stat: Use size_t for sizes instead of unsigned
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
343e0d7a 207 struct kmem_cache *cachep;
b28a02de 208 void *addr;
1da177e4
LT
209};
210
5bfe53a7
LJ
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230};
231
1da177e4
LT
232/*
233 * struct array_cache
234 *
1da177e4
LT
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
e498be7d 249 spinlock_t lock;
bda5b655 250 void *entry[]; /*
a737b3e2
AM
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
072bb0aa
MG
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 258 */
1da177e4
LT
259};
260
072bb0aa
MG
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4 290 */
6744f087 291struct kmem_cache_node {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
556a169d 308#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
6744f087 309static struct kmem_cache_node __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 310#define CACHE_CACHE 0
556a169d
PE
311#define SIZE_AC MAX_NUMNODES
312#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 313
ed11d9eb 314static int drain_freelist(struct kmem_cache *cache,
6744f087 315 struct kmem_cache_node *l3, int tofree);
ed11d9eb
CL
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
83b519e8 318static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 319static void cache_reap(struct work_struct *unused);
ed11d9eb 320
e0a42726
IM
321static int slab_early_init = 1;
322
e3366016 323#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
6744f087 324#define INDEX_L3 kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 325
6744f087 326static void kmem_list3_init(struct kmem_cache_node *parent)
e498be7d
CL
327{
328 INIT_LIST_HEAD(&parent->slabs_full);
329 INIT_LIST_HEAD(&parent->slabs_partial);
330 INIT_LIST_HEAD(&parent->slabs_free);
331 parent->shared = NULL;
332 parent->alien = NULL;
2e1217cf 333 parent->colour_next = 0;
e498be7d
CL
334 spin_lock_init(&parent->list_lock);
335 parent->free_objects = 0;
336 parent->free_touched = 0;
337}
338
a737b3e2
AM
339#define MAKE_LIST(cachep, listp, slab, nodeid) \
340 do { \
341 INIT_LIST_HEAD(listp); \
6a67368c 342 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
343 } while (0)
344
a737b3e2
AM
345#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
346 do { \
e498be7d
CL
347 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
348 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
349 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
350 } while (0)
1da177e4 351
1da177e4
LT
352#define CFLGS_OFF_SLAB (0x80000000UL)
353#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
354
355#define BATCHREFILL_LIMIT 16
a737b3e2
AM
356/*
357 * Optimization question: fewer reaps means less probability for unnessary
358 * cpucache drain/refill cycles.
1da177e4 359 *
dc6f3f27 360 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
361 * which could lock up otherwise freeable slabs.
362 */
363#define REAPTIMEOUT_CPUC (2*HZ)
364#define REAPTIMEOUT_LIST3 (4*HZ)
365
366#if STATS
367#define STATS_INC_ACTIVE(x) ((x)->num_active++)
368#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
369#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
370#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 371#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
372#define STATS_SET_HIGH(x) \
373 do { \
374 if ((x)->num_active > (x)->high_mark) \
375 (x)->high_mark = (x)->num_active; \
376 } while (0)
1da177e4
LT
377#define STATS_INC_ERR(x) ((x)->errors++)
378#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 379#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 380#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
381#define STATS_SET_FREEABLE(x, i) \
382 do { \
383 if ((x)->max_freeable < i) \
384 (x)->max_freeable = i; \
385 } while (0)
1da177e4
LT
386#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
387#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
388#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
389#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
390#else
391#define STATS_INC_ACTIVE(x) do { } while (0)
392#define STATS_DEC_ACTIVE(x) do { } while (0)
393#define STATS_INC_ALLOCED(x) do { } while (0)
394#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 395#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
396#define STATS_SET_HIGH(x) do { } while (0)
397#define STATS_INC_ERR(x) do { } while (0)
398#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 399#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 400#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 401#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
402#define STATS_INC_ALLOCHIT(x) do { } while (0)
403#define STATS_INC_ALLOCMISS(x) do { } while (0)
404#define STATS_INC_FREEHIT(x) do { } while (0)
405#define STATS_INC_FREEMISS(x) do { } while (0)
406#endif
407
408#if DEBUG
1da177e4 409
a737b3e2
AM
410/*
411 * memory layout of objects:
1da177e4 412 * 0 : objp
3dafccf2 413 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
414 * the end of an object is aligned with the end of the real
415 * allocation. Catches writes behind the end of the allocation.
3dafccf2 416 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 417 * redzone word.
3dafccf2 418 * cachep->obj_offset: The real object.
3b0efdfa
CL
419 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
420 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 421 * [BYTES_PER_WORD long]
1da177e4 422 */
343e0d7a 423static int obj_offset(struct kmem_cache *cachep)
1da177e4 424{
3dafccf2 425 return cachep->obj_offset;
1da177e4
LT
426}
427
b46b8f19 428static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
429{
430 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
431 return (unsigned long long*) (objp + obj_offset(cachep) -
432 sizeof(unsigned long long));
1da177e4
LT
433}
434
b46b8f19 435static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
436{
437 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
438 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 439 return (unsigned long long *)(objp + cachep->size -
b46b8f19 440 sizeof(unsigned long long) -
87a927c7 441 REDZONE_ALIGN);
3b0efdfa 442 return (unsigned long long *) (objp + cachep->size -
b46b8f19 443 sizeof(unsigned long long));
1da177e4
LT
444}
445
343e0d7a 446static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
447{
448 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 449 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
450}
451
452#else
453
3dafccf2 454#define obj_offset(x) 0
b46b8f19
DW
455#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
456#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
457#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
458
459#endif
460
1da177e4 461/*
3df1cccd
DR
462 * Do not go above this order unless 0 objects fit into the slab or
463 * overridden on the command line.
1da177e4 464 */
543585cc
DR
465#define SLAB_MAX_ORDER_HI 1
466#define SLAB_MAX_ORDER_LO 0
467static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 468static bool slab_max_order_set __initdata;
1da177e4 469
6ed5eb22
PE
470static inline struct kmem_cache *virt_to_cache(const void *obj)
471{
b49af68f 472 struct page *page = virt_to_head_page(obj);
35026088 473 return page->slab_cache;
6ed5eb22
PE
474}
475
476static inline struct slab *virt_to_slab(const void *obj)
477{
b49af68f 478 struct page *page = virt_to_head_page(obj);
35026088
CL
479
480 VM_BUG_ON(!PageSlab(page));
481 return page->slab_page;
6ed5eb22
PE
482}
483
8fea4e96
PE
484static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
485 unsigned int idx)
486{
3b0efdfa 487 return slab->s_mem + cache->size * idx;
8fea4e96
PE
488}
489
6a2d7a95 490/*
3b0efdfa
CL
491 * We want to avoid an expensive divide : (offset / cache->size)
492 * Using the fact that size is a constant for a particular cache,
493 * we can replace (offset / cache->size) by
6a2d7a95
ED
494 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
495 */
496static inline unsigned int obj_to_index(const struct kmem_cache *cache,
497 const struct slab *slab, void *obj)
8fea4e96 498{
6a2d7a95
ED
499 u32 offset = (obj - slab->s_mem);
500 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
501}
502
1da177e4 503static struct arraycache_init initarray_generic =
b28a02de 504 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
505
506/* internal cache of cache description objs */
9b030cb8 507static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
508 .batchcount = 1,
509 .limit = BOOT_CPUCACHE_ENTRIES,
510 .shared = 1,
3b0efdfa 511 .size = sizeof(struct kmem_cache),
b28a02de 512 .name = "kmem_cache",
1da177e4
LT
513};
514
056c6241
RT
515#define BAD_ALIEN_MAGIC 0x01020304ul
516
f1aaee53
AV
517#ifdef CONFIG_LOCKDEP
518
519/*
520 * Slab sometimes uses the kmalloc slabs to store the slab headers
521 * for other slabs "off slab".
522 * The locking for this is tricky in that it nests within the locks
523 * of all other slabs in a few places; to deal with this special
524 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
525 *
526 * We set lock class for alien array caches which are up during init.
527 * The lock annotation will be lost if all cpus of a node goes down and
528 * then comes back up during hotplug
f1aaee53 529 */
056c6241
RT
530static struct lock_class_key on_slab_l3_key;
531static struct lock_class_key on_slab_alc_key;
532
83835b3d
PZ
533static struct lock_class_key debugobj_l3_key;
534static struct lock_class_key debugobj_alc_key;
535
536static void slab_set_lock_classes(struct kmem_cache *cachep,
537 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
538 int q)
539{
540 struct array_cache **alc;
6744f087 541 struct kmem_cache_node *l3;
83835b3d
PZ
542 int r;
543
6a67368c 544 l3 = cachep->node[q];
83835b3d
PZ
545 if (!l3)
546 return;
547
548 lockdep_set_class(&l3->list_lock, l3_key);
549 alc = l3->alien;
550 /*
551 * FIXME: This check for BAD_ALIEN_MAGIC
552 * should go away when common slab code is taught to
553 * work even without alien caches.
554 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
555 * for alloc_alien_cache,
556 */
557 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
558 return;
559 for_each_node(r) {
560 if (alc[r])
561 lockdep_set_class(&alc[r]->lock, alc_key);
562 }
563}
564
565static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
566{
567 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
568}
569
570static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
571{
572 int node;
573
574 for_each_online_node(node)
575 slab_set_debugobj_lock_classes_node(cachep, node);
576}
577
ce79ddc8 578static void init_node_lock_keys(int q)
f1aaee53 579{
e3366016 580 int i;
056c6241 581
97d06609 582 if (slab_state < UP)
ce79ddc8
PE
583 return;
584
e3366016 585 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
6744f087 586 struct kmem_cache_node *l3;
e3366016
CL
587 struct kmem_cache *cache = kmalloc_caches[i];
588
589 if (!cache)
590 continue;
ce79ddc8 591
6a67368c 592 l3 = cache->node[q];
e3366016 593 if (!l3 || OFF_SLAB(cache))
00afa758 594 continue;
83835b3d 595
e3366016 596 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 597 &on_slab_alc_key, q);
f1aaee53
AV
598 }
599}
ce79ddc8 600
6ccfb5bc
GC
601static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
602{
6a67368c 603 if (!cachep->node[q])
6ccfb5bc
GC
604 return;
605
606 slab_set_lock_classes(cachep, &on_slab_l3_key,
607 &on_slab_alc_key, q);
608}
609
610static inline void on_slab_lock_classes(struct kmem_cache *cachep)
611{
612 int node;
613
614 VM_BUG_ON(OFF_SLAB(cachep));
615 for_each_node(node)
616 on_slab_lock_classes_node(cachep, node);
617}
618
ce79ddc8
PE
619static inline void init_lock_keys(void)
620{
621 int node;
622
623 for_each_node(node)
624 init_node_lock_keys(node);
625}
f1aaee53 626#else
ce79ddc8
PE
627static void init_node_lock_keys(int q)
628{
629}
630
056c6241 631static inline void init_lock_keys(void)
f1aaee53
AV
632{
633}
83835b3d 634
6ccfb5bc
GC
635static inline void on_slab_lock_classes(struct kmem_cache *cachep)
636{
637}
638
639static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
640{
641}
642
83835b3d
PZ
643static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
644{
645}
646
647static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
648{
649}
f1aaee53
AV
650#endif
651
1871e52c 652static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 653
343e0d7a 654static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
655{
656 return cachep->array[smp_processor_id()];
657}
658
a737b3e2
AM
659static inline struct kmem_cache *__find_general_cachep(size_t size,
660 gfp_t gfpflags)
1da177e4 661{
e3366016 662 int i;
1da177e4
LT
663
664#if DEBUG
665 /* This happens if someone tries to call
b28a02de
PE
666 * kmem_cache_create(), or __kmalloc(), before
667 * the generic caches are initialized.
668 */
e3366016 669 BUG_ON(kmalloc_caches[INDEX_AC] == NULL);
1da177e4 670#endif
6cb8f913
CL
671 if (!size)
672 return ZERO_SIZE_PTR;
673
e3366016 674 i = kmalloc_index(size);
1da177e4
LT
675
676 /*
0abf40c1 677 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
678 * has cs_{dma,}cachep==NULL. Thus no special case
679 * for large kmalloc calls required.
680 */
4b51d669 681#ifdef CONFIG_ZONE_DMA
1da177e4 682 if (unlikely(gfpflags & GFP_DMA))
e3366016 683 return kmalloc_dma_caches[i];
4b51d669 684#endif
e3366016 685 return kmalloc_caches[i];
1da177e4
LT
686}
687
b221385b 688static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
689{
690 return __find_general_cachep(size, gfpflags);
691}
97e2bde4 692
fbaccacf 693static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 694{
fbaccacf
SR
695 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
696}
1da177e4 697
a737b3e2
AM
698/*
699 * Calculate the number of objects and left-over bytes for a given buffer size.
700 */
fbaccacf
SR
701static void cache_estimate(unsigned long gfporder, size_t buffer_size,
702 size_t align, int flags, size_t *left_over,
703 unsigned int *num)
704{
705 int nr_objs;
706 size_t mgmt_size;
707 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 708
fbaccacf
SR
709 /*
710 * The slab management structure can be either off the slab or
711 * on it. For the latter case, the memory allocated for a
712 * slab is used for:
713 *
714 * - The struct slab
715 * - One kmem_bufctl_t for each object
716 * - Padding to respect alignment of @align
717 * - @buffer_size bytes for each object
718 *
719 * If the slab management structure is off the slab, then the
720 * alignment will already be calculated into the size. Because
721 * the slabs are all pages aligned, the objects will be at the
722 * correct alignment when allocated.
723 */
724 if (flags & CFLGS_OFF_SLAB) {
725 mgmt_size = 0;
726 nr_objs = slab_size / buffer_size;
727
728 if (nr_objs > SLAB_LIMIT)
729 nr_objs = SLAB_LIMIT;
730 } else {
731 /*
732 * Ignore padding for the initial guess. The padding
733 * is at most @align-1 bytes, and @buffer_size is at
734 * least @align. In the worst case, this result will
735 * be one greater than the number of objects that fit
736 * into the memory allocation when taking the padding
737 * into account.
738 */
739 nr_objs = (slab_size - sizeof(struct slab)) /
740 (buffer_size + sizeof(kmem_bufctl_t));
741
742 /*
743 * This calculated number will be either the right
744 * amount, or one greater than what we want.
745 */
746 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
747 > slab_size)
748 nr_objs--;
749
750 if (nr_objs > SLAB_LIMIT)
751 nr_objs = SLAB_LIMIT;
752
753 mgmt_size = slab_mgmt_size(nr_objs, align);
754 }
755 *num = nr_objs;
756 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
757}
758
f28510d3 759#if DEBUG
d40cee24 760#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 761
a737b3e2
AM
762static void __slab_error(const char *function, struct kmem_cache *cachep,
763 char *msg)
1da177e4
LT
764{
765 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 766 function, cachep->name, msg);
1da177e4 767 dump_stack();
645df230 768 add_taint(TAINT_BAD_PAGE);
1da177e4 769}
f28510d3 770#endif
1da177e4 771
3395ee05
PM
772/*
773 * By default on NUMA we use alien caches to stage the freeing of
774 * objects allocated from other nodes. This causes massive memory
775 * inefficiencies when using fake NUMA setup to split memory into a
776 * large number of small nodes, so it can be disabled on the command
777 * line
778 */
779
780static int use_alien_caches __read_mostly = 1;
781static int __init noaliencache_setup(char *s)
782{
783 use_alien_caches = 0;
784 return 1;
785}
786__setup("noaliencache", noaliencache_setup);
787
3df1cccd
DR
788static int __init slab_max_order_setup(char *str)
789{
790 get_option(&str, &slab_max_order);
791 slab_max_order = slab_max_order < 0 ? 0 :
792 min(slab_max_order, MAX_ORDER - 1);
793 slab_max_order_set = true;
794
795 return 1;
796}
797__setup("slab_max_order=", slab_max_order_setup);
798
8fce4d8e
CL
799#ifdef CONFIG_NUMA
800/*
801 * Special reaping functions for NUMA systems called from cache_reap().
802 * These take care of doing round robin flushing of alien caches (containing
803 * objects freed on different nodes from which they were allocated) and the
804 * flushing of remote pcps by calling drain_node_pages.
805 */
1871e52c 806static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
807
808static void init_reap_node(int cpu)
809{
810 int node;
811
7d6e6d09 812 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 813 if (node == MAX_NUMNODES)
442295c9 814 node = first_node(node_online_map);
8fce4d8e 815
1871e52c 816 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
817}
818
819static void next_reap_node(void)
820{
909ea964 821 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 822
8fce4d8e
CL
823 node = next_node(node, node_online_map);
824 if (unlikely(node >= MAX_NUMNODES))
825 node = first_node(node_online_map);
909ea964 826 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
827}
828
829#else
830#define init_reap_node(cpu) do { } while (0)
831#define next_reap_node(void) do { } while (0)
832#endif
833
1da177e4
LT
834/*
835 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
836 * via the workqueue/eventd.
837 * Add the CPU number into the expiration time to minimize the possibility of
838 * the CPUs getting into lockstep and contending for the global cache chain
839 * lock.
