mm: rmap: move the cache flushing to the correct place for hugetlb PMD sharing
[linux-block.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
d122019b
MWO
8/* Reuses the bits in struct page */
9struct slab {
10 unsigned long __page_flags;
401fb12c
VB
11
12#if defined(CONFIG_SLAB)
13
d122019b
MWO
14 union {
15 struct list_head slab_list;
401fb12c
VB
16 struct rcu_head rcu_head;
17 };
18 struct kmem_cache *slab_cache;
19 void *freelist; /* array of free object indexes */
20 void *s_mem; /* first object */
21 unsigned int active;
22
23#elif defined(CONFIG_SLUB)
24
25 union {
26 struct list_head slab_list;
27 struct rcu_head rcu_head;
9c01e9af 28#ifdef CONFIG_SLUB_CPU_PARTIAL
401fb12c 29 struct {
d122019b 30 struct slab *next;
d122019b 31 int slabs; /* Nr of slabs left */
d122019b 32 };
9c01e9af 33#endif
d122019b 34 };
401fb12c 35 struct kmem_cache *slab_cache;
d122019b
MWO
36 /* Double-word boundary */
37 void *freelist; /* first free object */
38 union {
401fb12c
VB
39 unsigned long counters;
40 struct {
d122019b
MWO
41 unsigned inuse:16;
42 unsigned objects:15;
43 unsigned frozen:1;
44 };
45 };
401fb12c
VB
46 unsigned int __unused;
47
48#elif defined(CONFIG_SLOB)
49
50 struct list_head slab_list;
51 void *__unused_1;
52 void *freelist; /* first free block */
b01af5c0
HY
53 long units;
54 unsigned int __unused_2;
401fb12c
VB
55
56#else
57#error "Unexpected slab allocator configured"
58#endif
d122019b 59
d122019b
MWO
60 atomic_t __page_refcount;
61#ifdef CONFIG_MEMCG
62 unsigned long memcg_data;
63#endif
64};
65
66#define SLAB_MATCH(pg, sl) \
67 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
68SLAB_MATCH(flags, __page_flags);
69SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
401fb12c 70#ifndef CONFIG_SLOB
d122019b 71SLAB_MATCH(rcu_head, rcu_head);
401fb12c 72#endif
d122019b
MWO
73SLAB_MATCH(_refcount, __page_refcount);
74#ifdef CONFIG_MEMCG
75SLAB_MATCH(memcg_data, memcg_data);
76#endif
77#undef SLAB_MATCH
78static_assert(sizeof(struct slab) <= sizeof(struct page));
79
80/**
81 * folio_slab - Converts from folio to slab.
82 * @folio: The folio.
83 *
84 * Currently struct slab is a different representation of a folio where
85 * folio_test_slab() is true.
86 *
87 * Return: The slab which contains this folio.
88 */
89#define folio_slab(folio) (_Generic((folio), \
90 const struct folio *: (const struct slab *)(folio), \
91 struct folio *: (struct slab *)(folio)))
92
93/**
94 * slab_folio - The folio allocated for a slab
95 * @slab: The slab.
96 *
97 * Slabs are allocated as folios that contain the individual objects and are
98 * using some fields in the first struct page of the folio - those fields are
99 * now accessed by struct slab. It is occasionally necessary to convert back to
100 * a folio in order to communicate with the rest of the mm. Please use this
101 * helper function instead of casting yourself, as the implementation may change
102 * in the future.
103 */
104#define slab_folio(s) (_Generic((s), \
105 const struct slab *: (const struct folio *)s, \
106 struct slab *: (struct folio *)s))
107
108/**
109 * page_slab - Converts from first struct page to slab.
110 * @p: The first (either head of compound or single) page of slab.
111 *
112 * A temporary wrapper to convert struct page to struct slab in situations where
113 * we know the page is the compound head, or single order-0 page.
114 *
115 * Long-term ideally everything would work with struct slab directly or go
116 * through folio to struct slab.
