vmstat: use our own timer events
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
1da177e4 154 */
b46b8f19 155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
50953fe9 175# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
5af60839 178 SLAB_STORE_USER | \
1da177e4 179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 181#else
ac2b898c 182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 183 SLAB_CACHE_DMA | \
1da177e4 184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
343e0d7a 410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
411
412 /* de-constructor func */
343e0d7a 413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 414
b5d8ca7c 415/* 5) cache creation/removal */
b28a02de
PE
416 const char *name;
417 struct list_head next;
1da177e4 418
b5d8ca7c 419/* 6) statistics */
1da177e4 420#if STATS
b28a02de
PE
421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
fb7faf33 430 unsigned long node_overflow;
b28a02de
PE
431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
1da177e4
LT
435#endif
436#if DEBUG
3dafccf2
MS
437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
1da177e4 445#endif
8da3430d
ED
446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
1da177e4
LT
457};
458
459#define CFLGS_OFF_SLAB (0x80000000UL)
460#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462#define BATCHREFILL_LIMIT 16
a737b3e2
AM
463/*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
1da177e4 466 *
dc6f3f27 467 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
468 * which could lock up otherwise freeable slabs.
469 */
470#define REAPTIMEOUT_CPUC (2*HZ)
471#define REAPTIMEOUT_LIST3 (4*HZ)
472
473#if STATS
474#define STATS_INC_ACTIVE(x) ((x)->num_active++)
475#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 478#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
479#define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
1da177e4
LT
484#define STATS_INC_ERR(x) ((x)->errors++)
485#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 486#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 487#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
488#define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
1da177e4
LT
493#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497#else
498#define STATS_INC_ACTIVE(x) do { } while (0)
499#define STATS_DEC_ACTIVE(x) do { } while (0)
500#define STATS_INC_ALLOCED(x) do { } while (0)
501#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 502#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
503#define STATS_SET_HIGH(x) do { } while (0)
504#define STATS_INC_ERR(x) do { } while (0)
505#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 506#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 507#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 508#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
509#define STATS_INC_ALLOCHIT(x) do { } while (0)
510#define STATS_INC_ALLOCMISS(x) do { } while (0)
511#define STATS_INC_FREEHIT(x) do { } while (0)
512#define STATS_INC_FREEMISS(x) do { } while (0)
513#endif
514
515#if DEBUG
1da177e4 516
a737b3e2
AM
517/*
518 * memory layout of objects:
1da177e4 519 * 0 : objp
3dafccf2 520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
3dafccf2 523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 524 * redzone word.
3dafccf2
MS
525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
1da177e4 529 */
343e0d7a 530static int obj_offset(struct kmem_cache *cachep)
1da177e4 531{
3dafccf2 532 return cachep->obj_offset;
1da177e4
LT
533}
534
343e0d7a 535static int obj_size(struct kmem_cache *cachep)
1da177e4 536{
3dafccf2 537 return cachep->obj_size;
1da177e4
LT
538}
539
b46b8f19 540static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
541{
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
543 return (unsigned long long*) (objp + obj_offset(cachep) -
544 sizeof(unsigned long long));
1da177e4
LT
545}
546
b46b8f19 547static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
548{
549 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
550 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
551 return (unsigned long long *)(objp + cachep->buffer_size -
552 sizeof(unsigned long long) -
553 BYTES_PER_WORD);
554 return (unsigned long long *) (objp + cachep->buffer_size -
555 sizeof(unsigned long long));
1da177e4
LT
556}
557
343e0d7a 558static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
559{
560 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 561 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
562}
563
564#else
565
3dafccf2
MS
566#define obj_offset(x) 0
567#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
568#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
569#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
570#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571
572#endif
573
574/*
a737b3e2
AM
575 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
576 * order.
1da177e4
LT
577 */
578#if defined(CONFIG_LARGE_ALLOCS)
579#define MAX_OBJ_ORDER 13 /* up to 32Mb */
580#define MAX_GFP_ORDER 13 /* up to 32Mb */
581#elif defined(CONFIG_MMU)
582#define MAX_OBJ_ORDER 5 /* 32 pages */
583#define MAX_GFP_ORDER 5 /* 32 pages */
584#else
585#define MAX_OBJ_ORDER 8 /* up to 1Mb */
586#define MAX_GFP_ORDER 8 /* up to 1Mb */
587#endif
588
589/*
590 * Do not go above this order unless 0 objects fit into the slab.
591 */
592#define BREAK_GFP_ORDER_HI 1
593#define BREAK_GFP_ORDER_LO 0
594static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
595
a737b3e2
AM
596/*
597 * Functions for storing/retrieving the cachep and or slab from the page
598 * allocator. These are used to find the slab an obj belongs to. With kfree(),
599 * these are used to find the cache which an obj belongs to.
1da177e4 600 */
065d41cb
PE
601static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
602{
603 page->lru.next = (struct list_head *)cache;
604}
605
606static inline struct kmem_cache *page_get_cache(struct page *page)
607{
d85f3385 608 page = compound_head(page);
ddc2e812 609 BUG_ON(!PageSlab(page));
065d41cb
PE
610 return (struct kmem_cache *)page->lru.next;
611}
612
613static inline void page_set_slab(struct page *page, struct slab *slab)
614{
615 page->lru.prev = (struct list_head *)slab;
616}
617
618static inline struct slab *page_get_slab(struct page *page)
619{
ddc2e812 620 BUG_ON(!PageSlab(page));
065d41cb
PE
621 return (struct slab *)page->lru.prev;
622}
1da177e4 623
6ed5eb22
PE
624static inline struct kmem_cache *virt_to_cache(const void *obj)
625{
b49af68f 626 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
627 return page_get_cache(page);
628}
629
630static inline struct slab *virt_to_slab(const void *obj)
631{
b49af68f 632 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
633 return page_get_slab(page);
634}
635
8fea4e96
PE
636static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
637 unsigned int idx)
638{
639 return slab->s_mem + cache->buffer_size * idx;
640}
641
6a2d7a95
ED
642/*
643 * We want to avoid an expensive divide : (offset / cache->buffer_size)
644 * Using the fact that buffer_size is a constant for a particular cache,
645 * we can replace (offset / cache->buffer_size) by
646 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
647 */
648static inline unsigned int obj_to_index(const struct kmem_cache *cache,
649 const struct slab *slab, void *obj)
8fea4e96 650{
6a2d7a95
ED
651 u32 offset = (obj - slab->s_mem);
652 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
653}
654
a737b3e2
AM
655/*
656 * These are the default caches for kmalloc. Custom caches can have other sizes.
657 */
1da177e4
LT
658struct cache_sizes malloc_sizes[] = {
659#define CACHE(x) { .cs_size = (x) },
660#include <linux/kmalloc_sizes.h>
661 CACHE(ULONG_MAX)
662#undef CACHE
663};
664EXPORT_SYMBOL(malloc_sizes);
665
666/* Must match cache_sizes above. Out of line to keep cache footprint low. */
667struct cache_names {
668 char *name;
669 char *name_dma;
670};
671
672static struct cache_names __initdata cache_names[] = {
673#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
674#include <linux/kmalloc_sizes.h>
b28a02de 675 {NULL,}
1da177e4
LT
676#undef CACHE
677};
678
679static struct arraycache_init initarray_cache __initdata =
b28a02de 680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 681static struct arraycache_init initarray_generic =
b28a02de 682 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
683
684/* internal cache of cache description objs */
343e0d7a 685static struct kmem_cache cache_cache = {
b28a02de
PE
686 .batchcount = 1,
687 .limit = BOOT_CPUCACHE_ENTRIES,
688 .shared = 1,
343e0d7a 689 .buffer_size = sizeof(struct kmem_cache),
b28a02de 690 .name = "kmem_cache",
1da177e4
LT
691};
692
056c6241
RT
693#define BAD_ALIEN_MAGIC 0x01020304ul
694
f1aaee53
AV
695#ifdef CONFIG_LOCKDEP
696
697/*
698 * Slab sometimes uses the kmalloc slabs to store the slab headers
699 * for other slabs "off slab".
700 * The locking for this is tricky in that it nests within the locks
701 * of all other slabs in a few places; to deal with this special
702 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
703 *
704 * We set lock class for alien array caches which are up during init.
705 * The lock annotation will be lost if all cpus of a node goes down and
706 * then comes back up during hotplug
f1aaee53 707 */
056c6241
RT
708static struct lock_class_key on_slab_l3_key;
709static struct lock_class_key on_slab_alc_key;
710
711static inline void init_lock_keys(void)
f1aaee53 712
f1aaee53
AV
713{
714 int q;
056c6241
RT
715 struct cache_sizes *s = malloc_sizes;
716
717 while (s->cs_size != ULONG_MAX) {
718 for_each_node(q) {
719 struct array_cache **alc;
720 int r;
721 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
722 if (!l3 || OFF_SLAB(s->cs_cachep))
723 continue;
724 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
725 alc = l3->alien;
726 /*
727 * FIXME: This check for BAD_ALIEN_MAGIC
728 * should go away when common slab code is taught to
729 * work even without alien caches.
730 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
731 * for alloc_alien_cache,
732 */
733 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
734 continue;
735 for_each_node(r) {
736 if (alc[r])
737 lockdep_set_class(&alc[r]->lock,
738 &on_slab_alc_key);
739 }
740 }
741 s++;
f1aaee53
AV
742 }
743}
f1aaee53 744#else
056c6241 745static inline void init_lock_keys(void)
f1aaee53
AV
746{
747}
748#endif
749
8f5be20b
RT
750/*
751 * 1. Guard access to the cache-chain.
752 * 2. Protect sanity of cpu_online_map against cpu hotplug events
753 */
fc0abb14 754static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
755static struct list_head cache_chain;
756
1da177e4
LT
757/*
758 * chicken and egg problem: delay the per-cpu array allocation
759 * until the general caches are up.
760 */
761static enum {
762 NONE,
e498be7d
CL
763 PARTIAL_AC,
764 PARTIAL_L3,
1da177e4
LT
765 FULL
766} g_cpucache_up;
767
39d24e64
MK
768/*
769 * used by boot code to determine if it can use slab based allocator
770 */
771int slab_is_available(void)
772{
773 return g_cpucache_up == FULL;
774}
775
52bad64d 776static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 777
343e0d7a 778static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
779{
780 return cachep->array[smp_processor_id()];
781}
782
a737b3e2
AM
783static inline struct kmem_cache *__find_general_cachep(size_t size,
784 gfp_t gfpflags)
1da177e4
LT
785{
786 struct cache_sizes *csizep = malloc_sizes;
787
788#if DEBUG
789 /* This happens if someone tries to call
b28a02de
PE
790 * kmem_cache_create(), or __kmalloc(), before
791 * the generic caches are initialized.
792 */
c7e43c78 793 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
794#endif
795 while (size > csizep->cs_size)
796 csizep++;
797
798 /*
0abf40c1 799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
802 */
4b51d669 803#ifdef CONFIG_ZONE_DMA
1da177e4
LT
804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
4b51d669 806#endif
1da177e4
LT
807 return csizep->cs_cachep;
808}
809
b221385b 810static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
811{
812 return __find_general_cachep(size, gfpflags);
813}
97e2bde4 814
fbaccacf 815static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 816{
fbaccacf
SR
817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818}
1da177e4 819
a737b3e2
AM
820/*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
fbaccacf
SR
823static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
826{
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 830
fbaccacf
SR
831 /*
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
835 *
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
840 *
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
845 */
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
853 /*
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
860 */
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
863
864 /*
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
867 */
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
871
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
874
875 mgmt_size = slab_mgmt_size(nr_objs, align);
876 }
877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
879}
880
881#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
882
a737b3e2
AM
883static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
1da177e4
LT
885{
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 887 function, cachep->name, msg);
1da177e4
LT
888 dump_stack();
889}
890
3395ee05
PM
891/*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897 */
898
899static int use_alien_caches __read_mostly = 1;
900static int __init noaliencache_setup(char *s)
901{
902 use_alien_caches = 0;
903 return 1;
904}
905__setup("noaliencache", noaliencache_setup);
906
8fce4d8e
CL
907#ifdef CONFIG_NUMA
908/*
909 * Special reaping functions for NUMA systems called from cache_reap().
910 * These take care of doing round robin flushing of alien caches (containing
911 * objects freed on different nodes from which they were allocated) and the
912 * flushing of remote pcps by calling drain_node_pages.
913 */
914static DEFINE_PER_CPU(unsigned long, reap_node);
915
916static void init_reap_node(int cpu)
917{
918 int node;
919
920 node = next_node(cpu_to_node(cpu), node_online_map);
921 if (node == MAX_NUMNODES)
442295c9 922 node = first_node(node_online_map);
8fce4d8e 923
7f6b8876 924 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
925}
926
927static void next_reap_node(void)
928{
929 int node = __get_cpu_var(reap_node);
930
931 /*
932 * Also drain per cpu pages on remote zones
933 */
934 if (node != numa_node_id())
935 drain_node_pages(node);
936
937 node = next_node(node, node_online_map);
938 if (unlikely(node >= MAX_NUMNODES))
939 node = first_node(node_online_map);
940 __get_cpu_var(reap_node) = node;
941}
942
943#else
944#define init_reap_node(cpu) do { } while (0)
945#define next_reap_node(void) do { } while (0)
946#endif
947
1da177e4
LT
948/*
949 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
950 * via the workqueue/eventd.
951 * Add the CPU number into the expiration time to minimize the possibility of
952 * the CPUs getting into lockstep and contending for the global cache chain
953 * lock.
954 */
955static void __devinit start_cpu_timer(int cpu)
956{
52bad64d 957 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
958
959 /*
960 * When this gets called from do_initcalls via cpucache_init(),
961 * init_workqueues() has already run, so keventd will be setup
962 * at that time.
963 */
52bad64d 964 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 965 init_reap_node(cpu);
65f27f38 966 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
967 schedule_delayed_work_on(cpu, reap_work,
968 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
969 }
970}
971
e498be7d 972static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 973 int batchcount)
1da177e4 974{
b28a02de 975 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
976 struct array_cache *nc = NULL;
977
e498be7d 978 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
979 if (nc) {
980 nc->avail = 0;
981 nc->limit = entries;
982 nc->batchcount = batchcount;
983 nc->touched = 0;
e498be7d 984 spin_lock_init(&nc->lock);
1da177e4
LT
985 }
986 return nc;
987}
988
3ded175a
CL
989/*
990 * Transfer objects in one arraycache to another.
991 * Locking must be handled by the caller.
992 *
993 * Return the number of entries transferred.
994 */
995static int transfer_objects(struct array_cache *to,
996 struct array_cache *from, unsigned int max)
997{
998 /* Figure out how many entries to transfer */
999 int nr = min(min(from->avail, max), to->limit - to->avail);
1000
1001 if (!nr)
1002 return 0;
1003
1004 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1005 sizeof(void *) *nr);
1006
1007 from->avail -= nr;
1008 to->avail += nr;
1009 to->touched = 1;
1010 return nr;
1011}
1012
765c4507
CL
1013#ifndef CONFIG_NUMA
1014
1015#define drain_alien_cache(cachep, alien) do { } while (0)
1016#define reap_alien(cachep, l3) do { } while (0)
1017
1018static inline struct array_cache **alloc_alien_cache(int node, int limit)
1019{
1020 return (struct array_cache **)BAD_ALIEN_MAGIC;
1021}
1022
1023static inline void free_alien_cache(struct array_cache **ac_ptr)
1024{
1025}
1026
1027static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1028{
1029 return 0;
1030}
1031
1032static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1033 gfp_t flags)
1034{
1035 return NULL;
1036}
1037
8b98c169 1038static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1039 gfp_t flags, int nodeid)
1040{
1041 return NULL;
1042}
1043
1044#else /* CONFIG_NUMA */
1045
8b98c169 1046static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1047static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1048
5295a74c 1049static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1050{
1051 struct array_cache **ac_ptr;
8ef82866 1052 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1053 int i;
1054
1055 if (limit > 1)
1056 limit = 12;
1057 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1058 if (ac_ptr) {
1059 for_each_node(i) {
1060 if (i == node || !node_online(i)) {
1061 ac_ptr[i] = NULL;
1062 continue;
1063 }
1064 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1065 if (!ac_ptr[i]) {
b28a02de 1066 for (i--; i <= 0; i--)
e498be7d
CL
1067 kfree(ac_ptr[i]);
1068 kfree(ac_ptr);
1069 return NULL;
1070 }
1071 }
1072 }
1073 return ac_ptr;
1074}
1075
5295a74c 1076static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1077{
1078 int i;
1079
1080 if (!ac_ptr)
1081 return;
e498be7d 1082 for_each_node(i)
b28a02de 1083 kfree(ac_ptr[i]);
e498be7d
CL
1084 kfree(ac_ptr);
1085}
1086
343e0d7a 1087static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1088 struct array_cache *ac, int node)
e498be7d
CL
1089{
1090 struct kmem_list3 *rl3 = cachep->nodelists[node];
1091
1092 if (ac->avail) {
1093 spin_lock(&rl3->list_lock);
e00946fe
CL
1094 /*
1095 * Stuff objects into the remote nodes shared array first.
