slab: use struct page for slab management
[linux-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * struct array_cache
168 *
1da177e4
LT
169 * Purpose:
170 * - LIFO ordering, to hand out cache-warm objects from _alloc
171 * - reduce the number of linked list operations
172 * - reduce spinlock operations
173 *
174 * The limit is stored in the per-cpu structure to reduce the data cache
175 * footprint.
176 *
177 */
178struct array_cache {
179 unsigned int avail;
180 unsigned int limit;
181 unsigned int batchcount;
182 unsigned int touched;
e498be7d 183 spinlock_t lock;
bda5b655 184 void *entry[]; /*
a737b3e2
AM
185 * Must have this definition in here for the proper
186 * alignment of array_cache. Also simplifies accessing
187 * the entries.
072bb0aa
MG
188 *
189 * Entries should not be directly dereferenced as
190 * entries belonging to slabs marked pfmemalloc will
191 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 192 */
1da177e4
LT
193};
194
072bb0aa
MG
195#define SLAB_OBJ_PFMEMALLOC 1
196static inline bool is_obj_pfmemalloc(void *objp)
197{
198 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
199}
200
201static inline void set_obj_pfmemalloc(void **objp)
202{
203 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
204 return;
205}
206
207static inline void clear_obj_pfmemalloc(void **objp)
208{
209 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
210}
211
a737b3e2
AM
212/*
213 * bootstrap: The caches do not work without cpuarrays anymore, but the
214 * cpuarrays are allocated from the generic caches...
1da177e4
LT
215 */
216#define BOOT_CPUCACHE_ENTRIES 1
217struct arraycache_init {
218 struct array_cache cache;
b28a02de 219 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
220};
221
e498be7d
CL
222/*
223 * Need this for bootstrapping a per node allocator.
224 */
556a169d 225#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 226static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 227#define CACHE_CACHE 0
556a169d 228#define SIZE_AC MAX_NUMNODES
ce8eb6c4 229#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 230
ed11d9eb 231static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 232 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
233static void free_block(struct kmem_cache *cachep, void **objpp, int len,
234 int node);
83b519e8 235static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 236static void cache_reap(struct work_struct *unused);
ed11d9eb 237
e0a42726
IM
238static int slab_early_init = 1;
239
e3366016 240#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 241#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 242
ce8eb6c4 243static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
244{
245 INIT_LIST_HEAD(&parent->slabs_full);
246 INIT_LIST_HEAD(&parent->slabs_partial);
247 INIT_LIST_HEAD(&parent->slabs_free);
248 parent->shared = NULL;
249 parent->alien = NULL;
2e1217cf 250 parent->colour_next = 0;
e498be7d
CL
251 spin_lock_init(&parent->list_lock);
252 parent->free_objects = 0;
253 parent->free_touched = 0;
254}
255
a737b3e2
AM
256#define MAKE_LIST(cachep, listp, slab, nodeid) \
257 do { \
258 INIT_LIST_HEAD(listp); \
6a67368c 259 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
260 } while (0)
261
a737b3e2
AM
262#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
263 do { \
e498be7d
CL
264 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
265 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
266 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
267 } while (0)
1da177e4 268
1da177e4
LT
269#define CFLGS_OFF_SLAB (0x80000000UL)
270#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
271
272#define BATCHREFILL_LIMIT 16
a737b3e2
AM
273/*
274 * Optimization question: fewer reaps means less probability for unnessary
275 * cpucache drain/refill cycles.
1da177e4 276 *
dc6f3f27 277 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
278 * which could lock up otherwise freeable slabs.
279 */
280#define REAPTIMEOUT_CPUC (2*HZ)
281#define REAPTIMEOUT_LIST3 (4*HZ)
282
283#if STATS
284#define STATS_INC_ACTIVE(x) ((x)->num_active++)
285#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
286#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
287#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 288#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
289#define STATS_SET_HIGH(x) \
290 do { \
291 if ((x)->num_active > (x)->high_mark) \
292 (x)->high_mark = (x)->num_active; \
293 } while (0)
1da177e4
LT
294#define STATS_INC_ERR(x) ((x)->errors++)
295#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 296#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 297#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
298#define STATS_SET_FREEABLE(x, i) \
299 do { \
300 if ((x)->max_freeable < i) \
301 (x)->max_freeable = i; \
302 } while (0)
1da177e4
LT
303#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
304#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
305#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
306#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
307#else
308#define STATS_INC_ACTIVE(x) do { } while (0)
309#define STATS_DEC_ACTIVE(x) do { } while (0)
310#define STATS_INC_ALLOCED(x) do { } while (0)
311#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 312#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
313#define STATS_SET_HIGH(x) do { } while (0)
314#define STATS_INC_ERR(x) do { } while (0)
315#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 316#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 317#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 318#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
319#define STATS_INC_ALLOCHIT(x) do { } while (0)
320#define STATS_INC_ALLOCMISS(x) do { } while (0)
321#define STATS_INC_FREEHIT(x) do { } while (0)
322#define STATS_INC_FREEMISS(x) do { } while (0)
323#endif
324
325#if DEBUG
1da177e4 326
a737b3e2
AM
327/*
328 * memory layout of objects:
1da177e4 329 * 0 : objp
3dafccf2 330 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
331 * the end of an object is aligned with the end of the real
332 * allocation. Catches writes behind the end of the allocation.
3dafccf2 333 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 334 * redzone word.
3dafccf2 335 * cachep->obj_offset: The real object.
3b0efdfa
CL
336 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
337 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 338 * [BYTES_PER_WORD long]
1da177e4 339 */
343e0d7a 340static int obj_offset(struct kmem_cache *cachep)
1da177e4 341{
3dafccf2 342 return cachep->obj_offset;
1da177e4
LT
343}
344
b46b8f19 345static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
346{
347 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
348 return (unsigned long long*) (objp + obj_offset(cachep) -
349 sizeof(unsigned long long));
1da177e4
LT
350}
351
b46b8f19 352static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
353{
354 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
355 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 356 return (unsigned long long *)(objp + cachep->size -
b46b8f19 357 sizeof(unsigned long long) -
87a927c7 358 REDZONE_ALIGN);
3b0efdfa 359 return (unsigned long long *) (objp + cachep->size -
b46b8f19 360 sizeof(unsigned long long));
1da177e4
LT
361}
362
343e0d7a 363static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
364{
365 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 366 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
367}
368
369#else
370
3dafccf2 371#define obj_offset(x) 0
b46b8f19
DW
372#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
373#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
374#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
375
376#endif
377
1da177e4 378/*
3df1cccd
DR
379 * Do not go above this order unless 0 objects fit into the slab or
380 * overridden on the command line.
1da177e4 381 */
543585cc
DR
382#define SLAB_MAX_ORDER_HI 1
383#define SLAB_MAX_ORDER_LO 0
384static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 385static bool slab_max_order_set __initdata;
1da177e4 386
6ed5eb22
PE
387static inline struct kmem_cache *virt_to_cache(const void *obj)
388{
b49af68f 389 struct page *page = virt_to_head_page(obj);
35026088 390 return page->slab_cache;
6ed5eb22
PE
391}
392
8456a648 393static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
394 unsigned int idx)
395{
8456a648 396 return page->s_mem + cache->size * idx;
8fea4e96
PE
397}
398
6a2d7a95 399/*
3b0efdfa
CL
400 * We want to avoid an expensive divide : (offset / cache->size)
401 * Using the fact that size is a constant for a particular cache,
402 * we can replace (offset / cache->size) by
6a2d7a95
ED
403 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
404 */
405static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 406 const struct page *page, void *obj)
8fea4e96 407{
8456a648 408 u32 offset = (obj - page->s_mem);
6a2d7a95 409 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
410}
411
1da177e4 412static struct arraycache_init initarray_generic =
b28a02de 413 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
414
415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
056c6241
RT
424#define BAD_ALIEN_MAGIC 0x01020304ul
425
f1aaee53
AV
426#ifdef CONFIG_LOCKDEP
427
428/*
429 * Slab sometimes uses the kmalloc slabs to store the slab headers
430 * for other slabs "off slab".
431 * The locking for this is tricky in that it nests within the locks
432 * of all other slabs in a few places; to deal with this special
433 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
434 *
435 * We set lock class for alien array caches which are up during init.
436 * The lock annotation will be lost if all cpus of a node goes down and
437 * then comes back up during hotplug
f1aaee53 438 */
056c6241
RT
439static struct lock_class_key on_slab_l3_key;
440static struct lock_class_key on_slab_alc_key;
441
83835b3d
PZ
442static struct lock_class_key debugobj_l3_key;
443static struct lock_class_key debugobj_alc_key;
444
445static void slab_set_lock_classes(struct kmem_cache *cachep,
446 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
447 int q)
448{
449 struct array_cache **alc;
ce8eb6c4 450 struct kmem_cache_node *n;
83835b3d
PZ
451 int r;
452
ce8eb6c4
CL
453 n = cachep->node[q];
454 if (!n)
83835b3d
PZ
455 return;
456
ce8eb6c4
CL
457 lockdep_set_class(&n->list_lock, l3_key);
458 alc = n->alien;
83835b3d
PZ
459 /*
460 * FIXME: This check for BAD_ALIEN_MAGIC
461 * should go away when common slab code is taught to
462 * work even without alien caches.
463 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
464 * for alloc_alien_cache,
465 */
466 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
467 return;
468 for_each_node(r) {
469 if (alc[r])
470 lockdep_set_class(&alc[r]->lock, alc_key);
471 }
472}
473
474static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
475{
476 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
477}
478
479static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
480{
481 int node;
482
483 for_each_online_node(node)
484 slab_set_debugobj_lock_classes_node(cachep, node);
485}
486
ce79ddc8 487static void init_node_lock_keys(int q)
f1aaee53 488{
e3366016 489 int i;
056c6241 490
97d06609 491 if (slab_state < UP)
ce79ddc8
PE
492 return;
493
0f8f8094 494 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 495 struct kmem_cache_node *n;
e3366016
CL
496 struct kmem_cache *cache = kmalloc_caches[i];
497
498 if (!cache)
499 continue;
ce79ddc8 500
ce8eb6c4
CL
501 n = cache->node[q];
502 if (!n || OFF_SLAB(cache))
00afa758 503 continue;
83835b3d 504
e3366016 505 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 506 &on_slab_alc_key, q);
f1aaee53
AV
507 }
508}
ce79ddc8 509
6ccfb5bc
GC
510static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
511{
6a67368c 512 if (!cachep->node[q])
6ccfb5bc
GC
513 return;
514
515 slab_set_lock_classes(cachep, &on_slab_l3_key,
516 &on_slab_alc_key, q);
517}
518
519static inline void on_slab_lock_classes(struct kmem_cache *cachep)
520{
521 int node;
522
523 VM_BUG_ON(OFF_SLAB(cachep));
524 for_each_node(node)
525 on_slab_lock_classes_node(cachep, node);
526}
527
ce79ddc8
PE
528static inline void init_lock_keys(void)
529{
530 int node;
531
532 for_each_node(node)
533 init_node_lock_keys(node);
534}
f1aaee53 535#else
ce79ddc8
PE
536static void init_node_lock_keys(int q)
537{
538}
539
056c6241 540static inline void init_lock_keys(void)
f1aaee53
AV
541{
542}
83835b3d 543
6ccfb5bc
GC
544static inline void on_slab_lock_classes(struct kmem_cache *cachep)
545{
546}
547
548static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
549{
550}
551
83835b3d
PZ
552static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
553{
554}
555
556static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
557{
558}
f1aaee53
AV
559#endif
560
1871e52c 561static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 562
343e0d7a 563static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
564{
565 return cachep->array[smp_processor_id()];
566}
567
fbaccacf 568static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 569{
8456a648 570 return ALIGN(nr_objs * sizeof(unsigned int), align);
fbaccacf 571}
1da177e4 572
a737b3e2
AM
573/*
574 * Calculate the number of objects and left-over bytes for a given buffer size.
575 */
fbaccacf
SR
576static void cache_estimate(unsigned long gfporder, size_t buffer_size,
577 size_t align, int flags, size_t *left_over,
578 unsigned int *num)
579{
580 int nr_objs;
581 size_t mgmt_size;
582 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 583
fbaccacf
SR
584 /*
585 * The slab management structure can be either off the slab or
586 * on it. For the latter case, the memory allocated for a
587 * slab is used for:
588 *
16025177 589 * - One unsigned int for each object
fbaccacf
SR
590 * - Padding to respect alignment of @align
591 * - @buffer_size bytes for each object
592 *
593 * If the slab management structure is off the slab, then the
594 * alignment will already be calculated into the size. Because
595 * the slabs are all pages aligned, the objects will be at the
596 * correct alignment when allocated.
597 */
598 if (flags & CFLGS_OFF_SLAB) {
599 mgmt_size = 0;
600 nr_objs = slab_size / buffer_size;
601
fbaccacf
SR
602 } else {
603 /*
604 * Ignore padding for the initial guess. The padding
605 * is at most @align-1 bytes, and @buffer_size is at
606 * least @align. In the worst case, this result will
607 * be one greater than the number of objects that fit
608 * into the memory allocation when taking the padding
609 * into account.
610 */
8456a648 611 nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
fbaccacf
SR
612
613 /*
614 * This calculated number will be either the right
615 * amount, or one greater than what we want.
616 */
617 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
618 > slab_size)
619 nr_objs--;
620
fbaccacf
SR
621 mgmt_size = slab_mgmt_size(nr_objs, align);
622 }
623 *num = nr_objs;
624 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
625}
626
f28510d3 627#if DEBUG
d40cee24 628#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 629
a737b3e2
AM
630static void __slab_error(const char *function, struct kmem_cache *cachep,
631 char *msg)
1da177e4
LT
632{
633 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 634 function, cachep->name, msg);
1da177e4 635 dump_stack();
373d4d09 636 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 637}
f28510d3 638#endif
1da177e4 639
3395ee05
PM
640/*
641 * By default on NUMA we use alien caches to stage the freeing of
642 * objects allocated from other nodes. This causes massive memory
643 * inefficiencies when using fake NUMA setup to split memory into a
644 * large number of small nodes, so it can be disabled on the command
645 * line
646 */
647
648static int use_alien_caches __read_mostly = 1;
649static int __init noaliencache_setup(char *s)
650{
651 use_alien_caches = 0;
652 return 1;
653}
654__setup("noaliencache", noaliencache_setup);
655
3df1cccd
DR
656static int __init slab_max_order_setup(char *str)
657{
658 get_option(&str, &slab_max_order);
659 slab_max_order = slab_max_order < 0 ? 0 :
660 min(slab_max_order, MAX_ORDER - 1);
661 slab_max_order_set = true;
662
663 return 1;
664}
665__setup("slab_max_order=", slab_max_order_setup);
666
8fce4d8e
CL
667#ifdef CONFIG_NUMA
668/*
669 * Special reaping functions for NUMA systems called from cache_reap().
670 * These take care of doing round robin flushing of alien caches (containing
671 * objects freed on different nodes from which they were allocated) and the
672 * flushing of remote pcps by calling drain_node_pages.
673 */
1871e52c 674static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
675
676static void init_reap_node(int cpu)
677{
678 int node;
679
7d6e6d09 680 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 681 if (node == MAX_NUMNODES)
442295c9 682 node = first_node(node_online_map);
8fce4d8e 683
1871e52c 684 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
685}
686
687static void next_reap_node(void)
688{
909ea964 689 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 690
8fce4d8e
CL
691 node = next_node(node, node_online_map);
692 if (unlikely(node >= MAX_NUMNODES))
693 node = first_node(node_online_map);
909ea964 694 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
695}
696
697#else
698#define init_reap_node(cpu) do { } while (0)
699#define next_reap_node(void) do { } while (0)
700#endif
701
1da177e4
LT
702/*
703 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
704 * via the workqueue/eventd.
705 * Add the CPU number into the expiration time to minimize the possibility of
706 * the CPUs getting into lockstep and contending for the global cache chain
707 * lock.
708 */
0db0628d 709static void start_cpu_timer(int cpu)
1da177e4 710{
1871e52c 711 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
712
713 /*
714 * When this gets called from do_initcalls via cpucache_init(),
715 * init_workqueues() has already run, so keventd will be setup
716 * at that time.
717 */
52bad64d 718 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 719 init_reap_node(cpu);
203b42f7 720 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
721 schedule_delayed_work_on(cpu, reap_work,
722 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
723 }
724}
725
e498be7d 726static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 727 int batchcount, gfp_t gfp)
1da177e4 728{
b28a02de 729 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
730 struct array_cache *nc = NULL;
731
83b519e8 732 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
733 /*
734 * The array_cache structures contain pointers to free object.
25985edc 735 * However, when such objects are allocated or transferred to another
d5cff635
CM
736 * cache the pointers are not cleared and they could be counted as
737 * valid references during a kmemleak scan. Therefore, kmemleak must
738 * not scan such objects.