117 *
118 * Return: The slab which contains this page
119 */
120#define page_slab(p) (_Generic((p), \
121 const struct page *: (const struct slab *)(p), \
122 struct page *: (struct slab *)(p)))
123
124/**
125 * slab_page - The first struct page allocated for a slab
126 * @slab: The slab.
127 *
128 * A convenience wrapper for converting slab to the first struct page of the
129 * underlying folio, to communicate with code not yet converted to folio or
130 * struct slab.
131 */
132#define slab_page(s) folio_page(slab_folio(s), 0)
133
134/*
135 * If network-based swap is enabled, sl*b must keep track of whether pages
136 * were allocated from pfmemalloc reserves.
137 */
138static inline bool slab_test_pfmemalloc(const struct slab *slab)
139{
140 return folio_test_active((struct folio *)slab_folio(slab));
141}
142
143static inline void slab_set_pfmemalloc(struct slab *slab)
144{
145 folio_set_active(slab_folio(slab));
146}
147
148static inline void slab_clear_pfmemalloc(struct slab *slab)
149{
150 folio_clear_active(slab_folio(slab));
151}
152
153static inline void __slab_clear_pfmemalloc(struct slab *slab)
154{
155 __folio_clear_active(slab_folio(slab));
156}
157
158static inline void *slab_address(const struct slab *slab)
159{
160 return folio_address(slab_folio(slab));
161}
162
163static inline int slab_nid(const struct slab *slab)
164{
165 return folio_nid(slab_folio(slab));
166}
167
168static inline pg_data_t *slab_pgdat(const struct slab *slab)
169{
170 return folio_pgdat(slab_folio(slab));
171}
172
173static inline struct slab *virt_to_slab(const void *addr)
174{
175 struct folio *folio = virt_to_folio(addr);
176
177 if (!folio_test_slab(folio))
178 return NULL;
179
180 return folio_slab(folio);
181}
182
183static inline int slab_order(const struct slab *slab)
184{
185 return folio_order((struct folio *)slab_folio(slab));
186}
187
188static inline size_t slab_size(const struct slab *slab)
189{
190 return PAGE_SIZE << slab_order(slab);
191}
192
07f361b2
JK
193#ifdef CONFIG_SLOB
194/*
195 * Common fields provided in kmem_cache by all slab allocators
196 * This struct is either used directly by the allocator (SLOB)
197 * or the allocator must include definitions for all fields
198 * provided in kmem_cache_common in their definition of kmem_cache.
199 *
200 * Once we can do anonymous structs (C11 standard) we could put a
201 * anonymous struct definition in these allocators so that the
202 * separate allocations in the kmem_cache structure of SLAB and
203 * SLUB is no longer needed.
204 */
205struct kmem_cache {
206 unsigned int object_size;/* The original size of the object */
207 unsigned int size; /* The aligned/padded/added on size */
208 unsigned int align; /* Alignment as calculated */
d50112ed 209 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
210 unsigned int useroffset;/* Usercopy region offset */
211 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
212 const char *name; /* Slab name for sysfs */
213 int refcount; /* Use counter */
214 void (*ctor)(void *); /* Called on object slot creation */
215 struct list_head list; /* List of all slab caches on the system */
216};
217
218#endif /* CONFIG_SLOB */
219
220#ifdef CONFIG_SLAB
221#include <linux/slab_def.h>
222#endif
223
224#ifdef CONFIG_SLUB
225#include <linux/slub_def.h>
226#endif
227
228#include <linux/memcontrol.h>
11c7aec2 229#include <linux/fault-inject.h>
11c7aec2
JDB
230#include <linux/kasan.h>
231#include <linux/kmemleak.h>
7c00fce9 232#include <linux/random.h>
d92a8cfc 233#include <linux/sched/mm.h>
88f2ef73 234#include <linux/list_lru.h>
07f361b2 235
97d06609
CL
236/*
237 * State of the slab allocator.
238 *
239 * This is used to describe the states of the allocator during bootup.
240 * Allocators use this to gradually bootstrap themselves. Most allocators
241 * have the problem that the structures used for managing slab caches are
242 * allocated from slab caches themselves.