1096 * That way we could avoid the overhead of putting the objects
1097 * into the free lists and getting them back later.
1098 */
693f7d36 1099 if (rl3->shared)
1100 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1101
ff69416e 1102 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1103 ac->avail = 0;
1104 spin_unlock(&rl3->list_lock);
1105 }
1106}
1107
8fce4d8e
CL
1108/*
1109 * Called from cache_reap() to regularly drain alien caches round robin.
1110 */
1111static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1112{
1113 int node = __get_cpu_var(reap_node);
1114
1115 if (l3->alien) {
1116 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1117
1118 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1119 __drain_alien_cache(cachep, ac, node);
1120 spin_unlock_irq(&ac->lock);
1121 }
1122 }
1123}
1124
a737b3e2
AM
1125static void drain_alien_cache(struct kmem_cache *cachep,
1126 struct array_cache **alien)
e498be7d 1127{
b28a02de 1128 int i = 0;
e498be7d
CL
1129 struct array_cache *ac;
1130 unsigned long flags;
1131
1132 for_each_online_node(i) {
4484ebf1 1133 ac = alien[i];
e498be7d
CL
1134 if (ac) {
1135 spin_lock_irqsave(&ac->lock, flags);
1136 __drain_alien_cache(cachep, ac, i);
1137 spin_unlock_irqrestore(&ac->lock, flags);
1138 }
1139 }
1140}
729bd0b7 1141
873623df 1142static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1143{
1144 struct slab *slabp = virt_to_slab(objp);
1145 int nodeid = slabp->nodeid;
1146 struct kmem_list3 *l3;
1147 struct array_cache *alien = NULL;
1ca4cb24
PE
1148 int node;
1149
1150 node = numa_node_id();
729bd0b7
PE
1151
1152 /*
1153 * Make sure we are not freeing a object from another node to the array
1154 * cache on this cpu.
1155 */
62918a03 1156 if (likely(slabp->nodeid == node))
729bd0b7
PE
1157 return 0;
1158
1ca4cb24 1159 l3 = cachep->nodelists[node];
729bd0b7
PE
1160 STATS_INC_NODEFREES(cachep);
1161 if (l3->alien && l3->alien[nodeid]) {
1162 alien = l3->alien[nodeid];
873623df 1163 spin_lock(&alien->lock);
729bd0b7
PE
1164 if (unlikely(alien->avail == alien->limit)) {
1165 STATS_INC_ACOVERFLOW(cachep);
1166 __drain_alien_cache(cachep, alien, nodeid);
1167 }
1168 alien->entry[alien->avail++] = objp;
1169 spin_unlock(&alien->lock);
1170 } else {
1171 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1172 free_block(cachep, &objp, 1, nodeid);
1173 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1174 }
1175 return 1;
1176}
e498be7d
CL
1177#endif
1178
8c78f307 1179static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1180 unsigned long action, void *hcpu)
1da177e4
LT
1181{
1182 long cpu = (long)hcpu;
343e0d7a 1183 struct kmem_cache *cachep;
e498be7d
CL
1184 struct kmem_list3 *l3 = NULL;
1185 int node = cpu_to_node(cpu);
1186 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1187
1188 switch (action) {
38c3bd96 1189 case CPU_LOCK_ACQUIRE:
fc0abb14 1190 mutex_lock(&cache_chain_mutex);
38c3bd96
HC
1191 break;
1192 case CPU_UP_PREPARE:
8bb78442 1193 case CPU_UP_PREPARE_FROZEN:
a737b3e2
AM
1194 /*
1195 * We need to do this right in the beginning since
e498be7d
CL
1196 * alloc_arraycache's are going to use this list.
1197 * kmalloc_node allows us to add the slab to the right
1198 * kmem_list3 and not this cpu's kmem_list3
1199 */
1200
1da177e4 1201 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1202 /*
1203 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1204 * begin anything. Make sure some other cpu on this
1205 * node has not already allocated this
1206 */
1207 if (!cachep->nodelists[node]) {
a737b3e2
AM
1208 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1209 if (!l3)
e498be7d
CL
1210 goto bad;
1211 kmem_list3_init(l3);
1212 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1213 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1214
4484ebf1
RT
1215 /*
1216 * The l3s don't come and go as CPUs come and
1217 * go. cache_chain_mutex is sufficient
1218 * protection here.
1219 */
e498be7d
CL
1220 cachep->nodelists[node] = l3;
1221 }
1da177e4 1222
e498be7d
CL
1223 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1224 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1225 (1 + nr_cpus_node(node)) *
1226 cachep->batchcount + cachep->num;
e498be7d
CL
1227 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1228 }
1229
a737b3e2
AM
1230 /*
1231 * Now we can go ahead with allocating the shared arrays and
1232 * array caches
1233 */
e498be7d 1234 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1235 struct array_cache *nc;
63109846 1236 struct array_cache *shared = NULL;
3395ee05 1237 struct array_cache **alien = NULL;
cd105df4 1238
e498be7d 1239 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1240 cachep->batchcount);
1da177e4
LT
1241 if (!nc)
1242 goto bad;
63109846
ED
1243 if (cachep->shared) {
1244 shared = alloc_arraycache(node,
4484ebf1
RT
1245 cachep->shared * cachep->batchcount,
1246 0xbaadf00d);
63109846
ED
1247 if (!shared)
1248 goto bad;
1249 }
3395ee05
PM
1250 if (use_alien_caches) {
1251 alien = alloc_alien_cache(node, cachep->limit);
1252 if (!alien)
1253 goto bad;
1254 }
1da177e4 1255 cachep->array[cpu] = nc;
e498be7d
CL
1256 l3 = cachep->nodelists[node];
1257 BUG_ON(!l3);
e498be7d 1258
4484ebf1
RT
1259 spin_lock_irq(&l3->list_lock);
1260 if (!l3->shared) {
1261 /*
1262 * We are serialised from CPU_DEAD or
1263 * CPU_UP_CANCELLED by the cpucontrol lock
1264 */
1265 l3->shared = shared;
1266 shared = NULL;
e498be7d 1267 }
4484ebf1
RT
1268#ifdef CONFIG_NUMA
1269 if (!l3->alien) {
1270 l3->alien = alien;
1271 alien = NULL;
1272 }
1273#endif
1274 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1275 kfree(shared);
1276 free_alien_cache(alien);
1da177e4 1277 }
1da177e4
LT
1278 break;
1279 case CPU_ONLINE:
8bb78442 1280 case CPU_ONLINE_FROZEN:
1da177e4
LT
1281 start_cpu_timer(cpu);
1282 break;
1283#ifdef CONFIG_HOTPLUG_CPU
5830c590 1284 case CPU_DOWN_PREPARE:
8bb78442 1285 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1286 /*
1287 * Shutdown cache reaper. Note that the cache_chain_mutex is
1288 * held so that if cache_reap() is invoked it cannot do
1289 * anything expensive but will only modify reap_work
1290 * and reschedule the timer.
1291 */
1292 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1293 /* Now the cache_reaper is guaranteed to be not running. */
1294 per_cpu(reap_work, cpu).work.func = NULL;
1295 break;
1296 case CPU_DOWN_FAILED:
8bb78442 1297 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1298 start_cpu_timer(cpu);
1299 break;
1da177e4 1300 case CPU_DEAD:
8bb78442 1301 case CPU_DEAD_FROZEN:
4484ebf1
RT
1302 /*
1303 * Even if all the cpus of a node are down, we don't free the
1304 * kmem_list3 of any cache. This to avoid a race between
1305 * cpu_down, and a kmalloc allocation from another cpu for
1306 * memory from the node of the cpu going down. The list3
1307 * structure is usually allocated from kmem_cache_create() and
1308 * gets destroyed at kmem_cache_destroy().
1309 */
1da177e4 1310 /* fall thru */
8f5be20b 1311#endif
1da177e4 1312 case CPU_UP_CANCELED:
8bb78442 1313 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
1314 list_for_each_entry(cachep, &cache_chain, next) {
1315 struct array_cache *nc;
4484ebf1
RT
1316 struct array_cache *shared;
1317 struct array_cache **alien;
e498be7d 1318 cpumask_t mask;
1da177e4 1319
e498be7d 1320 mask = node_to_cpumask(node);
1da177e4
LT
1321 /* cpu is dead; no one can alloc from it. */
1322 nc = cachep->array[cpu];
1323 cachep->array[cpu] = NULL;
e498be7d
CL
1324 l3 = cachep->nodelists[node];
1325
1326 if (!l3)
4484ebf1 1327 goto free_array_cache;
e498be7d 1328
ca3b9b91 1329 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1330
1331 /* Free limit for this kmem_list3 */
1332 l3->free_limit -= cachep->batchcount;
1333 if (nc)
ff69416e 1334 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1335
1336 if (!cpus_empty(mask)) {
ca3b9b91 1337 spin_unlock_irq(&l3->list_lock);
4484ebf1 1338 goto free_array_cache;
b28a02de 1339 }
e498be7d 1340
4484ebf1
RT
1341 shared = l3->shared;
1342 if (shared) {
63109846
ED
1343 free_block(cachep, shared->entry,
1344 shared->avail, node);
e498be7d
CL
1345 l3->shared = NULL;
1346 }
e498be7d 1347
4484ebf1
RT
1348 alien = l3->alien;
1349 l3->alien = NULL;
1350
1351 spin_unlock_irq(&l3->list_lock);
1352
1353 kfree(shared);
1354 if (alien) {
1355 drain_alien_cache(cachep, alien);
1356 free_alien_cache(alien);
e498be7d 1357 }
4484ebf1 1358free_array_cache:
1da177e4
LT
1359 kfree(nc);
1360 }
4484ebf1
RT
1361 /*
1362 * In the previous loop, all the objects were freed to
1363 * the respective cache's slabs, now we can go ahead and
1364 * shrink each nodelist to its limit.
1365 */
1366 list_for_each_entry(cachep, &cache_chain, next) {
1367 l3 = cachep->nodelists[node];
1368 if (!l3)
1369 continue;
ed11d9eb 1370 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1371 }
38c3bd96
HC
1372 break;
1373 case CPU_LOCK_RELEASE:
fc0abb14 1374 mutex_unlock(&cache_chain_mutex);
1da177e4 1375 break;
1da177e4
LT
1376 }
1377 return NOTIFY_OK;
a737b3e2 1378bad:
1da177e4
LT
1379 return NOTIFY_BAD;
1380}
1381
74b85f37
CS
1382static struct notifier_block __cpuinitdata cpucache_notifier = {
1383 &cpuup_callback, NULL, 0
1384};
1da177e4 1385
e498be7d
CL
1386/*
1387 * swap the static kmem_list3 with kmalloced memory
1388 */
a737b3e2
AM
1389static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1390 int nodeid)
e498be7d
CL
1391{
1392 struct kmem_list3 *ptr;
1393
e498be7d
CL
1394 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1395 BUG_ON(!ptr);
1396
1397 local_irq_disable();
1398 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1399 /*
1400 * Do not assume that spinlocks can be initialized via memcpy:
1401 */
1402 spin_lock_init(&ptr->list_lock);
1403
e498be7d
CL
1404 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1405 cachep->nodelists[nodeid] = ptr;
1406 local_irq_enable();
1407}
1408
a737b3e2
AM
1409/*
1410 * Initialisation. Called after the page allocator have been initialised and
1411 * before smp_init().
1da177e4
LT
1412 */
1413void __init kmem_cache_init(void)
1414{
1415 size_t left_over;
1416 struct cache_sizes *sizes;
1417 struct cache_names *names;
e498be7d 1418 int i;
07ed76b2 1419 int order;
1ca4cb24 1420 int node;
e498be7d 1421
62918a03
SS
1422 if (num_possible_nodes() == 1)
1423 use_alien_caches = 0;
1424
e498be7d
CL
1425 for (i = 0; i < NUM_INIT_LISTS; i++) {
1426 kmem_list3_init(&initkmem_list3[i]);
1427 if (i < MAX_NUMNODES)
1428 cache_cache.nodelists[i] = NULL;
1429 }
1da177e4
LT
1430
1431 /*
1432 * Fragmentation resistance on low memory - only use bigger
1433 * page orders on machines with more than 32MB of memory.
1434 */
1435 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1436 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1437
1da177e4
LT
1438 /* Bootstrap is tricky, because several objects are allocated
1439 * from caches that do not exist yet:
a737b3e2
AM
1440 * 1) initialize the cache_cache cache: it contains the struct
1441 * kmem_cache structures of all caches, except cache_cache itself:
1442 * cache_cache is statically allocated.
e498be7d
CL
1443 * Initially an __init data area is used for the head array and the
1444 * kmem_list3 structures, it's replaced with a kmalloc allocated
1445 * array at the end of the bootstrap.
1da177e4 1446 * 2) Create the first kmalloc cache.
343e0d7a 1447 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1448 * An __init data area is used for the head array.
1449 * 3) Create the remaining kmalloc caches, with minimally sized
1450 * head arrays.
1da177e4
LT
1451 * 4) Replace the __init data head arrays for cache_cache and the first
1452 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1453 * 5) Replace the __init data for kmem_list3 for cache_cache and
1454 * the other cache's with kmalloc allocated memory.
1455 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1456 */
1457
1ca4cb24
PE
1458 node = numa_node_id();
1459
1da177e4 1460 /* 1) create the cache_cache */
1da177e4
LT
1461 INIT_LIST_HEAD(&cache_chain);
1462 list_add(&cache_cache.next, &cache_chain);
1463 cache_cache.colour_off = cache_line_size();
1464 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1465 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1466
8da3430d
ED
1467 /*
1468 * struct kmem_cache size depends on nr_node_ids, which
1469 * can be less than MAX_NUMNODES.
1470 */
1471 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1472 nr_node_ids * sizeof(struct kmem_list3 *);
1473#if DEBUG
1474 cache_cache.obj_size = cache_cache.buffer_size;
1475#endif
a737b3e2
AM
1476 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1477 cache_line_size());
6a2d7a95
ED
1478 cache_cache.reciprocal_buffer_size =
1479 reciprocal_value(cache_cache.buffer_size);
1da177e4 1480
07ed76b2
JS
1481 for (order = 0; order < MAX_ORDER; order++) {
1482 cache_estimate(order, cache_cache.buffer_size,
1483 cache_line_size(), 0, &left_over, &cache_cache.num);
1484 if (cache_cache.num)
1485 break;
1486 }
40094fa6 1487 BUG_ON(!cache_cache.num);
07ed76b2 1488 cache_cache.gfporder = order;
b28a02de 1489 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1490 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1491 sizeof(struct slab), cache_line_size());
1da177e4
LT
1492
1493 /* 2+3) create the kmalloc caches */
1494 sizes = malloc_sizes;
1495 names = cache_names;
1496
a737b3e2
AM
1497 /*
1498 * Initialize the caches that provide memory for the array cache and the
1499 * kmem_list3 structures first. Without this, further allocations will
1500 * bug.
e498be7d
CL
1501 */
1502
1503 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1504 sizes[INDEX_AC].cs_size,
1505 ARCH_KMALLOC_MINALIGN,
1506 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1507 NULL, NULL);
e498be7d 1508
a737b3e2 1509 if (INDEX_AC != INDEX_L3) {
e498be7d 1510 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1511 kmem_cache_create(names[INDEX_L3].name,
1512 sizes[INDEX_L3].cs_size,
1513 ARCH_KMALLOC_MINALIGN,
1514 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1515 NULL, NULL);
1516 }
e498be7d 1517
e0a42726
IM
1518 slab_early_init = 0;
1519
1da177e4 1520 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1521 /*
1522 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1523 * This should be particularly beneficial on SMP boxes, as it
1524 * eliminates "false sharing".
