Merge tag 'efi-fixes-for-v6.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
d122019b
MWO
8/* Reuses the bits in struct page */
9struct slab {
10 unsigned long __page_flags;
401fb12c
VB
11
12#if defined(CONFIG_SLAB)
13
130d4df5 14 struct kmem_cache *slab_cache;
d122019b 15 union {
130d4df5
VB
16 struct {
17 struct list_head slab_list;
18 void *freelist; /* array of free object indexes */
19 void *s_mem; /* first object */
20 };
401fb12c
VB
21 struct rcu_head rcu_head;
22 };
401fb12c
VB
23 unsigned int active;
24
25#elif defined(CONFIG_SLUB)
26
401fb12c 27 struct kmem_cache *slab_cache;
d122019b 28 union {
401fb12c 29 struct {
130d4df5
VB
30 union {
31 struct list_head slab_list;
32#ifdef CONFIG_SLUB_CPU_PARTIAL
33 struct {
34 struct slab *next;
35 int slabs; /* Nr of slabs left */
36 };
37#endif
38 };
39 /* Double-word boundary */
40 void *freelist; /* first free object */
41 union {
42 unsigned long counters;
43 struct {
44 unsigned inuse:16;
45 unsigned objects:15;
46 unsigned frozen:1;
47 };
48 };
d122019b 49 };
130d4df5 50 struct rcu_head rcu_head;
d122019b 51 };
401fb12c
VB
52 unsigned int __unused;
53
54#elif defined(CONFIG_SLOB)
55
56 struct list_head slab_list;
57 void *__unused_1;
58 void *freelist; /* first free block */
b01af5c0
HY
59 long units;
60 unsigned int __unused_2;
401fb12c
VB
61
62#else
63#error "Unexpected slab allocator configured"
64#endif
d122019b 65
d122019b
MWO
66 atomic_t __page_refcount;
67#ifdef CONFIG_MEMCG
68 unsigned long memcg_data;
69#endif
70};
71
72#define SLAB_MATCH(pg, sl) \
73 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
74SLAB_MATCH(flags, __page_flags);
401fb12c 75#ifndef CONFIG_SLOB
130d4df5
VB
76SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
77#else
78SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
401fb12c 79#endif
d122019b
MWO
80SLAB_MATCH(_refcount, __page_refcount);
81#ifdef CONFIG_MEMCG
82SLAB_MATCH(memcg_data, memcg_data);
83#endif
84#undef SLAB_MATCH
85static_assert(sizeof(struct slab) <= sizeof(struct page));
130d4df5
VB
86#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_SLUB)
87static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *)));
88#endif
d122019b
MWO
89
90/**
91 * folio_slab - Converts from folio to slab.
92 * @folio: The folio.
93 *
94 * Currently struct slab is a different representation of a folio where
95 * folio_test_slab() is true.
96 *
97 * Return: The slab which contains this folio.
98 */
99#define folio_slab(folio) (_Generic((folio), \
100 const struct folio *: (const struct slab *)(folio), \
101 struct folio *: (struct slab *)(folio)))
102
103/**
104 * slab_folio - The folio allocated for a slab
105 * @slab: The slab.
106 *
107 * Slabs are allocated as folios that contain the individual objects and are
108 * using some fields in the first struct page of the folio - those fields are
109 * now accessed by struct slab. It is occasionally necessary to convert back to
110 * a folio in order to communicate with the rest of the mm. Please use this
111 * helper function instead of casting yourself, as the implementation may change
112 * in the future.
113 */
114#define slab_folio(s) (_Generic((s), \
115 const struct slab *: (const struct folio *)s, \
116 struct slab *: (struct folio *)s))
117
118/**
119 * page_slab - Converts from first struct page to slab.
120 * @p: The first (either head of compound or single) page of slab.
121 *
122 * A temporary wrapper to convert struct page to struct slab in situations where
123 * we know the page is the compound head, or single order-0 page.
124 *
125 * Long-term ideally everything would work with struct slab directly or go
126 * through folio to struct slab.
127 *
128 * Return: The slab which contains this page
129 */
130#define page_slab(p) (_Generic((p), \
131 const struct page *: (const struct slab *)(p), \
132 struct page *: (struct slab *)(p)))
133
134/**
135 * slab_page - The first struct page allocated for a slab
136 * @slab: The slab.