243 */
244enum slab_state {
245 DOWN, /* No slab functionality yet */
246 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 247 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
248 UP, /* Slab caches usable but not all extras yet */
249 FULL /* Everything is working */
250};
251
252extern enum slab_state slab_state;
253
18004c5d
CL
254/* The slab cache mutex protects the management structures during changes */
255extern struct mutex slab_mutex;
9b030cb8
CL
256
257/* The list of all slab caches on the system */
18004c5d
CL
258extern struct list_head slab_caches;
259
9b030cb8
CL
260/* The slab cache that manages slab cache information */
261extern struct kmem_cache *kmem_cache;
262
af3b5f87
VB
263/* A table of kmalloc cache names and sizes */
264extern const struct kmalloc_info_struct {
cb5d9fb3 265 const char *name[NR_KMALLOC_TYPES];
55de8b9c 266 unsigned int size;
af3b5f87
VB
267} kmalloc_info[];
268
f97d5f63
CL
269#ifndef CONFIG_SLOB
270/* Kmalloc array related functions */
34cc6990 271void setup_kmalloc_cache_index_table(void);
d50112ed 272void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
273
274/* Find the kmalloc slab corresponding for a certain size */
275struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
276#endif
277
44405099 278gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 279
9b030cb8 280/* Functions provided by the slab allocators */
d50112ed 281int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 282
55de8b9c
AD
283struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
284 slab_flags_t flags, unsigned int useroffset,
285 unsigned int usersize);
45530c44 286extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
287 unsigned int size, slab_flags_t flags,
288 unsigned int useroffset, unsigned int usersize);
45530c44 289
423c929c 290int slab_unmergeable(struct kmem_cache *s);
f4957d5b 291struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 292 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 293#ifndef CONFIG_SLOB
2633d7a0 294struct kmem_cache *
f4957d5b 295__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 296 slab_flags_t flags, void (*ctor)(void *));
423c929c 297
0293d1fd 298slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 299 slab_flags_t flags, const char *name);
cbb79694 300#else
2633d7a0 301static inline struct kmem_cache *
f4957d5b 302__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 303 slab_flags_t flags, void (*ctor)(void *))
cbb79694 304{ return NULL; }
423c929c 305
0293d1fd 306static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 307 slab_flags_t flags, const char *name)
423c929c
JK
308{
309 return flags;
310}
cbb79694
CL
311#endif
312
313
d8843922 314/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
315#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
316 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 317 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
318
319#if defined(CONFIG_DEBUG_SLAB)
320#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
321#elif defined(CONFIG_SLUB_DEBUG)
322#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 323 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
324#else
325#define SLAB_DEBUG_FLAGS (0)
326#endif
327
328#if defined(CONFIG_SLAB)
329#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 330 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 331 SLAB_ACCOUNT)
d8843922
GC
332#elif defined(CONFIG_SLUB)
333#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
75f296d9 334 SLAB_TEMPORARY | SLAB_ACCOUNT)
d8843922 335#else
34dbc3aa 336#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
d8843922
GC
337#endif
338
e70954fd 339/* Common flags available with current configuration */
d8843922
GC
340#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
341
e70954fd
TG
342/* Common flags permitted for kmem_cache_create */
343#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
344 SLAB_RED_ZONE | \
345 SLAB_POISON | \
346 SLAB_STORE_USER | \
347 SLAB_TRACE | \
348 SLAB_CONSISTENCY_CHECKS | \
349 SLAB_MEM_SPREAD | \
350 SLAB_NOLEAKTRACE | \
351 SLAB_RECLAIM_ACCOUNT | \
352 SLAB_TEMPORARY | \
e70954fd
TG
353 SLAB_ACCOUNT)
354
f9e13c0a 355bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 356int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 357void __kmem_cache_release(struct kmem_cache *);
c9fc5864 358int __kmem_cache_shrink(struct kmem_cache *);
41a21285 359void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 360
b7454ad3
GC
361struct seq_file;
362struct file;
b7454ad3 363
0d7561c6
GC
364struct slabinfo {
365 unsigned long active_objs;
366 unsigned long num_objs;
367 unsigned long active_slabs;
368 unsigned long num_slabs;
369 unsigned long shared_avail;
370 unsigned int limit;
371 unsigned int batchcount;
372 unsigned int shared;
373 unsigned int objects_per_slab;
374 unsigned int cache_order;
375};
376
377void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
378void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
379ssize_t slabinfo_write(struct file *file, const char __user *buffer,
380 size_t count, loff_t *ppos);
ba6c496e 381
484748f0
CL
382/*
383 * Generic implementation of bulk operations
384 * These are useful for situations in which the allocator cannot
9f706d68 385 * perform optimizations. In that case segments of the object listed
484748f0
CL
386 * may be allocated or freed using these operations.