739 */
740 kmemleak_no_scan(nc);
1da177e4
LT
741 if (nc) {
742 nc->avail = 0;
743 nc->limit = entries;
744 nc->batchcount = batchcount;
745 nc->touched = 0;
e498be7d 746 spin_lock_init(&nc->lock);
1da177e4
LT
747 }
748 return nc;
749}
750
8456a648 751static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 752{
8456a648 753 struct page *mem_page = virt_to_page(page->s_mem);
072bb0aa 754
8456a648 755 return PageSlabPfmemalloc(mem_page);
072bb0aa
MG
756}
757
758/* Clears pfmemalloc_active if no slabs have pfmalloc set */
759static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
760 struct array_cache *ac)
761{
ce8eb6c4 762 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
8456a648 763 struct page *page;
072bb0aa
MG
764 unsigned long flags;
765
766 if (!pfmemalloc_active)
767 return;
768
ce8eb6c4 769 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
770 list_for_each_entry(page, &n->slabs_full, lru)
771 if (is_slab_pfmemalloc(page))
072bb0aa
MG
772 goto out;
773
8456a648
JK
774 list_for_each_entry(page, &n->slabs_partial, lru)
775 if (is_slab_pfmemalloc(page))
072bb0aa
MG
776 goto out;
777
8456a648
JK
778 list_for_each_entry(page, &n->slabs_free, lru)
779 if (is_slab_pfmemalloc(page))
072bb0aa
MG
780 goto out;
781
782 pfmemalloc_active = false;
783out:
ce8eb6c4 784 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
785}
786
381760ea 787static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
788 gfp_t flags, bool force_refill)
789{
790 int i;
791 void *objp = ac->entry[--ac->avail];
792
793 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
794 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 795 struct kmem_cache_node *n;
072bb0aa
MG
796
797 if (gfp_pfmemalloc_allowed(flags)) {
798 clear_obj_pfmemalloc(&objp);
799 return objp;
800 }
801
802 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 803 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
804 /* If a !PFMEMALLOC object is found, swap them */
805 if (!is_obj_pfmemalloc(ac->entry[i])) {
806 objp = ac->entry[i];
807 ac->entry[i] = ac->entry[ac->avail];
808 ac->entry[ac->avail] = objp;
809 return objp;
810 }
811 }
812
813 /*
814 * If there are empty slabs on the slabs_free list and we are
815 * being forced to refill the cache, mark this one !pfmemalloc.
816 */
ce8eb6c4
CL
817 n = cachep->node[numa_mem_id()];
818 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648
JK
819 struct page *page = virt_to_head_page(objp);
820 ClearPageSlabPfmemalloc(virt_to_head_page(page->s_mem));
072bb0aa
MG
821 clear_obj_pfmemalloc(&objp);
822 recheck_pfmemalloc_active(cachep, ac);
823 return objp;
824 }
825
826 /* No !PFMEMALLOC objects available */
827 ac->avail++;
828 objp = NULL;
829 }
830
831 return objp;
832}
833
381760ea
MG
834static inline void *ac_get_obj(struct kmem_cache *cachep,
835 struct array_cache *ac, gfp_t flags, bool force_refill)
836{
837 void *objp;
838
839 if (unlikely(sk_memalloc_socks()))
840 objp = __ac_get_obj(cachep, ac, flags, force_refill);
841 else
842 objp = ac->entry[--ac->avail];
843
844 return objp;
845}
846
847static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
848 void *objp)
849{
850 if (unlikely(pfmemalloc_active)) {
851 /* Some pfmemalloc slabs exist, check if this is one */
8456a648
JK
852 struct page *page = virt_to_head_page(objp);
853 struct page *mem_page = virt_to_head_page(page->s_mem);
854 if (PageSlabPfmemalloc(mem_page))
072bb0aa
MG
855 set_obj_pfmemalloc(&objp);
856 }
857
381760ea
MG
858 return objp;
859}
860
861static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
862 void *objp)
863{
864 if (unlikely(sk_memalloc_socks()))
865 objp = __ac_put_obj(cachep, ac, objp);
866
072bb0aa
MG
867 ac->entry[ac->avail++] = objp;
868}
869
3ded175a
CL
870/*
871 * Transfer objects in one arraycache to another.
872 * Locking must be handled by the caller.
873 *
874 * Return the number of entries transferred.
875 */
876static int transfer_objects(struct array_cache *to,
877 struct array_cache *from, unsigned int max)
878{
879 /* Figure out how many entries to transfer */
732eacc0 880 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
881
882 if (!nr)
883 return 0;
884
885 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
886 sizeof(void *) *nr);
887
888 from->avail -= nr;
889 to->avail += nr;
3ded175a
CL
890 return nr;
891}
892
765c4507
CL
893#ifndef CONFIG_NUMA
894
895#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 896#define reap_alien(cachep, n) do { } while (0)
765c4507 897
83b519e8 898static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
899{
900 return (struct array_cache **)BAD_ALIEN_MAGIC;
901}
902
903static inline void free_alien_cache(struct array_cache **ac_ptr)
904{
905}
906
907static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
908{
909 return 0;
910}
911
912static inline void *alternate_node_alloc(struct kmem_cache *cachep,
913 gfp_t flags)
914{
915 return NULL;
916}
917
8b98c169 918static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
919 gfp_t flags, int nodeid)
920{
921 return NULL;
922}
923
924#else /* CONFIG_NUMA */
925
8b98c169 926static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 927static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 928
83b519e8 929static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
930{
931 struct array_cache **ac_ptr;
8ef82866 932 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
933 int i;
934
935 if (limit > 1)
936 limit = 12;
f3186a9c 937 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
938 if (ac_ptr) {
939 for_each_node(i) {
f3186a9c 940 if (i == node || !node_online(i))
e498be7d 941 continue;
83b519e8 942 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 943 if (!ac_ptr[i]) {
cc550def 944 for (i--; i >= 0; i--)
e498be7d
CL
945 kfree(ac_ptr[i]);
946 kfree(ac_ptr);
947 return NULL;
948 }
949 }
950 }
951 return ac_ptr;
952}
953
5295a74c 954static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
955{
956 int i;
957
958 if (!ac_ptr)
959 return;
e498be7d 960 for_each_node(i)
b28a02de 961 kfree(ac_ptr[i]);
e498be7d
CL
962 kfree(ac_ptr);
963}
964
343e0d7a 965static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 966 struct array_cache *ac, int node)
e498be7d 967{
ce8eb6c4 968 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
969
970 if (ac->avail) {
ce8eb6c4 971 spin_lock(&n->list_lock);
e00946fe
CL
972 /*
973 * Stuff objects into the remote nodes shared array first.
974 * That way we could avoid the overhead of putting the objects
975 * into the free lists and getting them back later.
976 */
ce8eb6c4
CL
977 if (n->shared)
978 transfer_objects(n->shared, ac, ac->limit);
e00946fe 979
ff69416e 980 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 981 ac->avail = 0;
ce8eb6c4 982 spin_unlock(&n->list_lock);
e498be7d
CL
983 }
984}
985
8fce4d8e
CL
986/*
987 * Called from cache_reap() to regularly drain alien caches round robin.
988 */
ce8eb6c4 989static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 990{
909ea964 991 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 992
ce8eb6c4
CL
993 if (n->alien) {
994 struct array_cache *ac = n->alien[node];
e00946fe
CL
995
996 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
997 __drain_alien_cache(cachep, ac, node);
998 spin_unlock_irq(&ac->lock);
999 }
1000 }
1001}
1002
a737b3e2
AM
1003static void drain_alien_cache(struct kmem_cache *cachep,
1004 struct array_cache **alien)
e498be7d 1005{
b28a02de 1006 int i = 0;
e498be7d
CL
1007 struct array_cache *ac;
1008 unsigned long flags;
1009
1010 for_each_online_node(i) {
4484ebf1 1011 ac = alien[i];
e498be7d
CL
1012 if (ac) {
1013 spin_lock_irqsave(&ac->lock, flags);
1014 __drain_alien_cache(cachep, ac, i);
1015 spin_unlock_irqrestore(&ac->lock, flags);
1016 }
1017 }
1018}
729bd0b7 1019
873623df 1020static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1021{
1ea991b0 1022 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1023 struct kmem_cache_node *n;
729bd0b7 1024 struct array_cache *alien = NULL;
1ca4cb24
PE
1025 int node;
1026
7d6e6d09 1027 node = numa_mem_id();
729bd0b7
PE
1028
1029 /*
1030 * Make sure we are not freeing a object from another node to the array
1031 * cache on this cpu.
1032 */
1ea991b0 1033 if (likely(nodeid == node))
729bd0b7
PE
1034 return 0;
1035
ce8eb6c4 1036 n = cachep->node[node];
729bd0b7 1037 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1038 if (n->alien && n->alien[nodeid]) {
1039 alien = n->alien[nodeid];
873623df 1040 spin_lock(&alien->lock);
729bd0b7
PE
1041 if (unlikely(alien->avail == alien->limit)) {
1042 STATS_INC_ACOVERFLOW(cachep);
1043 __drain_alien_cache(cachep, alien, nodeid);
1044 }
072bb0aa 1045 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1046 spin_unlock(&alien->lock);
1047 } else {
6a67368c 1048 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1049 free_block(cachep, &objp, 1, nodeid);
6a67368c 1050 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1051 }
1052 return 1;
1053}
e498be7d
CL
1054#endif
1055
8f9f8d9e 1056/*
6a67368c 1057 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1058 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1059 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1060 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1061 * already in use.
1062 *
18004c5d 1063 * Must hold slab_mutex.
8f9f8d9e 1064 */
6a67368c 1065static int init_cache_node_node(int node)
8f9f8d9e
DR
1066{
1067 struct kmem_cache *cachep;
ce8eb6c4 1068 struct kmem_cache_node *n;
6744f087 1069 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1070
18004c5d 1071 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1072 /*
1073 * Set up the size64 kmemlist for cpu before we can
1074 * begin anything. Make sure some other cpu on this
1075 * node has not already allocated this
1076 */
6a67368c 1077 if (!cachep->node[node]) {
ce8eb6c4
CL
1078 n = kmalloc_node(memsize, GFP_KERNEL, node);
1079 if (!n)
8f9f8d9e 1080 return -ENOMEM;
ce8eb6c4
CL
1081 kmem_cache_node_init(n);
1082 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
8f9f8d9e
DR
1083 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1084
1085 /*
1086 * The l3s don't come and go as CPUs come and
18004c5d 1087 * go. slab_mutex is sufficient
8f9f8d9e
DR
1088 * protection here.
1089 */
ce8eb6c4 1090 cachep->node[node] = n;
8f9f8d9e
DR
1091 }
1092
6a67368c
CL
1093 spin_lock_irq(&cachep->node[node]->list_lock);
1094 cachep->node[node]->free_limit =
8f9f8d9e
DR
1095 (1 + nr_cpus_node(node)) *
1096 cachep->batchcount + cachep->num;
6a67368c 1097 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1098 }
1099 return 0;
1100}
1101
0fa8103b
WL
1102static inline int slabs_tofree(struct kmem_cache *cachep,
1103 struct kmem_cache_node *n)
1104{
1105 return (n->free_objects + cachep->num - 1) / cachep->num;
1106}
1107
0db0628d 1108static void cpuup_canceled(long cpu)
fbf1e473
AM
1109{
1110 struct kmem_cache *cachep;
ce8eb6c4 1111 struct kmem_cache_node *n = NULL;
7d6e6d09 1112 int node = cpu_to_mem(cpu);
a70f7302 1113 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1114
18004c5d 1115 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1116 struct array_cache *nc;
1117 struct array_cache *shared;
1118 struct array_cache **alien;
fbf1e473 1119
fbf1e473
AM
1120 /* cpu is dead; no one can alloc from it. */
1121 nc = cachep->array[cpu];
1122 cachep->array[cpu] = NULL;
ce8eb6c4 1123 n = cachep->node[node];
fbf1e473 1124
ce8eb6c4 1125 if (!n)
fbf1e473
AM
1126 goto free_array_cache;
1127
ce8eb6c4 1128 spin_lock_irq(&n->list_lock);
fbf1e473 1129
ce8eb6c4
CL
1130 /* Free limit for this kmem_cache_node */
1131 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1132 if (nc)
1133 free_block(cachep, nc->entry, nc->avail, node);
1134
58463c1f 1135 if (!cpumask_empty(mask)) {
ce8eb6c4 1136 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1137 goto free_array_cache;
1138 }
1139
ce8eb6c4 1140 shared = n->shared;
fbf1e473
AM
1141 if (shared) {
1142 free_block(cachep, shared->entry,
1143 shared->avail, node);
ce8eb6c4 1144 n->shared = NULL;
fbf1e473
AM
1145 }
1146
ce8eb6c4
CL
1147 alien = n->alien;
1148 n->alien = NULL;
fbf1e473 1149
ce8eb6c4 1150 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1151
1152 kfree(shared);
1153 if (alien) {
1154 drain_alien_cache(cachep, alien);
1155 free_alien_cache(alien);
1156 }
1157free_array_cache:
1158 kfree(nc);
1159 }
1160 /*
1161 * In the previous loop, all the objects were freed to
1162 * the respective cache's slabs, now we can go ahead and
1163 * shrink each nodelist to its limit.
1164 */
18004c5d 1165 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1166 n = cachep->node[node];
1167 if (!n)
fbf1e473 1168 continue;
0fa8103b 1169 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1170 }
1171}
1172
0db0628d 1173static int cpuup_prepare(long cpu)
1da177e4 1174{
343e0d7a 1175 struct kmem_cache *cachep;
ce8eb6c4 1176 struct kmem_cache_node *n = NULL;
7d6e6d09 1177 int node = cpu_to_mem(cpu);
8f9f8d9e 1178 int err;
1da177e4 1179
fbf1e473
AM
1180 /*
1181 * We need to do this right in the beginning since
1182 * alloc_arraycache's are going to use this list.
1183 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1184 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1185 */
6a67368c 1186 err = init_cache_node_node(node);
8f9f8d9e
DR
1187 if (err < 0)
1188 goto bad;
fbf1e473
AM
1189
1190 /*
1191 * Now we can go ahead with allocating the shared arrays and
1192 * array caches
1193 */
18004c5d 1194 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1195 struct array_cache *nc;
1196 struct array_cache *shared = NULL;
1197 struct array_cache **alien = NULL;
1198
1199 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1200 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1201 if (!nc)
1202 goto bad;
1203 if (cachep->shared) {
1204 shared = alloc_arraycache(node,
1205 cachep->shared * cachep->batchcount,
83b519e8 1206 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1207 if (!shared) {
1208 kfree(nc);
1da177e4 1209 goto bad;
12d00f6a 1210 }
fbf1e473
AM
1211 }
1212 if (use_alien_caches) {
83b519e8 1213 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1214 if (!alien) {
1215 kfree(shared);
1216 kfree(nc);
fbf1e473 1217 goto bad;
12d00f6a 1218 }
fbf1e473
AM
1219 }
1220 cachep->array[cpu] = nc;
ce8eb6c4
CL
1221 n = cachep->node[node];
1222 BUG_ON(!n);
fbf1e473 1223
ce8eb6c4
CL
1224 spin_lock_irq(&n->list_lock);
1225 if (!n->shared) {
fbf1e473
AM
1226 /*
1227 * We are serialised from CPU_DEAD or
1228 * CPU_UP_CANCELLED by the cpucontrol lock
1229 */
ce8eb6c4 1230 n->shared = shared;
fbf1e473
AM
1231 shared = NULL;
1232 }
4484ebf1 1233#ifdef CONFIG_NUMA
ce8eb6c4
CL
1234 if (!n->alien) {
1235 n->alien = alien;
fbf1e473 1236 alien = NULL;
1da177e4 1237 }
fbf1e473 1238#endif
ce8eb6c4 1239 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1240 kfree(shared);
1241 free_alien_cache(alien);
83835b3d
PZ
1242 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1243 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1244 else if (!OFF_SLAB(cachep) &&
1245 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1246 on_slab_lock_classes_node(cachep, node);
fbf1e473 1247 }
ce79ddc8
PE
1248 init_node_lock_keys(node);
1249
fbf1e473
AM
1250 return 0;
1251bad:
12d00f6a 1252 cpuup_canceled(cpu);
fbf1e473
AM
1253 return -ENOMEM;
1254}
1255
0db0628d 1256static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1257 unsigned long action, void *hcpu)
1258{
1259 long cpu = (long)hcpu;
1260 int err = 0;
1261
1262 switch (action) {
fbf1e473
AM
1263 case CPU_UP_PREPARE:
1264 case CPU_UP_PREPARE_FROZEN:
18004c5d 1265 mutex_lock(&slab_mutex);
fbf1e473 1266 err = cpuup_prepare(cpu);
18004c5d 1267 mutex_unlock(&slab_mutex);
1da177e4
LT
1268 break;
1269 case CPU_ONLINE:
8bb78442 1270 case CPU_ONLINE_FROZEN:
1da177e4
LT
1271 start_cpu_timer(cpu);
1272 break;
1273#ifdef CONFIG_HOTPLUG_CPU
5830c590 1274 case CPU_DOWN_PREPARE:
8bb78442 1275 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1276 /*
18004c5d 1277 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1278 * held so that if cache_reap() is invoked it cannot do
1279 * anything expensive but will only modify reap_work
1280 * and reschedule the timer.
