SLUB: Do our own flags based on PG_active and PG_error
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
1da177e4 154 */
b46b8f19 155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
50953fe9 175# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
5af60839 178 SLAB_STORE_USER | \
1da177e4 179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 181#else
ac2b898c 182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 183 SLAB_CACHE_DMA | \
1da177e4 184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
343e0d7a 410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4 411
b5d8ca7c 412/* 5) cache creation/removal */
b28a02de
PE
413 const char *name;
414 struct list_head next;
1da177e4 415
b5d8ca7c 416/* 6) statistics */
1da177e4 417#if STATS
b28a02de
PE
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
fb7faf33 427 unsigned long node_overflow;
b28a02de
PE
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
1da177e4
LT
432#endif
433#if DEBUG
3dafccf2
MS
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
1da177e4 442#endif
8da3430d
ED
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
1da177e4
LT
454};
455
456#define CFLGS_OFF_SLAB (0x80000000UL)
457#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT 16
a737b3e2
AM
460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
1da177e4 463 *
dc6f3f27 464 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC (2*HZ)
468#define REAPTIMEOUT_LIST3 (4*HZ)
469
470#if STATS
471#define STATS_INC_ACTIVE(x) ((x)->num_active++)
472#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 475#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
476#define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ERR(x) ((x)->errors++)
482#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 483#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 484#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
485#define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
1da177e4
LT
490#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494#else
495#define STATS_INC_ACTIVE(x) do { } while (0)
496#define STATS_DEC_ACTIVE(x) do { } while (0)
497#define STATS_INC_ALLOCED(x) do { } while (0)
498#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 499#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
500#define STATS_SET_HIGH(x) do { } while (0)
501#define STATS_INC_ERR(x) do { } while (0)
502#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 503#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 504#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 505#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
506#define STATS_INC_ALLOCHIT(x) do { } while (0)
507#define STATS_INC_ALLOCMISS(x) do { } while (0)
508#define STATS_INC_FREEHIT(x) do { } while (0)
509#define STATS_INC_FREEMISS(x) do { } while (0)
510#endif
511
512#if DEBUG
1da177e4 513
a737b3e2
AM
514/*
515 * memory layout of objects:
1da177e4 516 * 0 : objp
3dafccf2 517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
3dafccf2 520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 521 * redzone word.
3dafccf2
MS
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
1da177e4 526 */
343e0d7a 527static int obj_offset(struct kmem_cache *cachep)
1da177e4 528{
3dafccf2 529 return cachep->obj_offset;
1da177e4
LT
530}
531
343e0d7a 532static int obj_size(struct kmem_cache *cachep)
1da177e4 533{
3dafccf2 534 return cachep->obj_size;
1da177e4
LT
535}
536
b46b8f19 537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
538{
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
1da177e4
LT
542}
543
b46b8f19 544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
545{
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 BYTES_PER_WORD);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
571/*
a737b3e2
AM
572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
573 * order.
1da177e4
LT
574 */
575#if defined(CONFIG_LARGE_ALLOCS)
576#define MAX_OBJ_ORDER 13 /* up to 32Mb */
577#define MAX_GFP_ORDER 13 /* up to 32Mb */
578#elif defined(CONFIG_MMU)
579#define MAX_OBJ_ORDER 5 /* 32 pages */
580#define MAX_GFP_ORDER 5 /* 32 pages */
581#else
582#define MAX_OBJ_ORDER 8 /* up to 1Mb */
583#define MAX_GFP_ORDER 8 /* up to 1Mb */
584#endif
585
586/*
587 * Do not go above this order unless 0 objects fit into the slab.
588 */
589#define BREAK_GFP_ORDER_HI 1
590#define BREAK_GFP_ORDER_LO 0
591static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
592
a737b3e2
AM
593/*
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
1da177e4 597 */
065d41cb
PE
598static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
599{
600 page->lru.next = (struct list_head *)cache;
601}
602
603static inline struct kmem_cache *page_get_cache(struct page *page)
604{
d85f3385 605 page = compound_head(page);
ddc2e812 606 BUG_ON(!PageSlab(page));
065d41cb
PE
607 return (struct kmem_cache *)page->lru.next;
608}
609
610static inline void page_set_slab(struct page *page, struct slab *slab)
611{
612 page->lru.prev = (struct list_head *)slab;
613}
614
615static inline struct slab *page_get_slab(struct page *page)
616{
ddc2e812 617 BUG_ON(!PageSlab(page));
065d41cb
PE
618 return (struct slab *)page->lru.prev;
619}
1da177e4 620
6ed5eb22
PE
621static inline struct kmem_cache *virt_to_cache(const void *obj)
622{
b49af68f 623 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
624 return page_get_cache(page);
625}
626
627static inline struct slab *virt_to_slab(const void *obj)
628{
b49af68f 629 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
630 return page_get_slab(page);
631}
632
8fea4e96
PE
633static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
634 unsigned int idx)
635{
636 return slab->s_mem + cache->buffer_size * idx;
637}
638
6a2d7a95
ED
639/*
640 * We want to avoid an expensive divide : (offset / cache->buffer_size)
641 * Using the fact that buffer_size is a constant for a particular cache,
642 * we can replace (offset / cache->buffer_size) by
643 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
644 */
645static inline unsigned int obj_to_index(const struct kmem_cache *cache,
646 const struct slab *slab, void *obj)
8fea4e96 647{
6a2d7a95
ED
648 u32 offset = (obj - slab->s_mem);
649 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
650}
651
a737b3e2
AM
652/*
653 * These are the default caches for kmalloc. Custom caches can have other sizes.
654 */
1da177e4
LT
655struct cache_sizes malloc_sizes[] = {
656#define CACHE(x) { .cs_size = (x) },
657#include <linux/kmalloc_sizes.h>
658 CACHE(ULONG_MAX)
659#undef CACHE
660};
661EXPORT_SYMBOL(malloc_sizes);
662
663/* Must match cache_sizes above. Out of line to keep cache footprint low. */
664struct cache_names {
665 char *name;
666 char *name_dma;
667};
668
669static struct cache_names __initdata cache_names[] = {
670#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
671#include <linux/kmalloc_sizes.h>
b28a02de 672 {NULL,}
1da177e4
LT
673#undef CACHE
674};
675
676static struct arraycache_init initarray_cache __initdata =
b28a02de 677 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 678static struct arraycache_init initarray_generic =
b28a02de 679 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
680
681/* internal cache of cache description objs */
343e0d7a 682static struct kmem_cache cache_cache = {
b28a02de
PE
683 .batchcount = 1,
684 .limit = BOOT_CPUCACHE_ENTRIES,
685 .shared = 1,
343e0d7a 686 .buffer_size = sizeof(struct kmem_cache),
b28a02de 687 .name = "kmem_cache",
1da177e4
LT
688};
689
056c6241
RT
690#define BAD_ALIEN_MAGIC 0x01020304ul
691
f1aaee53
AV
692#ifdef CONFIG_LOCKDEP
693
694/*
695 * Slab sometimes uses the kmalloc slabs to store the slab headers
696 * for other slabs "off slab".
697 * The locking for this is tricky in that it nests within the locks
698 * of all other slabs in a few places; to deal with this special
699 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
700 *
701 * We set lock class for alien array caches which are up during init.
702 * The lock annotation will be lost if all cpus of a node goes down and
703 * then comes back up during hotplug
f1aaee53 704 */
056c6241
RT
705static struct lock_class_key on_slab_l3_key;
706static struct lock_class_key on_slab_alc_key;
707
708static inline void init_lock_keys(void)
f1aaee53 709
f1aaee53
AV
710{
711 int q;
056c6241
RT
712 struct cache_sizes *s = malloc_sizes;
713
714 while (s->cs_size != ULONG_MAX) {
715 for_each_node(q) {
716 struct array_cache **alc;
717 int r;
718 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
719 if (!l3 || OFF_SLAB(s->cs_cachep))
720 continue;
721 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
722 alc = l3->alien;
723 /*
724 * FIXME: This check for BAD_ALIEN_MAGIC
725 * should go away when common slab code is taught to
726 * work even without alien caches.
727 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
728 * for alloc_alien_cache,
729 */
730 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
731 continue;
732 for_each_node(r) {
733 if (alc[r])
734 lockdep_set_class(&alc[r]->lock,
735 &on_slab_alc_key);
736 }
737 }
738 s++;
f1aaee53
AV
739 }
740}
f1aaee53 741#else
056c6241 742static inline void init_lock_keys(void)
f1aaee53
AV
743{
744}
745#endif
746
8f5be20b
RT
747/*
748 * 1. Guard access to the cache-chain.
749 * 2. Protect sanity of cpu_online_map against cpu hotplug events
750 */
fc0abb14 751static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
752static struct list_head cache_chain;
753
1da177e4
LT
754/*
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
757 */
758static enum {
759 NONE,
e498be7d
CL
760 PARTIAL_AC,
761 PARTIAL_L3,
1da177e4
LT
762 FULL
763} g_cpucache_up;
764
39d24e64
MK
765/*
766 * used by boot code to determine if it can use slab based allocator
767 */
768int slab_is_available(void)
769{
770 return g_cpucache_up == FULL;
771}
772
52bad64d 773static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 774
343e0d7a 775static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
776{
777 return cachep->array[smp_processor_id()];
778}
779
a737b3e2
AM
780static inline struct kmem_cache *__find_general_cachep(size_t size,
781 gfp_t gfpflags)
1da177e4
LT
782{
783 struct cache_sizes *csizep = malloc_sizes;
784
785#if DEBUG
786 /* This happens if someone tries to call
b28a02de
PE
787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
789 */
c7e43c78 790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 791#endif
0b44f7a5 792 WARN_ON_ONCE(size == 0);
1da177e4
LT
793 while (size > csizep->cs_size)
794 csizep++;
795
796 /*
0abf40c1 797 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
798 * has cs_{dma,}cachep==NULL. Thus no special case
799 * for large kmalloc calls required.
800 */
4b51d669 801#ifdef CONFIG_ZONE_DMA
1da177e4
LT
802 if (unlikely(gfpflags & GFP_DMA))
803 return csizep->cs_dmacachep;
4b51d669 804#endif
1da177e4
LT
805 return csizep->cs_cachep;
806}
807
b221385b 808static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
809{
810 return __find_general_cachep(size, gfpflags);
811}
97e2bde4 812
fbaccacf 813static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 814{
fbaccacf
SR
815 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
816}
1da177e4 817
a737b3e2
AM
818/*
819 * Calculate the number of objects and left-over bytes for a given buffer size.
820 */
fbaccacf
SR
821static void cache_estimate(unsigned long gfporder, size_t buffer_size,
822 size_t align, int flags, size_t *left_over,
823 unsigned int *num)
824{
825 int nr_objs;
826 size_t mgmt_size;
827 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 828
fbaccacf
SR
829 /*
830 * The slab management structure can be either off the slab or
831 * on it. For the latter case, the memory allocated for a
832 * slab is used for:
833 *
834 * - The struct slab
835 * - One kmem_bufctl_t for each object
836 * - Padding to respect alignment of @align
837 * - @buffer_size bytes for each object
838 *
839 * If the slab management structure is off the slab, then the
840 * alignment will already be calculated into the size. Because
841 * the slabs are all pages aligned, the objects will be at the
842 * correct alignment when allocated.
843 */
844 if (flags & CFLGS_OFF_SLAB) {
845 mgmt_size = 0;
846 nr_objs = slab_size / buffer_size;
847
848 if (nr_objs > SLAB_LIMIT)
849 nr_objs = SLAB_LIMIT;
850 } else {
851 /*
852 * Ignore padding for the initial guess. The padding
853 * is at most @align-1 bytes, and @buffer_size is at
854 * least @align. In the worst case, this result will
855 * be one greater than the number of objects that fit
856 * into the memory allocation when taking the padding
857 * into account.
858 */
859 nr_objs = (slab_size - sizeof(struct slab)) /
860 (buffer_size + sizeof(kmem_bufctl_t));
861
862 /*
863 * This calculated number will be either the right
864 * amount, or one greater than what we want.
865 */
866 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
867 > slab_size)
868 nr_objs--;
869
870 if (nr_objs > SLAB_LIMIT)
871 nr_objs = SLAB_LIMIT;
872
873 mgmt_size = slab_mgmt_size(nr_objs, align);
874 }
875 *num = nr_objs;
876 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
877}
878
879#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
880
a737b3e2
AM
881static void __slab_error(const char *function, struct kmem_cache *cachep,
882 char *msg)
1da177e4
LT
883{
884 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 885 function, cachep->name, msg);
1da177e4
LT
886 dump_stack();
887}
888
3395ee05
PM
889/*
890 * By default on NUMA we use alien caches to stage the freeing of
891 * objects allocated from other nodes. This causes massive memory
892 * inefficiencies when using fake NUMA setup to split memory into a
893 * large number of small nodes, so it can be disabled on the command
894 * line
895 */
896
897static int use_alien_caches __read_mostly = 1;
898static int __init noaliencache_setup(char *s)
899{
900 use_alien_caches = 0;
901 return 1;
902}
903__setup("noaliencache", noaliencache_setup);
904
8fce4d8e
CL
905#ifdef CONFIG_NUMA
906/*
907 * Special reaping functions for NUMA systems called from cache_reap().
908 * These take care of doing round robin flushing of alien caches (containing
909 * objects freed on different nodes from which they were allocated) and the
910 * flushing of remote pcps by calling drain_node_pages.
911 */
912static DEFINE_PER_CPU(unsigned long, reap_node);
913
914static void init_reap_node(int cpu)
915{
916 int node;
917
918 node = next_node(cpu_to_node(cpu), node_online_map);
919 if (node == MAX_NUMNODES)
442295c9 920 node = first_node(node_online_map);
8fce4d8e 921
7f6b8876 922 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
923}
924
925static void next_reap_node(void)
926{
927 int node = __get_cpu_var(reap_node);
928
8fce4d8e
CL
929 node = next_node(node, node_online_map);
930 if (unlikely(node >= MAX_NUMNODES))
931 node = first_node(node_online_map);
932 __get_cpu_var(reap_node) = node;
933}
934
935#else
936#define init_reap_node(cpu) do { } while (0)
937#define next_reap_node(void) do { } while (0)
938#endif
939
1da177e4
LT
940/*
941 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
942 * via the workqueue/eventd.
943 * Add the CPU number into the expiration time to minimize the possibility of
944 * the CPUs getting into lockstep and contending for the global cache chain
945 * lock.
946 */
947static void __devinit start_cpu_timer(int cpu)
948{
52bad64d 949 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
950
951 /*
952 * When this gets called from do_initcalls via cpucache_init(),
953 * init_workqueues() has already run, so keventd will be setup
954 * at that time.
955 */
52bad64d 956 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 957 init_reap_node(cpu);
65f27f38 958 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
959 schedule_delayed_work_on(cpu, reap_work,
960 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
961 }
962}
963
e498be7d 964static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 965 int batchcount)
1da177e4 966{
b28a02de 967 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
968 struct array_cache *nc = NULL;
969
e498be7d 970 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
971 if (nc) {
972 nc->avail = 0;
973 nc->limit = entries;
974 nc->batchcount = batchcount;
975 nc->touched = 0;
e498be7d 976 spin_lock_init(&nc->lock);
1da177e4
LT
977 }
978 return nc;
979}
980
3ded175a
CL
981/*
982 * Transfer objects in one arraycache to another.
983 * Locking must be handled by the caller.
984 *
985 * Return the number of entries transferred.