1525 * Note for systems short on memory removing the alignment will
e498be7d
CL
1526 * allow tighter packing of the smaller caches.
1527 */
a737b3e2 1528 if (!sizes->cs_cachep) {
e498be7d 1529 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1530 sizes->cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1533 NULL, NULL);
1534 }
4b51d669
CL
1535#ifdef CONFIG_ZONE_DMA
1536 sizes->cs_dmacachep = kmem_cache_create(
1537 names->name_dma,
a737b3e2
AM
1538 sizes->cs_size,
1539 ARCH_KMALLOC_MINALIGN,
1540 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1541 SLAB_PANIC,
1542 NULL, NULL);
4b51d669 1543#endif
1da177e4
LT
1544 sizes++;
1545 names++;
1546 }
1547 /* 4) Replace the bootstrap head arrays */
1548 {
2b2d5493 1549 struct array_cache *ptr;
e498be7d 1550
1da177e4 1551 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1552
1da177e4 1553 local_irq_disable();
9a2dba4b
PE
1554 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1555 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1556 sizeof(struct arraycache_init));
2b2d5493
IM
1557 /*
1558 * Do not assume that spinlocks can be initialized via memcpy:
1559 */
1560 spin_lock_init(&ptr->lock);
1561
1da177e4
LT
1562 cache_cache.array[smp_processor_id()] = ptr;
1563 local_irq_enable();
e498be7d 1564
1da177e4 1565 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1566
1da177e4 1567 local_irq_disable();
9a2dba4b 1568 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1569 != &initarray_generic.cache);
9a2dba4b 1570 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1571 sizeof(struct arraycache_init));
2b2d5493
IM
1572 /*
1573 * Do not assume that spinlocks can be initialized via memcpy:
1574 */
1575 spin_lock_init(&ptr->lock);
1576
e498be7d 1577 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1578 ptr;
1da177e4
LT
1579 local_irq_enable();
1580 }
e498be7d
CL
1581 /* 5) Replace the bootstrap kmem_list3's */
1582 {
1ca4cb24
PE
1583 int nid;
1584
e498be7d 1585 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1586 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1587
1ca4cb24 1588 for_each_online_node(nid) {
e498be7d 1589 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1590 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1591
1592 if (INDEX_AC != INDEX_L3) {
1593 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1594 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1595 }
1596 }
1597 }
1da177e4 1598
e498be7d 1599 /* 6) resize the head arrays to their final sizes */
1da177e4 1600 {
343e0d7a 1601 struct kmem_cache *cachep;
fc0abb14 1602 mutex_lock(&cache_chain_mutex);
1da177e4 1603 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1604 if (enable_cpucache(cachep))
1605 BUG();
fc0abb14 1606 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1607 }
1608
056c6241
RT
1609 /* Annotate slab for lockdep -- annotate the malloc caches */
1610 init_lock_keys();
1611
1612
1da177e4
LT
1613 /* Done! */
1614 g_cpucache_up = FULL;
1615
a737b3e2
AM
1616 /*
1617 * Register a cpu startup notifier callback that initializes
1618 * cpu_cache_get for all new cpus
1da177e4
LT
1619 */
1620 register_cpu_notifier(&cpucache_notifier);
1da177e4 1621
a737b3e2
AM
1622 /*
1623 * The reap timers are started later, with a module init call: That part
1624 * of the kernel is not yet operational.
1da177e4
LT
1625 */
1626}
1627
1628static int __init cpucache_init(void)
1629{
1630 int cpu;
1631
a737b3e2
AM
1632 /*
1633 * Register the timers that return unneeded pages to the page allocator
1da177e4 1634 */
e498be7d 1635 for_each_online_cpu(cpu)
a737b3e2 1636 start_cpu_timer(cpu);
1da177e4
LT
1637 return 0;
1638}
1da177e4
LT
1639__initcall(cpucache_init);
1640
1641/*
1642 * Interface to system's page allocator. No need to hold the cache-lock.
1643 *
1644 * If we requested dmaable memory, we will get it. Even if we
1645 * did not request dmaable memory, we might get it, but that
1646 * would be relatively rare and ignorable.
1647 */
343e0d7a 1648static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1649{
1650 struct page *page;
e1b6aa6f 1651 int nr_pages;
1da177e4
LT
1652 int i;
1653
d6fef9da 1654#ifndef CONFIG_MMU
e1b6aa6f
CH
1655 /*
1656 * Nommu uses slab's for process anonymous memory allocations, and thus
1657 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1658 */
e1b6aa6f 1659 flags |= __GFP_COMP;
d6fef9da 1660#endif
765c4507 1661
3c517a61 1662 flags |= cachep->gfpflags;
e1b6aa6f
CH
1663
1664 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1665 if (!page)
1666 return NULL;
1da177e4 1667
e1b6aa6f 1668 nr_pages = (1 << cachep->gfporder);
1da177e4 1669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1670 add_zone_page_state(page_zone(page),
1671 NR_SLAB_RECLAIMABLE, nr_pages);
1672 else
1673 add_zone_page_state(page_zone(page),
1674 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1675 for (i = 0; i < nr_pages; i++)
1676 __SetPageSlab(page + i);
1677 return page_address(page);
1da177e4
LT
1678}
1679
1680/*
1681 * Interface to system's page release.
1682 */
343e0d7a 1683static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1684{
b28a02de 1685 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1686 struct page *page = virt_to_page(addr);
1687 const unsigned long nr_freed = i;
1688
972d1a7b
CL
1689 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1690 sub_zone_page_state(page_zone(page),
1691 NR_SLAB_RECLAIMABLE, nr_freed);
1692 else
1693 sub_zone_page_state(page_zone(page),
1694 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1695 while (i--) {
f205b2fe
NP
1696 BUG_ON(!PageSlab(page));
1697 __ClearPageSlab(page);
1da177e4
LT
1698 page++;
1699 }
1da177e4
LT
1700 if (current->reclaim_state)
1701 current->reclaim_state->reclaimed_slab += nr_freed;
1702 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1703}
1704
1705static void kmem_rcu_free(struct rcu_head *head)
1706{
b28a02de 1707 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1708 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1709
1710 kmem_freepages(cachep, slab_rcu->addr);
1711 if (OFF_SLAB(cachep))
1712 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1713}
1714
1715#if DEBUG
1716
1717#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1718static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1719 unsigned long caller)
1da177e4 1720{
3dafccf2 1721 int size = obj_size(cachep);
1da177e4 1722
3dafccf2 1723 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1724
b28a02de 1725 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1726 return;
1727
b28a02de
PE
1728 *addr++ = 0x12345678;
1729 *addr++ = caller;
1730 *addr++ = smp_processor_id();
1731 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1732 {
1733 unsigned long *sptr = &caller;
1734 unsigned long svalue;
1735
1736 while (!kstack_end(sptr)) {
1737 svalue = *sptr++;
1738 if (kernel_text_address(svalue)) {
b28a02de 1739 *addr++ = svalue;
1da177e4
LT
1740 size -= sizeof(unsigned long);
1741 if (size <= sizeof(unsigned long))
1742 break;
1743 }
1744 }
1745
1746 }
b28a02de 1747 *addr++ = 0x87654321;
1da177e4
LT
1748}
1749#endif
1750
343e0d7a 1751static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1752{
3dafccf2
MS
1753 int size = obj_size(cachep);
1754 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1755
1756 memset(addr, val, size);
b28a02de 1757 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1758}
1759
1760static void dump_line(char *data, int offset, int limit)
1761{
1762 int i;
aa83aa40
DJ
1763 unsigned char error = 0;
1764 int bad_count = 0;
1765
1da177e4 1766 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1767 for (i = 0; i < limit; i++) {
1768 if (data[offset + i] != POISON_FREE) {
1769 error = data[offset + i];
1770 bad_count++;
1771 }
b28a02de 1772 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1773 }
1da177e4 1774 printk("\n");
aa83aa40
DJ
1775
1776 if (bad_count == 1) {
1777 error ^= POISON_FREE;
1778 if (!(error & (error - 1))) {
1779 printk(KERN_ERR "Single bit error detected. Probably "
1780 "bad RAM.\n");
1781#ifdef CONFIG_X86
1782 printk(KERN_ERR "Run memtest86+ or a similar memory "
1783 "test tool.\n");
1784#else
1785 printk(KERN_ERR "Run a memory test tool.\n");
1786#endif
1787 }
1788 }
1da177e4
LT
1789}
1790#endif
1791
1792#if DEBUG
1793
343e0d7a 1794static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1795{
1796 int i, size;
1797 char *realobj;
1798
1799 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1800 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1801 *dbg_redzone1(cachep, objp),
1802 *dbg_redzone2(cachep, objp));
1da177e4
LT
1803 }
1804
1805 if (cachep->flags & SLAB_STORE_USER) {
1806 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1807 *dbg_userword(cachep, objp));
1da177e4 1808 print_symbol("(%s)",
a737b3e2 1809 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1810 printk("\n");
1811 }
3dafccf2
MS
1812 realobj = (char *)objp + obj_offset(cachep);
1813 size = obj_size(cachep);
b28a02de 1814 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1815 int limit;
1816 limit = 16;
b28a02de
PE
1817 if (i + limit > size)
1818 limit = size - i;
1da177e4
LT
1819 dump_line(realobj, i, limit);
1820 }
1821}
1822
343e0d7a 1823static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1824{
1825 char *realobj;
1826 int size, i;
1827 int lines = 0;
1828
3dafccf2
MS
1829 realobj = (char *)objp + obj_offset(cachep);
1830 size = obj_size(cachep);
1da177e4 1831
b28a02de 1832 for (i = 0; i < size; i++) {
1da177e4 1833 char exp = POISON_FREE;
b28a02de 1834 if (i == size - 1)
1da177e4
LT
1835 exp = POISON_END;
1836 if (realobj[i] != exp) {
1837 int limit;
1838 /* Mismatch ! */
1839 /* Print header */
1840 if (lines == 0) {
b28a02de 1841 printk(KERN_ERR
e94a40c5
DH
1842 "Slab corruption: %s start=%p, len=%d\n",
1843 cachep->name, realobj, size);
1da177e4
LT
1844 print_objinfo(cachep, objp, 0);
1845 }
1846 /* Hexdump the affected line */
b28a02de 1847 i = (i / 16) * 16;
1da177e4 1848 limit = 16;
b28a02de
PE
1849 if (i + limit > size)
1850 limit = size - i;
1da177e4
LT
1851 dump_line(realobj, i, limit);
1852 i += 16;
1853 lines++;
1854 /* Limit to 5 lines */
1855 if (lines > 5)
1856 break;
1857 }
1858 }
1859 if (lines != 0) {
1860 /* Print some data about the neighboring objects, if they
1861 * exist:
1862 */
6ed5eb22 1863 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1864 unsigned int objnr;
1da177e4 1865
8fea4e96 1866 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1867 if (objnr) {
8fea4e96 1868 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1869 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1870 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1871 realobj, size);
1da177e4
LT
1872 print_objinfo(cachep, objp, 2);
1873 }
b28a02de 1874 if (objnr + 1 < cachep->num) {
8fea4e96 1875 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1876 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1877 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1878 realobj, size);
1da177e4
LT
1879 print_objinfo(cachep, objp, 2);
1880 }
1881 }
1882}
1883#endif
1884
12dd36fa
MD
1885#if DEBUG
1886/**
911851e6
RD
1887 * slab_destroy_objs - destroy a slab and its objects
1888 * @cachep: cache pointer being destroyed
1889 * @slabp: slab pointer being destroyed
1890 *
1891 * Call the registered destructor for each object in a slab that is being
1892 * destroyed.
1da177e4 1893 */
343e0d7a 1894static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1895{
1da177e4
LT
1896 int i;
1897 for (i = 0; i < cachep->num; i++) {
8fea4e96 1898 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1899
1900 if (cachep->flags & SLAB_POISON) {
1901#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1902 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1903 OFF_SLAB(cachep))
b28a02de 1904 kernel_map_pages(virt_to_page(objp),
a737b3e2 1905 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1906 else
1907 check_poison_obj(cachep, objp);
1908#else
1909 check_poison_obj(cachep, objp);
1910#endif
1911 }
1912 if (cachep->flags & SLAB_RED_ZONE) {
1913 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1914 slab_error(cachep, "start of a freed object "
b28a02de 1915 "was overwritten");
1da177e4
LT
1916 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1917 slab_error(cachep, "end of a freed object "
b28a02de 1918 "was overwritten");
1da177e4
LT
1919 }
1920 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1921 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1922 }
12dd36fa 1923}
1da177e4 1924#else
343e0d7a 1925static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1926{
1da177e4
LT
1927 if (cachep->dtor) {
1928 int i;
1929 for (i = 0; i < cachep->num; i++) {
8fea4e96 1930 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1931 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1932 }
1933 }
12dd36fa 1934}
1da177e4
LT
1935#endif
1936
911851e6
RD
1937/**
1938 * slab_destroy - destroy and release all objects in a slab
1939 * @cachep: cache pointer being destroyed
1940 * @slabp: slab pointer being destroyed
1941 *
12dd36fa 1942 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1943 * Before calling the slab must have been unlinked from the cache. The
1944 * cache-lock is not held/needed.
12dd36fa 1945 */
343e0d7a 1946static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1947{
1948 void *addr = slabp->s_mem - slabp->colouroff;
1949
1950 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1951 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1952 struct slab_rcu *slab_rcu;
1953
b28a02de 1954 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1955 slab_rcu->cachep = cachep;
1956 slab_rcu->addr = addr;
1957 call_rcu(&slab_rcu->head, kmem_rcu_free);
1958 } else {
1959 kmem_freepages(cachep, addr);
873623df
IM
1960 if (OFF_SLAB(cachep))
1961 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1962 }
1963}
1964
a737b3e2
AM
1965/*
1966 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1967 * size of kmem_list3.
1968 */
a3a02be7 1969static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1970{
1971 int node;
1972
1973 for_each_online_node(node) {
b28a02de 1974 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1975 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1976 REAPTIMEOUT_LIST3 +
1977 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1978 }
1979}
1980
117f6eb1
CL
1981static void __kmem_cache_destroy(struct kmem_cache *cachep)
1982{
1983 int i;
1984 struct kmem_list3 *l3;
1985
1986 for_each_online_cpu(i)
1987 kfree(cachep->array[i]);
1988
1989 /* NUMA: free the list3 structures */
1990 for_each_online_node(i) {
1991 l3 = cachep->nodelists[i];
1992 if (l3) {
1993 kfree(l3->shared);
1994 free_alien_cache(l3->alien);
1995 kfree(l3);
1996 }
1997 }
1998 kmem_cache_free(&cache_cache, cachep);
1999}
2000
2001
4d268eba 2002/**
a70773dd
RD
2003 * calculate_slab_order - calculate size (page order) of slabs
2004 * @cachep: pointer to the cache that is being created
2005 * @size: size of objects to be created in this cache.
2006 * @align: required alignment for the objects.
2007 * @flags: slab allocation flags
2008 *
2009 * Also calculates the number of objects per slab.
4d268eba
PE
2010 *
2011 * This could be made much more intelligent. For now, try to avoid using
2012 * high order pages for slabs. When the gfp() functions are more friendly
2013 * towards high-order requests, this should be changed.
2014 */
a737b3e2 2015static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2016 size_t size, size_t align, unsigned long flags)
4d268eba 2017{
b1ab41c4 2018 unsigned long offslab_limit;
4d268eba 2019 size_t left_over = 0;
9888e6fa 2020 int gfporder;
4d268eba 2021
a737b3e2 2022 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
2023 unsigned int num;
2024 size_t remainder;
2025
9888e6fa 2026 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2027 if (!num)
2028 continue;
9888e6fa 2029
b1ab41c4
IM
2030 if (flags & CFLGS_OFF_SLAB) {
2031 /*
2032 * Max number of objs-per-slab for caches which
2033 * use off-slab slabs. Needed to avoid a possible
2034 * looping condition in cache_grow().
