Merge commit master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6 of HEAD
[linux-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
e7eebaf6 110#include <linux/rtmutex.h>
1da177e4
LT
111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 176 SLAB_CACHE_DMA | \
1da177e4
LT
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 180#else
ac2b898c 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
fa5b08d5 206typedef unsigned int kmem_bufctl_t;
1da177e4
LT
207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 211
1da177e4
LT
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
b28a02de
PE
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
1da177e4
LT
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
b28a02de 245 struct rcu_head head;
343e0d7a 246 struct kmem_cache *cachep;
b28a02de 247 void *addr;
1da177e4
LT
248};
249
250/*
251 * struct array_cache
252 *
1da177e4
LT
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
e498be7d 267 spinlock_t lock;
a737b3e2
AM
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
1da177e4
LT
274};
275
a737b3e2
AM
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
1da177e4
LT
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
b28a02de 294 unsigned int free_limit;
2e1217cf 295 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
35386e3b
CL
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
311
ed11d9eb
CL
312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
316static void enable_cpucache(struct kmem_cache *cachep);
317static void cache_reap(void *unused);
318
e498be7d 319/*
a737b3e2
AM
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 322 */
7243cc05 323static __always_inline int index_of(const size_t size)
e498be7d 324{
5ec8a847
SR
325 extern void __bad_size(void);
326
e498be7d
CL
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
5ec8a847 337 __bad_size();
7243cc05 338 } else
5ec8a847 339 __bad_size();
e498be7d
CL
340 return 0;
341}
342
e0a42726
IM
343static int slab_early_init = 1;
344
e498be7d
CL
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 347
5295a74c 348static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
2e1217cf 355 parent->colour_next = 0;
e498be7d
CL
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
a737b3e2
AM
361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
365 } while (0)
366
a737b3e2
AM
367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
e498be7d
CL
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
1da177e4
LT
373
374/*
343e0d7a 375 * struct kmem_cache
1da177e4
LT
376 *
377 * manages a cache.
378 */
b28a02de 379
2109a2d1 380struct kmem_cache {
1da177e4 381/* 1) per-cpu data, touched during every alloc/free */
b28a02de 382 struct array_cache *array[NR_CPUS];
b5d8ca7c 383/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
b5d8ca7c 387
3dafccf2 388 unsigned int buffer_size;
b5d8ca7c 389/* 3) touched by every alloc & free from the backend */
b28a02de 390 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 391
a737b3e2
AM
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
1da177e4 394
b5d8ca7c 395/* 4) cache_grow/shrink */
1da177e4 396 /* order of pgs per slab (2^n) */
b28a02de 397 unsigned int gfporder;
1da177e4
LT
398
399 /* force GFP flags, e.g. GFP_DMA */
b28a02de 400 gfp_t gfpflags;
1da177e4 401
a737b3e2 402 size_t colour; /* cache colouring range */
b28a02de 403 unsigned int colour_off; /* colour offset */
343e0d7a 404 struct kmem_cache *slabp_cache;
b28a02de 405 unsigned int slab_size;
a737b3e2 406 unsigned int dflags; /* dynamic flags */
1da177e4
LT
407
408 /* constructor func */
343e0d7a 409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
410
411 /* de-constructor func */
343e0d7a 412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 413
b5d8ca7c 414/* 5) cache creation/removal */
b28a02de
PE
415 const char *name;
416 struct list_head next;
1da177e4 417
b5d8ca7c 418/* 6) statistics */
1da177e4 419#if STATS
b28a02de
PE
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
fb7faf33 429 unsigned long node_overflow;
b28a02de
PE
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
1da177e4
LT
434#endif
435#if DEBUG
3dafccf2
MS
436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
1da177e4
LT
444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
a737b3e2
AM
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
1da177e4 454 *
dc6f3f27 455 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
1da177e4
LT
472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 490#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 494#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 496#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
1da177e4 504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
84097518
NP
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
ddc2e812 595 BUG_ON(!PageSlab(page));
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
ddc2e812 608 BUG_ON(!PageSlab(page));
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
677/* Guard access to the cache-chain. */
fc0abb14 678static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
679static struct list_head cache_chain;
680
681/*
a737b3e2
AM
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
1da177e4
LT
684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687atomic_t slab_reclaim_pages;
1da177e4
LT
688
689/*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693static enum {
694 NONE,
e498be7d
CL
695 PARTIAL_AC,
696 PARTIAL_L3,
1da177e4
LT
697 FULL
698} g_cpucache_up;
699
39d24e64
MK
700/*
701 * used by boot code to determine if it can use slab based allocator
702 */
703int slab_is_available(void)
704{
705 return g_cpucache_up == FULL;
706}
707
1da177e4
LT
708static DEFINE_PER_CPU(struct work_struct, reap_work);
709
343e0d7a 710static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
711{
712 return cachep->array[smp_processor_id()];
713}
714
a737b3e2
AM
715static inline struct kmem_cache *__find_general_cachep(size_t size,
716 gfp_t gfpflags)
1da177e4
LT
717{
718 struct cache_sizes *csizep = malloc_sizes;
719
720#if DEBUG
721 /* This happens if someone tries to call
b28a02de
PE
722 * kmem_cache_create(), or __kmalloc(), before
723 * the generic caches are initialized.
724 */
c7e43c78 725 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
726#endif
727 while (size > csizep->cs_size)
728 csizep++;
729
730 /*
0abf40c1 731 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
732 * has cs_{dma,}cachep==NULL. Thus no special case
733 * for large kmalloc calls required.
734 */
735 if (unlikely(gfpflags & GFP_DMA))
736 return csizep->cs_dmacachep;
737 return csizep->cs_cachep;
738}
739
343e0d7a 740struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
741{
742 return __find_general_cachep(size, gfpflags);
743}
744EXPORT_SYMBOL(kmem_find_general_cachep);
745
fbaccacf 746static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 747{
fbaccacf
SR
748 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
749}
1da177e4 750
a737b3e2
AM
751/*
752 * Calculate the number of objects and left-over bytes for a given buffer size.
753 */
fbaccacf
SR
754static void cache_estimate(unsigned long gfporder, size_t buffer_size,
755 size_t align, int flags, size_t *left_over,
756 unsigned int *num)
757{
758 int nr_objs;
759 size_t mgmt_size;
760 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 761
fbaccacf
SR
762 /*
763 * The slab management structure can be either off the slab or
764 * on it. For the latter case, the memory allocated for a
765 * slab is used for:
766 *
767 * - The struct slab
768 * - One kmem_bufctl_t for each object
769 * - Padding to respect alignment of @align
770 * - @buffer_size bytes for each object
771 *
772 * If the slab management structure is off the slab, then the
773 * alignment will already be calculated into the size. Because
774 * the slabs are all pages aligned, the objects will be at the
775 * correct alignment when allocated.
776 */
777 if (flags & CFLGS_OFF_SLAB) {
778 mgmt_size = 0;
779 nr_objs = slab_size / buffer_size;
780
781 if (nr_objs > SLAB_LIMIT)
782 nr_objs = SLAB_LIMIT;
783 } else {
784 /*
785 * Ignore padding for the initial guess. The padding
786 * is at most @align-1 bytes, and @buffer_size is at
787 * least @align. In the worst case, this result will
788 * be one greater than the number of objects that fit
789 * into the memory allocation when taking the padding
790 * into account.
791 */
792 nr_objs = (slab_size - sizeof(struct slab)) /
793 (buffer_size + sizeof(kmem_bufctl_t));
794
795 /*
796 * This calculated number will be either the right
797 * amount, or one greater than what we want.
798 */
799 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
800 > slab_size)
801 nr_objs--;
802
803 if (nr_objs > SLAB_LIMIT)
804 nr_objs = SLAB_LIMIT;
805
806 mgmt_size = slab_mgmt_size(nr_objs, align);
807 }
808 *num = nr_objs;
809 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
810}
811
812#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
813
a737b3e2
AM
814static void __slab_error(const char *function, struct kmem_cache *cachep,
815 char *msg)
1da177e4
LT
816{
817 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 818 function, cachep->name, msg);
1da177e4
LT
819 dump_stack();
820}
821
8fce4d8e
CL
822#ifdef CONFIG_NUMA
823/*
824 * Special reaping functions for NUMA systems called from cache_reap().
