slub: make ->size unsigned int
[linux-2.6-block.git] / mm / slab.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
183ff22b 30 * slabs and you must pass objects with the same initializations to
1da177e4
LT
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
a737b3e2 54 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
343e0d7a 59 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
18004c5d 72 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
e498be7d
CL
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
88 */
89
1da177e4
LT
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
4fd0b46e
AD
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6a2d7a95 409/*
3b0efdfa
CL
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
6a2d7a95
ED
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 416 const struct page *page, void *obj)
8fea4e96 417{
8456a648 418 u32 offset = (obj - page->s_mem);
6a2d7a95 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
420}
421
6fb92430 422#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 423/* internal cache of cache description objs */
9b030cb8 424static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
3b0efdfa 428 .size = sizeof(struct kmem_cache),
b28a02de 429 .name = "kmem_cache",
1da177e4
LT
430};
431
1871e52c 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 433
343e0d7a 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 435{
bf0dea23 436 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
437}
438
a737b3e2
AM
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
70f75067 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
d50112ed 443 slab_flags_t flags, size_t *left_over)
fbaccacf 444{
70f75067 445 unsigned int num;
fbaccacf 446 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 447
fbaccacf
SR
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
fbaccacf 453 * - @buffer_size bytes for each object
2e6b3602
JK
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
fbaccacf
SR
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
b03a017b 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 466 num = slab_size / buffer_size;
2e6b3602 467 *left_over = slab_size % buffer_size;
fbaccacf 468 } else {
70f75067 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 472 }
70f75067
JK
473
474 return num;
1da177e4
LT
475}
476
f28510d3 477#if DEBUG
d40cee24 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 479
a737b3e2
AM
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
1da177e4 482{
1170532b 483 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 484 function, cachep->name, msg);
1da177e4 485 dump_stack();
373d4d09 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 487}
f28510d3 488#endif
1da177e4 489
3395ee05
PM
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
3df1cccd
DR
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
8fce4d8e
CL
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
1871e52c 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
525
526static void init_reap_node(int cpu)
527{
0edaf86c
AM
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
8fce4d8e
CL
530}
531
532static void next_reap_node(void)
533{
909ea964 534 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 535
0edaf86c 536 node = next_node_in(node, node_online_map);
909ea964 537 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
1da177e4
LT
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
0db0628d 552static void start_cpu_timer(int cpu)
1da177e4 553{
1871e52c 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 555
eac0337a 556 if (reap_work->work.func == NULL) {
8fce4d8e 557 init_reap_node(cpu);
203b42f7 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
561 }
562}
563
1fe00d50 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 565{
d5cff635
CM
566 /*
567 * The array_cache structures contain pointers to free object.
25985edc 568 * However, when such objects are allocated or transferred to another
d5cff635
CM
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
1fe00d50
JK
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
1da177e4 579 }
1fe00d50
JK
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
5e804789 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
1da177e4
LT
591}
592
f68f8ddd
JK
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
072bb0aa 595{
f68f8ddd
JK
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
072bb0aa 599
f68f8ddd
JK
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
381760ea 602
f68f8ddd
JK
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
381760ea 606
f68f8ddd 607 slabs_destroy(cachep, &list);
072bb0aa
MG
608}
609
3ded175a
CL
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
732eacc0 620 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
3ded175a
CL
630 return nr;
631}
632
765c4507
CL
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 636#define reap_alien(cachep, n) do { } while (0)
765c4507 637
c8522a3a
JK
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
765c4507 640{
8888177e 641 return NULL;
765c4507
CL
642}
643
c8522a3a 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
8b98c169 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
4167e9b2
DR
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
444eb2a4 667 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
668}
669
765c4507
CL
670#else /* CONFIG_NUMA */
671
8b98c169 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 674
c8522a3a
JK
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
5e804789 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
49dfc304 683 spin_lock_init(&alc->lock);
c8522a3a
JK
684 return alc;
685}
686
687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 688{
c8522a3a 689 struct alien_cache **alc_ptr;
5e804789 690 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
691 int i;
692
693 if (limit > 1)
694 limit = 12;
c8522a3a
JK
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
e498be7d
CL
708 }
709 }
c8522a3a 710 return alc_ptr;
e498be7d
CL
711}
712
c8522a3a 713static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
714{
715 int i;
716
c8522a3a 717 if (!alc_ptr)
e498be7d 718 return;
e498be7d 719 for_each_node(i)
c8522a3a
JK
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
e498be7d
CL
722}
723
343e0d7a 724static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
725 struct array_cache *ac, int node,
726 struct list_head *list)
e498be7d 727{
18bf8541 728 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
729
730 if (ac->avail) {
ce8eb6c4 731 spin_lock(&n->list_lock);
e00946fe
CL
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
ce8eb6c4
CL
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
e00946fe 739
833b706c 740 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 741 ac->avail = 0;
ce8eb6c4 742 spin_unlock(&n->list_lock);
e498be7d
CL
743 }
744}
745
8fce4d8e
CL
746/*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
ce8eb6c4 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 750{
909ea964 751 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 752
ce8eb6c4 753 if (n->alien) {
c8522a3a
JK
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
49dfc304 759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 763 spin_unlock_irq(&alc->lock);
833b706c 764 slabs_destroy(cachep, &list);
c8522a3a 765 }
8fce4d8e
CL
766 }
767 }
768}
769
a737b3e2 770static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 771 struct alien_cache **alien)
e498be7d 772{
b28a02de 773 int i = 0;
c8522a3a 774 struct alien_cache *alc;
e498be7d
CL
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
c8522a3a
JK
779 alc = alien[i];
780 if (alc) {
833b706c
JK
781 LIST_HEAD(list);
782
c8522a3a 783 ac = &alc->ac;
49dfc304 784 spin_lock_irqsave(&alc->lock, flags);
833b706c 785 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 786 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 787 slabs_destroy(cachep, &list);
e498be7d
CL
788 }
789 }
790}
729bd0b7 791
25c4f304
JK
792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
729bd0b7 794{
ce8eb6c4 795 struct kmem_cache_node *n;
c8522a3a
JK
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
97654dfa 798 LIST_HEAD(list);
1ca4cb24 799
18bf8541 800 n = get_node(cachep, node);
729bd0b7 801 STATS_INC_NODEFREES(cachep);
25c4f304
JK
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
c8522a3a 804 ac = &alien->ac;
49dfc304 805 spin_lock(&alien->lock);
c8522a3a 806 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 807 STATS_INC_ACOVERFLOW(cachep);
25c4f304 808 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 809 }
f68f8ddd 810 ac->entry[ac->avail++] = objp;
49dfc304 811 spin_unlock(&alien->lock);
833b706c 812 slabs_destroy(cachep, &list);
729bd0b7 813 } else {
25c4f304 814 n = get_node(cachep, page_node);
18bf8541 815 spin_lock(&n->list_lock);
25c4f304 816 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 817 spin_unlock(&n->list_lock);
97654dfa 818 slabs_destroy(cachep, &list);
729bd0b7
PE
819 }
820 return 1;
821}
25c4f304
JK
822
823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824{
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835}
4167e9b2
DR
836
837/*
444eb2a4
MG
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
4167e9b2
DR
840 */
841static inline gfp_t gfp_exact_node(gfp_t flags)
842{
444eb2a4 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 844}
e498be7d
CL
845#endif
846
ded0ecf6
JK
847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848{
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885}
886
6731d4f1 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 888/*
6a67368c 889 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 891 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 892 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
893 * already in use.
894 *
18004c5d 895 * Must hold slab_mutex.
8f9f8d9e 896 */
6a67368c 897static int init_cache_node_node(int node)
8f9f8d9e 898{
ded0ecf6 899 int ret;
8f9f8d9e 900 struct kmem_cache *cachep;
8f9f8d9e 901
18004c5d 902 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
8f9f8d9e 906 }
ded0ecf6 907
8f9f8d9e
DR
908 return 0;
909}
6731d4f1 910#endif
8f9f8d9e 911
c3d332b6
JK
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
801faf0d
JK
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
86d9f485 967 if (old_shared && force_change)
801faf0d
JK
968 synchronize_sched();
969
c3d332b6
JK
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
6731d4f1
SAS
978#ifdef CONFIG_SMP
979
0db0628d 980static void cpuup_canceled(long cpu)
fbf1e473
AM
981{
982 struct kmem_cache *cachep;
ce8eb6c4 983 struct kmem_cache_node *n = NULL;
7d6e6d09 984 int node = cpu_to_mem(cpu);
a70f7302 985 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 986
18004c5d 987 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
988 struct array_cache *nc;
989 struct array_cache *shared;
c8522a3a 990 struct alien_cache **alien;
97654dfa 991 LIST_HEAD(list);
fbf1e473 992
18bf8541 993 n = get_node(cachep, node);
ce8eb6c4 994 if (!n)
bf0dea23 995 continue;
fbf1e473 996
ce8eb6c4 997 spin_lock_irq(&n->list_lock);
fbf1e473 998
ce8eb6c4
CL
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
97654dfa 1005 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1006 nc->avail = 0;
1007 }
fbf1e473 1008
58463c1f 1009 if (!cpumask_empty(mask)) {
ce8eb6c4 1010 spin_unlock_irq(&n->list_lock);
bf0dea23 1011 goto free_slab;
fbf1e473
AM
1012 }
1013
ce8eb6c4 1014 shared = n->shared;
fbf1e473
AM
1015 if (shared) {
1016 free_block(cachep, shared->entry,
97654dfa 1017 shared->avail, node, &list);
ce8eb6c4 1018 n->shared = NULL;
fbf1e473
AM
1019 }
1020
ce8eb6c4
CL
1021 alien = n->alien;
1022 n->alien = NULL;
fbf1e473 1023
ce8eb6c4 1024 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
bf0dea23
JK
1031
1032free_slab:
97654dfa 1033 slabs_destroy(cachep, &list);
fbf1e473
AM
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
18004c5d 1040 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1041 n = get_node(cachep, node);
ce8eb6c4 1042 if (!n)
fbf1e473 1043 continue;
a5aa63a5 1044 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1045 }
1046}
1047
0db0628d 1048static int cpuup_prepare(long cpu)
1da177e4 1049{
343e0d7a 1050 struct kmem_cache *cachep;
7d6e6d09 1051 int node = cpu_to_mem(cpu);
8f9f8d9e 1052 int err;
1da177e4 1053
fbf1e473
AM
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1058 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1059 */
6a67368c 1060 err = init_cache_node_node(node);
8f9f8d9e
DR
1061 if (err < 0)
1062 goto bad;
fbf1e473
AM
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
18004c5d 1068 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
fbf1e473 1072 }
ce79ddc8 1073
fbf1e473
AM
1074 return 0;
1075bad:
12d00f6a 1076 cpuup_canceled(cpu);
fbf1e473
AM
1077 return -ENOMEM;
1078}
1079
6731d4f1 1080int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1081{
6731d4f1 1082 int err;
fbf1e473 1083
6731d4f1
SAS
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106}
8f5be20b 1107#endif
6731d4f1
SAS
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111 start_cpu_timer(cpu);
1112 return 0;
1da177e4
LT
1113}
1114
6731d4f1
SAS
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127}
1da177e4 1128
8f9f8d9e
DR
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
18004c5d 1135 * Must hold slab_mutex.
8f9f8d9e 1136 */
6a67368c 1137static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1138{
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
18004c5d 1142 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1143 struct kmem_cache_node *n;
8f9f8d9e 1144
18bf8541 1145 n = get_node(cachep, node);
ce8eb6c4 1146 if (!n)
8f9f8d9e
DR
1147 continue;
1148
a5aa63a5 1149 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1150
ce8eb6c4
CL
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162{
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
18004c5d 1173 mutex_lock(&slab_mutex);
6a67368c 1174 ret = init_cache_node_node(nid);
18004c5d 1175 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1176 break;
1177 case MEM_GOING_OFFLINE:
18004c5d 1178 mutex_lock(&slab_mutex);
6a67368c 1179 ret = drain_cache_node_node(nid);
18004c5d 1180 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188out:
5fda1bd5 1189 return notifier_from_errno(ret);
8f9f8d9e
DR
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
e498be7d 1193/*
ce8eb6c4 1194 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1195 */
6744f087 1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1197 int nodeid)
e498be7d 1198{
6744f087 1199 struct kmem_cache_node *ptr;
e498be7d 1200
6744f087 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1202 BUG_ON(!ptr);
1203
6744f087 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
e498be7d 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1211 cachep->node[nodeid] = ptr;
e498be7d
CL
1212}
1213
556a169d 1214/*
ce8eb6c4
CL
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
556a169d 1217 */
ce8eb6c4 1218static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1219{
1220 int node;
1221
1222 for_each_online_node(node) {
ce8eb6c4 1223 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1224 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1227 }
1228}
1229
a737b3e2
AM
1230/*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1da177e4
LT
1233 */
1234void __init kmem_cache_init(void)
1235{
e498be7d
CL
1236 int i;
1237
68126702
JK
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
9b030cb8
CL
1240 kmem_cache = &kmem_cache_boot;
1241
8888177e 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1243 use_alien_caches = 0;
1244
3c583465 1245 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1247
1da177e4
LT
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1da177e4 1252 */
3df1cccd 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1254 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1255
1da177e4
LT
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
9b030cb8
CL
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
e498be7d 1261 * Initially an __init data area is used for the head array and the
ce8eb6c4 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1263 * array at the end of the bootstrap.
1da177e4 1264 * 2) Create the first kmalloc cache.
343e0d7a 1265 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
9b030cb8 1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1270 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1274 */
1275
9b030cb8 1276 /* 1) create the kmem_cache */
1da177e4 1277
8da3430d 1278 /*
b56efcf0 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1280 */
2f9baa9f 1281 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1282 offsetof(struct kmem_cache, node) +
6744f087 1283 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 1284 SLAB_HWCACHE_ALIGN, 0, 0);
2f9baa9f 1285 list_add(&kmem_cache->list, &slab_caches);
880cd276 1286 memcg_link_cache(kmem_cache);
bf0dea23 1287 slab_state = PARTIAL;
1da177e4 1288
a737b3e2 1289 /*
bf0dea23
JK
1290 * Initialize the caches that provide memory for the kmem_cache_node
1291 * structures first. Without this, further allocations will bug.
e498be7d 1292 */
af3b5f87
VB
1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294 kmalloc_info[INDEX_NODE].name,
6c0c21ad
DW
1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1296 0, kmalloc_size(INDEX_NODE));
bf0dea23 1297 slab_state = PARTIAL_NODE;
34cc6990 1298 setup_kmalloc_cache_index_table();
e498be7d 1299
e0a42726
IM
1300 slab_early_init = 0;
1301
ce8eb6c4 1302 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1303 {
1ca4cb24
PE
1304 int nid;
1305
9c09a95c 1306 for_each_online_node(nid) {
ce8eb6c4 1307 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1308
bf0dea23 1309 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1310 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1311 }
1312 }
1da177e4 1313
f97d5f63 1314 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1315}
1316
1317void __init kmem_cache_init_late(void)
1318{
1319 struct kmem_cache *cachep;
1320
8429db5c 1321 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1322 mutex_lock(&slab_mutex);
1323 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1324 if (enable_cpucache(cachep, GFP_NOWAIT))
1325 BUG();
18004c5d 1326 mutex_unlock(&slab_mutex);
056c6241 1327
97d06609
CL
1328 /* Done! */
1329 slab_state = FULL;
1330
8f9f8d9e
DR
1331#ifdef CONFIG_NUMA
1332 /*
1333 * Register a memory hotplug callback that initializes and frees
6a67368c 1334 * node.