840 */
897e679b 841static void __cpuinit start_cpu_timer(int cpu)
1da177e4 842{
1871e52c 843 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
844
845 /*
846 * When this gets called from do_initcalls via cpucache_init(),
847 * init_workqueues() has already run, so keventd will be setup
848 * at that time.
849 */
52bad64d 850 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 851 init_reap_node(cpu);
203b42f7 852 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
853 schedule_delayed_work_on(cpu, reap_work,
854 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
855 }
856}
857
e498be7d 858static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 859 int batchcount, gfp_t gfp)
1da177e4 860{
b28a02de 861 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
862 struct array_cache *nc = NULL;
863
83b519e8 864 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
865 /*
866 * The array_cache structures contain pointers to free object.
25985edc 867 * However, when such objects are allocated or transferred to another
d5cff635
CM
868 * cache the pointers are not cleared and they could be counted as
869 * valid references during a kmemleak scan. Therefore, kmemleak must
870 * not scan such objects.
871 */
872 kmemleak_no_scan(nc);
1da177e4
LT
873 if (nc) {
874 nc->avail = 0;
875 nc->limit = entries;
876 nc->batchcount = batchcount;
877 nc->touched = 0;
e498be7d 878 spin_lock_init(&nc->lock);
1da177e4
LT
879 }
880 return nc;
881}
882
072bb0aa
MG
883static inline bool is_slab_pfmemalloc(struct slab *slabp)
884{
885 struct page *page = virt_to_page(slabp->s_mem);
886
887 return PageSlabPfmemalloc(page);
888}
889
890/* Clears pfmemalloc_active if no slabs have pfmalloc set */
891static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
892 struct array_cache *ac)
893{
6a67368c 894 struct kmem_cache_node *l3 = cachep->node[numa_mem_id()];
072bb0aa
MG
895 struct slab *slabp;
896 unsigned long flags;
897
898 if (!pfmemalloc_active)
899 return;
900
901 spin_lock_irqsave(&l3->list_lock, flags);
902 list_for_each_entry(slabp, &l3->slabs_full, list)
903 if (is_slab_pfmemalloc(slabp))
904 goto out;
905
906 list_for_each_entry(slabp, &l3->slabs_partial, list)
907 if (is_slab_pfmemalloc(slabp))
908 goto out;
909
910 list_for_each_entry(slabp, &l3->slabs_free, list)
911 if (is_slab_pfmemalloc(slabp))
912 goto out;
913
914 pfmemalloc_active = false;
915out:
916 spin_unlock_irqrestore(&l3->list_lock, flags);
917}
918
381760ea 919static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
920 gfp_t flags, bool force_refill)
921{
922 int i;
923 void *objp = ac->entry[--ac->avail];
924
925 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
926 if (unlikely(is_obj_pfmemalloc(objp))) {
6744f087 927 struct kmem_cache_node *l3;
072bb0aa
MG
928
929 if (gfp_pfmemalloc_allowed(flags)) {
930 clear_obj_pfmemalloc(&objp);
931 return objp;
932 }
933
934 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 935 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
936 /* If a !PFMEMALLOC object is found, swap them */
937 if (!is_obj_pfmemalloc(ac->entry[i])) {
938 objp = ac->entry[i];
939 ac->entry[i] = ac->entry[ac->avail];
940 ac->entry[ac->avail] = objp;
941 return objp;
942 }
943 }
944
945 /*
946 * If there are empty slabs on the slabs_free list and we are
947 * being forced to refill the cache, mark this one !pfmemalloc.
948 */
6a67368c 949 l3 = cachep->node[numa_mem_id()];
072bb0aa
MG
950 if (!list_empty(&l3->slabs_free) && force_refill) {
951 struct slab *slabp = virt_to_slab(objp);
30c29bea 952 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
953 clear_obj_pfmemalloc(&objp);
954 recheck_pfmemalloc_active(cachep, ac);
955 return objp;
956 }
957
958 /* No !PFMEMALLOC objects available */
959 ac->avail++;
960 objp = NULL;
961 }
962
963 return objp;
964}
965
381760ea
MG
966static inline void *ac_get_obj(struct kmem_cache *cachep,
967 struct array_cache *ac, gfp_t flags, bool force_refill)
968{
969 void *objp;
970
971 if (unlikely(sk_memalloc_socks()))
972 objp = __ac_get_obj(cachep, ac, flags, force_refill);
973 else
974 objp = ac->entry[--ac->avail];
975
976 return objp;
977}
978
979static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
980 void *objp)
981{
982 if (unlikely(pfmemalloc_active)) {
983 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 984 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
985 if (PageSlabPfmemalloc(page))
986 set_obj_pfmemalloc(&objp);
987 }
988
381760ea
MG
989 return objp;
990}
991
992static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
993 void *objp)
994{
995 if (unlikely(sk_memalloc_socks()))
996 objp = __ac_put_obj(cachep, ac, objp);
997
072bb0aa
MG
998 ac->entry[ac->avail++] = objp;
999}
1000
3ded175a
CL
1001/*
1002 * Transfer objects in one arraycache to another.
1003 * Locking must be handled by the caller.
1004 *
1005 * Return the number of entries transferred.
1006 */
1007static int transfer_objects(struct array_cache *to,
1008 struct array_cache *from, unsigned int max)
1009{
1010 /* Figure out how many entries to transfer */
732eacc0 1011 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1012
1013 if (!nr)
1014 return 0;
1015
1016 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1017 sizeof(void *) *nr);
1018
1019 from->avail -= nr;
1020 to->avail += nr;
3ded175a
CL
1021 return nr;
1022}
1023
765c4507
CL
1024#ifndef CONFIG_NUMA
1025
1026#define drain_alien_cache(cachep, alien) do { } while (0)
1027#define reap_alien(cachep, l3) do { } while (0)
1028
83b519e8 1029static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1030{
1031 return (struct array_cache **)BAD_ALIEN_MAGIC;
1032}
1033
1034static inline void free_alien_cache(struct array_cache **ac_ptr)
1035{
1036}
1037
1038static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1039{
1040 return 0;
1041}
1042
1043static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1044 gfp_t flags)
1045{
1046 return NULL;
1047}
1048
8b98c169 1049static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1050 gfp_t flags, int nodeid)
1051{
1052 return NULL;
1053}
1054
1055#else /* CONFIG_NUMA */
1056
8b98c169 1057static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1058static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1059
83b519e8 1060static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1061{
1062 struct array_cache **ac_ptr;
8ef82866 1063 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1064 int i;
1065
1066 if (limit > 1)
1067 limit = 12;
f3186a9c 1068 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1069 if (ac_ptr) {
1070 for_each_node(i) {
f3186a9c 1071 if (i == node || !node_online(i))
e498be7d 1072 continue;
83b519e8 1073 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1074 if (!ac_ptr[i]) {
cc550def 1075 for (i--; i >= 0; i--)
e498be7d
CL
1076 kfree(ac_ptr[i]);
1077 kfree(ac_ptr);
1078 return NULL;
1079 }
1080 }
1081 }
1082 return ac_ptr;
1083}
1084
5295a74c 1085static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1086{
1087 int i;
1088
1089 if (!ac_ptr)
1090 return;
e498be7d 1091 for_each_node(i)
b28a02de 1092 kfree(ac_ptr[i]);
e498be7d
CL
1093 kfree(ac_ptr);
1094}
1095
343e0d7a 1096static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1097 struct array_cache *ac, int node)
e498be7d 1098{
6a67368c 1099 struct kmem_cache_node *rl3 = cachep->node[node];
e498be7d
CL
1100
1101 if (ac->avail) {
1102 spin_lock(&rl3->list_lock);
e00946fe
CL
1103 /*
1104 * Stuff objects into the remote nodes shared array first.
1105 * That way we could avoid the overhead of putting the objects
1106 * into the free lists and getting them back later.
1107 */
693f7d36 1108 if (rl3->shared)
1109 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1110
ff69416e 1111 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1112 ac->avail = 0;
1113 spin_unlock(&rl3->list_lock);
1114 }
1115}
1116
8fce4d8e
CL
1117/*
1118 * Called from cache_reap() to regularly drain alien caches round robin.
1119 */
6744f087 1120static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *l3)
8fce4d8e 1121{
909ea964 1122 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1123
1124 if (l3->alien) {
1125 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1126
1127 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1128 __drain_alien_cache(cachep, ac, node);
1129 spin_unlock_irq(&ac->lock);
1130 }
1131 }
1132}
1133
a737b3e2
AM
1134static void drain_alien_cache(struct kmem_cache *cachep,
1135 struct array_cache **alien)
e498be7d 1136{
b28a02de 1137 int i = 0;
e498be7d
CL
1138 struct array_cache *ac;
1139 unsigned long flags;
1140
1141 for_each_online_node(i) {
4484ebf1 1142 ac = alien[i];
e498be7d
CL
1143 if (ac) {
1144 spin_lock_irqsave(&ac->lock, flags);
1145 __drain_alien_cache(cachep, ac, i);
1146 spin_unlock_irqrestore(&ac->lock, flags);
1147 }
1148 }
1149}
729bd0b7 1150
873623df 1151static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1152{
1153 struct slab *slabp = virt_to_slab(objp);
1154 int nodeid = slabp->nodeid;
6744f087 1155 struct kmem_cache_node *l3;
729bd0b7 1156 struct array_cache *alien = NULL;
1ca4cb24
PE
1157 int node;
1158
7d6e6d09 1159 node = numa_mem_id();
729bd0b7
PE
1160
1161 /*
1162 * Make sure we are not freeing a object from another node to the array
1163 * cache on this cpu.
1164 */
62918a03 1165 if (likely(slabp->nodeid == node))
729bd0b7
PE
1166 return 0;
1167
6a67368c 1168 l3 = cachep->node[node];
729bd0b7
PE
1169 STATS_INC_NODEFREES(cachep);
1170 if (l3->alien && l3->alien[nodeid]) {
1171 alien = l3->alien[nodeid];
873623df 1172 spin_lock(&alien->lock);
729bd0b7
PE
1173 if (unlikely(alien->avail == alien->limit)) {
1174 STATS_INC_ACOVERFLOW(cachep);
1175 __drain_alien_cache(cachep, alien, nodeid);
1176 }
072bb0aa 1177 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1178 spin_unlock(&alien->lock);
1179 } else {
6a67368c 1180 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1181 free_block(cachep, &objp, 1, nodeid);
6a67368c 1182 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1183 }
1184 return 1;
1185}
e498be7d
CL
1186#endif
1187
8f9f8d9e 1188/*
6a67368c 1189 * Allocates and initializes node for a node on each slab cache, used for
8f9f8d9e
DR
1190 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1191 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1192 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1193 * already in use.
1194 *
18004c5d 1195 * Must hold slab_mutex.
8f9f8d9e 1196 */
6a67368c 1197static int init_cache_node_node(int node)
8f9f8d9e
DR
1198{
1199 struct kmem_cache *cachep;
6744f087
CL
1200 struct kmem_cache_node *l3;
1201 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1202
18004c5d 1203 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1204 /*
1205 * Set up the size64 kmemlist for cpu before we can
1206 * begin anything. Make sure some other cpu on this
1207 * node has not already allocated this
1208 */
6a67368c 1209 if (!cachep->node[node]) {
8f9f8d9e
DR
1210 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1211 if (!l3)
1212 return -ENOMEM;
1213 kmem_list3_init(l3);
1214 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1215 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1216
1217 /*
1218 * The l3s don't come and go as CPUs come and
18004c5d 1219 * go. slab_mutex is sufficient
8f9f8d9e
DR
1220 * protection here.
1221 */
6a67368c 1222 cachep->node[node] = l3;
8f9f8d9e
DR
1223 }
1224
6a67368c
CL
1225 spin_lock_irq(&cachep->node[node]->list_lock);
1226 cachep->node[node]->free_limit =
8f9f8d9e
DR
1227 (1 + nr_cpus_node(node)) *
1228 cachep->batchcount + cachep->num;
6a67368c 1229 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1230 }
1231 return 0;
1232}
1233
fbf1e473
AM
1234static void __cpuinit cpuup_canceled(long cpu)
1235{
1236 struct kmem_cache *cachep;
6744f087 1237 struct kmem_cache_node *l3 = NULL;
7d6e6d09 1238 int node = cpu_to_mem(cpu);
a70f7302 1239 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1240
18004c5d 1241 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1242 struct array_cache *nc;
1243 struct array_cache *shared;
1244 struct array_cache **alien;
fbf1e473 1245
fbf1e473
AM
1246 /* cpu is dead; no one can alloc from it. */
1247 nc = cachep->array[cpu];
1248 cachep->array[cpu] = NULL;
6a67368c 1249 l3 = cachep->node[node];
fbf1e473
AM
1250
1251 if (!l3)
1252 goto free_array_cache;
1253
1254 spin_lock_irq(&l3->list_lock);
1255
1256 /* Free limit for this kmem_list3 */
1257 l3->free_limit -= cachep->batchcount;
1258 if (nc)
1259 free_block(cachep, nc->entry, nc->avail, node);
1260
58463c1f 1261 if (!cpumask_empty(mask)) {
fbf1e473
AM
1262 spin_unlock_irq(&l3->list_lock);
1263 goto free_array_cache;
1264 }
1265
1266 shared = l3->shared;
1267 if (shared) {
1268 free_block(cachep, shared->entry,
1269 shared->avail, node);
1270 l3->shared = NULL;
1271 }
1272
1273 alien = l3->alien;
1274 l3->alien = NULL;
1275
1276 spin_unlock_irq(&l3->list_lock);
1277
1278 kfree(shared);
1279 if (alien) {
1280 drain_alien_cache(cachep, alien);
1281 free_alien_cache(alien);
1282 }
1283free_array_cache:
1284 kfree(nc);
1285 }
1286 /*
1287 * In the previous loop, all the objects were freed to
1288 * the respective cache's slabs, now we can go ahead and
1289 * shrink each nodelist to its limit.
1290 */
18004c5d 1291 list_for_each_entry(cachep, &slab_caches, list) {
6a67368c 1292 l3 = cachep->node[node];
fbf1e473
AM
1293 if (!l3)
1294 continue;
1295 drain_freelist(cachep, l3, l3->free_objects);
1296 }
1297}
1298
1299static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1300{
343e0d7a 1301 struct kmem_cache *cachep;
6744f087 1302 struct kmem_cache_node *l3 = NULL;
7d6e6d09 1303 int node = cpu_to_mem(cpu);
8f9f8d9e 1304 int err;
1da177e4 1305
fbf1e473
AM
1306 /*
1307 * We need to do this right in the beginning since
1308 * alloc_arraycache's are going to use this list.
1309 * kmalloc_node allows us to add the slab to the right
1310 * kmem_list3 and not this cpu's kmem_list3
1311 */
6a67368c 1312 err = init_cache_node_node(node);
8f9f8d9e
DR
1313 if (err < 0)
1314 goto bad;
fbf1e473
AM
1315
1316 /*
1317 * Now we can go ahead with allocating the shared arrays and
1318 * array caches
1319 */
18004c5d 1320 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1321 struct array_cache *nc;
1322 struct array_cache *shared = NULL;
1323 struct array_cache **alien = NULL;
1324
1325 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1326 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1327 if (!nc)
1328 goto bad;
1329 if (cachep->shared) {
1330 shared = alloc_arraycache(node,
1331 cachep->shared * cachep->batchcount,
83b519e8 1332 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1333 if (!shared) {
1334 kfree(nc);
1da177e4 1335 goto bad;
12d00f6a 1336 }
fbf1e473
AM
1337 }
1338 if (use_alien_caches) {
83b519e8 1339 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1340 if (!alien) {
1341 kfree(shared);
1342 kfree(nc);
fbf1e473 1343 goto bad;
12d00f6a 1344 }
fbf1e473
AM
1345 }
1346 cachep->array[cpu] = nc;
6a67368c 1347 l3 = cachep->node[node];
fbf1e473
AM
1348 BUG_ON(!l3);
1349
1350 spin_lock_irq(&l3->list_lock);
1351 if (!l3->shared) {
1352 /*
1353 * We are serialised from CPU_DEAD or
1354 * CPU_UP_CANCELLED by the cpucontrol lock
1355 */
1356 l3->shared = shared;
1357 shared = NULL;
1358 }
4484ebf1 1359#ifdef CONFIG_NUMA
fbf1e473
AM
1360 if (!l3->alien) {
1361 l3->alien = alien;
1362 alien = NULL;
1da177e4 1363 }
fbf1e473
AM
1364#endif
1365 spin_unlock_irq(&l3->list_lock);
1366 kfree(shared);
1367 free_alien_cache(alien);
83835b3d
PZ
1368 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1369 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1370 else if (!OFF_SLAB(cachep) &&
1371 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1372 on_slab_lock_classes_node(cachep, node);
fbf1e473 1373 }
ce79ddc8
PE
1374 init_node_lock_keys(node);
1375
fbf1e473
AM
1376 return 0;
1377bad:
12d00f6a 1378 cpuup_canceled(cpu);
fbf1e473
AM
1379 return -ENOMEM;
1380}
1381
1382static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1383 unsigned long action, void *hcpu)
1384{
1385 long cpu = (long)hcpu;
1386 int err = 0;
1387
1388 switch (action) {
fbf1e473
AM
1389 case CPU_UP_PREPARE:
1390 case CPU_UP_PREPARE_FROZEN:
18004c5d 1391 mutex_lock(&slab_mutex);
fbf1e473 1392 err = cpuup_prepare(cpu);
18004c5d 1393 mutex_unlock(&slab_mutex);
1da177e4
LT
1394 break;
1395 case CPU_ONLINE:
8bb78442 1396 case CPU_ONLINE_FROZEN:
1da177e4
LT
1397 start_cpu_timer(cpu);
1398 break;
1399#ifdef CONFIG_HOTPLUG_CPU
5830c590 1400 case CPU_DOWN_PREPARE:
8bb78442 1401 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1402 /*
18004c5d 1403 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1404 * held so that if cache_reap() is invoked it cannot do
1405 * anything expensive but will only modify reap_work
1406 * and reschedule the timer.