137 *
138 * A convenience wrapper for converting slab to the first struct page of the
139 * underlying folio, to communicate with code not yet converted to folio or
140 * struct slab.
141 */
142#define slab_page(s) folio_page(slab_folio(s), 0)
143
144/*
145 * If network-based swap is enabled, sl*b must keep track of whether pages
146 * were allocated from pfmemalloc reserves.
147 */
148static inline bool slab_test_pfmemalloc(const struct slab *slab)
149{
150 return folio_test_active((struct folio *)slab_folio(slab));
151}
152
153static inline void slab_set_pfmemalloc(struct slab *slab)
154{
155 folio_set_active(slab_folio(slab));
156}
157
158static inline void slab_clear_pfmemalloc(struct slab *slab)
159{
160 folio_clear_active(slab_folio(slab));
161}
162
163static inline void __slab_clear_pfmemalloc(struct slab *slab)
164{
165 __folio_clear_active(slab_folio(slab));
166}
167
168static inline void *slab_address(const struct slab *slab)
169{
170 return folio_address(slab_folio(slab));
171}
172
173static inline int slab_nid(const struct slab *slab)
174{
175 return folio_nid(slab_folio(slab));
176}
177
178static inline pg_data_t *slab_pgdat(const struct slab *slab)
179{
180 return folio_pgdat(slab_folio(slab));
181}
182
183static inline struct slab *virt_to_slab(const void *addr)
184{
185 struct folio *folio = virt_to_folio(addr);
186
187 if (!folio_test_slab(folio))
188 return NULL;
189
190 return folio_slab(folio);
191}
192
193static inline int slab_order(const struct slab *slab)
194{
195 return folio_order((struct folio *)slab_folio(slab));
196}
197
198static inline size_t slab_size(const struct slab *slab)
199{
200 return PAGE_SIZE << slab_order(slab);
201}
202
07f361b2
JK
203#ifdef CONFIG_SLOB
204/*
205 * Common fields provided in kmem_cache by all slab allocators
206 * This struct is either used directly by the allocator (SLOB)
207 * or the allocator must include definitions for all fields
208 * provided in kmem_cache_common in their definition of kmem_cache.
209 *
210 * Once we can do anonymous structs (C11 standard) we could put a
211 * anonymous struct definition in these allocators so that the
212 * separate allocations in the kmem_cache structure of SLAB and
213 * SLUB is no longer needed.
214 */
215struct kmem_cache {
216 unsigned int object_size;/* The original size of the object */
217 unsigned int size; /* The aligned/padded/added on size */
218 unsigned int align; /* Alignment as calculated */
d50112ed 219 slab_flags_t flags; /* Active flags on the slab */
07f361b2
JK
220 const char *name; /* Slab name for sysfs */
221 int refcount; /* Use counter */
222 void (*ctor)(void *); /* Called on object slot creation */
223 struct list_head list; /* List of all slab caches on the system */
224};
225
226#endif /* CONFIG_SLOB */
227
228#ifdef CONFIG_SLAB
229#include <linux/slab_def.h>
230#endif
231
232#ifdef CONFIG_SLUB
233#include <linux/slub_def.h>
234#endif
235
236#include <linux/memcontrol.h>
11c7aec2 237#include <linux/fault-inject.h>
11c7aec2
JDB
238#include <linux/kasan.h>
239#include <linux/kmemleak.h>
7c00fce9 240#include <linux/random.h>
d92a8cfc 241#include <linux/sched/mm.h>
88f2ef73 242#include <linux/list_lru.h>
07f361b2 243
97d06609
CL
244/*
245 * State of the slab allocator.
246 *
247 * This is used to describe the states of the allocator during bootup.
248 * Allocators use this to gradually bootstrap themselves. Most allocators
249 * have the problem that the structures used for managing slab caches are
250 * allocated from slab caches themselves.