986 */
987static int transfer_objects(struct array_cache *to,
988 struct array_cache *from, unsigned int max)
989{
990 /* Figure out how many entries to transfer */
991 int nr = min(min(from->avail, max), to->limit - to->avail);
992
993 if (!nr)
994 return 0;
995
996 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
997 sizeof(void *) *nr);
998
999 from->avail -= nr;
1000 to->avail += nr;
1001 to->touched = 1;
1002 return nr;
1003}
1004
765c4507
CL
1005#ifndef CONFIG_NUMA
1006
1007#define drain_alien_cache(cachep, alien) do { } while (0)
1008#define reap_alien(cachep, l3) do { } while (0)
1009
1010static inline struct array_cache **alloc_alien_cache(int node, int limit)
1011{
1012 return (struct array_cache **)BAD_ALIEN_MAGIC;
1013}
1014
1015static inline void free_alien_cache(struct array_cache **ac_ptr)
1016{
1017}
1018
1019static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1020{
1021 return 0;
1022}
1023
1024static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1025 gfp_t flags)
1026{
1027 return NULL;
1028}
1029
8b98c169 1030static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1031 gfp_t flags, int nodeid)
1032{
1033 return NULL;
1034}
1035
1036#else /* CONFIG_NUMA */
1037
8b98c169 1038static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1039static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1040
5295a74c 1041static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1042{
1043 struct array_cache **ac_ptr;
8ef82866 1044 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1045 int i;
1046
1047 if (limit > 1)
1048 limit = 12;
1049 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1050 if (ac_ptr) {
1051 for_each_node(i) {
1052 if (i == node || !node_online(i)) {
1053 ac_ptr[i] = NULL;
1054 continue;
1055 }
1056 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1057 if (!ac_ptr[i]) {
b28a02de 1058 for (i--; i <= 0; i--)
e498be7d
CL
1059 kfree(ac_ptr[i]);
1060 kfree(ac_ptr);
1061 return NULL;
1062 }
1063 }
1064 }
1065 return ac_ptr;
1066}
1067
5295a74c 1068static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1069{
1070 int i;
1071
1072 if (!ac_ptr)
1073 return;
e498be7d 1074 for_each_node(i)
b28a02de 1075 kfree(ac_ptr[i]);
e498be7d
CL
1076 kfree(ac_ptr);
1077}
1078
343e0d7a 1079static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1080 struct array_cache *ac, int node)
e498be7d
CL
1081{
1082 struct kmem_list3 *rl3 = cachep->nodelists[node];
1083
1084 if (ac->avail) {
1085 spin_lock(&rl3->list_lock);
e00946fe
CL
1086 /*
1087 * Stuff objects into the remote nodes shared array first.
1088 * That way we could avoid the overhead of putting the objects
1089 * into the free lists and getting them back later.
1090 */
693f7d36 1091 if (rl3->shared)
1092 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1093
ff69416e 1094 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1095 ac->avail = 0;
1096 spin_unlock(&rl3->list_lock);
1097 }
1098}
1099
8fce4d8e
CL
1100/*
1101 * Called from cache_reap() to regularly drain alien caches round robin.
1102 */
1103static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1104{
1105 int node = __get_cpu_var(reap_node);
1106
1107 if (l3->alien) {
1108 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1109
1110 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1111 __drain_alien_cache(cachep, ac, node);
1112 spin_unlock_irq(&ac->lock);
1113 }
1114 }
1115}
1116
a737b3e2
AM
1117static void drain_alien_cache(struct kmem_cache *cachep,
1118 struct array_cache **alien)
e498be7d 1119{
b28a02de 1120 int i = 0;
e498be7d
CL
1121 struct array_cache *ac;
1122 unsigned long flags;
1123
1124 for_each_online_node(i) {
4484ebf1 1125 ac = alien[i];
e498be7d
CL
1126 if (ac) {
1127 spin_lock_irqsave(&ac->lock, flags);
1128 __drain_alien_cache(cachep, ac, i);
1129 spin_unlock_irqrestore(&ac->lock, flags);
1130 }
1131 }
1132}
729bd0b7 1133
873623df 1134static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1135{
1136 struct slab *slabp = virt_to_slab(objp);
1137 int nodeid = slabp->nodeid;
1138 struct kmem_list3 *l3;
1139 struct array_cache *alien = NULL;
1ca4cb24
PE
1140 int node;
1141
1142 node = numa_node_id();
729bd0b7
PE
1143
1144 /*
1145 * Make sure we are not freeing a object from another node to the array
1146 * cache on this cpu.
1147 */
62918a03 1148 if (likely(slabp->nodeid == node))
729bd0b7
PE
1149 return 0;
1150
1ca4cb24 1151 l3 = cachep->nodelists[node];
729bd0b7
PE
1152 STATS_INC_NODEFREES(cachep);
1153 if (l3->alien && l3->alien[nodeid]) {
1154 alien = l3->alien[nodeid];
873623df 1155 spin_lock(&alien->lock);
729bd0b7
PE
1156 if (unlikely(alien->avail == alien->limit)) {
1157 STATS_INC_ACOVERFLOW(cachep);
1158 __drain_alien_cache(cachep, alien, nodeid);
1159 }
1160 alien->entry[alien->avail++] = objp;
1161 spin_unlock(&alien->lock);
1162 } else {
1163 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1164 free_block(cachep, &objp, 1, nodeid);
1165 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1166 }
1167 return 1;
1168}
e498be7d
CL
1169#endif
1170
8c78f307 1171static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1172 unsigned long action, void *hcpu)
1da177e4
LT
1173{
1174 long cpu = (long)hcpu;
343e0d7a 1175 struct kmem_cache *cachep;
e498be7d
CL
1176 struct kmem_list3 *l3 = NULL;
1177 int node = cpu_to_node(cpu);
1178 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1179
1180 switch (action) {
38c3bd96 1181 case CPU_LOCK_ACQUIRE:
fc0abb14 1182 mutex_lock(&cache_chain_mutex);
38c3bd96
HC
1183 break;
1184 case CPU_UP_PREPARE:
8bb78442 1185 case CPU_UP_PREPARE_FROZEN:
a737b3e2
AM
1186 /*
1187 * We need to do this right in the beginning since
e498be7d
CL
1188 * alloc_arraycache's are going to use this list.
1189 * kmalloc_node allows us to add the slab to the right
1190 * kmem_list3 and not this cpu's kmem_list3
1191 */
1192
1da177e4 1193 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1194 /*
1195 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1196 * begin anything. Make sure some other cpu on this
1197 * node has not already allocated this
1198 */
1199 if (!cachep->nodelists[node]) {
a737b3e2
AM
1200 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1201 if (!l3)
e498be7d
CL
1202 goto bad;
1203 kmem_list3_init(l3);
1204 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1205 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1206
4484ebf1
RT
1207 /*
1208 * The l3s don't come and go as CPUs come and
1209 * go. cache_chain_mutex is sufficient
1210 * protection here.
1211 */
e498be7d
CL
1212 cachep->nodelists[node] = l3;
1213 }
1da177e4 1214
e498be7d
CL
1215 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1216 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1217 (1 + nr_cpus_node(node)) *
1218 cachep->batchcount + cachep->num;
e498be7d
CL
1219 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1220 }
1221
a737b3e2
AM
1222 /*
1223 * Now we can go ahead with allocating the shared arrays and
1224 * array caches
1225 */
e498be7d 1226 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1227 struct array_cache *nc;
63109846 1228 struct array_cache *shared = NULL;
3395ee05 1229 struct array_cache **alien = NULL;
cd105df4 1230
e498be7d 1231 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1232 cachep->batchcount);
1da177e4
LT
1233 if (!nc)
1234 goto bad;
63109846
ED
1235 if (cachep->shared) {
1236 shared = alloc_arraycache(node,
4484ebf1
RT
1237 cachep->shared * cachep->batchcount,
1238 0xbaadf00d);
63109846
ED
1239 if (!shared)
1240 goto bad;
1241 }
3395ee05
PM
1242 if (use_alien_caches) {
1243 alien = alloc_alien_cache(node, cachep->limit);
1244 if (!alien)
1245 goto bad;
1246 }
1da177e4 1247 cachep->array[cpu] = nc;
e498be7d
CL
1248 l3 = cachep->nodelists[node];
1249 BUG_ON(!l3);
e498be7d 1250
4484ebf1
RT
1251 spin_lock_irq(&l3->list_lock);
1252 if (!l3->shared) {
1253 /*
1254 * We are serialised from CPU_DEAD or
1255 * CPU_UP_CANCELLED by the cpucontrol lock
1256 */
1257 l3->shared = shared;
1258 shared = NULL;
e498be7d 1259 }
4484ebf1
RT
1260#ifdef CONFIG_NUMA
1261 if (!l3->alien) {
1262 l3->alien = alien;
1263 alien = NULL;
1264 }
1265#endif
1266 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1267 kfree(shared);
1268 free_alien_cache(alien);
1da177e4 1269 }
1da177e4
LT
1270 break;
1271 case CPU_ONLINE:
8bb78442 1272 case CPU_ONLINE_FROZEN:
1da177e4
LT
1273 start_cpu_timer(cpu);
1274 break;
1275#ifdef CONFIG_HOTPLUG_CPU
5830c590 1276 case CPU_DOWN_PREPARE:
8bb78442 1277 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1278 /*
1279 * Shutdown cache reaper. Note that the cache_chain_mutex is
1280 * held so that if cache_reap() is invoked it cannot do
1281 * anything expensive but will only modify reap_work
1282 * and reschedule the timer.
1283 */
1284 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1285 /* Now the cache_reaper is guaranteed to be not running. */
1286 per_cpu(reap_work, cpu).work.func = NULL;
1287 break;
1288 case CPU_DOWN_FAILED:
8bb78442 1289 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1290 start_cpu_timer(cpu);
1291 break;
1da177e4 1292 case CPU_DEAD:
8bb78442 1293 case CPU_DEAD_FROZEN:
4484ebf1
RT
1294 /*
1295 * Even if all the cpus of a node are down, we don't free the
1296 * kmem_list3 of any cache. This to avoid a race between
1297 * cpu_down, and a kmalloc allocation from another cpu for
1298 * memory from the node of the cpu going down. The list3
1299 * structure is usually allocated from kmem_cache_create() and
1300 * gets destroyed at kmem_cache_destroy().
1301 */
1da177e4 1302 /* fall thru */
8f5be20b 1303#endif
1da177e4 1304 case CPU_UP_CANCELED:
8bb78442 1305 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
1306 list_for_each_entry(cachep, &cache_chain, next) {
1307 struct array_cache *nc;
4484ebf1
RT
1308 struct array_cache *shared;
1309 struct array_cache **alien;
e498be7d 1310 cpumask_t mask;
1da177e4 1311
e498be7d 1312 mask = node_to_cpumask(node);
1da177e4
LT
1313 /* cpu is dead; no one can alloc from it. */
1314 nc = cachep->array[cpu];
1315 cachep->array[cpu] = NULL;
e498be7d
CL
1316 l3 = cachep->nodelists[node];
1317
1318 if (!l3)
4484ebf1 1319 goto free_array_cache;
e498be7d 1320
ca3b9b91 1321 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1322
1323 /* Free limit for this kmem_list3 */
1324 l3->free_limit -= cachep->batchcount;
1325 if (nc)
ff69416e 1326 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1327
1328 if (!cpus_empty(mask)) {
ca3b9b91 1329 spin_unlock_irq(&l3->list_lock);
4484ebf1 1330 goto free_array_cache;
b28a02de 1331 }
e498be7d 1332
4484ebf1
RT
1333 shared = l3->shared;
1334 if (shared) {
63109846
ED
1335 free_block(cachep, shared->entry,
1336 shared->avail, node);
e498be7d
CL
1337 l3->shared = NULL;
1338 }
e498be7d 1339
4484ebf1
RT
1340 alien = l3->alien;
1341 l3->alien = NULL;
1342
1343 spin_unlock_irq(&l3->list_lock);
1344
1345 kfree(shared);
1346 if (alien) {
1347 drain_alien_cache(cachep, alien);
1348 free_alien_cache(alien);
e498be7d 1349 }
4484ebf1 1350free_array_cache:
1da177e4
LT
1351 kfree(nc);
1352 }
4484ebf1
RT
1353 /*
1354 * In the previous loop, all the objects were freed to
1355 * the respective cache's slabs, now we can go ahead and
1356 * shrink each nodelist to its limit.
1357 */
1358 list_for_each_entry(cachep, &cache_chain, next) {
1359 l3 = cachep->nodelists[node];
1360 if (!l3)
1361 continue;
ed11d9eb 1362 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1363 }
38c3bd96
HC
1364 break;
1365 case CPU_LOCK_RELEASE:
fc0abb14 1366 mutex_unlock(&cache_chain_mutex);
1da177e4 1367 break;
1da177e4
LT
1368 }
1369 return NOTIFY_OK;
a737b3e2 1370bad:
1da177e4
LT
1371 return NOTIFY_BAD;
1372}
1373
74b85f37
CS
1374static struct notifier_block __cpuinitdata cpucache_notifier = {
1375 &cpuup_callback, NULL, 0
1376};
1da177e4 1377
e498be7d
CL
1378/*
1379 * swap the static kmem_list3 with kmalloced memory
1380 */
a737b3e2
AM
1381static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1382 int nodeid)
e498be7d
CL
1383{
1384 struct kmem_list3 *ptr;
1385
e498be7d
CL
1386 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1387 BUG_ON(!ptr);
1388
1389 local_irq_disable();
1390 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1391 /*
1392 * Do not assume that spinlocks can be initialized via memcpy:
1393 */
1394 spin_lock_init(&ptr->list_lock);
1395
e498be7d
CL
1396 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1397 cachep->nodelists[nodeid] = ptr;
1398 local_irq_enable();
1399}
1400
a737b3e2
AM
1401/*
1402 * Initialisation. Called after the page allocator have been initialised and
1403 * before smp_init().
1da177e4
LT
1404 */
1405void __init kmem_cache_init(void)
1406{
1407 size_t left_over;
1408 struct cache_sizes *sizes;
1409 struct cache_names *names;
e498be7d 1410 int i;
07ed76b2 1411 int order;
1ca4cb24 1412 int node;
e498be7d 1413
62918a03
SS
1414 if (num_possible_nodes() == 1)
1415 use_alien_caches = 0;
1416
e498be7d
CL
1417 for (i = 0; i < NUM_INIT_LISTS; i++) {
1418 kmem_list3_init(&initkmem_list3[i]);
1419 if (i < MAX_NUMNODES)
1420 cache_cache.nodelists[i] = NULL;
1421 }
1da177e4
LT
1422
1423 /*
1424 * Fragmentation resistance on low memory - only use bigger
1425 * page orders on machines with more than 32MB of memory.
1426 */
1427 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1428 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1429
1da177e4
LT
1430 /* Bootstrap is tricky, because several objects are allocated
1431 * from caches that do not exist yet:
a737b3e2
AM
1432 * 1) initialize the cache_cache cache: it contains the struct
1433 * kmem_cache structures of all caches, except cache_cache itself:
1434 * cache_cache is statically allocated.
e498be7d
CL
1435 * Initially an __init data area is used for the head array and the
1436 * kmem_list3 structures, it's replaced with a kmalloc allocated
1437 * array at the end of the bootstrap.
1da177e4 1438 * 2) Create the first kmalloc cache.
343e0d7a 1439 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1440 * An __init data area is used for the head array.
1441 * 3) Create the remaining kmalloc caches, with minimally sized
1442 * head arrays.
1da177e4
LT
1443 * 4) Replace the __init data head arrays for cache_cache and the first
1444 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1445 * 5) Replace the __init data for kmem_list3 for cache_cache and
1446 * the other cache's with kmalloc allocated memory.
1447 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1448 */
1449
1ca4cb24
PE
1450 node = numa_node_id();
1451
1da177e4 1452 /* 1) create the cache_cache */
1da177e4
LT
1453 INIT_LIST_HEAD(&cache_chain);
1454 list_add(&cache_cache.next, &cache_chain);
1455 cache_cache.colour_off = cache_line_size();
1456 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1457 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1458
8da3430d
ED
1459 /*
1460 * struct kmem_cache size depends on nr_node_ids, which
1461 * can be less than MAX_NUMNODES.