825 * These take care of doing round robin flushing of alien caches (containing
826 * objects freed on different nodes from which they were allocated) and the
827 * flushing of remote pcps by calling drain_node_pages.
828 */
829static DEFINE_PER_CPU(unsigned long, reap_node);
830
831static void init_reap_node(int cpu)
832{
833 int node;
834
835 node = next_node(cpu_to_node(cpu), node_online_map);
836 if (node == MAX_NUMNODES)
442295c9 837 node = first_node(node_online_map);
8fce4d8e
CL
838
839 __get_cpu_var(reap_node) = node;
840}
841
842static void next_reap_node(void)
843{
844 int node = __get_cpu_var(reap_node);
845
846 /*
847 * Also drain per cpu pages on remote zones
848 */
849 if (node != numa_node_id())
850 drain_node_pages(node);
851
852 node = next_node(node, node_online_map);
853 if (unlikely(node >= MAX_NUMNODES))
854 node = first_node(node_online_map);
855 __get_cpu_var(reap_node) = node;
856}
857
858#else
859#define init_reap_node(cpu) do { } while (0)
860#define next_reap_node(void) do { } while (0)
861#endif
862
1da177e4
LT
863/*
864 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
865 * via the workqueue/eventd.
866 * Add the CPU number into the expiration time to minimize the possibility of
867 * the CPUs getting into lockstep and contending for the global cache chain
868 * lock.
869 */
870static void __devinit start_cpu_timer(int cpu)
871{
872 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
873
874 /*
875 * When this gets called from do_initcalls via cpucache_init(),
876 * init_workqueues() has already run, so keventd will be setup
877 * at that time.
878 */
879 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 880 init_reap_node(cpu);
1da177e4
LT
881 INIT_WORK(reap_work, cache_reap, NULL);
882 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
883 }
884}
885
e498be7d 886static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 887 int batchcount)
1da177e4 888{
b28a02de 889 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
890 struct array_cache *nc = NULL;
891
e498be7d 892 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
893 if (nc) {
894 nc->avail = 0;
895 nc->limit = entries;
896 nc->batchcount = batchcount;
897 nc->touched = 0;
e498be7d 898 spin_lock_init(&nc->lock);
1da177e4
LT
899 }
900 return nc;
901}
902
3ded175a
CL
903/*
904 * Transfer objects in one arraycache to another.
905 * Locking must be handled by the caller.
906 *
907 * Return the number of entries transferred.
908 */
909static int transfer_objects(struct array_cache *to,
910 struct array_cache *from, unsigned int max)
911{
912 /* Figure out how many entries to transfer */
913 int nr = min(min(from->avail, max), to->limit - to->avail);
914
915 if (!nr)
916 return 0;
917
918 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
919 sizeof(void *) *nr);
920
921 from->avail -= nr;
922 to->avail += nr;
923 to->touched = 1;
924 return nr;
925}
926
e498be7d 927#ifdef CONFIG_NUMA
343e0d7a 928static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 929static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 930
5295a74c 931static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
932{
933 struct array_cache **ac_ptr;
b28a02de 934 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
935 int i;
936
937 if (limit > 1)
938 limit = 12;
939 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
940 if (ac_ptr) {
941 for_each_node(i) {
942 if (i == node || !node_online(i)) {
943 ac_ptr[i] = NULL;
944 continue;
945 }
946 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
947 if (!ac_ptr[i]) {
b28a02de 948 for (i--; i <= 0; i--)
e498be7d
CL
949 kfree(ac_ptr[i]);
950 kfree(ac_ptr);
951 return NULL;
952 }
953 }
954 }
955 return ac_ptr;
956}
957
5295a74c 958static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
959{
960 int i;
961
962 if (!ac_ptr)
963 return;
e498be7d 964 for_each_node(i)
b28a02de 965 kfree(ac_ptr[i]);
e498be7d
CL
966 kfree(ac_ptr);
967}
968
343e0d7a 969static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 970 struct array_cache *ac, int node)
e498be7d
CL
971{
972 struct kmem_list3 *rl3 = cachep->nodelists[node];
973
974 if (ac->avail) {
975 spin_lock(&rl3->list_lock);
e00946fe
CL
976 /*
977 * Stuff objects into the remote nodes shared array first.
978 * That way we could avoid the overhead of putting the objects
979 * into the free lists and getting them back later.
980 */
693f7d36 981 if (rl3->shared)
982 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 983
ff69416e 984 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
985 ac->avail = 0;
986 spin_unlock(&rl3->list_lock);
987 }
988}
989
8fce4d8e
CL
990/*
991 * Called from cache_reap() to regularly drain alien caches round robin.
992 */
993static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
994{
995 int node = __get_cpu_var(reap_node);
996
997 if (l3->alien) {
998 struct array_cache *ac = l3->alien[node];
e00946fe
CL
999
1000 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1001 __drain_alien_cache(cachep, ac, node);
1002 spin_unlock_irq(&ac->lock);
1003 }
1004 }
1005}
1006
a737b3e2
AM
1007static void drain_alien_cache(struct kmem_cache *cachep,
1008 struct array_cache **alien)
e498be7d 1009{
b28a02de 1010 int i = 0;
e498be7d
CL
1011 struct array_cache *ac;
1012 unsigned long flags;
1013
1014 for_each_online_node(i) {
4484ebf1 1015 ac = alien[i];
e498be7d
CL
1016 if (ac) {
1017 spin_lock_irqsave(&ac->lock, flags);
1018 __drain_alien_cache(cachep, ac, i);
1019 spin_unlock_irqrestore(&ac->lock, flags);
1020 }
1021 }
1022}
729bd0b7 1023
2b2d5493
IM
1024static inline int cache_free_alien(struct kmem_cache *cachep, void *objp,
1025 int nesting)
729bd0b7
PE
1026{
1027 struct slab *slabp = virt_to_slab(objp);
1028 int nodeid = slabp->nodeid;
1029 struct kmem_list3 *l3;
1030 struct array_cache *alien = NULL;
1031
1032 /*
1033 * Make sure we are not freeing a object from another node to the array
1034 * cache on this cpu.
1035 */
1036 if (likely(slabp->nodeid == numa_node_id()))
1037 return 0;
1038
1039 l3 = cachep->nodelists[numa_node_id()];
1040 STATS_INC_NODEFREES(cachep);
1041 if (l3->alien && l3->alien[nodeid]) {
1042 alien = l3->alien[nodeid];
2b2d5493 1043 spin_lock_nested(&alien->lock, nesting);
729bd0b7
PE
1044 if (unlikely(alien->avail == alien->limit)) {
1045 STATS_INC_ACOVERFLOW(cachep);
1046 __drain_alien_cache(cachep, alien, nodeid);
1047 }
1048 alien->entry[alien->avail++] = objp;
1049 spin_unlock(&alien->lock);
1050 } else {
1051 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1052 free_block(cachep, &objp, 1, nodeid);
1053 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1054 }
1055 return 1;
1056}
1057
e498be7d 1058#else
7a21ef6f 1059
4484ebf1 1060#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1061#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1062
7a21ef6f
LT
1063static inline struct array_cache **alloc_alien_cache(int node, int limit)
1064{
1065 return (struct array_cache **) 0x01020304ul;
1066}
1067
4484ebf1
RT
1068static inline void free_alien_cache(struct array_cache **ac_ptr)
1069{
1070}
7a21ef6f 1071
2b2d5493
IM
1072static inline int cache_free_alien(struct kmem_cache *cachep, void *objp,
1073 int nesting)
729bd0b7
PE
1074{
1075 return 0;
1076}
1077
e498be7d
CL
1078#endif
1079
9c7b216d 1080static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1081 unsigned long action, void *hcpu)
1da177e4
LT
1082{
1083 long cpu = (long)hcpu;
343e0d7a 1084 struct kmem_cache *cachep;
e498be7d
CL
1085 struct kmem_list3 *l3 = NULL;
1086 int node = cpu_to_node(cpu);
1087 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1088
1089 switch (action) {
1090 case CPU_UP_PREPARE:
fc0abb14 1091 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1092 /*
1093 * We need to do this right in the beginning since
e498be7d
CL
1094 * alloc_arraycache's are going to use this list.