251 */
252enum slab_state {
253 DOWN, /* No slab functionality yet */
254 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 255 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
256 UP, /* Slab caches usable but not all extras yet */
257 FULL /* Everything is working */
258};
259
260extern enum slab_state slab_state;
261
18004c5d
CL
262/* The slab cache mutex protects the management structures during changes */
263extern struct mutex slab_mutex;
9b030cb8
CL
264
265/* The list of all slab caches on the system */
18004c5d
CL
266extern struct list_head slab_caches;
267
9b030cb8
CL
268/* The slab cache that manages slab cache information */
269extern struct kmem_cache *kmem_cache;
270
af3b5f87
VB
271/* A table of kmalloc cache names and sizes */
272extern const struct kmalloc_info_struct {
cb5d9fb3 273 const char *name[NR_KMALLOC_TYPES];
55de8b9c 274 unsigned int size;
af3b5f87
VB
275} kmalloc_info[];
276
f97d5f63
CL
277#ifndef CONFIG_SLOB
278/* Kmalloc array related functions */
34cc6990 279void setup_kmalloc_cache_index_table(void);
d50112ed 280void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
281
282/* Find the kmalloc slab corresponding for a certain size */
283struct kmem_cache *kmalloc_slab(size_t, gfp_t);
ed4cd17e
HY
284
285void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
286 int node, size_t orig_size,
287 unsigned long caller);
288void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
f97d5f63
CL
289#endif
290
44405099 291gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 292
9b030cb8 293/* Functions provided by the slab allocators */
d50112ed 294int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 295
55de8b9c
AD
296struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
297 slab_flags_t flags, unsigned int useroffset,
298 unsigned int usersize);
45530c44 299extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
300 unsigned int size, slab_flags_t flags,
301 unsigned int useroffset, unsigned int usersize);
45530c44 302
423c929c 303int slab_unmergeable(struct kmem_cache *s);
f4957d5b 304struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 305 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 306#ifndef CONFIG_SLOB
2633d7a0 307struct kmem_cache *
f4957d5b 308__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 309 slab_flags_t flags, void (*ctor)(void *));
423c929c 310
0293d1fd 311slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 312 slab_flags_t flags, const char *name);
cbb79694 313#else
2633d7a0 314static inline struct kmem_cache *
f4957d5b 315__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 316 slab_flags_t flags, void (*ctor)(void *))
cbb79694 317{ return NULL; }
423c929c 318
0293d1fd 319static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 320 slab_flags_t flags, const char *name)
423c929c
JK
321{
322 return flags;
323}
cbb79694
CL
324#endif
325
bb944290
FT
326static inline bool is_kmalloc_cache(struct kmem_cache *s)
327{
328#ifndef CONFIG_SLOB
329 return (s->flags & SLAB_KMALLOC);
330#else
331 return false;
332#endif
333}
cbb79694 334
d8843922 335/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
336#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
337 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 338 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
339
340#if defined(CONFIG_DEBUG_SLAB)
341#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
342#elif defined(CONFIG_SLUB_DEBUG)
343#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 344 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
345#else
346#define SLAB_DEBUG_FLAGS (0)
347#endif
348
349#if defined(CONFIG_SLAB)
350#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 351 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 352 SLAB_ACCOUNT)
d8843922
GC
353#elif defined(CONFIG_SLUB)
354#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
6cd6d33c
FT
355 SLAB_TEMPORARY | SLAB_ACCOUNT | \
356 SLAB_NO_USER_FLAGS | SLAB_KMALLOC)
d8843922 357#else
34dbc3aa 358#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
d8843922
GC
359#endif
360
e70954fd 361/* Common flags available with current configuration */
d8843922
GC
362#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
363
e70954fd
TG
364/* Common flags permitted for kmem_cache_create */