1407 */
afe2c511 1408 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1409 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1410 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1411 break;
1412 case CPU_DOWN_FAILED:
8bb78442 1413 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1414 start_cpu_timer(cpu);
1415 break;
1da177e4 1416 case CPU_DEAD:
8bb78442 1417 case CPU_DEAD_FROZEN:
4484ebf1
RT
1418 /*
1419 * Even if all the cpus of a node are down, we don't free the
1420 * kmem_list3 of any cache. This to avoid a race between
1421 * cpu_down, and a kmalloc allocation from another cpu for
1422 * memory from the node of the cpu going down. The list3
1423 * structure is usually allocated from kmem_cache_create() and
1424 * gets destroyed at kmem_cache_destroy().
1425 */
183ff22b 1426 /* fall through */
8f5be20b 1427#endif
1da177e4 1428 case CPU_UP_CANCELED:
8bb78442 1429 case CPU_UP_CANCELED_FROZEN:
18004c5d 1430 mutex_lock(&slab_mutex);
fbf1e473 1431 cpuup_canceled(cpu);
18004c5d 1432 mutex_unlock(&slab_mutex);
1da177e4 1433 break;
1da177e4 1434 }
eac40680 1435 return notifier_from_errno(err);
1da177e4
LT
1436}
1437
74b85f37
CS
1438static struct notifier_block __cpuinitdata cpucache_notifier = {
1439 &cpuup_callback, NULL, 0
1440};
1da177e4 1441
8f9f8d9e
DR
1442#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1443/*
1444 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1445 * Returns -EBUSY if all objects cannot be drained so that the node is not
1446 * removed.
1447 *
18004c5d 1448 * Must hold slab_mutex.
8f9f8d9e 1449 */
6a67368c 1450static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1451{
1452 struct kmem_cache *cachep;
1453 int ret = 0;
1454
18004c5d 1455 list_for_each_entry(cachep, &slab_caches, list) {
6744f087 1456 struct kmem_cache_node *l3;
8f9f8d9e 1457
6a67368c 1458 l3 = cachep->node[node];
8f9f8d9e
DR
1459 if (!l3)
1460 continue;
1461
1462 drain_freelist(cachep, l3, l3->free_objects);
1463
1464 if (!list_empty(&l3->slabs_full) ||
1465 !list_empty(&l3->slabs_partial)) {
1466 ret = -EBUSY;
1467 break;
1468 }
1469 }
1470 return ret;
1471}
1472
1473static int __meminit slab_memory_callback(struct notifier_block *self,
1474 unsigned long action, void *arg)
1475{
1476 struct memory_notify *mnb = arg;
1477 int ret = 0;
1478 int nid;
1479
1480 nid = mnb->status_change_nid;
1481 if (nid < 0)
1482 goto out;
1483
1484 switch (action) {
1485 case MEM_GOING_ONLINE:
18004c5d 1486 mutex_lock(&slab_mutex);
6a67368c 1487 ret = init_cache_node_node(nid);
18004c5d 1488 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1489 break;
1490 case MEM_GOING_OFFLINE:
18004c5d 1491 mutex_lock(&slab_mutex);
6a67368c 1492 ret = drain_cache_node_node(nid);
18004c5d 1493 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1494 break;
1495 case MEM_ONLINE:
1496 case MEM_OFFLINE:
1497 case MEM_CANCEL_ONLINE:
1498 case MEM_CANCEL_OFFLINE:
1499 break;
1500 }
1501out:
5fda1bd5 1502 return notifier_from_errno(ret);
8f9f8d9e
DR
1503}
1504#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1505
e498be7d
CL
1506/*
1507 * swap the static kmem_list3 with kmalloced memory
1508 */
6744f087 1509static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1510 int nodeid)
e498be7d 1511{
6744f087 1512 struct kmem_cache_node *ptr;
e498be7d 1513
6744f087 1514 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1515 BUG_ON(!ptr);
1516
6744f087 1517 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1518 /*
1519 * Do not assume that spinlocks can be initialized via memcpy:
1520 */
1521 spin_lock_init(&ptr->list_lock);
1522
e498be7d 1523 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1524 cachep->node[nodeid] = ptr;
e498be7d
CL
1525}
1526
556a169d
PE
1527/*
1528 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1529 * size of kmem_list3.
1530 */
1531static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1532{
1533 int node;
1534
1535 for_each_online_node(node) {
6a67368c
CL
1536 cachep->node[node] = &initkmem_list3[index + node];
1537 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1538 REAPTIMEOUT_LIST3 +
1539 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1540 }
1541}
1542
3c583465
CL
1543/*
1544 * The memory after the last cpu cache pointer is used for the
6a67368c 1545 * the node pointer.
3c583465 1546 */
6a67368c 1547static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1548{
6a67368c 1549 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1550}
1551
a737b3e2
AM
1552/*
1553 * Initialisation. Called after the page allocator have been initialised and
1554 * before smp_init().
1da177e4
LT
1555 */
1556void __init kmem_cache_init(void)
1557{
e498be7d
CL
1558 int i;
1559
9b030cb8 1560 kmem_cache = &kmem_cache_boot;
6a67368c 1561 setup_node_pointer(kmem_cache);
9b030cb8 1562
b6e68bc1 1563 if (num_possible_nodes() == 1)
62918a03
SS
1564 use_alien_caches = 0;
1565
3c583465 1566 for (i = 0; i < NUM_INIT_LISTS; i++)
e498be7d 1567 kmem_list3_init(&initkmem_list3[i]);
3c583465 1568
9b030cb8 1569 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1570
1571 /*
1572 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1573 * page orders on machines with more than 32MB of memory if
1574 * not overridden on the command line.
1da177e4 1575 */
3df1cccd 1576 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1577 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1578
1da177e4
LT
1579 /* Bootstrap is tricky, because several objects are allocated
1580 * from caches that do not exist yet:
9b030cb8
CL
1581 * 1) initialize the kmem_cache cache: it contains the struct
1582 * kmem_cache structures of all caches, except kmem_cache itself:
1583 * kmem_cache is statically allocated.
e498be7d
CL
1584 * Initially an __init data area is used for the head array and the
1585 * kmem_list3 structures, it's replaced with a kmalloc allocated
1586 * array at the end of the bootstrap.
1da177e4 1587 * 2) Create the first kmalloc cache.
343e0d7a 1588 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1589 * An __init data area is used for the head array.
1590 * 3) Create the remaining kmalloc caches, with minimally sized
1591 * head arrays.
9b030cb8 1592 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1593 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1594 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1595 * the other cache's with kmalloc allocated memory.
1596 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1597 */
1598
9b030cb8 1599 /* 1) create the kmem_cache */
1da177e4 1600
8da3430d 1601 /*
b56efcf0 1602 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1603 */
2f9baa9f
CL
1604 create_boot_cache(kmem_cache, "kmem_cache",
1605 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1606 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1607 SLAB_HWCACHE_ALIGN);
1608 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1609
1610 /* 2+3) create the kmalloc caches */
1da177e4 1611
a737b3e2
AM
1612 /*
1613 * Initialize the caches that provide memory for the array cache and the
1614 * kmem_list3 structures first. Without this, further allocations will
1615 * bug.
e498be7d
CL
1616 */
1617
e3366016
CL
1618 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1619 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44
CL
1620
1621 if (INDEX_AC != INDEX_L3)
e3366016
CL
1622 kmalloc_caches[INDEX_L3] =
1623 create_kmalloc_cache("kmalloc-l3",
1624 kmalloc_size(INDEX_L3), ARCH_KMALLOC_FLAGS);
e498be7d 1625
e0a42726
IM
1626 slab_early_init = 0;
1627
1da177e4
LT
1628 /* 4) Replace the bootstrap head arrays */
1629 {
2b2d5493 1630 struct array_cache *ptr;
e498be7d 1631
83b519e8 1632 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1633
9b030cb8 1634 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1635 sizeof(struct arraycache_init));
2b2d5493
IM
1636 /*
1637 * Do not assume that spinlocks can be initialized via memcpy:
1638 */
1639 spin_lock_init(&ptr->lock);
1640
9b030cb8 1641 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1642
83b519e8 1643 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1644
e3366016 1645 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1646 != &initarray_generic.cache);
e3366016 1647 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1648 sizeof(struct arraycache_init));
2b2d5493
IM
1649 /*
1650 * Do not assume that spinlocks can be initialized via memcpy:
1651 */
1652 spin_lock_init(&ptr->lock);
1653
e3366016 1654 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1655 }
e498be7d
CL
1656 /* 5) Replace the bootstrap kmem_list3's */
1657 {
1ca4cb24
PE
1658 int nid;
1659
9c09a95c 1660 for_each_online_node(nid) {
9b030cb8 1661 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1662
e3366016 1663 init_list(kmalloc_caches[INDEX_AC],
1ca4cb24 1664 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1665
1666 if (INDEX_AC != INDEX_L3) {
e3366016 1667 init_list(kmalloc_caches[INDEX_L3],
1ca4cb24 1668 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1669 }
1670 }
1671 }
1da177e4 1672
f97d5f63 1673 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1674}
1675
1676void __init kmem_cache_init_late(void)
1677{
1678 struct kmem_cache *cachep;
1679
97d06609 1680 slab_state = UP;
52cef189 1681
8429db5c 1682 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1683 mutex_lock(&slab_mutex);
1684 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1685 if (enable_cpucache(cachep, GFP_NOWAIT))
1686 BUG();
18004c5d 1687 mutex_unlock(&slab_mutex);
056c6241 1688
947ca185
MW
1689 /* Annotate slab for lockdep -- annotate the malloc caches */
1690 init_lock_keys();
1691
97d06609
CL
1692 /* Done! */
1693 slab_state = FULL;
1694
a737b3e2
AM
1695 /*
1696 * Register a cpu startup notifier callback that initializes
1697 * cpu_cache_get for all new cpus
1da177e4
LT
1698 */
1699 register_cpu_notifier(&cpucache_notifier);
1da177e4 1700
8f9f8d9e
DR
1701#ifdef CONFIG_NUMA
1702 /*
1703 * Register a memory hotplug callback that initializes and frees
6a67368c 1704 * node.
8f9f8d9e
DR
1705 */
1706 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1707#endif
1708
a737b3e2
AM
1709 /*
1710 * The reap timers are started later, with a module init call: That part
1711 * of the kernel is not yet operational.
1da177e4
LT
1712 */
1713}
1714
1715static int __init cpucache_init(void)
1716{
1717 int cpu;
1718
a737b3e2
AM
1719 /*
1720 * Register the timers that return unneeded pages to the page allocator
1da177e4 1721 */
e498be7d 1722 for_each_online_cpu(cpu)
a737b3e2 1723 start_cpu_timer(cpu);
a164f896
GC
1724
1725 /* Done! */
97d06609 1726 slab_state = FULL;
1da177e4
LT
1727 return 0;
1728}
1da177e4
LT
1729__initcall(cpucache_init);
1730
8bdec192
RA
1731static noinline void
1732slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1733{
6744f087 1734 struct kmem_cache_node *l3;
8bdec192
RA
1735 struct slab *slabp;
1736 unsigned long flags;
1737 int node;
1738
1739 printk(KERN_WARNING
1740 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1741 nodeid, gfpflags);
1742 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1743 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1744
1745 for_each_online_node(node) {
1746 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1747 unsigned long active_slabs = 0, num_slabs = 0;
1748
6a67368c 1749 l3 = cachep->node[node];
8bdec192
RA
1750 if (!l3)
1751 continue;
1752
1753 spin_lock_irqsave(&l3->list_lock, flags);
1754 list_for_each_entry(slabp, &l3->slabs_full, list) {
1755 active_objs += cachep->num;
1756 active_slabs++;
1757 }
1758 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1759 active_objs += slabp->inuse;
1760 active_slabs++;
1761 }
1762 list_for_each_entry(slabp, &l3->slabs_free, list)
1763 num_slabs++;
1764
1765 free_objects += l3->free_objects;
1766 spin_unlock_irqrestore(&l3->list_lock, flags);
1767
1768 num_slabs += active_slabs;
1769 num_objs = num_slabs * cachep->num;
1770 printk(KERN_WARNING
1771 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1772 node, active_slabs, num_slabs, active_objs, num_objs,
1773 free_objects);
1774 }
1775}
1776
1da177e4
LT
1777/*
1778 * Interface to system's page allocator. No need to hold the cache-lock.
1779 *
1780 * If we requested dmaable memory, we will get it. Even if we
1781 * did not request dmaable memory, we might get it, but that
1782 * would be relatively rare and ignorable.
1783 */
343e0d7a 1784static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1785{
1786 struct page *page;
e1b6aa6f 1787 int nr_pages;
1da177e4
LT
1788 int i;
1789
d6fef9da 1790#ifndef CONFIG_MMU
e1b6aa6f
CH
1791 /*
1792 * Nommu uses slab's for process anonymous memory allocations, and thus
1793 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1794 */
e1b6aa6f 1795 flags |= __GFP_COMP;
d6fef9da 1796#endif
765c4507 1797
a618e89f 1798 flags |= cachep->allocflags;
e12ba74d
MG
1799 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1800 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1801
517d0869 1802 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1803 if (!page) {
1804 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1805 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1806 return NULL;
8bdec192 1807 }
1da177e4 1808
b37f1dd0 1809 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1810 if (unlikely(page->pfmemalloc))
1811 pfmemalloc_active = true;
1812
e1b6aa6f 1813 nr_pages = (1 << cachep->gfporder);
1da177e4 1814 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1815 add_zone_page_state(page_zone(page),
1816 NR_SLAB_RECLAIMABLE, nr_pages);
1817 else
1818 add_zone_page_state(page_zone(page),
1819 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1820 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1821 __SetPageSlab(page + i);
c175eea4 1822
072bb0aa
MG
1823 if (page->pfmemalloc)
1824 SetPageSlabPfmemalloc(page + i);
1825 }
1f458cbf 1826 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1827
b1eeab67
VN
1828 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1829 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1830
1831 if (cachep->ctor)
1832 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1833 else
1834 kmemcheck_mark_unallocated_pages(page, nr_pages);
1835 }
c175eea4 1836
e1b6aa6f 1837 return page_address(page);
1da177e4
LT
1838}
1839
1840/*
1841 * Interface to system's page release.