1462 */
1463 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1464 nr_node_ids * sizeof(struct kmem_list3 *);
1465#if DEBUG
1466 cache_cache.obj_size = cache_cache.buffer_size;
1467#endif
a737b3e2
AM
1468 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1469 cache_line_size());
6a2d7a95
ED
1470 cache_cache.reciprocal_buffer_size =
1471 reciprocal_value(cache_cache.buffer_size);
1da177e4 1472
07ed76b2
JS
1473 for (order = 0; order < MAX_ORDER; order++) {
1474 cache_estimate(order, cache_cache.buffer_size,
1475 cache_line_size(), 0, &left_over, &cache_cache.num);
1476 if (cache_cache.num)
1477 break;
1478 }
40094fa6 1479 BUG_ON(!cache_cache.num);
07ed76b2 1480 cache_cache.gfporder = order;
b28a02de 1481 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1482 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1483 sizeof(struct slab), cache_line_size());
1da177e4
LT
1484
1485 /* 2+3) create the kmalloc caches */
1486 sizes = malloc_sizes;
1487 names = cache_names;
1488
a737b3e2
AM
1489 /*
1490 * Initialize the caches that provide memory for the array cache and the
1491 * kmem_list3 structures first. Without this, further allocations will
1492 * bug.
e498be7d
CL
1493 */
1494
1495 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1496 sizes[INDEX_AC].cs_size,
1497 ARCH_KMALLOC_MINALIGN,
1498 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1499 NULL, NULL);
e498be7d 1500
a737b3e2 1501 if (INDEX_AC != INDEX_L3) {
e498be7d 1502 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1503 kmem_cache_create(names[INDEX_L3].name,
1504 sizes[INDEX_L3].cs_size,
1505 ARCH_KMALLOC_MINALIGN,
1506 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1507 NULL, NULL);
1508 }
e498be7d 1509
e0a42726
IM
1510 slab_early_init = 0;
1511
1da177e4 1512 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1513 /*
1514 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1515 * This should be particularly beneficial on SMP boxes, as it
1516 * eliminates "false sharing".
1517 * Note for systems short on memory removing the alignment will
e498be7d
CL
1518 * allow tighter packing of the smaller caches.
1519 */
a737b3e2 1520 if (!sizes->cs_cachep) {
e498be7d 1521 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1522 sizes->cs_size,
1523 ARCH_KMALLOC_MINALIGN,
1524 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1525 NULL, NULL);
1526 }
4b51d669
CL
1527#ifdef CONFIG_ZONE_DMA
1528 sizes->cs_dmacachep = kmem_cache_create(
1529 names->name_dma,
a737b3e2
AM
1530 sizes->cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1533 SLAB_PANIC,
1534 NULL, NULL);
4b51d669 1535#endif
1da177e4
LT
1536 sizes++;
1537 names++;
1538 }
1539 /* 4) Replace the bootstrap head arrays */
1540 {
2b2d5493 1541 struct array_cache *ptr;
e498be7d 1542
1da177e4 1543 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1544
1da177e4 1545 local_irq_disable();
9a2dba4b
PE
1546 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1547 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1548 sizeof(struct arraycache_init));
2b2d5493
IM
1549 /*
1550 * Do not assume that spinlocks can be initialized via memcpy:
1551 */
1552 spin_lock_init(&ptr->lock);
1553
1da177e4
LT
1554 cache_cache.array[smp_processor_id()] = ptr;
1555 local_irq_enable();
e498be7d 1556
1da177e4 1557 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1558
1da177e4 1559 local_irq_disable();
9a2dba4b 1560 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1561 != &initarray_generic.cache);
9a2dba4b 1562 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1563 sizeof(struct arraycache_init));
2b2d5493
IM
1564 /*
1565 * Do not assume that spinlocks can be initialized via memcpy:
1566 */
1567 spin_lock_init(&ptr->lock);
1568
e498be7d 1569 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1570 ptr;
1da177e4
LT
1571 local_irq_enable();
1572 }
e498be7d
CL
1573 /* 5) Replace the bootstrap kmem_list3's */
1574 {
1ca4cb24
PE
1575 int nid;
1576
e498be7d 1577 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1578 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1579
1ca4cb24 1580 for_each_online_node(nid) {
e498be7d 1581 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1582 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1583
1584 if (INDEX_AC != INDEX_L3) {
1585 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1586 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1587 }
1588 }
1589 }
1da177e4 1590
e498be7d 1591 /* 6) resize the head arrays to their final sizes */
1da177e4 1592 {
343e0d7a 1593 struct kmem_cache *cachep;
fc0abb14 1594 mutex_lock(&cache_chain_mutex);
1da177e4 1595 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1596 if (enable_cpucache(cachep))
1597 BUG();
fc0abb14 1598 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1599 }
1600
056c6241
RT
1601 /* Annotate slab for lockdep -- annotate the malloc caches */
1602 init_lock_keys();
1603
1604
1da177e4
LT
1605 /* Done! */
1606 g_cpucache_up = FULL;
1607
a737b3e2
AM
1608 /*
1609 * Register a cpu startup notifier callback that initializes
1610 * cpu_cache_get for all new cpus
1da177e4
LT
1611 */
1612 register_cpu_notifier(&cpucache_notifier);
1da177e4 1613
a737b3e2
AM
1614 /*
1615 * The reap timers are started later, with a module init call: That part
1616 * of the kernel is not yet operational.
1da177e4
LT
1617 */
1618}
1619
1620static int __init cpucache_init(void)
1621{
1622 int cpu;
1623
a737b3e2
AM
1624 /*
1625 * Register the timers that return unneeded pages to the page allocator
1da177e4 1626 */
e498be7d 1627 for_each_online_cpu(cpu)
a737b3e2 1628 start_cpu_timer(cpu);
1da177e4
LT
1629 return 0;
1630}
1da177e4
LT
1631__initcall(cpucache_init);
1632
1633/*
1634 * Interface to system's page allocator. No need to hold the cache-lock.
1635 *
1636 * If we requested dmaable memory, we will get it. Even if we
1637 * did not request dmaable memory, we might get it, but that
1638 * would be relatively rare and ignorable.
1639 */
343e0d7a 1640static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1641{
1642 struct page *page;
e1b6aa6f 1643 int nr_pages;
1da177e4
LT
1644 int i;
1645
d6fef9da 1646#ifndef CONFIG_MMU
e1b6aa6f
CH
1647 /*
1648 * Nommu uses slab's for process anonymous memory allocations, and thus
1649 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1650 */
e1b6aa6f 1651 flags |= __GFP_COMP;
d6fef9da 1652#endif
765c4507 1653
3c517a61 1654 flags |= cachep->gfpflags;
e1b6aa6f
CH
1655
1656 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1657 if (!page)
1658 return NULL;
1da177e4 1659
e1b6aa6f 1660 nr_pages = (1 << cachep->gfporder);
1da177e4 1661 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1662 add_zone_page_state(page_zone(page),
1663 NR_SLAB_RECLAIMABLE, nr_pages);
1664 else
1665 add_zone_page_state(page_zone(page),
1666 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1667 for (i = 0; i < nr_pages; i++)
1668 __SetPageSlab(page + i);
1669 return page_address(page);
1da177e4
LT
1670}
1671
1672/*
1673 * Interface to system's page release.
1674 */
343e0d7a 1675static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1676{
b28a02de 1677 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1678 struct page *page = virt_to_page(addr);
1679 const unsigned long nr_freed = i;
1680
972d1a7b
CL
1681 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1682 sub_zone_page_state(page_zone(page),
1683 NR_SLAB_RECLAIMABLE, nr_freed);
1684 else
1685 sub_zone_page_state(page_zone(page),
1686 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1687 while (i--) {
f205b2fe
NP
1688 BUG_ON(!PageSlab(page));
1689 __ClearPageSlab(page);
1da177e4
LT
1690 page++;
1691 }
1da177e4
LT
1692 if (current->reclaim_state)
1693 current->reclaim_state->reclaimed_slab += nr_freed;
1694 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1695}
1696
1697static void kmem_rcu_free(struct rcu_head *head)
1698{
b28a02de 1699 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1700 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1701
1702 kmem_freepages(cachep, slab_rcu->addr);
1703 if (OFF_SLAB(cachep))
1704 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1705}
1706
1707#if DEBUG
1708
1709#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1710static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1711 unsigned long caller)
1da177e4 1712{
3dafccf2 1713 int size = obj_size(cachep);
1da177e4 1714
3dafccf2 1715 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1716
b28a02de 1717 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1718 return;
1719
b28a02de
PE
1720 *addr++ = 0x12345678;
1721 *addr++ = caller;
1722 *addr++ = smp_processor_id();
1723 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1724 {
1725 unsigned long *sptr = &caller;
1726 unsigned long svalue;
1727
1728 while (!kstack_end(sptr)) {
1729 svalue = *sptr++;
1730 if (kernel_text_address(svalue)) {
b28a02de 1731 *addr++ = svalue;
1da177e4
LT
1732 size -= sizeof(unsigned long);
1733 if (size <= sizeof(unsigned long))
1734 break;
1735 }
1736 }
1737
1738 }
b28a02de 1739 *addr++ = 0x87654321;
1da177e4
LT
1740}
1741#endif
1742
343e0d7a 1743static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1744{
3dafccf2
MS
1745 int size = obj_size(cachep);
1746 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1747
1748 memset(addr, val, size);
b28a02de 1749 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1750}
1751
1752static void dump_line(char *data, int offset, int limit)
1753{
1754 int i;
aa83aa40
DJ
1755 unsigned char error = 0;
1756 int bad_count = 0;
1757
1da177e4 1758 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1759 for (i = 0; i < limit; i++) {
1760 if (data[offset + i] != POISON_FREE) {
1761 error = data[offset + i];
1762 bad_count++;
1763 }
b28a02de 1764 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1765 }
1da177e4 1766 printk("\n");
aa83aa40
DJ
1767
1768 if (bad_count == 1) {
1769 error ^= POISON_FREE;
1770 if (!(error & (error - 1))) {
1771 printk(KERN_ERR "Single bit error detected. Probably "
1772 "bad RAM.\n");
1773#ifdef CONFIG_X86
1774 printk(KERN_ERR "Run memtest86+ or a similar memory "
1775 "test tool.\n");
1776#else
1777 printk(KERN_ERR "Run a memory test tool.\n");
1778#endif
1779 }
1780 }
1da177e4
LT
1781}
1782#endif
1783
1784#if DEBUG
1785
343e0d7a 1786static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1787{
1788 int i, size;
1789 char *realobj;
1790
1791 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1792 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1793 *dbg_redzone1(cachep, objp),
1794 *dbg_redzone2(cachep, objp));
1da177e4
LT
1795 }
1796
1797 if (cachep->flags & SLAB_STORE_USER) {
1798 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1799 *dbg_userword(cachep, objp));
1da177e4 1800 print_symbol("(%s)",
a737b3e2 1801 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1802 printk("\n");
1803 }
3dafccf2
MS
1804 realobj = (char *)objp + obj_offset(cachep);
1805 size = obj_size(cachep);
b28a02de 1806 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1807 int limit;
1808 limit = 16;
b28a02de
PE
1809 if (i + limit > size)
1810 limit = size - i;
1da177e4
LT
1811 dump_line(realobj, i, limit);
1812 }
1813}
1814
343e0d7a 1815static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1816{
1817 char *realobj;
1818 int size, i;
1819 int lines = 0;
1820
3dafccf2
MS
1821 realobj = (char *)objp + obj_offset(cachep);
1822 size = obj_size(cachep);
1da177e4 1823
b28a02de 1824 for (i = 0; i < size; i++) {
1da177e4 1825 char exp = POISON_FREE;
b28a02de 1826 if (i == size - 1)
1da177e4
LT
1827 exp = POISON_END;
1828 if (realobj[i] != exp) {
1829 int limit;
1830 /* Mismatch ! */
1831 /* Print header */
1832 if (lines == 0) {
b28a02de 1833 printk(KERN_ERR
e94a40c5
DH
1834 "Slab corruption: %s start=%p, len=%d\n",
1835 cachep->name, realobj, size);
1da177e4
LT
1836 print_objinfo(cachep, objp, 0);
1837 }
1838 /* Hexdump the affected line */
b28a02de 1839 i = (i / 16) * 16;
1da177e4 1840 limit = 16;
b28a02de
PE
1841 if (i + limit > size)
1842 limit = size - i;
1da177e4
LT
1843 dump_line(realobj, i, limit);
1844 i += 16;
1845 lines++;
1846 /* Limit to 5 lines */
1847 if (lines > 5)
1848 break;
1849 }
1850 }
1851 if (lines != 0) {
1852 /* Print some data about the neighboring objects, if they
1853 * exist:
1854 */
6ed5eb22 1855 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1856 unsigned int objnr;
1da177e4 1857
8fea4e96 1858 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1859 if (objnr) {
8fea4e96 1860 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1861 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1862 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1863 realobj, size);
1da177e4
LT
1864 print_objinfo(cachep, objp, 2);
1865 }
b28a02de 1866 if (objnr + 1 < cachep->num) {
8fea4e96 1867 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1868 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1869 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1870 realobj, size);
1da177e4
LT
1871 print_objinfo(cachep, objp, 2);
1872 }
1873 }
1874}
1875#endif
1876
12dd36fa
MD
1877#if DEBUG
1878/**
911851e6
RD
1879 * slab_destroy_objs - destroy a slab and its objects
1880 * @cachep: cache pointer being destroyed
1881 * @slabp: slab pointer being destroyed
1882 *
1883 * Call the registered destructor for each object in a slab that is being
1884 * destroyed.
1da177e4 1885 */
343e0d7a 1886static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1887{
1da177e4
LT
1888 int i;
1889 for (i = 0; i < cachep->num; i++) {
8fea4e96 1890 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1891
1892 if (cachep->flags & SLAB_POISON) {
1893#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1894 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1895 OFF_SLAB(cachep))
b28a02de 1896 kernel_map_pages(virt_to_page(objp),
a737b3e2 1897 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1898 else
1899 check_poison_obj(cachep, objp);
1900#else
1901 check_poison_obj(cachep, objp);
1902#endif
1903 }
1904 if (cachep->flags & SLAB_RED_ZONE) {
1905 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1906 slab_error(cachep, "start of a freed object "
b28a02de 1907 "was overwritten");
1da177e4
LT
1908 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1909 slab_error(cachep, "end of a freed object "
b28a02de 1910 "was overwritten");
1da177e4 1911 }
1da177e4 1912 }
12dd36fa 1913}
1da177e4 1914#else
343e0d7a 1915static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1916{
12dd36fa 1917}
1da177e4
LT
1918#endif
1919
911851e6
RD
1920/**
1921 * slab_destroy - destroy and release all objects in a slab
1922 * @cachep: cache pointer being destroyed
1923 * @slabp: slab pointer being destroyed
1924 *
12dd36fa 1925 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1926 * Before calling the slab must have been unlinked from the cache. The
1927 * cache-lock is not held/needed.
12dd36fa 1928 */
343e0d7a 1929static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1930{
1931 void *addr = slabp->s_mem - slabp->colouroff;
1932
1933 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1934 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1935 struct slab_rcu *slab_rcu;
1936
b28a02de 1937 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1938 slab_rcu->cachep = cachep;
1939 slab_rcu->addr = addr;
1940 call_rcu(&slab_rcu->head, kmem_rcu_free);
1941 } else {
1942 kmem_freepages(cachep, addr);
873623df
IM
1943 if (OFF_SLAB(cachep))
1944 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1945 }
1946}
1947
a737b3e2
AM
1948/*
1949 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1950 * size of kmem_list3.
1951 */
a3a02be7 1952static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1953{
1954 int node;
1955
1956 for_each_online_node(node) {
b28a02de 1957 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1958 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1959 REAPTIMEOUT_LIST3 +
1960 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1961 }
1962}
1963
117f6eb1
CL
1964static void __kmem_cache_destroy(struct kmem_cache *cachep)
1965{
1966 int i;
1967 struct kmem_list3 *l3;
1968
1969 for_each_online_cpu(i)
1970 kfree(cachep->array[i]);
1971
1972 /* NUMA: free the list3 structures */
1973 for_each_online_node(i) {
1974 l3 = cachep->nodelists[i];
1975 if (l3) {
1976 kfree(l3->shared);
1977 free_alien_cache(l3->alien);
1978 kfree(l3);
1979 }
1980 }
1981 kmem_cache_free(&cache_cache, cachep);
1982}
1983
1984
4d268eba 1985/**
a70773dd
RD
1986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1991 *
1992 * Also calculates the number of objects per slab.