387 */
388void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 389int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 390
1a984c4e 391static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
6cea1d56
RG
392{
393 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 394 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
395}
396
e42f174e
VB
397#ifdef CONFIG_SLUB_DEBUG
398#ifdef CONFIG_SLUB_DEBUG_ON
399DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
400#else
401DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
402#endif
403extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 404long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
405static inline bool __slub_debug_enabled(void)
406{
407 return static_branch_unlikely(&slub_debug_enabled);
408}
e42f174e
VB
409#else
410static inline void print_tracking(struct kmem_cache *s, void *object)
411{
412}
0d4a062a
ME
413static inline bool __slub_debug_enabled(void)
414{
415 return false;
416}
e42f174e
VB
417#endif
418
419/*
420 * Returns true if any of the specified slub_debug flags is enabled for the
421 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
422 * the static key.
423 */
424static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
425{
0d4a062a
ME
426 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
427 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
428 if (__slub_debug_enabled())
e42f174e 429 return s->flags & flags;
e42f174e
VB
430 return false;
431}
432
84c07d11 433#ifdef CONFIG_MEMCG_KMEM
4b5f8d9a
VB
434/*
435 * slab_objcgs - get the object cgroups vector associated with a slab
436 * @slab: a pointer to the slab struct
437 *
438 * Returns a pointer to the object cgroups vector associated with the slab,
439 * or NULL if no such vector has been associated yet.
440 */
441static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
442{
443 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
444
445 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
446 slab_page(slab));
447 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
448
449 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
450}
451
452int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
453 gfp_t gfp, bool new_slab);
fdbcb2a6
WL
454void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
455 enum node_stat_item idx, int nr);
286e04b8 456
4b5f8d9a 457static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8 458{
4b5f8d9a
VB
459 kfree(slab_objcgs(slab));
460 slab->memcg_data = 0;
286e04b8
RG
461}
462
f2fe7b09
RG
463static inline size_t obj_full_size(struct kmem_cache *s)
464{
465 /*
466 * For each accounted object there is an extra space which is used
467 * to store obj_cgroup membership. Charge it too.
468 */
469 return s->size + sizeof(struct obj_cgroup *);
470}
471
becaba65
RG
472/*
473 * Returns false if the allocation should fail.