8f9f8d9e
DR
1335 */
1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
a737b3e2
AM
1339 /*
1340 * The reap timers are started later, with a module init call: That part
1341 * of the kernel is not yet operational.
1da177e4
LT
1342 */
1343}
1344
1345static int __init cpucache_init(void)
1346{
6731d4f1 1347 int ret;
1da177e4 1348
a737b3e2
AM
1349 /*
1350 * Register the timers that return unneeded pages to the page allocator
1da177e4 1351 */
6731d4f1
SAS
1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 slab_online_cpu, slab_offline_cpu);
1354 WARN_ON(ret < 0);
a164f896 1355
1da177e4
LT
1356 return 0;
1357}
1da177e4
LT
1358__initcall(cpucache_init);
1359
8bdec192
RA
1360static noinline void
1361slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362{
9a02d699 1363#if DEBUG
ce8eb6c4 1364 struct kmem_cache_node *n;
8bdec192
RA
1365 unsigned long flags;
1366 int node;
9a02d699
DR
1367 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368 DEFAULT_RATELIMIT_BURST);
1369
1370 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371 return;
8bdec192 1372
5b3810e5
VB
1373 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374 nodeid, gfpflags, &gfpflags);
1375 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1376 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1377
18bf8541 1378 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1379 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1380
ce8eb6c4 1381 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1382 total_slabs = n->total_slabs;
1383 free_slabs = n->free_slabs;
1384 free_objs = n->free_objects;
ce8eb6c4 1385 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1386
bf00bd34
DR
1387 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388 node, total_slabs - free_slabs, total_slabs,
1389 (total_slabs * cachep->num) - free_objs,
1390 total_slabs * cachep->num);
8bdec192 1391 }
9a02d699 1392#endif
8bdec192
RA
1393}
1394
1da177e4 1395/*
8a7d9b43
WSH
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1da177e4
LT
1398 *
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1402 */
0c3aa83e
JK
1403static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404 int nodeid)
1da177e4
LT
1405{
1406 struct page *page;
e1b6aa6f 1407 int nr_pages;
765c4507 1408
a618e89f 1409 flags |= cachep->allocflags;
e1b6aa6f 1410
75f296d9 1411 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
8bdec192 1412 if (!page) {
9a02d699 1413 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1414 return NULL;
8bdec192 1415 }
1da177e4 1416
f3ccb2c4
VD
1417 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1418 __free_pages(page, cachep->gfporder);
1419 return NULL;
1420 }
1421
e1b6aa6f 1422 nr_pages = (1 << cachep->gfporder);
1da177e4 1423 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1424 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1425 else
7779f212 1426 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1427
a57a4988 1428 __SetPageSlab(page);
f68f8ddd
JK
1429 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1430 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1431 SetPageSlabPfmemalloc(page);
072bb0aa 1432
0c3aa83e 1433 return page;
1da177e4
LT
1434}
1435
1436/*
1437 * Interface to system's page release.
1438 */
0c3aa83e 1439static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1440{
27ee57c9
VD
1441 int order = cachep->gfporder;
1442 unsigned long nr_freed = (1 << order);
1da177e4 1443
972d1a7b 1444 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1445 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1446 else
7779f212 1447 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1448
a57a4988 1449 BUG_ON(!PageSlab(page));
73293c2f 1450 __ClearPageSlabPfmemalloc(page);
a57a4988 1451 __ClearPageSlab(page);
8456a648
JK
1452 page_mapcount_reset(page);
1453 page->mapping = NULL;
1f458cbf 1454
1da177e4
LT
1455 if (current->reclaim_state)
1456 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1457 memcg_uncharge_slab(page, order, cachep);
1458 __free_pages(page, order);
1da177e4
LT
1459}
1460
1461static void kmem_rcu_free(struct rcu_head *head)
1462{
68126702
JK
1463 struct kmem_cache *cachep;
1464 struct page *page;
1da177e4 1465
68126702
JK
1466 page = container_of(head, struct page, rcu_head);
1467 cachep = page->slab_cache;
1468
1469 kmem_freepages(cachep, page);
1da177e4
LT
1470}
1471
1472#if DEBUG
40b44137
JK
1473static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1474{
1475 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1476 (cachep->size % PAGE_SIZE) == 0)
1477 return true;
1478
1479 return false;
1480}
1da177e4
LT
1481
1482#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1483static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1484 unsigned long caller)
1da177e4 1485{
8c138bc0 1486 int size = cachep->object_size;
1da177e4 1487
3dafccf2 1488 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1489
b28a02de 1490 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1491 return;
1492
b28a02de
PE
1493 *addr++ = 0x12345678;
1494 *addr++ = caller;
1495 *addr++ = smp_processor_id();
1496 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1497 {
1498 unsigned long *sptr = &caller;
1499 unsigned long svalue;
1500
1501 while (!kstack_end(sptr)) {
1502 svalue = *sptr++;
1503 if (kernel_text_address(svalue)) {
b28a02de 1504 *addr++ = svalue;
1da177e4
LT
1505 size -= sizeof(unsigned long);
1506 if (size <= sizeof(unsigned long))
1507 break;
1508 }
1509 }
1510
1511 }
b28a02de 1512 *addr++ = 0x87654321;
1da177e4 1513}
40b44137
JK
1514
1515static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1516 int map, unsigned long caller)
1517{
1518 if (!is_debug_pagealloc_cache(cachep))
1519 return;
1520
1521 if (caller)
1522 store_stackinfo(cachep, objp, caller);
1523
1524 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1525}
1526
1527#else
1528static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1529 int map, unsigned long caller) {}
1530
1da177e4
LT
1531#endif
1532
343e0d7a 1533static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1534{
8c138bc0 1535 int size = cachep->object_size;
3dafccf2 1536 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1537
1538 memset(addr, val, size);
b28a02de 1539 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1540}
1541
1542static void dump_line(char *data, int offset, int limit)
1543{
1544 int i;
aa83aa40
DJ
1545 unsigned char error = 0;
1546 int bad_count = 0;
1547
1170532b 1548 pr_err("%03x: ", offset);
aa83aa40
DJ
1549 for (i = 0; i < limit; i++) {
1550 if (data[offset + i] != POISON_FREE) {
1551 error = data[offset + i];
1552 bad_count++;
1553 }
aa83aa40 1554 }
fdde6abb
SAS
1555 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1556 &data[offset], limit, 1);
aa83aa40
DJ
1557
1558 if (bad_count == 1) {
1559 error ^= POISON_FREE;
1560 if (!(error & (error - 1))) {
1170532b 1561 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1562#ifdef CONFIG_X86
1170532b 1563 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1564#else
1170532b 1565 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1566#endif
1567 }
1568 }
1da177e4
LT
1569}
1570#endif
1571
1572#if DEBUG
1573
343e0d7a 1574static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1575{
1576 int i, size;
1577 char *realobj;
1578
1579 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1580 pr_err("Redzone: 0x%llx/0x%llx\n",
1581 *dbg_redzone1(cachep, objp),
1582 *dbg_redzone2(cachep, objp));
1da177e4
LT
1583 }
1584
85c3e4a5
GU
1585 if (cachep->flags & SLAB_STORE_USER)
1586 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
3dafccf2 1587 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1588 size = cachep->object_size;
b28a02de 1589 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1590 int limit;
1591 limit = 16;
b28a02de
PE
1592 if (i + limit > size)
1593 limit = size - i;
1da177e4
LT
1594 dump_line(realobj, i, limit);
1595 }
1596}
1597
343e0d7a 1598static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1599{
1600 char *realobj;
1601 int size, i;
1602 int lines = 0;
1603
40b44137
JK
1604 if (is_debug_pagealloc_cache(cachep))
1605 return;
1606
3dafccf2 1607 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1608 size = cachep->object_size;
1da177e4 1609
b28a02de 1610 for (i = 0; i < size; i++) {
1da177e4 1611 char exp = POISON_FREE;
b28a02de 1612 if (i == size - 1)
1da177e4
LT
1613 exp = POISON_END;
1614 if (realobj[i] != exp) {
1615 int limit;
1616 /* Mismatch ! */
1617 /* Print header */
1618 if (lines == 0) {
85c3e4a5 1619 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1170532b
JP
1620 print_tainted(), cachep->name,
1621 realobj, size);
1da177e4
LT
1622 print_objinfo(cachep, objp, 0);
1623 }
1624 /* Hexdump the affected line */
b28a02de 1625 i = (i / 16) * 16;
1da177e4 1626 limit = 16;
b28a02de
PE
1627 if (i + limit > size)
1628 limit = size - i;
1da177e4
LT
1629 dump_line(realobj, i, limit);
1630 i += 16;
1631 lines++;
1632 /* Limit to 5 lines */
1633 if (lines > 5)
1634 break;
1635 }
1636 }
1637 if (lines != 0) {
1638 /* Print some data about the neighboring objects, if they
1639 * exist:
1640 */
8456a648 1641 struct page *page = virt_to_head_page(objp);
8fea4e96 1642 unsigned int objnr;
1da177e4 1643
8456a648 1644 objnr = obj_to_index(cachep, page, objp);
1da177e4 1645 if (objnr) {
8456a648 1646 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1647 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1648 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1649 print_objinfo(cachep, objp, 2);
1650 }
b28a02de 1651 if (objnr + 1 < cachep->num) {
8456a648 1652 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1653 realobj = (char *)objp + obj_offset(cachep);
85c3e4a5 1654 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1da177e4
LT
1655 print_objinfo(cachep, objp, 2);
1656 }
1657 }
1658}
1659#endif
1660
12dd36fa 1661#if DEBUG
8456a648
JK
1662static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1663 struct page *page)
1da177e4 1664{
1da177e4 1665 int i;
b03a017b
JK
1666
1667 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1668 poison_obj(cachep, page->freelist - obj_offset(cachep),
1669 POISON_FREE);
1670 }
1671
1da177e4 1672 for (i = 0; i < cachep->num; i++) {
8456a648 1673 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1674
1675 if (cachep->flags & SLAB_POISON) {
1da177e4 1676 check_poison_obj(cachep, objp);
40b44137 1677 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1678 }
1679 if (cachep->flags & SLAB_RED_ZONE) {
1680 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1681 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1682 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1683 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1684 }
1da177e4 1685 }
12dd36fa 1686}
1da177e4 1687#else
8456a648
JK
1688static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1689 struct page *page)
12dd36fa 1690{
12dd36fa 1691}
1da177e4
LT
1692#endif
1693
911851e6
RD
1694/**
1695 * slab_destroy - destroy and release all objects in a slab
1696 * @cachep: cache pointer being destroyed
cb8ee1a3 1697 * @page: page pointer being destroyed
911851e6 1698 *
8a7d9b43
WSH
1699 * Destroy all the objs in a slab page, and release the mem back to the system.
1700 * Before calling the slab page must have been unlinked from the cache. The
1701 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1702 */
8456a648 1703static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1704{
7e007355 1705 void *freelist;
12dd36fa 1706
8456a648
JK
1707 freelist = page->freelist;
1708 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1709 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1710 call_rcu(&page->rcu_head, kmem_rcu_free);
1711 else
0c3aa83e 1712 kmem_freepages(cachep, page);
68126702
JK
1713
1714 /*
8456a648 1715 * From now on, we don't use freelist
68126702
JK
1716 * although actual page can be freed in rcu context
1717 */
1718 if (OFF_SLAB(cachep))
8456a648 1719 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1720}
1721
97654dfa
JK
1722static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1723{
1724 struct page *page, *n;
1725
1726 list_for_each_entry_safe(page, n, list, lru) {
1727 list_del(&page->lru);
1728 slab_destroy(cachep, page);
1729 }
1730}
1731
4d268eba 1732/**
a70773dd
RD
1733 * calculate_slab_order - calculate size (page order) of slabs
1734 * @cachep: pointer to the cache that is being created
1735 * @size: size of objects to be created in this cache.
a70773dd
RD
1736 * @flags: slab allocation flags
1737 *
1738 * Also calculates the number of objects per slab.
4d268eba
PE
1739 *
1740 * This could be made much more intelligent. For now, try to avoid using
1741 * high order pages for slabs. When the gfp() functions are more friendly
1742 * towards high-order requests, this should be changed.
1743 */
a737b3e2 1744static size_t calculate_slab_order(struct kmem_cache *cachep,
d50112ed 1745 size_t size, slab_flags_t flags)
4d268eba
PE
1746{
1747 size_t left_over = 0;
9888e6fa 1748 int gfporder;
4d268eba 1749
0aa817f0 1750 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1751 unsigned int num;
1752 size_t remainder;
1753
70f75067 1754 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1755 if (!num)
1756 continue;
9888e6fa 1757
f315e3fa
JK
1758 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1759 if (num > SLAB_OBJ_MAX_NUM)
1760 break;
1761
b1ab41c4 1762 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1763 struct kmem_cache *freelist_cache;
1764 size_t freelist_size;
1765
1766 freelist_size = num * sizeof(freelist_idx_t);
1767 freelist_cache = kmalloc_slab(freelist_size, 0u);
1768 if (!freelist_cache)
1769 continue;
1770
b1ab41c4 1771 /*
3217fd9b 1772 * Needed to avoid possible looping condition
76b342bd 1773 * in cache_grow_begin()
b1ab41c4 1774 */
3217fd9b
JK
1775 if (OFF_SLAB(freelist_cache))
1776 continue;
b1ab41c4 1777
3217fd9b
JK
1778 /* check if off slab has enough benefit */
1779 if (freelist_cache->size > cachep->size / 2)
1780 continue;
b1ab41c4 1781 }
4d268eba 1782
9888e6fa 1783 /* Found something acceptable - save it away */
4d268eba 1784 cachep->num = num;
9888e6fa 1785 cachep->gfporder = gfporder;
4d268eba
PE
1786 left_over = remainder;
1787
f78bb8ad
LT
1788 /*
1789 * A VFS-reclaimable slab tends to have most allocations
1790 * as GFP_NOFS and we really don't want to have to be allocating
1791 * higher-order pages when we are unable to shrink dcache.