4d268eba
PE
1993 *
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1997 */
a737b3e2 1998static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1999 size_t size, size_t align, unsigned long flags)
4d268eba 2000{
b1ab41c4 2001 unsigned long offslab_limit;
4d268eba 2002 size_t left_over = 0;
9888e6fa 2003 int gfporder;
4d268eba 2004
a737b3e2 2005 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
2006 unsigned int num;
2007 size_t remainder;
2008
9888e6fa 2009 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2010 if (!num)
2011 continue;
9888e6fa 2012
b1ab41c4
IM
2013 if (flags & CFLGS_OFF_SLAB) {
2014 /*
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2018 */
2019 offslab_limit = size - sizeof(struct slab);
2020 offslab_limit /= sizeof(kmem_bufctl_t);
2021
2022 if (num > offslab_limit)
2023 break;
2024 }
4d268eba 2025
9888e6fa 2026 /* Found something acceptable - save it away */
4d268eba 2027 cachep->num = num;
9888e6fa 2028 cachep->gfporder = gfporder;
4d268eba
PE
2029 left_over = remainder;
2030
f78bb8ad
LT
2031 /*
2032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2035 */
2036 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 break;
2038
4d268eba
PE
2039 /*
2040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2042 */
9888e6fa 2043 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2044 break;
2045
9888e6fa
LT
2046 /*
2047 * Acceptable internal fragmentation?
2048 */
a737b3e2 2049 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2050 break;
2051 }
2052 return left_over;
2053}
2054
2ed3a4ef 2055static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2056{
2ed3a4ef
CL
2057 if (g_cpucache_up == FULL)
2058 return enable_cpucache(cachep);
2059
f30cf7d1
PE
2060 if (g_cpucache_up == NONE) {
2061 /*
2062 * Note: the first kmem_cache_create must create the cache
2063 * that's used by kmalloc(24), otherwise the creation of
2064 * further caches will BUG().
2065 */
2066 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2067
2068 /*
2069 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2070 * the first cache, then we need to set up all its list3s,
2071 * otherwise the creation of further caches will BUG().
2072 */
2073 set_up_list3s(cachep, SIZE_AC);
2074 if (INDEX_AC == INDEX_L3)
2075 g_cpucache_up = PARTIAL_L3;
2076 else
2077 g_cpucache_up = PARTIAL_AC;
2078 } else {
2079 cachep->array[smp_processor_id()] =
2080 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2081
2082 if (g_cpucache_up == PARTIAL_AC) {
2083 set_up_list3s(cachep, SIZE_L3);
2084 g_cpucache_up = PARTIAL_L3;
2085 } else {
2086 int node;
2087 for_each_online_node(node) {
2088 cachep->nodelists[node] =
2089 kmalloc_node(sizeof(struct kmem_list3),
2090 GFP_KERNEL, node);
2091 BUG_ON(!cachep->nodelists[node]);
2092 kmem_list3_init(cachep->nodelists[node]);
2093 }
2094 }
2095 }
2096 cachep->nodelists[numa_node_id()]->next_reap =
2097 jiffies + REAPTIMEOUT_LIST3 +
2098 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2099
2100 cpu_cache_get(cachep)->avail = 0;
2101 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2102 cpu_cache_get(cachep)->batchcount = 1;
2103 cpu_cache_get(cachep)->touched = 0;
2104 cachep->batchcount = 1;
2105 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2106 return 0;
f30cf7d1
PE
2107}
2108
1da177e4
LT
2109/**
2110 * kmem_cache_create - Create a cache.
2111 * @name: A string which is used in /proc/slabinfo to identify this cache.
2112 * @size: The size of objects to be created in this cache.
2113 * @align: The required alignment for the objects.
2114 * @flags: SLAB flags
2115 * @ctor: A constructor for the objects.
c59def9f 2116 * @dtor: A destructor for the objects (not implemented anymore).
1da177e4
LT
2117 *
2118 * Returns a ptr to the cache on success, NULL on failure.
2119 * Cannot be called within a int, but can be interrupted.
2120 * The @ctor is run when new pages are allocated by the cache
2121 * and the @dtor is run before the pages are handed back.
2122 *
2123 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2124 * the module calling this has to destroy the cache before getting unloaded.
2125 *
1da177e4
LT
2126 * The flags are
2127 *
2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2129 * to catch references to uninitialised memory.
2130 *
2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2132 * for buffer overruns.
2133 *
1da177e4
LT
2134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2135 * cacheline. This can be beneficial if you're counting cycles as closely
2136 * as davem.
2137 */
343e0d7a 2138struct kmem_cache *
1da177e4 2139kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2140 unsigned long flags,
2141 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2142 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2143{
2144 size_t left_over, slab_size, ralign;
7a7c381d 2145 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2146
2147 /*
2148 * Sanity checks... these are all serious usage bugs.
2149 */
a737b3e2 2150 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
c59def9f 2151 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || dtor) {
a737b3e2
AM
2152 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2153 name);
b28a02de
PE
2154 BUG();
2155 }
1da177e4 2156
f0188f47 2157 /*
8f5be20b
RT
2158 * We use cache_chain_mutex to ensure a consistent view of
2159 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2160 */
fc0abb14 2161 mutex_lock(&cache_chain_mutex);
4f12bb4f 2162
7a7c381d 2163 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2164 char tmp;
2165 int res;
2166
2167 /*
2168 * This happens when the module gets unloaded and doesn't
2169 * destroy its slab cache and no-one else reuses the vmalloc
2170 * area of the module. Print a warning.
2171 */
138ae663 2172 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2173 if (res) {
b4169525 2174 printk(KERN_ERR
2175 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2176 pc->buffer_size);
4f12bb4f
AM
2177 continue;
2178 }
2179
b28a02de 2180 if (!strcmp(pc->name, name)) {
b4169525 2181 printk(KERN_ERR
2182 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2183 dump_stack();
2184 goto oops;
2185 }
2186 }
2187
1da177e4
LT
2188#if DEBUG
2189 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2190#if FORCED_DEBUG
2191 /*
2192 * Enable redzoning and last user accounting, except for caches with
2193 * large objects, if the increased size would increase the object size
2194 * above the next power of two: caches with object sizes just above a
2195 * power of two have a significant amount of internal fragmentation.
2196 */
a737b3e2 2197 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2198 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2199 if (!(flags & SLAB_DESTROY_BY_RCU))
2200 flags |= SLAB_POISON;
2201#endif
2202 if (flags & SLAB_DESTROY_BY_RCU)
2203 BUG_ON(flags & SLAB_POISON);
2204#endif
1da177e4 2205 /*
a737b3e2
AM
2206 * Always checks flags, a caller might be expecting debug support which
2207 * isn't available.
1da177e4 2208 */
40094fa6 2209 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2210
a737b3e2
AM
2211 /*
2212 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2213 * unaligned accesses for some archs when redzoning is used, and makes
2214 * sure any on-slab bufctl's are also correctly aligned.
2215 */
b28a02de
PE
2216 if (size & (BYTES_PER_WORD - 1)) {
2217 size += (BYTES_PER_WORD - 1);
2218 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2219 }
2220
a737b3e2
AM
2221 /* calculate the final buffer alignment: */
2222
1da177e4
LT
2223 /* 1) arch recommendation: can be overridden for debug */
2224 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2225 /*
2226 * Default alignment: as specified by the arch code. Except if
2227 * an object is really small, then squeeze multiple objects into
2228 * one cacheline.
1da177e4
LT
2229 */
2230 ralign = cache_line_size();
b28a02de 2231 while (size <= ralign / 2)
1da177e4
LT
2232 ralign /= 2;
2233 } else {
2234 ralign = BYTES_PER_WORD;
2235 }
ca5f9703
PE
2236
2237 /*
2238 * Redzoning and user store require word alignment. Note this will be
2239 * overridden by architecture or caller mandated alignment if either
2240 * is greater than BYTES_PER_WORD.
2241 */
2242 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
b46b8f19 2243 ralign = __alignof__(unsigned long long);
ca5f9703 2244
a44b56d3 2245 /* 2) arch mandated alignment */
1da177e4
LT
2246 if (ralign < ARCH_SLAB_MINALIGN) {
2247 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2248 }
a44b56d3 2249 /* 3) caller mandated alignment */
1da177e4
LT
2250 if (ralign < align) {
2251 ralign = align;
1da177e4 2252 }
a44b56d3 2253 /* disable debug if necessary */
b46b8f19 2254 if (ralign > __alignof__(unsigned long long))
a44b56d3 2255 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2256 /*
ca5f9703 2257 * 4) Store it.
1da177e4
LT
2258 */
2259 align = ralign;
2260
2261 /* Get cache's description obj. */
e94b1766 2262 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2263 if (!cachep)
4f12bb4f 2264 goto oops;
1da177e4
LT
2265
2266#if DEBUG
3dafccf2 2267 cachep->obj_size = size;
1da177e4 2268
ca5f9703
PE
2269 /*
2270 * Both debugging options require word-alignment which is calculated
2271 * into align above.
2272 */
1da177e4 2273 if (flags & SLAB_RED_ZONE) {
1da177e4 2274 /* add space for red zone words */
b46b8f19
DW
2275 cachep->obj_offset += sizeof(unsigned long long);
2276 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2277 }
2278 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2279 /* user store requires one word storage behind the end of
2280 * the real object.
1da177e4 2281 */
1da177e4
LT
2282 size += BYTES_PER_WORD;
2283 }
2284#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2285 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2286 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2287 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2288 size = PAGE_SIZE;
2289 }
2290#endif
2291#endif
2292
e0a42726
IM
2293 /*
2294 * Determine if the slab management is 'on' or 'off' slab.
2295 * (bootstrapping cannot cope with offslab caches so don't do
2296 * it too early on.)
2297 */
2298 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2299 /*
2300 * Size is large, assume best to place the slab management obj
2301 * off-slab (should allow better packing of objs).
2302 */
2303 flags |= CFLGS_OFF_SLAB;
2304
2305 size = ALIGN(size, align);
2306
f78bb8ad 2307 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2308
2309 if (!cachep->num) {
b4169525 2310 printk(KERN_ERR
2311 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2312 kmem_cache_free(&cache_cache, cachep);
2313 cachep = NULL;
4f12bb4f 2314 goto oops;
1da177e4 2315 }
b28a02de
PE
2316 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2317 + sizeof(struct slab), align);
1da177e4
LT
2318
2319 /*
2320 * If the slab has been placed off-slab, and we have enough space then
2321 * move it on-slab. This is at the expense of any extra colouring.
2322 */
2323 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2324 flags &= ~CFLGS_OFF_SLAB;
2325 left_over -= slab_size;
2326 }
2327
2328 if (flags & CFLGS_OFF_SLAB) {
2329 /* really off slab. No need for manual alignment */
b28a02de
PE
2330 slab_size =
2331 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2332 }
2333
2334 cachep->colour_off = cache_line_size();
2335 /* Offset must be a multiple of the alignment. */
2336 if (cachep->colour_off < align)
2337 cachep->colour_off = align;
b28a02de 2338 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2339 cachep->slab_size = slab_size;
2340 cachep->flags = flags;
2341 cachep->gfpflags = 0;
4b51d669 2342 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2343 cachep->gfpflags |= GFP_DMA;
3dafccf2 2344 cachep->buffer_size = size;
6a2d7a95 2345 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2346
e5ac9c5a 2347 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2348 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2349 /*
2350 * This is a possibility for one of the malloc_sizes caches.
2351 * But since we go off slab only for object size greater than
2352 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2353 * this should not happen at all.
2354 * But leave a BUG_ON for some lucky dude.
2355 */
2356 BUG_ON(!cachep->slabp_cache);
2357 }
1da177e4 2358 cachep->ctor = ctor;
1da177e4
LT
2359 cachep->name = name;
2360
2ed3a4ef
CL
2361 if (setup_cpu_cache(cachep)) {
2362 __kmem_cache_destroy(cachep);
2363 cachep = NULL;
2364 goto oops;
2365 }
1da177e4 2366
1da177e4
LT
2367 /* cache setup completed, link it into the list */
2368 list_add(&cachep->next, &cache_chain);
a737b3e2 2369oops:
1da177e4
LT
2370 if (!cachep && (flags & SLAB_PANIC))
2371 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2372 name);
fc0abb14 2373 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2374 return cachep;
2375}
2376EXPORT_SYMBOL(kmem_cache_create);
2377
2378#if DEBUG
2379static void check_irq_off(void)
2380{
2381 BUG_ON(!irqs_disabled());
2382}
2383
2384static void check_irq_on(void)
2385{
2386 BUG_ON(irqs_disabled());
2387}
2388
343e0d7a 2389static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2390{
2391#ifdef CONFIG_SMP
2392 check_irq_off();
e498be7d 2393 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2394#endif
2395}
e498be7d 2396
343e0d7a 2397static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2398{
2399#ifdef CONFIG_SMP
2400 check_irq_off();
2401 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2402#endif
2403}
2404
1da177e4
LT
2405#else
2406#define check_irq_off() do { } while(0)
2407#define check_irq_on() do { } while(0)
2408#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2409#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2410#endif
2411
aab2207c
CL
2412static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2413 struct array_cache *ac,
2414 int force, int node);
2415
1da177e4
LT
2416static void do_drain(void *arg)
2417{
a737b3e2 2418 struct kmem_cache *cachep = arg;
1da177e4 2419 struct array_cache *ac;
ff69416e 2420 int node = numa_node_id();
1da177e4
LT
2421
2422 check_irq_off();
9a2dba4b 2423 ac = cpu_cache_get(cachep);
ff69416e
CL
2424 spin_lock(&cachep->nodelists[node]->list_lock);
2425 free_block(cachep, ac->entry, ac->avail, node);
2426 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2427 ac->avail = 0;
2428}
2429
343e0d7a 2430static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2431{
e498be7d
CL
2432 struct kmem_list3 *l3;
2433 int node;
2434
a07fa394 2435 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2436 check_irq_on();
b28a02de 2437 for_each_online_node(node) {
e498be7d 2438 l3 = cachep->nodelists[node];
a4523a8b
RD
2439 if (l3 && l3->alien)
2440 drain_alien_cache(cachep, l3->alien);
2441 }
2442
2443 for_each_online_node(node) {
2444 l3 = cachep->nodelists[node];
2445 if (l3)
aab2207c 2446 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2447 }
1da177e4
LT
2448}
2449
ed11d9eb
CL
2450/*
2451 * Remove slabs from the list of free slabs.
2452 * Specify the number of slabs to drain in tofree.
2453 *
2454 * Returns the actual number of slabs released.
2455 */
2456static int drain_freelist(struct kmem_cache *cache,
2457 struct kmem_list3 *l3, int tofree)
1da177e4 2458{
ed11d9eb
CL
2459 struct list_head *p;
2460 int nr_freed;
1da177e4 2461 struct slab *slabp;
1da177e4 2462
ed11d9eb
CL
2463 nr_freed = 0;
2464 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2465
ed11d9eb 2466 spin_lock_irq(&l3->list_lock);
e498be7d 2467 p = l3->slabs_free.prev;
ed11d9eb
CL
2468 if (p == &l3->slabs_free) {
2469 spin_unlock_irq(&l3->list_lock);
2470 goto out;
2471 }
1da177e4 2472
ed11d9eb 2473 slabp = list_entry(p, struct slab, list);
1da177e4 2474#if DEBUG
40094fa6 2475 BUG_ON(slabp->inuse);
1da177e4
LT
2476#endif
2477 list_del(&slabp->list);
ed11d9eb
CL
2478 /*
2479 * Safe to drop the lock. The slab is no longer linked
2480 * to the cache.
2481 */
2482 l3->free_objects -= cache->num;
e498be7d 2483 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2484 slab_destroy(cache, slabp);
2485 nr_freed++;
1da177e4 2486 }
ed11d9eb
CL
2487out:
2488 return nr_freed;
1da177e4
LT
2489}
2490
8f5be20b 2491/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2492static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2493{
2494 int ret = 0, i = 0;
2495 struct kmem_list3 *l3;
2496
2497 drain_cpu_caches(cachep);
2498
2499 check_irq_on();
2500 for_each_online_node(i) {
2501 l3 = cachep->nodelists[i];
ed11d9eb
CL
2502 if (!l3)
2503 continue;
2504
2505 drain_freelist(cachep, l3, l3->free_objects);
2506
2507 ret += !list_empty(&l3->slabs_full) ||
2508 !list_empty(&l3->slabs_partial);
e498be7d
CL
2509 }
2510 return (ret ? 1 : 0);
2511}
2512
1da177e4
LT
2513/**
2514 * kmem_cache_shrink - Shrink a cache.