1095 * kmalloc_node allows us to add the slab to the right
1096 * kmem_list3 and not this cpu's kmem_list3
1097 */
1098
1da177e4 1099 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1100 /*
1101 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1102 * begin anything. Make sure some other cpu on this
1103 * node has not already allocated this
1104 */
1105 if (!cachep->nodelists[node]) {
a737b3e2
AM
1106 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1107 if (!l3)
e498be7d
CL
1108 goto bad;
1109 kmem_list3_init(l3);
1110 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1111 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1112
4484ebf1
RT
1113 /*
1114 * The l3s don't come and go as CPUs come and
1115 * go. cache_chain_mutex is sufficient
1116 * protection here.
1117 */
e498be7d
CL
1118 cachep->nodelists[node] = l3;
1119 }
1da177e4 1120
e498be7d
CL
1121 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1122 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1123 (1 + nr_cpus_node(node)) *
1124 cachep->batchcount + cachep->num;
e498be7d
CL
1125 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1126 }
1127
a737b3e2
AM
1128 /*
1129 * Now we can go ahead with allocating the shared arrays and
1130 * array caches
1131 */
e498be7d 1132 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1133 struct array_cache *nc;
4484ebf1
RT
1134 struct array_cache *shared;
1135 struct array_cache **alien;
cd105df4 1136
e498be7d 1137 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1138 cachep->batchcount);
1da177e4
LT
1139 if (!nc)
1140 goto bad;
4484ebf1
RT
1141 shared = alloc_arraycache(node,
1142 cachep->shared * cachep->batchcount,
1143 0xbaadf00d);
1144 if (!shared)
1145 goto bad;
7a21ef6f 1146
4484ebf1
RT
1147 alien = alloc_alien_cache(node, cachep->limit);
1148 if (!alien)
1149 goto bad;
1da177e4 1150 cachep->array[cpu] = nc;
e498be7d
CL
1151 l3 = cachep->nodelists[node];
1152 BUG_ON(!l3);
e498be7d 1153
4484ebf1
RT
1154 spin_lock_irq(&l3->list_lock);
1155 if (!l3->shared) {
1156 /*
1157 * We are serialised from CPU_DEAD or
1158 * CPU_UP_CANCELLED by the cpucontrol lock
1159 */
1160 l3->shared = shared;
1161 shared = NULL;
e498be7d 1162 }
4484ebf1
RT
1163#ifdef CONFIG_NUMA
1164 if (!l3->alien) {
1165 l3->alien = alien;
1166 alien = NULL;
1167 }
1168#endif
1169 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1170 kfree(shared);
1171 free_alien_cache(alien);
1da177e4 1172 }
fc0abb14 1173 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1174 break;
1175 case CPU_ONLINE:
1176 start_cpu_timer(cpu);
1177 break;
1178#ifdef CONFIG_HOTPLUG_CPU
1179 case CPU_DEAD:
4484ebf1
RT
1180 /*
1181 * Even if all the cpus of a node are down, we don't free the
1182 * kmem_list3 of any cache. This to avoid a race between
1183 * cpu_down, and a kmalloc allocation from another cpu for
1184 * memory from the node of the cpu going down. The list3
1185 * structure is usually allocated from kmem_cache_create() and
1186 * gets destroyed at kmem_cache_destroy().
1187 */
1da177e4
LT
1188 /* fall thru */
1189 case CPU_UP_CANCELED:
fc0abb14 1190 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1191 list_for_each_entry(cachep, &cache_chain, next) {
1192 struct array_cache *nc;
4484ebf1
RT
1193 struct array_cache *shared;
1194 struct array_cache **alien;
e498be7d 1195 cpumask_t mask;
1da177e4 1196
e498be7d 1197 mask = node_to_cpumask(node);
1da177e4
LT
1198 /* cpu is dead; no one can alloc from it. */
1199 nc = cachep->array[cpu];
1200 cachep->array[cpu] = NULL;
e498be7d
CL
1201 l3 = cachep->nodelists[node];
1202
1203 if (!l3)
4484ebf1 1204 goto free_array_cache;
e498be7d 1205
ca3b9b91 1206 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1207
1208 /* Free limit for this kmem_list3 */
1209 l3->free_limit -= cachep->batchcount;
1210 if (nc)
ff69416e 1211 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1212
1213 if (!cpus_empty(mask)) {
ca3b9b91 1214 spin_unlock_irq(&l3->list_lock);
4484ebf1 1215 goto free_array_cache;
b28a02de 1216 }
e498be7d 1217
4484ebf1
RT
1218 shared = l3->shared;
1219 if (shared) {
e498be7d 1220 free_block(cachep, l3->shared->entry,
b28a02de 1221 l3->shared->avail, node);
e498be7d
CL
1222 l3->shared = NULL;
1223 }
e498be7d 1224
4484ebf1
RT
1225 alien = l3->alien;
1226 l3->alien = NULL;
1227
1228 spin_unlock_irq(&l3->list_lock);
1229
1230 kfree(shared);
1231 if (alien) {
1232 drain_alien_cache(cachep, alien);
1233 free_alien_cache(alien);
e498be7d 1234 }
4484ebf1 1235free_array_cache:
1da177e4
LT
1236 kfree(nc);
1237 }
4484ebf1
RT
1238 /*
1239 * In the previous loop, all the objects were freed to
1240 * the respective cache's slabs, now we can go ahead and
1241 * shrink each nodelist to its limit.
1242 */
1243 list_for_each_entry(cachep, &cache_chain, next) {
1244 l3 = cachep->nodelists[node];
1245 if (!l3)
1246 continue;
ed11d9eb 1247 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1248 }
fc0abb14 1249 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1250 break;
1251#endif
1252 }
1253 return NOTIFY_OK;
a737b3e2 1254bad:
fc0abb14 1255 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1256 return NOTIFY_BAD;
1257}
1258
74b85f37
CS
1259static struct notifier_block __cpuinitdata cpucache_notifier = {
1260 &cpuup_callback, NULL, 0
1261};
1da177e4 1262
e498be7d
CL
1263/*
1264 * swap the static kmem_list3 with kmalloced memory
1265 */
a737b3e2
AM
1266static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1267 int nodeid)
e498be7d
CL
1268{
1269 struct kmem_list3 *ptr;
1270
1271 BUG_ON(cachep->nodelists[nodeid] != list);
1272 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1273 BUG_ON(!ptr);
1274
1275 local_irq_disable();
1276 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1277 /*
1278 * Do not assume that spinlocks can be initialized via memcpy:
1279 */
1280 spin_lock_init(&ptr->list_lock);
1281
e498be7d
CL
1282 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1283 cachep->nodelists[nodeid] = ptr;
1284 local_irq_enable();
1285}
1286
a737b3e2
AM
1287/*
1288 * Initialisation. Called after the page allocator have been initialised and
1289 * before smp_init().
1da177e4
LT
1290 */
1291void __init kmem_cache_init(void)
1292{
1293 size_t left_over;
1294 struct cache_sizes *sizes;
1295 struct cache_names *names;
e498be7d 1296 int i;
07ed76b2 1297 int order;
e498be7d
CL
1298
1299 for (i = 0; i < NUM_INIT_LISTS; i++) {
1300 kmem_list3_init(&initkmem_list3[i]);
1301 if (i < MAX_NUMNODES)
1302 cache_cache.nodelists[i] = NULL;
1303 }
1da177e4
LT
1304
1305 /*
1306 * Fragmentation resistance on low memory - only use bigger
1307 * page orders on machines with more than 32MB of memory.
1308 */
1309 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1310 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1311
1da177e4
LT
1312 /* Bootstrap is tricky, because several objects are allocated
1313 * from caches that do not exist yet:
a737b3e2
AM
1314 * 1) initialize the cache_cache cache: it contains the struct
1315 * kmem_cache structures of all caches, except cache_cache itself:
1316 * cache_cache is statically allocated.
e498be7d
CL
1317 * Initially an __init data area is used for the head array and the
1318 * kmem_list3 structures, it's replaced with a kmalloc allocated
1319 * array at the end of the bootstrap.