2035 */
2036 offslab_limit = size - sizeof(struct slab);
2037 offslab_limit /= sizeof(kmem_bufctl_t);
2038
2039 if (num > offslab_limit)
2040 break;
2041 }
4d268eba 2042
9888e6fa 2043 /* Found something acceptable - save it away */
4d268eba 2044 cachep->num = num;
9888e6fa 2045 cachep->gfporder = gfporder;
4d268eba
PE
2046 left_over = remainder;
2047
f78bb8ad
LT
2048 /*
2049 * A VFS-reclaimable slab tends to have most allocations
2050 * as GFP_NOFS and we really don't want to have to be allocating
2051 * higher-order pages when we are unable to shrink dcache.
2052 */
2053 if (flags & SLAB_RECLAIM_ACCOUNT)
2054 break;
2055
4d268eba
PE
2056 /*
2057 * Large number of objects is good, but very large slabs are
2058 * currently bad for the gfp()s.
2059 */
9888e6fa 2060 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2061 break;
2062
9888e6fa
LT
2063 /*
2064 * Acceptable internal fragmentation?
2065 */
a737b3e2 2066 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2067 break;
2068 }
2069 return left_over;
2070}
2071
2ed3a4ef 2072static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2073{
2ed3a4ef
CL
2074 if (g_cpucache_up == FULL)
2075 return enable_cpucache(cachep);
2076
f30cf7d1
PE
2077 if (g_cpucache_up == NONE) {
2078 /*
2079 * Note: the first kmem_cache_create must create the cache
2080 * that's used by kmalloc(24), otherwise the creation of
2081 * further caches will BUG().
2082 */
2083 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2084
2085 /*
2086 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2087 * the first cache, then we need to set up all its list3s,
2088 * otherwise the creation of further caches will BUG().
2089 */
2090 set_up_list3s(cachep, SIZE_AC);
2091 if (INDEX_AC == INDEX_L3)
2092 g_cpucache_up = PARTIAL_L3;
2093 else
2094 g_cpucache_up = PARTIAL_AC;
2095 } else {
2096 cachep->array[smp_processor_id()] =
2097 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2098
2099 if (g_cpucache_up == PARTIAL_AC) {
2100 set_up_list3s(cachep, SIZE_L3);
2101 g_cpucache_up = PARTIAL_L3;
2102 } else {
2103 int node;
2104 for_each_online_node(node) {
2105 cachep->nodelists[node] =
2106 kmalloc_node(sizeof(struct kmem_list3),
2107 GFP_KERNEL, node);
2108 BUG_ON(!cachep->nodelists[node]);
2109 kmem_list3_init(cachep->nodelists[node]);
2110 }
2111 }
2112 }
2113 cachep->nodelists[numa_node_id()]->next_reap =
2114 jiffies + REAPTIMEOUT_LIST3 +
2115 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2116
2117 cpu_cache_get(cachep)->avail = 0;
2118 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2119 cpu_cache_get(cachep)->batchcount = 1;
2120 cpu_cache_get(cachep)->touched = 0;
2121 cachep->batchcount = 1;
2122 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2123 return 0;
f30cf7d1
PE
2124}
2125
1da177e4
LT
2126/**
2127 * kmem_cache_create - Create a cache.
2128 * @name: A string which is used in /proc/slabinfo to identify this cache.
2129 * @size: The size of objects to be created in this cache.
2130 * @align: The required alignment for the objects.
2131 * @flags: SLAB flags
2132 * @ctor: A constructor for the objects.
2133 * @dtor: A destructor for the objects.
2134 *
2135 * Returns a ptr to the cache on success, NULL on failure.
2136 * Cannot be called within a int, but can be interrupted.
2137 * The @ctor is run when new pages are allocated by the cache
2138 * and the @dtor is run before the pages are handed back.
2139 *
2140 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2141 * the module calling this has to destroy the cache before getting unloaded.
2142 *
1da177e4
LT
2143 * The flags are
2144 *
2145 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2146 * to catch references to uninitialised memory.
2147 *
2148 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2149 * for buffer overruns.
2150 *
1da177e4
LT
2151 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2152 * cacheline. This can be beneficial if you're counting cycles as closely
2153 * as davem.
2154 */
343e0d7a 2155struct kmem_cache *
1da177e4 2156kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2157 unsigned long flags,
2158 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2159 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2160{
2161 size_t left_over, slab_size, ralign;
7a7c381d 2162 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2163
2164 /*
2165 * Sanity checks... these are all serious usage bugs.
2166 */
a737b3e2 2167 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2168 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2169 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2170 name);
b28a02de
PE
2171 BUG();
2172 }
1da177e4 2173
f0188f47 2174 /*
8f5be20b
RT
2175 * We use cache_chain_mutex to ensure a consistent view of
2176 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2177 */
fc0abb14 2178 mutex_lock(&cache_chain_mutex);
4f12bb4f 2179
7a7c381d 2180 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2181 char tmp;
2182 int res;
2183
2184 /*
2185 * This happens when the module gets unloaded and doesn't
2186 * destroy its slab cache and no-one else reuses the vmalloc
2187 * area of the module. Print a warning.
2188 */
138ae663 2189 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2190 if (res) {
b4169525 2191 printk(KERN_ERR
2192 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2193 pc->buffer_size);
4f12bb4f
AM
2194 continue;
2195 }
2196
b28a02de 2197 if (!strcmp(pc->name, name)) {
b4169525 2198 printk(KERN_ERR
2199 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2200 dump_stack();
2201 goto oops;
2202 }
2203 }
2204
1da177e4
LT
2205#if DEBUG
2206 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2207#if FORCED_DEBUG
2208 /*
2209 * Enable redzoning and last user accounting, except for caches with
2210 * large objects, if the increased size would increase the object size
2211 * above the next power of two: caches with object sizes just above a
2212 * power of two have a significant amount of internal fragmentation.
2213 */
a737b3e2 2214 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2215 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2216 if (!(flags & SLAB_DESTROY_BY_RCU))
2217 flags |= SLAB_POISON;
2218#endif
2219 if (flags & SLAB_DESTROY_BY_RCU)
2220 BUG_ON(flags & SLAB_POISON);
2221#endif
2222 if (flags & SLAB_DESTROY_BY_RCU)
2223 BUG_ON(dtor);
2224
2225 /*
a737b3e2
AM
2226 * Always checks flags, a caller might be expecting debug support which
2227 * isn't available.
1da177e4 2228 */
40094fa6 2229 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2230
a737b3e2
AM
2231 /*
2232 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2233 * unaligned accesses for some archs when redzoning is used, and makes
2234 * sure any on-slab bufctl's are also correctly aligned.
2235 */
b28a02de
PE
2236 if (size & (BYTES_PER_WORD - 1)) {
2237 size += (BYTES_PER_WORD - 1);
2238 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2239 }
2240
a737b3e2
AM
2241 /* calculate the final buffer alignment: */
2242
1da177e4
LT
2243 /* 1) arch recommendation: can be overridden for debug */
2244 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2245 /*
2246 * Default alignment: as specified by the arch code. Except if
2247 * an object is really small, then squeeze multiple objects into
2248 * one cacheline.
1da177e4
LT
2249 */
2250 ralign = cache_line_size();
b28a02de 2251 while (size <= ralign / 2)
1da177e4
LT
2252 ralign /= 2;
2253 } else {
2254 ralign = BYTES_PER_WORD;
2255 }
ca5f9703
PE
2256
2257 /*
2258 * Redzoning and user store require word alignment. Note this will be
2259 * overridden by architecture or caller mandated alignment if either
2260 * is greater than BYTES_PER_WORD.
2261 */
2262 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
b46b8f19 2263 ralign = __alignof__(unsigned long long);
ca5f9703 2264
a44b56d3 2265 /* 2) arch mandated alignment */
1da177e4
LT
2266 if (ralign < ARCH_SLAB_MINALIGN) {
2267 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2268 }
a44b56d3 2269 /* 3) caller mandated alignment */
1da177e4
LT
2270 if (ralign < align) {
2271 ralign = align;
1da177e4 2272 }
a44b56d3 2273 /* disable debug if necessary */
b46b8f19 2274 if (ralign > __alignof__(unsigned long long))
a44b56d3 2275 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2276 /*
ca5f9703 2277 * 4) Store it.
1da177e4
LT
2278 */
2279 align = ralign;
2280
2281 /* Get cache's description obj. */
e94b1766 2282 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2283 if (!cachep)
4f12bb4f 2284 goto oops;
1da177e4
LT
2285
2286#if DEBUG
3dafccf2 2287 cachep->obj_size = size;
1da177e4 2288
ca5f9703
PE
2289 /*
2290 * Both debugging options require word-alignment which is calculated
2291 * into align above.
2292 */
1da177e4 2293 if (flags & SLAB_RED_ZONE) {
1da177e4 2294 /* add space for red zone words */
b46b8f19
DW
2295 cachep->obj_offset += sizeof(unsigned long long);
2296 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2297 }
2298 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2299 /* user store requires one word storage behind the end of
2300 * the real object.
1da177e4 2301 */
1da177e4
LT
2302 size += BYTES_PER_WORD;
2303 }
2304#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2305 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2306 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2307 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2308 size = PAGE_SIZE;
2309 }
2310#endif
2311#endif
2312
e0a42726
IM
2313 /*
2314 * Determine if the slab management is 'on' or 'off' slab.
2315 * (bootstrapping cannot cope with offslab caches so don't do
2316 * it too early on.)
2317 */
2318 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2319 /*
2320 * Size is large, assume best to place the slab management obj
2321 * off-slab (should allow better packing of objs).
2322 */
2323 flags |= CFLGS_OFF_SLAB;
2324
2325 size = ALIGN(size, align);
2326
f78bb8ad 2327 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2328
2329 if (!cachep->num) {
b4169525 2330 printk(KERN_ERR
2331 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2332 kmem_cache_free(&cache_cache, cachep);
2333 cachep = NULL;
4f12bb4f 2334 goto oops;
1da177e4 2335 }
b28a02de
PE
2336 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2337 + sizeof(struct slab), align);
1da177e4
LT
2338
2339 /*
2340 * If the slab has been placed off-slab, and we have enough space then
2341 * move it on-slab. This is at the expense of any extra colouring.
2342 */
2343 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2344 flags &= ~CFLGS_OFF_SLAB;
2345 left_over -= slab_size;
2346 }
2347
2348 if (flags & CFLGS_OFF_SLAB) {
2349 /* really off slab. No need for manual alignment */
b28a02de
PE
2350 slab_size =
2351 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2352 }
2353
2354 cachep->colour_off = cache_line_size();
2355 /* Offset must be a multiple of the alignment. */
2356 if (cachep->colour_off < align)
2357 cachep->colour_off = align;
b28a02de 2358 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2359 cachep->slab_size = slab_size;
2360 cachep->flags = flags;
2361 cachep->gfpflags = 0;
4b51d669 2362 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2363 cachep->gfpflags |= GFP_DMA;
3dafccf2 2364 cachep->buffer_size = size;
6a2d7a95 2365 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2366
e5ac9c5a 2367 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2368 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2369 /*
2370 * This is a possibility for one of the malloc_sizes caches.
2371 * But since we go off slab only for object size greater than
2372 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2373 * this should not happen at all.
2374 * But leave a BUG_ON for some lucky dude.
2375 */
2376 BUG_ON(!cachep->slabp_cache);
2377 }
1da177e4
LT
2378 cachep->ctor = ctor;
2379 cachep->dtor = dtor;
2380 cachep->name = name;
2381
2ed3a4ef
CL
2382 if (setup_cpu_cache(cachep)) {
2383 __kmem_cache_destroy(cachep);
2384 cachep = NULL;
2385 goto oops;
2386 }
1da177e4 2387
1da177e4
LT
2388 /* cache setup completed, link it into the list */
2389 list_add(&cachep->next, &cache_chain);
a737b3e2 2390oops:
1da177e4
LT
2391 if (!cachep && (flags & SLAB_PANIC))
2392 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2393 name);
fc0abb14 2394 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2395 return cachep;
2396}
2397EXPORT_SYMBOL(kmem_cache_create);
2398
2399#if DEBUG
2400static void check_irq_off(void)
2401{
2402 BUG_ON(!irqs_disabled());
2403}
2404
2405static void check_irq_on(void)
2406{
2407 BUG_ON(irqs_disabled());
2408}
2409
343e0d7a 2410static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2411{
2412#ifdef CONFIG_SMP
2413 check_irq_off();
e498be7d 2414 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2415#endif
2416}
e498be7d 2417
343e0d7a 2418static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2419{
2420#ifdef CONFIG_SMP
2421 check_irq_off();
2422 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2423#endif
2424}
2425
1da177e4
LT
2426#else
2427#define check_irq_off() do { } while(0)
2428#define check_irq_on() do { } while(0)
2429#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2430#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2431#endif
2432
aab2207c
CL
2433static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2434 struct array_cache *ac,
2435 int force, int node);
2436
1da177e4
LT
2437static void do_drain(void *arg)
2438{
a737b3e2 2439 struct kmem_cache *cachep = arg;
1da177e4 2440 struct array_cache *ac;
ff69416e 2441 int node = numa_node_id();
1da177e4
LT
2442
2443 check_irq_off();
9a2dba4b 2444 ac = cpu_cache_get(cachep);
ff69416e
CL
2445 spin_lock(&cachep->nodelists[node]->list_lock);
2446 free_block(cachep, ac->entry, ac->avail, node);
2447 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2448 ac->avail = 0;
2449}
2450
343e0d7a 2451static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2452{
e498be7d
CL
2453 struct kmem_list3 *l3;
2454 int node;
2455
a07fa394 2456 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2457 check_irq_on();
b28a02de 2458 for_each_online_node(node) {
e498be7d 2459 l3 = cachep->nodelists[node];
a4523a8b
RD
2460 if (l3 && l3->alien)
2461 drain_alien_cache(cachep, l3->alien);
2462 }
2463
2464 for_each_online_node(node) {
2465 l3 = cachep->nodelists[node];
2466 if (l3)
aab2207c 2467 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2468 }
1da177e4
LT
2469}
2470
ed11d9eb
CL
2471/*
2472 * Remove slabs from the list of free slabs.
2473 * Specify the number of slabs to drain in tofree.
2474 *
2475 * Returns the actual number of slabs released.
2476 */
2477static int drain_freelist(struct kmem_cache *cache,
2478 struct kmem_list3 *l3, int tofree)
1da177e4 2479{
ed11d9eb
CL
2480 struct list_head *p;
2481 int nr_freed;
1da177e4 2482 struct slab *slabp;
1da177e4 2483
ed11d9eb
CL
2484 nr_freed = 0;
2485 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2486
ed11d9eb 2487 spin_lock_irq(&l3->list_lock);
e498be7d 2488 p = l3->slabs_free.prev;
ed11d9eb
CL
2489 if (p == &l3->slabs_free) {
2490 spin_unlock_irq(&l3->list_lock);
2491 goto out;
2492 }
1da177e4 2493
ed11d9eb 2494 slabp = list_entry(p, struct slab, list);
1da177e4 2495#if DEBUG
40094fa6 2496 BUG_ON(slabp->inuse);
1da177e4
LT
2497#endif
2498 list_del(&slabp->list);
ed11d9eb
CL
2499 /*
2500 * Safe to drop the lock. The slab is no longer linked
2501 * to the cache.
2502 */
2503 l3->free_objects -= cache->num;
e498be7d 2504 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2505 slab_destroy(cache, slabp);
2506 nr_freed++;
1da177e4 2507 }
ed11d9eb
CL
2508out:
2509 return nr_freed;
1da177e4
LT
2510}
2511
8f5be20b 2512/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2513static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2514{
2515 int ret = 0, i = 0;
2516 struct kmem_list3 *l3;
2517
2518 drain_cpu_caches(cachep);
2519
2520 check_irq_on();
2521 for_each_online_node(i) {
2522 l3 = cachep->nodelists[i];
ed11d9eb
CL
2523 if (!l3)
2524 continue;
2525
2526 drain_freelist(cachep, l3, l3->free_objects);
2527
2528 ret += !list_empty(&l3->slabs_full) ||
2529 !list_empty(&l3->slabs_partial);
e498be7d
CL
2530 }
2531 return (ret ? 1 : 0);
2532}
2533
1da177e4
LT
2534/**
2535 * kmem_cache_shrink - Shrink a cache.