2515 * @cachep: The cache to shrink.
2516 *
2517 * Releases as many slabs as possible for a cache.
2518 * To help debugging, a zero exit status indicates all slabs were released.
2519 */
343e0d7a 2520int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2521{
8f5be20b 2522 int ret;
40094fa6 2523 BUG_ON(!cachep || in_interrupt());
1da177e4 2524
8f5be20b
RT
2525 mutex_lock(&cache_chain_mutex);
2526 ret = __cache_shrink(cachep);
2527 mutex_unlock(&cache_chain_mutex);
2528 return ret;
1da177e4
LT
2529}
2530EXPORT_SYMBOL(kmem_cache_shrink);
2531
2532/**
2533 * kmem_cache_destroy - delete a cache
2534 * @cachep: the cache to destroy
2535 *
72fd4a35 2536 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2537 *
2538 * It is expected this function will be called by a module when it is
2539 * unloaded. This will remove the cache completely, and avoid a duplicate
2540 * cache being allocated each time a module is loaded and unloaded, if the
2541 * module doesn't have persistent in-kernel storage across loads and unloads.
2542 *
2543 * The cache must be empty before calling this function.
2544 *
2545 * The caller must guarantee that noone will allocate memory from the cache
2546 * during the kmem_cache_destroy().
2547 */
133d205a 2548void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2549{
40094fa6 2550 BUG_ON(!cachep || in_interrupt());
1da177e4 2551
1da177e4 2552 /* Find the cache in the chain of caches. */
fc0abb14 2553 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2554 /*
2555 * the chain is never empty, cache_cache is never destroyed
2556 */
2557 list_del(&cachep->next);
1da177e4
LT
2558 if (__cache_shrink(cachep)) {
2559 slab_error(cachep, "Can't free all objects");
b28a02de 2560 list_add(&cachep->next, &cache_chain);
fc0abb14 2561 mutex_unlock(&cache_chain_mutex);
133d205a 2562 return;
1da177e4
LT
2563 }
2564
2565 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2566 synchronize_rcu();
1da177e4 2567
117f6eb1 2568 __kmem_cache_destroy(cachep);
8f5be20b 2569 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2570}
2571EXPORT_SYMBOL(kmem_cache_destroy);
2572
e5ac9c5a
RT
2573/*
2574 * Get the memory for a slab management obj.
2575 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2576 * always come from malloc_sizes caches. The slab descriptor cannot
2577 * come from the same cache which is getting created because,
2578 * when we are searching for an appropriate cache for these
2579 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2580 * If we are creating a malloc_sizes cache here it would not be visible to
2581 * kmem_find_general_cachep till the initialization is complete.
2582 * Hence we cannot have slabp_cache same as the original cache.
2583 */
343e0d7a 2584static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2585 int colour_off, gfp_t local_flags,
2586 int nodeid)
1da177e4
LT
2587{
2588 struct slab *slabp;
b28a02de 2589
1da177e4
LT
2590 if (OFF_SLAB(cachep)) {
2591 /* Slab management obj is off-slab. */
5b74ada7 2592 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2593 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2594 if (!slabp)
2595 return NULL;
2596 } else {
b28a02de 2597 slabp = objp + colour_off;
1da177e4
LT
2598 colour_off += cachep->slab_size;
2599 }
2600 slabp->inuse = 0;
2601 slabp->colouroff = colour_off;
b28a02de 2602 slabp->s_mem = objp + colour_off;
5b74ada7 2603 slabp->nodeid = nodeid;
1da177e4
LT
2604 return slabp;
2605}
2606
2607static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2608{
b28a02de 2609 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2610}
2611
343e0d7a 2612static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2613 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2614{
2615 int i;
2616
2617 for (i = 0; i < cachep->num; i++) {
8fea4e96 2618 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2619#if DEBUG
2620 /* need to poison the objs? */
2621 if (cachep->flags & SLAB_POISON)
2622 poison_obj(cachep, objp, POISON_FREE);
2623 if (cachep->flags & SLAB_STORE_USER)
2624 *dbg_userword(cachep, objp) = NULL;
2625
2626 if (cachep->flags & SLAB_RED_ZONE) {
2627 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2628 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2629 }
2630 /*
a737b3e2
AM
2631 * Constructors are not allowed to allocate memory from the same
2632 * cache which they are a constructor for. Otherwise, deadlock.
2633 * They must also be threaded.
1da177e4
LT
2634 */
2635 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2636 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2637 ctor_flags);
1da177e4
LT
2638
2639 if (cachep->flags & SLAB_RED_ZONE) {
2640 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2641 slab_error(cachep, "constructor overwrote the"
b28a02de 2642 " end of an object");
1da177e4
LT
2643 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2644 slab_error(cachep, "constructor overwrote the"
b28a02de 2645 " start of an object");
1da177e4 2646 }
a737b3e2
AM
2647 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2648 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2649 kernel_map_pages(virt_to_page(objp),
3dafccf2 2650 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2651#else
2652 if (cachep->ctor)
2653 cachep->ctor(objp, cachep, ctor_flags);
2654#endif
b28a02de 2655 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2656 }
b28a02de 2657 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2658 slabp->free = 0;
2659}
2660
343e0d7a 2661static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2662{
4b51d669
CL
2663 if (CONFIG_ZONE_DMA_FLAG) {
2664 if (flags & GFP_DMA)
2665 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2666 else
2667 BUG_ON(cachep->gfpflags & GFP_DMA);
2668 }
1da177e4
LT
2669}
2670
a737b3e2
AM
2671static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2672 int nodeid)
78d382d7 2673{
8fea4e96 2674 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2675 kmem_bufctl_t next;
2676
2677 slabp->inuse++;
2678 next = slab_bufctl(slabp)[slabp->free];
2679#if DEBUG
2680 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2681 WARN_ON(slabp->nodeid != nodeid);
2682#endif
2683 slabp->free = next;
2684
2685 return objp;
2686}
2687
a737b3e2
AM
2688static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2689 void *objp, int nodeid)
78d382d7 2690{
8fea4e96 2691 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2692
2693#if DEBUG
2694 /* Verify that the slab belongs to the intended node */
2695 WARN_ON(slabp->nodeid != nodeid);
2696
871751e2 2697 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2698 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2699 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2700 BUG();
2701 }
2702#endif
2703 slab_bufctl(slabp)[objnr] = slabp->free;
2704 slabp->free = objnr;
2705 slabp->inuse--;
2706}
2707
4776874f
PE
2708/*
2709 * Map pages beginning at addr to the given cache and slab. This is required
2710 * for the slab allocator to be able to lookup the cache and slab of a
2711 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2712 */
2713static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2714 void *addr)
1da177e4 2715{
4776874f 2716 int nr_pages;
1da177e4
LT
2717 struct page *page;
2718
4776874f 2719 page = virt_to_page(addr);
84097518 2720
4776874f 2721 nr_pages = 1;
84097518 2722 if (likely(!PageCompound(page)))
4776874f
PE
2723 nr_pages <<= cache->gfporder;
2724
1da177e4 2725 do {
4776874f
PE
2726 page_set_cache(page, cache);
2727 page_set_slab(page, slab);
1da177e4 2728 page++;
4776874f 2729 } while (--nr_pages);
1da177e4
LT
2730}
2731
2732/*
2733 * Grow (by 1) the number of slabs within a cache. This is called by
2734 * kmem_cache_alloc() when there are no active objs left in a cache.
2735 */
3c517a61
CL
2736static int cache_grow(struct kmem_cache *cachep,
2737 gfp_t flags, int nodeid, void *objp)
1da177e4 2738{
b28a02de 2739 struct slab *slabp;
b28a02de
PE
2740 size_t offset;
2741 gfp_t local_flags;
2742 unsigned long ctor_flags;
e498be7d 2743 struct kmem_list3 *l3;
1da177e4 2744
a737b3e2
AM
2745 /*
2746 * Be lazy and only check for valid flags here, keeping it out of the
2747 * critical path in kmem_cache_alloc().
1da177e4 2748 */
cfce6604 2749 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1da177e4
LT
2750
2751 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
a06d72c1 2752 local_flags = (flags & GFP_LEVEL_MASK);
2e1217cf 2753 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2754 check_irq_off();
2e1217cf
RT
2755 l3 = cachep->nodelists[nodeid];
2756 spin_lock(&l3->list_lock);
1da177e4
LT
2757
2758 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2759 offset = l3->colour_next;
2760 l3->colour_next++;
2761 if (l3->colour_next >= cachep->colour)
2762 l3->colour_next = 0;
2763 spin_unlock(&l3->list_lock);
1da177e4 2764
2e1217cf 2765 offset *= cachep->colour_off;
1da177e4
LT
2766
2767 if (local_flags & __GFP_WAIT)
2768 local_irq_enable();
2769
2770 /*
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2775 */
2776 kmem_flagcheck(cachep, flags);
2777
a737b3e2
AM
2778 /*
2779 * Get mem for the objs. Attempt to allocate a physical page from
2780 * 'nodeid'.
e498be7d 2781 */
3c517a61
CL
2782 if (!objp)
2783 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2784 if (!objp)
1da177e4
LT
2785 goto failed;
2786
2787 /* Get slab management. */
3c517a61
CL
2788 slabp = alloc_slabmgmt(cachep, objp, offset,
2789 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2790 if (!slabp)
1da177e4
LT
2791 goto opps1;
2792
e498be7d 2793 slabp->nodeid = nodeid;
4776874f 2794 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2795
2796 cache_init_objs(cachep, slabp, ctor_flags);
2797
2798 if (local_flags & __GFP_WAIT)
2799 local_irq_disable();
2800 check_irq_off();
e498be7d 2801 spin_lock(&l3->list_lock);
1da177e4
LT
2802
2803 /* Make slab active. */
e498be7d 2804 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2805 STATS_INC_GROWN(cachep);
e498be7d
CL
2806 l3->free_objects += cachep->num;
2807 spin_unlock(&l3->list_lock);
1da177e4 2808 return 1;
a737b3e2 2809opps1:
1da177e4 2810 kmem_freepages(cachep, objp);
a737b3e2 2811failed:
1da177e4
LT
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 return 0;
2815}
2816
2817#if DEBUG
2818
2819/*
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
1da177e4
LT
2823 */
2824static void kfree_debugcheck(const void *objp)
2825{
1da177e4
LT
2826 if (!virt_addr_valid(objp)) {
2827 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2828 (unsigned long)objp);
2829 BUG();
1da177e4 2830 }
1da177e4
LT
2831}
2832
58ce1fd5
PE
2833static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2834{
b46b8f19 2835 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2836
2837 redzone1 = *dbg_redzone1(cache, obj);
2838 redzone2 = *dbg_redzone2(cache, obj);
2839
2840 /*
2841 * Redzone is ok.
2842 */
2843 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2844 return;
2845
2846 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2847 slab_error(cache, "double free detected");
2848 else
2849 slab_error(cache, "memory outside object was overwritten");
2850
b46b8f19 2851 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2852 obj, redzone1, redzone2);
2853}
2854
343e0d7a 2855static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2856 void *caller)
1da177e4
LT
2857{
2858 struct page *page;
2859 unsigned int objnr;
2860 struct slab *slabp;
2861
3dafccf2 2862 objp -= obj_offset(cachep);
1da177e4 2863 kfree_debugcheck(objp);
b49af68f 2864 page = virt_to_head_page(objp);
1da177e4 2865
065d41cb 2866 slabp = page_get_slab(page);
1da177e4
LT
2867
2868 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2869 verify_redzone_free(cachep, objp);
1da177e4
LT
2870 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2871 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2872 }
2873 if (cachep->flags & SLAB_STORE_USER)
2874 *dbg_userword(cachep, objp) = caller;
2875
8fea4e96 2876 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2877
2878 BUG_ON(objnr >= cachep->num);
8fea4e96 2879 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2880
871751e2
AV
2881#ifdef CONFIG_DEBUG_SLAB_LEAK
2882 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2883#endif
1da177e4
LT
2884 if (cachep->flags & SLAB_POISON) {
2885#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2886 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2887 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2888 kernel_map_pages(virt_to_page(objp),
3dafccf2 2889 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2890 } else {
2891 poison_obj(cachep, objp, POISON_FREE);
2892 }
2893#else
2894 poison_obj(cachep, objp, POISON_FREE);
2895#endif
2896 }
2897 return objp;
2898}
2899
343e0d7a 2900static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2901{
2902 kmem_bufctl_t i;
2903 int entries = 0;
b28a02de 2904
1da177e4
LT
2905 /* Check slab's freelist to see if this obj is there. */
2906 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2907 entries++;
2908 if (entries > cachep->num || i >= cachep->num)
2909 goto bad;
2910 }
2911 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2912bad:
2913 printk(KERN_ERR "slab: Internal list corruption detected in "
2914 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2915 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2916 for (i = 0;
264132bc 2917 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2918 i++) {
a737b3e2 2919 if (i % 16 == 0)
1da177e4 2920 printk("\n%03x:", i);
b28a02de 2921 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2922 }
2923 printk("\n");
2924 BUG();
2925 }
2926}
2927#else
2928#define kfree_debugcheck(x) do { } while(0)
2929#define cache_free_debugcheck(x,objp,z) (objp)
2930#define check_slabp(x,y) do { } while(0)
2931#endif
2932
343e0d7a 2933static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2934{
2935 int batchcount;
2936 struct kmem_list3 *l3;
2937 struct array_cache *ac;
1ca4cb24
PE
2938 int node;
2939
2940 node = numa_node_id();
1da177e4
LT
2941
2942 check_irq_off();
9a2dba4b 2943 ac = cpu_cache_get(cachep);
a737b3e2 2944retry:
1da177e4
LT
2945 batchcount = ac->batchcount;
2946 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2947 /*
2948 * If there was little recent activity on this cache, then
2949 * perform only a partial refill. Otherwise we could generate
2950 * refill bouncing.
1da177e4
LT
2951 */
2952 batchcount = BATCHREFILL_LIMIT;
2953 }
1ca4cb24 2954 l3 = cachep->nodelists[node];
e498be7d
CL
2955
2956 BUG_ON(ac->avail > 0 || !l3);
2957 spin_lock(&l3->list_lock);
1da177e4 2958
3ded175a
CL
2959 /* See if we can refill from the shared array */
2960 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2961 goto alloc_done;
2962
1da177e4
LT
2963 while (batchcount > 0) {
2964 struct list_head *entry;
2965 struct slab *slabp;
2966 /* Get slab alloc is to come from. */
2967 entry = l3->slabs_partial.next;
2968 if (entry == &l3->slabs_partial) {
2969 l3->free_touched = 1;
2970 entry = l3->slabs_free.next;
2971 if (entry == &l3->slabs_free)
2972 goto must_grow;
2973 }
2974
2975 slabp = list_entry(entry, struct slab, list);
2976 check_slabp(cachep, slabp);
2977 check_spinlock_acquired(cachep);
714b8171
PE
2978
2979 /*
2980 * The slab was either on partial or free list so
2981 * there must be at least one object available for
2982 * allocation.