365#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
366 SLAB_RED_ZONE | \
367 SLAB_POISON | \
368 SLAB_STORE_USER | \
369 SLAB_TRACE | \
370 SLAB_CONSISTENCY_CHECKS | \
371 SLAB_MEM_SPREAD | \
372 SLAB_NOLEAKTRACE | \
373 SLAB_RECLAIM_ACCOUNT | \
374 SLAB_TEMPORARY | \
a285909f 375 SLAB_ACCOUNT | \
6cd6d33c 376 SLAB_KMALLOC | \
a285909f 377 SLAB_NO_USER_FLAGS)
e70954fd 378
f9e13c0a 379bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 380int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 381void __kmem_cache_release(struct kmem_cache *);
c9fc5864 382int __kmem_cache_shrink(struct kmem_cache *);
41a21285 383void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 384
b7454ad3
GC
385struct seq_file;
386struct file;
b7454ad3 387
0d7561c6
GC
388struct slabinfo {
389 unsigned long active_objs;
390 unsigned long num_objs;
391 unsigned long active_slabs;
392 unsigned long num_slabs;
393 unsigned long shared_avail;
394 unsigned int limit;
395 unsigned int batchcount;
396 unsigned int shared;
397 unsigned int objects_per_slab;
398 unsigned int cache_order;
399};
400
401void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
402void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
403ssize_t slabinfo_write(struct file *file, const char __user *buffer,
404 size_t count, loff_t *ppos);
ba6c496e 405
1a984c4e 406static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
6cea1d56
RG
407{
408 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 409 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
410}
411
e42f174e
VB
412#ifdef CONFIG_SLUB_DEBUG
413#ifdef CONFIG_SLUB_DEBUG_ON
414DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
415#else
416DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
417#endif
418extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 419long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
420static inline bool __slub_debug_enabled(void)
421{
422 return static_branch_unlikely(&slub_debug_enabled);
423}
e42f174e
VB
424#else
425static inline void print_tracking(struct kmem_cache *s, void *object)
426{
427}
0d4a062a
ME
428static inline bool __slub_debug_enabled(void)
429{
430 return false;
431}
e42f174e
VB
432#endif
433
434/*
435 * Returns true if any of the specified slub_debug flags is enabled for the
436 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
437 * the static key.
438 */
439static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
440{
0d4a062a
ME
441 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
442 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
443 if (__slub_debug_enabled())
e42f174e 444 return s->flags & flags;
e42f174e
VB
445 return false;
446}
447
84c07d11 448#ifdef CONFIG_MEMCG_KMEM
4b5f8d9a
VB
449/*
450 * slab_objcgs - get the object cgroups vector associated with a slab
451 * @slab: a pointer to the slab struct
452 *
453 * Returns a pointer to the object cgroups vector associated with the slab,
454 * or NULL if no such vector has been associated yet.
455 */
456static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
457{
458 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
459
460 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
461 slab_page(slab));
462 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
463
464 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
465}
466
467int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
468 gfp_t gfp, bool new_slab);
fdbcb2a6
WL
469void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
470 enum node_stat_item idx, int nr);
286e04b8 471
4b5f8d9a 472static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8 473{
4b5f8d9a
VB
474 kfree(slab_objcgs(slab));
475 slab->memcg_data = 0;
286e04b8
RG
476}
477
f2fe7b09
RG
478static inline size_t obj_full_size(struct kmem_cache *s)
479{
480 /*
481 * For each accounted object there is an extra space which is used
482 * to store obj_cgroup membership. Charge it too.
483 */
484 return s->size + sizeof(struct obj_cgroup *);
485}
486
becaba65
RG
487/*
488 * Returns false if the allocation should fail.
489 */
490static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 491 struct list_lru *lru,
becaba65
RG
492 struct obj_cgroup **objcgp,
493 size_t objects, gfp_t flags)
f2fe7b09 494{
9855609b
RG
495 struct obj_cgroup *objcg;