2536 * @cachep: The cache to shrink.
2537 *
2538 * Releases as many slabs as possible for a cache.
2539 * To help debugging, a zero exit status indicates all slabs were released.
2540 */
343e0d7a 2541int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2542{
8f5be20b 2543 int ret;
40094fa6 2544 BUG_ON(!cachep || in_interrupt());
1da177e4 2545
8f5be20b
RT
2546 mutex_lock(&cache_chain_mutex);
2547 ret = __cache_shrink(cachep);
2548 mutex_unlock(&cache_chain_mutex);
2549 return ret;
1da177e4
LT
2550}
2551EXPORT_SYMBOL(kmem_cache_shrink);
2552
2553/**
2554 * kmem_cache_destroy - delete a cache
2555 * @cachep: the cache to destroy
2556 *
72fd4a35 2557 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2558 *
2559 * It is expected this function will be called by a module when it is
2560 * unloaded. This will remove the cache completely, and avoid a duplicate
2561 * cache being allocated each time a module is loaded and unloaded, if the
2562 * module doesn't have persistent in-kernel storage across loads and unloads.
2563 *
2564 * The cache must be empty before calling this function.
2565 *
2566 * The caller must guarantee that noone will allocate memory from the cache
2567 * during the kmem_cache_destroy().
2568 */
133d205a 2569void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2570{
40094fa6 2571 BUG_ON(!cachep || in_interrupt());
1da177e4 2572
1da177e4 2573 /* Find the cache in the chain of caches. */
fc0abb14 2574 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2575 /*
2576 * the chain is never empty, cache_cache is never destroyed
2577 */
2578 list_del(&cachep->next);
1da177e4
LT
2579 if (__cache_shrink(cachep)) {
2580 slab_error(cachep, "Can't free all objects");
b28a02de 2581 list_add(&cachep->next, &cache_chain);
fc0abb14 2582 mutex_unlock(&cache_chain_mutex);
133d205a 2583 return;
1da177e4
LT
2584 }
2585
2586 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2587 synchronize_rcu();
1da177e4 2588
117f6eb1 2589 __kmem_cache_destroy(cachep);
8f5be20b 2590 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2591}
2592EXPORT_SYMBOL(kmem_cache_destroy);
2593
e5ac9c5a
RT
2594/*
2595 * Get the memory for a slab management obj.
2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597 * always come from malloc_sizes caches. The slab descriptor cannot
2598 * come from the same cache which is getting created because,
2599 * when we are searching for an appropriate cache for these
2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601 * If we are creating a malloc_sizes cache here it would not be visible to
2602 * kmem_find_general_cachep till the initialization is complete.
2603 * Hence we cannot have slabp_cache same as the original cache.
2604 */
343e0d7a 2605static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2606 int colour_off, gfp_t local_flags,
2607 int nodeid)
1da177e4
LT
2608{
2609 struct slab *slabp;
b28a02de 2610
1da177e4
LT
2611 if (OFF_SLAB(cachep)) {
2612 /* Slab management obj is off-slab. */
5b74ada7 2613 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2614 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2615 if (!slabp)
2616 return NULL;
2617 } else {
b28a02de 2618 slabp = objp + colour_off;
1da177e4
LT
2619 colour_off += cachep->slab_size;
2620 }
2621 slabp->inuse = 0;
2622 slabp->colouroff = colour_off;
b28a02de 2623 slabp->s_mem = objp + colour_off;
5b74ada7 2624 slabp->nodeid = nodeid;
1da177e4
LT
2625 return slabp;
2626}
2627
2628static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2629{
b28a02de 2630 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2631}
2632
343e0d7a 2633static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2634 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2635{
2636 int i;
2637
2638 for (i = 0; i < cachep->num; i++) {
8fea4e96 2639 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2640#if DEBUG
2641 /* need to poison the objs? */
2642 if (cachep->flags & SLAB_POISON)
2643 poison_obj(cachep, objp, POISON_FREE);
2644 if (cachep->flags & SLAB_STORE_USER)
2645 *dbg_userword(cachep, objp) = NULL;
2646
2647 if (cachep->flags & SLAB_RED_ZONE) {
2648 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2649 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2650 }
2651 /*
a737b3e2
AM
2652 * Constructors are not allowed to allocate memory from the same
2653 * cache which they are a constructor for. Otherwise, deadlock.
2654 * They must also be threaded.
1da177e4
LT
2655 */
2656 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2657 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2658 ctor_flags);
1da177e4
LT
2659
2660 if (cachep->flags & SLAB_RED_ZONE) {
2661 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2662 slab_error(cachep, "constructor overwrote the"
b28a02de 2663 " end of an object");
1da177e4
LT
2664 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2665 slab_error(cachep, "constructor overwrote the"
b28a02de 2666 " start of an object");
1da177e4 2667 }
a737b3e2
AM
2668 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2669 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2670 kernel_map_pages(virt_to_page(objp),
3dafccf2 2671 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2672#else
2673 if (cachep->ctor)
2674 cachep->ctor(objp, cachep, ctor_flags);
2675#endif
b28a02de 2676 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2677 }
b28a02de 2678 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2679 slabp->free = 0;
2680}
2681
343e0d7a 2682static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2683{
4b51d669
CL
2684 if (CONFIG_ZONE_DMA_FLAG) {
2685 if (flags & GFP_DMA)
2686 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2687 else
2688 BUG_ON(cachep->gfpflags & GFP_DMA);
2689 }
1da177e4
LT
2690}
2691
a737b3e2
AM
2692static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2693 int nodeid)
78d382d7 2694{
8fea4e96 2695 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2696 kmem_bufctl_t next;
2697
2698 slabp->inuse++;
2699 next = slab_bufctl(slabp)[slabp->free];
2700#if DEBUG
2701 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2702 WARN_ON(slabp->nodeid != nodeid);
2703#endif
2704 slabp->free = next;
2705
2706 return objp;
2707}
2708
a737b3e2
AM
2709static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2710 void *objp, int nodeid)
78d382d7 2711{
8fea4e96 2712 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2713
2714#if DEBUG
2715 /* Verify that the slab belongs to the intended node */
2716 WARN_ON(slabp->nodeid != nodeid);
2717
871751e2 2718 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2719 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2720 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2721 BUG();
2722 }
2723#endif
2724 slab_bufctl(slabp)[objnr] = slabp->free;
2725 slabp->free = objnr;
2726 slabp->inuse--;
2727}
2728
4776874f
PE
2729/*
2730 * Map pages beginning at addr to the given cache and slab. This is required
2731 * for the slab allocator to be able to lookup the cache and slab of a
2732 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2733 */
2734static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2735 void *addr)
1da177e4 2736{
4776874f 2737 int nr_pages;
1da177e4
LT
2738 struct page *page;
2739
4776874f 2740 page = virt_to_page(addr);
84097518 2741
4776874f 2742 nr_pages = 1;
84097518 2743 if (likely(!PageCompound(page)))
4776874f
PE
2744 nr_pages <<= cache->gfporder;
2745
1da177e4 2746 do {
4776874f
PE
2747 page_set_cache(page, cache);
2748 page_set_slab(page, slab);
1da177e4 2749 page++;
4776874f 2750 } while (--nr_pages);
1da177e4
LT
2751}
2752
2753/*
2754 * Grow (by 1) the number of slabs within a cache. This is called by
2755 * kmem_cache_alloc() when there are no active objs left in a cache.
2756 */
3c517a61
CL
2757static int cache_grow(struct kmem_cache *cachep,
2758 gfp_t flags, int nodeid, void *objp)
1da177e4 2759{
b28a02de 2760 struct slab *slabp;
b28a02de
PE
2761 size_t offset;
2762 gfp_t local_flags;
2763 unsigned long ctor_flags;
e498be7d 2764 struct kmem_list3 *l3;
1da177e4 2765
a737b3e2
AM
2766 /*
2767 * Be lazy and only check for valid flags here, keeping it out of the
2768 * critical path in kmem_cache_alloc().
1da177e4 2769 */
cfce6604 2770 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1da177e4
LT
2771
2772 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
a06d72c1 2773 local_flags = (flags & GFP_LEVEL_MASK);
2e1217cf 2774 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2775 check_irq_off();
2e1217cf
RT
2776 l3 = cachep->nodelists[nodeid];
2777 spin_lock(&l3->list_lock);
1da177e4
LT
2778
2779 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2780 offset = l3->colour_next;
2781 l3->colour_next++;
2782 if (l3->colour_next >= cachep->colour)
2783 l3->colour_next = 0;
2784 spin_unlock(&l3->list_lock);
1da177e4 2785
2e1217cf 2786 offset *= cachep->colour_off;
1da177e4
LT
2787
2788 if (local_flags & __GFP_WAIT)
2789 local_irq_enable();
2790
2791 /*
2792 * The test for missing atomic flag is performed here, rather than
2793 * the more obvious place, simply to reduce the critical path length
2794 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2795 * will eventually be caught here (where it matters).
2796 */
2797 kmem_flagcheck(cachep, flags);
2798
a737b3e2
AM
2799 /*
2800 * Get mem for the objs. Attempt to allocate a physical page from
2801 * 'nodeid'.
e498be7d 2802 */
3c517a61
CL
2803 if (!objp)
2804 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2805 if (!objp)
1da177e4
LT
2806 goto failed;
2807
2808 /* Get slab management. */
3c517a61
CL
2809 slabp = alloc_slabmgmt(cachep, objp, offset,
2810 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2811 if (!slabp)
1da177e4
LT
2812 goto opps1;
2813
e498be7d 2814 slabp->nodeid = nodeid;
4776874f 2815 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2816
2817 cache_init_objs(cachep, slabp, ctor_flags);
2818
2819 if (local_flags & __GFP_WAIT)
2820 local_irq_disable();
2821 check_irq_off();
e498be7d 2822 spin_lock(&l3->list_lock);
1da177e4
LT
2823
2824 /* Make slab active. */
e498be7d 2825 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2826 STATS_INC_GROWN(cachep);
e498be7d
CL
2827 l3->free_objects += cachep->num;
2828 spin_unlock(&l3->list_lock);
1da177e4 2829 return 1;
a737b3e2 2830opps1:
1da177e4 2831 kmem_freepages(cachep, objp);
a737b3e2 2832failed:
1da177e4
LT
2833 if (local_flags & __GFP_WAIT)
2834 local_irq_disable();
2835 return 0;
2836}
2837
2838#if DEBUG
2839
2840/*
2841 * Perform extra freeing checks:
2842 * - detect bad pointers.
2843 * - POISON/RED_ZONE checking
2844 * - destructor calls, for caches with POISON+dtor
2845 */
2846static void kfree_debugcheck(const void *objp)
2847{
1da177e4
LT
2848 if (!virt_addr_valid(objp)) {
2849 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2850 (unsigned long)objp);
2851 BUG();
1da177e4 2852 }
1da177e4
LT
2853}
2854
58ce1fd5
PE
2855static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2856{
b46b8f19 2857 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2858
2859 redzone1 = *dbg_redzone1(cache, obj);
2860 redzone2 = *dbg_redzone2(cache, obj);
2861
2862 /*
2863 * Redzone is ok.
2864 */
2865 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2866 return;
2867
2868 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2869 slab_error(cache, "double free detected");
2870 else
2871 slab_error(cache, "memory outside object was overwritten");
2872
b46b8f19 2873 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2874 obj, redzone1, redzone2);
2875}
2876
343e0d7a 2877static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2878 void *caller)
1da177e4
LT
2879{
2880 struct page *page;
2881 unsigned int objnr;
2882 struct slab *slabp;
2883
3dafccf2 2884 objp -= obj_offset(cachep);
1da177e4 2885 kfree_debugcheck(objp);
b49af68f 2886 page = virt_to_head_page(objp);
1da177e4 2887
065d41cb 2888 slabp = page_get_slab(page);
1da177e4
LT
2889
2890 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2891 verify_redzone_free(cachep, objp);
1da177e4
LT
2892 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2893 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2894 }
2895 if (cachep->flags & SLAB_STORE_USER)
2896 *dbg_userword(cachep, objp) = caller;
2897
8fea4e96 2898 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2899
2900 BUG_ON(objnr >= cachep->num);
8fea4e96 2901 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2902
1da177e4
LT
2903 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2904 /* we want to cache poison the object,
2905 * call the destruction callback
2906 */
3dafccf2 2907 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2908 }
871751e2
AV
2909#ifdef CONFIG_DEBUG_SLAB_LEAK
2910 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2911#endif
1da177e4
LT
2912 if (cachep->flags & SLAB_POISON) {
2913#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2914 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2915 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2916 kernel_map_pages(virt_to_page(objp),
3dafccf2 2917 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2918 } else {
2919 poison_obj(cachep, objp, POISON_FREE);
2920 }
2921#else
2922 poison_obj(cachep, objp, POISON_FREE);
2923#endif
2924 }
2925 return objp;
2926}
2927
343e0d7a 2928static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2929{
2930 kmem_bufctl_t i;
2931 int entries = 0;
b28a02de 2932
1da177e4
LT
2933 /* Check slab's freelist to see if this obj is there. */
2934 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2935 entries++;
2936 if (entries > cachep->num || i >= cachep->num)
2937 goto bad;
2938 }
2939 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2940bad:
2941 printk(KERN_ERR "slab: Internal list corruption detected in "
2942 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2943 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2944 for (i = 0;
264132bc 2945 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2946 i++) {
a737b3e2 2947 if (i % 16 == 0)
1da177e4 2948 printk("\n%03x:", i);
b28a02de 2949 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2950 }
2951 printk("\n");
2952 BUG();
2953 }
2954}
2955#else
2956#define kfree_debugcheck(x) do { } while(0)
2957#define cache_free_debugcheck(x,objp,z) (objp)
2958#define check_slabp(x,y) do { } while(0)
2959#endif
2960
343e0d7a 2961static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2962{
2963 int batchcount;
2964 struct kmem_list3 *l3;
2965 struct array_cache *ac;
1ca4cb24
PE
2966 int node;
2967
2968 node = numa_node_id();
1da177e4
LT
2969
2970 check_irq_off();
9a2dba4b 2971 ac = cpu_cache_get(cachep);
a737b3e2 2972retry:
1da177e4
LT
2973 batchcount = ac->batchcount;
2974 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2975 /*
2976 * If there was little recent activity on this cache, then
2977 * perform only a partial refill. Otherwise we could generate
2978 * refill bouncing.
1da177e4
LT
2979 */
2980 batchcount = BATCHREFILL_LIMIT;
2981 }
1ca4cb24 2982 l3 = cachep->nodelists[node];
e498be7d
CL
2983
2984 BUG_ON(ac->avail > 0 || !l3);
2985 spin_lock(&l3->list_lock);
1da177e4 2986
3ded175a
CL
2987 /* See if we can refill from the shared array */
2988 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2989 goto alloc_done;
2990
1da177e4
LT
2991 while (batchcount > 0) {
2992 struct list_head *entry;
2993 struct slab *slabp;
2994 /* Get slab alloc is to come from. */
2995 entry = l3->slabs_partial.next;
2996 if (entry == &l3->slabs_partial) {
2997 l3->free_touched = 1;
2998 entry = l3->slabs_free.next;
2999 if (entry == &l3->slabs_free)
3000 goto must_grow;
3001 }
3002
3003 slabp = list_entry(entry, struct slab, list);
3004 check_slabp(cachep, slabp);
3005 check_spinlock_acquired(cachep);
714b8171
PE
3006
3007 /*
3008 * The slab was either on partial or free list so
3009 * there must be at least one object available for
3010 * allocation.