2983 */
2984 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2985
1da177e4 2986 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2987 STATS_INC_ALLOCED(cachep);
2988 STATS_INC_ACTIVE(cachep);
2989 STATS_SET_HIGH(cachep);
2990
78d382d7 2991 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2992 node);
1da177e4
LT
2993 }
2994 check_slabp(cachep, slabp);
2995
2996 /* move slabp to correct slabp list: */
2997 list_del(&slabp->list);
2998 if (slabp->free == BUFCTL_END)
2999 list_add(&slabp->list, &l3->slabs_full);
3000 else
3001 list_add(&slabp->list, &l3->slabs_partial);
3002 }
3003
a737b3e2 3004must_grow:
1da177e4 3005 l3->free_objects -= ac->avail;
a737b3e2 3006alloc_done:
e498be7d 3007 spin_unlock(&l3->list_lock);
1da177e4
LT
3008
3009 if (unlikely(!ac->avail)) {
3010 int x;
3c517a61 3011 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3012
a737b3e2 3013 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3014 ac = cpu_cache_get(cachep);
a737b3e2 3015 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3016 return NULL;
3017
a737b3e2 3018 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3019 goto retry;
3020 }
3021 ac->touched = 1;
e498be7d 3022 return ac->entry[--ac->avail];
1da177e4
LT
3023}
3024
a737b3e2
AM
3025static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3026 gfp_t flags)
1da177e4
LT
3027{
3028 might_sleep_if(flags & __GFP_WAIT);
3029#if DEBUG
3030 kmem_flagcheck(cachep, flags);
3031#endif
3032}
3033
3034#if DEBUG
a737b3e2
AM
3035static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3036 gfp_t flags, void *objp, void *caller)
1da177e4 3037{
b28a02de 3038 if (!objp)
1da177e4 3039 return objp;
b28a02de 3040 if (cachep->flags & SLAB_POISON) {
1da177e4 3041#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3042 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3043 kernel_map_pages(virt_to_page(objp),
3dafccf2 3044 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3045 else
3046 check_poison_obj(cachep, objp);
3047#else
3048 check_poison_obj(cachep, objp);
3049#endif
3050 poison_obj(cachep, objp, POISON_INUSE);
3051 }
3052 if (cachep->flags & SLAB_STORE_USER)
3053 *dbg_userword(cachep, objp) = caller;
3054
3055 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3056 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3057 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3058 slab_error(cachep, "double free, or memory outside"
3059 " object was overwritten");
b28a02de 3060 printk(KERN_ERR
b46b8f19 3061 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3062 objp, *dbg_redzone1(cachep, objp),
3063 *dbg_redzone2(cachep, objp));
1da177e4
LT
3064 }
3065 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3066 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3067 }
871751e2
AV
3068#ifdef CONFIG_DEBUG_SLAB_LEAK
3069 {
3070 struct slab *slabp;
3071 unsigned objnr;
3072
b49af68f 3073 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3074 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3075 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3076 }
3077#endif
3dafccf2 3078 objp += obj_offset(cachep);
4f104934
CL
3079 if (cachep->ctor && cachep->flags & SLAB_POISON)
3080 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
a44b56d3
KH
3081#if ARCH_SLAB_MINALIGN
3082 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3083 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3084 objp, ARCH_SLAB_MINALIGN);
3085 }
3086#endif
1da177e4
LT
3087 return objp;
3088}
3089#else
3090#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3091#endif
3092
8a8b6502
AM
3093#ifdef CONFIG_FAILSLAB
3094
3095static struct failslab_attr {
3096
3097 struct fault_attr attr;
3098
3099 u32 ignore_gfp_wait;
3100#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3101 struct dentry *ignore_gfp_wait_file;
3102#endif
3103
3104} failslab = {
3105 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3106 .ignore_gfp_wait = 1,
8a8b6502
AM
3107};
3108
3109static int __init setup_failslab(char *str)
3110{
3111 return setup_fault_attr(&failslab.attr, str);
3112}
3113__setup("failslab=", setup_failslab);
3114
3115static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3116{
3117 if (cachep == &cache_cache)
3118 return 0;
3119 if (flags & __GFP_NOFAIL)
3120 return 0;
3121 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3122 return 0;
3123
3124 return should_fail(&failslab.attr, obj_size(cachep));
3125}
3126
3127#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3128
3129static int __init failslab_debugfs(void)
3130{
3131 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3132 struct dentry *dir;
3133 int err;
3134
824ebef1 3135 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3136 if (err)
3137 return err;
3138 dir = failslab.attr.dentries.dir;
3139
3140 failslab.ignore_gfp_wait_file =
3141 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3142 &failslab.ignore_gfp_wait);
3143
3144 if (!failslab.ignore_gfp_wait_file) {
3145 err = -ENOMEM;
3146 debugfs_remove(failslab.ignore_gfp_wait_file);
3147 cleanup_fault_attr_dentries(&failslab.attr);
3148 }
3149
3150 return err;
3151}
3152
3153late_initcall(failslab_debugfs);
3154
3155#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3156
3157#else /* CONFIG_FAILSLAB */
3158
3159static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3160{
3161 return 0;
3162}
3163
3164#endif /* CONFIG_FAILSLAB */
3165
343e0d7a 3166static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3167{
b28a02de 3168 void *objp;
1da177e4
LT
3169 struct array_cache *ac;
3170
5c382300 3171 check_irq_off();
8a8b6502 3172
9a2dba4b 3173 ac = cpu_cache_get(cachep);
1da177e4
LT
3174 if (likely(ac->avail)) {
3175 STATS_INC_ALLOCHIT(cachep);
3176 ac->touched = 1;
e498be7d 3177 objp = ac->entry[--ac->avail];
1da177e4
LT
3178 } else {
3179 STATS_INC_ALLOCMISS(cachep);
3180 objp = cache_alloc_refill(cachep, flags);
3181 }
5c382300
AK
3182 return objp;
3183}
3184
e498be7d 3185#ifdef CONFIG_NUMA
c61afb18 3186/*
b2455396 3187 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3188 *
3189 * If we are in_interrupt, then process context, including cpusets and
3190 * mempolicy, may not apply and should not be used for allocation policy.
3191 */
3192static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3193{
3194 int nid_alloc, nid_here;
3195
765c4507 3196 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3197 return NULL;
3198 nid_alloc = nid_here = numa_node_id();
3199 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3200 nid_alloc = cpuset_mem_spread_node();
3201 else if (current->mempolicy)
3202 nid_alloc = slab_node(current->mempolicy);
3203 if (nid_alloc != nid_here)
8b98c169 3204 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3205 return NULL;
3206}
3207
765c4507
CL
3208/*
3209 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3210 * certain node and fall back is permitted. First we scan all the
3211 * available nodelists for available objects. If that fails then we
3212 * perform an allocation without specifying a node. This allows the page
3213 * allocator to do its reclaim / fallback magic. We then insert the
3214 * slab into the proper nodelist and then allocate from it.
765c4507 3215 */
8c8cc2c1 3216static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3217{
8c8cc2c1
PE
3218 struct zonelist *zonelist;
3219 gfp_t local_flags;
765c4507
CL
3220 struct zone **z;
3221 void *obj = NULL;
3c517a61 3222 int nid;
8c8cc2c1
PE
3223
3224 if (flags & __GFP_THISNODE)
3225 return NULL;
3226
3227 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3228 ->node_zonelists[gfp_zone(flags)];
3229 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3230
3c517a61
CL
3231retry:
3232 /*
3233 * Look through allowed nodes for objects available
3234 * from existing per node queues.
3235 */
aedb0eb1 3236 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3237 nid = zone_to_nid(*z);
aedb0eb1 3238
02a0e53d 3239 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3240 cache->nodelists[nid] &&
3241 cache->nodelists[nid]->free_objects)
3242 obj = ____cache_alloc_node(cache,
3243 flags | GFP_THISNODE, nid);
3244 }
3245
cfce6604 3246 if (!obj) {
3c517a61
CL
3247 /*
3248 * This allocation will be performed within the constraints
3249 * of the current cpuset / memory policy requirements.
3250 * We may trigger various forms of reclaim on the allowed
3251 * set and go into memory reserves if necessary.
3252 */
dd47ea75
CL
3253 if (local_flags & __GFP_WAIT)
3254 local_irq_enable();
3255 kmem_flagcheck(cache, flags);
3c517a61 3256 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3257 if (local_flags & __GFP_WAIT)
3258 local_irq_disable();
3c517a61
CL
3259 if (obj) {
3260 /*
3261 * Insert into the appropriate per node queues
3262 */
3263 nid = page_to_nid(virt_to_page(obj));
3264 if (cache_grow(cache, flags, nid, obj)) {
3265 obj = ____cache_alloc_node(cache,
3266 flags | GFP_THISNODE, nid);
3267 if (!obj)
3268 /*
3269 * Another processor may allocate the
3270 * objects in the slab since we are
3271 * not holding any locks.
3272 */
3273 goto retry;
3274 } else {
b6a60451 3275 /* cache_grow already freed obj */
3c517a61
CL
3276 obj = NULL;
3277 }
3278 }
aedb0eb1 3279 }
765c4507
CL
3280 return obj;
3281}
3282
e498be7d
CL
3283/*
3284 * A interface to enable slab creation on nodeid
1da177e4 3285 */
8b98c169 3286static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3287 int nodeid)
e498be7d
CL
3288{
3289 struct list_head *entry;
b28a02de
PE
3290 struct slab *slabp;
3291 struct kmem_list3 *l3;
3292 void *obj;
b28a02de
PE
3293 int x;
3294
3295 l3 = cachep->nodelists[nodeid];
3296 BUG_ON(!l3);
3297
a737b3e2 3298retry:
ca3b9b91 3299 check_irq_off();
b28a02de
PE
3300 spin_lock(&l3->list_lock);
3301 entry = l3->slabs_partial.next;
3302 if (entry == &l3->slabs_partial) {
3303 l3->free_touched = 1;
3304 entry = l3->slabs_free.next;
3305 if (entry == &l3->slabs_free)
3306 goto must_grow;
3307 }
3308
3309 slabp = list_entry(entry, struct slab, list);
3310 check_spinlock_acquired_node(cachep, nodeid);
3311 check_slabp(cachep, slabp);
3312
3313 STATS_INC_NODEALLOCS(cachep);
3314 STATS_INC_ACTIVE(cachep);
3315 STATS_SET_HIGH(cachep);
3316
3317 BUG_ON(slabp->inuse == cachep->num);
3318
78d382d7 3319 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3320 check_slabp(cachep, slabp);
3321 l3->free_objects--;
3322 /* move slabp to correct slabp list: */
3323 list_del(&slabp->list);
3324
a737b3e2 3325 if (slabp->free == BUFCTL_END)
b28a02de 3326 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3327 else
b28a02de 3328 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3329
b28a02de
PE
3330 spin_unlock(&l3->list_lock);
3331 goto done;
e498be7d 3332
a737b3e2 3333must_grow:
b28a02de 3334 spin_unlock(&l3->list_lock);
3c517a61 3335 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3336 if (x)
3337 goto retry;
1da177e4 3338
8c8cc2c1 3339 return fallback_alloc(cachep, flags);
e498be7d 3340
a737b3e2 3341done:
b28a02de 3342 return obj;
e498be7d 3343}
8c8cc2c1
PE
3344
3345/**
3346 * kmem_cache_alloc_node - Allocate an object on the specified node
3347 * @cachep: The cache to allocate from.
3348 * @flags: See kmalloc().
3349 * @nodeid: node number of the target node.
3350 * @caller: return address of caller, used for debug information
3351 *
3352 * Identical to kmem_cache_alloc but it will allocate memory on the given
3353 * node, which can improve the performance for cpu bound structures.
3354 *
3355 * Fallback to other node is possible if __GFP_THISNODE is not set.
3356 */
3357static __always_inline void *
3358__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3359 void *caller)
3360{
3361 unsigned long save_flags;
3362 void *ptr;
3363
824ebef1
AM
3364 if (should_failslab(cachep, flags))
3365 return NULL;
3366
8c8cc2c1
PE
3367 cache_alloc_debugcheck_before(cachep, flags);
3368 local_irq_save(save_flags);
3369
3370 if (unlikely(nodeid == -1))
3371 nodeid = numa_node_id();
3372
3373 if (unlikely(!cachep->nodelists[nodeid])) {
3374 /* Node not bootstrapped yet */
3375 ptr = fallback_alloc(cachep, flags);
3376 goto out;
3377 }
3378
3379 if (nodeid == numa_node_id()) {
3380 /*
3381 * Use the locally cached objects if possible.
3382 * However ____cache_alloc does not allow fallback
3383 * to other nodes. It may fail while we still have
3384 * objects on other nodes available.
3385 */
3386 ptr = ____cache_alloc(cachep, flags);
3387 if (ptr)
3388 goto out;
3389 }
3390 /* ___cache_alloc_node can fall back to other nodes */
3391 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3392 out:
3393 local_irq_restore(save_flags);
3394 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3395
3396 return ptr;
3397}
3398
3399static __always_inline void *
3400__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3401{
3402 void *objp;
3403
3404 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3405 objp = alternate_node_alloc(cache, flags);
3406 if (objp)
3407 goto out;
3408 }
3409 objp = ____cache_alloc(cache, flags);
3410
3411 /*
3412 * We may just have run out of memory on the local node.
3413 * ____cache_alloc_node() knows how to locate memory on other nodes
3414 */
3415 if (!objp)
3416 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3417
3418 out:
3419 return objp;
3420}
3421#else
3422
3423static __always_inline void *
3424__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3425{
3426 return ____cache_alloc(cachep, flags);
3427}
3428
3429#endif /* CONFIG_NUMA */
3430
3431static __always_inline void *
3432__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3433{
3434 unsigned long save_flags;
3435 void *objp;
3436
824ebef1
AM
3437 if (should_failslab(cachep, flags))
3438 return NULL;
3439
8c8cc2c1
PE
3440 cache_alloc_debugcheck_before(cachep, flags);
3441 local_irq_save(save_flags);
3442 objp = __do_cache_alloc(cachep, flags);
3443 local_irq_restore(save_flags);
3444 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3445 prefetchw(objp);
3446
3447 return objp;
3448}
e498be7d
CL
3449
3450/*
3451 * Caller needs to acquire correct kmem_list's list_lock
3452 */
343e0d7a 3453static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3454 int node)
1da177e4
LT
3455{
3456 int i;
e498be7d 3457 struct kmem_list3 *l3;
1da177e4
LT
3458
3459 for (i = 0; i < nr_objects; i++) {
3460 void *objp = objpp[i];
3461 struct slab *slabp;
1da177e4 3462
6ed5eb22 3463 slabp = virt_to_slab(objp);
ff69416e 3464 l3 = cachep->nodelists[node];
1da177e4 3465 list_del(&slabp->list);
ff69416e 3466 check_spinlock_acquired_node(cachep, node);
1da177e4 3467 check_slabp(cachep, slabp);
78d382d7 3468 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3469 STATS_DEC_ACTIVE(cachep);
e498be7d 3470 l3->free_objects++;
1da177e4
LT
3471 check_slabp(cachep, slabp);
3472
3473 /* fixup slab chains */
3474 if (slabp->inuse == 0) {
e498be7d
CL
3475 if (l3->free_objects > l3->free_limit) {
3476 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3477 /* No need to drop any previously held
3478 * lock here, even if we have a off-slab slab
3479 * descriptor it is guaranteed to come from
3480 * a different cache, refer to comments before
3481 * alloc_slabmgmt.
3482 */
1da177e4
LT
3483 slab_destroy(cachep, slabp);
3484 } else {
e498be7d 3485 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3486 }
3487 } else {
3488 /* Unconditionally move a slab to the end of the
3489 * partial list on free - maximum time for the
3490 * other objects to be freed, too.