1da177e4 1320 * 2) Create the first kmalloc cache.
343e0d7a 1321 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1322 * An __init data area is used for the head array.
1323 * 3) Create the remaining kmalloc caches, with minimally sized
1324 * head arrays.
1da177e4
LT
1325 * 4) Replace the __init data head arrays for cache_cache and the first
1326 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1327 * 5) Replace the __init data for kmem_list3 for cache_cache and
1328 * the other cache's with kmalloc allocated memory.
1329 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1330 */
1331
1332 /* 1) create the cache_cache */
1da177e4
LT
1333 INIT_LIST_HEAD(&cache_chain);
1334 list_add(&cache_cache.next, &cache_chain);
1335 cache_cache.colour_off = cache_line_size();
1336 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1337 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1338
a737b3e2
AM
1339 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1340 cache_line_size());
1da177e4 1341
07ed76b2
JS
1342 for (order = 0; order < MAX_ORDER; order++) {
1343 cache_estimate(order, cache_cache.buffer_size,
1344 cache_line_size(), 0, &left_over, &cache_cache.num);
1345 if (cache_cache.num)
1346 break;
1347 }
40094fa6 1348 BUG_ON(!cache_cache.num);
07ed76b2 1349 cache_cache.gfporder = order;
b28a02de 1350 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1351 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1352 sizeof(struct slab), cache_line_size());
1da177e4
LT
1353
1354 /* 2+3) create the kmalloc caches */
1355 sizes = malloc_sizes;
1356 names = cache_names;
1357
a737b3e2
AM
1358 /*
1359 * Initialize the caches that provide memory for the array cache and the
1360 * kmem_list3 structures first. Without this, further allocations will
1361 * bug.
e498be7d
CL
1362 */
1363
1364 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1365 sizes[INDEX_AC].cs_size,
1366 ARCH_KMALLOC_MINALIGN,
1367 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1368 NULL, NULL);
e498be7d 1369
a737b3e2 1370 if (INDEX_AC != INDEX_L3) {
e498be7d 1371 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1372 kmem_cache_create(names[INDEX_L3].name,
1373 sizes[INDEX_L3].cs_size,
1374 ARCH_KMALLOC_MINALIGN,
1375 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1376 NULL, NULL);
1377 }
e498be7d 1378
e0a42726
IM
1379 slab_early_init = 0;
1380
1da177e4 1381 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1382 /*
1383 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1384 * This should be particularly beneficial on SMP boxes, as it
1385 * eliminates "false sharing".
1386 * Note for systems short on memory removing the alignment will
e498be7d
CL
1387 * allow tighter packing of the smaller caches.
1388 */
a737b3e2 1389 if (!sizes->cs_cachep) {
e498be7d 1390 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1391 sizes->cs_size,
1392 ARCH_KMALLOC_MINALIGN,
1393 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1394 NULL, NULL);
1395 }
1da177e4 1396
1da177e4 1397 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1398 sizes->cs_size,
1399 ARCH_KMALLOC_MINALIGN,
1400 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1401 SLAB_PANIC,
1402 NULL, NULL);
1da177e4
LT
1403 sizes++;
1404 names++;
1405 }
1406 /* 4) Replace the bootstrap head arrays */
1407 {
2b2d5493 1408 struct array_cache *ptr;
e498be7d 1409
1da177e4 1410 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1411
1da177e4 1412 local_irq_disable();
9a2dba4b
PE
1413 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1414 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1415 sizeof(struct arraycache_init));
2b2d5493
IM
1416 /*
1417 * Do not assume that spinlocks can be initialized via memcpy:
1418 */
1419 spin_lock_init(&ptr->lock);
1420
1da177e4
LT
1421 cache_cache.array[smp_processor_id()] = ptr;
1422 local_irq_enable();
e498be7d 1423
1da177e4 1424 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1425
1da177e4 1426 local_irq_disable();
9a2dba4b 1427 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1428 != &initarray_generic.cache);
9a2dba4b 1429 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1430 sizeof(struct arraycache_init));
2b2d5493
IM
1431 /*
1432 * Do not assume that spinlocks can be initialized via memcpy:
1433 */
1434 spin_lock_init(&ptr->lock);
1435
e498be7d 1436 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1437 ptr;
1da177e4
LT
1438 local_irq_enable();
1439 }
e498be7d
CL
1440 /* 5) Replace the bootstrap kmem_list3's */
1441 {
1442 int node;
1443 /* Replace the static kmem_list3 structures for the boot cpu */
1444 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1445 numa_node_id());
e498be7d
CL
1446
1447 for_each_online_node(node) {
1448 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1449 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1450
1451 if (INDEX_AC != INDEX_L3) {
1452 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1453 &initkmem_list3[SIZE_L3 + node],
1454 node);
e498be7d
CL
1455 }
1456 }
1457 }
1da177e4 1458
e498be7d 1459 /* 6) resize the head arrays to their final sizes */
1da177e4 1460 {
343e0d7a 1461 struct kmem_cache *cachep;
fc0abb14 1462 mutex_lock(&cache_chain_mutex);
1da177e4 1463 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1464 enable_cpucache(cachep);
fc0abb14 1465 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1466 }
1467
1468 /* Done! */
1469 g_cpucache_up = FULL;
1470
a737b3e2
AM
1471 /*
1472 * Register a cpu startup notifier callback that initializes
1473 * cpu_cache_get for all new cpus
1da177e4
LT
1474 */
1475 register_cpu_notifier(&cpucache_notifier);
1da177e4 1476
a737b3e2
AM
1477 /*
1478 * The reap timers are started later, with a module init call: That part
1479 * of the kernel is not yet operational.
1da177e4
LT
1480 */
1481}
1482
1483static int __init cpucache_init(void)
1484{
1485 int cpu;
1486
a737b3e2
AM
1487 /*
1488 * Register the timers that return unneeded pages to the page allocator
1da177e4 1489 */
e498be7d 1490 for_each_online_cpu(cpu)
a737b3e2 1491 start_cpu_timer(cpu);
1da177e4
LT
1492 return 0;
1493}
1da177e4
LT
1494__initcall(cpucache_init);
1495
1496/*
1497 * Interface to system's page allocator. No need to hold the cache-lock.
1498 *
1499 * If we requested dmaable memory, we will get it. Even if we
1500 * did not request dmaable memory, we might get it, but that
1501 * would be relatively rare and ignorable.
1502 */
343e0d7a 1503static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1504{
1505 struct page *page;
e1b6aa6f 1506 int nr_pages;
1da177e4
LT
1507 int i;
1508
d6fef9da 1509#ifndef CONFIG_MMU
e1b6aa6f
CH
1510 /*
1511 * Nommu uses slab's for process anonymous memory allocations, and thus
1512 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1513 */
e1b6aa6f 1514 flags |= __GFP_COMP;
d6fef9da 1515#endif
e1b6aa6f
CH
1516 flags |= cachep->gfpflags;
1517
1518 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1519 if (!page)
1520 return NULL;
1da177e4 1521
e1b6aa6f 1522 nr_pages = (1 << cachep->gfporder);
1da177e4 1523 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
e1b6aa6f 1524 atomic_add(nr_pages, &slab_reclaim_pages);
9a865ffa 1525 add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
e1b6aa6f
CH
1526 for (i = 0; i < nr_pages; i++)
1527 __SetPageSlab(page + i);
1528 return page_address(page);
1da177e4
LT
1529}
1530
1531/*
1532 * Interface to system's page release.