3011 */
3012 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3013
1da177e4 3014 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3015 STATS_INC_ALLOCED(cachep);
3016 STATS_INC_ACTIVE(cachep);
3017 STATS_SET_HIGH(cachep);
3018
78d382d7 3019 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3020 node);
1da177e4
LT
3021 }
3022 check_slabp(cachep, slabp);
3023
3024 /* move slabp to correct slabp list: */
3025 list_del(&slabp->list);
3026 if (slabp->free == BUFCTL_END)
3027 list_add(&slabp->list, &l3->slabs_full);
3028 else
3029 list_add(&slabp->list, &l3->slabs_partial);
3030 }
3031
a737b3e2 3032must_grow:
1da177e4 3033 l3->free_objects -= ac->avail;
a737b3e2 3034alloc_done:
e498be7d 3035 spin_unlock(&l3->list_lock);
1da177e4
LT
3036
3037 if (unlikely(!ac->avail)) {
3038 int x;
3c517a61 3039 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3040
a737b3e2 3041 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3042 ac = cpu_cache_get(cachep);
a737b3e2 3043 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3044 return NULL;
3045
a737b3e2 3046 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3047 goto retry;
3048 }
3049 ac->touched = 1;
e498be7d 3050 return ac->entry[--ac->avail];
1da177e4
LT
3051}
3052
a737b3e2
AM
3053static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3054 gfp_t flags)
1da177e4
LT
3055{
3056 might_sleep_if(flags & __GFP_WAIT);
3057#if DEBUG
3058 kmem_flagcheck(cachep, flags);
3059#endif
3060}
3061
3062#if DEBUG
a737b3e2
AM
3063static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3064 gfp_t flags, void *objp, void *caller)
1da177e4 3065{
b28a02de 3066 if (!objp)
1da177e4 3067 return objp;
b28a02de 3068 if (cachep->flags & SLAB_POISON) {
1da177e4 3069#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3070 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3071 kernel_map_pages(virt_to_page(objp),
3dafccf2 3072 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3073 else
3074 check_poison_obj(cachep, objp);
3075#else
3076 check_poison_obj(cachep, objp);
3077#endif
3078 poison_obj(cachep, objp, POISON_INUSE);
3079 }
3080 if (cachep->flags & SLAB_STORE_USER)
3081 *dbg_userword(cachep, objp) = caller;
3082
3083 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3084 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3085 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3086 slab_error(cachep, "double free, or memory outside"
3087 " object was overwritten");
b28a02de 3088 printk(KERN_ERR
b46b8f19 3089 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3090 objp, *dbg_redzone1(cachep, objp),
3091 *dbg_redzone2(cachep, objp));
1da177e4
LT
3092 }
3093 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3094 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3095 }
871751e2
AV
3096#ifdef CONFIG_DEBUG_SLAB_LEAK
3097 {
3098 struct slab *slabp;
3099 unsigned objnr;
3100
b49af68f 3101 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3102 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3103 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3104 }
3105#endif
3dafccf2 3106 objp += obj_offset(cachep);
4f104934
CL
3107 if (cachep->ctor && cachep->flags & SLAB_POISON)
3108 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
a44b56d3
KH
3109#if ARCH_SLAB_MINALIGN
3110 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3111 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3112 objp, ARCH_SLAB_MINALIGN);
3113 }
3114#endif
1da177e4
LT
3115 return objp;
3116}
3117#else
3118#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3119#endif
3120
8a8b6502
AM
3121#ifdef CONFIG_FAILSLAB
3122
3123static struct failslab_attr {
3124
3125 struct fault_attr attr;
3126
3127 u32 ignore_gfp_wait;
3128#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3129 struct dentry *ignore_gfp_wait_file;
3130#endif
3131
3132} failslab = {
3133 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3134 .ignore_gfp_wait = 1,
8a8b6502
AM
3135};
3136
3137static int __init setup_failslab(char *str)
3138{
3139 return setup_fault_attr(&failslab.attr, str);
3140}
3141__setup("failslab=", setup_failslab);
3142
3143static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3144{
3145 if (cachep == &cache_cache)
3146 return 0;
3147 if (flags & __GFP_NOFAIL)
3148 return 0;
3149 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3150 return 0;
3151
3152 return should_fail(&failslab.attr, obj_size(cachep));
3153}
3154
3155#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3156
3157static int __init failslab_debugfs(void)
3158{
3159 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3160 struct dentry *dir;
3161 int err;
3162
824ebef1 3163 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3164 if (err)
3165 return err;
3166 dir = failslab.attr.dentries.dir;
3167
3168 failslab.ignore_gfp_wait_file =
3169 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3170 &failslab.ignore_gfp_wait);
3171
3172 if (!failslab.ignore_gfp_wait_file) {
3173 err = -ENOMEM;
3174 debugfs_remove(failslab.ignore_gfp_wait_file);
3175 cleanup_fault_attr_dentries(&failslab.attr);
3176 }
3177
3178 return err;
3179}
3180
3181late_initcall(failslab_debugfs);
3182
3183#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3184
3185#else /* CONFIG_FAILSLAB */
3186
3187static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3188{
3189 return 0;
3190}
3191
3192#endif /* CONFIG_FAILSLAB */
3193
343e0d7a 3194static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3195{
b28a02de 3196 void *objp;
1da177e4
LT
3197 struct array_cache *ac;
3198
5c382300 3199 check_irq_off();
8a8b6502 3200
9a2dba4b 3201 ac = cpu_cache_get(cachep);
1da177e4
LT
3202 if (likely(ac->avail)) {
3203 STATS_INC_ALLOCHIT(cachep);
3204 ac->touched = 1;
e498be7d 3205 objp = ac->entry[--ac->avail];
1da177e4
LT
3206 } else {
3207 STATS_INC_ALLOCMISS(cachep);
3208 objp = cache_alloc_refill(cachep, flags);
3209 }
5c382300
AK
3210 return objp;
3211}
3212
e498be7d 3213#ifdef CONFIG_NUMA
c61afb18 3214/*
b2455396 3215 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3216 *
3217 * If we are in_interrupt, then process context, including cpusets and
3218 * mempolicy, may not apply and should not be used for allocation policy.
3219 */
3220static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3221{
3222 int nid_alloc, nid_here;
3223
765c4507 3224 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3225 return NULL;
3226 nid_alloc = nid_here = numa_node_id();
3227 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3228 nid_alloc = cpuset_mem_spread_node();
3229 else if (current->mempolicy)
3230 nid_alloc = slab_node(current->mempolicy);
3231 if (nid_alloc != nid_here)
8b98c169 3232 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3233 return NULL;
3234}
3235
765c4507
CL
3236/*
3237 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3238 * certain node and fall back is permitted. First we scan all the
3239 * available nodelists for available objects. If that fails then we
3240 * perform an allocation without specifying a node. This allows the page
3241 * allocator to do its reclaim / fallback magic. We then insert the
3242 * slab into the proper nodelist and then allocate from it.
765c4507 3243 */
8c8cc2c1 3244static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3245{
8c8cc2c1
PE
3246 struct zonelist *zonelist;
3247 gfp_t local_flags;
765c4507
CL
3248 struct zone **z;
3249 void *obj = NULL;
3c517a61 3250 int nid;
8c8cc2c1
PE
3251
3252 if (flags & __GFP_THISNODE)
3253 return NULL;
3254
3255 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3256 ->node_zonelists[gfp_zone(flags)];
3257 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3258
3c517a61
CL
3259retry:
3260 /*
3261 * Look through allowed nodes for objects available
3262 * from existing per node queues.
3263 */
aedb0eb1 3264 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3265 nid = zone_to_nid(*z);
aedb0eb1 3266
02a0e53d 3267 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3268 cache->nodelists[nid] &&
3269 cache->nodelists[nid]->free_objects)
3270 obj = ____cache_alloc_node(cache,
3271 flags | GFP_THISNODE, nid);
3272 }
3273
cfce6604 3274 if (!obj) {
3c517a61
CL
3275 /*
3276 * This allocation will be performed within the constraints
3277 * of the current cpuset / memory policy requirements.
3278 * We may trigger various forms of reclaim on the allowed
3279 * set and go into memory reserves if necessary.
3280 */
dd47ea75
CL
3281 if (local_flags & __GFP_WAIT)
3282 local_irq_enable();
3283 kmem_flagcheck(cache, flags);
3c517a61 3284 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3285 if (local_flags & __GFP_WAIT)
3286 local_irq_disable();
3c517a61
CL
3287 if (obj) {
3288 /*
3289 * Insert into the appropriate per node queues
3290 */
3291 nid = page_to_nid(virt_to_page(obj));
3292 if (cache_grow(cache, flags, nid, obj)) {
3293 obj = ____cache_alloc_node(cache,
3294 flags | GFP_THISNODE, nid);
3295 if (!obj)
3296 /*
3297 * Another processor may allocate the
3298 * objects in the slab since we are
3299 * not holding any locks.
3300 */
3301 goto retry;
3302 } else {
b6a60451 3303 /* cache_grow already freed obj */
3c517a61
CL
3304 obj = NULL;
3305 }
3306 }
aedb0eb1 3307 }
765c4507
CL
3308 return obj;
3309}
3310
e498be7d
CL
3311/*
3312 * A interface to enable slab creation on nodeid
1da177e4 3313 */
8b98c169 3314static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3315 int nodeid)
e498be7d
CL
3316{
3317 struct list_head *entry;
b28a02de
PE
3318 struct slab *slabp;
3319 struct kmem_list3 *l3;
3320 void *obj;
b28a02de
PE
3321 int x;
3322
3323 l3 = cachep->nodelists[nodeid];
3324 BUG_ON(!l3);
3325
a737b3e2 3326retry:
ca3b9b91 3327 check_irq_off();
b28a02de
PE
3328 spin_lock(&l3->list_lock);
3329 entry = l3->slabs_partial.next;
3330 if (entry == &l3->slabs_partial) {
3331 l3->free_touched = 1;
3332 entry = l3->slabs_free.next;
3333 if (entry == &l3->slabs_free)
3334 goto must_grow;
3335 }
3336
3337 slabp = list_entry(entry, struct slab, list);
3338 check_spinlock_acquired_node(cachep, nodeid);
3339 check_slabp(cachep, slabp);
3340
3341 STATS_INC_NODEALLOCS(cachep);
3342 STATS_INC_ACTIVE(cachep);
3343 STATS_SET_HIGH(cachep);
3344
3345 BUG_ON(slabp->inuse == cachep->num);
3346
78d382d7 3347 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3348 check_slabp(cachep, slabp);
3349 l3->free_objects--;
3350 /* move slabp to correct slabp list: */
3351 list_del(&slabp->list);
3352
a737b3e2 3353 if (slabp->free == BUFCTL_END)
b28a02de 3354 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3355 else
b28a02de 3356 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3357
b28a02de
PE
3358 spin_unlock(&l3->list_lock);
3359 goto done;
e498be7d 3360
a737b3e2 3361must_grow:
b28a02de 3362 spin_unlock(&l3->list_lock);
3c517a61 3363 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3364 if (x)
3365 goto retry;
1da177e4 3366
8c8cc2c1 3367 return fallback_alloc(cachep, flags);
e498be7d 3368
a737b3e2 3369done:
b28a02de 3370 return obj;
e498be7d 3371}
8c8cc2c1
PE
3372
3373/**
3374 * kmem_cache_alloc_node - Allocate an object on the specified node
3375 * @cachep: The cache to allocate from.
3376 * @flags: See kmalloc().
3377 * @nodeid: node number of the target node.
3378 * @caller: return address of caller, used for debug information
3379 *
3380 * Identical to kmem_cache_alloc but it will allocate memory on the given
3381 * node, which can improve the performance for cpu bound structures.
3382 *
3383 * Fallback to other node is possible if __GFP_THISNODE is not set.
3384 */
3385static __always_inline void *
3386__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3387 void *caller)
3388{
3389 unsigned long save_flags;
3390 void *ptr;
3391
824ebef1
AM
3392 if (should_failslab(cachep, flags))
3393 return NULL;
3394
8c8cc2c1
PE
3395 cache_alloc_debugcheck_before(cachep, flags);
3396 local_irq_save(save_flags);
3397
3398 if (unlikely(nodeid == -1))
3399 nodeid = numa_node_id();
3400
3401 if (unlikely(!cachep->nodelists[nodeid])) {
3402 /* Node not bootstrapped yet */
3403 ptr = fallback_alloc(cachep, flags);
3404 goto out;
3405 }
3406
3407 if (nodeid == numa_node_id()) {
3408 /*
3409 * Use the locally cached objects if possible.
3410 * However ____cache_alloc does not allow fallback
3411 * to other nodes. It may fail while we still have
3412 * objects on other nodes available.
3413 */
3414 ptr = ____cache_alloc(cachep, flags);
3415 if (ptr)
3416 goto out;
3417 }
3418 /* ___cache_alloc_node can fall back to other nodes */
3419 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3420 out:
3421 local_irq_restore(save_flags);
3422 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3423
3424 return ptr;
3425}
3426
3427static __always_inline void *
3428__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3429{
3430 void *objp;
3431
3432 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3433 objp = alternate_node_alloc(cache, flags);
3434 if (objp)
3435 goto out;
3436 }
3437 objp = ____cache_alloc(cache, flags);
3438
3439 /*
3440 * We may just have run out of memory on the local node.
3441 * ____cache_alloc_node() knows how to locate memory on other nodes
3442 */
3443 if (!objp)
3444 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3445
3446 out:
3447 return objp;
3448}
3449#else
3450
3451static __always_inline void *
3452__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3453{
3454 return ____cache_alloc(cachep, flags);
3455}
3456
3457#endif /* CONFIG_NUMA */
3458
3459static __always_inline void *
3460__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3461{
3462 unsigned long save_flags;
3463 void *objp;
3464
824ebef1
AM
3465 if (should_failslab(cachep, flags))
3466 return NULL;
3467
8c8cc2c1
PE
3468 cache_alloc_debugcheck_before(cachep, flags);
3469 local_irq_save(save_flags);
3470 objp = __do_cache_alloc(cachep, flags);
3471 local_irq_restore(save_flags);
3472 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3473 prefetchw(objp);
3474
3475 return objp;
3476}
e498be7d
CL
3477
3478/*
3479 * Caller needs to acquire correct kmem_list's list_lock
3480 */
343e0d7a 3481static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3482 int node)
1da177e4
LT
3483{
3484 int i;
e498be7d 3485 struct kmem_list3 *l3;
1da177e4
LT
3486
3487 for (i = 0; i < nr_objects; i++) {
3488 void *objp = objpp[i];
3489 struct slab *slabp;
1da177e4 3490
6ed5eb22 3491 slabp = virt_to_slab(objp);
ff69416e 3492 l3 = cachep->nodelists[node];
1da177e4 3493 list_del(&slabp->list);
ff69416e 3494 check_spinlock_acquired_node(cachep, node);
1da177e4 3495 check_slabp(cachep, slabp);
78d382d7 3496 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3497 STATS_DEC_ACTIVE(cachep);
e498be7d 3498 l3->free_objects++;
1da177e4
LT
3499 check_slabp(cachep, slabp);
3500
3501 /* fixup slab chains */
3502 if (slabp->inuse == 0) {
e498be7d
CL
3503 if (l3->free_objects > l3->free_limit) {
3504 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3505 /* No need to drop any previously held
3506 * lock here, even if we have a off-slab slab
3507 * descriptor it is guaranteed to come from
3508 * a different cache, refer to comments before
3509 * alloc_slabmgmt.
3510 */
1da177e4
LT
3511 slab_destroy(cachep, slabp);
3512 } else {
e498be7d 3513 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3514 }
3515 } else {
3516 /* Unconditionally move a slab to the end of the
3517 * partial list on free - maximum time for the
3518 * other objects to be freed, too.