1792 */
1793 if (flags & SLAB_RECLAIM_ACCOUNT)
1794 break;
1795
4d268eba
PE
1796 /*
1797 * Large number of objects is good, but very large slabs are
1798 * currently bad for the gfp()s.
1799 */
543585cc 1800 if (gfporder >= slab_max_order)
4d268eba
PE
1801 break;
1802
9888e6fa
LT
1803 /*
1804 * Acceptable internal fragmentation?
1805 */
a737b3e2 1806 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1807 break;
1808 }
1809 return left_over;
1810}
1811
bf0dea23
JK
1812static struct array_cache __percpu *alloc_kmem_cache_cpus(
1813 struct kmem_cache *cachep, int entries, int batchcount)
1814{
1815 int cpu;
1816 size_t size;
1817 struct array_cache __percpu *cpu_cache;
1818
1819 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1820 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1821
1822 if (!cpu_cache)
1823 return NULL;
1824
1825 for_each_possible_cpu(cpu) {
1826 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1827 entries, batchcount);
1828 }
1829
1830 return cpu_cache;
1831}
1832
bd721ea7 1833static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1834{
97d06609 1835 if (slab_state >= FULL)
83b519e8 1836 return enable_cpucache(cachep, gfp);
2ed3a4ef 1837
bf0dea23
JK
1838 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1839 if (!cachep->cpu_cache)
1840 return 1;
1841
97d06609 1842 if (slab_state == DOWN) {
bf0dea23
JK
1843 /* Creation of first cache (kmem_cache). */
1844 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1845 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1846 /* For kmem_cache_node */
1847 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1848 } else {
bf0dea23 1849 int node;
f30cf7d1 1850
bf0dea23
JK
1851 for_each_online_node(node) {
1852 cachep->node[node] = kmalloc_node(
1853 sizeof(struct kmem_cache_node), gfp, node);
1854 BUG_ON(!cachep->node[node]);
1855 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1856 }
1857 }
bf0dea23 1858
6a67368c 1859 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1860 jiffies + REAPTIMEOUT_NODE +
1861 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1862
1863 cpu_cache_get(cachep)->avail = 0;
1864 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1865 cpu_cache_get(cachep)->batchcount = 1;
1866 cpu_cache_get(cachep)->touched = 0;
1867 cachep->batchcount = 1;
1868 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1869 return 0;
f30cf7d1
PE
1870}
1871
d50112ed
AD
1872slab_flags_t kmem_cache_flags(unsigned long object_size,
1873 slab_flags_t flags, const char *name,
12220dea
JK
1874 void (*ctor)(void *))
1875{
1876 return flags;
1877}
1878
1879struct kmem_cache *
f4957d5b 1880__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 1881 slab_flags_t flags, void (*ctor)(void *))
12220dea
JK
1882{
1883 struct kmem_cache *cachep;
1884
1885 cachep = find_mergeable(size, align, flags, name, ctor);
1886 if (cachep) {
1887 cachep->refcount++;
1888
1889 /*
1890 * Adjust the object sizes so that we clear
1891 * the complete object on kzalloc.
1892 */
1893 cachep->object_size = max_t(int, cachep->object_size, size);
1894 }
1895 return cachep;
1896}
1897
b03a017b 1898static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
d50112ed 1899 size_t size, slab_flags_t flags)
b03a017b
JK
1900{
1901 size_t left;
1902
1903 cachep->num = 0;
1904
5f0d5a3a 1905 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1906 return false;
1907
1908 left = calculate_slab_order(cachep, size,
1909 flags | CFLGS_OBJFREELIST_SLAB);
1910 if (!cachep->num)
1911 return false;
1912
1913 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1914 return false;
1915
1916 cachep->colour = left / cachep->colour_off;
1917
1918 return true;
1919}
1920
158e319b 1921static bool set_off_slab_cache(struct kmem_cache *cachep,
d50112ed 1922 size_t size, slab_flags_t flags)
158e319b
JK
1923{
1924 size_t left;
1925
1926 cachep->num = 0;
1927
1928 /*
3217fd9b
JK
1929 * Always use on-slab management when SLAB_NOLEAKTRACE
1930 * to avoid recursive calls into kmemleak.
158e319b 1931 */
158e319b
JK
1932 if (flags & SLAB_NOLEAKTRACE)
1933 return false;
1934
1935 /*
1936 * Size is large, assume best to place the slab management obj
1937 * off-slab (should allow better packing of objs).
1938 */
1939 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1940 if (!cachep->num)
1941 return false;
1942
1943 /*
1944 * If the slab has been placed off-slab, and we have enough space then
1945 * move it on-slab. This is at the expense of any extra colouring.
1946 */
1947 if (left >= cachep->num * sizeof(freelist_idx_t))
1948 return false;
1949
1950 cachep->colour = left / cachep->colour_off;
1951
1952 return true;
1953}
1954
1955static bool set_on_slab_cache(struct kmem_cache *cachep,
d50112ed 1956 size_t size, slab_flags_t flags)
158e319b
JK
1957{
1958 size_t left;
1959
1960 cachep->num = 0;
1961
1962 left = calculate_slab_order(cachep, size, flags);
1963 if (!cachep->num)
1964 return false;
1965
1966 cachep->colour = left / cachep->colour_off;
1967
1968 return true;
1969}
1970
1da177e4 1971/**
039363f3 1972 * __kmem_cache_create - Create a cache.
a755b76a 1973 * @cachep: cache management descriptor
1da177e4 1974 * @flags: SLAB flags
1da177e4
LT
1975 *
1976 * Returns a ptr to the cache on success, NULL on failure.
1977 * Cannot be called within a int, but can be interrupted.
20c2df83 1978 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1979 *
1da177e4
LT
1980 * The flags are
1981 *
1982 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1983 * to catch references to uninitialised memory.
1984 *
1985 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1986 * for buffer overruns.
1987 *
1da177e4
LT
1988 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1989 * cacheline. This can be beneficial if you're counting cycles as closely
1990 * as davem.
1991 */
d50112ed 1992int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1da177e4 1993{
d4a5fca5 1994 size_t ralign = BYTES_PER_WORD;
83b519e8 1995 gfp_t gfp;
278b1bb1 1996 int err;
8a13a4cc 1997 size_t size = cachep->size;
1da177e4 1998
1da177e4 1999#if DEBUG
1da177e4
LT
2000#if FORCED_DEBUG
2001 /*
2002 * Enable redzoning and last user accounting, except for caches with
2003 * large objects, if the increased size would increase the object size
2004 * above the next power of two: caches with object sizes just above a
2005 * power of two have a significant amount of internal fragmentation.
2006 */
87a927c7
DW
2007 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2008 2 * sizeof(unsigned long long)))
b28a02de 2009 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2010 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2011 flags |= SLAB_POISON;
2012#endif
1da177e4 2013#endif
1da177e4 2014
a737b3e2
AM
2015 /*
2016 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2017 * unaligned accesses for some archs when redzoning is used, and makes
2018 * sure any on-slab bufctl's are also correctly aligned.
2019 */
e0771950 2020 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2021
87a927c7
DW
2022 if (flags & SLAB_RED_ZONE) {
2023 ralign = REDZONE_ALIGN;
2024 /* If redzoning, ensure that the second redzone is suitably
2025 * aligned, by adjusting the object size accordingly. */
e0771950 2026 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2027 }
ca5f9703 2028
a44b56d3 2029 /* 3) caller mandated alignment */
8a13a4cc
CL
2030 if (ralign < cachep->align) {
2031 ralign = cachep->align;
1da177e4 2032 }
3ff84a7f
PE
2033 /* disable debug if necessary */
2034 if (ralign > __alignof__(unsigned long long))
a44b56d3 2035 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2036 /*
ca5f9703 2037 * 4) Store it.
1da177e4 2038 */
8a13a4cc 2039 cachep->align = ralign;
158e319b
JK
2040 cachep->colour_off = cache_line_size();
2041 /* Offset must be a multiple of the alignment. */
2042 if (cachep->colour_off < cachep->align)
2043 cachep->colour_off = cachep->align;
1da177e4 2044
83b519e8
PE
2045 if (slab_is_available())
2046 gfp = GFP_KERNEL;
2047 else
2048 gfp = GFP_NOWAIT;
2049
1da177e4 2050#if DEBUG
1da177e4 2051
ca5f9703
PE
2052 /*
2053 * Both debugging options require word-alignment which is calculated
2054 * into align above.
2055 */
1da177e4 2056 if (flags & SLAB_RED_ZONE) {
1da177e4 2057 /* add space for red zone words */
3ff84a7f
PE
2058 cachep->obj_offset += sizeof(unsigned long long);
2059 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2060 }
2061 if (flags & SLAB_STORE_USER) {
ca5f9703 2062 /* user store requires one word storage behind the end of
87a927c7
DW
2063 * the real object. But if the second red zone needs to be
2064 * aligned to 64 bits, we must allow that much space.
1da177e4 2065 */
87a927c7
DW
2066 if (flags & SLAB_RED_ZONE)
2067 size += REDZONE_ALIGN;
2068 else
2069 size += BYTES_PER_WORD;
1da177e4 2070 }
832a15d2
JK
2071#endif
2072
7ed2f9e6
AP
2073 kasan_cache_create(cachep, &size, &flags);
2074
832a15d2
JK
2075 size = ALIGN(size, cachep->align);
2076 /*
2077 * We should restrict the number of objects in a slab to implement
2078 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2079 */
2080 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2081 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2082
2083#if DEBUG
03a2d2a3
JK
2084 /*
2085 * To activate debug pagealloc, off-slab management is necessary
2086 * requirement. In early phase of initialization, small sized slab
2087 * doesn't get initialized so it would not be possible. So, we need
2088 * to check size >= 256. It guarantees that all necessary small
2089 * sized slab is initialized in current slab initialization sequence.
2090 */
40323278 2091 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2092 size >= 256 && cachep->object_size > cache_line_size()) {
2093 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2094 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2095
2096 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2097 flags |= CFLGS_OFF_SLAB;
2098 cachep->obj_offset += tmp_size - size;
2099 size = tmp_size;
2100 goto done;
2101 }
2102 }
1da177e4 2103 }
1da177e4
LT
2104#endif
2105
b03a017b
JK
2106 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2107 flags |= CFLGS_OBJFREELIST_SLAB;
2108 goto done;
2109 }
2110
158e319b 2111 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2112 flags |= CFLGS_OFF_SLAB;
158e319b 2113 goto done;
832a15d2 2114 }
1da177e4 2115
158e319b
JK
2116 if (set_on_slab_cache(cachep, size, flags))
2117 goto done;
1da177e4 2118
158e319b 2119 return -E2BIG;
1da177e4 2120
158e319b
JK
2121done:
2122 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2123 cachep->flags = flags;
a57a4988 2124 cachep->allocflags = __GFP_COMP;
a3187e43 2125 if (flags & SLAB_CACHE_DMA)
a618e89f 2126 cachep->allocflags |= GFP_DMA;
a3ba0744
DR
2127 if (flags & SLAB_RECLAIM_ACCOUNT)
2128 cachep->allocflags |= __GFP_RECLAIMABLE;
3b0efdfa 2129 cachep->size = size;
6a2d7a95 2130 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2131
40b44137
JK
2132#if DEBUG
2133 /*
2134 * If we're going to use the generic kernel_map_pages()
2135 * poisoning, then it's going to smash the contents of
2136 * the redzone and userword anyhow, so switch them off.
2137 */
2138 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2139 (cachep->flags & SLAB_POISON) &&
2140 is_debug_pagealloc_cache(cachep))
2141 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2142#endif
2143
2144 if (OFF_SLAB(cachep)) {
158e319b
JK
2145 cachep->freelist_cache =
2146 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2147 }
1da177e4 2148
278b1bb1
CL
2149 err = setup_cpu_cache(cachep, gfp);
2150 if (err) {
52b4b950 2151 __kmem_cache_release(cachep);
278b1bb1 2152 return err;
2ed3a4ef 2153 }
1da177e4 2154
278b1bb1 2155 return 0;
1da177e4 2156}
1da177e4
LT
2157
2158#if DEBUG
2159static void check_irq_off(void)
2160{
2161 BUG_ON(!irqs_disabled());
2162}
2163
2164static void check_irq_on(void)
2165{
2166 BUG_ON(irqs_disabled());
2167}
2168
18726ca8
JK
2169static void check_mutex_acquired(void)
2170{
2171 BUG_ON(!mutex_is_locked(&slab_mutex));
2172}
2173
343e0d7a 2174static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2175{
2176#ifdef CONFIG_SMP
2177 check_irq_off();
18bf8541 2178 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2179#endif
2180}
e498be7d 2181
343e0d7a 2182static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2183{
2184#ifdef CONFIG_SMP
2185 check_irq_off();
18bf8541 2186 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2187#endif
2188}
2189
1da177e4
LT
2190#else
2191#define check_irq_off() do { } while(0)
2192#define check_irq_on() do { } while(0)
18726ca8 2193#define check_mutex_acquired() do { } while(0)
1da177e4 2194#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2195#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2196#endif
2197
18726ca8
JK
2198static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2199 int node, bool free_all, struct list_head *list)
2200{
2201 int tofree;
2202
2203 if (!ac || !ac->avail)
2204 return;
2205
2206 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2207 if (tofree > ac->avail)
2208 tofree = (ac->avail + 1) / 2;
2209
2210 free_block(cachep, ac->entry, tofree, node, list);
2211 ac->avail -= tofree;
2212 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2213}
aab2207c 2214
1da177e4
LT
2215static void do_drain(void *arg)
2216{
a737b3e2 2217 struct kmem_cache *cachep = arg;
1da177e4 2218 struct array_cache *ac;
7d6e6d09 2219 int node = numa_mem_id();
18bf8541 2220 struct kmem_cache_node *n;
97654dfa 2221 LIST_HEAD(list);
1da177e4
LT
2222
2223 check_irq_off();
9a2dba4b 2224 ac = cpu_cache_get(cachep);
18bf8541
CL
2225 n = get_node(cachep, node);
2226 spin_lock(&n->list_lock);
97654dfa 2227 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2228 spin_unlock(&n->list_lock);
97654dfa 2229 slabs_destroy(cachep, &list);
1da177e4
LT
2230 ac->avail = 0;
2231}
2232
343e0d7a 2233static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2234{
ce8eb6c4 2235 struct kmem_cache_node *n;
e498be7d 2236 int node;
18726ca8 2237 LIST_HEAD(list);
e498be7d 2238
15c8b6c1 2239 on_each_cpu(do_drain, cachep, 1);
1da177e4 2240 check_irq_on();
18bf8541
CL
2241 for_each_kmem_cache_node(cachep, node, n)
2242 if (n->alien)
ce8eb6c4 2243 drain_alien_cache(cachep, n->alien);
a4523a8b 2244
18726ca8
JK
2245 for_each_kmem_cache_node(cachep, node, n) {
2246 spin_lock_irq(&n->list_lock);
2247 drain_array_locked(cachep, n->shared, node, true, &list);
2248 spin_unlock_irq(&n->list_lock);
2249
2250 slabs_destroy(cachep, &list);
2251 }
1da177e4
LT
2252}
2253
ed11d9eb
CL
2254/*
2255 * Remove slabs from the list of free slabs.