1281 */
afe2c511 1282 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1283 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1284 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1285 break;
1286 case CPU_DOWN_FAILED:
8bb78442 1287 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1288 start_cpu_timer(cpu);
1289 break;
1da177e4 1290 case CPU_DEAD:
8bb78442 1291 case CPU_DEAD_FROZEN:
4484ebf1
RT
1292 /*
1293 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1294 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1295 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1296 * memory from the node of the cpu going down. The node
4484ebf1
RT
1297 * structure is usually allocated from kmem_cache_create() and
1298 * gets destroyed at kmem_cache_destroy().
1299 */
183ff22b 1300 /* fall through */
8f5be20b 1301#endif
1da177e4 1302 case CPU_UP_CANCELED:
8bb78442 1303 case CPU_UP_CANCELED_FROZEN:
18004c5d 1304 mutex_lock(&slab_mutex);
fbf1e473 1305 cpuup_canceled(cpu);
18004c5d 1306 mutex_unlock(&slab_mutex);
1da177e4 1307 break;
1da177e4 1308 }
eac40680 1309 return notifier_from_errno(err);
1da177e4
LT
1310}
1311
0db0628d 1312static struct notifier_block cpucache_notifier = {
74b85f37
CS
1313 &cpuup_callback, NULL, 0
1314};
1da177e4 1315
8f9f8d9e
DR
1316#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1317/*
1318 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1319 * Returns -EBUSY if all objects cannot be drained so that the node is not
1320 * removed.
1321 *
18004c5d 1322 * Must hold slab_mutex.
8f9f8d9e 1323 */
6a67368c 1324static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1325{
1326 struct kmem_cache *cachep;
1327 int ret = 0;
1328
18004c5d 1329 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1330 struct kmem_cache_node *n;
8f9f8d9e 1331
ce8eb6c4
CL
1332 n = cachep->node[node];
1333 if (!n)
8f9f8d9e
DR
1334 continue;
1335
0fa8103b 1336 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1337
ce8eb6c4
CL
1338 if (!list_empty(&n->slabs_full) ||
1339 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1340 ret = -EBUSY;
1341 break;
1342 }
1343 }
1344 return ret;
1345}
1346
1347static int __meminit slab_memory_callback(struct notifier_block *self,
1348 unsigned long action, void *arg)
1349{
1350 struct memory_notify *mnb = arg;
1351 int ret = 0;
1352 int nid;
1353
1354 nid = mnb->status_change_nid;
1355 if (nid < 0)
1356 goto out;
1357
1358 switch (action) {
1359 case MEM_GOING_ONLINE:
18004c5d 1360 mutex_lock(&slab_mutex);
6a67368c 1361 ret = init_cache_node_node(nid);
18004c5d 1362 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1363 break;
1364 case MEM_GOING_OFFLINE:
18004c5d 1365 mutex_lock(&slab_mutex);
6a67368c 1366 ret = drain_cache_node_node(nid);
18004c5d 1367 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1368 break;
1369 case MEM_ONLINE:
1370 case MEM_OFFLINE:
1371 case MEM_CANCEL_ONLINE:
1372 case MEM_CANCEL_OFFLINE:
1373 break;
1374 }
1375out:
5fda1bd5 1376 return notifier_from_errno(ret);
8f9f8d9e
DR
1377}
1378#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1379
e498be7d 1380/*
ce8eb6c4 1381 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1382 */
6744f087 1383static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1384 int nodeid)
e498be7d 1385{
6744f087 1386 struct kmem_cache_node *ptr;
e498be7d 1387
6744f087 1388 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1389 BUG_ON(!ptr);
1390
6744f087 1391 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1392 /*
1393 * Do not assume that spinlocks can be initialized via memcpy:
1394 */
1395 spin_lock_init(&ptr->list_lock);
1396
e498be7d 1397 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1398 cachep->node[nodeid] = ptr;
e498be7d
CL
1399}
1400
556a169d 1401/*
ce8eb6c4
CL
1402 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1403 * size of kmem_cache_node.
556a169d 1404 */
ce8eb6c4 1405static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1406{
1407 int node;
1408
1409 for_each_online_node(node) {
ce8eb6c4 1410 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1411 cachep->node[node]->next_reap = jiffies +
556a169d
PE
1412 REAPTIMEOUT_LIST3 +
1413 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1414 }
1415}
1416
3c583465
CL
1417/*
1418 * The memory after the last cpu cache pointer is used for the
6a67368c 1419 * the node pointer.
3c583465 1420 */
6a67368c 1421static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1422{
6a67368c 1423 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1424}
1425
a737b3e2
AM
1426/*
1427 * Initialisation. Called after the page allocator have been initialised and
1428 * before smp_init().
1da177e4
LT
1429 */
1430void __init kmem_cache_init(void)
1431{
e498be7d
CL
1432 int i;
1433
68126702
JK
1434 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1435 sizeof(struct rcu_head));
9b030cb8 1436 kmem_cache = &kmem_cache_boot;
6a67368c 1437 setup_node_pointer(kmem_cache);
9b030cb8 1438
b6e68bc1 1439 if (num_possible_nodes() == 1)
62918a03
SS
1440 use_alien_caches = 0;
1441
3c583465 1442 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1443 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1444
ce8eb6c4 1445 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1446
1447 /*
1448 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1449 * page orders on machines with more than 32MB of memory if
1450 * not overridden on the command line.
1da177e4 1451 */
3df1cccd 1452 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1453 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1454
1da177e4
LT
1455 /* Bootstrap is tricky, because several objects are allocated
1456 * from caches that do not exist yet:
9b030cb8
CL
1457 * 1) initialize the kmem_cache cache: it contains the struct
1458 * kmem_cache structures of all caches, except kmem_cache itself:
1459 * kmem_cache is statically allocated.
e498be7d 1460 * Initially an __init data area is used for the head array and the
ce8eb6c4 1461 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1462 * array at the end of the bootstrap.
1da177e4 1463 * 2) Create the first kmalloc cache.
343e0d7a 1464 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1465 * An __init data area is used for the head array.
1466 * 3) Create the remaining kmalloc caches, with minimally sized
1467 * head arrays.
9b030cb8 1468 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1469 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1470 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1471 * the other cache's with kmalloc allocated memory.
1472 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1473 */
1474
9b030cb8 1475 /* 1) create the kmem_cache */
1da177e4 1476
8da3430d 1477 /*
b56efcf0 1478 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1479 */
2f9baa9f
CL
1480 create_boot_cache(kmem_cache, "kmem_cache",
1481 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1482 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1483 SLAB_HWCACHE_ALIGN);
1484 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1485
1486 /* 2+3) create the kmalloc caches */
1da177e4 1487
a737b3e2
AM
1488 /*
1489 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1490 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1491 * bug.
e498be7d
CL
1492 */
1493
e3366016
CL
1494 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1495 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1496
ce8eb6c4
CL
1497 if (INDEX_AC != INDEX_NODE)
1498 kmalloc_caches[INDEX_NODE] =
1499 create_kmalloc_cache("kmalloc-node",
1500 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1501
e0a42726
IM
1502 slab_early_init = 0;
1503
1da177e4
LT
1504 /* 4) Replace the bootstrap head arrays */
1505 {
2b2d5493 1506 struct array_cache *ptr;
e498be7d 1507
83b519e8 1508 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1509
9b030cb8 1510 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1511 sizeof(struct arraycache_init));
2b2d5493
IM
1512 /*
1513 * Do not assume that spinlocks can be initialized via memcpy:
1514 */
1515 spin_lock_init(&ptr->lock);
1516
9b030cb8 1517 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1518
83b519e8 1519 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1520
e3366016 1521 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1522 != &initarray_generic.cache);
e3366016 1523 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1524 sizeof(struct arraycache_init));
2b2d5493
IM
1525 /*
1526 * Do not assume that spinlocks can be initialized via memcpy:
1527 */
1528 spin_lock_init(&ptr->lock);
1529
e3366016 1530 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1531 }
ce8eb6c4 1532 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1533 {
1ca4cb24
PE
1534 int nid;
1535
9c09a95c 1536 for_each_online_node(nid) {
ce8eb6c4 1537 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1538
e3366016 1539 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1540 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1541
ce8eb6c4
CL
1542 if (INDEX_AC != INDEX_NODE) {
1543 init_list(kmalloc_caches[INDEX_NODE],
1544 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1545 }
1546 }
1547 }
1da177e4 1548
f97d5f63 1549 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1550}
1551
1552void __init kmem_cache_init_late(void)
1553{
1554 struct kmem_cache *cachep;
1555
97d06609 1556 slab_state = UP;
52cef189 1557
8429db5c 1558 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1559 mutex_lock(&slab_mutex);
1560 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1561 if (enable_cpucache(cachep, GFP_NOWAIT))
1562 BUG();
18004c5d 1563 mutex_unlock(&slab_mutex);
056c6241 1564
947ca185
MW
1565 /* Annotate slab for lockdep -- annotate the malloc caches */
1566 init_lock_keys();
1567
97d06609
CL
1568 /* Done! */
1569 slab_state = FULL;
1570
a737b3e2
AM
1571 /*
1572 * Register a cpu startup notifier callback that initializes
1573 * cpu_cache_get for all new cpus
1da177e4
LT
1574 */
1575 register_cpu_notifier(&cpucache_notifier);
1da177e4 1576
8f9f8d9e
DR
1577#ifdef CONFIG_NUMA
1578 /*
1579 * Register a memory hotplug callback that initializes and frees
6a67368c 1580 * node.
8f9f8d9e
DR
1581 */
1582 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1583#endif
1584
a737b3e2
AM
1585 /*
1586 * The reap timers are started later, with a module init call: That part
1587 * of the kernel is not yet operational.
1da177e4
LT
1588 */
1589}
1590
1591static int __init cpucache_init(void)
1592{
1593 int cpu;
1594
a737b3e2
AM
1595 /*
1596 * Register the timers that return unneeded pages to the page allocator
1da177e4 1597 */
e498be7d 1598 for_each_online_cpu(cpu)
a737b3e2 1599 start_cpu_timer(cpu);
a164f896
GC
1600
1601 /* Done! */
97d06609 1602 slab_state = FULL;
1da177e4
LT
1603 return 0;
1604}
1da177e4
LT
1605__initcall(cpucache_init);
1606
8bdec192
RA
1607static noinline void
1608slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1609{
ce8eb6c4 1610 struct kmem_cache_node *n;
8456a648 1611 struct page *page;
8bdec192
RA
1612 unsigned long flags;
1613 int node;
1614
1615 printk(KERN_WARNING
1616 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1617 nodeid, gfpflags);
1618 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1619 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1620
1621 for_each_online_node(node) {
1622 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1623 unsigned long active_slabs = 0, num_slabs = 0;
1624
ce8eb6c4
CL
1625 n = cachep->node[node];
1626 if (!n)
8bdec192
RA
1627 continue;
1628
ce8eb6c4 1629 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1630 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1631 active_objs += cachep->num;
1632 active_slabs++;
1633 }
8456a648
JK
1634 list_for_each_entry(page, &n->slabs_partial, lru) {
1635 active_objs += page->active;
8bdec192
RA
1636 active_slabs++;
1637 }
8456a648 1638 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1639 num_slabs++;
1640
ce8eb6c4
CL
1641 free_objects += n->free_objects;
1642 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1643
1644 num_slabs += active_slabs;
1645 num_objs = num_slabs * cachep->num;
1646 printk(KERN_WARNING
1647 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1648 node, active_slabs, num_slabs, active_objs, num_objs,
1649 free_objects);
1650 }
1651}
1652
1da177e4
LT
1653/*
1654 * Interface to system's page allocator. No need to hold the cache-lock.
1655 *
1656 * If we requested dmaable memory, we will get it. Even if we
1657 * did not request dmaable memory, we might get it, but that
1658 * would be relatively rare and ignorable.
1659 */
0c3aa83e
JK
1660static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1661 int nodeid)
1da177e4
LT
1662{
1663 struct page *page;
e1b6aa6f 1664 int nr_pages;
765c4507 1665
a618e89f 1666 flags |= cachep->allocflags;
e12ba74d
MG
1667 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1668 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1669
517d0869 1670 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1671 if (!page) {
1672 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1673 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1674 return NULL;
8bdec192 1675 }
1da177e4 1676
b37f1dd0 1677 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1678 if (unlikely(page->pfmemalloc))
1679 pfmemalloc_active = true;
1680
e1b6aa6f 1681 nr_pages = (1 << cachep->gfporder);
1da177e4 1682 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1683 add_zone_page_state(page_zone(page),
1684 NR_SLAB_RECLAIMABLE, nr_pages);
1685 else
1686 add_zone_page_state(page_zone(page),
1687 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1688 __SetPageSlab(page);
1689 if (page->pfmemalloc)
1690 SetPageSlabPfmemalloc(page);
1f458cbf 1691 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1692
b1eeab67
VN
1693 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1694 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1695
1696 if (cachep->ctor)
1697 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1698 else
1699 kmemcheck_mark_unallocated_pages(page, nr_pages);
1700 }
c175eea4 1701
0c3aa83e 1702 return page;
1da177e4
LT
1703}
1704
1705/*
1706 * Interface to system's page release.