474 */
475static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 476 struct list_lru *lru,
becaba65
RG
477 struct obj_cgroup **objcgp,
478 size_t objects, gfp_t flags)
f2fe7b09 479{
9855609b
RG
480 struct obj_cgroup *objcg;
481
becaba65
RG
482 if (!memcg_kmem_enabled())
483 return true;
484
485 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
486 return true;
487
9855609b
RG
488 objcg = get_obj_cgroup_from_current();
489 if (!objcg)
becaba65 490 return true;
9855609b 491
88f2ef73
MS
492 if (lru) {
493 int ret;
494 struct mem_cgroup *memcg;
495
496 memcg = get_mem_cgroup_from_objcg(objcg);
497 ret = memcg_list_lru_alloc(memcg, lru, flags);
498 css_put(&memcg->css);
499
500 if (ret)
501 goto out;
f2fe7b09
RG
502 }
503
88f2ef73
MS
504 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
505 goto out;
506
becaba65
RG
507 *objcgp = objcg;
508 return true;
88f2ef73
MS
509out:
510 obj_cgroup_put(objcg);
511 return false;
f2fe7b09
RG
512}
513
964d4bd3
RG
514static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
515 struct obj_cgroup *objcg,
10befea9
RG
516 gfp_t flags, size_t size,
517 void **p)
964d4bd3 518{
4b5f8d9a 519 struct slab *slab;
964d4bd3
RG
520 unsigned long off;
521 size_t i;
522
becaba65 523 if (!memcg_kmem_enabled() || !objcg)
10befea9
RG
524 return;
525
964d4bd3
RG
526 for (i = 0; i < size; i++) {
527 if (likely(p[i])) {
4b5f8d9a 528 slab = virt_to_slab(p[i]);
10befea9 529
4b5f8d9a
VB
530 if (!slab_objcgs(slab) &&
531 memcg_alloc_slab_cgroups(slab, s, flags,
2e9bd483 532 false)) {
10befea9
RG
533 obj_cgroup_uncharge(objcg, obj_full_size(s));
534 continue;
535 }
536
4b5f8d9a 537 off = obj_to_index(s, slab, p[i]);
964d4bd3 538 obj_cgroup_get(objcg);
4b5f8d9a
VB
539 slab_objcgs(slab)[off] = objcg;
540 mod_objcg_state(objcg, slab_pgdat(slab),
f2fe7b09
RG
541 cache_vmstat_idx(s), obj_full_size(s));
542 } else {
543 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
544 }
545 }
546 obj_cgroup_put(objcg);
964d4bd3
RG
547}
548
d1b2cf6c
BR
549static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
550 void **p, int objects)
964d4bd3 551{
d1b2cf6c 552 struct kmem_cache *s;
270c6a71 553 struct obj_cgroup **objcgs;
964d4bd3 554 struct obj_cgroup *objcg;
4b5f8d9a 555 struct slab *slab;
964d4bd3 556 unsigned int off;
d1b2cf6c 557 int i;
964d4bd3 558
10befea9
RG
559 if (!memcg_kmem_enabled())
560 return;
561
d1b2cf6c
BR
562 for (i = 0; i < objects; i++) {
563 if (unlikely(!p[i]))
564 continue;
964d4bd3 565
4b5f8d9a
VB
566 slab = virt_to_slab(p[i]);
567 /* we could be given a kmalloc_large() object, skip those */
568 if (!slab)
569 continue;
570
571 objcgs = slab_objcgs(slab);
270c6a71 572 if (!objcgs)
d1b2cf6c 573 continue;
f2fe7b09 574
d1b2cf6c 575 if (!s_orig)
4b5f8d9a 576 s = slab->slab_cache;
d1b2cf6c
BR
577 else
578 s = s_orig;
10befea9 579
4b5f8d9a 580 off = obj_to_index(s, slab, p[i]);
270c6a71 581 objcg = objcgs[off];
d1b2cf6c
BR
582 if (!objcg)
583 continue;
f2fe7b09 584
270c6a71 585 objcgs[off] = NULL;
d1b2cf6c 586 obj_cgroup_uncharge(objcg, obj_full_size(s));
4b5f8d9a 587 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
d1b2cf6c
BR
588 -obj_full_size(s));
589 obj_cgroup_put(objcg);
590 }
964d4bd3
RG
591}
592
84c07d11 593#else /* CONFIG_MEMCG_KMEM */
4b5f8d9a
VB
594static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
595{
596 return NULL;
597}
598
9855609b 599static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
600{
601 return NULL;
602}
603
4b5f8d9a 604static inline int memcg_alloc_slab_cgroups(struct slab *slab,
2e9bd483 605 struct kmem_cache *s, gfp_t gfp,
4b5f8d9a 606 bool new_slab)
286e04b8
RG
607{
608 return 0;
609}
610
4b5f8d9a 611static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8
RG
612{
613}
614
becaba65 615static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 616 struct list_lru *lru,
becaba65
RG
617 struct obj_cgroup **objcgp,