1533 */
343e0d7a 1534static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1535{
b28a02de 1536 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1537 struct page *page = virt_to_page(addr);
1538 const unsigned long nr_freed = i;
1539
9a865ffa 1540 sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
1da177e4 1541 while (i--) {
f205b2fe
NP
1542 BUG_ON(!PageSlab(page));
1543 __ClearPageSlab(page);
1da177e4
LT
1544 page++;
1545 }
1da177e4
LT
1546 if (current->reclaim_state)
1547 current->reclaim_state->reclaimed_slab += nr_freed;
1548 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1549 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1550 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1551}
1552
1553static void kmem_rcu_free(struct rcu_head *head)
1554{
b28a02de 1555 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1556 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1557
1558 kmem_freepages(cachep, slab_rcu->addr);
1559 if (OFF_SLAB(cachep))
1560 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1561}
1562
1563#if DEBUG
1564
1565#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1566static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1567 unsigned long caller)
1da177e4 1568{
3dafccf2 1569 int size = obj_size(cachep);
1da177e4 1570
3dafccf2 1571 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1572
b28a02de 1573 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1574 return;
1575
b28a02de
PE
1576 *addr++ = 0x12345678;
1577 *addr++ = caller;
1578 *addr++ = smp_processor_id();
1579 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1580 {
1581 unsigned long *sptr = &caller;
1582 unsigned long svalue;
1583
1584 while (!kstack_end(sptr)) {
1585 svalue = *sptr++;
1586 if (kernel_text_address(svalue)) {
b28a02de 1587 *addr++ = svalue;
1da177e4
LT
1588 size -= sizeof(unsigned long);
1589 if (size <= sizeof(unsigned long))
1590 break;
1591 }
1592 }
1593
1594 }
b28a02de 1595 *addr++ = 0x87654321;
1da177e4
LT
1596}
1597#endif
1598
343e0d7a 1599static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1600{
3dafccf2
MS
1601 int size = obj_size(cachep);
1602 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1603
1604 memset(addr, val, size);
b28a02de 1605 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1606}
1607
1608static void dump_line(char *data, int offset, int limit)
1609{
1610 int i;
1611 printk(KERN_ERR "%03x:", offset);
a737b3e2 1612 for (i = 0; i < limit; i++)
b28a02de 1613 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1614 printk("\n");
1615}
1616#endif
1617
1618#if DEBUG
1619
343e0d7a 1620static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1621{
1622 int i, size;
1623 char *realobj;
1624
1625 if (cachep->flags & SLAB_RED_ZONE) {
1626 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1627 *dbg_redzone1(cachep, objp),
1628 *dbg_redzone2(cachep, objp));
1da177e4
LT
1629 }
1630
1631 if (cachep->flags & SLAB_STORE_USER) {
1632 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1633 *dbg_userword(cachep, objp));
1da177e4 1634 print_symbol("(%s)",
a737b3e2 1635 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1636 printk("\n");
1637 }
3dafccf2
MS
1638 realobj = (char *)objp + obj_offset(cachep);
1639 size = obj_size(cachep);
b28a02de 1640 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1641 int limit;
1642 limit = 16;
b28a02de
PE
1643 if (i + limit > size)
1644 limit = size - i;
1da177e4
LT
1645 dump_line(realobj, i, limit);
1646 }
1647}
1648
343e0d7a 1649static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1650{
1651 char *realobj;
1652 int size, i;
1653 int lines = 0;
1654
3dafccf2
MS
1655 realobj = (char *)objp + obj_offset(cachep);
1656 size = obj_size(cachep);
1da177e4 1657
b28a02de 1658 for (i = 0; i < size; i++) {
1da177e4 1659 char exp = POISON_FREE;
b28a02de 1660 if (i == size - 1)
1da177e4
LT
1661 exp = POISON_END;
1662 if (realobj[i] != exp) {
1663 int limit;
1664 /* Mismatch ! */
1665 /* Print header */
1666 if (lines == 0) {
b28a02de 1667 printk(KERN_ERR
a737b3e2
AM
1668 "Slab corruption: start=%p, len=%d\n",
1669 realobj, size);
1da177e4
LT
1670 print_objinfo(cachep, objp, 0);
1671 }
1672 /* Hexdump the affected line */
b28a02de 1673 i = (i / 16) * 16;
1da177e4 1674 limit = 16;
b28a02de
PE
1675 if (i + limit > size)
1676 limit = size - i;
1da177e4
LT
1677 dump_line(realobj, i, limit);
1678 i += 16;
1679 lines++;
1680 /* Limit to 5 lines */
1681 if (lines > 5)
1682 break;
1683 }
1684 }
1685 if (lines != 0) {
1686 /* Print some data about the neighboring objects, if they
1687 * exist:
1688 */
6ed5eb22 1689 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1690 unsigned int objnr;
1da177e4 1691
8fea4e96 1692 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1693 if (objnr) {
8fea4e96 1694 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1695 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1696 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1697 realobj, size);
1da177e4
LT
1698 print_objinfo(cachep, objp, 2);
1699 }
b28a02de 1700 if (objnr + 1 < cachep->num) {
8fea4e96 1701 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1702 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1703 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1704 realobj, size);
1da177e4
LT
1705 print_objinfo(cachep, objp, 2);
1706 }
1707 }
1708}
1709#endif
1710
12dd36fa
MD
1711#if DEBUG
1712/**
911851e6
RD
1713 * slab_destroy_objs - destroy a slab and its objects
1714 * @cachep: cache pointer being destroyed
1715 * @slabp: slab pointer being destroyed
1716 *
1717 * Call the registered destructor for each object in a slab that is being
1718 * destroyed.
1da177e4 1719 */
343e0d7a 1720static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1721{
1da177e4
LT
1722 int i;
1723 for (i = 0; i < cachep->num; i++) {
8fea4e96 1724 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1725
1726 if (cachep->flags & SLAB_POISON) {
1727#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1728 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1729 OFF_SLAB(cachep))
b28a02de 1730 kernel_map_pages(virt_to_page(objp),
a737b3e2 1731 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1732 else
1733 check_poison_obj(cachep, objp);
1734#else
1735 check_poison_obj(cachep, objp);
1736#endif
1737 }
1738 if (cachep->flags & SLAB_RED_ZONE) {
1739 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1740 slab_error(cachep, "start of a freed object "
b28a02de 1741 "was overwritten");
1da177e4
LT
1742 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1743 slab_error(cachep, "end of a freed object "
b28a02de 1744 "was overwritten");
1da177e4
LT
1745 }
1746 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1747 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1748 }
12dd36fa 1749}
1da177e4 1750#else
343e0d7a 1751static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1752{
1da177e4
LT
1753 if (cachep->dtor) {
1754 int i;
1755 for (i = 0; i < cachep->num; i++) {
8fea4e96 1756 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1757 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1758 }
1759 }
12dd36fa 1760}
1da177e4
LT
1761#endif
1762
2b2d5493
IM
1763static void __cache_free(struct kmem_cache *cachep, void *objp, int nesting);
1764
911851e6
RD
1765/**
1766 * slab_destroy - destroy and release all objects in a slab
1767 * @cachep: cache pointer being destroyed
1768 * @slabp: slab pointer being destroyed
1769 *
12dd36fa 1770 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1771 * Before calling the slab must have been unlinked from the cache. The
1772 * cache-lock is not held/needed.
12dd36fa 1773 */
343e0d7a 1774static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1775{
1776 void *addr = slabp->s_mem - slabp->colouroff;
1777
1778 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1779 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1780 struct slab_rcu *slab_rcu;
1781
b28a02de 1782 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1783 slab_rcu->cachep = cachep;
1784 slab_rcu->addr = addr;
1785 call_rcu(&slab_rcu->head, kmem_rcu_free);
1786 } else {
1787 kmem_freepages(cachep, addr);
2b2d5493
IM
1788 if (OFF_SLAB(cachep)) {
1789 unsigned long flags;
1790
1791 /*
1792 * lockdep: we may nest inside an already held
1793 * ac->lock, so pass in a nesting flag:
1794 */
1795 local_irq_save(flags);
1796 __cache_free(cachep->slabp_cache, slabp, 1);
1797 local_irq_restore(flags);
1798 }
1da177e4
LT
1799 }
1800}
1801
a737b3e2
AM
1802/*
1803 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1804 * size of kmem_list3.
1805 */
343e0d7a 1806static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1807{
1808 int node;
1809
1810 for_each_online_node(node) {
b28a02de 1811 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1812 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1813 REAPTIMEOUT_LIST3 +
1814 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1815 }
1816}
1817
4d268eba 1818/**
a70773dd
RD
1819 * calculate_slab_order - calculate size (page order) of slabs
1820 * @cachep: pointer to the cache that is being created
1821 * @size: size of objects to be created in this cache.