1707 */
0c3aa83e 1708static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1709{
a57a4988 1710 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1711
b1eeab67 1712 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1713
972d1a7b
CL
1714 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1715 sub_zone_page_state(page_zone(page),
1716 NR_SLAB_RECLAIMABLE, nr_freed);
1717 else
1718 sub_zone_page_state(page_zone(page),
1719 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1720
a57a4988 1721 BUG_ON(!PageSlab(page));
73293c2f 1722 __ClearPageSlabPfmemalloc(page);
a57a4988 1723 __ClearPageSlab(page);
8456a648
JK
1724 page_mapcount_reset(page);
1725 page->mapping = NULL;
1f458cbf
GC
1726
1727 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1728 if (current->reclaim_state)
1729 current->reclaim_state->reclaimed_slab += nr_freed;
0c3aa83e 1730 __free_memcg_kmem_pages(page, cachep->gfporder);
1da177e4
LT
1731}
1732
1733static void kmem_rcu_free(struct rcu_head *head)
1734{
68126702
JK
1735 struct kmem_cache *cachep;
1736 struct page *page;
1da177e4 1737
68126702
JK
1738 page = container_of(head, struct page, rcu_head);
1739 cachep = page->slab_cache;
1740
1741 kmem_freepages(cachep, page);
1da177e4
LT
1742}
1743
1744#if DEBUG
1745
1746#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1747static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1748 unsigned long caller)
1da177e4 1749{
8c138bc0 1750 int size = cachep->object_size;
1da177e4 1751
3dafccf2 1752 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1753
b28a02de 1754 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1755 return;
1756
b28a02de
PE
1757 *addr++ = 0x12345678;
1758 *addr++ = caller;
1759 *addr++ = smp_processor_id();
1760 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1761 {
1762 unsigned long *sptr = &caller;
1763 unsigned long svalue;
1764
1765 while (!kstack_end(sptr)) {
1766 svalue = *sptr++;
1767 if (kernel_text_address(svalue)) {
b28a02de 1768 *addr++ = svalue;
1da177e4
LT
1769 size -= sizeof(unsigned long);
1770 if (size <= sizeof(unsigned long))
1771 break;
1772 }
1773 }
1774
1775 }
b28a02de 1776 *addr++ = 0x87654321;
1da177e4
LT
1777}
1778#endif
1779
343e0d7a 1780static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1781{
8c138bc0 1782 int size = cachep->object_size;
3dafccf2 1783 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1784
1785 memset(addr, val, size);
b28a02de 1786 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1787}
1788
1789static void dump_line(char *data, int offset, int limit)
1790{
1791 int i;
aa83aa40
DJ
1792 unsigned char error = 0;
1793 int bad_count = 0;
1794
fdde6abb 1795 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1796 for (i = 0; i < limit; i++) {
1797 if (data[offset + i] != POISON_FREE) {
1798 error = data[offset + i];
1799 bad_count++;
1800 }
aa83aa40 1801 }
fdde6abb
SAS
1802 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1803 &data[offset], limit, 1);
aa83aa40
DJ
1804
1805 if (bad_count == 1) {
1806 error ^= POISON_FREE;
1807 if (!(error & (error - 1))) {
1808 printk(KERN_ERR "Single bit error detected. Probably "
1809 "bad RAM.\n");
1810#ifdef CONFIG_X86
1811 printk(KERN_ERR "Run memtest86+ or a similar memory "
1812 "test tool.\n");
1813#else
1814 printk(KERN_ERR "Run a memory test tool.\n");
1815#endif
1816 }
1817 }
1da177e4
LT
1818}
1819#endif
1820
1821#if DEBUG
1822
343e0d7a 1823static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1824{
1825 int i, size;
1826 char *realobj;
1827
1828 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1829 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1830 *dbg_redzone1(cachep, objp),
1831 *dbg_redzone2(cachep, objp));
1da177e4
LT
1832 }
1833
1834 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1835 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1836 *dbg_userword(cachep, objp),
1837 *dbg_userword(cachep, objp));
1da177e4 1838 }
3dafccf2 1839 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1840 size = cachep->object_size;
b28a02de 1841 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1842 int limit;
1843 limit = 16;
b28a02de
PE
1844 if (i + limit > size)
1845 limit = size - i;
1da177e4
LT
1846 dump_line(realobj, i, limit);
1847 }
1848}
1849
343e0d7a 1850static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1851{
1852 char *realobj;
1853 int size, i;
1854 int lines = 0;
1855
3dafccf2 1856 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1857 size = cachep->object_size;
1da177e4 1858
b28a02de 1859 for (i = 0; i < size; i++) {
1da177e4 1860 char exp = POISON_FREE;
b28a02de 1861 if (i == size - 1)
1da177e4
LT
1862 exp = POISON_END;
1863 if (realobj[i] != exp) {
1864 int limit;
1865 /* Mismatch ! */
1866 /* Print header */
1867 if (lines == 0) {
b28a02de 1868 printk(KERN_ERR
face37f5
DJ
1869 "Slab corruption (%s): %s start=%p, len=%d\n",
1870 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1871 print_objinfo(cachep, objp, 0);
1872 }
1873 /* Hexdump the affected line */
b28a02de 1874 i = (i / 16) * 16;
1da177e4 1875 limit = 16;
b28a02de
PE
1876 if (i + limit > size)
1877 limit = size - i;
1da177e4
LT
1878 dump_line(realobj, i, limit);
1879 i += 16;
1880 lines++;
1881 /* Limit to 5 lines */
1882 if (lines > 5)
1883 break;
1884 }
1885 }
1886 if (lines != 0) {
1887 /* Print some data about the neighboring objects, if they
1888 * exist:
1889 */
8456a648 1890 struct page *page = virt_to_head_page(objp);
8fea4e96 1891 unsigned int objnr;
1da177e4 1892
8456a648 1893 objnr = obj_to_index(cachep, page, objp);
1da177e4 1894 if (objnr) {
8456a648 1895 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1896 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1897 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1898 realobj, size);
1da177e4
LT
1899 print_objinfo(cachep, objp, 2);
1900 }
b28a02de 1901 if (objnr + 1 < cachep->num) {
8456a648 1902 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1903 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1904 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1905 realobj, size);
1da177e4
LT
1906 print_objinfo(cachep, objp, 2);
1907 }
1908 }
1909}
1910#endif
1911
12dd36fa 1912#if DEBUG
8456a648
JK
1913static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1914 struct page *page)
1da177e4 1915{
1da177e4
LT
1916 int i;
1917 for (i = 0; i < cachep->num; i++) {
8456a648 1918 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1919
1920 if (cachep->flags & SLAB_POISON) {
1921#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1922 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1923 OFF_SLAB(cachep))
b28a02de 1924 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1925 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1926 else
1927 check_poison_obj(cachep, objp);
1928#else
1929 check_poison_obj(cachep, objp);
1930#endif
1931 }
1932 if (cachep->flags & SLAB_RED_ZONE) {
1933 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1934 slab_error(cachep, "start of a freed object "
b28a02de 1935 "was overwritten");
1da177e4
LT
1936 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1937 slab_error(cachep, "end of a freed object "
b28a02de 1938 "was overwritten");
1da177e4 1939 }
1da177e4 1940 }
12dd36fa 1941}
1da177e4 1942#else
8456a648
JK
1943static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1944 struct page *page)
12dd36fa 1945{
12dd36fa 1946}
1da177e4
LT
1947#endif
1948
911851e6
RD
1949/**
1950 * slab_destroy - destroy and release all objects in a slab
1951 * @cachep: cache pointer being destroyed
1952 * @slabp: slab pointer being destroyed
1953 *
12dd36fa 1954 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1955 * Before calling the slab must have been unlinked from the cache. The
1956 * cache-lock is not held/needed.
12dd36fa 1957 */
8456a648 1958static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1959{
8456a648 1960 struct freelist *freelist;
12dd36fa 1961
8456a648
JK
1962 freelist = page->freelist;
1963 slab_destroy_debugcheck(cachep, page);
1da177e4 1964 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1965 struct rcu_head *head;
1966
1967 /*
1968 * RCU free overloads the RCU head over the LRU.
1969 * slab_page has been overloeaded over the LRU,
1970 * however it is not used from now on so that
1971 * we can use it safely.
1972 */
1973 head = (void *)&page->rcu_head;
1974 call_rcu(head, kmem_rcu_free);
1da177e4 1975
1da177e4 1976 } else {
0c3aa83e 1977 kmem_freepages(cachep, page);
1da177e4 1978 }
68126702
JK
1979
1980 /*
8456a648 1981 * From now on, we don't use freelist
68126702
JK
1982 * although actual page can be freed in rcu context
1983 */
1984 if (OFF_SLAB(cachep))
8456a648 1985 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1986}
1987
4d268eba 1988/**
a70773dd
RD
1989 * calculate_slab_order - calculate size (page order) of slabs
1990 * @cachep: pointer to the cache that is being created
1991 * @size: size of objects to be created in this cache.
1992 * @align: required alignment for the objects.
1993 * @flags: slab allocation flags
1994 *
1995 * Also calculates the number of objects per slab.
4d268eba
PE
1996 *
1997 * This could be made much more intelligent. For now, try to avoid using
1998 * high order pages for slabs. When the gfp() functions are more friendly
1999 * towards high-order requests, this should be changed.
2000 */
a737b3e2 2001static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2002 size_t size, size_t align, unsigned long flags)
4d268eba 2003{
b1ab41c4 2004 unsigned long offslab_limit;
4d268eba 2005 size_t left_over = 0;
9888e6fa 2006 int gfporder;
4d268eba 2007
0aa817f0 2008 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2009 unsigned int num;
2010 size_t remainder;
2011
9888e6fa 2012 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2013 if (!num)
2014 continue;
9888e6fa 2015
b1ab41c4
IM
2016 if (flags & CFLGS_OFF_SLAB) {
2017 /*
2018 * Max number of objs-per-slab for caches which
2019 * use off-slab slabs. Needed to avoid a possible
2020 * looping condition in cache_grow().
2021 */
8456a648 2022 offslab_limit = size;
16025177 2023 offslab_limit /= sizeof(unsigned int);
b1ab41c4
IM
2024
2025 if (num > offslab_limit)
2026 break;
2027 }
4d268eba 2028
9888e6fa 2029 /* Found something acceptable - save it away */
4d268eba 2030 cachep->num = num;
9888e6fa 2031 cachep->gfporder = gfporder;
4d268eba
PE
2032 left_over = remainder;
2033
f78bb8ad
LT
2034 /*
2035 * A VFS-reclaimable slab tends to have most allocations
2036 * as GFP_NOFS and we really don't want to have to be allocating
2037 * higher-order pages when we are unable to shrink dcache.
2038 */
2039 if (flags & SLAB_RECLAIM_ACCOUNT)
2040 break;
2041
4d268eba
PE
2042 /*
2043 * Large number of objects is good, but very large slabs are
2044 * currently bad for the gfp()s.
2045 */
543585cc 2046 if (gfporder >= slab_max_order)
4d268eba
PE
2047 break;
2048
9888e6fa
LT
2049 /*
2050 * Acceptable internal fragmentation?
2051 */
a737b3e2 2052 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2053 break;
2054 }
2055 return left_over;
2056}
2057
83b519e8 2058static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2059{
97d06609 2060 if (slab_state >= FULL)
83b519e8 2061 return enable_cpucache(cachep, gfp);
2ed3a4ef 2062
97d06609 2063 if (slab_state == DOWN) {
f30cf7d1 2064 /*
2f9baa9f 2065 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2066 * The setup_node is taken care
2f9baa9f
CL
2067 * of by the caller of __kmem_cache_create
2068 */
2069 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2070 slab_state = PARTIAL;
2071 } else if (slab_state == PARTIAL) {
2072 /*
2073 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2074 * that's used by kmalloc(24), otherwise the creation of
2075 * further caches will BUG().
2076 */
2077 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2078
2079 /*
ce8eb6c4
CL
2080 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2081 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2082 * otherwise the creation of further caches will BUG().
2083 */
ce8eb6c4
CL
2084 set_up_node(cachep, SIZE_AC);
2085 if (INDEX_AC == INDEX_NODE)
2086 slab_state = PARTIAL_NODE;
f30cf7d1 2087 else
97d06609 2088 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2089 } else {
2f9baa9f 2090 /* Remaining boot caches */
f30cf7d1 2091 cachep->array[smp_processor_id()] =
83b519e8 2092 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2093
97d06609 2094 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2095 set_up_node(cachep, SIZE_NODE);
2096 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2097 } else {
2098 int node;
556a169d 2099 for_each_online_node(node) {
6a67368c 2100 cachep->node[node] =
6744f087 2101 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2102 gfp, node);
6a67368c 2103 BUG_ON(!cachep->node[node]);
ce8eb6c4 2104 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2105 }
2106 }
2107 }
6a67368c 2108 cachep->node[numa_mem_id()]->next_reap =
f30cf7d1
PE
2109 jiffies + REAPTIMEOUT_LIST3 +
2110 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2111
2112 cpu_cache_get(cachep)->avail = 0;
2113 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2114 cpu_cache_get(cachep)->batchcount = 1;
2115 cpu_cache_get(cachep)->touched = 0;
2116 cachep->batchcount = 1;
2117 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2118 return 0;
f30cf7d1
PE
2119}
2120
1da177e4 2121/**
039363f3 2122 * __kmem_cache_create - Create a cache.
a755b76a 2123 * @cachep: cache management descriptor
1da177e4 2124 * @flags: SLAB flags
1da177e4
LT
2125 *
2126 * Returns a ptr to the cache on success, NULL on failure.
2127 * Cannot be called within a int, but can be interrupted.
20c2df83 2128 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2129 *
1da177e4
LT
2130 * The flags are
2131 *
2132 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2133 * to catch references to uninitialised memory.
2134 *
2135 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2136 * for buffer overruns.
2137 *
1da177e4
LT
2138 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2139 * cacheline. This can be beneficial if you're counting cycles as closely
2140 * as davem.
2141 */
278b1bb1 2142int
8a13a4cc 2143__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2144{
8456a648 2145 size_t left_over, freelist_size, ralign;
83b519e8 2146 gfp_t gfp;
278b1bb1 2147 int err;
8a13a4cc 2148 size_t size = cachep->size;
1da177e4 2149
1da177e4 2150#if DEBUG
1da177e4
LT
2151#if FORCED_DEBUG
2152 /*
2153 * Enable redzoning and last user accounting, except for caches with
2154 * large objects, if the increased size would increase the object size
2155 * above the next power of two: caches with object sizes just above a
2156 * power of two have a significant amount of internal fragmentation.
2157 */
87a927c7
DW
2158 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2159 2 * sizeof(unsigned long long)))
b28a02de 2160 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2161 if (!(flags & SLAB_DESTROY_BY_RCU))
2162 flags |= SLAB_POISON;
2163#endif
2164 if (flags & SLAB_DESTROY_BY_RCU)
2165 BUG_ON(flags & SLAB_POISON);
2166#endif
1da177e4 2167
a737b3e2
AM
2168 /*
2169 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2170 * unaligned accesses for some archs when redzoning is used, and makes
2171 * sure any on-slab bufctl's are also correctly aligned.
2172 */
b28a02de
PE
2173 if (size & (BYTES_PER_WORD - 1)) {
2174 size += (BYTES_PER_WORD - 1);
2175 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2176 }
2177
ca5f9703 2178 /*
87a927c7
DW
2179 * Redzoning and user store require word alignment or possibly larger.
2180 * Note this will be overridden by architecture or caller mandated
2181 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2182 */
87a927c7
DW
2183 if (flags & SLAB_STORE_USER)
2184 ralign = BYTES_PER_WORD;
2185
2186 if (flags & SLAB_RED_ZONE) {
2187 ralign = REDZONE_ALIGN;
2188 /* If redzoning, ensure that the second redzone is suitably
2189 * aligned, by adjusting the object size accordingly. */
2190 size += REDZONE_ALIGN - 1;
2191 size &= ~(REDZONE_ALIGN - 1);
2192 }
ca5f9703 2193
a44b56d3 2194 /* 3) caller mandated alignment */
8a13a4cc
CL
2195 if (ralign < cachep->align) {
2196 ralign = cachep->align;
1da177e4 2197 }
3ff84a7f
PE
2198 /* disable debug if necessary */
2199 if (ralign > __alignof__(unsigned long long))
a44b56d3 2200 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2201 /*
ca5f9703 2202 * 4) Store it.
1da177e4 2203 */
8a13a4cc 2204 cachep->align = ralign;
1da177e4 2205
83b519e8
PE
2206 if (slab_is_available())
2207 gfp = GFP_KERNEL;
2208 else
2209 gfp = GFP_NOWAIT;
2210
6a67368c 2211 setup_node_pointer(cachep);
1da177e4 2212#if DEBUG
1da177e4 2213
ca5f9703
PE
2214 /*
2215 * Both debugging options require word-alignment which is calculated
2216 * into align above.
2217 */
1da177e4 2218 if (flags & SLAB_RED_ZONE) {
1da177e4 2219 /* add space for red zone words */
3ff84a7f
PE
2220 cachep->obj_offset += sizeof(unsigned long long);
2221 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2222 }
2223 if (flags & SLAB_STORE_USER) {
ca5f9703 2224 /* user store requires one word storage behind the end of
87a927c7
DW
2225 * the real object. But if the second red zone needs to be
2226 * aligned to 64 bits, we must allow that much space.
1da177e4 2227 */
87a927c7
DW
2228 if (flags & SLAB_RED_ZONE)
2229 size += REDZONE_ALIGN;
2230 else
2231 size += BYTES_PER_WORD;
1da177e4
LT
2232 }
2233#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2234 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2235 && cachep->object_size > cache_line_size()
2236 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2237 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2238 size = PAGE_SIZE;
2239 }
2240#endif
2241#endif
2242
e0a42726
IM
2243 /*
2244 * Determine if the slab management is 'on' or 'off' slab.
2245 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2246 * it too early on. Always use on-slab management when
2247 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2248 */
e7cb55b9
CM
2249 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2250 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2251 /*
2252 * Size is large, assume best to place the slab management obj
2253 * off-slab (should allow better packing of objs).
2254 */
2255 flags |= CFLGS_OFF_SLAB;
2256
8a13a4cc 2257 size = ALIGN(size, cachep->align);
1da177e4 2258
8a13a4cc 2259 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2260
8a13a4cc 2261 if (!cachep->num)
278b1bb1 2262 return -E2BIG;
1da177e4 2263
8456a648
JK
2264 freelist_size =
2265 ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
1da177e4
LT
2266
2267 /*
2268 * If the slab has been placed off-slab, and we have enough space then
2269 * move it on-slab. This is at the expense of any extra colouring.
2270 */
8456a648 2271 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2272 flags &= ~CFLGS_OFF_SLAB;
8456a648 2273 left_over -= freelist_size;
1da177e4
LT
2274 }
2275
2276 if (flags & CFLGS_OFF_SLAB) {
2277 /* really off slab. No need for manual alignment */
8456a648 2278 freelist_size = cachep->num * sizeof(unsigned int);
67461365
RL
2279
2280#ifdef CONFIG_PAGE_POISONING
2281 /* If we're going to use the generic kernel_map_pages()
2282 * poisoning, then it's going to smash the contents of
2283 * the redzone and userword anyhow, so switch them off.
2284 */
2285 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2286 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2287#endif
1da177e4
LT
2288 }
2289
2290 cachep->colour_off = cache_line_size();
2291 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2292 if (cachep->colour_off < cachep->align)
2293 cachep->colour_off = cachep->align;
b28a02de 2294 cachep->colour = left_over / cachep->colour_off;
8456a648 2295 cachep->freelist_size = freelist_size;
1da177e4 2296 cachep->flags = flags;
a57a4988 2297 cachep->allocflags = __GFP_COMP;
4b51d669 2298 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2299 cachep->allocflags |= GFP_DMA;
3b0efdfa 2300 cachep->size = size;
6a2d7a95 2301 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2302
e5ac9c5a 2303 if (flags & CFLGS_OFF_SLAB) {
8456a648 2304 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a
RT
2305 /*
2306 * This is a possibility for one of the malloc_sizes caches.
2307 * But since we go off slab only for object size greater than
2308 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2309 * this should not happen at all.
2310 * But leave a BUG_ON for some lucky dude.
2311 */
8456a648 2312 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2313 }
1da177e4 2314
278b1bb1
CL
2315 err = setup_cpu_cache(cachep, gfp);
2316 if (err) {
12c3667f 2317 __kmem_cache_shutdown(cachep);
278b1bb1 2318 return err;
2ed3a4ef 2319 }
1da177e4 2320
83835b3d
PZ
2321 if (flags & SLAB_DEBUG_OBJECTS) {
2322 /*
2323 * Would deadlock through slab_destroy()->call_rcu()->
2324 * debug_object_activate()->kmem_cache_alloc().