2256 * Specify the number of slabs to drain in tofree.
2257 *
2258 * Returns the actual number of slabs released.
2259 */
2260static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2261 struct kmem_cache_node *n, int tofree)
1da177e4 2262{
ed11d9eb
CL
2263 struct list_head *p;
2264 int nr_freed;
8456a648 2265 struct page *page;
1da177e4 2266
ed11d9eb 2267 nr_freed = 0;
ce8eb6c4 2268 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2269
ce8eb6c4
CL
2270 spin_lock_irq(&n->list_lock);
2271 p = n->slabs_free.prev;
2272 if (p == &n->slabs_free) {
2273 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2274 goto out;
2275 }
1da177e4 2276
8456a648 2277 page = list_entry(p, struct page, lru);
8456a648 2278 list_del(&page->lru);
f728b0a5 2279 n->free_slabs--;
bf00bd34 2280 n->total_slabs--;
ed11d9eb
CL
2281 /*
2282 * Safe to drop the lock. The slab is no longer linked
2283 * to the cache.
2284 */
ce8eb6c4
CL
2285 n->free_objects -= cache->num;
2286 spin_unlock_irq(&n->list_lock);
8456a648 2287 slab_destroy(cache, page);
ed11d9eb 2288 nr_freed++;
1da177e4 2289 }
ed11d9eb
CL
2290out:
2291 return nr_freed;
1da177e4
LT
2292}
2293
c9fc5864 2294int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2295{
18bf8541
CL
2296 int ret = 0;
2297 int node;
ce8eb6c4 2298 struct kmem_cache_node *n;
e498be7d
CL
2299
2300 drain_cpu_caches(cachep);
2301
2302 check_irq_on();
18bf8541 2303 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2304 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2305
ce8eb6c4
CL
2306 ret += !list_empty(&n->slabs_full) ||
2307 !list_empty(&n->slabs_partial);
e498be7d
CL
2308 }
2309 return (ret ? 1 : 0);
2310}
2311
c9fc5864
TH
2312#ifdef CONFIG_MEMCG
2313void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2314{
2315 __kmem_cache_shrink(cachep);
2316}
2317#endif
2318
945cf2b6 2319int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2320{
c9fc5864 2321 return __kmem_cache_shrink(cachep);
52b4b950
DS
2322}
2323
2324void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2325{
12c3667f 2326 int i;
ce8eb6c4 2327 struct kmem_cache_node *n;
1da177e4 2328
c7ce4f60
TG
2329 cache_random_seq_destroy(cachep);
2330
bf0dea23 2331 free_percpu(cachep->cpu_cache);
1da177e4 2332
ce8eb6c4 2333 /* NUMA: free the node structures */
18bf8541
CL
2334 for_each_kmem_cache_node(cachep, i, n) {
2335 kfree(n->shared);
2336 free_alien_cache(n->alien);
2337 kfree(n);
2338 cachep->node[i] = NULL;
12c3667f 2339 }
1da177e4 2340}
1da177e4 2341
e5ac9c5a
RT
2342/*
2343 * Get the memory for a slab management obj.
5f0985bb
JZ
2344 *
2345 * For a slab cache when the slab descriptor is off-slab, the
2346 * slab descriptor can't come from the same cache which is being created,
2347 * Because if it is the case, that means we defer the creation of
2348 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2349 * And we eventually call down to __kmem_cache_create(), which
2350 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2351 * This is a "chicken-and-egg" problem.
2352 *
2353 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2354 * which are all initialized during kmem_cache_init().
e5ac9c5a 2355 */
7e007355 2356static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2357 struct page *page, int colour_off,
2358 gfp_t local_flags, int nodeid)
1da177e4 2359{
7e007355 2360 void *freelist;
0c3aa83e 2361 void *addr = page_address(page);
b28a02de 2362
2e6b3602
JK
2363 page->s_mem = addr + colour_off;
2364 page->active = 0;
2365
b03a017b
JK
2366 if (OBJFREELIST_SLAB(cachep))
2367 freelist = NULL;
2368 else if (OFF_SLAB(cachep)) {
1da177e4 2369 /* Slab management obj is off-slab. */
8456a648 2370 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2371 local_flags, nodeid);
8456a648 2372 if (!freelist)
1da177e4
LT
2373 return NULL;
2374 } else {
2e6b3602
JK
2375 /* We will use last bytes at the slab for freelist */
2376 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2377 cachep->freelist_size;
1da177e4 2378 }
2e6b3602 2379
8456a648 2380 return freelist;
1da177e4
LT
2381}
2382
7cc68973 2383static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2384{
a41adfaa 2385 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2386}
2387
2388static inline void set_free_obj(struct page *page,
7cc68973 2389 unsigned int idx, freelist_idx_t val)
e5c58dfd 2390{
a41adfaa 2391 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2392}
2393
10b2e9e8 2394static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2395{
10b2e9e8 2396#if DEBUG
1da177e4
LT
2397 int i;
2398
2399 for (i = 0; i < cachep->num; i++) {
8456a648 2400 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2401
1da177e4
LT
2402 if (cachep->flags & SLAB_STORE_USER)
2403 *dbg_userword(cachep, objp) = NULL;
2404
2405 if (cachep->flags & SLAB_RED_ZONE) {
2406 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2407 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2408 }
2409 /*
a737b3e2
AM
2410 * Constructors are not allowed to allocate memory from the same
2411 * cache which they are a constructor for. Otherwise, deadlock.
2412 * They must also be threaded.
1da177e4 2413 */
7ed2f9e6
AP
2414 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2415 kasan_unpoison_object_data(cachep,
2416 objp + obj_offset(cachep));
51cc5068 2417 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2418 kasan_poison_object_data(
2419 cachep, objp + obj_offset(cachep));
2420 }
1da177e4
LT
2421
2422 if (cachep->flags & SLAB_RED_ZONE) {
2423 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2424 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2425 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2426 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2427 }
40b44137
JK
2428 /* need to poison the objs? */
2429 if (cachep->flags & SLAB_POISON) {
2430 poison_obj(cachep, objp, POISON_FREE);
2431 slab_kernel_map(cachep, objp, 0, 0);
2432 }
10b2e9e8 2433 }
1da177e4 2434#endif
10b2e9e8
JK
2435}
2436
c7ce4f60
TG
2437#ifdef CONFIG_SLAB_FREELIST_RANDOM
2438/* Hold information during a freelist initialization */
2439union freelist_init_state {
2440 struct {
2441 unsigned int pos;
7c00fce9 2442 unsigned int *list;
c7ce4f60 2443 unsigned int count;
c7ce4f60
TG
2444 };
2445 struct rnd_state rnd_state;
2446};
2447
2448/*
2449 * Initialize the state based on the randomization methode available.
2450 * return true if the pre-computed list is available, false otherwize.
2451 */
2452static bool freelist_state_initialize(union freelist_init_state *state,
2453 struct kmem_cache *cachep,
2454 unsigned int count)
2455{
2456 bool ret;
2457 unsigned int rand;
2458
2459 /* Use best entropy available to define a random shift */
7c00fce9 2460 rand = get_random_int();
c7ce4f60
TG
2461
2462 /* Use a random state if the pre-computed list is not available */
2463 if (!cachep->random_seq) {
2464 prandom_seed_state(&state->rnd_state, rand);
2465 ret = false;
2466 } else {
2467 state->list = cachep->random_seq;
2468 state->count = count;
c4e490cf 2469 state->pos = rand % count;
c7ce4f60
TG
2470 ret = true;
2471 }
2472 return ret;
2473}
2474
2475/* Get the next entry on the list and randomize it using a random shift */
2476static freelist_idx_t next_random_slot(union freelist_init_state *state)
2477{
c4e490cf
JS
2478 if (state->pos >= state->count)
2479 state->pos = 0;
2480 return state->list[state->pos++];
c7ce4f60
TG
2481}
2482
7c00fce9
TG
2483/* Swap two freelist entries */
2484static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2485{
2486 swap(((freelist_idx_t *)page->freelist)[a],
2487 ((freelist_idx_t *)page->freelist)[b]);
2488}
2489
c7ce4f60
TG
2490/*
2491 * Shuffle the freelist initialization state based on pre-computed lists.
2492 * return true if the list was successfully shuffled, false otherwise.
2493 */
2494static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2495{
7c00fce9 2496 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2497 union freelist_init_state state;
2498 bool precomputed;
2499
2500 if (count < 2)
2501 return false;
2502
2503 precomputed = freelist_state_initialize(&state, cachep, count);
2504
2505 /* Take a random entry as the objfreelist */
2506 if (OBJFREELIST_SLAB(cachep)) {
2507 if (!precomputed)
2508 objfreelist = count - 1;
2509 else
2510 objfreelist = next_random_slot(&state);
2511 page->freelist = index_to_obj(cachep, page, objfreelist) +
2512 obj_offset(cachep);
2513 count--;
2514 }
2515
2516 /*
2517 * On early boot, generate the list dynamically.
2518 * Later use a pre-computed list for speed.
2519 */
2520 if (!precomputed) {
7c00fce9
TG
2521 for (i = 0; i < count; i++)
2522 set_free_obj(page, i, i);
2523
2524 /* Fisher-Yates shuffle */
2525 for (i = count - 1; i > 0; i--) {
2526 rand = prandom_u32_state(&state.rnd_state);
2527 rand %= (i + 1);
2528 swap_free_obj(page, i, rand);
2529 }
c7ce4f60
TG
2530 } else {
2531 for (i = 0; i < count; i++)
2532 set_free_obj(page, i, next_random_slot(&state));
2533 }
2534
2535 if (OBJFREELIST_SLAB(cachep))
2536 set_free_obj(page, cachep->num - 1, objfreelist);
2537
2538 return true;
2539}
2540#else
2541static inline bool shuffle_freelist(struct kmem_cache *cachep,
2542 struct page *page)
2543{
2544 return false;
2545}
2546#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2547
10b2e9e8
JK
2548static void cache_init_objs(struct kmem_cache *cachep,
2549 struct page *page)
2550{
2551 int i;
7ed2f9e6 2552 void *objp;
c7ce4f60 2553 bool shuffled;
10b2e9e8
JK
2554
2555 cache_init_objs_debug(cachep, page);
2556
c7ce4f60
TG
2557 /* Try to randomize the freelist if enabled */
2558 shuffled = shuffle_freelist(cachep, page);
2559
2560 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2561 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2562 obj_offset(cachep);
2563 }
2564
10b2e9e8 2565 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2566 objp = index_to_obj(cachep, page, i);
2567 kasan_init_slab_obj(cachep, objp);
2568
10b2e9e8 2569 /* constructor could break poison info */
7ed2f9e6 2570 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2571 kasan_unpoison_object_data(cachep, objp);
2572 cachep->ctor(objp);
2573 kasan_poison_object_data(cachep, objp);
2574 }
10b2e9e8 2575
c7ce4f60
TG
2576 if (!shuffled)
2577 set_free_obj(page, i, i);
1da177e4 2578 }
1da177e4
LT
2579}
2580
260b61dd 2581static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2582{
b1cb0982 2583 void *objp;
78d382d7 2584
e5c58dfd 2585 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2586 page->active++;
78d382d7 2587
d31676df
JK
2588#if DEBUG
2589 if (cachep->flags & SLAB_STORE_USER)
2590 set_store_user_dirty(cachep);
2591#endif
2592
78d382d7
MD
2593 return objp;
2594}
2595
260b61dd
JK
2596static void slab_put_obj(struct kmem_cache *cachep,
2597 struct page *page, void *objp)
78d382d7 2598{
8456a648 2599 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2600#if DEBUG
16025177 2601 unsigned int i;
b1cb0982 2602
b1cb0982 2603 /* Verify double free bug */
8456a648 2604 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2605 if (get_free_obj(page, i) == objnr) {
85c3e4a5 2606 pr_err("slab: double free detected in cache '%s', objp %px\n",
756a025f 2607 cachep->name, objp);
b1cb0982
JK
2608 BUG();
2609 }
78d382d7
MD
2610 }
2611#endif
8456a648 2612 page->active--;
b03a017b
JK
2613 if (!page->freelist)
2614 page->freelist = objp + obj_offset(cachep);
2615
e5c58dfd 2616 set_free_obj(page, page->active, objnr);
78d382d7
MD
2617}
2618
4776874f
PE
2619/*
2620 * Map pages beginning at addr to the given cache and slab. This is required
2621 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2622 * virtual address for kfree, ksize, and slab debugging.
4776874f 2623 */
8456a648 2624static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2625 void *freelist)
1da177e4 2626{
a57a4988 2627 page->slab_cache = cache;
8456a648 2628 page->freelist = freelist;
1da177e4
LT
2629}
2630
2631/*
2632 * Grow (by 1) the number of slabs within a cache. This is called by
2633 * kmem_cache_alloc() when there are no active objs left in a cache.
2634 */
76b342bd
JK
2635static struct page *cache_grow_begin(struct kmem_cache *cachep,
2636 gfp_t flags, int nodeid)
1da177e4 2637{
7e007355 2638 void *freelist;
b28a02de
PE
2639 size_t offset;
2640 gfp_t local_flags;
511e3a05 2641 int page_node;
ce8eb6c4 2642 struct kmem_cache_node *n;
511e3a05 2643 struct page *page;
1da177e4 2644
a737b3e2
AM
2645 /*
2646 * Be lazy and only check for valid flags here, keeping it out of the
2647 * critical path in kmem_cache_alloc().