1822 * @align: required alignment for the objects.
1823 * @flags: slab allocation flags
1824 *
1825 * Also calculates the number of objects per slab.
4d268eba
PE
1826 *
1827 * This could be made much more intelligent. For now, try to avoid using
1828 * high order pages for slabs. When the gfp() functions are more friendly
1829 * towards high-order requests, this should be changed.
1830 */
a737b3e2 1831static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1832 size_t size, size_t align, unsigned long flags)
4d268eba 1833{
b1ab41c4 1834 unsigned long offslab_limit;
4d268eba 1835 size_t left_over = 0;
9888e6fa 1836 int gfporder;
4d268eba 1837
a737b3e2 1838 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1839 unsigned int num;
1840 size_t remainder;
1841
9888e6fa 1842 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1843 if (!num)
1844 continue;
9888e6fa 1845
b1ab41c4
IM
1846 if (flags & CFLGS_OFF_SLAB) {
1847 /*
1848 * Max number of objs-per-slab for caches which
1849 * use off-slab slabs. Needed to avoid a possible
1850 * looping condition in cache_grow().
1851 */
1852 offslab_limit = size - sizeof(struct slab);
1853 offslab_limit /= sizeof(kmem_bufctl_t);
1854
1855 if (num > offslab_limit)
1856 break;
1857 }
4d268eba 1858
9888e6fa 1859 /* Found something acceptable - save it away */
4d268eba 1860 cachep->num = num;
9888e6fa 1861 cachep->gfporder = gfporder;
4d268eba
PE
1862 left_over = remainder;
1863
f78bb8ad
LT
1864 /*
1865 * A VFS-reclaimable slab tends to have most allocations
1866 * as GFP_NOFS and we really don't want to have to be allocating
1867 * higher-order pages when we are unable to shrink dcache.
1868 */
1869 if (flags & SLAB_RECLAIM_ACCOUNT)
1870 break;
1871
4d268eba
PE
1872 /*
1873 * Large number of objects is good, but very large slabs are
1874 * currently bad for the gfp()s.
1875 */
9888e6fa 1876 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1877 break;
1878
9888e6fa
LT
1879 /*
1880 * Acceptable internal fragmentation?
1881 */
a737b3e2 1882 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1883 break;
1884 }
1885 return left_over;
1886}
1887
f30cf7d1
PE
1888static void setup_cpu_cache(struct kmem_cache *cachep)
1889{
1890 if (g_cpucache_up == FULL) {
1891 enable_cpucache(cachep);
1892 return;
1893 }
1894 if (g_cpucache_up == NONE) {
1895 /*
1896 * Note: the first kmem_cache_create must create the cache
1897 * that's used by kmalloc(24), otherwise the creation of
1898 * further caches will BUG().
1899 */
1900 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1901
1902 /*
1903 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1904 * the first cache, then we need to set up all its list3s,
1905 * otherwise the creation of further caches will BUG().
1906 */
1907 set_up_list3s(cachep, SIZE_AC);
1908 if (INDEX_AC == INDEX_L3)
1909 g_cpucache_up = PARTIAL_L3;
1910 else
1911 g_cpucache_up = PARTIAL_AC;
1912 } else {
1913 cachep->array[smp_processor_id()] =
1914 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1915
1916 if (g_cpucache_up == PARTIAL_AC) {
1917 set_up_list3s(cachep, SIZE_L3);
1918 g_cpucache_up = PARTIAL_L3;
1919 } else {
1920 int node;
1921 for_each_online_node(node) {
1922 cachep->nodelists[node] =
1923 kmalloc_node(sizeof(struct kmem_list3),
1924 GFP_KERNEL, node);
1925 BUG_ON(!cachep->nodelists[node]);
1926 kmem_list3_init(cachep->nodelists[node]);
1927 }
1928 }
1929 }
1930 cachep->nodelists[numa_node_id()]->next_reap =
1931 jiffies + REAPTIMEOUT_LIST3 +
1932 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1933
1934 cpu_cache_get(cachep)->avail = 0;
1935 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1936 cpu_cache_get(cachep)->batchcount = 1;
1937 cpu_cache_get(cachep)->touched = 0;
1938 cachep->batchcount = 1;
1939 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1940}
1941
1da177e4
LT
1942/**
1943 * kmem_cache_create - Create a cache.
1944 * @name: A string which is used in /proc/slabinfo to identify this cache.
1945 * @size: The size of objects to be created in this cache.
1946 * @align: The required alignment for the objects.
1947 * @flags: SLAB flags
1948 * @ctor: A constructor for the objects.
1949 * @dtor: A destructor for the objects.
1950 *
1951 * Returns a ptr to the cache on success, NULL on failure.
1952 * Cannot be called within a int, but can be interrupted.
1953 * The @ctor is run when new pages are allocated by the cache
1954 * and the @dtor is run before the pages are handed back.
1955 *
1956 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1957 * the module calling this has to destroy the cache before getting unloaded.
1958 *
1da177e4
LT
1959 * The flags are
1960 *
1961 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1962 * to catch references to uninitialised memory.
1963 *
1964 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1965 * for buffer overruns.
1966 *
1da177e4
LT
1967 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1968 * cacheline. This can be beneficial if you're counting cycles as closely
1969 * as davem.
1970 */
343e0d7a 1971struct kmem_cache *
1da177e4 1972kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1973 unsigned long flags,
1974 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1975 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1976{
1977 size_t left_over, slab_size, ralign;
7a7c381d 1978 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
1979
1980 /*
1981 * Sanity checks... these are all serious usage bugs.
1982 */
a737b3e2 1983 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1984 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1985 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1986 name);
b28a02de
PE
1987 BUG();
1988 }
1da177e4 1989
f0188f47
RT
1990 /*
1991 * Prevent CPUs from coming and going.
1992 * lock_cpu_hotplug() nests outside cache_chain_mutex
1993 */
1994 lock_cpu_hotplug();
1995
fc0abb14 1996 mutex_lock(&cache_chain_mutex);
4f12bb4f 1997
7a7c381d 1998 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
1999 mm_segment_t old_fs = get_fs();
2000 char tmp;
2001 int res;
2002
2003 /*
2004 * This happens when the module gets unloaded and doesn't
2005 * destroy its slab cache and no-one else reuses the vmalloc
2006 * area of the module. Print a warning.
2007 */
2008 set_fs(KERNEL_DS);
2009 res = __get_user(tmp, pc->name);
2010 set_fs(old_fs);
2011 if (res) {
2012 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2013 pc->buffer_size);
4f12bb4f
AM
2014 continue;
2015 }
2016
b28a02de 2017 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2018 printk("kmem_cache_create: duplicate cache %s\n", name);
2019 dump_stack();
2020 goto oops;
2021 }
2022 }
2023
1da177e4
LT
2024#if DEBUG
2025 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2026 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2027 /* No constructor, but inital state check requested */
2028 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2029 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2030 flags &= ~SLAB_DEBUG_INITIAL;
2031 }
1da177e4
LT
2032#if FORCED_DEBUG
2033 /*
2034 * Enable redzoning and last user accounting, except for caches with
2035 * large objects, if the increased size would increase the object size
2036 * above the next power of two: caches with object sizes just above a
2037 * power of two have a significant amount of internal fragmentation.
2038 */
a737b3e2 2039 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2040 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2041 if (!(flags & SLAB_DESTROY_BY_RCU))
2042 flags |= SLAB_POISON;
2043#endif
2044 if (flags & SLAB_DESTROY_BY_RCU)
2045 BUG_ON(flags & SLAB_POISON);
2046#endif
2047 if (flags & SLAB_DESTROY_BY_RCU)
2048 BUG_ON(dtor);
2049
2050 /*
a737b3e2
AM
2051 * Always checks flags, a caller might be expecting debug support which
2052 * isn't available.
1da177e4 2053 */
40094fa6 2054 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2055
a737b3e2
AM
2056 /*
2057 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2058 * unaligned accesses for some archs when redzoning is used, and makes
2059 * sure any on-slab bufctl's are also correctly aligned.