3519 */
e498be7d 3520 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3521 }
3522 }
3523}
3524
343e0d7a 3525static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3526{
3527 int batchcount;
e498be7d 3528 struct kmem_list3 *l3;
ff69416e 3529 int node = numa_node_id();
1da177e4
LT
3530
3531 batchcount = ac->batchcount;
3532#if DEBUG
3533 BUG_ON(!batchcount || batchcount > ac->avail);
3534#endif
3535 check_irq_off();
ff69416e 3536 l3 = cachep->nodelists[node];
873623df 3537 spin_lock(&l3->list_lock);
e498be7d
CL
3538 if (l3->shared) {
3539 struct array_cache *shared_array = l3->shared;
b28a02de 3540 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3541 if (max) {
3542 if (batchcount > max)
3543 batchcount = max;
e498be7d 3544 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3545 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3546 shared_array->avail += batchcount;
3547 goto free_done;
3548 }
3549 }
3550
ff69416e 3551 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3552free_done:
1da177e4
LT
3553#if STATS
3554 {
3555 int i = 0;
3556 struct list_head *p;
3557
e498be7d
CL
3558 p = l3->slabs_free.next;
3559 while (p != &(l3->slabs_free)) {
1da177e4
LT
3560 struct slab *slabp;
3561
3562 slabp = list_entry(p, struct slab, list);
3563 BUG_ON(slabp->inuse);
3564
3565 i++;
3566 p = p->next;
3567 }
3568 STATS_SET_FREEABLE(cachep, i);
3569 }
3570#endif
e498be7d 3571 spin_unlock(&l3->list_lock);
1da177e4 3572 ac->avail -= batchcount;
a737b3e2 3573 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3574}
3575
3576/*
a737b3e2
AM
3577 * Release an obj back to its cache. If the obj has a constructed state, it must
3578 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3579 */
873623df 3580static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3581{
9a2dba4b 3582 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3583
3584 check_irq_off();
3585 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3586
62918a03 3587 if (use_alien_caches && cache_free_alien(cachep, objp))
729bd0b7
PE
3588 return;
3589
1da177e4
LT
3590 if (likely(ac->avail < ac->limit)) {
3591 STATS_INC_FREEHIT(cachep);
e498be7d 3592 ac->entry[ac->avail++] = objp;
1da177e4
LT
3593 return;
3594 } else {
3595 STATS_INC_FREEMISS(cachep);
3596 cache_flusharray(cachep, ac);
e498be7d 3597 ac->entry[ac->avail++] = objp;
1da177e4
LT
3598 }
3599}
3600
3601/**
3602 * kmem_cache_alloc - Allocate an object
3603 * @cachep: The cache to allocate from.
3604 * @flags: See kmalloc().
3605 *
3606 * Allocate an object from this cache. The flags are only relevant
3607 * if the cache has no available objects.
3608 */
343e0d7a 3609void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3610{
7fd6b141 3611 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3612}
3613EXPORT_SYMBOL(kmem_cache_alloc);
3614
a8c0f9a4 3615/**
b8008b2b 3616 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3617 * @cache: The cache to allocate from.
3618 * @flags: See kmalloc().
3619 *
3620 * Allocate an object from this cache and set the allocated memory to zero.
3621 * The flags are only relevant if the cache has no available objects.
3622 */
3623void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3624{
3625 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3626 if (ret)
3627 memset(ret, 0, obj_size(cache));
3628 return ret;
3629}
3630EXPORT_SYMBOL(kmem_cache_zalloc);
3631
1da177e4
LT
3632/**
3633 * kmem_ptr_validate - check if an untrusted pointer might
3634 * be a slab entry.
3635 * @cachep: the cache we're checking against
3636 * @ptr: pointer to validate
3637 *
3638 * This verifies that the untrusted pointer looks sane:
3639 * it is _not_ a guarantee that the pointer is actually
3640 * part of the slab cache in question, but it at least
3641 * validates that the pointer can be dereferenced and
3642 * looks half-way sane.
3643 *
3644 * Currently only used for dentry validation.
3645 */
b7f869a2 3646int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3647{
b28a02de 3648 unsigned long addr = (unsigned long)ptr;
1da177e4 3649 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3650 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3651 unsigned long size = cachep->buffer_size;
1da177e4
LT
3652 struct page *page;
3653
3654 if (unlikely(addr < min_addr))
3655 goto out;
3656 if (unlikely(addr > (unsigned long)high_memory - size))
3657 goto out;
3658 if (unlikely(addr & align_mask))
3659 goto out;
3660 if (unlikely(!kern_addr_valid(addr)))
3661 goto out;
3662 if (unlikely(!kern_addr_valid(addr + size - 1)))
3663 goto out;
3664 page = virt_to_page(ptr);
3665 if (unlikely(!PageSlab(page)))
3666 goto out;
065d41cb 3667 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3668 goto out;
3669 return 1;
a737b3e2 3670out:
1da177e4
LT
3671 return 0;
3672}
3673
3674#ifdef CONFIG_NUMA
8b98c169
CH
3675void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3676{
3677 return __cache_alloc_node(cachep, flags, nodeid,
3678 __builtin_return_address(0));
3679}
1da177e4
LT
3680EXPORT_SYMBOL(kmem_cache_alloc_node);
3681
8b98c169
CH
3682static __always_inline void *
3683__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3684{
343e0d7a 3685 struct kmem_cache *cachep;
97e2bde4
MS
3686
3687 cachep = kmem_find_general_cachep(size, flags);
3688 if (unlikely(cachep == NULL))
3689 return NULL;
3690 return kmem_cache_alloc_node(cachep, flags, node);
3691}
8b98c169
CH
3692
3693#ifdef CONFIG_DEBUG_SLAB
3694void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695{
3696 return __do_kmalloc_node(size, flags, node,
3697 __builtin_return_address(0));
3698}
dbe5e69d 3699EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3700
3701void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3702 int node, void *caller)
3703{
3704 return __do_kmalloc_node(size, flags, node, caller);
3705}
3706EXPORT_SYMBOL(__kmalloc_node_track_caller);
3707#else
3708void *__kmalloc_node(size_t size, gfp_t flags, int node)
3709{
3710 return __do_kmalloc_node(size, flags, node, NULL);
3711}
3712EXPORT_SYMBOL(__kmalloc_node);
3713#endif /* CONFIG_DEBUG_SLAB */
3714#endif /* CONFIG_NUMA */
1da177e4
LT
3715
3716/**
800590f5 3717 * __do_kmalloc - allocate memory
1da177e4 3718 * @size: how many bytes of memory are required.
800590f5 3719 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3720 * @caller: function caller for debug tracking of the caller
1da177e4 3721 */
7fd6b141
PE
3722static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723 void *caller)
1da177e4 3724{
343e0d7a 3725 struct kmem_cache *cachep;
1da177e4 3726
97e2bde4
MS
3727 /* If you want to save a few bytes .text space: replace
3728 * __ with kmem_.
3729 * Then kmalloc uses the uninlined functions instead of the inline
3730 * functions.
3731 */
3732 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3733 if (unlikely(cachep == NULL))
3734 return NULL;
7fd6b141
PE
3735 return __cache_alloc(cachep, flags, caller);
3736}
3737
7fd6b141 3738
1d2c8eea 3739#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3740void *__kmalloc(size_t size, gfp_t flags)
3741{
871751e2 3742 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3743}
3744EXPORT_SYMBOL(__kmalloc);
3745
7fd6b141
PE
3746void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3747{
3748 return __do_kmalloc(size, flags, caller);
3749}
3750EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3751
3752#else
3753void *__kmalloc(size_t size, gfp_t flags)
3754{
3755 return __do_kmalloc(size, flags, NULL);
3756}
3757EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3758#endif
3759
fd76bab2
PE
3760/**
3761 * krealloc - reallocate memory. The contents will remain unchanged.
fd76bab2
PE
3762 * @p: object to reallocate memory for.
3763 * @new_size: how many bytes of memory are required.
3764 * @flags: the type of memory to allocate.
3765 *
3766 * The contents of the object pointed to are preserved up to the
3767 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3768 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3769 * %NULL pointer, the object pointed to is freed.
3770 */
3771void *krealloc(const void *p, size_t new_size, gfp_t flags)
3772{
3773 struct kmem_cache *cache, *new_cache;
3774 void *ret;
3775
3776 if (unlikely(!p))
3777 return kmalloc_track_caller(new_size, flags);
3778
3779 if (unlikely(!new_size)) {
3780 kfree(p);
3781 return NULL;
3782 }
3783
3784 cache = virt_to_cache(p);
3785 new_cache = __find_general_cachep(new_size, flags);
3786
3787 /*
3788 * If new size fits in the current cache, bail out.
3789 */
3790 if (likely(cache == new_cache))
3791 return (void *)p;
3792
3793 /*
3794 * We are on the slow-path here so do not use __cache_alloc
3795 * because it bloats kernel text.
3796 */
3797 ret = kmalloc_track_caller(new_size, flags);
3798 if (ret) {
3799 memcpy(ret, p, min(new_size, ksize(p)));
3800 kfree(p);
3801 }
3802 return ret;
3803}
3804EXPORT_SYMBOL(krealloc);
3805
1da177e4
LT
3806/**
3807 * kmem_cache_free - Deallocate an object
3808 * @cachep: The cache the allocation was from.
3809 * @objp: The previously allocated object.
3810 *
3811 * Free an object which was previously allocated from this
3812 * cache.
3813 */
343e0d7a 3814void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3815{
3816 unsigned long flags;
3817
ddc2e812
PE
3818 BUG_ON(virt_to_cache(objp) != cachep);
3819
1da177e4 3820 local_irq_save(flags);
898552c9 3821 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3822 __cache_free(cachep, objp);
1da177e4
LT
3823 local_irq_restore(flags);
3824}
3825EXPORT_SYMBOL(kmem_cache_free);
3826
1da177e4
LT
3827/**
3828 * kfree - free previously allocated memory
3829 * @objp: pointer returned by kmalloc.
3830 *
80e93eff
PE
3831 * If @objp is NULL, no operation is performed.
3832 *
1da177e4
LT
3833 * Don't free memory not originally allocated by kmalloc()
3834 * or you will run into trouble.
3835 */
3836void kfree(const void *objp)
3837{
343e0d7a 3838 struct kmem_cache *c;
1da177e4
LT
3839 unsigned long flags;
3840
3841 if (unlikely(!objp))
3842 return;
3843 local_irq_save(flags);
3844 kfree_debugcheck(objp);
6ed5eb22 3845 c = virt_to_cache(objp);
f9b8404c 3846 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3847 __cache_free(c, (void *)objp);
1da177e4
LT
3848 local_irq_restore(flags);
3849}
3850EXPORT_SYMBOL(kfree);
3851
343e0d7a 3852unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3853{
3dafccf2 3854 return obj_size(cachep);
1da177e4
LT
3855}
3856EXPORT_SYMBOL(kmem_cache_size);
3857
343e0d7a 3858const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3859{
3860 return cachep->name;
3861}
3862EXPORT_SYMBOL_GPL(kmem_cache_name);
3863
e498be7d 3864/*
0718dc2a 3865 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3866 */
343e0d7a 3867static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3868{
3869 int node;
3870 struct kmem_list3 *l3;
cafeb02e 3871 struct array_cache *new_shared;
3395ee05 3872 struct array_cache **new_alien = NULL;
e498be7d
CL
3873
3874 for_each_online_node(node) {
cafeb02e 3875
3395ee05
PM
3876 if (use_alien_caches) {
3877 new_alien = alloc_alien_cache(node, cachep->limit);
3878 if (!new_alien)
3879 goto fail;
3880 }
cafeb02e 3881
63109846
ED
3882 new_shared = NULL;
3883 if (cachep->shared) {
3884 new_shared = alloc_arraycache(node,
0718dc2a 3885 cachep->shared*cachep->batchcount,
a737b3e2 3886 0xbaadf00d);
63109846
ED
3887 if (!new_shared) {
3888 free_alien_cache(new_alien);
3889 goto fail;
3890 }
0718dc2a 3891 }
cafeb02e 3892
a737b3e2
AM
3893 l3 = cachep->nodelists[node];
3894 if (l3) {
cafeb02e
CL
3895 struct array_cache *shared = l3->shared;
3896
e498be7d
CL
3897 spin_lock_irq(&l3->list_lock);
3898
cafeb02e 3899 if (shared)
0718dc2a
CL
3900 free_block(cachep, shared->entry,
3901 shared->avail, node);
e498be7d 3902
cafeb02e
CL
3903 l3->shared = new_shared;
3904 if (!l3->alien) {
e498be7d
CL
3905 l3->alien = new_alien;
3906 new_alien = NULL;
3907 }
b28a02de 3908 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3909 cachep->batchcount + cachep->num;
e498be7d 3910 spin_unlock_irq(&l3->list_lock);
cafeb02e 3911 kfree(shared);
e498be7d
CL
3912 free_alien_cache(new_alien);
3913 continue;
3914 }
a737b3e2 3915 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3916 if (!l3) {
3917 free_alien_cache(new_alien);
3918 kfree(new_shared);
e498be7d 3919 goto fail;
0718dc2a 3920 }
e498be7d
CL
3921
3922 kmem_list3_init(l3);
3923 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3924 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3925 l3->shared = new_shared;
e498be7d 3926 l3->alien = new_alien;
b28a02de 3927 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3928 cachep->batchcount + cachep->num;
e498be7d
CL
3929 cachep->nodelists[node] = l3;
3930 }
cafeb02e 3931 return 0;
0718dc2a 3932
a737b3e2 3933fail:
0718dc2a
CL
3934 if (!cachep->next.next) {
3935 /* Cache is not active yet. Roll back what we did */
3936 node--;
3937 while (node >= 0) {
3938 if (cachep->nodelists[node]) {
3939 l3 = cachep->nodelists[node];
3940
3941 kfree(l3->shared);
3942 free_alien_cache(l3->alien);
3943 kfree(l3);
3944 cachep->nodelists[node] = NULL;
3945 }
3946 node--;
3947 }
3948 }
cafeb02e 3949 return -ENOMEM;
e498be7d
CL
3950}
3951
1da177e4 3952struct ccupdate_struct {
343e0d7a 3953 struct kmem_cache *cachep;
1da177e4
LT
3954 struct array_cache *new[NR_CPUS];
3955};
3956
3957static void do_ccupdate_local(void *info)
3958{
a737b3e2 3959 struct ccupdate_struct *new = info;
1da177e4
LT
3960 struct array_cache *old;
3961
3962 check_irq_off();
9a2dba4b 3963 old = cpu_cache_get(new->cachep);
e498be7d 3964
1da177e4
LT
3965 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3966 new->new[smp_processor_id()] = old;
3967}
3968
b5d8ca7c 3969/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3970static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3971 int batchcount, int shared)
1da177e4 3972{
d2e7b7d0 3973 struct ccupdate_struct *new;
2ed3a4ef 3974 int i;
1da177e4 3975
d2e7b7d0
SS
3976 new = kzalloc(sizeof(*new), GFP_KERNEL);
3977 if (!new)
3978 return -ENOMEM;
3979
e498be7d 3980 for_each_online_cpu(i) {
d2e7b7d0 3981 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3982 batchcount);
d2e7b7d0 3983 if (!new->new[i]) {
b28a02de 3984 for (i--; i >= 0; i--)
d2e7b7d0
SS
3985 kfree(new->new[i]);
3986 kfree(new);
e498be7d 3987 return -ENOMEM;
1da177e4
LT
3988 }
3989 }
d2e7b7d0 3990 new->cachep = cachep;
1da177e4 3991
d2e7b7d0 3992 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3993
1da177e4 3994 check_irq_on();
1da177e4
LT
3995 cachep->batchcount = batchcount;
3996 cachep->limit = limit;
e498be7d 3997 cachep->shared = shared;
1da177e4 3998
e498be7d 3999 for_each_online_cpu(i) {
d2e7b7d0 4000 struct array_cache *ccold = new->new[i];
1da177e4
LT
4001 if (!ccold)
4002 continue;
e498be7d 4003 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 4004 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 4005 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
4006 kfree(ccold);
4007 }
d2e7b7d0 4008 kfree(new);
2ed3a4ef 4009 return alloc_kmemlist(cachep);
1da177e4
LT
4010}
4011
b5d8ca7c 4012/* Called with cache_chain_mutex held always */
2ed3a4ef 4013static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
4014{
4015 int err;
4016 int limit, shared;
4017
a737b3e2
AM
4018 /*
4019 * The head array serves three purposes:
1da177e4
LT
4020 * - create a LIFO ordering, i.e. return objects that are cache-warm
4021 * - reduce the number of spinlock operations.
a737b3e2 4022 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4023 * bufctl chains: array operations are cheaper.
4024 * The numbers are guessed, we should auto-tune as described by
4025 * Bonwick.
4026 */
3dafccf2 4027 if (cachep->buffer_size > 131072)
1da177e4 4028 limit = 1;
3dafccf2 4029 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4030 limit = 8;
3dafccf2 4031 else if (cachep->buffer_size > 1024)
1da177e4 4032 limit = 24;
3dafccf2 4033 else if (cachep->buffer_size > 256)
1da177e4
LT
4034 limit = 54;
4035 else
4036 limit = 120;
4037
a737b3e2
AM
4038 /*
4039 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4040 * allocation behaviour: Most allocs on one cpu, most free operations
4041 * on another cpu. For these cases, an efficient object passing between
4042 * cpus is necessary. This is provided by a shared array. The array
4043 * replaces Bonwick's magazine layer.