2325 */
2326 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2327
2328 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2329 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2330 on_slab_lock_classes(cachep);
83835b3d 2331
278b1bb1 2332 return 0;
1da177e4 2333}
1da177e4
LT
2334
2335#if DEBUG
2336static void check_irq_off(void)
2337{
2338 BUG_ON(!irqs_disabled());
2339}
2340
2341static void check_irq_on(void)
2342{
2343 BUG_ON(irqs_disabled());
2344}
2345
343e0d7a 2346static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2347{
2348#ifdef CONFIG_SMP
2349 check_irq_off();
6a67368c 2350 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2351#endif
2352}
e498be7d 2353
343e0d7a 2354static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2355{
2356#ifdef CONFIG_SMP
2357 check_irq_off();
6a67368c 2358 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2359#endif
2360}
2361
1da177e4
LT
2362#else
2363#define check_irq_off() do { } while(0)
2364#define check_irq_on() do { } while(0)
2365#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2366#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2367#endif
2368
ce8eb6c4 2369static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2370 struct array_cache *ac,
2371 int force, int node);
2372
1da177e4
LT
2373static void do_drain(void *arg)
2374{
a737b3e2 2375 struct kmem_cache *cachep = arg;
1da177e4 2376 struct array_cache *ac;
7d6e6d09 2377 int node = numa_mem_id();
1da177e4
LT
2378
2379 check_irq_off();
9a2dba4b 2380 ac = cpu_cache_get(cachep);
6a67368c 2381 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2382 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2383 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2384 ac->avail = 0;
2385}
2386
343e0d7a 2387static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2388{
ce8eb6c4 2389 struct kmem_cache_node *n;
e498be7d
CL
2390 int node;
2391
15c8b6c1 2392 on_each_cpu(do_drain, cachep, 1);
1da177e4 2393 check_irq_on();
b28a02de 2394 for_each_online_node(node) {
ce8eb6c4
CL
2395 n = cachep->node[node];
2396 if (n && n->alien)
2397 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2398 }
2399
2400 for_each_online_node(node) {
ce8eb6c4
CL
2401 n = cachep->node[node];
2402 if (n)
2403 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2404 }
1da177e4
LT
2405}
2406
ed11d9eb
CL
2407/*
2408 * Remove slabs from the list of free slabs.
2409 * Specify the number of slabs to drain in tofree.
2410 *
2411 * Returns the actual number of slabs released.
2412 */
2413static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2414 struct kmem_cache_node *n, int tofree)
1da177e4 2415{
ed11d9eb
CL
2416 struct list_head *p;
2417 int nr_freed;
8456a648 2418 struct page *page;
1da177e4 2419
ed11d9eb 2420 nr_freed = 0;
ce8eb6c4 2421 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2422
ce8eb6c4
CL
2423 spin_lock_irq(&n->list_lock);
2424 p = n->slabs_free.prev;
2425 if (p == &n->slabs_free) {
2426 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2427 goto out;
2428 }
1da177e4 2429
8456a648 2430 page = list_entry(p, struct page, lru);
1da177e4 2431#if DEBUG
8456a648 2432 BUG_ON(page->active);
1da177e4 2433#endif
8456a648 2434 list_del(&page->lru);
ed11d9eb
CL
2435 /*
2436 * Safe to drop the lock. The slab is no longer linked
2437 * to the cache.
2438 */
ce8eb6c4
CL
2439 n->free_objects -= cache->num;
2440 spin_unlock_irq(&n->list_lock);
8456a648 2441 slab_destroy(cache, page);
ed11d9eb 2442 nr_freed++;
1da177e4 2443 }
ed11d9eb
CL
2444out:
2445 return nr_freed;
1da177e4
LT
2446}
2447
18004c5d 2448/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2449static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2450{
2451 int ret = 0, i = 0;
ce8eb6c4 2452 struct kmem_cache_node *n;
e498be7d
CL
2453
2454 drain_cpu_caches(cachep);
2455
2456 check_irq_on();
2457 for_each_online_node(i) {
ce8eb6c4
CL
2458 n = cachep->node[i];
2459 if (!n)
ed11d9eb
CL
2460 continue;
2461
0fa8103b 2462 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2463
ce8eb6c4
CL
2464 ret += !list_empty(&n->slabs_full) ||
2465 !list_empty(&n->slabs_partial);
e498be7d
CL
2466 }
2467 return (ret ? 1 : 0);
2468}
2469
1da177e4
LT
2470/**
2471 * kmem_cache_shrink - Shrink a cache.
2472 * @cachep: The cache to shrink.
2473 *
2474 * Releases as many slabs as possible for a cache.
2475 * To help debugging, a zero exit status indicates all slabs were released.
2476 */
343e0d7a 2477int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2478{
8f5be20b 2479 int ret;
40094fa6 2480 BUG_ON(!cachep || in_interrupt());
1da177e4 2481
95402b38 2482 get_online_cpus();
18004c5d 2483 mutex_lock(&slab_mutex);
8f5be20b 2484 ret = __cache_shrink(cachep);
18004c5d 2485 mutex_unlock(&slab_mutex);
95402b38 2486 put_online_cpus();
8f5be20b 2487 return ret;
1da177e4
LT
2488}
2489EXPORT_SYMBOL(kmem_cache_shrink);
2490
945cf2b6 2491int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2492{
12c3667f 2493 int i;
ce8eb6c4 2494 struct kmem_cache_node *n;
12c3667f 2495 int rc = __cache_shrink(cachep);
1da177e4 2496
12c3667f
CL
2497 if (rc)
2498 return rc;
1da177e4 2499
12c3667f
CL
2500 for_each_online_cpu(i)
2501 kfree(cachep->array[i]);
1da177e4 2502
ce8eb6c4 2503 /* NUMA: free the node structures */
12c3667f 2504 for_each_online_node(i) {
ce8eb6c4
CL
2505 n = cachep->node[i];
2506 if (n) {
2507 kfree(n->shared);
2508 free_alien_cache(n->alien);
2509 kfree(n);
12c3667f
CL
2510 }
2511 }
2512 return 0;
1da177e4 2513}
1da177e4 2514
e5ac9c5a
RT
2515/*
2516 * Get the memory for a slab management obj.
2517 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2518 * always come from malloc_sizes caches. The slab descriptor cannot
2519 * come from the same cache which is getting created because,
2520 * when we are searching for an appropriate cache for these
2521 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2522 * If we are creating a malloc_sizes cache here it would not be visible to
2523 * kmem_find_general_cachep till the initialization is complete.
8456a648 2524 * Hence we cannot have freelist_cache same as the original cache.
e5ac9c5a 2525 */
8456a648 2526static struct freelist *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2527 struct page *page, int colour_off,
2528 gfp_t local_flags, int nodeid)
1da177e4 2529{
8456a648 2530 struct freelist *freelist;
0c3aa83e 2531 void *addr = page_address(page);
b28a02de 2532
1da177e4
LT
2533 if (OFF_SLAB(cachep)) {
2534 /* Slab management obj is off-slab. */
8456a648 2535 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2536 local_flags, nodeid);
d5cff635
CM
2537 /*
2538 * If the first object in the slab is leaked (it's allocated
2539 * but no one has a reference to it), we want to make sure
2540 * kmemleak does not treat the ->s_mem pointer as a reference
2541 * to the object. Otherwise we will not report the leak.
2542 */
8456a648 2543 kmemleak_scan_area(&page->lru, sizeof(struct list_head),
c017b4be 2544 local_flags);
8456a648 2545 if (!freelist)
1da177e4
LT
2546 return NULL;
2547 } else {
8456a648
JK
2548 freelist = addr + colour_off;
2549 colour_off += cachep->freelist_size;
1da177e4 2550 }
8456a648
JK
2551 page->active = 0;
2552 page->s_mem = addr + colour_off;
2553 return freelist;
1da177e4
LT
2554}
2555
8456a648 2556static inline unsigned int *slab_bufctl(struct page *page)
1da177e4 2557{
8456a648 2558 return (unsigned int *)(page->freelist);
1da177e4
LT
2559}
2560
343e0d7a 2561static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2562 struct page *page)
1da177e4
LT
2563{
2564 int i;
2565
2566 for (i = 0; i < cachep->num; i++) {
8456a648 2567 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2568#if DEBUG
2569 /* need to poison the objs? */
2570 if (cachep->flags & SLAB_POISON)
2571 poison_obj(cachep, objp, POISON_FREE);
2572 if (cachep->flags & SLAB_STORE_USER)
2573 *dbg_userword(cachep, objp) = NULL;
2574
2575 if (cachep->flags & SLAB_RED_ZONE) {
2576 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2577 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2578 }
2579 /*
a737b3e2
AM
2580 * Constructors are not allowed to allocate memory from the same
2581 * cache which they are a constructor for. Otherwise, deadlock.
2582 * They must also be threaded.
1da177e4
LT
2583 */
2584 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2585 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2586
2587 if (cachep->flags & SLAB_RED_ZONE) {
2588 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2589 slab_error(cachep, "constructor overwrote the"
b28a02de 2590 " end of an object");
1da177e4
LT
2591 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2592 slab_error(cachep, "constructor overwrote the"
b28a02de 2593 " start of an object");
1da177e4 2594 }
3b0efdfa 2595 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2596 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2597 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2598 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2599#else
2600 if (cachep->ctor)
51cc5068 2601 cachep->ctor(objp);
1da177e4 2602#endif
8456a648 2603 slab_bufctl(page)[i] = i;
1da177e4 2604 }
1da177e4
LT
2605}
2606
343e0d7a 2607static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2608{
4b51d669
CL
2609 if (CONFIG_ZONE_DMA_FLAG) {
2610 if (flags & GFP_DMA)
a618e89f 2611 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2612 else
a618e89f 2613 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2614 }
1da177e4
LT
2615}
2616
8456a648 2617static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2618 int nodeid)
78d382d7 2619{
b1cb0982 2620 void *objp;
78d382d7 2621
8456a648
JK
2622 objp = index_to_obj(cachep, page, slab_bufctl(page)[page->active]);
2623 page->active++;
78d382d7 2624#if DEBUG
1ea991b0 2625 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2626#endif
78d382d7
MD
2627
2628 return objp;
2629}
2630
8456a648 2631static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2632 void *objp, int nodeid)
78d382d7 2633{
8456a648 2634 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2635#if DEBUG
16025177 2636 unsigned int i;
b1cb0982 2637
78d382d7 2638 /* Verify that the slab belongs to the intended node */
1ea991b0 2639 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2640
b1cb0982 2641 /* Verify double free bug */
8456a648
JK
2642 for (i = page->active; i < cachep->num; i++) {
2643 if (slab_bufctl(page)[i] == objnr) {
b1cb0982
JK
2644 printk(KERN_ERR "slab: double free detected in cache "
2645 "'%s', objp %p\n", cachep->name, objp);
2646 BUG();
2647 }
78d382d7
MD
2648 }
2649#endif
8456a648
JK
2650 page->active--;
2651 slab_bufctl(page)[page->active] = objnr;
78d382d7
MD
2652}
2653
4776874f
PE
2654/*
2655 * Map pages beginning at addr to the given cache and slab. This is required
2656 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2657 * virtual address for kfree, ksize, and slab debugging.
4776874f 2658 */
8456a648
JK
2659static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2660 struct freelist *freelist)
1da177e4 2661{
a57a4988 2662 page->slab_cache = cache;
8456a648 2663 page->freelist = freelist;
1da177e4
LT
2664}
2665
2666/*
2667 * Grow (by 1) the number of slabs within a cache. This is called by
2668 * kmem_cache_alloc() when there are no active objs left in a cache.
2669 */
3c517a61 2670static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2671 gfp_t flags, int nodeid, struct page *page)
1da177e4 2672{
8456a648 2673 struct freelist *freelist;
b28a02de
PE
2674 size_t offset;
2675 gfp_t local_flags;
ce8eb6c4 2676 struct kmem_cache_node *n;
1da177e4 2677
a737b3e2
AM
2678 /*
2679 * Be lazy and only check for valid flags here, keeping it out of the
2680 * critical path in kmem_cache_alloc().
1da177e4 2681 */
6cb06229
CL
2682 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2683 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2684
ce8eb6c4 2685 /* Take the node list lock to change the colour_next on this node */
1da177e4 2686 check_irq_off();
ce8eb6c4
CL
2687 n = cachep->node[nodeid];
2688 spin_lock(&n->list_lock);
1da177e4
LT
2689
2690 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2691 offset = n->colour_next;
2692 n->colour_next++;
2693 if (n->colour_next >= cachep->colour)
2694 n->colour_next = 0;
2695 spin_unlock(&n->list_lock);
1da177e4 2696
2e1217cf 2697 offset *= cachep->colour_off;
1da177e4
LT
2698
2699 if (local_flags & __GFP_WAIT)
2700 local_irq_enable();
2701
2702 /*
2703 * The test for missing atomic flag is performed here, rather than
2704 * the more obvious place, simply to reduce the critical path length
2705 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2706 * will eventually be caught here (where it matters).
2707 */
2708 kmem_flagcheck(cachep, flags);
2709
a737b3e2
AM
2710 /*
2711 * Get mem for the objs. Attempt to allocate a physical page from
2712 * 'nodeid'.
e498be7d 2713 */
0c3aa83e
JK
2714 if (!page)
2715 page = kmem_getpages(cachep, local_flags, nodeid);
2716 if (!page)
1da177e4
LT
2717 goto failed;
2718
2719 /* Get slab management. */
8456a648 2720 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2721 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2722 if (!freelist)
1da177e4
LT
2723 goto opps1;
2724
8456a648 2725 slab_map_pages(cachep, page, freelist);
1da177e4 2726
8456a648 2727 cache_init_objs(cachep, page);
1da177e4
LT
2728
2729 if (local_flags & __GFP_WAIT)
2730 local_irq_disable();
2731 check_irq_off();
ce8eb6c4 2732 spin_lock(&n->list_lock);
1da177e4
LT
2733
2734 /* Make slab active. */
8456a648 2735 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2736 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2737 n->free_objects += cachep->num;
2738 spin_unlock(&n->list_lock);
1da177e4 2739 return 1;
a737b3e2 2740opps1:
0c3aa83e 2741 kmem_freepages(cachep, page);
a737b3e2 2742failed:
1da177e4
LT
2743 if (local_flags & __GFP_WAIT)
2744 local_irq_disable();
2745 return 0;
2746}
2747
2748#if DEBUG
2749
2750/*
2751 * Perform extra freeing checks:
2752 * - detect bad pointers.
2753 * - POISON/RED_ZONE checking
1da177e4
LT
2754 */
2755static void kfree_debugcheck(const void *objp)
2756{
1da177e4
LT
2757 if (!virt_addr_valid(objp)) {
2758 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2759 (unsigned long)objp);
2760 BUG();
1da177e4 2761 }
1da177e4
LT
2762}
2763
58ce1fd5
PE
2764static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2765{
b46b8f19 2766 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2767
2768 redzone1 = *dbg_redzone1(cache, obj);
2769 redzone2 = *dbg_redzone2(cache, obj);
2770
2771 /*
2772 * Redzone is ok.
2773 */
2774 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2775 return;
2776
2777 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2778 slab_error(cache, "double free detected");
2779 else
2780 slab_error(cache, "memory outside object was overwritten");
2781
b46b8f19 2782 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2783 obj, redzone1, redzone2);
2784}
2785
343e0d7a 2786static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2787 unsigned long caller)
1da177e4 2788{
1da177e4 2789 unsigned int objnr;
8456a648 2790 struct page *page;
1da177e4 2791
80cbd911
MW
2792 BUG_ON(virt_to_cache(objp) != cachep);
2793
3dafccf2 2794 objp -= obj_offset(cachep);
1da177e4 2795 kfree_debugcheck(objp);
8456a648 2796 page = virt_to_head_page(objp);
1da177e4
LT
2797
2798 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2799 verify_redzone_free(cachep, objp);
1da177e4
LT
2800 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2801 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2802 }
2803 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2804 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2805
8456a648 2806 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2807
2808 BUG_ON(objnr >= cachep->num);
8456a648 2809 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2810
1da177e4
LT
2811 if (cachep->flags & SLAB_POISON) {
2812#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2813 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2814 store_stackinfo(cachep, objp, caller);
b28a02de 2815 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2816 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2817 } else {
2818 poison_obj(cachep, objp, POISON_FREE);
2819 }
2820#else
2821 poison_obj(cachep, objp, POISON_FREE);
2822#endif
2823 }
2824 return objp;
2825}
2826
1da177e4
LT
2827#else
2828#define kfree_debugcheck(x) do { } while(0)
2829#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2830#endif
2831
072bb0aa
MG
2832static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2833 bool force_refill)
1da177e4
LT
2834{
2835 int batchcount;
ce8eb6c4 2836 struct kmem_cache_node *n;
1da177e4 2837 struct array_cache *ac;
1ca4cb24
PE
2838 int node;
2839
1da177e4 2840 check_irq_off();
7d6e6d09 2841 node = numa_mem_id();
072bb0aa
MG
2842 if (unlikely(force_refill))
2843 goto force_grow;
2844retry:
9a2dba4b 2845 ac = cpu_cache_get(cachep);
1da177e4
LT
2846 batchcount = ac->batchcount;
2847 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2848 /*
2849 * If there was little recent activity on this cache, then
2850 * perform only a partial refill. Otherwise we could generate
2851 * refill bouncing.