2060 */
b28a02de
PE
2061 if (size & (BYTES_PER_WORD - 1)) {
2062 size += (BYTES_PER_WORD - 1);
2063 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2064 }
2065
a737b3e2
AM
2066 /* calculate the final buffer alignment: */
2067
1da177e4
LT
2068 /* 1) arch recommendation: can be overridden for debug */
2069 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2070 /*
2071 * Default alignment: as specified by the arch code. Except if
2072 * an object is really small, then squeeze multiple objects into
2073 * one cacheline.
1da177e4
LT
2074 */
2075 ralign = cache_line_size();
b28a02de 2076 while (size <= ralign / 2)
1da177e4
LT
2077 ralign /= 2;
2078 } else {
2079 ralign = BYTES_PER_WORD;
2080 }
2081 /* 2) arch mandated alignment: disables debug if necessary */
2082 if (ralign < ARCH_SLAB_MINALIGN) {
2083 ralign = ARCH_SLAB_MINALIGN;
2084 if (ralign > BYTES_PER_WORD)
b28a02de 2085 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2086 }
2087 /* 3) caller mandated alignment: disables debug if necessary */
2088 if (ralign < align) {
2089 ralign = align;
2090 if (ralign > BYTES_PER_WORD)
b28a02de 2091 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2092 }
a737b3e2
AM
2093 /*
2094 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
2095 * the alignment to BYTES_PER_WORD.
2096 */
2097 align = ralign;
2098
2099 /* Get cache's description obj. */
c5e3b83e 2100 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2101 if (!cachep)
4f12bb4f 2102 goto oops;
1da177e4
LT
2103
2104#if DEBUG
3dafccf2 2105 cachep->obj_size = size;
1da177e4
LT
2106
2107 if (flags & SLAB_RED_ZONE) {
2108 /* redzoning only works with word aligned caches */
2109 align = BYTES_PER_WORD;
2110
2111 /* add space for red zone words */
3dafccf2 2112 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2113 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2114 }
2115 if (flags & SLAB_STORE_USER) {
2116 /* user store requires word alignment and
2117 * one word storage behind the end of the real
2118 * object.
2119 */
2120 align = BYTES_PER_WORD;
2121 size += BYTES_PER_WORD;
2122 }
2123#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2124 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2125 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2126 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2127 size = PAGE_SIZE;
2128 }
2129#endif
2130#endif
2131
e0a42726
IM
2132 /*
2133 * Determine if the slab management is 'on' or 'off' slab.
2134 * (bootstrapping cannot cope with offslab caches so don't do
2135 * it too early on.)
2136 */
2137 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2138 /*
2139 * Size is large, assume best to place the slab management obj
2140 * off-slab (should allow better packing of objs).
2141 */
2142 flags |= CFLGS_OFF_SLAB;
2143
2144 size = ALIGN(size, align);
2145
f78bb8ad 2146 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2147
2148 if (!cachep->num) {
2149 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2150 kmem_cache_free(&cache_cache, cachep);
2151 cachep = NULL;
4f12bb4f 2152 goto oops;
1da177e4 2153 }
b28a02de
PE
2154 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2155 + sizeof(struct slab), align);
1da177e4
LT
2156
2157 /*
2158 * If the slab has been placed off-slab, and we have enough space then
2159 * move it on-slab. This is at the expense of any extra colouring.
2160 */
2161 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2162 flags &= ~CFLGS_OFF_SLAB;
2163 left_over -= slab_size;
2164 }
2165
2166 if (flags & CFLGS_OFF_SLAB) {
2167 /* really off slab. No need for manual alignment */
b28a02de
PE
2168 slab_size =
2169 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2170 }
2171
2172 cachep->colour_off = cache_line_size();
2173 /* Offset must be a multiple of the alignment. */
2174 if (cachep->colour_off < align)
2175 cachep->colour_off = align;
b28a02de 2176 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2177 cachep->slab_size = slab_size;
2178 cachep->flags = flags;
2179 cachep->gfpflags = 0;
2180 if (flags & SLAB_CACHE_DMA)
2181 cachep->gfpflags |= GFP_DMA;
3dafccf2 2182 cachep->buffer_size = size;
1da177e4
LT
2183
2184 if (flags & CFLGS_OFF_SLAB)
b2d55073 2185 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2186 cachep->ctor = ctor;
2187 cachep->dtor = dtor;
2188 cachep->name = name;
2189
1da177e4 2190
f30cf7d1 2191 setup_cpu_cache(cachep);
1da177e4 2192
1da177e4
LT
2193 /* cache setup completed, link it into the list */
2194 list_add(&cachep->next, &cache_chain);
a737b3e2 2195oops:
1da177e4
LT
2196 if (!cachep && (flags & SLAB_PANIC))
2197 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2198 name);
fc0abb14 2199 mutex_unlock(&cache_chain_mutex);
f0188f47 2200 unlock_cpu_hotplug();
1da177e4
LT
2201 return cachep;
2202}
2203EXPORT_SYMBOL(kmem_cache_create);
2204
2205#if DEBUG
2206static void check_irq_off(void)
2207{
2208 BUG_ON(!irqs_disabled());
2209}
2210
2211static void check_irq_on(void)
2212{
2213 BUG_ON(irqs_disabled());
2214}
2215
343e0d7a 2216static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2217{
2218#ifdef CONFIG_SMP
2219 check_irq_off();
e498be7d 2220 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2221#endif
2222}
e498be7d 2223
343e0d7a 2224static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2225{
2226#ifdef CONFIG_SMP
2227 check_irq_off();
2228 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2229#endif
2230}
2231
1da177e4
LT
2232#else
2233#define check_irq_off() do { } while(0)
2234#define check_irq_on() do { } while(0)
2235#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2236#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2237#endif
2238
aab2207c
CL
2239static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2240 struct array_cache *ac,
2241 int force, int node);
2242
1da177e4
LT
2243static void do_drain(void *arg)
2244{
a737b3e2 2245 struct kmem_cache *cachep = arg;
1da177e4 2246 struct array_cache *ac;
ff69416e 2247 int node = numa_node_id();
1da177e4
LT
2248
2249 check_irq_off();
9a2dba4b 2250 ac = cpu_cache_get(cachep);
ff69416e
CL
2251 spin_lock(&cachep->nodelists[node]->list_lock);
2252 free_block(cachep, ac->entry, ac->avail, node);
2253 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2254 ac->avail = 0;
2255}
2256
343e0d7a 2257static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2258{
e498be7d
CL
2259 struct kmem_list3 *l3;
2260 int node;
2261
a07fa394 2262 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2263 check_irq_on();
b28a02de 2264 for_each_online_node(node) {
e498be7d 2265 l3 = cachep->nodelists[node];
a4523a8b
RD
2266 if (l3 && l3->alien)
2267 drain_alien_cache(cachep, l3->alien);
2268 }
2269
2270 for_each_online_node(node) {
2271 l3 = cachep->nodelists[node];
2272 if (l3)
aab2207c 2273 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2274 }
1da177e4
LT
2275}
2276
ed11d9eb
CL
2277/*
2278 * Remove slabs from the list of free slabs.
2279 * Specify the number of slabs to drain in tofree.
2280 *
2281 * Returns the actual number of slabs released.
2282 */
2283static int drain_freelist(struct kmem_cache *cache,
2284 struct kmem_list3 *l3, int tofree)
1da177e4 2285{
ed11d9eb
CL
2286 struct list_head *p;
2287 int nr_freed;
1da177e4 2288 struct slab *slabp;
1da177e4 2289
ed11d9eb
CL
2290 nr_freed = 0;
2291 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2292
ed11d9eb 2293 spin_lock_irq(&l3->list_lock);
e498be7d 2294 p = l3->slabs_free.prev;
ed11d9eb
CL
2295 if (p == &l3->slabs_free) {
2296 spin_unlock_irq(&l3->list_lock);
2297 goto out;
2298 }
1da177e4 2299
ed11d9eb 2300 slabp = list_entry(p, struct slab, list);
1da177e4 2301#if DEBUG
40094fa6 2302 BUG_ON(slabp->inuse);
1da177e4
LT
2303#endif
2304 list_del(&slabp->list);
ed11d9eb
CL
2305 /*
2306 * Safe to drop the lock. The slab is no longer linked
2307 * to the cache.