496
f7a449f7 497 if (!memcg_kmem_online())
becaba65
RG
498 return true;
499
500 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
501 return true;
502
9855609b
RG
503 objcg = get_obj_cgroup_from_current();
504 if (!objcg)
becaba65 505 return true;
9855609b 506
88f2ef73
MS
507 if (lru) {
508 int ret;
509 struct mem_cgroup *memcg;
510
511 memcg = get_mem_cgroup_from_objcg(objcg);
512 ret = memcg_list_lru_alloc(memcg, lru, flags);
513 css_put(&memcg->css);
514
515 if (ret)
516 goto out;
f2fe7b09
RG
517 }
518
88f2ef73
MS
519 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
520 goto out;
521
becaba65
RG
522 *objcgp = objcg;
523 return true;
88f2ef73
MS
524out:
525 obj_cgroup_put(objcg);
526 return false;
f2fe7b09
RG
527}
528
964d4bd3
RG
529static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
530 struct obj_cgroup *objcg,
10befea9
RG
531 gfp_t flags, size_t size,
532 void **p)
964d4bd3 533{
4b5f8d9a 534 struct slab *slab;
964d4bd3
RG
535 unsigned long off;
536 size_t i;
537
f7a449f7 538 if (!memcg_kmem_online() || !objcg)
10befea9
RG
539 return;
540
964d4bd3
RG
541 for (i = 0; i < size; i++) {
542 if (likely(p[i])) {
4b5f8d9a 543 slab = virt_to_slab(p[i]);
10befea9 544
4b5f8d9a
VB
545 if (!slab_objcgs(slab) &&
546 memcg_alloc_slab_cgroups(slab, s, flags,
2e9bd483 547 false)) {
10befea9
RG
548 obj_cgroup_uncharge(objcg, obj_full_size(s));
549 continue;
550 }
551
4b5f8d9a 552 off = obj_to_index(s, slab, p[i]);
964d4bd3 553 obj_cgroup_get(objcg);
4b5f8d9a
VB
554 slab_objcgs(slab)[off] = objcg;
555 mod_objcg_state(objcg, slab_pgdat(slab),
f2fe7b09
RG
556 cache_vmstat_idx(s), obj_full_size(s));
557 } else {
558 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
559 }
560 }
561 obj_cgroup_put(objcg);
964d4bd3
RG
562}
563
b77d5b1b 564static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
d1b2cf6c 565 void **p, int objects)
964d4bd3 566{
270c6a71 567 struct obj_cgroup **objcgs;
d1b2cf6c 568 int i;
964d4bd3 569
f7a449f7 570 if (!memcg_kmem_online())
10befea9
RG
571 return;
572
b77d5b1b
MS
573 objcgs = slab_objcgs(slab);
574 if (!objcgs)
575 return;
f2fe7b09 576
b77d5b1b
MS
577 for (i = 0; i < objects; i++) {
578 struct obj_cgroup *objcg;
579 unsigned int off;
10befea9 580
4b5f8d9a 581 off = obj_to_index(s, slab, p[i]);
270c6a71 582 objcg = objcgs[off];
d1b2cf6c
BR
583 if (!objcg)
584 continue;
f2fe7b09 585
270c6a71 586 objcgs[off] = NULL;
d1b2cf6c 587 obj_cgroup_uncharge(objcg, obj_full_size(s));
4b5f8d9a 588 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
d1b2cf6c
BR
589 -obj_full_size(s));
590 obj_cgroup_put(objcg);
591 }
964d4bd3
RG
592}
593
84c07d11 594#else /* CONFIG_MEMCG_KMEM */
4b5f8d9a
VB
595static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
596{
597 return NULL;
598}
599
9855609b 600static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
601{
602 return NULL;
603}
604
4b5f8d9a 605static inline int memcg_alloc_slab_cgroups(struct slab *slab,
2e9bd483 606 struct kmem_cache *s, gfp_t gfp,
4b5f8d9a 607 bool new_slab)
286e04b8
RG
608{
609 return 0;
610}
611
4b5f8d9a 612static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8
RG
613{
614}
615
becaba65 616static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 617 struct list_lru *lru,
becaba65
RG
618 struct obj_cgroup **objcgp,
619 size_t objects, gfp_t flags)
f2fe7b09 620{
becaba65 621 return true;
f2fe7b09
RG
622}
623
964d4bd3
RG
624static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
625 struct obj_cgroup *objcg,
10befea9
RG
626 gfp_t flags, size_t size,
627 void **p)
964d4bd3
RG
628{
629}
630
b77d5b1b 631static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
d1b2cf6c 632 void **p, int objects)
964d4bd3
RG
633{
634}
84c07d11 635#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 636
401fb12c 637#ifndef CONFIG_SLOB
a64b5378
KC
638static inline struct kmem_cache *virt_to_cache(const void *obj)
639{
82c1775d 640 struct slab *slab;
a64b5378 641
82c1775d
MWO
642 slab = virt_to_slab(obj);
643 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
a64b5378
KC
644 __func__))
645 return NULL;
82c1775d 646 return slab->slab_cache;
a64b5378
KC
647}
648
b918653b
MWO
649static __always_inline void account_slab(struct slab *slab, int order,
650 struct kmem_cache *s, gfp_t gfp)
6cea1d56 651{