3491 */
e498be7d 3492 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3493 }
3494 }
3495}
3496
343e0d7a 3497static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3498{
3499 int batchcount;
e498be7d 3500 struct kmem_list3 *l3;
ff69416e 3501 int node = numa_node_id();
1da177e4
LT
3502
3503 batchcount = ac->batchcount;
3504#if DEBUG
3505 BUG_ON(!batchcount || batchcount > ac->avail);
3506#endif
3507 check_irq_off();
ff69416e 3508 l3 = cachep->nodelists[node];
873623df 3509 spin_lock(&l3->list_lock);
e498be7d
CL
3510 if (l3->shared) {
3511 struct array_cache *shared_array = l3->shared;
b28a02de 3512 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3513 if (max) {
3514 if (batchcount > max)
3515 batchcount = max;
e498be7d 3516 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3517 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3518 shared_array->avail += batchcount;
3519 goto free_done;
3520 }
3521 }
3522
ff69416e 3523 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3524free_done:
1da177e4
LT
3525#if STATS
3526 {
3527 int i = 0;
3528 struct list_head *p;
3529
e498be7d
CL
3530 p = l3->slabs_free.next;
3531 while (p != &(l3->slabs_free)) {
1da177e4
LT
3532 struct slab *slabp;
3533
3534 slabp = list_entry(p, struct slab, list);
3535 BUG_ON(slabp->inuse);
3536
3537 i++;
3538 p = p->next;
3539 }
3540 STATS_SET_FREEABLE(cachep, i);
3541 }
3542#endif
e498be7d 3543 spin_unlock(&l3->list_lock);
1da177e4 3544 ac->avail -= batchcount;
a737b3e2 3545 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3546}
3547
3548/*
a737b3e2
AM
3549 * Release an obj back to its cache. If the obj has a constructed state, it must
3550 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3551 */
873623df 3552static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3553{
9a2dba4b 3554 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3555
3556 check_irq_off();
3557 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3558
62918a03 3559 if (use_alien_caches && cache_free_alien(cachep, objp))
729bd0b7
PE
3560 return;
3561
1da177e4
LT
3562 if (likely(ac->avail < ac->limit)) {
3563 STATS_INC_FREEHIT(cachep);
e498be7d 3564 ac->entry[ac->avail++] = objp;
1da177e4
LT
3565 return;
3566 } else {
3567 STATS_INC_FREEMISS(cachep);
3568 cache_flusharray(cachep, ac);
e498be7d 3569 ac->entry[ac->avail++] = objp;
1da177e4
LT
3570 }
3571}
3572
3573/**
3574 * kmem_cache_alloc - Allocate an object
3575 * @cachep: The cache to allocate from.
3576 * @flags: See kmalloc().
3577 *
3578 * Allocate an object from this cache. The flags are only relevant
3579 * if the cache has no available objects.
3580 */
343e0d7a 3581void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3582{
7fd6b141 3583 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3584}
3585EXPORT_SYMBOL(kmem_cache_alloc);
3586
a8c0f9a4 3587/**
b8008b2b 3588 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3589 * @cache: The cache to allocate from.
3590 * @flags: See kmalloc().
3591 *
3592 * Allocate an object from this cache and set the allocated memory to zero.
3593 * The flags are only relevant if the cache has no available objects.
3594 */
3595void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3596{
3597 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3598 if (ret)
3599 memset(ret, 0, obj_size(cache));
3600 return ret;
3601}
3602EXPORT_SYMBOL(kmem_cache_zalloc);
3603
1da177e4
LT
3604/**
3605 * kmem_ptr_validate - check if an untrusted pointer might
3606 * be a slab entry.
3607 * @cachep: the cache we're checking against
3608 * @ptr: pointer to validate
3609 *
3610 * This verifies that the untrusted pointer looks sane:
3611 * it is _not_ a guarantee that the pointer is actually
3612 * part of the slab cache in question, but it at least
3613 * validates that the pointer can be dereferenced and
3614 * looks half-way sane.
3615 *
3616 * Currently only used for dentry validation.
3617 */
b7f869a2 3618int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3619{
b28a02de 3620 unsigned long addr = (unsigned long)ptr;
1da177e4 3621 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3622 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3623 unsigned long size = cachep->buffer_size;
1da177e4
LT
3624 struct page *page;
3625
3626 if (unlikely(addr < min_addr))
3627 goto out;
3628 if (unlikely(addr > (unsigned long)high_memory - size))
3629 goto out;
3630 if (unlikely(addr & align_mask))
3631 goto out;
3632 if (unlikely(!kern_addr_valid(addr)))
3633 goto out;
3634 if (unlikely(!kern_addr_valid(addr + size - 1)))
3635 goto out;
3636 page = virt_to_page(ptr);
3637 if (unlikely(!PageSlab(page)))
3638 goto out;
065d41cb 3639 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3640 goto out;
3641 return 1;
a737b3e2 3642out:
1da177e4
LT
3643 return 0;
3644}
3645
3646#ifdef CONFIG_NUMA
8b98c169
CH
3647void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3648{
3649 return __cache_alloc_node(cachep, flags, nodeid,
3650 __builtin_return_address(0));
3651}
1da177e4
LT
3652EXPORT_SYMBOL(kmem_cache_alloc_node);
3653
8b98c169
CH
3654static __always_inline void *
3655__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3656{
343e0d7a 3657 struct kmem_cache *cachep;
97e2bde4
MS
3658
3659 cachep = kmem_find_general_cachep(size, flags);
3660 if (unlikely(cachep == NULL))
3661 return NULL;
3662 return kmem_cache_alloc_node(cachep, flags, node);
3663}
8b98c169
CH
3664
3665#ifdef CONFIG_DEBUG_SLAB
3666void *__kmalloc_node(size_t size, gfp_t flags, int node)
3667{
3668 return __do_kmalloc_node(size, flags, node,
3669 __builtin_return_address(0));
3670}
dbe5e69d 3671EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3672
3673void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3674 int node, void *caller)
3675{
3676 return __do_kmalloc_node(size, flags, node, caller);
3677}
3678EXPORT_SYMBOL(__kmalloc_node_track_caller);
3679#else
3680void *__kmalloc_node(size_t size, gfp_t flags, int node)
3681{
3682 return __do_kmalloc_node(size, flags, node, NULL);
3683}
3684EXPORT_SYMBOL(__kmalloc_node);
3685#endif /* CONFIG_DEBUG_SLAB */
3686#endif /* CONFIG_NUMA */
1da177e4
LT
3687
3688/**
800590f5 3689 * __do_kmalloc - allocate memory
1da177e4 3690 * @size: how many bytes of memory are required.
800590f5 3691 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3692 * @caller: function caller for debug tracking of the caller
1da177e4 3693 */
7fd6b141
PE
3694static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3695 void *caller)
1da177e4 3696{
343e0d7a 3697 struct kmem_cache *cachep;
1da177e4 3698
97e2bde4
MS
3699 /* If you want to save a few bytes .text space: replace
3700 * __ with kmem_.
3701 * Then kmalloc uses the uninlined functions instead of the inline
3702 * functions.
3703 */
3704 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3705 if (unlikely(cachep == NULL))
3706 return NULL;
7fd6b141
PE
3707 return __cache_alloc(cachep, flags, caller);
3708}
3709
7fd6b141 3710
1d2c8eea 3711#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3712void *__kmalloc(size_t size, gfp_t flags)
3713{
871751e2 3714 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3715}
3716EXPORT_SYMBOL(__kmalloc);
3717
7fd6b141
PE
3718void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3719{
3720 return __do_kmalloc(size, flags, caller);
3721}
3722EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3723
3724#else
3725void *__kmalloc(size_t size, gfp_t flags)
3726{
3727 return __do_kmalloc(size, flags, NULL);
3728}
3729EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3730#endif
3731
fd76bab2
PE
3732/**
3733 * krealloc - reallocate memory. The contents will remain unchanged.
fd76bab2
PE
3734 * @p: object to reallocate memory for.
3735 * @new_size: how many bytes of memory are required.
3736 * @flags: the type of memory to allocate.
3737 *
3738 * The contents of the object pointed to are preserved up to the
3739 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3740 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3741 * %NULL pointer, the object pointed to is freed.
3742 */
3743void *krealloc(const void *p, size_t new_size, gfp_t flags)
3744{
3745 struct kmem_cache *cache, *new_cache;
3746 void *ret;
3747
3748 if (unlikely(!p))
3749 return kmalloc_track_caller(new_size, flags);
3750
3751 if (unlikely(!new_size)) {
3752 kfree(p);
3753 return NULL;
3754 }
3755
3756 cache = virt_to_cache(p);
3757 new_cache = __find_general_cachep(new_size, flags);
3758
3759 /*
3760 * If new size fits in the current cache, bail out.
3761 */
3762 if (likely(cache == new_cache))
3763 return (void *)p;
3764
3765 /*
3766 * We are on the slow-path here so do not use __cache_alloc
3767 * because it bloats kernel text.
3768 */
3769 ret = kmalloc_track_caller(new_size, flags);
3770 if (ret) {
3771 memcpy(ret, p, min(new_size, ksize(p)));
3772 kfree(p);
3773 }
3774 return ret;
3775}
3776EXPORT_SYMBOL(krealloc);
3777
1da177e4
LT
3778/**
3779 * kmem_cache_free - Deallocate an object
3780 * @cachep: The cache the allocation was from.
3781 * @objp: The previously allocated object.
3782 *
3783 * Free an object which was previously allocated from this
3784 * cache.
3785 */
343e0d7a 3786void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3787{
3788 unsigned long flags;
3789
ddc2e812
PE
3790 BUG_ON(virt_to_cache(objp) != cachep);
3791
1da177e4 3792 local_irq_save(flags);
898552c9 3793 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3794 __cache_free(cachep, objp);
1da177e4
LT
3795 local_irq_restore(flags);
3796}
3797EXPORT_SYMBOL(kmem_cache_free);
3798
1da177e4
LT
3799/**
3800 * kfree - free previously allocated memory
3801 * @objp: pointer returned by kmalloc.
3802 *
80e93eff
PE
3803 * If @objp is NULL, no operation is performed.
3804 *
1da177e4
LT
3805 * Don't free memory not originally allocated by kmalloc()
3806 * or you will run into trouble.
3807 */
3808void kfree(const void *objp)
3809{
343e0d7a 3810 struct kmem_cache *c;
1da177e4
LT
3811 unsigned long flags;
3812
3813 if (unlikely(!objp))
3814 return;
3815 local_irq_save(flags);
3816 kfree_debugcheck(objp);
6ed5eb22 3817 c = virt_to_cache(objp);
f9b8404c 3818 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3819 __cache_free(c, (void *)objp);
1da177e4
LT
3820 local_irq_restore(flags);
3821}
3822EXPORT_SYMBOL(kfree);
3823
343e0d7a 3824unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3825{
3dafccf2 3826 return obj_size(cachep);
1da177e4
LT
3827}
3828EXPORT_SYMBOL(kmem_cache_size);
3829
343e0d7a 3830const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3831{
3832 return cachep->name;
3833}
3834EXPORT_SYMBOL_GPL(kmem_cache_name);
3835
e498be7d 3836/*
0718dc2a 3837 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3838 */
343e0d7a 3839static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3840{
3841 int node;
3842 struct kmem_list3 *l3;
cafeb02e 3843 struct array_cache *new_shared;
3395ee05 3844 struct array_cache **new_alien = NULL;
e498be7d
CL
3845
3846 for_each_online_node(node) {
cafeb02e 3847
3395ee05
PM
3848 if (use_alien_caches) {
3849 new_alien = alloc_alien_cache(node, cachep->limit);
3850 if (!new_alien)
3851 goto fail;
3852 }
cafeb02e 3853
63109846
ED
3854 new_shared = NULL;
3855 if (cachep->shared) {
3856 new_shared = alloc_arraycache(node,
0718dc2a 3857 cachep->shared*cachep->batchcount,
a737b3e2 3858 0xbaadf00d);
63109846
ED
3859 if (!new_shared) {
3860 free_alien_cache(new_alien);
3861 goto fail;
3862 }
0718dc2a 3863 }
cafeb02e 3864
a737b3e2
AM
3865 l3 = cachep->nodelists[node];
3866 if (l3) {
cafeb02e
CL
3867 struct array_cache *shared = l3->shared;
3868
e498be7d
CL
3869 spin_lock_irq(&l3->list_lock);
3870
cafeb02e 3871 if (shared)
0718dc2a
CL
3872 free_block(cachep, shared->entry,
3873 shared->avail, node);
e498be7d 3874
cafeb02e
CL
3875 l3->shared = new_shared;
3876 if (!l3->alien) {
e498be7d
CL
3877 l3->alien = new_alien;
3878 new_alien = NULL;
3879 }
b28a02de 3880 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3881 cachep->batchcount + cachep->num;
e498be7d 3882 spin_unlock_irq(&l3->list_lock);
cafeb02e 3883 kfree(shared);
e498be7d
CL
3884 free_alien_cache(new_alien);
3885 continue;
3886 }
a737b3e2 3887 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3888 if (!l3) {
3889 free_alien_cache(new_alien);
3890 kfree(new_shared);
e498be7d 3891 goto fail;
0718dc2a 3892 }
e498be7d
CL
3893
3894 kmem_list3_init(l3);
3895 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3896 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3897 l3->shared = new_shared;
e498be7d 3898 l3->alien = new_alien;
b28a02de 3899 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3900 cachep->batchcount + cachep->num;
e498be7d
CL
3901 cachep->nodelists[node] = l3;
3902 }
cafeb02e 3903 return 0;
0718dc2a 3904
a737b3e2 3905fail:
0718dc2a
CL
3906 if (!cachep->next.next) {
3907 /* Cache is not active yet. Roll back what we did */
3908 node--;
3909 while (node >= 0) {
3910 if (cachep->nodelists[node]) {
3911 l3 = cachep->nodelists[node];
3912
3913 kfree(l3->shared);
3914 free_alien_cache(l3->alien);
3915 kfree(l3);
3916 cachep->nodelists[node] = NULL;
3917 }
3918 node--;
3919 }
3920 }
cafeb02e 3921 return -ENOMEM;
e498be7d
CL
3922}
3923
1da177e4 3924struct ccupdate_struct {
343e0d7a 3925 struct kmem_cache *cachep;
1da177e4
LT
3926 struct array_cache *new[NR_CPUS];
3927};
3928
3929static void do_ccupdate_local(void *info)
3930{
a737b3e2 3931 struct ccupdate_struct *new = info;
1da177e4
LT
3932 struct array_cache *old;
3933
3934 check_irq_off();
9a2dba4b 3935 old = cpu_cache_get(new->cachep);
e498be7d 3936
1da177e4
LT
3937 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3938 new->new[smp_processor_id()] = old;
3939}
3940
b5d8ca7c 3941/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3942static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3943 int batchcount, int shared)
1da177e4 3944{
d2e7b7d0 3945 struct ccupdate_struct *new;
2ed3a4ef 3946 int i;
1da177e4 3947
d2e7b7d0
SS
3948 new = kzalloc(sizeof(*new), GFP_KERNEL);
3949 if (!new)
3950 return -ENOMEM;
3951
e498be7d 3952 for_each_online_cpu(i) {
d2e7b7d0 3953 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3954 batchcount);
d2e7b7d0 3955 if (!new->new[i]) {
b28a02de 3956 for (i--; i >= 0; i--)
d2e7b7d0
SS
3957 kfree(new->new[i]);
3958 kfree(new);
e498be7d 3959 return -ENOMEM;
1da177e4
LT
3960 }
3961 }
d2e7b7d0 3962 new->cachep = cachep;
1da177e4 3963
d2e7b7d0 3964 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3965
1da177e4 3966 check_irq_on();
1da177e4
LT
3967 cachep->batchcount = batchcount;
3968 cachep->limit = limit;
e498be7d 3969 cachep->shared = shared;
1da177e4 3970
e498be7d 3971 for_each_online_cpu(i) {
d2e7b7d0 3972 struct array_cache *ccold = new->new[i];
1da177e4
LT
3973 if (!ccold)
3974 continue;
e498be7d 3975 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3976 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3977 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3978 kfree(ccold);
3979 }
d2e7b7d0 3980 kfree(new);
2ed3a4ef 3981 return alloc_kmemlist(cachep);
1da177e4
LT
3982}
3983
b5d8ca7c 3984/* Called with cache_chain_mutex held always */
2ed3a4ef 3985static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3986{
3987 int err;
3988 int limit, shared;
3989
a737b3e2
AM
3990 /*
3991 * The head array serves three purposes:
1da177e4
LT
3992 * - create a LIFO ordering, i.e. return objects that are cache-warm
3993 * - reduce the number of spinlock operations.
a737b3e2 3994 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3995 * bufctl chains: array operations are cheaper.
3996 * The numbers are guessed, we should auto-tune as described by
3997 * Bonwick.
3998 */
3dafccf2 3999 if (cachep->buffer_size > 131072)
1da177e4 4000 limit = 1;
3dafccf2 4001 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4002 limit = 8;
3dafccf2 4003 else if (cachep->buffer_size > 1024)
1da177e4 4004 limit = 24;
3dafccf2 4005 else if (cachep->buffer_size > 256)
1da177e4
LT
4006 limit = 54;
4007 else
4008 limit = 120;
4009
a737b3e2
AM
4010 /*
4011 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4012 * allocation behaviour: Most allocs on one cpu, most free operations
4013 * on another cpu. For these cases, an efficient object passing between
4014 * cpus is necessary. This is provided by a shared array. The array
4015 * replaces Bonwick's magazine layer.