618 size_t objects, gfp_t flags)
f2fe7b09 619{
becaba65 620 return true;
f2fe7b09
RG
621}
622
964d4bd3
RG
623static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
624 struct obj_cgroup *objcg,
10befea9
RG
625 gfp_t flags, size_t size,
626 void **p)
964d4bd3
RG
627{
628}
629
d1b2cf6c
BR
630static inline void memcg_slab_free_hook(struct kmem_cache *s,
631 void **p, int objects)
964d4bd3
RG
632{
633}
84c07d11 634#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 635
401fb12c 636#ifndef CONFIG_SLOB
a64b5378
KC
637static inline struct kmem_cache *virt_to_cache(const void *obj)
638{
82c1775d 639 struct slab *slab;
a64b5378 640
82c1775d
MWO
641 slab = virt_to_slab(obj);
642 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
a64b5378
KC
643 __func__))
644 return NULL;
82c1775d 645 return slab->slab_cache;
a64b5378
KC
646}
647
b918653b
MWO
648static __always_inline void account_slab(struct slab *slab, int order,
649 struct kmem_cache *s, gfp_t gfp)
6cea1d56 650{
2e9bd483 651 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
4b5f8d9a 652 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2e9bd483 653
b918653b 654 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 655 PAGE_SIZE << order);
6cea1d56
RG
656}
657
b918653b
MWO
658static __always_inline void unaccount_slab(struct slab *slab, int order,
659 struct kmem_cache *s)
6cea1d56 660{
10befea9 661 if (memcg_kmem_enabled())
4b5f8d9a 662 memcg_free_slab_cgroups(slab);
9855609b 663
b918653b 664 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 665 -(PAGE_SIZE << order));
6cea1d56
RG
666}
667
e42f174e
VB
668static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
669{
670 struct kmem_cache *cachep;
671
672 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
673 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
674 return s;
675
676 cachep = virt_to_cache(x);
10befea9 677 if (WARN(cachep && cachep != s,
e42f174e
VB
678 "%s: Wrong slab cache. %s but object is from %s\n",
679 __func__, s->name, cachep->name))
680 print_tracking(cachep, x);
681 return cachep;
682}
401fb12c 683#endif /* CONFIG_SLOB */
e42f174e 684
11c7aec2
JDB
685static inline size_t slab_ksize(const struct kmem_cache *s)
686{
687#ifndef CONFIG_SLUB
688 return s->object_size;
689
690#else /* CONFIG_SLUB */
691# ifdef CONFIG_SLUB_DEBUG
692 /*
693 * Debugging requires use of the padding between object
694 * and whatever may come after it.
695 */
696 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
697 return s->object_size;
698# endif
80a9201a
AP
699 if (s->flags & SLAB_KASAN)
700 return s->object_size;
11c7aec2
JDB
701 /*
702 * If we have the need to store the freelist pointer
703 * back there or track user information then we can
704 * only use the space before that information.
705 */
5f0d5a3a 706 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
707 return s->inuse;
708 /*
709 * Else we can use all the padding etc for the allocation
710 */
711 return s->size;
712#endif
713}
714
715static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 716 struct list_lru *lru,
964d4bd3
RG
717 struct obj_cgroup **objcgp,
718 size_t size, gfp_t flags)
11c7aec2
JDB
719{
720 flags &= gfp_allowed_mask;
d92a8cfc 721
95d6c701 722 might_alloc(flags);
11c7aec2 723
fab9963a 724 if (should_failslab(s, flags))
11c7aec2
JDB
725 return NULL;
726
88f2ef73 727 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
becaba65 728 return NULL;
45264778
VD
729
730 return s;
11c7aec2
JDB
731}
732
964d4bd3 733static inline void slab_post_alloc_hook(struct kmem_cache *s,
da844b78
AK
734 struct obj_cgroup *objcg, gfp_t flags,
735 size_t size, void **p, bool init)
11c7aec2
JDB
736{
737 size_t i;
738
739 flags &= gfp_allowed_mask;
da844b78
AK
740
741 /*
742 * As memory initialization might be integrated into KASAN,
743 * kasan_slab_alloc and initialization memset must be
744 * kept together to avoid discrepancies in behavior.
