inline void dump_unreclaimable_slab(void)
815{
816}
817#endif
818
55834c59
AP
819void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
820
7c00fce9
TG
821#ifdef CONFIG_SLAB_FREELIST_RANDOM
822int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
823 gfp_t gfp);
824void cache_random_seq_destroy(struct kmem_cache *cachep);
825#else
826static inline int cache_random_seq_create(struct kmem_cache *cachep,
827 unsigned int count, gfp_t gfp)
828{
829 return 0;
830}
831static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
832#endif /* CONFIG_SLAB_FREELIST_RANDOM */
833
6471384a
AP
834static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
835{
51cba1eb
KC
836 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
837 &init_on_alloc)) {
6471384a
AP
838 if (c->ctor)
839 return false;
840 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
841 return flags & __GFP_ZERO;
842 return true;
843 }
844 return flags & __GFP_ZERO;
845}
846
847static inline bool slab_want_init_on_free(struct kmem_cache *c)
848{
51cba1eb
KC
849 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
850 &init_on_free))
6471384a
AP
851 return !(c->ctor ||
852 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
853 return false;
854}
855
64dd6849
FM
856#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
857void debugfs_slab_release(struct kmem_cache *);
858#else
859static inline void debugfs_slab_release(struct kmem_cache *s) { }
860#endif
861
5bb1bb35 862#ifdef CONFIG_PRINTK
8e7f37f2
PM
863#define KS_ADDRS_COUNT 16
864struct kmem_obj_info {
865 void *kp_ptr;
7213230a 866 struct slab *kp_slab;
8e7f37f2
PM
867 void *kp_objp;
868 unsigned long kp_data_offset;
869 struct kmem_cache *kp_slab_cache;
870 void *kp_ret;
871 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 872 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2 873};
2dfe63e6 874void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
5bb1bb35 875#endif
8e7f37f2 876
0b3eb091
MWO
877#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
878void __check_heap_object(const void *ptr, unsigned long n,
879 const struct slab *slab, bool to_user);
880#else
881static inline
882void __check_heap_object(const void *ptr, unsigned long n,
883 const struct slab *slab, bool to_user)
884{
885}
886#endif
887
5240ab40 888#endif /* MM_SLAB_H */