1842 */
343e0d7a 1843static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1844{
b28a02de 1845 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1846 struct page *page = virt_to_page(addr);
1847 const unsigned long nr_freed = i;
1848
b1eeab67 1849 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1850
972d1a7b
CL
1851 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1852 sub_zone_page_state(page_zone(page),
1853 NR_SLAB_RECLAIMABLE, nr_freed);
1854 else
1855 sub_zone_page_state(page_zone(page),
1856 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1857 while (i--) {
f205b2fe 1858 BUG_ON(!PageSlab(page));
072bb0aa 1859 __ClearPageSlabPfmemalloc(page);
f205b2fe 1860 __ClearPageSlab(page);
1da177e4
LT
1861 page++;
1862 }
1f458cbf
GC
1863
1864 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1865 if (current->reclaim_state)
1866 current->reclaim_state->reclaimed_slab += nr_freed;
d79923fa 1867 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1868}
1869
1870static void kmem_rcu_free(struct rcu_head *head)
1871{
b28a02de 1872 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1873 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1874
1875 kmem_freepages(cachep, slab_rcu->addr);
1876 if (OFF_SLAB(cachep))
1877 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1878}
1879
1880#if DEBUG
1881
1882#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1883static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1884 unsigned long caller)
1da177e4 1885{
8c138bc0 1886 int size = cachep->object_size;
1da177e4 1887
3dafccf2 1888 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1889
b28a02de 1890 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1891 return;
1892
b28a02de
PE
1893 *addr++ = 0x12345678;
1894 *addr++ = caller;
1895 *addr++ = smp_processor_id();
1896 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1897 {
1898 unsigned long *sptr = &caller;
1899 unsigned long svalue;
1900
1901 while (!kstack_end(sptr)) {
1902 svalue = *sptr++;
1903 if (kernel_text_address(svalue)) {
b28a02de 1904 *addr++ = svalue;
1da177e4
LT
1905 size -= sizeof(unsigned long);
1906 if (size <= sizeof(unsigned long))
1907 break;
1908 }
1909 }
1910
1911 }
b28a02de 1912 *addr++ = 0x87654321;
1da177e4
LT
1913}
1914#endif
1915
343e0d7a 1916static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1917{
8c138bc0 1918 int size = cachep->object_size;
3dafccf2 1919 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1920
1921 memset(addr, val, size);
b28a02de 1922 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1923}
1924
1925static void dump_line(char *data, int offset, int limit)
1926{
1927 int i;
aa83aa40
DJ
1928 unsigned char error = 0;
1929 int bad_count = 0;
1930
fdde6abb 1931 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1932 for (i = 0; i < limit; i++) {
1933 if (data[offset + i] != POISON_FREE) {
1934 error = data[offset + i];
1935 bad_count++;
1936 }
aa83aa40 1937 }
fdde6abb
SAS
1938 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1939 &data[offset], limit, 1);
aa83aa40
DJ
1940
1941 if (bad_count == 1) {
1942 error ^= POISON_FREE;
1943 if (!(error & (error - 1))) {
1944 printk(KERN_ERR "Single bit error detected. Probably "
1945 "bad RAM.\n");
1946#ifdef CONFIG_X86
1947 printk(KERN_ERR "Run memtest86+ or a similar memory "
1948 "test tool.\n");
1949#else
1950 printk(KERN_ERR "Run a memory test tool.\n");
1951#endif
1952 }
1953 }
1da177e4
LT
1954}
1955#endif
1956
1957#if DEBUG
1958
343e0d7a 1959static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1960{
1961 int i, size;
1962 char *realobj;
1963
1964 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1965 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1966 *dbg_redzone1(cachep, objp),
1967 *dbg_redzone2(cachep, objp));
1da177e4
LT
1968 }
1969
1970 if (cachep->flags & SLAB_STORE_USER) {
1971 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1972 *dbg_userword(cachep, objp));
1da177e4 1973 print_symbol("(%s)",
a737b3e2 1974 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1975 printk("\n");
1976 }
3dafccf2 1977 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1978 size = cachep->object_size;
b28a02de 1979 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1980 int limit;
1981 limit = 16;
b28a02de
PE
1982 if (i + limit > size)
1983 limit = size - i;
1da177e4
LT
1984 dump_line(realobj, i, limit);
1985 }
1986}
1987
343e0d7a 1988static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1989{
1990 char *realobj;
1991 int size, i;
1992 int lines = 0;
1993
3dafccf2 1994 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1995 size = cachep->object_size;
1da177e4 1996
b28a02de 1997 for (i = 0; i < size; i++) {
1da177e4 1998 char exp = POISON_FREE;
b28a02de 1999 if (i == size - 1)
1da177e4
LT
2000 exp = POISON_END;
2001 if (realobj[i] != exp) {
2002 int limit;
2003 /* Mismatch ! */
2004 /* Print header */
2005 if (lines == 0) {
b28a02de 2006 printk(KERN_ERR
face37f5
DJ
2007 "Slab corruption (%s): %s start=%p, len=%d\n",
2008 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2009 print_objinfo(cachep, objp, 0);
2010 }
2011 /* Hexdump the affected line */
b28a02de 2012 i = (i / 16) * 16;
1da177e4 2013 limit = 16;
b28a02de
PE
2014 if (i + limit > size)
2015 limit = size - i;
1da177e4
LT
2016 dump_line(realobj, i, limit);
2017 i += 16;
2018 lines++;
2019 /* Limit to 5 lines */
2020 if (lines > 5)
2021 break;
2022 }
2023 }
2024 if (lines != 0) {
2025 /* Print some data about the neighboring objects, if they
2026 * exist:
2027 */
6ed5eb22 2028 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2029 unsigned int objnr;
1da177e4 2030
8fea4e96 2031 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2032 if (objnr) {
8fea4e96 2033 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2034 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2035 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2036 realobj, size);
1da177e4
LT
2037 print_objinfo(cachep, objp, 2);
2038 }
b28a02de 2039 if (objnr + 1 < cachep->num) {
8fea4e96 2040 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2041 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2042 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2043 realobj, size);
1da177e4
LT
2044 print_objinfo(cachep, objp, 2);
2045 }
2046 }
2047}
2048#endif
2049
12dd36fa 2050#if DEBUG
e79aec29 2051static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2052{
1da177e4
LT
2053 int i;
2054 for (i = 0; i < cachep->num; i++) {
8fea4e96 2055 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2056
2057 if (cachep->flags & SLAB_POISON) {
2058#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2059 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2060 OFF_SLAB(cachep))
b28a02de 2061 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2062 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2063 else
2064 check_poison_obj(cachep, objp);
2065#else
2066 check_poison_obj(cachep, objp);
2067#endif
2068 }
2069 if (cachep->flags & SLAB_RED_ZONE) {
2070 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2071 slab_error(cachep, "start of a freed object "
b28a02de 2072 "was overwritten");
1da177e4
LT
2073 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2074 slab_error(cachep, "end of a freed object "
b28a02de 2075 "was overwritten");
1da177e4 2076 }
1da177e4 2077 }
12dd36fa 2078}
1da177e4 2079#else
e79aec29 2080static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2081{
12dd36fa 2082}
1da177e4
LT
2083#endif
2084
911851e6
RD
2085/**
2086 * slab_destroy - destroy and release all objects in a slab
2087 * @cachep: cache pointer being destroyed
2088 * @slabp: slab pointer being destroyed
2089 *
12dd36fa 2090 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2091 * Before calling the slab must have been unlinked from the cache. The
2092 * cache-lock is not held/needed.
12dd36fa 2093 */
343e0d7a 2094static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2095{
2096 void *addr = slabp->s_mem - slabp->colouroff;
2097
e79aec29 2098 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2099 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2100 struct slab_rcu *slab_rcu;
2101
b28a02de 2102 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2103 slab_rcu->cachep = cachep;
2104 slab_rcu->addr = addr;
2105 call_rcu(&slab_rcu->head, kmem_rcu_free);
2106 } else {
2107 kmem_freepages(cachep, addr);
873623df
IM
2108 if (OFF_SLAB(cachep))
2109 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2110 }
2111}
2112
4d268eba 2113/**
a70773dd
RD
2114 * calculate_slab_order - calculate size (page order) of slabs
2115 * @cachep: pointer to the cache that is being created
2116 * @size: size of objects to be created in this cache.
2117 * @align: required alignment for the objects.
2118 * @flags: slab allocation flags
2119 *
2120 * Also calculates the number of objects per slab.
4d268eba
PE
2121 *
2122 * This could be made much more intelligent. For now, try to avoid using
2123 * high order pages for slabs. When the gfp() functions are more friendly
2124 * towards high-order requests, this should be changed.
2125 */
a737b3e2 2126static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2127 size_t size, size_t align, unsigned long flags)
4d268eba 2128{
b1ab41c4 2129 unsigned long offslab_limit;
4d268eba 2130 size_t left_over = 0;
9888e6fa 2131 int gfporder;
4d268eba 2132
0aa817f0 2133 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2134 unsigned int num;
2135 size_t remainder;
2136
9888e6fa 2137 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2138 if (!num)
2139 continue;
9888e6fa 2140
b1ab41c4
IM
2141 if (flags & CFLGS_OFF_SLAB) {
2142 /*
2143 * Max number of objs-per-slab for caches which
2144 * use off-slab slabs. Needed to avoid a possible
2145 * looping condition in cache_grow().
2146 */
2147 offslab_limit = size - sizeof(struct slab);
2148 offslab_limit /= sizeof(kmem_bufctl_t);
2149
2150 if (num > offslab_limit)
2151 break;
2152 }
4d268eba 2153
9888e6fa 2154 /* Found something acceptable - save it away */
4d268eba 2155 cachep->num = num;
9888e6fa 2156 cachep->gfporder = gfporder;
4d268eba
PE
2157 left_over = remainder;
2158
f78bb8ad
LT
2159 /*
2160 * A VFS-reclaimable slab tends to have most allocations
2161 * as GFP_NOFS and we really don't want to have to be allocating
2162 * higher-order pages when we are unable to shrink dcache.
2163 */
2164 if (flags & SLAB_RECLAIM_ACCOUNT)
2165 break;
2166
4d268eba
PE
2167 /*
2168 * Large number of objects is good, but very large slabs are
2169 * currently bad for the gfp()s.
2170 */
543585cc 2171 if (gfporder >= slab_max_order)
4d268eba
PE
2172 break;
2173
9888e6fa
LT
2174 /*
2175 * Acceptable internal fragmentation?
2176 */
a737b3e2 2177 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2178 break;
2179 }
2180 return left_over;
2181}
2182
83b519e8 2183static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2184{
97d06609 2185 if (slab_state >= FULL)
83b519e8 2186 return enable_cpucache(cachep, gfp);
2ed3a4ef 2187
97d06609 2188 if (slab_state == DOWN) {
f30cf7d1 2189 /*
2f9baa9f
CL
2190 * Note: Creation of first cache (kmem_cache).
2191 * The setup_list3s is taken care
2192 * of by the caller of __kmem_cache_create
2193 */
2194 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2195 slab_state = PARTIAL;
2196 } else if (slab_state == PARTIAL) {
2197 /*
2198 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2199 * that's used by kmalloc(24), otherwise the creation of
2200 * further caches will BUG().
2201 */
2202 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2203
2204 /*
2205 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2f9baa9f 2206 * the second cache, then we need to set up all its list3s,
f30cf7d1
PE
2207 * otherwise the creation of further caches will BUG().
2208 */
2209 set_up_list3s(cachep, SIZE_AC);
2210 if (INDEX_AC == INDEX_L3)
97d06609 2211 slab_state = PARTIAL_L3;
f30cf7d1 2212 else
97d06609 2213 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2214 } else {
2f9baa9f 2215 /* Remaining boot caches */
f30cf7d1 2216 cachep->array[smp_processor_id()] =
83b519e8 2217 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2218
97d06609 2219 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2220 set_up_list3s(cachep, SIZE_L3);
97d06609 2221 slab_state = PARTIAL_L3;
f30cf7d1
PE
2222 } else {
2223 int node;
556a169d 2224 for_each_online_node(node) {
6a67368c 2225 cachep->node[node] =
6744f087 2226 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2227 gfp, node);
6a67368c
CL
2228 BUG_ON(!cachep->node[node]);
2229 kmem_list3_init(cachep->node[node]);
f30cf7d1
PE
2230 }
2231 }
2232 }
6a67368c 2233 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2234 jiffies + REAPTIMEOUT_LIST3 +
2235 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2236
2237 cpu_cache_get(cachep)->avail = 0;
2238 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2239 cpu_cache_get(cachep)->batchcount = 1;
2240 cpu_cache_get(cachep)->touched = 0;
2241 cachep->batchcount = 1;
2242 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2243 return 0;
f30cf7d1
PE
2244}
2245
1da177e4 2246/**
039363f3 2247 * __kmem_cache_create - Create a cache.
a755b76a 2248 * @cachep: cache management descriptor
1da177e4 2249 * @flags: SLAB flags
1da177e4
LT
2250 *
2251 * Returns a ptr to the cache on success, NULL on failure.
2252 * Cannot be called within a int, but can be interrupted.
20c2df83 2253 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2254 *
1da177e4
LT
2255 * The flags are
2256 *
2257 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2258 * to catch references to uninitialised memory.
2259 *
2260 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2261 * for buffer overruns.
2262 *
1da177e4
LT
2263 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2264 * cacheline. This can be beneficial if you're counting cycles as closely
2265 * as davem.
2266 */
278b1bb1 2267int
8a13a4cc 2268__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2269{
2270 size_t left_over, slab_size, ralign;
83b519e8 2271 gfp_t gfp;
278b1bb1 2272 int err;
8a13a4cc 2273 size_t size = cachep->size;
1da177e4 2274
1da177e4 2275#if DEBUG
1da177e4
LT
2276#if FORCED_DEBUG
2277 /*
2278 * Enable redzoning and last user accounting, except for caches with
2279 * large objects, if the increased size would increase the object size
2280 * above the next power of two: caches with object sizes just above a
2281 * power of two have a significant amount of internal fragmentation.
2282 */
87a927c7
DW
2283 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2284 2 * sizeof(unsigned long long)))
b28a02de 2285 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2286 if (!(flags & SLAB_DESTROY_BY_RCU))
2287 flags |= SLAB_POISON;
2288#endif
2289 if (flags & SLAB_DESTROY_BY_RCU)
2290 BUG_ON(flags & SLAB_POISON);
2291#endif
1da177e4 2292
a737b3e2
AM
2293 /*
2294 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2295 * unaligned accesses for some archs when redzoning is used, and makes
2296 * sure any on-slab bufctl's are also correctly aligned.
2297 */
b28a02de
PE
2298 if (size & (BYTES_PER_WORD - 1)) {
2299 size += (BYTES_PER_WORD - 1);
2300 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2301 }
2302
ca5f9703 2303 /*
87a927c7
DW
2304 * Redzoning and user store require word alignment or possibly larger.
2305 * Note this will be overridden by architecture or caller mandated
2306 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2307 */
87a927c7
DW
2308 if (flags & SLAB_STORE_USER)
2309 ralign = BYTES_PER_WORD;
2310
2311 if (flags & SLAB_RED_ZONE) {
2312 ralign = REDZONE_ALIGN;
2313 /* If redzoning, ensure that the second redzone is suitably
2314 * aligned, by adjusting the object size accordingly. */
2315 size += REDZONE_ALIGN - 1;
2316 size &= ~(REDZONE_ALIGN - 1);
2317 }
ca5f9703 2318
a44b56d3 2319 /* 3) caller mandated alignment */
8a13a4cc
CL
2320 if (ralign < cachep->align) {
2321 ralign = cachep->align;
1da177e4 2322 }
3ff84a7f
PE
2323 /* disable debug if necessary */
2324 if (ralign > __alignof__(unsigned long long))
a44b56d3 2325 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2326 /*
ca5f9703 2327 * 4) Store it.
1da177e4 2328 */
8a13a4cc 2329 cachep->align = ralign;
1da177e4 2330
83b519e8
PE
2331 if (slab_is_available())
2332 gfp = GFP_KERNEL;
2333 else
2334 gfp = GFP_NOWAIT;
2335
6a67368c 2336 setup_node_pointer(cachep);
1da177e4 2337#if DEBUG
1da177e4 2338
ca5f9703
PE
2339 /*
2340 * Both debugging options require word-alignment which is calculated
2341 * into align above.
2342 */
1da177e4 2343 if (flags & SLAB_RED_ZONE) {
1da177e4 2344 /* add space for red zone words */
3ff84a7f
PE
2345 cachep->obj_offset += sizeof(unsigned long long);
2346 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2347 }
2348 if (flags & SLAB_STORE_USER) {
ca5f9703 2349 /* user store requires one word storage behind the end of
87a927c7
DW
2350 * the real object. But if the second red zone needs to be
2351 * aligned to 64 bits, we must allow that much space.
1da177e4 2352 */
87a927c7
DW
2353 if (flags & SLAB_RED_ZONE)
2354 size += REDZONE_ALIGN;
2355 else
2356 size += BYTES_PER_WORD;
1da177e4
LT
2357 }
2358#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
e3366016
CL
2359 if (size >= kmalloc_size(INDEX_L3 + 1)
2360 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2361 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2362 size = PAGE_SIZE;
2363 }
2364#endif
2365#endif
2366
e0a42726
IM
2367 /*
2368 * Determine if the slab management is 'on' or 'off' slab.
2369 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2370 * it too early on. Always use on-slab management when
2371 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2372 */
e7cb55b9
CM
2373 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2374 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2375 /*
2376 * Size is large, assume best to place the slab management obj
2377 * off-slab (should allow better packing of objs).
2378 */
2379 flags |= CFLGS_OFF_SLAB;
2380
8a13a4cc 2381 size = ALIGN(size, cachep->align);
1da177e4 2382
8a13a4cc 2383 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2384
8a13a4cc 2385 if (!cachep->num)
278b1bb1 2386 return -E2BIG;
1da177e4 2387
b28a02de 2388 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2389 + sizeof(struct slab), cachep->align);
1da177e4
LT
2390
2391 /*
2392 * If the slab has been placed off-slab, and we have enough space then
2393 * move it on-slab. This is at the expense of any extra colouring.
2394 */
2395 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2396 flags &= ~CFLGS_OFF_SLAB;
2397 left_over -= slab_size;
2398 }
2399
2400 if (flags & CFLGS_OFF_SLAB) {
2401 /* really off slab. No need for manual alignment */
b28a02de
PE
2402 slab_size =
2403 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2404
2405#ifdef CONFIG_PAGE_POISONING
2406 /* If we're going to use the generic kernel_map_pages()
2407 * poisoning, then it's going to smash the contents of
2408 * the redzone and userword anyhow, so switch them off.