1da177e4 2648 */
c871ac4e 2649 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2650 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2651 flags &= ~GFP_SLAB_BUG_MASK;
2652 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2653 invalid_mask, &invalid_mask, flags, &flags);
2654 dump_stack();
c871ac4e 2655 }
6cb06229 2656 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2657
1da177e4 2658 check_irq_off();
d0164adc 2659 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2660 local_irq_enable();
2661
a737b3e2
AM
2662 /*
2663 * Get mem for the objs. Attempt to allocate a physical page from
2664 * 'nodeid'.
e498be7d 2665 */
511e3a05 2666 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2667 if (!page)
1da177e4
LT
2668 goto failed;
2669
511e3a05
JK
2670 page_node = page_to_nid(page);
2671 n = get_node(cachep, page_node);
03d1d43a
JK
2672
2673 /* Get colour for the slab, and cal the next value. */
2674 n->colour_next++;
2675 if (n->colour_next >= cachep->colour)
2676 n->colour_next = 0;
2677
2678 offset = n->colour_next;
2679 if (offset >= cachep->colour)
2680 offset = 0;
2681
2682 offset *= cachep->colour_off;
2683
1da177e4 2684 /* Get slab management. */
8456a648 2685 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2686 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2687 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2688 goto opps1;
2689
8456a648 2690 slab_map_pages(cachep, page, freelist);
1da177e4 2691
7ed2f9e6 2692 kasan_poison_slab(page);
8456a648 2693 cache_init_objs(cachep, page);
1da177e4 2694
d0164adc 2695 if (gfpflags_allow_blocking(local_flags))
1da177e4 2696 local_irq_disable();
1da177e4 2697
76b342bd
JK
2698 return page;
2699
a737b3e2 2700opps1:
0c3aa83e 2701 kmem_freepages(cachep, page);
a737b3e2 2702failed:
d0164adc 2703 if (gfpflags_allow_blocking(local_flags))
1da177e4 2704 local_irq_disable();
76b342bd
JK
2705 return NULL;
2706}
2707
2708static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2709{
2710 struct kmem_cache_node *n;
2711 void *list = NULL;
2712
2713 check_irq_off();
2714
2715 if (!page)
2716 return;
2717
2718 INIT_LIST_HEAD(&page->lru);
2719 n = get_node(cachep, page_to_nid(page));
2720
2721 spin_lock(&n->list_lock);
bf00bd34 2722 n->total_slabs++;
f728b0a5 2723 if (!page->active) {
76b342bd 2724 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2725 n->free_slabs++;
bf00bd34 2726 } else
76b342bd 2727 fixup_slab_list(cachep, n, page, &list);
07a63c41 2728
76b342bd
JK
2729 STATS_INC_GROWN(cachep);
2730 n->free_objects += cachep->num - page->active;
2731 spin_unlock(&n->list_lock);
2732
2733 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2734}
2735
2736#if DEBUG
2737
2738/*
2739 * Perform extra freeing checks:
2740 * - detect bad pointers.
2741 * - POISON/RED_ZONE checking
1da177e4
LT
2742 */
2743static void kfree_debugcheck(const void *objp)
2744{
1da177e4 2745 if (!virt_addr_valid(objp)) {
1170532b 2746 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2747 (unsigned long)objp);
2748 BUG();
1da177e4 2749 }
1da177e4
LT
2750}
2751
58ce1fd5
PE
2752static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2753{
b46b8f19 2754 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2755
2756 redzone1 = *dbg_redzone1(cache, obj);
2757 redzone2 = *dbg_redzone2(cache, obj);
2758
2759 /*
2760 * Redzone is ok.
2761 */
2762 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2763 return;
2764
2765 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2766 slab_error(cache, "double free detected");
2767 else
2768 slab_error(cache, "memory outside object was overwritten");
2769
85c3e4a5 2770 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b 2771 obj, redzone1, redzone2);
58ce1fd5
PE
2772}
2773
343e0d7a 2774static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2775 unsigned long caller)
1da177e4 2776{
1da177e4 2777 unsigned int objnr;
8456a648 2778 struct page *page;
1da177e4 2779
80cbd911
MW
2780 BUG_ON(virt_to_cache(objp) != cachep);
2781
3dafccf2 2782 objp -= obj_offset(cachep);
1da177e4 2783 kfree_debugcheck(objp);
b49af68f 2784 page = virt_to_head_page(objp);
1da177e4 2785
1da177e4 2786 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2787 verify_redzone_free(cachep, objp);
1da177e4
LT
2788 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2789 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2790 }
d31676df
JK
2791 if (cachep->flags & SLAB_STORE_USER) {
2792 set_store_user_dirty(cachep);
7c0cb9c6 2793 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2794 }
1da177e4 2795
8456a648 2796 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2797
2798 BUG_ON(objnr >= cachep->num);
8456a648 2799 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2800
1da177e4 2801 if (cachep->flags & SLAB_POISON) {
1da177e4 2802 poison_obj(cachep, objp, POISON_FREE);
40b44137 2803 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2804 }
2805 return objp;
2806}
2807
1da177e4
LT
2808#else
2809#define kfree_debugcheck(x) do { } while(0)
2810#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2811#endif
2812
b03a017b
JK
2813static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2814 void **list)
2815{
2816#if DEBUG
2817 void *next = *list;
2818 void *objp;
2819
2820 while (next) {
2821 objp = next - obj_offset(cachep);
2822 next = *(void **)next;
2823 poison_obj(cachep, objp, POISON_FREE);
2824 }
2825#endif
2826}
2827
d8410234 2828static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2829 struct kmem_cache_node *n, struct page *page,
2830 void **list)
d8410234
JK
2831{
2832 /* move slabp to correct slabp list: */
2833 list_del(&page->lru);
b03a017b 2834 if (page->active == cachep->num) {
d8410234 2835 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2836 if (OBJFREELIST_SLAB(cachep)) {
2837#if DEBUG
2838 /* Poisoning will be done without holding the lock */
2839 if (cachep->flags & SLAB_POISON) {
2840 void **objp = page->freelist;
2841
2842 *objp = *list;
2843 *list = objp;
2844 }
2845#endif
2846 page->freelist = NULL;
2847 }
2848 } else
d8410234
JK
2849 list_add(&page->lru, &n->slabs_partial);
2850}
2851
f68f8ddd
JK
2852/* Try to find non-pfmemalloc slab if needed */
2853static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2854 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2855{
2856 if (!page)
2857 return NULL;
2858
2859 if (pfmemalloc)
2860 return page;
2861
2862 if (!PageSlabPfmemalloc(page))
2863 return page;
2864
2865 /* No need to keep pfmemalloc slab if we have enough free objects */
2866 if (n->free_objects > n->free_limit) {
2867 ClearPageSlabPfmemalloc(page);
2868 return page;
2869 }
2870
2871 /* Move pfmemalloc slab to the end of list to speed up next search */
2872 list_del(&page->lru);
bf00bd34 2873 if (!page->active) {
f68f8ddd 2874 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2875 n->free_slabs++;
f728b0a5 2876 } else
f68f8ddd
JK
2877 list_add_tail(&page->lru, &n->slabs_partial);
2878
2879 list_for_each_entry(page, &n->slabs_partial, lru) {
2880 if (!PageSlabPfmemalloc(page))
2881 return page;
2882 }
2883
f728b0a5 2884 n->free_touched = 1;
f68f8ddd 2885 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2886 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2887 n->free_slabs--;
f68f8ddd 2888 return page;
f728b0a5 2889 }
f68f8ddd
JK
2890 }
2891
2892 return NULL;
2893}
2894
2895static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2896{
2897 struct page *page;
2898
f728b0a5 2899 assert_spin_locked(&n->list_lock);
bf00bd34 2900 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2901 if (!page) {
2902 n->free_touched = 1;
bf00bd34
DR
2903 page = list_first_entry_or_null(&n->slabs_free, struct page,
2904 lru);
f728b0a5 2905 if (page)
bf00bd34 2906 n->free_slabs--;
7aa0d227
GT
2907 }
2908
f68f8ddd 2909 if (sk_memalloc_socks())
bf00bd34 2910 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2911
7aa0d227
GT
2912 return page;
2913}
2914
f68f8ddd
JK
2915static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2916 struct kmem_cache_node *n, gfp_t flags)
2917{
2918 struct page *page;
2919 void *obj;
2920 void *list = NULL;
2921
2922 if (!gfp_pfmemalloc_allowed(flags))
2923 return NULL;
2924
2925 spin_lock(&n->list_lock);
2926 page = get_first_slab(n, true);
2927 if (!page) {
2928 spin_unlock(&n->list_lock);
2929 return NULL;
2930 }
2931
2932 obj = slab_get_obj(cachep, page);
2933 n->free_objects--;
2934
2935 fixup_slab_list(cachep, n, page, &list);
2936
2937 spin_unlock(&n->list_lock);
2938 fixup_objfreelist_debug(cachep, &list);
2939
2940 return obj;
2941}
2942
213b4695
JK
2943/*
2944 * Slab list should be fixed up by fixup_slab_list() for existing slab
2945 * or cache_grow_end() for new slab
2946 */
2947static __always_inline int alloc_block(struct kmem_cache *cachep,
2948 struct array_cache *ac, struct page *page, int batchcount)
2949{
2950 /*
2951 * There must be at least one object available for
2952 * allocation.
2953 */
2954 BUG_ON(page->active >= cachep->num);
2955
2956 while (page->active < cachep->num && batchcount--) {
2957 STATS_INC_ALLOCED(cachep);
2958 STATS_INC_ACTIVE(cachep);
2959 STATS_SET_HIGH(cachep);
2960
2961 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2962 }
2963
2964 return batchcount;
2965}
2966
f68f8ddd 2967static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2968{
2969 int batchcount;
ce8eb6c4 2970 struct kmem_cache_node *n;
801faf0d 2971 struct array_cache *ac, *shared;
1ca4cb24 2972 int node;
b03a017b 2973 void *list = NULL;
76b342bd 2974 struct page *page;
1ca4cb24 2975
1da177e4 2976 check_irq_off();
7d6e6d09 2977 node = numa_mem_id();
f68f8ddd 2978
9a2dba4b 2979 ac = cpu_cache_get(cachep);
1da177e4
LT
2980 batchcount = ac->batchcount;
2981 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2982 /*
2983 * If there was little recent activity on this cache, then
2984 * perform only a partial refill. Otherwise we could generate
2985 * refill bouncing.
1da177e4
LT
2986 */
2987 batchcount = BATCHREFILL_LIMIT;
2988 }
18bf8541 2989 n = get_node(cachep, node);
e498be7d 2990
ce8eb6c4 2991 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
2992 shared = READ_ONCE(n->shared);
2993 if (!n->free_objects && (!shared || !shared->avail))
2994 goto direct_grow;
2995
ce8eb6c4 2996 spin_lock(&n->list_lock);
801faf0d 2997 shared = READ_ONCE(n->shared);
1da177e4 2998
3ded175a 2999 /* See if we can refill from the shared array */
801faf0d
JK
3000 if (shared && transfer_objects(ac, shared, batchcount)) {
3001 shared->touched = 1;
3ded175a 3002 goto alloc_done;
44b57f1c 3003 }
3ded175a 3004
1da177e4 3005 while (batchcount > 0) {
1da177e4 3006 /* Get slab alloc is to come from. */
f68f8ddd 3007 page = get_first_slab(n, false);
7aa0d227
GT
3008 if (!page)
3009 goto must_grow;
1da177e4 3010
1da177e4 3011 check_spinlock_acquired(cachep);
714b8171 3012
213b4695 3013 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3014 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3015 }
3016
a737b3e2 3017must_grow:
ce8eb6c4 3018 n->free_objects -= ac->avail;
a737b3e2 3019alloc_done:
ce8eb6c4 3020 spin_unlock(&n->list_lock);
b03a017b 3021 fixup_objfreelist_debug(cachep, &list);
1da177e4 3022
801faf0d 3023direct_grow:
1da177e4 3024 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3025 /* Check if we can use obj in pfmemalloc slab */
3026 if (sk_memalloc_socks()) {
3027 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3028
3029 if (obj)
3030 return obj;
3031 }
3032
76b342bd 3033 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3034
76b342bd
JK
3035 /*
3036 * cache_grow_begin() can reenable interrupts,
3037 * then ac could change.
3038 */
9a2dba4b 3039 ac = cpu_cache_get(cachep);
213b4695
JK
3040 if (!ac->avail && page)
3041 alloc_block(cachep, ac, page, batchcount);
3042 cache_grow_end(cachep, page);
072bb0aa 3043
213b4695 3044 if (!ac->avail)
1da177e4 3045 return NULL;
1da177e4
LT
3046 }
3047 ac->touched = 1;
072bb0aa 3048
f68f8ddd 3049 return ac->entry[--ac->avail];
1da177e4
LT
3050}
3051
a737b3e2
AM
3052static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3053 gfp_t flags)
1da177e4 3054{
d0164adc 3055 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3056}
3057
3058#if DEBUG
a737b3e2 3059static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3060 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3061{
b28a02de 3062 if (!objp)
1da177e4 3063 return objp;
b28a02de 3064 if (cachep->flags & SLAB_POISON) {
1da177e4 3065 check_poison_obj(cachep, objp);
40b44137 3066 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3067 poison_obj(cachep, objp, POISON_INUSE);
3068 }
3069 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3070 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3071
3072 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3073 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3074 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3075 slab_error(cachep, "double free, or memory outside object was overwritten");
85c3e4a5 3076 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
1170532b
JP
3077 objp, *dbg_redzone1(cachep, objp),
3078 *dbg_redzone2(cachep, objp));
1da177e4
LT
3079 }
3080 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3081 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3082 }
03787301 3083
3dafccf2 3084 objp += obj_offset(cachep);
4f104934 3085 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3086 cachep->ctor(objp);
7ea466f2
TH
3087 if (ARCH_SLAB_MINALIGN &&
3088 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
85c3e4a5 3089 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3090 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3091 }
1da177e4
LT
3092 return objp;
3093}
3094#else
3095#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3096#endif
3097
343e0d7a 3098static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3099{
b28a02de 3100 void *objp;
1da177e4
LT
3101 struct array_cache *ac;
3102
5c382300 3103 check_irq_off();
8a8b6502 3104
9a2dba4b 3105 ac = cpu_cache_get(cachep);
1da177e4 3106 if (likely(ac->avail)) {
1da177e4 3107 ac->touched = 1;
f68f8ddd 3108 objp = ac->entry[--ac->avail];
072bb0aa 3109
f68f8ddd
JK
3110 STATS_INC_ALLOCHIT(cachep);
3111 goto out;
1da177e4 3112 }
072bb0aa
MG
3113
3114 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3115 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3116 /*
3117 * the 'ac' may be updated by cache_alloc_refill(),
3118 * and kmemleak_erase() requires its correct value.
3119 */
3120 ac = cpu_cache_get(cachep);
3121
3122out:
d5cff635
CM
3123 /*
3124 * To avoid a false negative, if an object that is in one of the
3125 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3126 * treat the array pointers as a reference to the object.
3127 */
f3d8b53a
O
3128 if (objp)
3129 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3130 return objp;
3131}
3132
e498be7d 3133#ifdef CONFIG_NUMA
c61afb18 3134/*
2ad654bc 3135 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3136 *
3137 * If we are in_interrupt, then process context, including cpusets and
3138 * mempolicy, may not apply and should not be used for allocation policy.