f7a449f7 652 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
4b5f8d9a 653 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2e9bd483 654
b918653b 655 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 656 PAGE_SIZE << order);
6cea1d56
RG
657}
658
b918653b
MWO
659static __always_inline void unaccount_slab(struct slab *slab, int order,
660 struct kmem_cache *s)
6cea1d56 661{
f7a449f7 662 if (memcg_kmem_online())
4b5f8d9a 663 memcg_free_slab_cgroups(slab);
9855609b 664
b918653b 665 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 666 -(PAGE_SIZE << order));
6cea1d56
RG
667}
668
e42f174e
VB
669static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
670{
671 struct kmem_cache *cachep;
672
673 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
674 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
675 return s;
676
677 cachep = virt_to_cache(x);
10befea9 678 if (WARN(cachep && cachep != s,
e42f174e
VB
679 "%s: Wrong slab cache. %s but object is from %s\n",
680 __func__, s->name, cachep->name))
681 print_tracking(cachep, x);
682 return cachep;
683}
d6a71648
HY
684
685void free_large_kmalloc(struct folio *folio, void *object);
686
401fb12c 687#endif /* CONFIG_SLOB */
e42f174e 688
8dfa9d55
HY
689size_t __ksize(const void *objp);
690
11c7aec2
JDB
691static inline size_t slab_ksize(const struct kmem_cache *s)
692{
693#ifndef CONFIG_SLUB
694 return s->object_size;
695
696#else /* CONFIG_SLUB */
697# ifdef CONFIG_SLUB_DEBUG
698 /*
699 * Debugging requires use of the padding between object
700 * and whatever may come after it.
701 */
702 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
703 return s->object_size;
704# endif
80a9201a
AP
705 if (s->flags & SLAB_KASAN)
706 return s->object_size;
11c7aec2
JDB
707 /*
708 * If we have the need to store the freelist pointer
709 * back there or track user information then we can
710 * only use the space before that information.
711 */
5f0d5a3a 712 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
713 return s->inuse;
714 /*
715 * Else we can use all the padding etc for the allocation
716 */
717 return s->size;
718#endif
719}
720
721static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 722 struct list_lru *lru,
964d4bd3
RG
723 struct obj_cgroup **objcgp,
724 size_t size, gfp_t flags)
11c7aec2
JDB
725{
726 flags &= gfp_allowed_mask;
d92a8cfc 727
95d6c701 728 might_alloc(flags);
11c7aec2 729
fab9963a 730 if (should_failslab(s, flags))
11c7aec2
JDB
731 return NULL;
732
88f2ef73 733 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
becaba65 734 return NULL;
45264778
VD
735
736 return s;
11c7aec2
JDB
737}
738
964d4bd3 739static inline void slab_post_alloc_hook(struct kmem_cache *s,
da844b78 740 struct obj_cgroup *objcg, gfp_t flags,
9ce67395
FT
741 size_t size, void **p, bool init,
742 unsigned int orig_size)
11c7aec2 743{
9ce67395 744 unsigned int zero_size = s->object_size;
11c7aec2
JDB
745 size_t i;
746
747 flags &= gfp_allowed_mask;
da844b78 748
9ce67395
FT
749 /*
750 * For kmalloc object, the allocated memory size(object_size) is likely
751 * larger than the requested size(orig_size). If redzone check is
752 * enabled for the extra space, don't zero it, as it will be redzoned
753 * soon. The redzone operation for this extra space could be seen as a
754 * replacement of current poisoning under certain debug option, and
755 * won't break other sanity checks.
756 */
757 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
758 (s->flags & SLAB_KMALLOC))
759 zero_size = orig_size;
760
da844b78
AK
761 /*
762 * As memory initialization might be integrated into KASAN,
763 * kasan_slab_alloc and initialization memset must be
764 * kept together to avoid discrepancies in behavior.
765 *
766 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
767 */
11c7aec2 768 for (i = 0; i < size; i++) {
da844b78
AK
769 p[i] = kasan_slab_alloc(s, p[i], flags, init);
770 if (p[i] && init && !kasan_has_integrated_init())
9ce67395 771 memset(p[i], 0, zero_size);
53128245 772 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 773 s->flags, flags);
68ef169a 774 kmsan_slab_alloc(s, p[i], flags);
11c7aec2 775 }
45264778 776
becaba65 777 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
778}
779
44c5356f 780#ifndef CONFIG_SLOB
ca34956b
CL
781/*
782 * The slab lists for all objects.