2409 */
2410 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2411 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2412#endif
1da177e4
LT
2413 }
2414
2415 cachep->colour_off = cache_line_size();
2416 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2417 if (cachep->colour_off < cachep->align)
2418 cachep->colour_off = cachep->align;
b28a02de 2419 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2420 cachep->slab_size = slab_size;
2421 cachep->flags = flags;
a618e89f 2422 cachep->allocflags = 0;
4b51d669 2423 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2424 cachep->allocflags |= GFP_DMA;
3b0efdfa 2425 cachep->size = size;
6a2d7a95 2426 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2427
e5ac9c5a 2428 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2429 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2430 /*
2431 * This is a possibility for one of the malloc_sizes caches.
2432 * But since we go off slab only for object size greater than
2433 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2434 * this should not happen at all.
2435 * But leave a BUG_ON for some lucky dude.
2436 */
6cb8f913 2437 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2438 }
1da177e4 2439
278b1bb1
CL
2440 err = setup_cpu_cache(cachep, gfp);
2441 if (err) {
12c3667f 2442 __kmem_cache_shutdown(cachep);
278b1bb1 2443 return err;
2ed3a4ef 2444 }
1da177e4 2445
83835b3d
PZ
2446 if (flags & SLAB_DEBUG_OBJECTS) {
2447 /*
2448 * Would deadlock through slab_destroy()->call_rcu()->
2449 * debug_object_activate()->kmem_cache_alloc().
2450 */
2451 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2452
2453 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2454 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2455 on_slab_lock_classes(cachep);
83835b3d 2456
278b1bb1 2457 return 0;
1da177e4 2458}
1da177e4
LT
2459
2460#if DEBUG
2461static void check_irq_off(void)
2462{
2463 BUG_ON(!irqs_disabled());
2464}
2465
2466static void check_irq_on(void)
2467{
2468 BUG_ON(irqs_disabled());
2469}
2470
343e0d7a 2471static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2472{
2473#ifdef CONFIG_SMP
2474 check_irq_off();
6a67368c 2475 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2476#endif
2477}
e498be7d 2478
343e0d7a 2479static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2480{
2481#ifdef CONFIG_SMP
2482 check_irq_off();
6a67368c 2483 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2484#endif
2485}
2486
1da177e4
LT
2487#else
2488#define check_irq_off() do { } while(0)
2489#define check_irq_on() do { } while(0)
2490#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2491#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2492#endif
2493
6744f087 2494static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
aab2207c
CL
2495 struct array_cache *ac,
2496 int force, int node);
2497
1da177e4
LT
2498static void do_drain(void *arg)
2499{
a737b3e2 2500 struct kmem_cache *cachep = arg;
1da177e4 2501 struct array_cache *ac;
7d6e6d09 2502 int node = numa_mem_id();
1da177e4
LT
2503
2504 check_irq_off();
9a2dba4b 2505 ac = cpu_cache_get(cachep);
6a67368c 2506 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2507 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2508 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2509 ac->avail = 0;
2510}
2511
343e0d7a 2512static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2513{
6744f087 2514 struct kmem_cache_node *l3;
e498be7d
CL
2515 int node;
2516
15c8b6c1 2517 on_each_cpu(do_drain, cachep, 1);
1da177e4 2518 check_irq_on();
b28a02de 2519 for_each_online_node(node) {
6a67368c 2520 l3 = cachep->node[node];
a4523a8b
RD
2521 if (l3 && l3->alien)
2522 drain_alien_cache(cachep, l3->alien);
2523 }
2524
2525 for_each_online_node(node) {
6a67368c 2526 l3 = cachep->node[node];
a4523a8b 2527 if (l3)
aab2207c 2528 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2529 }
1da177e4
LT
2530}
2531
ed11d9eb
CL
2532/*
2533 * Remove slabs from the list of free slabs.
2534 * Specify the number of slabs to drain in tofree.
2535 *
2536 * Returns the actual number of slabs released.
2537 */
2538static int drain_freelist(struct kmem_cache *cache,
6744f087 2539 struct kmem_cache_node *l3, int tofree)
1da177e4 2540{
ed11d9eb
CL
2541 struct list_head *p;
2542 int nr_freed;
1da177e4 2543 struct slab *slabp;
1da177e4 2544
ed11d9eb
CL
2545 nr_freed = 0;
2546 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2547
ed11d9eb 2548 spin_lock_irq(&l3->list_lock);
e498be7d 2549 p = l3->slabs_free.prev;
ed11d9eb
CL
2550 if (p == &l3->slabs_free) {
2551 spin_unlock_irq(&l3->list_lock);
2552 goto out;
2553 }
1da177e4 2554
ed11d9eb 2555 slabp = list_entry(p, struct slab, list);
1da177e4 2556#if DEBUG
40094fa6 2557 BUG_ON(slabp->inuse);
1da177e4
LT
2558#endif
2559 list_del(&slabp->list);
ed11d9eb
CL
2560 /*
2561 * Safe to drop the lock. The slab is no longer linked
2562 * to the cache.
2563 */
2564 l3->free_objects -= cache->num;
e498be7d 2565 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2566 slab_destroy(cache, slabp);
2567 nr_freed++;
1da177e4 2568 }
ed11d9eb
CL
2569out:
2570 return nr_freed;
1da177e4
LT
2571}
2572
18004c5d 2573/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2574static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2575{
2576 int ret = 0, i = 0;
6744f087 2577 struct kmem_cache_node *l3;
e498be7d
CL
2578
2579 drain_cpu_caches(cachep);
2580
2581 check_irq_on();
2582 for_each_online_node(i) {
6a67368c 2583 l3 = cachep->node[i];
ed11d9eb
CL
2584 if (!l3)
2585 continue;
2586
2587 drain_freelist(cachep, l3, l3->free_objects);
2588
2589 ret += !list_empty(&l3->slabs_full) ||
2590 !list_empty(&l3->slabs_partial);
e498be7d
CL
2591 }
2592 return (ret ? 1 : 0);
2593}
2594
1da177e4
LT
2595/**
2596 * kmem_cache_shrink - Shrink a cache.
2597 * @cachep: The cache to shrink.
2598 *
2599 * Releases as many slabs as possible for a cache.
2600 * To help debugging, a zero exit status indicates all slabs were released.
2601 */
343e0d7a 2602int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2603{
8f5be20b 2604 int ret;
40094fa6 2605 BUG_ON(!cachep || in_interrupt());
1da177e4 2606
95402b38 2607 get_online_cpus();
18004c5d 2608 mutex_lock(&slab_mutex);
8f5be20b 2609 ret = __cache_shrink(cachep);
18004c5d 2610 mutex_unlock(&slab_mutex);
95402b38 2611 put_online_cpus();
8f5be20b 2612 return ret;
1da177e4
LT
2613}
2614EXPORT_SYMBOL(kmem_cache_shrink);
2615
945cf2b6 2616int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2617{
12c3667f 2618 int i;
6744f087 2619 struct kmem_cache_node *l3;
12c3667f 2620 int rc = __cache_shrink(cachep);
1da177e4 2621
12c3667f
CL
2622 if (rc)
2623 return rc;
1da177e4 2624
12c3667f
CL
2625 for_each_online_cpu(i)
2626 kfree(cachep->array[i]);
1da177e4 2627
12c3667f
CL
2628 /* NUMA: free the list3 structures */
2629 for_each_online_node(i) {
6a67368c 2630 l3 = cachep->node[i];
12c3667f
CL
2631 if (l3) {
2632 kfree(l3->shared);
2633 free_alien_cache(l3->alien);
2634 kfree(l3);
2635 }
2636 }
2637 return 0;
1da177e4 2638}
1da177e4 2639
e5ac9c5a
RT
2640/*
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches. The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2650 */
343e0d7a 2651static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2652 int colour_off, gfp_t local_flags,
2653 int nodeid)
1da177e4
LT
2654{
2655 struct slab *slabp;
b28a02de 2656
1da177e4
LT
2657 if (OFF_SLAB(cachep)) {
2658 /* Slab management obj is off-slab. */
5b74ada7 2659 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2660 local_flags, nodeid);
d5cff635
CM
2661 /*
2662 * If the first object in the slab is leaked (it's allocated
2663 * but no one has a reference to it), we want to make sure
2664 * kmemleak does not treat the ->s_mem pointer as a reference
2665 * to the object. Otherwise we will not report the leak.
2666 */
c017b4be
CM
2667 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2668 local_flags);
1da177e4
LT
2669 if (!slabp)
2670 return NULL;
2671 } else {
b28a02de 2672 slabp = objp + colour_off;
1da177e4
LT
2673 colour_off += cachep->slab_size;
2674 }
2675 slabp->inuse = 0;
2676 slabp->colouroff = colour_off;
b28a02de 2677 slabp->s_mem = objp + colour_off;
5b74ada7 2678 slabp->nodeid = nodeid;
e51bfd0a 2679 slabp->free = 0;
1da177e4
LT
2680 return slabp;
2681}
2682
2683static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2684{
b28a02de 2685 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2686}
2687
343e0d7a 2688static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2689 struct slab *slabp)
1da177e4
LT
2690{
2691 int i;
2692
2693 for (i = 0; i < cachep->num; i++) {
8fea4e96 2694 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2695#if DEBUG
2696 /* need to poison the objs? */
2697 if (cachep->flags & SLAB_POISON)
2698 poison_obj(cachep, objp, POISON_FREE);
2699 if (cachep->flags & SLAB_STORE_USER)
2700 *dbg_userword(cachep, objp) = NULL;
2701
2702 if (cachep->flags & SLAB_RED_ZONE) {
2703 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2704 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2705 }
2706 /*
a737b3e2
AM
2707 * Constructors are not allowed to allocate memory from the same
2708 * cache which they are a constructor for. Otherwise, deadlock.
2709 * They must also be threaded.
1da177e4
LT
2710 */
2711 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2712 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2713
2714 if (cachep->flags & SLAB_RED_ZONE) {
2715 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2716 slab_error(cachep, "constructor overwrote the"
b28a02de 2717 " end of an object");
1da177e4
LT
2718 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2719 slab_error(cachep, "constructor overwrote the"
b28a02de 2720 " start of an object");
1da177e4 2721 }
3b0efdfa 2722 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2723 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2724 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2725 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2726#else
2727 if (cachep->ctor)
51cc5068 2728 cachep->ctor(objp);
1da177e4 2729#endif
b28a02de 2730 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2731 }
b28a02de 2732 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2733}
2734
343e0d7a 2735static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2736{
4b51d669
CL
2737 if (CONFIG_ZONE_DMA_FLAG) {
2738 if (flags & GFP_DMA)
a618e89f 2739 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2740 else
a618e89f 2741 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2742 }
1da177e4
LT
2743}
2744
a737b3e2
AM
2745static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2746 int nodeid)
78d382d7 2747{
8fea4e96 2748 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2749 kmem_bufctl_t next;
2750
2751 slabp->inuse++;
2752 next = slab_bufctl(slabp)[slabp->free];
2753#if DEBUG
2754 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2755 WARN_ON(slabp->nodeid != nodeid);
2756#endif
2757 slabp->free = next;
2758
2759 return objp;
2760}
2761
a737b3e2
AM
2762static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2763 void *objp, int nodeid)
78d382d7 2764{
8fea4e96 2765 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2766
2767#if DEBUG
2768 /* Verify that the slab belongs to the intended node */
2769 WARN_ON(slabp->nodeid != nodeid);
2770
871751e2 2771 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2772 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2773 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2774 BUG();
2775 }
2776#endif
2777 slab_bufctl(slabp)[objnr] = slabp->free;
2778 slabp->free = objnr;
2779 slabp->inuse--;
2780}
2781
4776874f
PE
2782/*
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2785 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2786 */
2787static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2788 void *addr)
1da177e4 2789{
4776874f 2790 int nr_pages;
1da177e4
LT
2791 struct page *page;
2792
4776874f 2793 page = virt_to_page(addr);
84097518 2794
4776874f 2795 nr_pages = 1;
84097518 2796 if (likely(!PageCompound(page)))
4776874f
PE
2797 nr_pages <<= cache->gfporder;
2798
1da177e4 2799 do {
35026088
CL
2800 page->slab_cache = cache;
2801 page->slab_page = slab;
1da177e4 2802 page++;
4776874f 2803 } while (--nr_pages);
1da177e4
LT
2804}
2805
2806/*
2807 * Grow (by 1) the number of slabs within a cache. This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2809 */
3c517a61
CL
2810static int cache_grow(struct kmem_cache *cachep,
2811 gfp_t flags, int nodeid, void *objp)
1da177e4 2812{
b28a02de 2813 struct slab *slabp;
b28a02de
PE
2814 size_t offset;
2815 gfp_t local_flags;
6744f087 2816 struct kmem_cache_node *l3;
1da177e4 2817
a737b3e2
AM
2818 /*
2819 * Be lazy and only check for valid flags here, keeping it out of the
2820 * critical path in kmem_cache_alloc().
1da177e4 2821 */
6cb06229
CL
2822 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2823 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2824
2e1217cf 2825 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2826 check_irq_off();
6a67368c 2827 l3 = cachep->node[nodeid];
2e1217cf 2828 spin_lock(&l3->list_lock);
1da177e4
LT
2829
2830 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2831 offset = l3->colour_next;
2832 l3->colour_next++;
2833 if (l3->colour_next >= cachep->colour)
2834 l3->colour_next = 0;
2835 spin_unlock(&l3->list_lock);
1da177e4 2836
2e1217cf 2837 offset *= cachep->colour_off;
1da177e4
LT
2838
2839 if (local_flags & __GFP_WAIT)
2840 local_irq_enable();
2841
2842 /*
2843 * The test for missing atomic flag is performed here, rather than
2844 * the more obvious place, simply to reduce the critical path length
2845 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846 * will eventually be caught here (where it matters).
2847 */
2848 kmem_flagcheck(cachep, flags);
2849
a737b3e2
AM
2850 /*
2851 * Get mem for the objs. Attempt to allocate a physical page from
2852 * 'nodeid'.
e498be7d 2853 */
3c517a61 2854 if (!objp)
b8c1c5da 2855 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2856 if (!objp)
1da177e4
LT
2857 goto failed;
2858
2859 /* Get slab management. */
3c517a61 2860 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2861 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2862 if (!slabp)
1da177e4
LT
2863 goto opps1;
2864
4776874f 2865 slab_map_pages(cachep, slabp, objp);
1da177e4 2866
a35afb83 2867 cache_init_objs(cachep, slabp);
1da177e4
LT
2868
2869 if (local_flags & __GFP_WAIT)
2870 local_irq_disable();
2871 check_irq_off();
e498be7d 2872 spin_lock(&l3->list_lock);
1da177e4
LT
2873
2874 /* Make slab active. */
e498be7d 2875 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2876 STATS_INC_GROWN(cachep);
e498be7d
CL
2877 l3->free_objects += cachep->num;
2878 spin_unlock(&l3->list_lock);
1da177e4 2879 return 1;
a737b3e2 2880opps1:
1da177e4 2881 kmem_freepages(cachep, objp);
a737b3e2 2882failed:
1da177e4
LT
2883 if (local_flags & __GFP_WAIT)
2884 local_irq_disable();
2885 return 0;
2886}
2887
2888#if DEBUG
2889
2890/*
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
1da177e4
LT
2894 */
2895static void kfree_debugcheck(const void *objp)
2896{
1da177e4
LT
2897 if (!virt_addr_valid(objp)) {
2898 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2899 (unsigned long)objp);
2900 BUG();
1da177e4 2901 }
1da177e4
LT
2902}
2903
58ce1fd5
PE
2904static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2905{
b46b8f19 2906 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2907
2908 redzone1 = *dbg_redzone1(cache, obj);
2909 redzone2 = *dbg_redzone2(cache, obj);
2910
2911 /*
2912 * Redzone is ok.