4016 * On uniprocessor, it's functionally equivalent (but less efficient)
4017 * to a larger limit. Thus disabled by default.
4018 */
4019 shared = 0;
364fbb29 4020 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4021 shared = 8;
1da177e4
LT
4022
4023#if DEBUG
a737b3e2
AM
4024 /*
4025 * With debugging enabled, large batchcount lead to excessively long
4026 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4027 */
4028 if (limit > 32)
4029 limit = 32;
4030#endif
b28a02de 4031 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4032 if (err)
4033 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4034 cachep->name, -err);
2ed3a4ef 4035 return err;
1da177e4
LT
4036}
4037
1b55253a
CL
4038/*
4039 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4040 * necessary. Note that the l3 listlock also protects the array_cache
4041 * if drain_array() is used on the shared array.
1b55253a
CL
4042 */
4043void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4044 struct array_cache *ac, int force, int node)
1da177e4
LT
4045{
4046 int tofree;
4047
1b55253a
CL
4048 if (!ac || !ac->avail)
4049 return;
1da177e4
LT
4050 if (ac->touched && !force) {
4051 ac->touched = 0;
b18e7e65 4052 } else {
1b55253a 4053 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4054 if (ac->avail) {
4055 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4056 if (tofree > ac->avail)
4057 tofree = (ac->avail + 1) / 2;
4058 free_block(cachep, ac->entry, tofree, node);
4059 ac->avail -= tofree;
4060 memmove(ac->entry, &(ac->entry[tofree]),
4061 sizeof(void *) * ac->avail);
4062 }
1b55253a 4063 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4064 }
4065}
4066
4067/**
4068 * cache_reap - Reclaim memory from caches.
05fb6bf0 4069 * @w: work descriptor
1da177e4
LT
4070 *
4071 * Called from workqueue/eventd every few seconds.
4072 * Purpose:
4073 * - clear the per-cpu caches for this CPU.
4074 * - return freeable pages to the main free memory pool.
4075 *
a737b3e2
AM
4076 * If we cannot acquire the cache chain mutex then just give up - we'll try
4077 * again on the next iteration.
1da177e4 4078 */
7c5cae36 4079static void cache_reap(struct work_struct *w)
1da177e4 4080{
7a7c381d 4081 struct kmem_cache *searchp;
e498be7d 4082 struct kmem_list3 *l3;
aab2207c 4083 int node = numa_node_id();
7c5cae36
CL
4084 struct delayed_work *work =
4085 container_of(w, struct delayed_work, work);
1da177e4 4086
7c5cae36 4087 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4088 /* Give up. Setup the next iteration. */
7c5cae36 4089 goto out;
1da177e4 4090
7a7c381d 4091 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4092 check_irq_on();
4093
35386e3b
CL
4094 /*
4095 * We only take the l3 lock if absolutely necessary and we
4096 * have established with reasonable certainty that
4097 * we can do some work if the lock was obtained.
4098 */
aab2207c 4099 l3 = searchp->nodelists[node];
35386e3b 4100
8fce4d8e 4101 reap_alien(searchp, l3);
1da177e4 4102
aab2207c 4103 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4104
35386e3b
CL
4105 /*
4106 * These are racy checks but it does not matter
4107 * if we skip one check or scan twice.
4108 */
e498be7d 4109 if (time_after(l3->next_reap, jiffies))
35386e3b 4110 goto next;
1da177e4 4111
e498be7d 4112 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4113
aab2207c 4114 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4115
ed11d9eb 4116 if (l3->free_touched)
e498be7d 4117 l3->free_touched = 0;
ed11d9eb
CL
4118 else {
4119 int freed;
1da177e4 4120
ed11d9eb
CL
4121 freed = drain_freelist(searchp, l3, (l3->free_limit +
4122 5 * searchp->num - 1) / (5 * searchp->num));
4123 STATS_ADD_REAPED(searchp, freed);
4124 }
35386e3b 4125next:
1da177e4
LT
4126 cond_resched();
4127 }
4128 check_irq_on();
fc0abb14 4129 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4130 next_reap_node();
7c5cae36 4131out:
a737b3e2 4132 /* Set up the next iteration */
7c5cae36 4133 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4134}
4135
4136#ifdef CONFIG_PROC_FS
4137
85289f98 4138static void print_slabinfo_header(struct seq_file *m)
1da177e4 4139{
85289f98
PE
4140 /*
4141 * Output format version, so at least we can change it
4142 * without _too_ many complaints.
4143 */
1da177e4 4144#if STATS
85289f98 4145 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4146#else
85289f98 4147 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4148#endif
85289f98
PE
4149 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4150 "<objperslab> <pagesperslab>");
4151 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4152 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4153#if STATS
85289f98 4154 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4155 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4156 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4157#endif
85289f98
PE
4158 seq_putc(m, '\n');
4159}
4160
4161static void *s_start(struct seq_file *m, loff_t *pos)
4162{
4163 loff_t n = *pos;
4164 struct list_head *p;
4165
fc0abb14 4166 mutex_lock(&cache_chain_mutex);
85289f98
PE
4167 if (!n)
4168 print_slabinfo_header(m);
1da177e4
LT
4169 p = cache_chain.next;
4170 while (n--) {
4171 p = p->next;
4172 if (p == &cache_chain)
4173 return NULL;
4174 }
343e0d7a 4175 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
4176}
4177
4178static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4179{
343e0d7a 4180 struct kmem_cache *cachep = p;
1da177e4 4181 ++*pos;
a737b3e2
AM
4182 return cachep->next.next == &cache_chain ?
4183 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
4184}
4185
4186static void s_stop(struct seq_file *m, void *p)
4187{
fc0abb14 4188 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4189}
4190
4191static int s_show(struct seq_file *m, void *p)
4192{
343e0d7a 4193 struct kmem_cache *cachep = p;
b28a02de
PE
4194 struct slab *slabp;
4195 unsigned long active_objs;
4196 unsigned long num_objs;
4197 unsigned long active_slabs = 0;
4198 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4199 const char *name;
1da177e4 4200 char *error = NULL;
e498be7d
CL
4201 int node;
4202 struct kmem_list3 *l3;
1da177e4 4203
1da177e4
LT
4204 active_objs = 0;
4205 num_slabs = 0;
e498be7d
CL
4206 for_each_online_node(node) {
4207 l3 = cachep->nodelists[node];
4208 if (!l3)
4209 continue;
4210
ca3b9b91
RT
4211 check_irq_on();
4212 spin_lock_irq(&l3->list_lock);
e498be7d 4213
7a7c381d 4214 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4215 if (slabp->inuse != cachep->num && !error)
4216 error = "slabs_full accounting error";
4217 active_objs += cachep->num;
4218 active_slabs++;
4219 }
7a7c381d 4220 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4221 if (slabp->inuse == cachep->num && !error)
4222 error = "slabs_partial inuse accounting error";
4223 if (!slabp->inuse && !error)
4224 error = "slabs_partial/inuse accounting error";
4225 active_objs += slabp->inuse;
4226 active_slabs++;
4227 }
7a7c381d 4228 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4229 if (slabp->inuse && !error)
4230 error = "slabs_free/inuse accounting error";
4231 num_slabs++;
4232 }
4233 free_objects += l3->free_objects;
4484ebf1
RT
4234 if (l3->shared)
4235 shared_avail += l3->shared->avail;
e498be7d 4236
ca3b9b91 4237 spin_unlock_irq(&l3->list_lock);
1da177e4 4238 }
b28a02de
PE
4239 num_slabs += active_slabs;
4240 num_objs = num_slabs * cachep->num;
e498be7d 4241 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4242 error = "free_objects accounting error";
4243
b28a02de 4244 name = cachep->name;
1da177e4
LT
4245 if (error)
4246 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4247
4248 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4249 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4250 cachep->num, (1 << cachep->gfporder));
1da177e4 4251 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4252 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4253 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4254 active_slabs, num_slabs, shared_avail);
1da177e4 4255#if STATS
b28a02de 4256 { /* list3 stats */
1da177e4
LT
4257 unsigned long high = cachep->high_mark;
4258 unsigned long allocs = cachep->num_allocations;
4259 unsigned long grown = cachep->grown;
4260 unsigned long reaped = cachep->reaped;
4261 unsigned long errors = cachep->errors;
4262 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4263 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4264 unsigned long node_frees = cachep->node_frees;
fb7faf33 4265 unsigned long overflows = cachep->node_overflow;
1da177e4 4266
e498be7d 4267 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4268 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4269 reaped, errors, max_freeable, node_allocs,
fb7faf33 4270 node_frees, overflows);
1da177e4
LT
4271 }
4272 /* cpu stats */
4273 {
4274 unsigned long allochit = atomic_read(&cachep->allochit);
4275 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4276 unsigned long freehit = atomic_read(&cachep->freehit);
4277 unsigned long freemiss = atomic_read(&cachep->freemiss);
4278
4279 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4280 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4281 }
4282#endif
4283 seq_putc(m, '\n');
1da177e4
LT
4284 return 0;
4285}
4286
4287/*
4288 * slabinfo_op - iterator that generates /proc/slabinfo
4289 *
4290 * Output layout:
4291 * cache-name
4292 * num-active-objs
4293 * total-objs
4294 * object size
4295 * num-active-slabs
4296 * total-slabs
4297 * num-pages-per-slab
4298 * + further values on SMP and with statistics enabled
4299 */
4300
15ad7cdc 4301const struct seq_operations slabinfo_op = {
b28a02de
PE
4302 .start = s_start,
4303 .next = s_next,
4304 .stop = s_stop,
4305 .show = s_show,
1da177e4
LT
4306};
4307
4308#define MAX_SLABINFO_WRITE 128
4309/**
4310 * slabinfo_write - Tuning for the slab allocator
4311 * @file: unused
4312 * @buffer: user buffer
4313 * @count: data length
4314 * @ppos: unused
4315 */
b28a02de
PE
4316ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4317 size_t count, loff_t *ppos)
1da177e4 4318{
b28a02de 4319 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4320 int limit, batchcount, shared, res;
7a7c381d 4321 struct kmem_cache *cachep;
b28a02de 4322
1da177e4
LT
4323 if (count > MAX_SLABINFO_WRITE)
4324 return -EINVAL;
4325 if (copy_from_user(&kbuf, buffer, count))
4326 return -EFAULT;
b28a02de 4327 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4328
4329 tmp = strchr(kbuf, ' ');
4330 if (!tmp)
4331 return -EINVAL;
4332 *tmp = '\0';
4333 tmp++;
4334 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4335 return -EINVAL;
4336
4337 /* Find the cache in the chain of caches. */
fc0abb14 4338 mutex_lock(&cache_chain_mutex);
1da177e4 4339 res = -EINVAL;
7a7c381d 4340 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4341 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4342 if (limit < 1 || batchcount < 1 ||
4343 batchcount > limit || shared < 0) {
e498be7d 4344 res = 0;
1da177e4 4345 } else {
e498be7d 4346 res = do_tune_cpucache(cachep, limit,
b28a02de 4347 batchcount, shared);
1da177e4
LT
4348 }
4349 break;
4350 }
4351 }
fc0abb14 4352 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4353 if (res >= 0)
4354 res = count;
4355 return res;
4356}
871751e2
AV
4357
4358#ifdef CONFIG_DEBUG_SLAB_LEAK
4359
4360static void *leaks_start(struct seq_file *m, loff_t *pos)
4361{
4362 loff_t n = *pos;
4363 struct list_head *p;
4364
4365 mutex_lock(&cache_chain_mutex);
4366 p = cache_chain.next;
4367 while (n--) {
4368 p = p->next;
4369 if (p == &cache_chain)
4370 return NULL;
4371 }
4372 return list_entry(p, struct kmem_cache, next);
4373}
4374
4375static inline int add_caller(unsigned long *n, unsigned long v)
4376{
4377 unsigned long *p;
4378 int l;
4379 if (!v)
4380 return 1;
4381 l = n[1];
4382 p = n + 2;
4383 while (l) {
4384 int i = l/2;
4385 unsigned long *q = p + 2 * i;
4386 if (*q == v) {
4387 q[1]++;
4388 return 1;
4389 }
4390 if (*q > v) {
4391 l = i;
4392 } else {
4393 p = q + 2;
4394 l -= i + 1;
4395 }
4396 }
4397 if (++n[1] == n[0])
4398 return 0;
4399 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4400 p[0] = v;
4401 p[1] = 1;
4402 return 1;
4403}
4404
4405static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4406{
4407 void *p;
4408 int i;
4409 if (n[0] == n[1])
4410 return;
4411 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4412 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4413 continue;
4414 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4415 return;
4416 }
4417}
4418
4419static void show_symbol(struct seq_file *m, unsigned long address)
4420{
4421#ifdef CONFIG_KALLSYMS
871751e2 4422 unsigned long offset, size;
a5c43dae 4423 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
871751e2 4424
a5c43dae 4425 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4426 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4427 if (modname[0])
871751e2
AV
4428 seq_printf(m, " [%s]", modname);
4429 return;
4430 }
4431#endif
4432 seq_printf(m, "%p", (void *)address);
4433}
4434
4435static int leaks_show(struct seq_file *m, void *p)
4436{
4437 struct kmem_cache *cachep = p;
871751e2
AV
4438 struct slab *slabp;
4439 struct kmem_list3 *l3;
4440 const char *name;
4441 unsigned long *n = m->private;
4442 int node;
4443 int i;
4444
4445 if (!(cachep->flags & SLAB_STORE_USER))
4446 return 0;
4447 if (!(cachep->flags & SLAB_RED_ZONE))
4448 return 0;
4449
4450 /* OK, we can do it */
4451
4452 n[1] = 0;
4453
4454 for_each_online_node(node) {
4455 l3 = cachep->nodelists[node];
4456 if (!l3)
4457 continue;
4458
4459 check_irq_on();
4460 spin_lock_irq(&l3->list_lock);
4461
7a7c381d 4462 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4463 handle_slab(n, cachep, slabp);
7a7c381d 4464 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4465 handle_slab(n, cachep, slabp);
871751e2
AV
4466 spin_unlock_irq(&l3->list_lock);
4467 }
4468 name = cachep->name;
4469 if (n[0] == n[1]) {
4470 /* Increase the buffer size */
4471 mutex_unlock(&cache_chain_mutex);
4472 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4473 if (!m->private) {
4474 /* Too bad, we are really out */
4475 m->private = n;
4476 mutex_lock(&cache_chain_mutex);
4477 return -ENOMEM;
4478 }
4479 *(unsigned long *)m->private = n[0] * 2;
4480 kfree(n);
4481 mutex_lock(&cache_chain_mutex);
4482 /* Now make sure this entry will be retried */
4483 m->count = m->size;
4484 return 0;
4485 }
4486 for (i = 0; i < n[1]; i++) {
4487 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4488 show_symbol(m, n[2*i+2]);
4489 seq_putc(m, '\n');
4490 }
d2e7b7d0 4491
871751e2
AV
4492 return 0;
4493}
4494
15ad7cdc 4495const struct seq_operations slabstats_op = {
871751e2
AV
4496 .start = leaks_start,
4497 .next = s_next,
4498 .stop = s_stop,
4499 .show = leaks_show,
4500};
4501#endif
1da177e4
LT
4502#endif
4503
00e145b6
MS
4504/**
4505 * ksize - get the actual amount of memory allocated for a given object
4506 * @objp: Pointer to the object
4507 *
4508 * kmalloc may internally round up allocations and return more memory
4509 * than requested. ksize() can be used to determine the actual amount of
4510 * memory allocated. The caller may use this additional memory, even though
4511 * a smaller amount of memory was initially specified with the kmalloc call.
4512 * The caller must guarantee that objp points to a valid object previously
4513 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4514 * must not be freed during the duration of the call.
4515 */
fd76bab2 4516size_t ksize(const void *objp)
1da177e4 4517{
00e145b6
MS
4518 if (unlikely(objp == NULL))
4519 return 0;
1da177e4 4520
6ed5eb22 4521 return obj_size(virt_to_cache(objp));
1da177e4 4522}