3139 */
3140static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3141{
3142 int nid_alloc, nid_here;
3143
765c4507 3144 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3145 return NULL;
7d6e6d09 3146 nid_alloc = nid_here = numa_mem_id();
c61afb18 3147 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3148 nid_alloc = cpuset_slab_spread_node();
c61afb18 3149 else if (current->mempolicy)
2a389610 3150 nid_alloc = mempolicy_slab_node();
c61afb18 3151 if (nid_alloc != nid_here)
8b98c169 3152 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3153 return NULL;
3154}
3155
765c4507
CL
3156/*
3157 * Fallback function if there was no memory available and no objects on a
3c517a61 3158 * certain node and fall back is permitted. First we scan all the
6a67368c 3159 * available node for available objects. If that fails then we
3c517a61
CL
3160 * perform an allocation without specifying a node. This allows the page
3161 * allocator to do its reclaim / fallback magic. We then insert the
3162 * slab into the proper nodelist and then allocate from it.
765c4507 3163 */
8c8cc2c1 3164static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3165{
8c8cc2c1 3166 struct zonelist *zonelist;
dd1a239f 3167 struct zoneref *z;
54a6eb5c
MG
3168 struct zone *zone;
3169 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3170 void *obj = NULL;
76b342bd 3171 struct page *page;
3c517a61 3172 int nid;
cc9a6c87 3173 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3174
3175 if (flags & __GFP_THISNODE)
3176 return NULL;
3177
cc9a6c87 3178retry_cpuset:
d26914d1 3179 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3180 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3181
3c517a61
CL
3182retry:
3183 /*
3184 * Look through allowed nodes for objects available
3185 * from existing per node queues.
3186 */
54a6eb5c
MG
3187 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3188 nid = zone_to_nid(zone);
aedb0eb1 3189
061d7074 3190 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3191 get_node(cache, nid) &&
3192 get_node(cache, nid)->free_objects) {
3c517a61 3193 obj = ____cache_alloc_node(cache,
4167e9b2 3194 gfp_exact_node(flags), nid);
481c5346
CL
3195 if (obj)
3196 break;
3197 }
3c517a61
CL
3198 }
3199
cfce6604 3200 if (!obj) {
3c517a61
CL
3201 /*
3202 * This allocation will be performed within the constraints
3203 * of the current cpuset / memory policy requirements.
3204 * We may trigger various forms of reclaim on the allowed
3205 * set and go into memory reserves if necessary.
3206 */
76b342bd
JK
3207 page = cache_grow_begin(cache, flags, numa_mem_id());
3208 cache_grow_end(cache, page);
3209 if (page) {
3210 nid = page_to_nid(page);
511e3a05
JK
3211 obj = ____cache_alloc_node(cache,
3212 gfp_exact_node(flags), nid);
0c3aa83e 3213
3c517a61 3214 /*
511e3a05
JK
3215 * Another processor may allocate the objects in
3216 * the slab since we are not holding any locks.
3c517a61 3217 */
511e3a05
JK
3218 if (!obj)
3219 goto retry;
3c517a61 3220 }
aedb0eb1 3221 }
cc9a6c87 3222
d26914d1 3223 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3224 goto retry_cpuset;
765c4507
CL
3225 return obj;
3226}
3227
e498be7d
CL
3228/*
3229 * A interface to enable slab creation on nodeid
1da177e4 3230 */
8b98c169 3231static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3232 int nodeid)
e498be7d 3233{
8456a648 3234 struct page *page;
ce8eb6c4 3235 struct kmem_cache_node *n;
213b4695 3236 void *obj = NULL;
b03a017b 3237 void *list = NULL;
b28a02de 3238
7c3fbbdd 3239 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3240 n = get_node(cachep, nodeid);
ce8eb6c4 3241 BUG_ON(!n);
b28a02de 3242
ca3b9b91 3243 check_irq_off();
ce8eb6c4 3244 spin_lock(&n->list_lock);
f68f8ddd 3245 page = get_first_slab(n, false);
7aa0d227
GT
3246 if (!page)
3247 goto must_grow;
b28a02de 3248
b28a02de 3249 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3250
3251 STATS_INC_NODEALLOCS(cachep);
3252 STATS_INC_ACTIVE(cachep);
3253 STATS_SET_HIGH(cachep);
3254
8456a648 3255 BUG_ON(page->active == cachep->num);
b28a02de 3256
260b61dd 3257 obj = slab_get_obj(cachep, page);
ce8eb6c4 3258 n->free_objects--;
b28a02de 3259
b03a017b 3260 fixup_slab_list(cachep, n, page, &list);
e498be7d 3261
ce8eb6c4 3262 spin_unlock(&n->list_lock);
b03a017b 3263 fixup_objfreelist_debug(cachep, &list);
213b4695 3264 return obj;
e498be7d 3265
a737b3e2 3266must_grow:
ce8eb6c4 3267 spin_unlock(&n->list_lock);
76b342bd 3268 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3269 if (page) {
3270 /* This slab isn't counted yet so don't update free_objects */
3271 obj = slab_get_obj(cachep, page);
3272 }
76b342bd 3273 cache_grow_end(cachep, page);
1da177e4 3274
213b4695 3275 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3276}
8c8cc2c1 3277
8c8cc2c1 3278static __always_inline void *
48356303 3279slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3280 unsigned long caller)
8c8cc2c1
PE
3281{
3282 unsigned long save_flags;
3283 void *ptr;
7d6e6d09 3284 int slab_node = numa_mem_id();
8c8cc2c1 3285
dcce284a 3286 flags &= gfp_allowed_mask;
011eceaf
JDB
3287 cachep = slab_pre_alloc_hook(cachep, flags);
3288 if (unlikely(!cachep))
824ebef1
AM
3289 return NULL;
3290
8c8cc2c1
PE
3291 cache_alloc_debugcheck_before(cachep, flags);
3292 local_irq_save(save_flags);
3293
eacbbae3 3294 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3295 nodeid = slab_node;
8c8cc2c1 3296
18bf8541 3297 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3298 /* Node not bootstrapped yet */
3299 ptr = fallback_alloc(cachep, flags);
3300 goto out;
3301 }
3302
7d6e6d09 3303 if (nodeid == slab_node) {
8c8cc2c1
PE
3304 /*
3305 * Use the locally cached objects if possible.
3306 * However ____cache_alloc does not allow fallback
3307 * to other nodes. It may fail while we still have
3308 * objects on other nodes available.
3309 */
3310 ptr = ____cache_alloc(cachep, flags);
3311 if (ptr)
3312 goto out;
3313 }
3314 /* ___cache_alloc_node can fall back to other nodes */
3315 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3316 out:
3317 local_irq_restore(save_flags);
3318 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3319
d5e3ed66
JDB
3320 if (unlikely(flags & __GFP_ZERO) && ptr)
3321 memset(ptr, 0, cachep->object_size);
d07dbea4 3322
d5e3ed66 3323 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3324 return ptr;
3325}
3326
3327static __always_inline void *
3328__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3329{
3330 void *objp;
3331
2ad654bc 3332 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3333 objp = alternate_node_alloc(cache, flags);
3334 if (objp)
3335 goto out;
3336 }
3337 objp = ____cache_alloc(cache, flags);
3338
3339 /*
3340 * We may just have run out of memory on the local node.
3341 * ____cache_alloc_node() knows how to locate memory on other nodes
3342 */
7d6e6d09
LS
3343 if (!objp)
3344 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3345
3346 out:
3347 return objp;
3348}
3349#else
3350
3351static __always_inline void *
3352__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3353{
3354 return ____cache_alloc(cachep, flags);
3355}
3356
3357#endif /* CONFIG_NUMA */
3358
3359static __always_inline void *
48356303 3360slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3361{
3362 unsigned long save_flags;
3363 void *objp;
3364
dcce284a 3365 flags &= gfp_allowed_mask;
011eceaf
JDB
3366 cachep = slab_pre_alloc_hook(cachep, flags);
3367 if (unlikely(!cachep))
824ebef1
AM
3368 return NULL;
3369
8c8cc2c1
PE
3370 cache_alloc_debugcheck_before(cachep, flags);
3371 local_irq_save(save_flags);
3372 objp = __do_cache_alloc(cachep, flags);
3373 local_irq_restore(save_flags);
3374 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3375 prefetchw(objp);
3376
d5e3ed66
JDB
3377 if (unlikely(flags & __GFP_ZERO) && objp)
3378 memset(objp, 0, cachep->object_size);
d07dbea4 3379
d5e3ed66 3380 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3381 return objp;
3382}
e498be7d
CL
3383
3384/*
5f0985bb 3385 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3386 * @list: List of detached free slabs should be freed by caller
e498be7d 3387 */
97654dfa
JK
3388static void free_block(struct kmem_cache *cachep, void **objpp,
3389 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3390{
3391 int i;
25c063fb 3392 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3393 struct page *page;
3394
3395 n->free_objects += nr_objects;
1da177e4
LT
3396
3397 for (i = 0; i < nr_objects; i++) {
072bb0aa 3398 void *objp;
8456a648 3399 struct page *page;
1da177e4 3400
072bb0aa
MG
3401 objp = objpp[i];
3402
8456a648 3403 page = virt_to_head_page(objp);
8456a648 3404 list_del(&page->lru);
ff69416e 3405 check_spinlock_acquired_node(cachep, node);
260b61dd 3406 slab_put_obj(cachep, page, objp);
1da177e4 3407 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3408
3409 /* fixup slab chains */
f728b0a5 3410 if (page->active == 0) {
6052b788 3411 list_add(&page->lru, &n->slabs_free);
f728b0a5 3412 n->free_slabs++;
f728b0a5 3413 } else {
1da177e4
LT
3414 /* Unconditionally move a slab to the end of the
3415 * partial list on free - maximum time for the
3416 * other objects to be freed, too.
3417 */
8456a648 3418 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3419 }
3420 }
6052b788
JK
3421
3422 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3423 n->free_objects -= cachep->num;
3424
3425 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3426 list_move(&page->lru, list);
f728b0a5 3427 n->free_slabs--;
bf00bd34 3428 n->total_slabs--;
6052b788 3429 }
1da177e4
LT
3430}
3431
343e0d7a 3432static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3433{
3434 int batchcount;
ce8eb6c4 3435 struct kmem_cache_node *n;
7d6e6d09 3436 int node = numa_mem_id();
97654dfa 3437 LIST_HEAD(list);
1da177e4
LT
3438
3439 batchcount = ac->batchcount;
260b61dd 3440
1da177e4 3441 check_irq_off();
18bf8541 3442 n = get_node(cachep, node);
ce8eb6c4
CL
3443 spin_lock(&n->list_lock);
3444 if (n->shared) {
3445 struct array_cache *shared_array = n->shared;
b28a02de 3446 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3447 if (max) {
3448 if (batchcount > max)
3449 batchcount = max;
e498be7d 3450 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3451 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3452 shared_array->avail += batchcount;
3453 goto free_done;
3454 }
3455 }
3456
97654dfa 3457 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3458free_done:
1da177e4
LT
3459#if STATS
3460 {
3461 int i = 0;
73c0219d 3462 struct page *page;
1da177e4 3463
73c0219d 3464 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3465 BUG_ON(page->active);
1da177e4
LT
3466
3467 i++;
1da177e4
LT
3468 }
3469 STATS_SET_FREEABLE(cachep, i);
3470 }
3471#endif
ce8eb6c4 3472 spin_unlock(&n->list_lock);
97654dfa 3473 slabs_destroy(cachep, &list);
1da177e4 3474 ac->avail -= batchcount;
a737b3e2 3475 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3476}
3477
3478/*
a737b3e2
AM
3479 * Release an obj back to its cache. If the obj has a constructed state, it must
3480 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3481 */
ee3ce779
DV
3482static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3483 unsigned long caller)
1da177e4 3484{
55834c59 3485 /* Put the object into the quarantine, don't touch it for now. */
ee3ce779 3486 if (kasan_slab_free(cachep, objp, _RET_IP_))
55834c59
AP
3487 return;
3488
3489 ___cache_free(cachep, objp, caller);
3490}
1da177e4 3491
55834c59
AP
3492void ___cache_free(struct kmem_cache *cachep, void *objp,
3493 unsigned long caller)
3494{
3495 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3496
1da177e4 3497 check_irq_off();
d5cff635 3498 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3499 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3500
1807a1aa
SS
3501 /*
3502 * Skip calling cache_free_alien() when the platform is not numa.
3503 * This will avoid cache misses that happen while accessing slabp (which
3504 * is per page memory reference) to get nodeid. Instead use a global
3505 * variable to skip the call, which is mostly likely to be present in
3506 * the cache.
3507 */
b6e68bc1 3508 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3509 return;
3510
3d880194 3511 if (ac->avail < ac->limit) {
1da177e4 3512 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3513 } else {
3514 STATS_INC_FREEMISS(cachep);
3515 cache_flusharray(cachep, ac);
1da177e4 3516 }
42c8c99c 3517
f68f8ddd
JK
3518 if (sk_memalloc_socks()) {
3519 struct page *page = virt_to_head_page(objp);
3520
3521 if (unlikely(PageSlabPfmemalloc(page))) {
3522 cache_free_pfmemalloc(cachep, page, objp);
3523 return;
3524 }
3525 }
3526
3527 ac->entry[ac->avail++] = objp;
1da177e4
LT
3528}
3529
3530/**
3531 * kmem_cache_alloc - Allocate an object
3532 * @cachep: The cache to allocate from.
3533 * @flags: See kmalloc().
3534 *
3535 * Allocate an object from this cache. The flags are only relevant
3536 * if the cache has no available objects.