2913 */
2914 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2915 return;
2916
2917 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2918 slab_error(cache, "double free detected");
2919 else
2920 slab_error(cache, "memory outside object was overwritten");
2921
b46b8f19 2922 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2923 obj, redzone1, redzone2);
2924}
2925
343e0d7a 2926static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2927 unsigned long caller)
1da177e4
LT
2928{
2929 struct page *page;
2930 unsigned int objnr;
2931 struct slab *slabp;
2932
80cbd911
MW
2933 BUG_ON(virt_to_cache(objp) != cachep);
2934
3dafccf2 2935 objp -= obj_offset(cachep);
1da177e4 2936 kfree_debugcheck(objp);
b49af68f 2937 page = virt_to_head_page(objp);
1da177e4 2938
35026088 2939 slabp = page->slab_page;
1da177e4
LT
2940
2941 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2942 verify_redzone_free(cachep, objp);
1da177e4
LT
2943 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2944 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2945 }
2946 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2947 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2948
8fea4e96 2949 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2950
2951 BUG_ON(objnr >= cachep->num);
8fea4e96 2952 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2953
871751e2
AV
2954#ifdef CONFIG_DEBUG_SLAB_LEAK
2955 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2956#endif
1da177e4
LT
2957 if (cachep->flags & SLAB_POISON) {
2958#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2959 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2960 store_stackinfo(cachep, objp, caller);
b28a02de 2961 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2962 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2963 } else {
2964 poison_obj(cachep, objp, POISON_FREE);
2965 }
2966#else
2967 poison_obj(cachep, objp, POISON_FREE);
2968#endif
2969 }
2970 return objp;
2971}
2972
343e0d7a 2973static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2974{
2975 kmem_bufctl_t i;
2976 int entries = 0;
b28a02de 2977
1da177e4
LT
2978 /* Check slab's freelist to see if this obj is there. */
2979 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2980 entries++;
2981 if (entries > cachep->num || i >= cachep->num)
2982 goto bad;
2983 }
2984 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2985bad:
2986 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
2987 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2988 cachep->name, cachep->num, slabp, slabp->inuse,
2989 print_tainted());
fdde6abb
SAS
2990 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2991 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2992 1);
1da177e4
LT
2993 BUG();
2994 }
2995}
2996#else
2997#define kfree_debugcheck(x) do { } while(0)
2998#define cache_free_debugcheck(x,objp,z) (objp)
2999#define check_slabp(x,y) do { } while(0)
3000#endif
3001
072bb0aa
MG
3002static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3003 bool force_refill)
1da177e4
LT
3004{
3005 int batchcount;
6744f087 3006 struct kmem_cache_node *l3;
1da177e4 3007 struct array_cache *ac;
1ca4cb24
PE
3008 int node;
3009
1da177e4 3010 check_irq_off();
7d6e6d09 3011 node = numa_mem_id();
072bb0aa
MG
3012 if (unlikely(force_refill))
3013 goto force_grow;
3014retry:
9a2dba4b 3015 ac = cpu_cache_get(cachep);
1da177e4
LT
3016 batchcount = ac->batchcount;
3017 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3018 /*
3019 * If there was little recent activity on this cache, then
3020 * perform only a partial refill. Otherwise we could generate
3021 * refill bouncing.
1da177e4
LT
3022 */
3023 batchcount = BATCHREFILL_LIMIT;
3024 }
6a67368c 3025 l3 = cachep->node[node];
e498be7d
CL
3026
3027 BUG_ON(ac->avail > 0 || !l3);
3028 spin_lock(&l3->list_lock);
1da177e4 3029
3ded175a 3030 /* See if we can refill from the shared array */
44b57f1c
NP
3031 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3032 l3->shared->touched = 1;
3ded175a 3033 goto alloc_done;
44b57f1c 3034 }
3ded175a 3035
1da177e4
LT
3036 while (batchcount > 0) {
3037 struct list_head *entry;
3038 struct slab *slabp;
3039 /* Get slab alloc is to come from. */
3040 entry = l3->slabs_partial.next;
3041 if (entry == &l3->slabs_partial) {
3042 l3->free_touched = 1;
3043 entry = l3->slabs_free.next;
3044 if (entry == &l3->slabs_free)
3045 goto must_grow;
3046 }
3047
3048 slabp = list_entry(entry, struct slab, list);
3049 check_slabp(cachep, slabp);
3050 check_spinlock_acquired(cachep);
714b8171
PE
3051
3052 /*
3053 * The slab was either on partial or free list so
3054 * there must be at least one object available for
3055 * allocation.
3056 */
249b9f33 3057 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3058
1da177e4 3059 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3060 STATS_INC_ALLOCED(cachep);
3061 STATS_INC_ACTIVE(cachep);
3062 STATS_SET_HIGH(cachep);
3063
072bb0aa
MG
3064 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3065 node));
1da177e4
LT
3066 }
3067 check_slabp(cachep, slabp);
3068
3069 /* move slabp to correct slabp list: */
3070 list_del(&slabp->list);
3071 if (slabp->free == BUFCTL_END)
3072 list_add(&slabp->list, &l3->slabs_full);
3073 else
3074 list_add(&slabp->list, &l3->slabs_partial);
3075 }
3076
a737b3e2 3077must_grow:
1da177e4 3078 l3->free_objects -= ac->avail;
a737b3e2 3079alloc_done:
e498be7d 3080 spin_unlock(&l3->list_lock);
1da177e4
LT
3081
3082 if (unlikely(!ac->avail)) {
3083 int x;
072bb0aa 3084force_grow:
3c517a61 3085 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3086
a737b3e2 3087 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3088 ac = cpu_cache_get(cachep);
51cd8e6f 3089 node = numa_mem_id();
072bb0aa
MG
3090
3091 /* no objects in sight? abort */
3092 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3093 return NULL;
3094
a737b3e2 3095 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3096 goto retry;
3097 }
3098 ac->touched = 1;
072bb0aa
MG
3099
3100 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3101}
3102
a737b3e2
AM
3103static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3104 gfp_t flags)
1da177e4
LT
3105{
3106 might_sleep_if(flags & __GFP_WAIT);
3107#if DEBUG
3108 kmem_flagcheck(cachep, flags);
3109#endif
3110}
3111
3112#if DEBUG
a737b3e2 3113static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3114 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3115{
b28a02de 3116 if (!objp)
1da177e4 3117 return objp;
b28a02de 3118 if (cachep->flags & SLAB_POISON) {
1da177e4 3119#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3120 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3121 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3122 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3123 else
3124 check_poison_obj(cachep, objp);
3125#else
3126 check_poison_obj(cachep, objp);
3127#endif
3128 poison_obj(cachep, objp, POISON_INUSE);
3129 }
3130 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3131 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3132
3133 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3134 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3135 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3136 slab_error(cachep, "double free, or memory outside"
3137 " object was overwritten");
b28a02de 3138 printk(KERN_ERR
b46b8f19 3139 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3140 objp, *dbg_redzone1(cachep, objp),
3141 *dbg_redzone2(cachep, objp));
1da177e4
LT
3142 }
3143 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3144 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3145 }
871751e2
AV
3146#ifdef CONFIG_DEBUG_SLAB_LEAK
3147 {
3148 struct slab *slabp;
3149 unsigned objnr;
3150
35026088 3151 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3152 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3153 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3154 }
3155#endif
3dafccf2 3156 objp += obj_offset(cachep);
4f104934 3157 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3158 cachep->ctor(objp);
7ea466f2
TH
3159 if (ARCH_SLAB_MINALIGN &&
3160 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3161 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3162 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3163 }
1da177e4
LT
3164 return objp;
3165}
3166#else
3167#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3168#endif
3169
773ff60e 3170static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3171{
9b030cb8 3172 if (cachep == kmem_cache)
773ff60e 3173 return false;
8a8b6502 3174
8c138bc0 3175 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3176}
3177
343e0d7a 3178static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3179{
b28a02de 3180 void *objp;
1da177e4 3181 struct array_cache *ac;
072bb0aa 3182 bool force_refill = false;
1da177e4 3183
5c382300 3184 check_irq_off();
8a8b6502 3185
9a2dba4b 3186 ac = cpu_cache_get(cachep);
1da177e4 3187 if (likely(ac->avail)) {
1da177e4 3188 ac->touched = 1;
072bb0aa
MG
3189 objp = ac_get_obj(cachep, ac, flags, false);
3190
ddbf2e83 3191 /*
072bb0aa
MG
3192 * Allow for the possibility all avail objects are not allowed
3193 * by the current flags
ddbf2e83 3194 */
072bb0aa
MG
3195 if (objp) {
3196 STATS_INC_ALLOCHIT(cachep);
3197 goto out;
3198 }
3199 force_refill = true;
1da177e4 3200 }
072bb0aa
MG
3201
3202 STATS_INC_ALLOCMISS(cachep);
3203 objp = cache_alloc_refill(cachep, flags, force_refill);
3204 /*
3205 * the 'ac' may be updated by cache_alloc_refill(),
3206 * and kmemleak_erase() requires its correct value.
3207 */
3208 ac = cpu_cache_get(cachep);
3209
3210out:
d5cff635
CM
3211 /*
3212 * To avoid a false negative, if an object that is in one of the
3213 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3214 * treat the array pointers as a reference to the object.
3215 */
f3d8b53a
O
3216 if (objp)
3217 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3218 return objp;
3219}
3220
e498be7d 3221#ifdef CONFIG_NUMA
c61afb18 3222/*
b2455396 3223 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3224 *
3225 * If we are in_interrupt, then process context, including cpusets and
3226 * mempolicy, may not apply and should not be used for allocation policy.
3227 */
3228static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3229{
3230 int nid_alloc, nid_here;
3231
765c4507 3232 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3233 return NULL;
7d6e6d09 3234 nid_alloc = nid_here = numa_mem_id();
c61afb18 3235 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3236 nid_alloc = cpuset_slab_spread_node();
c61afb18 3237 else if (current->mempolicy)
e7b691b0 3238 nid_alloc = slab_node();
c61afb18 3239 if (nid_alloc != nid_here)
8b98c169 3240 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3241 return NULL;
3242}
3243
765c4507
CL
3244/*
3245 * Fallback function if there was no memory available and no objects on a
3c517a61 3246 * certain node and fall back is permitted. First we scan all the
6a67368c 3247 * available node for available objects. If that fails then we
3c517a61
CL
3248 * perform an allocation without specifying a node. This allows the page
3249 * allocator to do its reclaim / fallback magic. We then insert the
3250 * slab into the proper nodelist and then allocate from it.
765c4507 3251 */
8c8cc2c1 3252static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3253{
8c8cc2c1
PE
3254 struct zonelist *zonelist;
3255 gfp_t local_flags;
dd1a239f 3256 struct zoneref *z;
54a6eb5c
MG
3257 struct zone *zone;
3258 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3259 void *obj = NULL;
3c517a61 3260 int nid;
cc9a6c87 3261 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3262
3263 if (flags & __GFP_THISNODE)
3264 return NULL;
3265
6cb06229 3266 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3267
cc9a6c87
MG
3268retry_cpuset:
3269 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3270 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3271
3c517a61
CL
3272retry:
3273 /*
3274 * Look through allowed nodes for objects available
3275 * from existing per node queues.
3276 */
54a6eb5c
MG
3277 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3278 nid = zone_to_nid(zone);
aedb0eb1 3279
54a6eb5c 3280 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3281 cache->node[nid] &&
3282 cache->node[nid]->free_objects) {
3c517a61
CL
3283 obj = ____cache_alloc_node(cache,
3284 flags | GFP_THISNODE, nid);
481c5346
CL
3285 if (obj)
3286 break;
3287 }
3c517a61
CL
3288 }
3289
cfce6604 3290 if (!obj) {
3c517a61
CL
3291 /*
3292 * This allocation will be performed within the constraints
3293 * of the current cpuset / memory policy requirements.
3294 * We may trigger various forms of reclaim on the allowed
3295 * set and go into memory reserves if necessary.
3296 */
dd47ea75
CL
3297 if (local_flags & __GFP_WAIT)
3298 local_irq_enable();
3299 kmem_flagcheck(cache, flags);
7d6e6d09 3300 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3301 if (local_flags & __GFP_WAIT)
3302 local_irq_disable();
3c517a61
CL
3303 if (obj) {
3304 /*
3305 * Insert into the appropriate per node queues
3306 */
3307 nid = page_to_nid(virt_to_page(obj));
3308 if (cache_grow(cache, flags, nid, obj)) {
3309 obj = ____cache_alloc_node(cache,
3310 flags | GFP_THISNODE, nid);
3311 if (!obj)
3312 /*
3313 * Another processor may allocate the
3314 * objects in the slab since we are
3315 * not holding any locks.
3316 */
3317 goto retry;
3318 } else {
b6a60451 3319 /* cache_grow already freed obj */
3c517a61
CL
3320 obj = NULL;
3321 }
3322 }
aedb0eb1 3323 }
cc9a6c87
MG
3324
3325 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3326 goto retry_cpuset;
765c4507
CL
3327 return obj;
3328}
3329
e498be7d
CL
3330/*
3331 * A interface to enable slab creation on nodeid
1da177e4 3332 */
8b98c169 3333static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3334 int nodeid)
e498be7d
CL
3335{
3336 struct list_head *entry;
b28a02de 3337 struct slab *slabp;
6744f087 3338 struct kmem_cache_node *l3;
b28a02de 3339 void *obj;
b28a02de
PE
3340 int x;
3341
6a67368c 3342 l3 = cachep->node[nodeid];
b28a02de
PE
3343 BUG_ON(!l3);
3344
a737b3e2 3345retry:
ca3b9b91 3346 check_irq_off();
b28a02de
PE
3347 spin_lock(&l3->list_lock);
3348 entry = l3->slabs_partial.next;
3349 if (entry == &l3->slabs_partial) {
3350 l3->free_touched = 1;
3351 entry = l3->slabs_free.next;
3352 if (entry == &l3->slabs_free)
3353 goto must_grow;
3354 }
3355
3356 slabp = list_entry(entry, struct slab, list);
3357 check_spinlock_acquired_node(cachep, nodeid);
3358 check_slabp(cachep, slabp);
3359
3360 STATS_INC_NODEALLOCS(cachep);
3361 STATS_INC_ACTIVE(cachep);
3362 STATS_SET_HIGH(cachep);
3363
3364 BUG_ON(slabp->inuse == cachep->num);
3365
78d382d7 3366 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3367 check_slabp(cachep, slabp);
3368 l3->free_objects--;
3369 /* move slabp to correct slabp list: */
3370 list_del(&slabp->list);
3371
a737b3e2 3372 if (slabp->free == BUFCTL_END)
b28a02de 3373 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3374 else
b28a02de 3375 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3376
b28a02de
PE
3377 spin_unlock(&l3->list_lock);
3378 goto done;
e498be7d 3379
a737b3e2 3380must_grow:
b28a02de 3381 spin_unlock(&l3->list_lock);
3c517a61 3382 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3383 if (x)
3384 goto retry;
1da177e4 3385
8c8cc2c1 3386 return fallback_alloc(cachep, flags);
e498be7d 3387
a737b3e2 3388done:
b28a02de 3389 return obj;
e498be7d 3390}
8c8cc2c1
PE
3391
3392/**
3393 * kmem_cache_alloc_node - Allocate an object on the specified node
3394 * @cachep: The cache to allocate from.
3395 * @flags: See kmalloc().
3396 * @nodeid: node number of the target node.
3397 * @caller: return address of caller, used for debug information
3398 *
3399 * Identical to kmem_cache_alloc but it will allocate memory on the given
3400 * node, which can improve the performance for cpu bound structures.
3401 *
3402 * Fallback to other node is possible if __GFP_THISNODE is not set.
3403 */
3404static __always_inline void *
48356303 3405slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3406 unsigned long caller)
8c8cc2c1
PE
3407{
3408 unsigned long save_flags;
3409 void *ptr;
7d6e6d09 3410 int slab_node = numa_mem_id();
8c8cc2c1 3411
dcce284a 3412 flags &= gfp_allowed_mask;
7e85ee0c 3413
cf40bd16
NP
3414 lockdep_trace_alloc(flags);
3415
773ff60e 3416 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3417 return NULL;
3418
d79923fa
GC
3419 cachep = memcg_kmem_get_cache(cachep, flags);
3420
8c8cc2c1
PE
3421 cache_alloc_debugcheck_before(cachep, flags);
3422 local_irq_save(save_flags);
3423
eacbbae3 3424 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3425 nodeid = slab_node;
8c8cc2c1 3426
6a67368c 3427 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3428 /* Node not bootstrapped yet */
3429 ptr = fallback_alloc(cachep, flags);
3430 goto out;
3431 }
3432
7d6e6d09 3433 if (nodeid == slab_node) {
8c8cc2c1
PE
3434 /*
3435 * Use the locally cached objects if possible.
3436 * However ____cache_alloc does not allow fallback
3437 * to other nodes. It may fail while we still have
3438 * objects on other nodes available.
3439 */
3440 ptr = ____cache_alloc(cachep, flags);
3441 if (ptr)
3442 goto out;
3443 }
3444 /* ___cache_alloc_node can fall back to other nodes */
3445 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3446 out:
3447 local_irq_restore(save_flags);
3448 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3449 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3450 flags);
8c8cc2c1 3451
c175eea4 3452 if (likely(ptr))
8c138bc0 3453 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3454
d07dbea4 3455 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3456 memset(ptr, 0, cachep->object_size);
d07dbea4 3457
8c8cc2c1
PE
3458 return ptr;
3459}
3460
3461static __always_inline void *
3462__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3463{
3464 void *objp;
3465
3466 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3467 objp = alternate_node_alloc(cache, flags);
3468 if (objp)
3469 goto out;
3470 }
3471 objp = ____cache_alloc(cache, flags);
3472
3473 /*
3474 * We may just have run out of memory on the local node.