1da177e4
LT
2852 */
2853 batchcount = BATCHREFILL_LIMIT;
2854 }
ce8eb6c4 2855 n = cachep->node[node];
e498be7d 2856
ce8eb6c4
CL
2857 BUG_ON(ac->avail > 0 || !n);
2858 spin_lock(&n->list_lock);
1da177e4 2859
3ded175a 2860 /* See if we can refill from the shared array */
ce8eb6c4
CL
2861 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2862 n->shared->touched = 1;
3ded175a 2863 goto alloc_done;
44b57f1c 2864 }
3ded175a 2865
1da177e4
LT
2866 while (batchcount > 0) {
2867 struct list_head *entry;
8456a648 2868 struct page *page;
1da177e4 2869 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2870 entry = n->slabs_partial.next;
2871 if (entry == &n->slabs_partial) {
2872 n->free_touched = 1;
2873 entry = n->slabs_free.next;
2874 if (entry == &n->slabs_free)
1da177e4
LT
2875 goto must_grow;
2876 }
2877
8456a648 2878 page = list_entry(entry, struct page, lru);
1da177e4 2879 check_spinlock_acquired(cachep);
714b8171
PE
2880
2881 /*
2882 * The slab was either on partial or free list so
2883 * there must be at least one object available for
2884 * allocation.
2885 */
8456a648 2886 BUG_ON(page->active >= cachep->num);
714b8171 2887
8456a648 2888 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2889 STATS_INC_ALLOCED(cachep);
2890 STATS_INC_ACTIVE(cachep);
2891 STATS_SET_HIGH(cachep);
2892
8456a648 2893 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2894 node));
1da177e4 2895 }
1da177e4
LT
2896
2897 /* move slabp to correct slabp list: */
8456a648
JK
2898 list_del(&page->lru);
2899 if (page->active == cachep->num)
2900 list_add(&page->list, &n->slabs_full);
1da177e4 2901 else
8456a648 2902 list_add(&page->list, &n->slabs_partial);
1da177e4
LT
2903 }
2904
a737b3e2 2905must_grow:
ce8eb6c4 2906 n->free_objects -= ac->avail;
a737b3e2 2907alloc_done:
ce8eb6c4 2908 spin_unlock(&n->list_lock);
1da177e4
LT
2909
2910 if (unlikely(!ac->avail)) {
2911 int x;
072bb0aa 2912force_grow:
3c517a61 2913 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2914
a737b3e2 2915 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2916 ac = cpu_cache_get(cachep);
51cd8e6f 2917 node = numa_mem_id();
072bb0aa
MG
2918
2919 /* no objects in sight? abort */
2920 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2921 return NULL;
2922
a737b3e2 2923 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2924 goto retry;
2925 }
2926 ac->touched = 1;
072bb0aa
MG
2927
2928 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2929}
2930
a737b3e2
AM
2931static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2932 gfp_t flags)
1da177e4
LT
2933{
2934 might_sleep_if(flags & __GFP_WAIT);
2935#if DEBUG
2936 kmem_flagcheck(cachep, flags);
2937#endif
2938}
2939
2940#if DEBUG
a737b3e2 2941static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2942 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2943{
b28a02de 2944 if (!objp)
1da177e4 2945 return objp;
b28a02de 2946 if (cachep->flags & SLAB_POISON) {
1da177e4 2947#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2948 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2949 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2950 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2951 else
2952 check_poison_obj(cachep, objp);
2953#else
2954 check_poison_obj(cachep, objp);
2955#endif
2956 poison_obj(cachep, objp, POISON_INUSE);
2957 }
2958 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2959 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2960
2961 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2962 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2963 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2964 slab_error(cachep, "double free, or memory outside"
2965 " object was overwritten");
b28a02de 2966 printk(KERN_ERR
b46b8f19 2967 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2968 objp, *dbg_redzone1(cachep, objp),
2969 *dbg_redzone2(cachep, objp));
1da177e4
LT
2970 }
2971 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2972 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2973 }
3dafccf2 2974 objp += obj_offset(cachep);
4f104934 2975 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2976 cachep->ctor(objp);
7ea466f2
TH
2977 if (ARCH_SLAB_MINALIGN &&
2978 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2979 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2980 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2981 }
1da177e4
LT
2982 return objp;
2983}
2984#else
2985#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2986#endif
2987
773ff60e 2988static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 2989{
9b030cb8 2990 if (cachep == kmem_cache)
773ff60e 2991 return false;
8a8b6502 2992
8c138bc0 2993 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
2994}
2995
343e0d7a 2996static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2997{
b28a02de 2998 void *objp;
1da177e4 2999 struct array_cache *ac;
072bb0aa 3000 bool force_refill = false;
1da177e4 3001
5c382300 3002 check_irq_off();
8a8b6502 3003
9a2dba4b 3004 ac = cpu_cache_get(cachep);
1da177e4 3005 if (likely(ac->avail)) {
1da177e4 3006 ac->touched = 1;
072bb0aa
MG
3007 objp = ac_get_obj(cachep, ac, flags, false);
3008
ddbf2e83 3009 /*
072bb0aa
MG
3010 * Allow for the possibility all avail objects are not allowed
3011 * by the current flags
ddbf2e83 3012 */
072bb0aa
MG
3013 if (objp) {
3014 STATS_INC_ALLOCHIT(cachep);
3015 goto out;
3016 }
3017 force_refill = true;
1da177e4 3018 }
072bb0aa
MG
3019
3020 STATS_INC_ALLOCMISS(cachep);
3021 objp = cache_alloc_refill(cachep, flags, force_refill);
3022 /*
3023 * the 'ac' may be updated by cache_alloc_refill(),
3024 * and kmemleak_erase() requires its correct value.
3025 */
3026 ac = cpu_cache_get(cachep);
3027
3028out:
d5cff635
CM
3029 /*
3030 * To avoid a false negative, if an object that is in one of the
3031 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3032 * treat the array pointers as a reference to the object.
3033 */
f3d8b53a
O
3034 if (objp)
3035 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3036 return objp;
3037}
3038
e498be7d 3039#ifdef CONFIG_NUMA
c61afb18 3040/*
b2455396 3041 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3042 *
3043 * If we are in_interrupt, then process context, including cpusets and
3044 * mempolicy, may not apply and should not be used for allocation policy.
3045 */
3046static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3047{
3048 int nid_alloc, nid_here;
3049
765c4507 3050 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3051 return NULL;
7d6e6d09 3052 nid_alloc = nid_here = numa_mem_id();
c61afb18 3053 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3054 nid_alloc = cpuset_slab_spread_node();
c61afb18 3055 else if (current->mempolicy)
e7b691b0 3056 nid_alloc = slab_node();
c61afb18 3057 if (nid_alloc != nid_here)
8b98c169 3058 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3059 return NULL;
3060}
3061
765c4507
CL
3062/*
3063 * Fallback function if there was no memory available and no objects on a
3c517a61 3064 * certain node and fall back is permitted. First we scan all the
6a67368c 3065 * available node for available objects. If that fails then we
3c517a61
CL
3066 * perform an allocation without specifying a node. This allows the page
3067 * allocator to do its reclaim / fallback magic. We then insert the
3068 * slab into the proper nodelist and then allocate from it.
765c4507 3069 */
8c8cc2c1 3070static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3071{
8c8cc2c1
PE
3072 struct zonelist *zonelist;
3073 gfp_t local_flags;
dd1a239f 3074 struct zoneref *z;
54a6eb5c
MG
3075 struct zone *zone;
3076 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3077 void *obj = NULL;
3c517a61 3078 int nid;
cc9a6c87 3079 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3080
3081 if (flags & __GFP_THISNODE)
3082 return NULL;
3083
6cb06229 3084 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3085
cc9a6c87
MG
3086retry_cpuset:
3087 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3088 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3089
3c517a61
CL
3090retry:
3091 /*
3092 * Look through allowed nodes for objects available
3093 * from existing per node queues.
3094 */
54a6eb5c
MG
3095 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3096 nid = zone_to_nid(zone);
aedb0eb1 3097
54a6eb5c 3098 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3099 cache->node[nid] &&
3100 cache->node[nid]->free_objects) {
3c517a61
CL
3101 obj = ____cache_alloc_node(cache,
3102 flags | GFP_THISNODE, nid);
481c5346
CL
3103 if (obj)
3104 break;
3105 }
3c517a61
CL
3106 }
3107
cfce6604 3108 if (!obj) {
3c517a61
CL
3109 /*
3110 * This allocation will be performed within the constraints
3111 * of the current cpuset / memory policy requirements.
3112 * We may trigger various forms of reclaim on the allowed
3113 * set and go into memory reserves if necessary.
3114 */
0c3aa83e
JK
3115 struct page *page;
3116
dd47ea75
CL
3117 if (local_flags & __GFP_WAIT)
3118 local_irq_enable();
3119 kmem_flagcheck(cache, flags);
0c3aa83e 3120 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3121 if (local_flags & __GFP_WAIT)
3122 local_irq_disable();
0c3aa83e 3123 if (page) {
3c517a61
CL
3124 /*
3125 * Insert into the appropriate per node queues
3126 */
0c3aa83e
JK
3127 nid = page_to_nid(page);
3128 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3129 obj = ____cache_alloc_node(cache,
3130 flags | GFP_THISNODE, nid);
3131 if (!obj)
3132 /*
3133 * Another processor may allocate the
3134 * objects in the slab since we are
3135 * not holding any locks.
3136 */
3137 goto retry;
3138 } else {
b6a60451 3139 /* cache_grow already freed obj */
3c517a61
CL
3140 obj = NULL;
3141 }
3142 }
aedb0eb1 3143 }
cc9a6c87
MG
3144
3145 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3146 goto retry_cpuset;
765c4507
CL
3147 return obj;
3148}
3149
e498be7d
CL
3150/*
3151 * A interface to enable slab creation on nodeid
1da177e4 3152 */
8b98c169 3153static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3154 int nodeid)
e498be7d
CL
3155{
3156 struct list_head *entry;
8456a648 3157 struct page *page;
ce8eb6c4 3158 struct kmem_cache_node *n;
b28a02de 3159 void *obj;
b28a02de
PE
3160 int x;
3161
14e50c6a 3162 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3163 n = cachep->node[nodeid];
3164 BUG_ON(!n);
b28a02de 3165
a737b3e2 3166retry:
ca3b9b91 3167 check_irq_off();
ce8eb6c4
CL
3168 spin_lock(&n->list_lock);
3169 entry = n->slabs_partial.next;
3170 if (entry == &n->slabs_partial) {
3171 n->free_touched = 1;
3172 entry = n->slabs_free.next;
3173 if (entry == &n->slabs_free)
b28a02de
PE
3174 goto must_grow;
3175 }
3176
8456a648 3177 page = list_entry(entry, struct page, lru);
b28a02de 3178 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3179
3180 STATS_INC_NODEALLOCS(cachep);
3181 STATS_INC_ACTIVE(cachep);
3182 STATS_SET_HIGH(cachep);
3183
8456a648 3184 BUG_ON(page->active == cachep->num);
b28a02de 3185
8456a648 3186 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3187 n->free_objects--;
b28a02de 3188 /* move slabp to correct slabp list: */
8456a648 3189 list_del(&page->lru);
b28a02de 3190
8456a648
JK
3191 if (page->active == cachep->num)
3192 list_add(&page->lru, &n->slabs_full);
a737b3e2 3193 else
8456a648 3194 list_add(&page->lru, &n->slabs_partial);
e498be7d 3195
ce8eb6c4 3196 spin_unlock(&n->list_lock);
b28a02de 3197 goto done;
e498be7d 3198
a737b3e2 3199must_grow:
ce8eb6c4 3200 spin_unlock(&n->list_lock);
3c517a61 3201 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3202 if (x)
3203 goto retry;
1da177e4 3204
8c8cc2c1 3205 return fallback_alloc(cachep, flags);
e498be7d 3206
a737b3e2 3207done:
b28a02de 3208 return obj;
e498be7d 3209}
8c8cc2c1 3210
8c8cc2c1 3211static __always_inline void *
48356303 3212slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3213 unsigned long caller)
8c8cc2c1
PE
3214{
3215 unsigned long save_flags;
3216 void *ptr;
7d6e6d09 3217 int slab_node = numa_mem_id();
8c8cc2c1 3218
dcce284a 3219 flags &= gfp_allowed_mask;
7e85ee0c 3220
cf40bd16
NP
3221 lockdep_trace_alloc(flags);
3222
773ff60e 3223 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3224 return NULL;
3225
d79923fa
GC
3226 cachep = memcg_kmem_get_cache(cachep, flags);
3227
8c8cc2c1
PE
3228 cache_alloc_debugcheck_before(cachep, flags);
3229 local_irq_save(save_flags);
3230
eacbbae3 3231 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3232 nodeid = slab_node;
8c8cc2c1 3233
6a67368c 3234 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3235 /* Node not bootstrapped yet */
3236 ptr = fallback_alloc(cachep, flags);
3237 goto out;
3238 }
3239
7d6e6d09 3240 if (nodeid == slab_node) {
8c8cc2c1
PE
3241 /*
3242 * Use the locally cached objects if possible.
3243 * However ____cache_alloc does not allow fallback
3244 * to other nodes. It may fail while we still have
3245 * objects on other nodes available.
3246 */
3247 ptr = ____cache_alloc(cachep, flags);
3248 if (ptr)
3249 goto out;
3250 }
3251 /* ___cache_alloc_node can fall back to other nodes */
3252 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3253 out:
3254 local_irq_restore(save_flags);
3255 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3256 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3257 flags);
8c8cc2c1 3258
c175eea4 3259 if (likely(ptr))
8c138bc0 3260 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3261
d07dbea4 3262 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3263 memset(ptr, 0, cachep->object_size);
d07dbea4 3264
8c8cc2c1
PE
3265 return ptr;
3266}
3267
3268static __always_inline void *
3269__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3270{
3271 void *objp;
3272
3273 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3274 objp = alternate_node_alloc(cache, flags);
3275 if (objp)
3276 goto out;
3277 }
3278 objp = ____cache_alloc(cache, flags);
3279
3280 /*
3281 * We may just have run out of memory on the local node.
3282 * ____cache_alloc_node() knows how to locate memory on other nodes
3283 */
7d6e6d09
LS
3284 if (!objp)
3285 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3286
3287 out:
3288 return objp;
3289}
3290#else
3291
3292static __always_inline void *
3293__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3294{
3295 return ____cache_alloc(cachep, flags);
3296}
3297
3298#endif /* CONFIG_NUMA */
3299
3300static __always_inline void *
48356303 3301slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3302{
3303 unsigned long save_flags;
3304 void *objp;
3305
dcce284a 3306 flags &= gfp_allowed_mask;
7e85ee0c 3307
cf40bd16
NP
3308 lockdep_trace_alloc(flags);
3309
773ff60e 3310 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3311 return NULL;
3312
d79923fa
GC
3313 cachep = memcg_kmem_get_cache(cachep, flags);
3314
8c8cc2c1
PE
3315 cache_alloc_debugcheck_before(cachep, flags);
3316 local_irq_save(save_flags);
3317 objp = __do_cache_alloc(cachep, flags);
3318 local_irq_restore(save_flags);
3319 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3320 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3321 flags);
8c8cc2c1
PE
3322 prefetchw(objp);
3323
c175eea4 3324 if (likely(objp))
8c138bc0 3325 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3326
d07dbea4 3327 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3328 memset(objp, 0, cachep->object_size);
d07dbea4 3329
8c8cc2c1
PE
3330 return objp;
3331}
e498be7d
CL
3332
3333/*
3334 * Caller needs to acquire correct kmem_list's list_lock
3335 */
343e0d7a 3336static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3337 int node)
1da177e4
LT
3338{
3339 int i;
ce8eb6c4 3340 struct kmem_cache_node *n;
1da177e4
LT
3341
3342 for (i = 0; i < nr_objects; i++) {
072bb0aa 3343 void *objp;
8456a648 3344 struct page *page;
1da177e4 3345
072bb0aa
MG
3346 clear_obj_pfmemalloc(&objpp[i]);
3347 objp = objpp[i];
3348
8456a648 3349 page = virt_to_head_page(objp);
ce8eb6c4 3350 n = cachep->node[node];
8456a648 3351 list_del(&page->lru);
ff69416e 3352 check_spinlock_acquired_node(cachep, node);
8456a648 3353 slab_put_obj(cachep, page, objp, node);
1da177e4 3354 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3355 n->free_objects++;
1da177e4
LT
3356
3357 /* fixup slab chains */
8456a648 3358 if (page->active == 0) {
ce8eb6c4
CL
3359 if (n->free_objects > n->free_limit) {
3360 n->free_objects -= cachep->num;
e5ac9c5a
RT
3361 /* No need to drop any previously held
3362 * lock here, even if we have a off-slab slab
3363 * descriptor it is guaranteed to come from
3364 * a different cache, refer to comments before
3365 * alloc_slabmgmt.