3537 */
343e0d7a 3538void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3539{
48356303 3540 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3541
505f5dcb 3542 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3543 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3544 cachep->object_size, cachep->size, flags);
36555751
EGM
3545
3546 return ret;
1da177e4
LT
3547}
3548EXPORT_SYMBOL(kmem_cache_alloc);
3549
7b0501dd
JDB
3550static __always_inline void
3551cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3552 size_t size, void **p, unsigned long caller)
3553{
3554 size_t i;
3555
3556 for (i = 0; i < size; i++)
3557 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3558}
3559
865762a8 3560int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3561 void **p)
484748f0 3562{
2a777eac
JDB
3563 size_t i;
3564
3565 s = slab_pre_alloc_hook(s, flags);
3566 if (!s)
3567 return 0;
3568
3569 cache_alloc_debugcheck_before(s, flags);
3570
3571 local_irq_disable();
3572 for (i = 0; i < size; i++) {
3573 void *objp = __do_cache_alloc(s, flags);
3574
2a777eac
JDB
3575 if (unlikely(!objp))
3576 goto error;
3577 p[i] = objp;
3578 }
3579 local_irq_enable();
3580
7b0501dd
JDB
3581 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3582
2a777eac
JDB
3583 /* Clear memory outside IRQ disabled section */
3584 if (unlikely(flags & __GFP_ZERO))
3585 for (i = 0; i < size; i++)
3586 memset(p[i], 0, s->object_size);
3587
3588 slab_post_alloc_hook(s, flags, size, p);
3589 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3590 return size;
3591error:
3592 local_irq_enable();
7b0501dd 3593 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3594 slab_post_alloc_hook(s, flags, i, p);
3595 __kmem_cache_free_bulk(s, i, p);
3596 return 0;
484748f0
CL
3597}
3598EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3599
0f24f128 3600#ifdef CONFIG_TRACING
85beb586 3601void *
4052147c 3602kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3603{
85beb586
SR
3604 void *ret;
3605
48356303 3606 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3607
505f5dcb 3608 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3609 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3610 size, cachep->size, flags);
85beb586 3611 return ret;
36555751 3612}
85beb586 3613EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3614#endif
3615
1da177e4 3616#ifdef CONFIG_NUMA
d0d04b78
ZL
3617/**
3618 * kmem_cache_alloc_node - Allocate an object on the specified node
3619 * @cachep: The cache to allocate from.
3620 * @flags: See kmalloc().
3621 * @nodeid: node number of the target node.
3622 *
3623 * Identical to kmem_cache_alloc but it will allocate memory on the given
3624 * node, which can improve the performance for cpu bound structures.
3625 *
3626 * Fallback to other node is possible if __GFP_THISNODE is not set.
3627 */
8b98c169
CH
3628void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3629{
48356303 3630 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3631
505f5dcb 3632 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3633 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3634 cachep->object_size, cachep->size,
ca2b84cb 3635 flags, nodeid);
36555751
EGM
3636
3637 return ret;
8b98c169 3638}
1da177e4
LT
3639EXPORT_SYMBOL(kmem_cache_alloc_node);
3640
0f24f128 3641#ifdef CONFIG_TRACING
4052147c 3642void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3643 gfp_t flags,
4052147c
EG
3644 int nodeid,
3645 size_t size)
36555751 3646{
85beb586
SR
3647 void *ret;
3648
592f4145 3649 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3650
3651 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3652 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3653 size, cachep->size,
85beb586
SR
3654 flags, nodeid);
3655 return ret;
36555751 3656}
85beb586 3657EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3658#endif
3659
8b98c169 3660static __always_inline void *
7c0cb9c6 3661__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3662{
343e0d7a 3663 struct kmem_cache *cachep;
7ed2f9e6 3664 void *ret;
97e2bde4 3665
2c59dd65 3666 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3667 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3668 return cachep;
7ed2f9e6 3669 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3670 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3671
3672 return ret;
97e2bde4 3673}
8b98c169 3674
8b98c169
CH
3675void *__kmalloc_node(size_t size, gfp_t flags, int node)
3676{
7c0cb9c6 3677 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3678}
dbe5e69d 3679EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3680
3681void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3682 int node, unsigned long caller)
8b98c169 3683{
7c0cb9c6 3684 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3685}
3686EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3687#endif /* CONFIG_NUMA */
1da177e4
LT
3688
3689/**
800590f5 3690 * __do_kmalloc - allocate memory
1da177e4 3691 * @size: how many bytes of memory are required.
800590f5 3692 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3693 * @caller: function caller for debug tracking of the caller
1da177e4 3694 */
7fd6b141 3695static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3696 unsigned long caller)
1da177e4 3697{
343e0d7a 3698 struct kmem_cache *cachep;
36555751 3699 void *ret;
1da177e4 3700
2c59dd65 3701 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3702 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3703 return cachep;
48356303 3704 ret = slab_alloc(cachep, flags, caller);
36555751 3705
505f5dcb 3706 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3707 trace_kmalloc(caller, ret,
3b0efdfa 3708 size, cachep->size, flags);
36555751
EGM
3709
3710 return ret;
7fd6b141
PE
3711}
3712
7fd6b141
PE
3713void *__kmalloc(size_t size, gfp_t flags)
3714{
7c0cb9c6 3715 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3716}
3717EXPORT_SYMBOL(__kmalloc);
3718
ce71e27c 3719void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3720{
7c0cb9c6 3721 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3722}
3723EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3724
1da177e4
LT
3725/**
3726 * kmem_cache_free - Deallocate an object
3727 * @cachep: The cache the allocation was from.
3728 * @objp: The previously allocated object.
3729 *
3730 * Free an object which was previously allocated from this
3731 * cache.
3732 */
343e0d7a 3733void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3734{
3735 unsigned long flags;
b9ce5ef4
GC
3736 cachep = cache_from_obj(cachep, objp);
3737 if (!cachep)
3738 return;
1da177e4
LT
3739
3740 local_irq_save(flags);
d97d476b 3741 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3742 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3743 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3744 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3745 local_irq_restore(flags);
36555751 3746
ca2b84cb 3747 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3748}
3749EXPORT_SYMBOL(kmem_cache_free);
3750
e6cdb58d
JDB
3751void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3752{
3753 struct kmem_cache *s;
3754 size_t i;
3755
3756 local_irq_disable();
3757 for (i = 0; i < size; i++) {
3758 void *objp = p[i];
3759
ca257195
JDB
3760 if (!orig_s) /* called via kfree_bulk */
3761 s = virt_to_cache(objp);
3762 else
3763 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3764
3765 debug_check_no_locks_freed(objp, s->object_size);
3766 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3767 debug_check_no_obj_freed(objp, s->object_size);
3768
3769 __cache_free(s, objp, _RET_IP_);
3770 }
3771 local_irq_enable();
3772
3773 /* FIXME: add tracing */
3774}
3775EXPORT_SYMBOL(kmem_cache_free_bulk);
3776
1da177e4
LT
3777/**
3778 * kfree - free previously allocated memory
3779 * @objp: pointer returned by kmalloc.
3780 *
80e93eff
PE
3781 * If @objp is NULL, no operation is performed.
3782 *
1da177e4
LT
3783 * Don't free memory not originally allocated by kmalloc()
3784 * or you will run into trouble.
3785 */
3786void kfree(const void *objp)
3787{
343e0d7a 3788 struct kmem_cache *c;
1da177e4
LT
3789 unsigned long flags;
3790
2121db74
PE
3791 trace_kfree(_RET_IP_, objp);
3792
6cb8f913 3793 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3794 return;
3795 local_irq_save(flags);
3796 kfree_debugcheck(objp);
6ed5eb22 3797 c = virt_to_cache(objp);
8c138bc0
CL
3798 debug_check_no_locks_freed(objp, c->object_size);
3799
3800 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3801 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3802 local_irq_restore(flags);
3803}
3804EXPORT_SYMBOL(kfree);
3805
e498be7d 3806/*
ce8eb6c4 3807 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3808 */
c3d332b6 3809static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3810{
c3d332b6 3811 int ret;
e498be7d 3812 int node;
ce8eb6c4 3813 struct kmem_cache_node *n;
e498be7d 3814
9c09a95c 3815 for_each_online_node(node) {
c3d332b6
JK
3816 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3817 if (ret)
e498be7d
CL
3818 goto fail;
3819
e498be7d 3820 }
c3d332b6 3821
cafeb02e 3822 return 0;
0718dc2a 3823
a737b3e2 3824fail:
3b0efdfa 3825 if (!cachep->list.next) {
0718dc2a
CL
3826 /* Cache is not active yet. Roll back what we did */
3827 node--;
3828 while (node >= 0) {
18bf8541
CL
3829 n = get_node(cachep, node);
3830 if (n) {
ce8eb6c4
CL
3831 kfree(n->shared);
3832 free_alien_cache(n->alien);
3833 kfree(n);
6a67368c 3834 cachep->node[node] = NULL;
0718dc2a
CL
3835 }
3836 node--;
3837 }
3838 }
cafeb02e 3839 return -ENOMEM;
e498be7d
CL
3840}
3841
18004c5d 3842/* Always called with the slab_mutex held */
943a451a 3843static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3844 int batchcount, int shared, gfp_t gfp)
1da177e4 3845{
bf0dea23
JK
3846 struct array_cache __percpu *cpu_cache, *prev;
3847 int cpu;
1da177e4 3848
bf0dea23
JK
3849 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3850 if (!cpu_cache)
d2e7b7d0
SS
3851 return -ENOMEM;
3852
bf0dea23
JK
3853 prev = cachep->cpu_cache;
3854 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3855 /*
3856 * Without a previous cpu_cache there's no need to synchronize remote
3857 * cpus, so skip the IPIs.
3858 */
3859 if (prev)
3860 kick_all_cpus_sync();
e498be7d 3861
1da177e4 3862 check_irq_on();
1da177e4
LT
3863 cachep->batchcount = batchcount;
3864 cachep->limit = limit;
e498be7d 3865 cachep->shared = shared;
1da177e4 3866
bf0dea23 3867 if (!prev)
c3d332b6 3868 goto setup_node;
bf0dea23
JK
3869
3870 for_each_online_cpu(cpu) {
97654dfa 3871 LIST_HEAD(list);
18bf8541
CL
3872 int node;
3873 struct kmem_cache_node *n;
bf0dea23 3874 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3875
bf0dea23 3876 node = cpu_to_mem(cpu);
18bf8541
CL
3877 n = get_node(cachep, node);
3878 spin_lock_irq(&n->list_lock);
bf0dea23 3879 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3880 spin_unlock_irq(&n->list_lock);
97654dfa 3881 slabs_destroy(cachep, &list);
1da177e4 3882 }
bf0dea23
JK
3883 free_percpu(prev);
3884
c3d332b6
JK
3885setup_node:
3886 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3887}
3888
943a451a
GC
3889static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3890 int batchcount, int shared, gfp_t gfp)
3891{
3892 int ret;
426589f5 3893 struct kmem_cache *c;
943a451a
GC
3894
3895 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3896
3897 if (slab_state < FULL)
3898 return ret;
3899
3900 if ((ret < 0) || !is_root_cache(cachep))
3901 return ret;
3902
426589f5
VD
3903 lockdep_assert_held(&slab_mutex);
3904 for_each_memcg_cache(c, cachep) {
3905 /* return value determined by the root cache only */
3906 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3907 }
3908
3909 return ret;
3910}
3911
18004c5d 3912/* Called with slab_mutex held always */
83b519e8 3913static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3914{
3915 int err;
943a451a
GC
3916 int limit = 0;
3917 int shared = 0;
3918 int batchcount = 0;
3919
7c00fce9 3920 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3921 if (err)
3922 goto end;
3923
943a451a
GC
3924 if (!is_root_cache(cachep)) {
3925 struct kmem_cache *root = memcg_root_cache(cachep);
3926 limit = root->limit;
3927 shared = root->shared;
3928 batchcount = root->batchcount;
3929 }
1da177e4 3930
943a451a
GC
3931 if (limit && shared && batchcount)
3932 goto skip_setup;
a737b3e2
AM
3933 /*
3934 * The head array serves three purposes:
1da177e4
LT
3935 * - create a LIFO ordering, i.e. return objects that are cache-warm
3936 * - reduce the number of spinlock operations.
a737b3e2 3937 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3938 * bufctl chains: array operations are cheaper.
3939 * The numbers are guessed, we should auto-tune as described by
3940 * Bonwick.
3941 */
3b0efdfa 3942 if (cachep->size > 131072)
1da177e4 3943 limit = 1;
3b0efdfa 3944 else if (cachep->size > PAGE_SIZE)
1da177e4 3945 limit = 8;
3b0efdfa 3946 else if (cachep->size > 1024)
1da177e4 3947 limit = 24;
3b0efdfa 3948 else if (cachep->size > 256)
1da177e4
LT
3949 limit = 54;
3950 else
3951 limit = 120;
3952
a737b3e2
AM
3953 /*
3954 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3955 * allocation behaviour: Most allocs on one cpu, most free operations
3956 * on another cpu. For these cases, an efficient object passing between
3957 * cpus is necessary. This is provided by a shared array. The array
3958 * replaces Bonwick's magazine layer.
3959 * On uniprocessor, it's functionally equivalent (but less efficient)
3960 * to a larger limit. Thus disabled by default.
3961 */
3962 shared = 0;
3b0efdfa 3963 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3964 shared = 8;
1da177e4
LT
3965
3966#if DEBUG
a737b3e2
AM
3967 /*
3968 * With debugging enabled, large batchcount lead to excessively long
3969 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3970 */
3971 if (limit > 32)
3972 limit = 32;
3973#endif
943a451a
GC
3974 batchcount = (limit + 1) / 2;
3975skip_setup:
3976 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3977end:
1da177e4 3978 if (err)
1170532b 3979 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3980 cachep->name, -err);
2ed3a4ef 3981 return err;
1da177e4
LT
3982}
3983
1b55253a 3984/*
ce8eb6c4
CL
3985 * Drain an array if it contains any elements taking the node lock only if
3986 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3987 * if drain_array() is used on the shared array.
1b55253a 3988 */
ce8eb6c4 3989static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 3990 struct array_cache *ac, int node)
1da177e4 3991{
97654dfa 3992 LIST_HEAD(list);
18726ca8
JK
3993
3994 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3995 check_mutex_acquired();
1da177e4 3996
1b55253a
CL
3997 if (!ac || !ac->avail)
3998 return;
18726ca8
JK
3999
4000 if (ac->touched) {
1da177e4 4001 ac->touched = 0;
18726ca8 4002 return;
1da177e4 4003 }
18726ca8
JK
4004
4005 spin_lock_irq(&n->list_lock);
4006 drain_array_locked(cachep, ac, node, false, &list);
4007 spin_unlock_irq(&n->list_lock);
4008
4009 slabs_destroy(cachep, &list);
1da177e4
LT
4010}
4011
4012/**
4013 * cache_reap - Reclaim memory from caches.
05fb6bf0 4014 * @w: work descriptor
1da177e4
LT
4015 *
4016 * Called from workqueue/eventd every few seconds.
4017 * Purpose:
4018 * - clear the per-cpu caches for this CPU.
4019 * - return freeable pages to the main free memory pool.
4020 *
a737b3e2
AM
4021 * If we cannot acquire the cache chain mutex then just give up - we'll try
4022 * again on the next iteration.