745 *
746 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
747 */
11c7aec2 748 for (i = 0; i < size; i++) {
da844b78
AK
749 p[i] = kasan_slab_alloc(s, p[i], flags, init);
750 if (p[i] && init && !kasan_has_integrated_init())
751 memset(p[i], 0, s->object_size);
53128245 752 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 753 s->flags, flags);
11c7aec2 754 }
45264778 755
becaba65 756 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
757}
758
44c5356f 759#ifndef CONFIG_SLOB
ca34956b
CL
760/*
761 * The slab lists for all objects.
762 */
763struct kmem_cache_node {
764 spinlock_t list_lock;
765
766#ifdef CONFIG_SLAB
767 struct list_head slabs_partial; /* partial list first, better asm code */
768 struct list_head slabs_full;
769 struct list_head slabs_free;
bf00bd34
DR
770 unsigned long total_slabs; /* length of all slab lists */
771 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
772 unsigned long free_objects;
773 unsigned int free_limit;
774 unsigned int colour_next; /* Per-node cache coloring */
775 struct array_cache *shared; /* shared per node */
c8522a3a 776 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
777 unsigned long next_reap; /* updated without locking */
778 int free_touched; /* updated without locking */
779#endif
780
781#ifdef CONFIG_SLUB
782 unsigned long nr_partial;
783 struct list_head partial;
784#ifdef CONFIG_SLUB_DEBUG
785 atomic_long_t nr_slabs;
786 atomic_long_t total_objects;
787 struct list_head full;
788#endif
789#endif
790
791};
e25839f6 792
44c5356f
CL
793static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
794{
795 return s->node[node];
796}
797
798/*
799 * Iterator over all nodes. The body will be executed for each node that has
800 * a kmem_cache_node structure allocated (which is true for all online nodes)
801 */
802#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
803 for (__node = 0; __node < nr_node_ids; __node++) \
804 if ((__n = get_node(__s, __node)))
44c5356f
CL
805
806#endif
807
852d8be0
YS
808#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
809void dump_unreclaimable_slab(void);
810#else
811static inline void dump_unreclaimable_slab(void)
812{
813}
814#endif
815
55834c59
AP
816void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
817
7c00fce9
TG
818#ifdef CONFIG_SLAB_FREELIST_RANDOM
819int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
820 gfp_t gfp);
821void cache_random_seq_destroy(struct kmem_cache *cachep);
822#else
823static inline int cache_random_seq_create(struct kmem_cache *cachep,
824 unsigned int count, gfp_t gfp)
825{
826 return 0;
827}
828static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
829#endif /* CONFIG_SLAB_FREELIST_RANDOM */
830
6471384a
AP
831static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
832{
51cba1eb
KC
833 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
834 &init_on_alloc)) {
6471384a
AP
835 if (c->ctor)
836 return false;
837 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
838 return flags & __GFP_ZERO;
839 return true;
840 }
841 return flags & __GFP_ZERO;
842}
843
844static inline bool slab_want_init_on_free(struct kmem_cache *c)
845{
51cba1eb
KC
846 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
847 &init_on_free))
6471384a
AP
848 return !(c->ctor ||
849 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
850 return false;
851}
852
64dd6849
FM
853#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
854void debugfs_slab_release(struct kmem_cache *);
855#else
856static inline void debugfs_slab_release(struct kmem_cache *s) { }
857#endif
858
5bb1bb35 859#ifdef CONFIG_PRINTK
8e7f37f2
PM
860#define KS_ADDRS_COUNT 16
861struct kmem_obj_info {
862 void *kp_ptr;
7213230a 863 struct slab *kp_slab;
8e7f37f2
PM
864 void *kp_objp;
865 unsigned long kp_data_offset;
866 struct kmem_cache *kp_slab_cache;
867 void *kp_ret;
868 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 869 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2 870};
2dfe63e6 871void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
5bb1bb35 872#endif
8e7f37f2 873
0b3eb091
MWO
874#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
875void __check_heap_object(const void *ptr, unsigned long n,
876 const struct slab *slab, bool to_user);
877#else
878static inline
879void __check_heap_object(const void *ptr, unsigned long n,
880 const struct slab *slab, bool to_user)
881{
882}
883#endif
884
5240ab40 885#endif /* MM_SLAB_H */