3366 */
8456a648 3367 slab_destroy(cachep, page);
1da177e4 3368 } else {
8456a648 3369 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3370 }
3371 } else {
3372 /* Unconditionally move a slab to the end of the
3373 * partial list on free - maximum time for the
3374 * other objects to be freed, too.
3375 */
8456a648 3376 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3377 }
3378 }
3379}
3380
343e0d7a 3381static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3382{
3383 int batchcount;
ce8eb6c4 3384 struct kmem_cache_node *n;
7d6e6d09 3385 int node = numa_mem_id();
1da177e4
LT
3386
3387 batchcount = ac->batchcount;
3388#if DEBUG
3389 BUG_ON(!batchcount || batchcount > ac->avail);
3390#endif
3391 check_irq_off();
ce8eb6c4
CL
3392 n = cachep->node[node];
3393 spin_lock(&n->list_lock);
3394 if (n->shared) {
3395 struct array_cache *shared_array = n->shared;
b28a02de 3396 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3397 if (max) {
3398 if (batchcount > max)
3399 batchcount = max;
e498be7d 3400 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3401 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3402 shared_array->avail += batchcount;
3403 goto free_done;
3404 }
3405 }
3406
ff69416e 3407 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3408free_done:
1da177e4
LT
3409#if STATS
3410 {
3411 int i = 0;
3412 struct list_head *p;
3413
ce8eb6c4
CL
3414 p = n->slabs_free.next;
3415 while (p != &(n->slabs_free)) {
8456a648 3416 struct page *page;
1da177e4 3417
8456a648
JK
3418 page = list_entry(p, struct page, lru);
3419 BUG_ON(page->active);
1da177e4
LT
3420
3421 i++;
3422 p = p->next;
3423 }
3424 STATS_SET_FREEABLE(cachep, i);
3425 }
3426#endif
ce8eb6c4 3427 spin_unlock(&n->list_lock);
1da177e4 3428 ac->avail -= batchcount;
a737b3e2 3429 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3430}
3431
3432/*
a737b3e2
AM
3433 * Release an obj back to its cache. If the obj has a constructed state, it must
3434 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3435 */
a947eb95 3436static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3437 unsigned long caller)
1da177e4 3438{
9a2dba4b 3439 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3440
3441 check_irq_off();
d5cff635 3442 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3443 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3444
8c138bc0 3445 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3446
1807a1aa
SS
3447 /*
3448 * Skip calling cache_free_alien() when the platform is not numa.
3449 * This will avoid cache misses that happen while accessing slabp (which
3450 * is per page memory reference) to get nodeid. Instead use a global
3451 * variable to skip the call, which is mostly likely to be present in
3452 * the cache.
3453 */
b6e68bc1 3454 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3455 return;
3456
1da177e4
LT
3457 if (likely(ac->avail < ac->limit)) {
3458 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3459 } else {
3460 STATS_INC_FREEMISS(cachep);
3461 cache_flusharray(cachep, ac);
1da177e4 3462 }
42c8c99c 3463
072bb0aa 3464 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3465}
3466
3467/**
3468 * kmem_cache_alloc - Allocate an object
3469 * @cachep: The cache to allocate from.
3470 * @flags: See kmalloc().
3471 *
3472 * Allocate an object from this cache. The flags are only relevant
3473 * if the cache has no available objects.
3474 */
343e0d7a 3475void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3476{
48356303 3477 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3478
ca2b84cb 3479 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3480 cachep->object_size, cachep->size, flags);
36555751
EGM
3481
3482 return ret;
1da177e4
LT
3483}
3484EXPORT_SYMBOL(kmem_cache_alloc);
3485
0f24f128 3486#ifdef CONFIG_TRACING
85beb586 3487void *
4052147c 3488kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3489{
85beb586
SR
3490 void *ret;
3491
48356303 3492 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3493
3494 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3495 size, cachep->size, flags);
85beb586 3496 return ret;
36555751 3497}
85beb586 3498EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3499#endif
3500
1da177e4 3501#ifdef CONFIG_NUMA
d0d04b78
ZL
3502/**
3503 * kmem_cache_alloc_node - Allocate an object on the specified node
3504 * @cachep: The cache to allocate from.
3505 * @flags: See kmalloc().
3506 * @nodeid: node number of the target node.
3507 *
3508 * Identical to kmem_cache_alloc but it will allocate memory on the given
3509 * node, which can improve the performance for cpu bound structures.
3510 *
3511 * Fallback to other node is possible if __GFP_THISNODE is not set.
3512 */
8b98c169
CH
3513void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3514{
48356303 3515 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3516
ca2b84cb 3517 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3518 cachep->object_size, cachep->size,
ca2b84cb 3519 flags, nodeid);
36555751
EGM
3520
3521 return ret;
8b98c169 3522}
1da177e4
LT
3523EXPORT_SYMBOL(kmem_cache_alloc_node);
3524
0f24f128 3525#ifdef CONFIG_TRACING
4052147c 3526void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3527 gfp_t flags,
4052147c
EG
3528 int nodeid,
3529 size_t size)
36555751 3530{
85beb586
SR
3531 void *ret;
3532
592f4145 3533 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3534
85beb586 3535 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3536 size, cachep->size,
85beb586
SR
3537 flags, nodeid);
3538 return ret;
36555751 3539}
85beb586 3540EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3541#endif
3542
8b98c169 3543static __always_inline void *
7c0cb9c6 3544__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3545{
343e0d7a 3546 struct kmem_cache *cachep;
97e2bde4 3547
2c59dd65 3548 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3549 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3550 return cachep;
4052147c 3551 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3552}
8b98c169 3553
0bb38a5c 3554#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3555void *__kmalloc_node(size_t size, gfp_t flags, int node)
3556{
7c0cb9c6 3557 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3558}
dbe5e69d 3559EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3560
3561void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3562 int node, unsigned long caller)
8b98c169 3563{
7c0cb9c6 3564 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3565}
3566EXPORT_SYMBOL(__kmalloc_node_track_caller);
3567#else
3568void *__kmalloc_node(size_t size, gfp_t flags, int node)
3569{
7c0cb9c6 3570 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3571}
3572EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3573#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3574#endif /* CONFIG_NUMA */
1da177e4
LT
3575
3576/**
800590f5 3577 * __do_kmalloc - allocate memory
1da177e4 3578 * @size: how many bytes of memory are required.
800590f5 3579 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3580 * @caller: function caller for debug tracking of the caller
1da177e4 3581 */
7fd6b141 3582static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3583 unsigned long caller)
1da177e4 3584{
343e0d7a 3585 struct kmem_cache *cachep;
36555751 3586 void *ret;
1da177e4 3587
97e2bde4
MS
3588 /* If you want to save a few bytes .text space: replace
3589 * __ with kmem_.
3590 * Then kmalloc uses the uninlined functions instead of the inline
3591 * functions.
3592 */
2c59dd65 3593 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3594 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3595 return cachep;
48356303 3596 ret = slab_alloc(cachep, flags, caller);
36555751 3597
7c0cb9c6 3598 trace_kmalloc(caller, ret,
3b0efdfa 3599 size, cachep->size, flags);
36555751
EGM
3600
3601 return ret;
7fd6b141
PE
3602}
3603
7fd6b141 3604
0bb38a5c 3605#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3606void *__kmalloc(size_t size, gfp_t flags)
3607{
7c0cb9c6 3608 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3609}
3610EXPORT_SYMBOL(__kmalloc);
3611
ce71e27c 3612void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3613{
7c0cb9c6 3614 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3615}
3616EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3617
3618#else
3619void *__kmalloc(size_t size, gfp_t flags)
3620{
7c0cb9c6 3621 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3622}
3623EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3624#endif
3625
1da177e4
LT
3626/**
3627 * kmem_cache_free - Deallocate an object
3628 * @cachep: The cache the allocation was from.
3629 * @objp: The previously allocated object.
3630 *
3631 * Free an object which was previously allocated from this
3632 * cache.
3633 */
343e0d7a 3634void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3635{
3636 unsigned long flags;
b9ce5ef4
GC
3637 cachep = cache_from_obj(cachep, objp);
3638 if (!cachep)
3639 return;
1da177e4
LT
3640
3641 local_irq_save(flags);
d97d476b 3642 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3643 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3644 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3645 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3646 local_irq_restore(flags);
36555751 3647
ca2b84cb 3648 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3649}
3650EXPORT_SYMBOL(kmem_cache_free);
3651
1da177e4
LT
3652/**
3653 * kfree - free previously allocated memory
3654 * @objp: pointer returned by kmalloc.
3655 *
80e93eff
PE
3656 * If @objp is NULL, no operation is performed.
3657 *
1da177e4
LT
3658 * Don't free memory not originally allocated by kmalloc()
3659 * or you will run into trouble.
3660 */
3661void kfree(const void *objp)
3662{
343e0d7a 3663 struct kmem_cache *c;
1da177e4
LT
3664 unsigned long flags;
3665
2121db74
PE
3666 trace_kfree(_RET_IP_, objp);
3667
6cb8f913 3668 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3669 return;
3670 local_irq_save(flags);
3671 kfree_debugcheck(objp);
6ed5eb22 3672 c = virt_to_cache(objp);
8c138bc0
CL
3673 debug_check_no_locks_freed(objp, c->object_size);
3674
3675 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3676 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3677 local_irq_restore(flags);
3678}
3679EXPORT_SYMBOL(kfree);
3680
e498be7d 3681/*
ce8eb6c4 3682 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3683 */
83b519e8 3684static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3685{
3686 int node;
ce8eb6c4 3687 struct kmem_cache_node *n;
cafeb02e 3688 struct array_cache *new_shared;
3395ee05 3689 struct array_cache **new_alien = NULL;
e498be7d 3690
9c09a95c 3691 for_each_online_node(node) {
cafeb02e 3692
3395ee05 3693 if (use_alien_caches) {
83b519e8 3694 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3695 if (!new_alien)
3696 goto fail;
3697 }
cafeb02e 3698
63109846
ED
3699 new_shared = NULL;
3700 if (cachep->shared) {
3701 new_shared = alloc_arraycache(node,
0718dc2a 3702 cachep->shared*cachep->batchcount,
83b519e8 3703 0xbaadf00d, gfp);
63109846
ED
3704 if (!new_shared) {
3705 free_alien_cache(new_alien);
3706 goto fail;
3707 }
0718dc2a 3708 }
cafeb02e 3709
ce8eb6c4
CL
3710 n = cachep->node[node];
3711 if (n) {
3712 struct array_cache *shared = n->shared;
cafeb02e 3713
ce8eb6c4 3714 spin_lock_irq(&n->list_lock);
e498be7d 3715
cafeb02e 3716 if (shared)
0718dc2a
CL
3717 free_block(cachep, shared->entry,
3718 shared->avail, node);
e498be7d 3719
ce8eb6c4
CL
3720 n->shared = new_shared;
3721 if (!n->alien) {
3722 n->alien = new_alien;
e498be7d
CL
3723 new_alien = NULL;
3724 }
ce8eb6c4 3725 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3726 cachep->batchcount + cachep->num;
ce8eb6c4 3727 spin_unlock_irq(&n->list_lock);
cafeb02e 3728 kfree(shared);
e498be7d
CL
3729 free_alien_cache(new_alien);
3730 continue;
3731 }
ce8eb6c4
CL
3732 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3733 if (!n) {
0718dc2a
CL
3734 free_alien_cache(new_alien);
3735 kfree(new_shared);
e498be7d 3736 goto fail;
0718dc2a 3737 }
e498be7d 3738
ce8eb6c4
CL
3739 kmem_cache_node_init(n);
3740 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3741 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
ce8eb6c4
CL
3742 n->shared = new_shared;
3743 n->alien = new_alien;
3744 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3745 cachep->batchcount + cachep->num;
ce8eb6c4 3746 cachep->node[node] = n;
e498be7d 3747 }
cafeb02e 3748 return 0;
0718dc2a 3749
a737b3e2 3750fail:
3b0efdfa 3751 if (!cachep->list.next) {
0718dc2a
CL
3752 /* Cache is not active yet. Roll back what we did */
3753 node--;
3754 while (node >= 0) {
6a67368c 3755 if (cachep->node[node]) {
ce8eb6c4 3756 n = cachep->node[node];
0718dc2a 3757
ce8eb6c4
CL
3758 kfree(n->shared);
3759 free_alien_cache(n->alien);
3760 kfree(n);
6a67368c 3761 cachep->node[node] = NULL;
0718dc2a
CL
3762 }
3763 node--;
3764 }
3765 }
cafeb02e 3766 return -ENOMEM;
e498be7d
CL
3767}
3768
1da177e4 3769struct ccupdate_struct {
343e0d7a 3770 struct kmem_cache *cachep;
acfe7d74 3771 struct array_cache *new[0];
1da177e4
LT
3772};
3773
3774static void do_ccupdate_local(void *info)
3775{
a737b3e2 3776 struct ccupdate_struct *new = info;
1da177e4
LT
3777 struct array_cache *old;
3778
3779 check_irq_off();
9a2dba4b 3780 old = cpu_cache_get(new->cachep);
e498be7d 3781
1da177e4
LT
3782 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3783 new->new[smp_processor_id()] = old;
3784}
3785
18004c5d 3786/* Always called with the slab_mutex held */
943a451a 3787static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3788 int batchcount, int shared, gfp_t gfp)
1da177e4 3789{
d2e7b7d0 3790 struct ccupdate_struct *new;
2ed3a4ef 3791 int i;
1da177e4 3792
acfe7d74
ED
3793 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3794 gfp);
d2e7b7d0
SS
3795 if (!new)
3796 return -ENOMEM;
3797
e498be7d 3798 for_each_online_cpu(i) {
7d6e6d09 3799 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3800 batchcount, gfp);
d2e7b7d0 3801 if (!new->new[i]) {
b28a02de 3802 for (i--; i >= 0; i--)
d2e7b7d0
SS
3803 kfree(new->new[i]);
3804 kfree(new);
e498be7d 3805 return -ENOMEM;
1da177e4
LT
3806 }
3807 }
d2e7b7d0 3808 new->cachep = cachep;
1da177e4 3809
15c8b6c1 3810 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3811
1da177e4 3812 check_irq_on();
1da177e4
LT
3813 cachep->batchcount = batchcount;
3814 cachep->limit = limit;
e498be7d 3815 cachep->shared = shared;
1da177e4 3816
e498be7d 3817 for_each_online_cpu(i) {
d2e7b7d0 3818 struct array_cache *ccold = new->new[i];
1da177e4
LT
3819 if (!ccold)
3820 continue;
6a67368c 3821 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3822 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3823 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3824 kfree(ccold);
3825 }
d2e7b7d0 3826 kfree(new);
83b519e8 3827 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3828}
3829
943a451a
GC
3830static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3831 int batchcount, int shared, gfp_t gfp)
3832{
3833 int ret;
3834 struct kmem_cache *c = NULL;
3835 int i = 0;
3836
3837 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3838
3839 if (slab_state < FULL)
3840 return ret;
3841
3842 if ((ret < 0) || !is_root_cache(cachep))
3843 return ret;
3844
ebe945c2 3845 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
3846 for_each_memcg_cache_index(i) {
3847 c = cache_from_memcg(cachep, i);
3848 if (c)
3849 /* return value determined by the parent cache only */
3850 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3851 }
3852
3853 return ret;
3854}
3855
18004c5d 3856/* Called with slab_mutex held always */
83b519e8 3857static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3858{
3859 int err;
943a451a
GC
3860 int limit = 0;
3861 int shared = 0;
3862 int batchcount = 0;
3863
3864 if (!is_root_cache(cachep)) {
3865 struct kmem_cache *root = memcg_root_cache(cachep);
3866 limit = root->limit;
3867 shared = root->shared;
3868 batchcount = root->batchcount;
3869 }
1da177e4 3870
943a451a
GC
3871 if (limit && shared && batchcount)
3872 goto skip_setup;
a737b3e2
AM
3873 /*
3874 * The head array serves three purposes:
1da177e4
LT
3875 * - create a LIFO ordering, i.e. return objects that are cache-warm
3876 * - reduce the number of spinlock operations.
a737b3e2 3877 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3878 * bufctl chains: array operations are cheaper.
3879 * The numbers are guessed, we should auto-tune as described by
3880 * Bonwick.