1da177e4 4023 */
7c5cae36 4024static void cache_reap(struct work_struct *w)
1da177e4 4025{
7a7c381d 4026 struct kmem_cache *searchp;
ce8eb6c4 4027 struct kmem_cache_node *n;
7d6e6d09 4028 int node = numa_mem_id();
bf6aede7 4029 struct delayed_work *work = to_delayed_work(w);
1da177e4 4030
18004c5d 4031 if (!mutex_trylock(&slab_mutex))
1da177e4 4032 /* Give up. Setup the next iteration. */
7c5cae36 4033 goto out;
1da177e4 4034
18004c5d 4035 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4036 check_irq_on();
4037
35386e3b 4038 /*
ce8eb6c4 4039 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4040 * have established with reasonable certainty that
4041 * we can do some work if the lock was obtained.
4042 */
18bf8541 4043 n = get_node(searchp, node);
35386e3b 4044
ce8eb6c4 4045 reap_alien(searchp, n);
1da177e4 4046
18726ca8 4047 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4048
35386e3b
CL
4049 /*
4050 * These are racy checks but it does not matter
4051 * if we skip one check or scan twice.
4052 */
ce8eb6c4 4053 if (time_after(n->next_reap, jiffies))
35386e3b 4054 goto next;
1da177e4 4055
5f0985bb 4056 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4057
18726ca8 4058 drain_array(searchp, n, n->shared, node);
1da177e4 4059
ce8eb6c4
CL
4060 if (n->free_touched)
4061 n->free_touched = 0;
ed11d9eb
CL
4062 else {
4063 int freed;
1da177e4 4064
ce8eb6c4 4065 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4066 5 * searchp->num - 1) / (5 * searchp->num));
4067 STATS_ADD_REAPED(searchp, freed);
4068 }
35386e3b 4069next:
1da177e4
LT
4070 cond_resched();
4071 }
4072 check_irq_on();
18004c5d 4073 mutex_unlock(&slab_mutex);
8fce4d8e 4074 next_reap_node();
7c5cae36 4075out:
a737b3e2 4076 /* Set up the next iteration */
5f0985bb 4077 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4078}
4079
0d7561c6 4080void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4081{
f728b0a5 4082 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4083 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4084 unsigned long free_slabs = 0;
e498be7d 4085 int node;
ce8eb6c4 4086 struct kmem_cache_node *n;
1da177e4 4087
18bf8541 4088 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4089 check_irq_on();
ce8eb6c4 4090 spin_lock_irq(&n->list_lock);
e498be7d 4091
bf00bd34
DR
4092 total_slabs += n->total_slabs;
4093 free_slabs += n->free_slabs;
f728b0a5 4094 free_objs += n->free_objects;
07a63c41 4095
ce8eb6c4
CL
4096 if (n->shared)
4097 shared_avail += n->shared->avail;
e498be7d 4098
ce8eb6c4 4099 spin_unlock_irq(&n->list_lock);
1da177e4 4100 }
bf00bd34
DR
4101 num_objs = total_slabs * cachep->num;
4102 active_slabs = total_slabs - free_slabs;
f728b0a5 4103 active_objs = num_objs - free_objs;
1da177e4 4104
0d7561c6
GC
4105 sinfo->active_objs = active_objs;
4106 sinfo->num_objs = num_objs;
4107 sinfo->active_slabs = active_slabs;
bf00bd34 4108 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4109 sinfo->shared_avail = shared_avail;
4110 sinfo->limit = cachep->limit;
4111 sinfo->batchcount = cachep->batchcount;
4112 sinfo->shared = cachep->shared;
4113 sinfo->objects_per_slab = cachep->num;
4114 sinfo->cache_order = cachep->gfporder;
4115}
4116
4117void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4118{
1da177e4 4119#if STATS
ce8eb6c4 4120 { /* node stats */
1da177e4
LT
4121 unsigned long high = cachep->high_mark;
4122 unsigned long allocs = cachep->num_allocations;
4123 unsigned long grown = cachep->grown;
4124 unsigned long reaped = cachep->reaped;
4125 unsigned long errors = cachep->errors;
4126 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4127 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4128 unsigned long node_frees = cachep->node_frees;
fb7faf33 4129 unsigned long overflows = cachep->node_overflow;
1da177e4 4130
756a025f 4131 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4132 allocs, high, grown,
4133 reaped, errors, max_freeable, node_allocs,
4134 node_frees, overflows);
1da177e4
LT
4135 }
4136 /* cpu stats */
4137 {
4138 unsigned long allochit = atomic_read(&cachep->allochit);
4139 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4140 unsigned long freehit = atomic_read(&cachep->freehit);
4141 unsigned long freemiss = atomic_read(&cachep->freemiss);
4142
4143 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4144 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4145 }
4146#endif
1da177e4
LT
4147}
4148
1da177e4
LT
4149#define MAX_SLABINFO_WRITE 128
4150/**
4151 * slabinfo_write - Tuning for the slab allocator
4152 * @file: unused
4153 * @buffer: user buffer
4154 * @count: data length
4155 * @ppos: unused
4156 */
b7454ad3 4157ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4158 size_t count, loff_t *ppos)
1da177e4 4159{
b28a02de 4160 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4161 int limit, batchcount, shared, res;
7a7c381d 4162 struct kmem_cache *cachep;
b28a02de 4163
1da177e4
LT
4164 if (count > MAX_SLABINFO_WRITE)
4165 return -EINVAL;
4166 if (copy_from_user(&kbuf, buffer, count))
4167 return -EFAULT;
b28a02de 4168 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4169
4170 tmp = strchr(kbuf, ' ');
4171 if (!tmp)
4172 return -EINVAL;
4173 *tmp = '\0';
4174 tmp++;
4175 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4176 return -EINVAL;
4177
4178 /* Find the cache in the chain of caches. */
18004c5d 4179 mutex_lock(&slab_mutex);
1da177e4 4180 res = -EINVAL;
18004c5d 4181 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4182 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4183 if (limit < 1 || batchcount < 1 ||
4184 batchcount > limit || shared < 0) {
e498be7d 4185 res = 0;
1da177e4 4186 } else {
e498be7d 4187 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4188 batchcount, shared,
4189 GFP_KERNEL);
1da177e4
LT
4190 }
4191 break;
4192 }
4193 }
18004c5d 4194 mutex_unlock(&slab_mutex);
1da177e4
LT
4195 if (res >= 0)
4196 res = count;
4197 return res;
4198}
871751e2
AV
4199
4200#ifdef CONFIG_DEBUG_SLAB_LEAK
4201
871751e2
AV
4202static inline int add_caller(unsigned long *n, unsigned long v)
4203{
4204 unsigned long *p;
4205 int l;
4206 if (!v)
4207 return 1;
4208 l = n[1];
4209 p = n + 2;
4210 while (l) {
4211 int i = l/2;
4212 unsigned long *q = p + 2 * i;
4213 if (*q == v) {
4214 q[1]++;
4215 return 1;
4216 }
4217 if (*q > v) {
4218 l = i;
4219 } else {
4220 p = q + 2;
4221 l -= i + 1;
4222 }
4223 }
4224 if (++n[1] == n[0])
4225 return 0;
4226 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4227 p[0] = v;
4228 p[1] = 1;
4229 return 1;
4230}
4231
8456a648
JK
4232static void handle_slab(unsigned long *n, struct kmem_cache *c,
4233 struct page *page)
871751e2
AV
4234{
4235 void *p;
d31676df
JK
4236 int i, j;
4237 unsigned long v;
b1cb0982 4238
871751e2
AV
4239 if (n[0] == n[1])
4240 return;
8456a648 4241 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4242 bool active = true;
4243
4244 for (j = page->active; j < c->num; j++) {
4245 if (get_free_obj(page, j) == i) {
4246 active = false;
4247 break;
4248 }
4249 }
4250
4251 if (!active)
871751e2 4252 continue;
b1cb0982 4253
d31676df
JK
4254 /*
4255 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4256 * mapping is established when actual object allocation and
4257 * we could mistakenly access the unmapped object in the cpu
4258 * cache.
4259 */
4260 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4261 continue;
4262
4263 if (!add_caller(n, v))
871751e2
AV
4264 return;
4265 }
4266}
4267
4268static void show_symbol(struct seq_file *m, unsigned long address)
4269{
4270#ifdef CONFIG_KALLSYMS
871751e2 4271 unsigned long offset, size;
9281acea 4272 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4273
a5c43dae 4274 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4275 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4276 if (modname[0])
871751e2
AV
4277 seq_printf(m, " [%s]", modname);
4278 return;
4279 }
4280#endif
85c3e4a5 4281 seq_printf(m, "%px", (void *)address);
871751e2
AV
4282}
4283
4284static int leaks_show(struct seq_file *m, void *p)
4285{
0672aa7c 4286 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4287 struct page *page;
ce8eb6c4 4288 struct kmem_cache_node *n;
871751e2 4289 const char *name;
db845067 4290 unsigned long *x = m->private;
871751e2
AV
4291 int node;
4292 int i;
4293
4294 if (!(cachep->flags & SLAB_STORE_USER))
4295 return 0;
4296 if (!(cachep->flags & SLAB_RED_ZONE))
4297 return 0;
4298
d31676df
JK
4299 /*
4300 * Set store_user_clean and start to grab stored user information
4301 * for all objects on this cache. If some alloc/free requests comes
4302 * during the processing, information would be wrong so restart
4303 * whole processing.
4304 */
4305 do {
4306 set_store_user_clean(cachep);
4307 drain_cpu_caches(cachep);
4308
4309 x[1] = 0;
871751e2 4310
d31676df 4311 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4312
d31676df
JK
4313 check_irq_on();
4314 spin_lock_irq(&n->list_lock);
871751e2 4315
d31676df
JK
4316 list_for_each_entry(page, &n->slabs_full, lru)
4317 handle_slab(x, cachep, page);
4318 list_for_each_entry(page, &n->slabs_partial, lru)
4319 handle_slab(x, cachep, page);
4320 spin_unlock_irq(&n->list_lock);
4321 }
4322 } while (!is_store_user_clean(cachep));
871751e2 4323
871751e2 4324 name = cachep->name;
db845067 4325 if (x[0] == x[1]) {
871751e2 4326 /* Increase the buffer size */
18004c5d 4327 mutex_unlock(&slab_mutex);
db845067 4328 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4329 if (!m->private) {
4330 /* Too bad, we are really out */
db845067 4331 m->private = x;
18004c5d 4332 mutex_lock(&slab_mutex);
871751e2
AV
4333 return -ENOMEM;
4334 }
db845067
CL
4335 *(unsigned long *)m->private = x[0] * 2;
4336 kfree(x);
18004c5d 4337 mutex_lock(&slab_mutex);
871751e2
AV
4338 /* Now make sure this entry will be retried */
4339 m->count = m->size;
4340 return 0;
4341 }
db845067
CL
4342 for (i = 0; i < x[1]; i++) {
4343 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4344 show_symbol(m, x[2*i+2]);
871751e2
AV
4345 seq_putc(m, '\n');
4346 }
d2e7b7d0 4347
871751e2
AV
4348 return 0;
4349}
4350
a0ec95a8 4351static const struct seq_operations slabstats_op = {
1df3b26f 4352 .start = slab_start,
276a2439
WL
4353 .next = slab_next,
4354 .stop = slab_stop,
871751e2
AV
4355 .show = leaks_show,
4356};
a0ec95a8
AD
4357
4358static int slabstats_open(struct inode *inode, struct file *file)
4359{
b208ce32
RJ
4360 unsigned long *n;
4361
4362 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4363 if (!n)
4364 return -ENOMEM;
4365
4366 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4367
4368 return 0;
a0ec95a8
AD
4369}
4370
4371static const struct file_operations proc_slabstats_operations = {
4372 .open = slabstats_open,
4373 .read = seq_read,
4374 .llseek = seq_lseek,
4375 .release = seq_release_private,
4376};
4377#endif
4378
4379static int __init slab_proc_init(void)
4380{
4381#ifdef CONFIG_DEBUG_SLAB_LEAK
4382 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4383#endif
a0ec95a8
AD
4384 return 0;
4385}
4386module_init(slab_proc_init);
1da177e4 4387
04385fc5
KC
4388#ifdef CONFIG_HARDENED_USERCOPY
4389/*
afcc90f8
KC
4390 * Rejects incorrectly sized objects and objects that are to be copied
4391 * to/from userspace but do not fall entirely within the containing slab
4392 * cache's usercopy region.
04385fc5
KC
4393 *
4394 * Returns NULL if check passes, otherwise const char * to name of cache
4395 * to indicate an error.
4396 */
f4e6e289
KC
4397void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4398 bool to_user)
04385fc5
KC
4399{
4400 struct kmem_cache *cachep;
4401 unsigned int objnr;
4402 unsigned long offset;
4403
4404 /* Find and validate object. */
4405 cachep = page->slab_cache;
4406 objnr = obj_to_index(cachep, page, (void *)ptr);
4407 BUG_ON(objnr >= cachep->num);
4408
4409 /* Find offset within object. */
4410 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4411
afcc90f8
KC
4412 /* Allow address range falling entirely within usercopy region. */
4413 if (offset >= cachep->useroffset &&
4414 offset - cachep->useroffset <= cachep->usersize &&
4415 n <= cachep->useroffset - offset + cachep->usersize)
f4e6e289 4416 return;
04385fc5 4417
afcc90f8
KC
4418 /*
4419 * If the copy is still within the allocated object, produce
4420 * a warning instead of rejecting the copy. This is intended
4421 * to be a temporary method to find any missing usercopy
4422 * whitelists.
4423 */
2d891fbc
KC
4424 if (usercopy_fallback &&
4425 offset <= cachep->object_size &&
afcc90f8
KC
4426 n <= cachep->object_size - offset) {
4427 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4428 return;
4429 }
04385fc5 4430
f4e6e289 4431 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
04385fc5
KC
4432}
4433#endif /* CONFIG_HARDENED_USERCOPY */
4434
00e145b6
MS
4435/**
4436 * ksize - get the actual amount of memory allocated for a given object
4437 * @objp: Pointer to the object
4438 *
4439 * kmalloc may internally round up allocations and return more memory
4440 * than requested. ksize() can be used to determine the actual amount of
4441 * memory allocated. The caller may use this additional memory, even though
4442 * a smaller amount of memory was initially specified with the kmalloc call.
4443 * The caller must guarantee that objp points to a valid object previously
4444 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4445 * must not be freed during the duration of the call.
4446 */
fd76bab2 4447size_t ksize(const void *objp)
1da177e4 4448{
7ed2f9e6
AP
4449 size_t size;
4450
ef8b4520
CL
4451 BUG_ON(!objp);
4452 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4453 return 0;
1da177e4 4454
7ed2f9e6
AP
4455 size = virt_to_cache(objp)->object_size;
4456 /* We assume that ksize callers could use the whole allocated area,
4457 * so we need to unpoison this area.
4458 */
4ebb31a4 4459 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4460
4461 return size;
1da177e4 4462}
b1aabecd 4463EXPORT_SYMBOL(ksize);