3475 * ____cache_alloc_node() knows how to locate memory on other nodes
3476 */
7d6e6d09
LS
3477 if (!objp)
3478 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3479
3480 out:
3481 return objp;
3482}
3483#else
3484
3485static __always_inline void *
3486__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3487{
3488 return ____cache_alloc(cachep, flags);
3489}
3490
3491#endif /* CONFIG_NUMA */
3492
3493static __always_inline void *
48356303 3494slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3495{
3496 unsigned long save_flags;
3497 void *objp;
3498
dcce284a 3499 flags &= gfp_allowed_mask;
7e85ee0c 3500
cf40bd16
NP
3501 lockdep_trace_alloc(flags);
3502
773ff60e 3503 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3504 return NULL;
3505
d79923fa
GC
3506 cachep = memcg_kmem_get_cache(cachep, flags);
3507
8c8cc2c1
PE
3508 cache_alloc_debugcheck_before(cachep, flags);
3509 local_irq_save(save_flags);
3510 objp = __do_cache_alloc(cachep, flags);
3511 local_irq_restore(save_flags);
3512 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3513 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3514 flags);
8c8cc2c1
PE
3515 prefetchw(objp);
3516
c175eea4 3517 if (likely(objp))
8c138bc0 3518 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3519
d07dbea4 3520 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3521 memset(objp, 0, cachep->object_size);
d07dbea4 3522
8c8cc2c1
PE
3523 return objp;
3524}
e498be7d
CL
3525
3526/*
3527 * Caller needs to acquire correct kmem_list's list_lock
3528 */
343e0d7a 3529static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3530 int node)
1da177e4
LT
3531{
3532 int i;
6744f087 3533 struct kmem_cache_node *l3;
1da177e4
LT
3534
3535 for (i = 0; i < nr_objects; i++) {
072bb0aa 3536 void *objp;
1da177e4 3537 struct slab *slabp;
1da177e4 3538
072bb0aa
MG
3539 clear_obj_pfmemalloc(&objpp[i]);
3540 objp = objpp[i];
3541
6ed5eb22 3542 slabp = virt_to_slab(objp);
6a67368c 3543 l3 = cachep->node[node];
1da177e4 3544 list_del(&slabp->list);
ff69416e 3545 check_spinlock_acquired_node(cachep, node);
1da177e4 3546 check_slabp(cachep, slabp);
78d382d7 3547 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3548 STATS_DEC_ACTIVE(cachep);
e498be7d 3549 l3->free_objects++;
1da177e4
LT
3550 check_slabp(cachep, slabp);
3551
3552 /* fixup slab chains */
3553 if (slabp->inuse == 0) {
e498be7d
CL
3554 if (l3->free_objects > l3->free_limit) {
3555 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3556 /* No need to drop any previously held
3557 * lock here, even if we have a off-slab slab
3558 * descriptor it is guaranteed to come from
3559 * a different cache, refer to comments before
3560 * alloc_slabmgmt.
3561 */
1da177e4
LT
3562 slab_destroy(cachep, slabp);
3563 } else {
e498be7d 3564 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3565 }
3566 } else {
3567 /* Unconditionally move a slab to the end of the
3568 * partial list on free - maximum time for the
3569 * other objects to be freed, too.
3570 */
e498be7d 3571 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3572 }
3573 }
3574}
3575
343e0d7a 3576static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3577{
3578 int batchcount;
6744f087 3579 struct kmem_cache_node *l3;
7d6e6d09 3580 int node = numa_mem_id();
1da177e4
LT
3581
3582 batchcount = ac->batchcount;
3583#if DEBUG
3584 BUG_ON(!batchcount || batchcount > ac->avail);
3585#endif
3586 check_irq_off();
6a67368c 3587 l3 = cachep->node[node];
873623df 3588 spin_lock(&l3->list_lock);
e498be7d
CL
3589 if (l3->shared) {
3590 struct array_cache *shared_array = l3->shared;
b28a02de 3591 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3592 if (max) {
3593 if (batchcount > max)
3594 batchcount = max;
e498be7d 3595 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3596 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3597 shared_array->avail += batchcount;
3598 goto free_done;
3599 }
3600 }
3601
ff69416e 3602 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3603free_done:
1da177e4
LT
3604#if STATS
3605 {
3606 int i = 0;
3607 struct list_head *p;
3608
e498be7d
CL
3609 p = l3->slabs_free.next;
3610 while (p != &(l3->slabs_free)) {
1da177e4
LT
3611 struct slab *slabp;
3612
3613 slabp = list_entry(p, struct slab, list);
3614 BUG_ON(slabp->inuse);
3615
3616 i++;
3617 p = p->next;
3618 }
3619 STATS_SET_FREEABLE(cachep, i);
3620 }
3621#endif
e498be7d 3622 spin_unlock(&l3->list_lock);
1da177e4 3623 ac->avail -= batchcount;
a737b3e2 3624 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3625}
3626
3627/*
a737b3e2
AM
3628 * Release an obj back to its cache. If the obj has a constructed state, it must
3629 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3630 */
a947eb95 3631static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3632 unsigned long caller)
1da177e4 3633{
9a2dba4b 3634 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3635
3636 check_irq_off();
d5cff635 3637 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3638 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3639
8c138bc0 3640 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3641
1807a1aa
SS
3642 /*
3643 * Skip calling cache_free_alien() when the platform is not numa.
3644 * This will avoid cache misses that happen while accessing slabp (which
3645 * is per page memory reference) to get nodeid. Instead use a global
3646 * variable to skip the call, which is mostly likely to be present in
3647 * the cache.
3648 */
b6e68bc1 3649 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3650 return;
3651
1da177e4
LT
3652 if (likely(ac->avail < ac->limit)) {
3653 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3654 } else {
3655 STATS_INC_FREEMISS(cachep);
3656 cache_flusharray(cachep, ac);
1da177e4 3657 }
42c8c99c 3658
072bb0aa 3659 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3660}
3661
3662/**
3663 * kmem_cache_alloc - Allocate an object
3664 * @cachep: The cache to allocate from.
3665 * @flags: See kmalloc().
3666 *
3667 * Allocate an object from this cache. The flags are only relevant
3668 * if the cache has no available objects.
3669 */
343e0d7a 3670void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3671{
48356303 3672 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3673
ca2b84cb 3674 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3675 cachep->object_size, cachep->size, flags);
36555751
EGM
3676
3677 return ret;
1da177e4
LT
3678}
3679EXPORT_SYMBOL(kmem_cache_alloc);
3680
0f24f128 3681#ifdef CONFIG_TRACING
85beb586 3682void *
4052147c 3683kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3684{
85beb586
SR
3685 void *ret;
3686
48356303 3687 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3688
3689 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3690 size, cachep->size, flags);
85beb586 3691 return ret;
36555751 3692}
85beb586 3693EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3694#endif
3695
1da177e4 3696#ifdef CONFIG_NUMA
8b98c169
CH
3697void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3698{
48356303 3699 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3700
ca2b84cb 3701 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3702 cachep->object_size, cachep->size,
ca2b84cb 3703 flags, nodeid);
36555751
EGM
3704
3705 return ret;
8b98c169 3706}
1da177e4
LT
3707EXPORT_SYMBOL(kmem_cache_alloc_node);
3708
0f24f128 3709#ifdef CONFIG_TRACING
4052147c 3710void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3711 gfp_t flags,
4052147c
EG
3712 int nodeid,
3713 size_t size)
36555751 3714{
85beb586
SR
3715 void *ret;
3716
592f4145 3717 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3718
85beb586 3719 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3720 size, cachep->size,
85beb586
SR
3721 flags, nodeid);
3722 return ret;
36555751 3723}
85beb586 3724EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3725#endif
3726
8b98c169 3727static __always_inline void *
7c0cb9c6 3728__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3729{
343e0d7a 3730 struct kmem_cache *cachep;
97e2bde4
MS
3731
3732 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3733 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3734 return cachep;
4052147c 3735 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3736}
8b98c169 3737
0bb38a5c 3738#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3739void *__kmalloc_node(size_t size, gfp_t flags, int node)
3740{
7c0cb9c6 3741 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3742}
dbe5e69d 3743EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3744
3745void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3746 int node, unsigned long caller)
8b98c169 3747{
7c0cb9c6 3748 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3749}
3750EXPORT_SYMBOL(__kmalloc_node_track_caller);
3751#else
3752void *__kmalloc_node(size_t size, gfp_t flags, int node)
3753{
7c0cb9c6 3754 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3755}
3756EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3757#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3758#endif /* CONFIG_NUMA */
1da177e4
LT
3759
3760/**
800590f5 3761 * __do_kmalloc - allocate memory
1da177e4 3762 * @size: how many bytes of memory are required.
800590f5 3763 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3764 * @caller: function caller for debug tracking of the caller
1da177e4 3765 */
7fd6b141 3766static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3767 unsigned long caller)
1da177e4 3768{
343e0d7a 3769 struct kmem_cache *cachep;
36555751 3770 void *ret;
1da177e4 3771
97e2bde4
MS
3772 /* If you want to save a few bytes .text space: replace
3773 * __ with kmem_.
3774 * Then kmalloc uses the uninlined functions instead of the inline
3775 * functions.
3776 */
3777 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3778 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3779 return cachep;
48356303 3780 ret = slab_alloc(cachep, flags, caller);
36555751 3781
7c0cb9c6 3782 trace_kmalloc(caller, ret,
3b0efdfa 3783 size, cachep->size, flags);
36555751
EGM
3784
3785 return ret;
7fd6b141
PE
3786}
3787
7fd6b141 3788
0bb38a5c 3789#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3790void *__kmalloc(size_t size, gfp_t flags)
3791{
7c0cb9c6 3792 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3793}
3794EXPORT_SYMBOL(__kmalloc);
3795
ce71e27c 3796void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3797{
7c0cb9c6 3798 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3799}
3800EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3801
3802#else
3803void *__kmalloc(size_t size, gfp_t flags)
3804{
7c0cb9c6 3805 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3806}
3807EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3808#endif
3809
1da177e4
LT
3810/**
3811 * kmem_cache_free - Deallocate an object
3812 * @cachep: The cache the allocation was from.
3813 * @objp: The previously allocated object.
3814 *
3815 * Free an object which was previously allocated from this
3816 * cache.
3817 */
343e0d7a 3818void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3819{
3820 unsigned long flags;
b9ce5ef4
GC
3821 cachep = cache_from_obj(cachep, objp);
3822 if (!cachep)
3823 return;
1da177e4
LT
3824
3825 local_irq_save(flags);
d97d476b 3826 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3827 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3828 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3829 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3830 local_irq_restore(flags);
36555751 3831
ca2b84cb 3832 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3833}
3834EXPORT_SYMBOL(kmem_cache_free);
3835
1da177e4
LT
3836/**
3837 * kfree - free previously allocated memory
3838 * @objp: pointer returned by kmalloc.
3839 *
80e93eff
PE
3840 * If @objp is NULL, no operation is performed.
3841 *
1da177e4
LT
3842 * Don't free memory not originally allocated by kmalloc()
3843 * or you will run into trouble.
3844 */
3845void kfree(const void *objp)
3846{
343e0d7a 3847 struct kmem_cache *c;
1da177e4
LT
3848 unsigned long flags;
3849
2121db74
PE
3850 trace_kfree(_RET_IP_, objp);
3851
6cb8f913 3852 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3853 return;
3854 local_irq_save(flags);
3855 kfree_debugcheck(objp);
6ed5eb22 3856 c = virt_to_cache(objp);
8c138bc0
CL
3857 debug_check_no_locks_freed(objp, c->object_size);
3858
3859 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3860 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3861 local_irq_restore(flags);
3862}
3863EXPORT_SYMBOL(kfree);
3864
e498be7d 3865/*
183ff22b 3866 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3867 */
83b519e8 3868static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3869{
3870 int node;
6744f087 3871 struct kmem_cache_node *l3;
cafeb02e 3872 struct array_cache *new_shared;
3395ee05 3873 struct array_cache **new_alien = NULL;
e498be7d 3874
9c09a95c 3875 for_each_online_node(node) {
cafeb02e 3876
3395ee05 3877 if (use_alien_caches) {
83b519e8 3878 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3879 if (!new_alien)
3880 goto fail;
3881 }
cafeb02e 3882
63109846
ED
3883 new_shared = NULL;
3884 if (cachep->shared) {
3885 new_shared = alloc_arraycache(node,
0718dc2a 3886 cachep->shared*cachep->batchcount,
83b519e8 3887 0xbaadf00d, gfp);
63109846
ED
3888 if (!new_shared) {
3889 free_alien_cache(new_alien);
3890 goto fail;
3891 }
0718dc2a 3892 }
cafeb02e 3893
6a67368c 3894 l3 = cachep->node[node];
a737b3e2 3895 if (l3) {
cafeb02e
CL
3896 struct array_cache *shared = l3->shared;
3897
e498be7d
CL
3898 spin_lock_irq(&l3->list_lock);
3899
cafeb02e 3900 if (shared)
0718dc2a
CL
3901 free_block(cachep, shared->entry,
3902 shared->avail, node);
e498be7d 3903
cafeb02e
CL
3904 l3->shared = new_shared;
3905 if (!l3->alien) {
e498be7d
CL
3906 l3->alien = new_alien;
3907 new_alien = NULL;
3908 }
b28a02de 3909 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3910 cachep->batchcount + cachep->num;
e498be7d 3911 spin_unlock_irq(&l3->list_lock);
cafeb02e 3912 kfree(shared);
e498be7d
CL
3913 free_alien_cache(new_alien);
3914 continue;
3915 }
6744f087 3916 l3 = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
0718dc2a
CL
3917 if (!l3) {
3918 free_alien_cache(new_alien);
3919 kfree(new_shared);
e498be7d 3920 goto fail;
0718dc2a 3921 }
e498be7d
CL
3922
3923 kmem_list3_init(l3);
3924 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3925 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3926 l3->shared = new_shared;
e498be7d 3927 l3->alien = new_alien;
b28a02de 3928 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3929 cachep->batchcount + cachep->num;
6a67368c 3930 cachep->node[node] = l3;
e498be7d 3931 }
cafeb02e 3932 return 0;
0718dc2a 3933
a737b3e2 3934fail:
3b0efdfa 3935 if (!cachep->list.next) {
0718dc2a
CL
3936 /* Cache is not active yet. Roll back what we did */
3937 node--;
3938 while (node >= 0) {
6a67368c
CL
3939 if (cachep->node[node]) {
3940 l3 = cachep->node[node];
0718dc2a
CL
3941
3942 kfree(l3->shared);
3943 free_alien_cache(l3->alien);
3944 kfree(l3);
6a67368c 3945 cachep->node[node] = NULL;
0718dc2a
CL
3946 }
3947 node--;
3948 }
3949 }
cafeb02e 3950 return -ENOMEM;
e498be7d
CL
3951}
3952
1da177e4 3953struct ccupdate_struct {
343e0d7a 3954 struct kmem_cache *cachep;
acfe7d74 3955 struct array_cache *new[0];
1da177e4
LT
3956};
3957
3958static void do_ccupdate_local(void *info)
3959{
a737b3e2 3960 struct ccupdate_struct *new = info;
1da177e4
LT
3961 struct array_cache *old;
3962
3963 check_irq_off();
9a2dba4b 3964 old = cpu_cache_get(new->cachep);
e498be7d 3965
1da177e4
LT
3966 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3967 new->new[smp_processor_id()] = old;
3968}
3969
18004c5d 3970/* Always called with the slab_mutex held */
943a451a 3971static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3972 int batchcount, int shared, gfp_t gfp)
1da177e4 3973{
d2e7b7d0 3974 struct ccupdate_struct *new;
2ed3a4ef 3975 int i;
1da177e4 3976
acfe7d74
ED
3977 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3978 gfp);
d2e7b7d0
SS
3979 if (!new)
3980 return -ENOMEM;
3981
e498be7d 3982 for_each_online_cpu(i) {
7d6e6d09 3983 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3984 batchcount, gfp);
d2e7b7d0 3985 if (!new->new[i]) {
b28a02de 3986 for (i--; i >= 0; i--)
d2e7b7d0
SS
3987 kfree(new->new[i]);
3988 kfree(new);
e498be7d 3989 return -ENOMEM;
1da177e4
LT
3990 }
3991 }
d2e7b7d0 3992 new->cachep = cachep;
1da177e4 3993
15c8b6c1 3994 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3995
1da177e4 3996 check_irq_on();
1da177e4
LT
3997 cachep->batchcount = batchcount;
3998 cachep->limit = limit;
e498be7d 3999 cachep->shared = shared;
1da177e4 4000
e498be7d 4001 for_each_online_cpu(i) {
d2e7b7d0 4002 struct array_cache *ccold = new->new[i];
1da177e4
LT
4003 if (!ccold)
4004 continue;
6a67368c 4005 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 4006 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 4007 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4008 kfree(ccold);
4009 }
d2e7b7d0 4010 kfree(new);
83b519e8 4011 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4012}
4013
943a451a
GC
4014static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4015 int batchcount, int shared, gfp_t gfp)
4016{
4017 int ret;
4018 struct kmem_cache *c = NULL;
4019 int i = 0;
4020
4021 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4022
4023 if (slab_state < FULL)
4024 return ret;
4025
4026 if ((ret < 0) || !is_root_cache(cachep))
4027 return ret;
4028
ebe945c2 4029 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
4030 for_each_memcg_cache_index(i) {
4031 c = cache_from_memcg(cachep, i);
4032 if (c)
4033 /* return value determined by the parent cache only */
4034 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
4035 }
4036
4037 return ret;
4038}
4039
18004c5d 4040/* Called with slab_mutex held always */
83b519e8 4041static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4042{
4043 int err;
943a451a
GC
4044 int limit = 0;
4045 int shared = 0;
4046 int batchcount = 0;
4047
4048 if (!is_root_cache(cachep)) {
4049 struct kmem_cache *root = memcg_root_cache(cachep);
4050 limit = root->limit;
4051 shared = root->shared;
4052 batchcount = root->batchcount;
4053 }
1da177e4 4054
943a451a
GC
4055 if (limit && shared && batchcount)
4056 goto skip_setup;
a737b3e2
AM
4057 /*
4058 * The head array serves three purposes:
1da177e4
LT
4059 * - create a LIFO ordering, i.e. return objects that are cache-warm
4060 * - reduce the number of spinlock operations.
a737b3e2 4061 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4062 * bufctl chains: array operations are cheaper.