783 */
784struct kmem_cache_node {
ca34956b 785#ifdef CONFIG_SLAB
b539ce9f 786 raw_spinlock_t list_lock;
ca34956b
CL
787 struct list_head slabs_partial; /* partial list first, better asm code */
788 struct list_head slabs_full;
789 struct list_head slabs_free;
bf00bd34
DR
790 unsigned long total_slabs; /* length of all slab lists */
791 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
792 unsigned long free_objects;
793 unsigned int free_limit;
794 unsigned int colour_next; /* Per-node cache coloring */
795 struct array_cache *shared; /* shared per node */
c8522a3a 796 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
797 unsigned long next_reap; /* updated without locking */
798 int free_touched; /* updated without locking */
799#endif
800
801#ifdef CONFIG_SLUB
b539ce9f 802 spinlock_t list_lock;
ca34956b
CL
803 unsigned long nr_partial;
804 struct list_head partial;
805#ifdef CONFIG_SLUB_DEBUG
806 atomic_long_t nr_slabs;
807 atomic_long_t total_objects;
808 struct list_head full;
809#endif
810#endif
811
812};
e25839f6 813
44c5356f
CL
814static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
815{
816 return s->node[node];
817}
818
819/*
820 * Iterator over all nodes. The body will be executed for each node that has
821 * a kmem_cache_node structure allocated (which is true for all online nodes)
822 */
823#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
824 for (__node = 0; __node < nr_node_ids; __node++) \
825 if ((__n = get_node(__s, __node)))
44c5356f
CL
826
827#endif
828
852d8be0
YS
829#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
830void dump_unreclaimable_slab(void);
831#else
832static inline void dump_unreclaimable_slab(void)
833{
834}
835#endif
836
55834c59
AP
837void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
838
7c00fce9
TG
839#ifdef CONFIG_SLAB_FREELIST_RANDOM
840int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
841 gfp_t gfp);
842void cache_random_seq_destroy(struct kmem_cache *cachep);
843#else
844static inline int cache_random_seq_create(struct kmem_cache *cachep,
845 unsigned int count, gfp_t gfp)
846{
847 return 0;
848}
849static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
850#endif /* CONFIG_SLAB_FREELIST_RANDOM */
851
6471384a
AP
852static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
853{
51cba1eb
KC
854 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
855 &init_on_alloc)) {
6471384a
AP
856 if (c->ctor)
857 return false;
858 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
859 return flags & __GFP_ZERO;
860 return true;
861 }
862 return flags & __GFP_ZERO;
863}
864
865static inline bool slab_want_init_on_free(struct kmem_cache *c)
866{
51cba1eb
KC
867 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
868 &init_on_free))
6471384a
AP
869 return !(c->ctor ||
870 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
871 return false;
872}
873
64dd6849
FM
874#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
875void debugfs_slab_release(struct kmem_cache *);
876#else
877static inline void debugfs_slab_release(struct kmem_cache *s) { }
878#endif
879
5bb1bb35 880#ifdef CONFIG_PRINTK
8e7f37f2
PM
881#define KS_ADDRS_COUNT 16
882struct kmem_obj_info {
883 void *kp_ptr;
7213230a 884 struct slab *kp_slab;
8e7f37f2
PM
885 void *kp_objp;
886 unsigned long kp_data_offset;
887 struct kmem_cache *kp_slab_cache;
888 void *kp_ret;
889 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 890 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2 891};
2dfe63e6 892void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
5bb1bb35 893#endif
8e7f37f2 894
0b3eb091
MWO
895#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
896void __check_heap_object(const void *ptr, unsigned long n,
897 const struct slab *slab, bool to_user);
898#else
899static inline
900void __check_heap_object(const void *ptr, unsigned long n,
901 const struct slab *slab, bool to_user)
902{
903}
904#endif
905
946fa0db
FT
906#ifdef CONFIG_SLUB_DEBUG
907void skip_orig_size_check(struct kmem_cache *s, const void *object);
908#endif
909
5240ab40 910#endif /* MM_SLAB_H */