4044 * On uniprocessor, it's functionally equivalent (but less efficient)
4045 * to a larger limit. Thus disabled by default.
4046 */
4047 shared = 0;
364fbb29 4048 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4049 shared = 8;
1da177e4
LT
4050
4051#if DEBUG
a737b3e2
AM
4052 /*
4053 * With debugging enabled, large batchcount lead to excessively long
4054 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4055 */
4056 if (limit > 32)
4057 limit = 32;
4058#endif
b28a02de 4059 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4060 if (err)
4061 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4062 cachep->name, -err);
2ed3a4ef 4063 return err;
1da177e4
LT
4064}
4065
1b55253a
CL
4066/*
4067 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4068 * necessary. Note that the l3 listlock also protects the array_cache
4069 * if drain_array() is used on the shared array.
1b55253a
CL
4070 */
4071void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4072 struct array_cache *ac, int force, int node)
1da177e4
LT
4073{
4074 int tofree;
4075
1b55253a
CL
4076 if (!ac || !ac->avail)
4077 return;
1da177e4
LT
4078 if (ac->touched && !force) {
4079 ac->touched = 0;
b18e7e65 4080 } else {
1b55253a 4081 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4082 if (ac->avail) {
4083 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4084 if (tofree > ac->avail)
4085 tofree = (ac->avail + 1) / 2;
4086 free_block(cachep, ac->entry, tofree, node);
4087 ac->avail -= tofree;
4088 memmove(ac->entry, &(ac->entry[tofree]),
4089 sizeof(void *) * ac->avail);
4090 }
1b55253a 4091 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4092 }
4093}
4094
4095/**
4096 * cache_reap - Reclaim memory from caches.
05fb6bf0 4097 * @w: work descriptor
1da177e4
LT
4098 *
4099 * Called from workqueue/eventd every few seconds.
4100 * Purpose:
4101 * - clear the per-cpu caches for this CPU.
4102 * - return freeable pages to the main free memory pool.
4103 *
a737b3e2
AM
4104 * If we cannot acquire the cache chain mutex then just give up - we'll try
4105 * again on the next iteration.
1da177e4 4106 */
7c5cae36 4107static void cache_reap(struct work_struct *w)
1da177e4 4108{
7a7c381d 4109 struct kmem_cache *searchp;
e498be7d 4110 struct kmem_list3 *l3;
aab2207c 4111 int node = numa_node_id();
7c5cae36
CL
4112 struct delayed_work *work =
4113 container_of(w, struct delayed_work, work);
1da177e4 4114
7c5cae36 4115 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4116 /* Give up. Setup the next iteration. */
7c5cae36 4117 goto out;
1da177e4 4118
7a7c381d 4119 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4120 check_irq_on();
4121
35386e3b
CL
4122 /*
4123 * We only take the l3 lock if absolutely necessary and we
4124 * have established with reasonable certainty that
4125 * we can do some work if the lock was obtained.
4126 */
aab2207c 4127 l3 = searchp->nodelists[node];
35386e3b 4128
8fce4d8e 4129 reap_alien(searchp, l3);
1da177e4 4130
aab2207c 4131 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4132
35386e3b
CL
4133 /*
4134 * These are racy checks but it does not matter
4135 * if we skip one check or scan twice.
4136 */
e498be7d 4137 if (time_after(l3->next_reap, jiffies))
35386e3b 4138 goto next;
1da177e4 4139
e498be7d 4140 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4141
aab2207c 4142 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4143
ed11d9eb 4144 if (l3->free_touched)
e498be7d 4145 l3->free_touched = 0;
ed11d9eb
CL
4146 else {
4147 int freed;
1da177e4 4148
ed11d9eb
CL
4149 freed = drain_freelist(searchp, l3, (l3->free_limit +
4150 5 * searchp->num - 1) / (5 * searchp->num));
4151 STATS_ADD_REAPED(searchp, freed);
4152 }
35386e3b 4153next:
1da177e4
LT
4154 cond_resched();
4155 }
4156 check_irq_on();
fc0abb14 4157 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4158 next_reap_node();
7c5cae36 4159out:
a737b3e2 4160 /* Set up the next iteration */
7c5cae36 4161 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4162}
4163
4164#ifdef CONFIG_PROC_FS
4165
85289f98 4166static void print_slabinfo_header(struct seq_file *m)
1da177e4 4167{
85289f98
PE
4168 /*
4169 * Output format version, so at least we can change it
4170 * without _too_ many complaints.
4171 */
1da177e4 4172#if STATS
85289f98 4173 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4174#else
85289f98 4175 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4176#endif
85289f98
PE
4177 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4178 "<objperslab> <pagesperslab>");
4179 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4180 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4181#if STATS
85289f98 4182 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4183 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4184 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4185#endif
85289f98
PE
4186 seq_putc(m, '\n');
4187}
4188
4189static void *s_start(struct seq_file *m, loff_t *pos)
4190{
4191 loff_t n = *pos;
4192 struct list_head *p;
4193
fc0abb14 4194 mutex_lock(&cache_chain_mutex);
85289f98
PE
4195 if (!n)
4196 print_slabinfo_header(m);
1da177e4
LT
4197 p = cache_chain.next;
4198 while (n--) {
4199 p = p->next;
4200 if (p == &cache_chain)
4201 return NULL;
4202 }
343e0d7a 4203 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
4204}
4205
4206static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4207{
343e0d7a 4208 struct kmem_cache *cachep = p;
1da177e4 4209 ++*pos;
a737b3e2
AM
4210 return cachep->next.next == &cache_chain ?
4211 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
4212}
4213
4214static void s_stop(struct seq_file *m, void *p)
4215{
fc0abb14 4216 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4217}
4218
4219static int s_show(struct seq_file *m, void *p)
4220{
343e0d7a 4221 struct kmem_cache *cachep = p;
b28a02de
PE
4222 struct slab *slabp;
4223 unsigned long active_objs;
4224 unsigned long num_objs;
4225 unsigned long active_slabs = 0;
4226 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4227 const char *name;
1da177e4 4228 char *error = NULL;
e498be7d
CL
4229 int node;
4230 struct kmem_list3 *l3;
1da177e4 4231
1da177e4
LT
4232 active_objs = 0;
4233 num_slabs = 0;
e498be7d
CL
4234 for_each_online_node(node) {
4235 l3 = cachep->nodelists[node];
4236 if (!l3)
4237 continue;
4238
ca3b9b91
RT
4239 check_irq_on();
4240 spin_lock_irq(&l3->list_lock);
e498be7d 4241
7a7c381d 4242 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4243 if (slabp->inuse != cachep->num && !error)
4244 error = "slabs_full accounting error";
4245 active_objs += cachep->num;
4246 active_slabs++;
4247 }
7a7c381d 4248 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4249 if (slabp->inuse == cachep->num && !error)
4250 error = "slabs_partial inuse accounting error";
4251 if (!slabp->inuse && !error)
4252 error = "slabs_partial/inuse accounting error";
4253 active_objs += slabp->inuse;
4254 active_slabs++;
4255 }
7a7c381d 4256 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4257 if (slabp->inuse && !error)
4258 error = "slabs_free/inuse accounting error";
4259 num_slabs++;
4260 }
4261 free_objects += l3->free_objects;
4484ebf1
RT
4262 if (l3->shared)
4263 shared_avail += l3->shared->avail;
e498be7d 4264
ca3b9b91 4265 spin_unlock_irq(&l3->list_lock);
1da177e4 4266 }
b28a02de
PE
4267 num_slabs += active_slabs;
4268 num_objs = num_slabs * cachep->num;
e498be7d 4269 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4270 error = "free_objects accounting error";
4271
b28a02de 4272 name = cachep->name;
1da177e4
LT
4273 if (error)
4274 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4275
4276 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4277 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4278 cachep->num, (1 << cachep->gfporder));
1da177e4 4279 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4280 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4281 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4282 active_slabs, num_slabs, shared_avail);
1da177e4 4283#if STATS
b28a02de 4284 { /* list3 stats */
1da177e4
LT
4285 unsigned long high = cachep->high_mark;
4286 unsigned long allocs = cachep->num_allocations;
4287 unsigned long grown = cachep->grown;
4288 unsigned long reaped = cachep->reaped;
4289 unsigned long errors = cachep->errors;
4290 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4291 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4292 unsigned long node_frees = cachep->node_frees;
fb7faf33 4293 unsigned long overflows = cachep->node_overflow;
1da177e4 4294
e498be7d 4295 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4296 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4297 reaped, errors, max_freeable, node_allocs,
fb7faf33 4298 node_frees, overflows);
1da177e4
LT
4299 }
4300 /* cpu stats */
4301 {
4302 unsigned long allochit = atomic_read(&cachep->allochit);
4303 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4304 unsigned long freehit = atomic_read(&cachep->freehit);
4305 unsigned long freemiss = atomic_read(&cachep->freemiss);
4306
4307 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4308 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4309 }
4310#endif
4311 seq_putc(m, '\n');
1da177e4
LT
4312 return 0;
4313}
4314
4315/*
4316 * slabinfo_op - iterator that generates /proc/slabinfo
4317 *
4318 * Output layout:
4319 * cache-name
4320 * num-active-objs
4321 * total-objs
4322 * object size
4323 * num-active-slabs
4324 * total-slabs
4325 * num-pages-per-slab
4326 * + further values on SMP and with statistics enabled
4327 */
4328
15ad7cdc 4329const struct seq_operations slabinfo_op = {
b28a02de
PE
4330 .start = s_start,
4331 .next = s_next,
4332 .stop = s_stop,
4333 .show = s_show,
1da177e4
LT
4334};
4335
4336#define MAX_SLABINFO_WRITE 128
4337/**
4338 * slabinfo_write - Tuning for the slab allocator
4339 * @file: unused
4340 * @buffer: user buffer
4341 * @count: data length
4342 * @ppos: unused
4343 */
b28a02de
PE
4344ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4345 size_t count, loff_t *ppos)
1da177e4 4346{
b28a02de 4347 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4348 int limit, batchcount, shared, res;
7a7c381d 4349 struct kmem_cache *cachep;
b28a02de 4350
1da177e4
LT
4351 if (count > MAX_SLABINFO_WRITE)
4352 return -EINVAL;
4353 if (copy_from_user(&kbuf, buffer, count))
4354 return -EFAULT;
b28a02de 4355 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4356
4357 tmp = strchr(kbuf, ' ');
4358 if (!tmp)
4359 return -EINVAL;
4360 *tmp = '\0';
4361 tmp++;
4362 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4363 return -EINVAL;
4364
4365 /* Find the cache in the chain of caches. */
fc0abb14 4366 mutex_lock(&cache_chain_mutex);
1da177e4 4367 res = -EINVAL;
7a7c381d 4368 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4369 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4370 if (limit < 1 || batchcount < 1 ||
4371 batchcount > limit || shared < 0) {
e498be7d 4372 res = 0;
1da177e4 4373 } else {
e498be7d 4374 res = do_tune_cpucache(cachep, limit,
b28a02de 4375 batchcount, shared);
1da177e4
LT
4376 }
4377 break;
4378 }
4379 }
fc0abb14 4380 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4381 if (res >= 0)
4382 res = count;
4383 return res;
4384}
871751e2
AV
4385
4386#ifdef CONFIG_DEBUG_SLAB_LEAK
4387
4388static void *leaks_start(struct seq_file *m, loff_t *pos)
4389{
4390 loff_t n = *pos;
4391 struct list_head *p;
4392
4393 mutex_lock(&cache_chain_mutex);
4394 p = cache_chain.next;
4395 while (n--) {
4396 p = p->next;
4397 if (p == &cache_chain)
4398 return NULL;
4399 }
4400 return list_entry(p, struct kmem_cache, next);
4401}
4402
4403static inline int add_caller(unsigned long *n, unsigned long v)
4404{
4405 unsigned long *p;
4406 int l;
4407 if (!v)
4408 return 1;
4409 l = n[1];
4410 p = n + 2;
4411 while (l) {
4412 int i = l/2;
4413 unsigned long *q = p + 2 * i;
4414 if (*q == v) {
4415 q[1]++;
4416 return 1;
4417 }
4418 if (*q > v) {
4419 l = i;
4420 } else {
4421 p = q + 2;
4422 l -= i + 1;
4423 }
4424 }
4425 if (++n[1] == n[0])
4426 return 0;
4427 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4428 p[0] = v;
4429 p[1] = 1;
4430 return 1;
4431}
4432
4433static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4434{
4435 void *p;
4436 int i;
4437 if (n[0] == n[1])
4438 return;
4439 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4440 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4441 continue;
4442 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4443 return;
4444 }
4445}
4446
4447static void show_symbol(struct seq_file *m, unsigned long address)
4448{
4449#ifdef CONFIG_KALLSYMS
871751e2 4450 unsigned long offset, size;
a5c43dae 4451 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
871751e2 4452
a5c43dae 4453 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4454 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4455 if (modname[0])
871751e2
AV
4456 seq_printf(m, " [%s]", modname);
4457 return;
4458 }
4459#endif
4460 seq_printf(m, "%p", (void *)address);
4461}
4462
4463static int leaks_show(struct seq_file *m, void *p)
4464{
4465 struct kmem_cache *cachep = p;
871751e2
AV
4466 struct slab *slabp;
4467 struct kmem_list3 *l3;
4468 const char *name;
4469 unsigned long *n = m->private;
4470 int node;
4471 int i;
4472
4473 if (!(cachep->flags & SLAB_STORE_USER))
4474 return 0;
4475 if (!(cachep->flags & SLAB_RED_ZONE))
4476 return 0;
4477
4478 /* OK, we can do it */
4479
4480 n[1] = 0;
4481
4482 for_each_online_node(node) {
4483 l3 = cachep->nodelists[node];
4484 if (!l3)
4485 continue;
4486
4487 check_irq_on();
4488 spin_lock_irq(&l3->list_lock);
4489
7a7c381d 4490 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4491 handle_slab(n, cachep, slabp);
7a7c381d 4492 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4493 handle_slab(n, cachep, slabp);
871751e2
AV
4494 spin_unlock_irq(&l3->list_lock);
4495 }
4496 name = cachep->name;
4497 if (n[0] == n[1]) {
4498 /* Increase the buffer size */
4499 mutex_unlock(&cache_chain_mutex);
4500 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4501 if (!m->private) {
4502 /* Too bad, we are really out */
4503 m->private = n;
4504 mutex_lock(&cache_chain_mutex);
4505 return -ENOMEM;
4506 }
4507 *(unsigned long *)m->private = n[0] * 2;
4508 kfree(n);
4509 mutex_lock(&cache_chain_mutex);
4510 /* Now make sure this entry will be retried */
4511 m->count = m->size;
4512 return 0;
4513 }
4514 for (i = 0; i < n[1]; i++) {
4515 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4516 show_symbol(m, n[2*i+2]);
4517 seq_putc(m, '\n');
4518 }
d2e7b7d0 4519
871751e2
AV
4520 return 0;
4521}
4522
15ad7cdc 4523const struct seq_operations slabstats_op = {
871751e2
AV
4524 .start = leaks_start,
4525 .next = s_next,
4526 .stop = s_stop,
4527 .show = leaks_show,
4528};
4529#endif
1da177e4
LT
4530#endif
4531
00e145b6
MS
4532/**
4533 * ksize - get the actual amount of memory allocated for a given object
4534 * @objp: Pointer to the object
4535 *
4536 * kmalloc may internally round up allocations and return more memory
4537 * than requested. ksize() can be used to determine the actual amount of
4538 * memory allocated. The caller may use this additional memory, even though
4539 * a smaller amount of memory was initially specified with the kmalloc call.
4540 * The caller must guarantee that objp points to a valid object previously
4541 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4542 * must not be freed during the duration of the call.
4543 */
fd76bab2 4544size_t ksize(const void *objp)
1da177e4 4545{
00e145b6
MS
4546 if (unlikely(objp == NULL))
4547 return 0;
1da177e4 4548
6ed5eb22 4549 return obj_size(virt_to_cache(objp));
1da177e4 4550}