4063 * The numbers are guessed, we should auto-tune as described by
4064 * Bonwick.
4065 */
3b0efdfa 4066 if (cachep->size > 131072)
1da177e4 4067 limit = 1;
3b0efdfa 4068 else if (cachep->size > PAGE_SIZE)
1da177e4 4069 limit = 8;
3b0efdfa 4070 else if (cachep->size > 1024)
1da177e4 4071 limit = 24;
3b0efdfa 4072 else if (cachep->size > 256)
1da177e4
LT
4073 limit = 54;
4074 else
4075 limit = 120;
4076
a737b3e2
AM
4077 /*
4078 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4079 * allocation behaviour: Most allocs on one cpu, most free operations
4080 * on another cpu. For these cases, an efficient object passing between
4081 * cpus is necessary. This is provided by a shared array. The array
4082 * replaces Bonwick's magazine layer.
4083 * On uniprocessor, it's functionally equivalent (but less efficient)
4084 * to a larger limit. Thus disabled by default.
4085 */
4086 shared = 0;
3b0efdfa 4087 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4088 shared = 8;
1da177e4
LT
4089
4090#if DEBUG
a737b3e2
AM
4091 /*
4092 * With debugging enabled, large batchcount lead to excessively long
4093 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4094 */
4095 if (limit > 32)
4096 limit = 32;
4097#endif
943a451a
GC
4098 batchcount = (limit + 1) / 2;
4099skip_setup:
4100 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4101 if (err)
4102 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4103 cachep->name, -err);
2ed3a4ef 4104 return err;
1da177e4
LT
4105}
4106
1b55253a
CL
4107/*
4108 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4109 * necessary. Note that the l3 listlock also protects the array_cache
4110 * if drain_array() is used on the shared array.
1b55253a 4111 */
6744f087 4112static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *l3,
1b55253a 4113 struct array_cache *ac, int force, int node)
1da177e4
LT
4114{
4115 int tofree;
4116
1b55253a
CL
4117 if (!ac || !ac->avail)
4118 return;
1da177e4
LT
4119 if (ac->touched && !force) {
4120 ac->touched = 0;
b18e7e65 4121 } else {
1b55253a 4122 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4123 if (ac->avail) {
4124 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4125 if (tofree > ac->avail)
4126 tofree = (ac->avail + 1) / 2;
4127 free_block(cachep, ac->entry, tofree, node);
4128 ac->avail -= tofree;
4129 memmove(ac->entry, &(ac->entry[tofree]),
4130 sizeof(void *) * ac->avail);
4131 }
1b55253a 4132 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4133 }
4134}
4135
4136/**
4137 * cache_reap - Reclaim memory from caches.
05fb6bf0 4138 * @w: work descriptor
1da177e4
LT
4139 *
4140 * Called from workqueue/eventd every few seconds.
4141 * Purpose:
4142 * - clear the per-cpu caches for this CPU.
4143 * - return freeable pages to the main free memory pool.
4144 *
a737b3e2
AM
4145 * If we cannot acquire the cache chain mutex then just give up - we'll try
4146 * again on the next iteration.
1da177e4 4147 */
7c5cae36 4148static void cache_reap(struct work_struct *w)
1da177e4 4149{
7a7c381d 4150 struct kmem_cache *searchp;
6744f087 4151 struct kmem_cache_node *l3;
7d6e6d09 4152 int node = numa_mem_id();
bf6aede7 4153 struct delayed_work *work = to_delayed_work(w);
1da177e4 4154
18004c5d 4155 if (!mutex_trylock(&slab_mutex))
1da177e4 4156 /* Give up. Setup the next iteration. */
7c5cae36 4157 goto out;
1da177e4 4158
18004c5d 4159 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4160 check_irq_on();
4161
35386e3b
CL
4162 /*
4163 * We only take the l3 lock if absolutely necessary and we
4164 * have established with reasonable certainty that
4165 * we can do some work if the lock was obtained.
4166 */
6a67368c 4167 l3 = searchp->node[node];
35386e3b 4168
8fce4d8e 4169 reap_alien(searchp, l3);
1da177e4 4170
aab2207c 4171 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4172
35386e3b
CL
4173 /*
4174 * These are racy checks but it does not matter
4175 * if we skip one check or scan twice.
4176 */
e498be7d 4177 if (time_after(l3->next_reap, jiffies))
35386e3b 4178 goto next;
1da177e4 4179
e498be7d 4180 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4181
aab2207c 4182 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4183
ed11d9eb 4184 if (l3->free_touched)
e498be7d 4185 l3->free_touched = 0;
ed11d9eb
CL
4186 else {
4187 int freed;
1da177e4 4188
ed11d9eb
CL
4189 freed = drain_freelist(searchp, l3, (l3->free_limit +
4190 5 * searchp->num - 1) / (5 * searchp->num));
4191 STATS_ADD_REAPED(searchp, freed);
4192 }
35386e3b 4193next:
1da177e4
LT
4194 cond_resched();
4195 }
4196 check_irq_on();
18004c5d 4197 mutex_unlock(&slab_mutex);
8fce4d8e 4198 next_reap_node();
7c5cae36 4199out:
a737b3e2 4200 /* Set up the next iteration */
7c5cae36 4201 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4202}
4203
158a9624 4204#ifdef CONFIG_SLABINFO
0d7561c6 4205void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4206{
b28a02de
PE
4207 struct slab *slabp;
4208 unsigned long active_objs;
4209 unsigned long num_objs;
4210 unsigned long active_slabs = 0;
4211 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4212 const char *name;
1da177e4 4213 char *error = NULL;
e498be7d 4214 int node;
6744f087 4215 struct kmem_cache_node *l3;
1da177e4 4216
1da177e4
LT
4217 active_objs = 0;
4218 num_slabs = 0;
e498be7d 4219 for_each_online_node(node) {
6a67368c 4220 l3 = cachep->node[node];
e498be7d
CL
4221 if (!l3)
4222 continue;
4223
ca3b9b91
RT
4224 check_irq_on();
4225 spin_lock_irq(&l3->list_lock);
e498be7d 4226
7a7c381d 4227 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4228 if (slabp->inuse != cachep->num && !error)
4229 error = "slabs_full accounting error";
4230 active_objs += cachep->num;
4231 active_slabs++;
4232 }
7a7c381d 4233 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4234 if (slabp->inuse == cachep->num && !error)
4235 error = "slabs_partial inuse accounting error";
4236 if (!slabp->inuse && !error)
4237 error = "slabs_partial/inuse accounting error";
4238 active_objs += slabp->inuse;
4239 active_slabs++;
4240 }
7a7c381d 4241 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4242 if (slabp->inuse && !error)
4243 error = "slabs_free/inuse accounting error";
4244 num_slabs++;
4245 }
4246 free_objects += l3->free_objects;
4484ebf1
RT
4247 if (l3->shared)
4248 shared_avail += l3->shared->avail;
e498be7d 4249
ca3b9b91 4250 spin_unlock_irq(&l3->list_lock);
1da177e4 4251 }
b28a02de
PE
4252 num_slabs += active_slabs;
4253 num_objs = num_slabs * cachep->num;
e498be7d 4254 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4255 error = "free_objects accounting error";
4256
b28a02de 4257 name = cachep->name;
1da177e4
LT
4258 if (error)
4259 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4260
0d7561c6
GC
4261 sinfo->active_objs = active_objs;
4262 sinfo->num_objs = num_objs;
4263 sinfo->active_slabs = active_slabs;
4264 sinfo->num_slabs = num_slabs;
4265 sinfo->shared_avail = shared_avail;
4266 sinfo->limit = cachep->limit;
4267 sinfo->batchcount = cachep->batchcount;
4268 sinfo->shared = cachep->shared;
4269 sinfo->objects_per_slab = cachep->num;
4270 sinfo->cache_order = cachep->gfporder;
4271}
4272
4273void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4274{
1da177e4 4275#if STATS
b28a02de 4276 { /* list3 stats */
1da177e4
LT
4277 unsigned long high = cachep->high_mark;
4278 unsigned long allocs = cachep->num_allocations;
4279 unsigned long grown = cachep->grown;
4280 unsigned long reaped = cachep->reaped;
4281 unsigned long errors = cachep->errors;
4282 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4283 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4284 unsigned long node_frees = cachep->node_frees;
fb7faf33 4285 unsigned long overflows = cachep->node_overflow;
1da177e4 4286
e92dd4fd
JP
4287 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4288 "%4lu %4lu %4lu %4lu %4lu",
4289 allocs, high, grown,
4290 reaped, errors, max_freeable, node_allocs,
4291 node_frees, overflows);
1da177e4
LT
4292 }
4293 /* cpu stats */
4294 {
4295 unsigned long allochit = atomic_read(&cachep->allochit);
4296 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4297 unsigned long freehit = atomic_read(&cachep->freehit);
4298 unsigned long freemiss = atomic_read(&cachep->freemiss);
4299
4300 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4301 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4302 }
4303#endif
1da177e4
LT
4304}
4305
1da177e4
LT
4306#define MAX_SLABINFO_WRITE 128
4307/**
4308 * slabinfo_write - Tuning for the slab allocator
4309 * @file: unused
4310 * @buffer: user buffer
4311 * @count: data length
4312 * @ppos: unused
4313 */
b7454ad3 4314ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4315 size_t count, loff_t *ppos)
1da177e4 4316{
b28a02de 4317 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4318 int limit, batchcount, shared, res;
7a7c381d 4319 struct kmem_cache *cachep;
b28a02de 4320
1da177e4
LT
4321 if (count > MAX_SLABINFO_WRITE)
4322 return -EINVAL;
4323 if (copy_from_user(&kbuf, buffer, count))
4324 return -EFAULT;
b28a02de 4325 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4326
4327 tmp = strchr(kbuf, ' ');
4328 if (!tmp)
4329 return -EINVAL;
4330 *tmp = '\0';
4331 tmp++;
4332 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4333 return -EINVAL;
4334
4335 /* Find the cache in the chain of caches. */
18004c5d 4336 mutex_lock(&slab_mutex);
1da177e4 4337 res = -EINVAL;
18004c5d 4338 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4339 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4340 if (limit < 1 || batchcount < 1 ||
4341 batchcount > limit || shared < 0) {
e498be7d 4342 res = 0;
1da177e4 4343 } else {
e498be7d 4344 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4345 batchcount, shared,
4346 GFP_KERNEL);
1da177e4
LT
4347 }
4348 break;
4349 }
4350 }
18004c5d 4351 mutex_unlock(&slab_mutex);
1da177e4
LT
4352 if (res >= 0)
4353 res = count;
4354 return res;
4355}
871751e2
AV
4356
4357#ifdef CONFIG_DEBUG_SLAB_LEAK
4358
4359static void *leaks_start(struct seq_file *m, loff_t *pos)
4360{
18004c5d
CL
4361 mutex_lock(&slab_mutex);
4362 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4363}
4364
4365static inline int add_caller(unsigned long *n, unsigned long v)
4366{
4367 unsigned long *p;
4368 int l;
4369 if (!v)
4370 return 1;
4371 l = n[1];
4372 p = n + 2;
4373 while (l) {
4374 int i = l/2;
4375 unsigned long *q = p + 2 * i;
4376 if (*q == v) {
4377 q[1]++;
4378 return 1;
4379 }
4380 if (*q > v) {
4381 l = i;
4382 } else {
4383 p = q + 2;
4384 l -= i + 1;
4385 }
4386 }
4387 if (++n[1] == n[0])
4388 return 0;
4389 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4390 p[0] = v;
4391 p[1] = 1;
4392 return 1;
4393}
4394
4395static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4396{
4397 void *p;
4398 int i;
4399 if (n[0] == n[1])
4400 return;
3b0efdfa 4401 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4402 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4403 continue;
4404 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4405 return;
4406 }
4407}
4408
4409static void show_symbol(struct seq_file *m, unsigned long address)
4410{
4411#ifdef CONFIG_KALLSYMS
871751e2 4412 unsigned long offset, size;
9281acea 4413 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4414
a5c43dae 4415 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4416 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4417 if (modname[0])
871751e2
AV
4418 seq_printf(m, " [%s]", modname);
4419 return;
4420 }
4421#endif
4422 seq_printf(m, "%p", (void *)address);
4423}
4424
4425static int leaks_show(struct seq_file *m, void *p)
4426{
0672aa7c 4427 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2 4428 struct slab *slabp;
6744f087 4429 struct kmem_cache_node *l3;
871751e2
AV
4430 const char *name;
4431 unsigned long *n = m->private;
4432 int node;
4433 int i;
4434
4435 if (!(cachep->flags & SLAB_STORE_USER))
4436 return 0;
4437 if (!(cachep->flags & SLAB_RED_ZONE))
4438 return 0;
4439
4440 /* OK, we can do it */
4441
4442 n[1] = 0;
4443
4444 for_each_online_node(node) {
6a67368c 4445 l3 = cachep->node[node];
871751e2
AV
4446 if (!l3)
4447 continue;
4448
4449 check_irq_on();
4450 spin_lock_irq(&l3->list_lock);
4451
7a7c381d 4452 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4453 handle_slab(n, cachep, slabp);
7a7c381d 4454 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4455 handle_slab(n, cachep, slabp);
871751e2
AV
4456 spin_unlock_irq(&l3->list_lock);
4457 }
4458 name = cachep->name;
4459 if (n[0] == n[1]) {
4460 /* Increase the buffer size */
18004c5d 4461 mutex_unlock(&slab_mutex);
871751e2
AV
4462 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4463 if (!m->private) {
4464 /* Too bad, we are really out */
4465 m->private = n;
18004c5d 4466 mutex_lock(&slab_mutex);
871751e2
AV
4467 return -ENOMEM;
4468 }
4469 *(unsigned long *)m->private = n[0] * 2;
4470 kfree(n);
18004c5d 4471 mutex_lock(&slab_mutex);
871751e2
AV
4472 /* Now make sure this entry will be retried */
4473 m->count = m->size;
4474 return 0;
4475 }
4476 for (i = 0; i < n[1]; i++) {
4477 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4478 show_symbol(m, n[2*i+2]);
4479 seq_putc(m, '\n');
4480 }
d2e7b7d0 4481
871751e2
AV
4482 return 0;
4483}
4484
b7454ad3
GC
4485static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4486{
4487 return seq_list_next(p, &slab_caches, pos);
4488}
4489
4490static void s_stop(struct seq_file *m, void *p)
4491{
4492 mutex_unlock(&slab_mutex);
4493}
4494
a0ec95a8 4495static const struct seq_operations slabstats_op = {
871751e2
AV
4496 .start = leaks_start,
4497 .next = s_next,
4498 .stop = s_stop,
4499 .show = leaks_show,
4500};
a0ec95a8
AD
4501
4502static int slabstats_open(struct inode *inode, struct file *file)
4503{
4504 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4505 int ret = -ENOMEM;
4506 if (n) {
4507 ret = seq_open(file, &slabstats_op);
4508 if (!ret) {
4509 struct seq_file *m = file->private_data;
4510 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4511 m->private = n;
4512 n = NULL;
4513 }
4514 kfree(n);
4515 }
4516 return ret;
4517}
4518
4519static const struct file_operations proc_slabstats_operations = {
4520 .open = slabstats_open,
4521 .read = seq_read,
4522 .llseek = seq_lseek,
4523 .release = seq_release_private,
4524};
4525#endif
4526
4527static int __init slab_proc_init(void)
4528{
4529#ifdef CONFIG_DEBUG_SLAB_LEAK
4530 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4531#endif
a0ec95a8
AD
4532 return 0;
4533}
4534module_init(slab_proc_init);
1da177e4
LT
4535#endif
4536
00e145b6
MS
4537/**
4538 * ksize - get the actual amount of memory allocated for a given object
4539 * @objp: Pointer to the object
4540 *
4541 * kmalloc may internally round up allocations and return more memory
4542 * than requested. ksize() can be used to determine the actual amount of
4543 * memory allocated. The caller may use this additional memory, even though
4544 * a smaller amount of memory was initially specified with the kmalloc call.
4545 * The caller must guarantee that objp points to a valid object previously
4546 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4547 * must not be freed during the duration of the call.
4548 */
fd76bab2 4549size_t ksize(const void *objp)
1da177e4 4550{
ef8b4520
CL
4551 BUG_ON(!objp);
4552 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4553 return 0;
1da177e4 4554
8c138bc0 4555 return virt_to_cache(objp)->object_size;
1da177e4 4556}
b1aabecd 4557EXPORT_SYMBOL(ksize);