3881 */
3b0efdfa 3882 if (cachep->size > 131072)
1da177e4 3883 limit = 1;
3b0efdfa 3884 else if (cachep->size > PAGE_SIZE)
1da177e4 3885 limit = 8;
3b0efdfa 3886 else if (cachep->size > 1024)
1da177e4 3887 limit = 24;
3b0efdfa 3888 else if (cachep->size > 256)
1da177e4
LT
3889 limit = 54;
3890 else
3891 limit = 120;
3892
a737b3e2
AM
3893 /*
3894 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3895 * allocation behaviour: Most allocs on one cpu, most free operations
3896 * on another cpu. For these cases, an efficient object passing between
3897 * cpus is necessary. This is provided by a shared array. The array
3898 * replaces Bonwick's magazine layer.
3899 * On uniprocessor, it's functionally equivalent (but less efficient)
3900 * to a larger limit. Thus disabled by default.
3901 */
3902 shared = 0;
3b0efdfa 3903 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3904 shared = 8;
1da177e4
LT
3905
3906#if DEBUG
a737b3e2
AM
3907 /*
3908 * With debugging enabled, large batchcount lead to excessively long
3909 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3910 */
3911 if (limit > 32)
3912 limit = 32;
3913#endif
943a451a
GC
3914 batchcount = (limit + 1) / 2;
3915skip_setup:
3916 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3917 if (err)
3918 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3919 cachep->name, -err);
2ed3a4ef 3920 return err;
1da177e4
LT
3921}
3922
1b55253a 3923/*
ce8eb6c4
CL
3924 * Drain an array if it contains any elements taking the node lock only if
3925 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3926 * if drain_array() is used on the shared array.
1b55253a 3927 */
ce8eb6c4 3928static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3929 struct array_cache *ac, int force, int node)
1da177e4
LT
3930{
3931 int tofree;
3932
1b55253a
CL
3933 if (!ac || !ac->avail)
3934 return;
1da177e4
LT
3935 if (ac->touched && !force) {
3936 ac->touched = 0;
b18e7e65 3937 } else {
ce8eb6c4 3938 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3939 if (ac->avail) {
3940 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3941 if (tofree > ac->avail)
3942 tofree = (ac->avail + 1) / 2;
3943 free_block(cachep, ac->entry, tofree, node);
3944 ac->avail -= tofree;
3945 memmove(ac->entry, &(ac->entry[tofree]),
3946 sizeof(void *) * ac->avail);
3947 }
ce8eb6c4 3948 spin_unlock_irq(&n->list_lock);
1da177e4
LT
3949 }
3950}
3951
3952/**
3953 * cache_reap - Reclaim memory from caches.
05fb6bf0 3954 * @w: work descriptor
1da177e4
LT
3955 *
3956 * Called from workqueue/eventd every few seconds.
3957 * Purpose:
3958 * - clear the per-cpu caches for this CPU.
3959 * - return freeable pages to the main free memory pool.
3960 *
a737b3e2
AM
3961 * If we cannot acquire the cache chain mutex then just give up - we'll try
3962 * again on the next iteration.
1da177e4 3963 */
7c5cae36 3964static void cache_reap(struct work_struct *w)
1da177e4 3965{
7a7c381d 3966 struct kmem_cache *searchp;
ce8eb6c4 3967 struct kmem_cache_node *n;
7d6e6d09 3968 int node = numa_mem_id();
bf6aede7 3969 struct delayed_work *work = to_delayed_work(w);
1da177e4 3970
18004c5d 3971 if (!mutex_trylock(&slab_mutex))
1da177e4 3972 /* Give up. Setup the next iteration. */
7c5cae36 3973 goto out;
1da177e4 3974
18004c5d 3975 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3976 check_irq_on();
3977
35386e3b 3978 /*
ce8eb6c4 3979 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3980 * have established with reasonable certainty that
3981 * we can do some work if the lock was obtained.
3982 */
ce8eb6c4 3983 n = searchp->node[node];
35386e3b 3984
ce8eb6c4 3985 reap_alien(searchp, n);
1da177e4 3986
ce8eb6c4 3987 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3988
35386e3b
CL
3989 /*
3990 * These are racy checks but it does not matter
3991 * if we skip one check or scan twice.
3992 */
ce8eb6c4 3993 if (time_after(n->next_reap, jiffies))
35386e3b 3994 goto next;
1da177e4 3995
ce8eb6c4 3996 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3997
ce8eb6c4 3998 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3999
ce8eb6c4
CL
4000 if (n->free_touched)
4001 n->free_touched = 0;
ed11d9eb
CL
4002 else {
4003 int freed;
1da177e4 4004
ce8eb6c4 4005 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4006 5 * searchp->num - 1) / (5 * searchp->num));
4007 STATS_ADD_REAPED(searchp, freed);
4008 }
35386e3b 4009next:
1da177e4
LT
4010 cond_resched();
4011 }
4012 check_irq_on();
18004c5d 4013 mutex_unlock(&slab_mutex);
8fce4d8e 4014 next_reap_node();
7c5cae36 4015out:
a737b3e2 4016 /* Set up the next iteration */
7c5cae36 4017 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4018}
4019
158a9624 4020#ifdef CONFIG_SLABINFO
0d7561c6 4021void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4022{
8456a648 4023 struct page *page;
b28a02de
PE
4024 unsigned long active_objs;
4025 unsigned long num_objs;
4026 unsigned long active_slabs = 0;
4027 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4028 const char *name;
1da177e4 4029 char *error = NULL;
e498be7d 4030 int node;
ce8eb6c4 4031 struct kmem_cache_node *n;
1da177e4 4032
1da177e4
LT
4033 active_objs = 0;
4034 num_slabs = 0;
e498be7d 4035 for_each_online_node(node) {
ce8eb6c4
CL
4036 n = cachep->node[node];
4037 if (!n)
e498be7d
CL
4038 continue;
4039
ca3b9b91 4040 check_irq_on();
ce8eb6c4 4041 spin_lock_irq(&n->list_lock);
e498be7d 4042
8456a648
JK
4043 list_for_each_entry(page, &n->slabs_full, lru) {
4044 if (page->active != cachep->num && !error)
e498be7d
CL
4045 error = "slabs_full accounting error";
4046 active_objs += cachep->num;
4047 active_slabs++;
4048 }
8456a648
JK
4049 list_for_each_entry(page, &n->slabs_partial, lru) {
4050 if (page->active == cachep->num && !error)
106a74e1 4051 error = "slabs_partial accounting error";
8456a648 4052 if (!page->active && !error)
106a74e1 4053 error = "slabs_partial accounting error";
8456a648 4054 active_objs += page->active;
e498be7d
CL
4055 active_slabs++;
4056 }
8456a648
JK
4057 list_for_each_entry(page, &n->slabs_free, lru) {
4058 if (page->active && !error)
106a74e1 4059 error = "slabs_free accounting error";
e498be7d
CL
4060 num_slabs++;
4061 }
ce8eb6c4
CL
4062 free_objects += n->free_objects;
4063 if (n->shared)
4064 shared_avail += n->shared->avail;
e498be7d 4065
ce8eb6c4 4066 spin_unlock_irq(&n->list_lock);
1da177e4 4067 }
b28a02de
PE
4068 num_slabs += active_slabs;
4069 num_objs = num_slabs * cachep->num;
e498be7d 4070 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4071 error = "free_objects accounting error";
4072
b28a02de 4073 name = cachep->name;
1da177e4
LT
4074 if (error)
4075 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4076
0d7561c6
GC
4077 sinfo->active_objs = active_objs;
4078 sinfo->num_objs = num_objs;
4079 sinfo->active_slabs = active_slabs;
4080 sinfo->num_slabs = num_slabs;
4081 sinfo->shared_avail = shared_avail;
4082 sinfo->limit = cachep->limit;
4083 sinfo->batchcount = cachep->batchcount;
4084 sinfo->shared = cachep->shared;
4085 sinfo->objects_per_slab = cachep->num;
4086 sinfo->cache_order = cachep->gfporder;
4087}
4088
4089void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4090{
1da177e4 4091#if STATS
ce8eb6c4 4092 { /* node stats */
1da177e4
LT
4093 unsigned long high = cachep->high_mark;
4094 unsigned long allocs = cachep->num_allocations;
4095 unsigned long grown = cachep->grown;
4096 unsigned long reaped = cachep->reaped;
4097 unsigned long errors = cachep->errors;
4098 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4099 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4100 unsigned long node_frees = cachep->node_frees;
fb7faf33 4101 unsigned long overflows = cachep->node_overflow;
1da177e4 4102
e92dd4fd
JP
4103 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4104 "%4lu %4lu %4lu %4lu %4lu",
4105 allocs, high, grown,
4106 reaped, errors, max_freeable, node_allocs,
4107 node_frees, overflows);
1da177e4
LT
4108 }
4109 /* cpu stats */
4110 {
4111 unsigned long allochit = atomic_read(&cachep->allochit);
4112 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4113 unsigned long freehit = atomic_read(&cachep->freehit);
4114 unsigned long freemiss = atomic_read(&cachep->freemiss);
4115
4116 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4117 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4118 }
4119#endif
1da177e4
LT
4120}
4121
1da177e4
LT
4122#define MAX_SLABINFO_WRITE 128
4123/**
4124 * slabinfo_write - Tuning for the slab allocator
4125 * @file: unused
4126 * @buffer: user buffer
4127 * @count: data length
4128 * @ppos: unused
4129 */
b7454ad3 4130ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4131 size_t count, loff_t *ppos)
1da177e4 4132{
b28a02de 4133 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4134 int limit, batchcount, shared, res;
7a7c381d 4135 struct kmem_cache *cachep;
b28a02de 4136
1da177e4
LT
4137 if (count > MAX_SLABINFO_WRITE)
4138 return -EINVAL;
4139 if (copy_from_user(&kbuf, buffer, count))
4140 return -EFAULT;
b28a02de 4141 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4142
4143 tmp = strchr(kbuf, ' ');
4144 if (!tmp)
4145 return -EINVAL;
4146 *tmp = '\0';
4147 tmp++;
4148 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4149 return -EINVAL;
4150
4151 /* Find the cache in the chain of caches. */
18004c5d 4152 mutex_lock(&slab_mutex);
1da177e4 4153 res = -EINVAL;
18004c5d 4154 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4155 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4156 if (limit < 1 || batchcount < 1 ||
4157 batchcount > limit || shared < 0) {
e498be7d 4158 res = 0;
1da177e4 4159 } else {
e498be7d 4160 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4161 batchcount, shared,
4162 GFP_KERNEL);
1da177e4
LT
4163 }
4164 break;
4165 }
4166 }
18004c5d 4167 mutex_unlock(&slab_mutex);
1da177e4
LT
4168 if (res >= 0)
4169 res = count;
4170 return res;
4171}
871751e2
AV
4172
4173#ifdef CONFIG_DEBUG_SLAB_LEAK
4174
4175static void *leaks_start(struct seq_file *m, loff_t *pos)
4176{
18004c5d
CL
4177 mutex_lock(&slab_mutex);
4178 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4179}
4180
4181static inline int add_caller(unsigned long *n, unsigned long v)
4182{
4183 unsigned long *p;
4184 int l;
4185 if (!v)
4186 return 1;
4187 l = n[1];
4188 p = n + 2;
4189 while (l) {
4190 int i = l/2;
4191 unsigned long *q = p + 2 * i;
4192 if (*q == v) {
4193 q[1]++;
4194 return 1;
4195 }
4196 if (*q > v) {
4197 l = i;
4198 } else {
4199 p = q + 2;
4200 l -= i + 1;
4201 }
4202 }
4203 if (++n[1] == n[0])
4204 return 0;
4205 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4206 p[0] = v;
4207 p[1] = 1;
4208 return 1;
4209}
4210
8456a648
JK
4211static void handle_slab(unsigned long *n, struct kmem_cache *c,
4212 struct page *page)
871751e2
AV
4213{
4214 void *p;
b1cb0982
JK
4215 int i, j;
4216
871751e2
AV
4217 if (n[0] == n[1])
4218 return;
8456a648 4219 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
b1cb0982
JK
4220 bool active = true;
4221
8456a648 4222 for (j = page->active; j < c->num; j++) {
b1cb0982 4223 /* Skip freed item */
8456a648 4224 if (slab_bufctl(page)[j] == i) {
b1cb0982
JK
4225 active = false;
4226 break;
4227 }
4228 }
4229 if (!active)
871751e2 4230 continue;
b1cb0982 4231
871751e2
AV
4232 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4233 return;
4234 }
4235}
4236
4237static void show_symbol(struct seq_file *m, unsigned long address)
4238{
4239#ifdef CONFIG_KALLSYMS
871751e2 4240 unsigned long offset, size;
9281acea 4241 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4242
a5c43dae 4243 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4244 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4245 if (modname[0])
871751e2
AV
4246 seq_printf(m, " [%s]", modname);
4247 return;
4248 }
4249#endif
4250 seq_printf(m, "%p", (void *)address);
4251}
4252
4253static int leaks_show(struct seq_file *m, void *p)
4254{
0672aa7c 4255 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4256 struct page *page;
ce8eb6c4 4257 struct kmem_cache_node *n;
871751e2 4258 const char *name;
db845067 4259 unsigned long *x = m->private;
871751e2
AV
4260 int node;
4261 int i;
4262
4263 if (!(cachep->flags & SLAB_STORE_USER))
4264 return 0;
4265 if (!(cachep->flags & SLAB_RED_ZONE))
4266 return 0;
4267
4268 /* OK, we can do it */
4269
db845067 4270 x[1] = 0;
871751e2
AV
4271
4272 for_each_online_node(node) {
ce8eb6c4
CL
4273 n = cachep->node[node];
4274 if (!n)
871751e2
AV
4275 continue;
4276
4277 check_irq_on();
ce8eb6c4 4278 spin_lock_irq(&n->list_lock);
871751e2 4279
8456a648
JK
4280 list_for_each_entry(page, &n->slabs_full, lru)
4281 handle_slab(x, cachep, page);
4282 list_for_each_entry(page, &n->slabs_partial, lru)
4283 handle_slab(x, cachep, page);
ce8eb6c4 4284 spin_unlock_irq(&n->list_lock);
871751e2
AV
4285 }
4286 name = cachep->name;
db845067 4287 if (x[0] == x[1]) {
871751e2 4288 /* Increase the buffer size */
18004c5d 4289 mutex_unlock(&slab_mutex);
db845067 4290 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4291 if (!m->private) {
4292 /* Too bad, we are really out */
db845067 4293 m->private = x;
18004c5d 4294 mutex_lock(&slab_mutex);
871751e2
AV
4295 return -ENOMEM;
4296 }
db845067
CL
4297 *(unsigned long *)m->private = x[0] * 2;
4298 kfree(x);
18004c5d 4299 mutex_lock(&slab_mutex);
871751e2
AV
4300 /* Now make sure this entry will be retried */
4301 m->count = m->size;
4302 return 0;
4303 }
db845067
CL
4304 for (i = 0; i < x[1]; i++) {
4305 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4306 show_symbol(m, x[2*i+2]);
871751e2
AV
4307 seq_putc(m, '\n');
4308 }
d2e7b7d0 4309
871751e2
AV
4310 return 0;
4311}
4312
a0ec95a8 4313static const struct seq_operations slabstats_op = {
871751e2 4314 .start = leaks_start,
276a2439
WL
4315 .next = slab_next,
4316 .stop = slab_stop,
871751e2
AV
4317 .show = leaks_show,
4318};
a0ec95a8
AD
4319
4320static int slabstats_open(struct inode *inode, struct file *file)
4321{
4322 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4323 int ret = -ENOMEM;
4324 if (n) {
4325 ret = seq_open(file, &slabstats_op);
4326 if (!ret) {
4327 struct seq_file *m = file->private_data;
4328 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4329 m->private = n;
4330 n = NULL;
4331 }
4332 kfree(n);
4333 }
4334 return ret;
4335}
4336
4337static const struct file_operations proc_slabstats_operations = {
4338 .open = slabstats_open,
4339 .read = seq_read,
4340 .llseek = seq_lseek,
4341 .release = seq_release_private,
4342};
4343#endif
4344
4345static int __init slab_proc_init(void)
4346{
4347#ifdef CONFIG_DEBUG_SLAB_LEAK
4348 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4349#endif
a0ec95a8
AD
4350 return 0;
4351}
4352module_init(slab_proc_init);
1da177e4
LT
4353#endif
4354
00e145b6
MS
4355/**
4356 * ksize - get the actual amount of memory allocated for a given object
4357 * @objp: Pointer to the object
4358 *
4359 * kmalloc may internally round up allocations and return more memory
4360 * than requested. ksize() can be used to determine the actual amount of
4361 * memory allocated. The caller may use this additional memory, even though
4362 * a smaller amount of memory was initially specified with the kmalloc call.
4363 * The caller must guarantee that objp points to a valid object previously
4364 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4365 * must not be freed during the duration of the call.
4366 */
fd76bab2 4367size_t ksize(const void *objp)
1da177e4 4368{
ef8b4520
CL
4369 BUG_ON(!objp);
4370 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4371 return 0;
1da177e4 4372
8c138bc0 4373 return virt_to_cache(objp)->object_size;
1da177e4 4374}
b1aabecd 4375EXPORT_SYMBOL(ksize);