2308 */
2309 l3->free_objects -= cache->num;
e498be7d 2310 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2311 slab_destroy(cache, slabp);
2312 nr_freed++;
1da177e4 2313 }
ed11d9eb
CL
2314out:
2315 return nr_freed;
1da177e4
LT
2316}
2317
343e0d7a 2318static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2319{
2320 int ret = 0, i = 0;
2321 struct kmem_list3 *l3;
2322
2323 drain_cpu_caches(cachep);
2324
2325 check_irq_on();
2326 for_each_online_node(i) {
2327 l3 = cachep->nodelists[i];
ed11d9eb
CL
2328 if (!l3)
2329 continue;
2330
2331 drain_freelist(cachep, l3, l3->free_objects);
2332
2333 ret += !list_empty(&l3->slabs_full) ||
2334 !list_empty(&l3->slabs_partial);
e498be7d
CL
2335 }
2336 return (ret ? 1 : 0);
2337}
2338
1da177e4
LT
2339/**
2340 * kmem_cache_shrink - Shrink a cache.
2341 * @cachep: The cache to shrink.
2342 *
2343 * Releases as many slabs as possible for a cache.
2344 * To help debugging, a zero exit status indicates all slabs were released.
2345 */
343e0d7a 2346int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2347{
40094fa6 2348 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2349
2350 return __cache_shrink(cachep);
2351}
2352EXPORT_SYMBOL(kmem_cache_shrink);
2353
2354/**
2355 * kmem_cache_destroy - delete a cache
2356 * @cachep: the cache to destroy
2357 *
343e0d7a 2358 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2359 * Returns 0 on success.
2360 *
2361 * It is expected this function will be called by a module when it is
2362 * unloaded. This will remove the cache completely, and avoid a duplicate
2363 * cache being allocated each time a module is loaded and unloaded, if the
2364 * module doesn't have persistent in-kernel storage across loads and unloads.
2365 *
2366 * The cache must be empty before calling this function.
2367 *
2368 * The caller must guarantee that noone will allocate memory from the cache
2369 * during the kmem_cache_destroy().
2370 */
343e0d7a 2371int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2372{
2373 int i;
e498be7d 2374 struct kmem_list3 *l3;
1da177e4 2375
40094fa6 2376 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2377
2378 /* Don't let CPUs to come and go */
2379 lock_cpu_hotplug();
2380
2381 /* Find the cache in the chain of caches. */
fc0abb14 2382 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2383 /*
2384 * the chain is never empty, cache_cache is never destroyed
2385 */
2386 list_del(&cachep->next);
fc0abb14 2387 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2388
2389 if (__cache_shrink(cachep)) {
2390 slab_error(cachep, "Can't free all objects");
fc0abb14 2391 mutex_lock(&cache_chain_mutex);
b28a02de 2392 list_add(&cachep->next, &cache_chain);
fc0abb14 2393 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2394 unlock_cpu_hotplug();
2395 return 1;
2396 }
2397
2398 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2399 synchronize_rcu();
1da177e4 2400
e498be7d 2401 for_each_online_cpu(i)
b28a02de 2402 kfree(cachep->array[i]);
1da177e4
LT
2403
2404 /* NUMA: free the list3 structures */
e498be7d 2405 for_each_online_node(i) {
a737b3e2
AM
2406 l3 = cachep->nodelists[i];
2407 if (l3) {
e498be7d
CL
2408 kfree(l3->shared);
2409 free_alien_cache(l3->alien);
2410 kfree(l3);
2411 }
2412 }
1da177e4 2413 kmem_cache_free(&cache_cache, cachep);
1da177e4 2414 unlock_cpu_hotplug();
1da177e4
LT
2415 return 0;
2416}
2417EXPORT_SYMBOL(kmem_cache_destroy);
2418
2419/* Get the memory for a slab management obj. */
343e0d7a 2420static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2421 int colour_off, gfp_t local_flags,
2422 int nodeid)
1da177e4
LT
2423{
2424 struct slab *slabp;
b28a02de 2425
1da177e4
LT
2426 if (OFF_SLAB(cachep)) {
2427 /* Slab management obj is off-slab. */
5b74ada7
RT
2428 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2429 local_flags, nodeid);
1da177e4
LT
2430 if (!slabp)
2431 return NULL;
2432 } else {
b28a02de 2433 slabp = objp + colour_off;
1da177e4
LT
2434 colour_off += cachep->slab_size;
2435 }
2436 slabp->inuse = 0;
2437 slabp->colouroff = colour_off;
b28a02de 2438 slabp->s_mem = objp + colour_off;
5b74ada7 2439 slabp->nodeid = nodeid;
1da177e4
LT
2440 return slabp;
2441}
2442
2443static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2444{
b28a02de 2445 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2446}
2447
343e0d7a 2448static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2449 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2450{
2451 int i;
2452
2453 for (i = 0; i < cachep->num; i++) {
8fea4e96 2454 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2455#if DEBUG
2456 /* need to poison the objs? */
2457 if (cachep->flags & SLAB_POISON)
2458 poison_obj(cachep, objp, POISON_FREE);
2459 if (cachep->flags & SLAB_STORE_USER)
2460 *dbg_userword(cachep, objp) = NULL;
2461
2462 if (cachep->flags & SLAB_RED_ZONE) {
2463 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2464 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2465 }
2466 /*
a737b3e2
AM
2467 * Constructors are not allowed to allocate memory from the same
2468 * cache which they are a constructor for. Otherwise, deadlock.
2469 * They must also be threaded.
1da177e4
LT
2470 */
2471 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2472 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2473 ctor_flags);
1da177e4
LT
2474
2475 if (cachep->flags & SLAB_RED_ZONE) {
2476 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2477 slab_error(cachep, "constructor overwrote the"
b28a02de 2478 " end of an object");
1da177e4
LT
2479 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2480 slab_error(cachep, "constructor overwrote the"
b28a02de 2481 " start of an object");
1da177e4 2482 }
a737b3e2
AM
2483 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2484 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2485 kernel_map_pages(virt_to_page(objp),
3dafccf2 2486 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2487#else
2488 if (cachep->ctor)
2489 cachep->ctor(objp, cachep, ctor_flags);
2490#endif
b28a02de 2491 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2492 }
b28a02de 2493 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2494 slabp->free = 0;
2495}
2496
343e0d7a 2497static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2498{
a737b3e2
AM
2499 if (flags & SLAB_DMA)
2500 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2501 else
2502 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2503}
2504
a737b3e2
AM
2505static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2506 int nodeid)
78d382d7 2507{
8fea4e96 2508 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2509 kmem_bufctl_t next;
2510
2511 slabp->inuse++;
2512 next = slab_bufctl(slabp)[slabp->free];
2513#if DEBUG
2514 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2515 WARN_ON(slabp->nodeid != nodeid);
2516#endif
2517 slabp->free = next;
2518
2519 return objp;
2520}
2521
a737b3e2
AM
2522static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2523 void *objp, int nodeid)
78d382d7 2524{
8fea4e96 2525 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2526
2527#if DEBUG
2528 /* Verify that the slab belongs to the intended node */
2529 WARN_ON(slabp->nodeid != nodeid);
2530
871751e2 2531 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2532 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2533 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2534 BUG();
2535 }
2536#endif
2537 slab_bufctl(slabp)[objnr] = slabp->free;
2538 slabp->free = objnr;
2539 slabp->inuse--;
2540}
2541
4776874f
PE
2542/*
2543 * Map pages beginning at addr to the given cache and slab. This is required
2544 * for the slab allocator to be able to lookup the cache and slab of a
2545 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2546 */
2547static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2548 void *addr)
1da177e4 2549{
4776874f 2550 int nr_pages;
1da177e4
LT
2551 struct page *page;
2552
4776874f 2553 page = virt_to_page(addr);
84097518 2554
4776874f 2555 nr_pages = 1;
84097518 2556 if (likely(!PageCompound(page)))
4776874f
PE
2557 nr_pages <<= cache->gfporder;
2558
1da177e4 2559 do {
4776874f
PE
2560 page_set_cache(page, cache);
2561 page_set_slab(page, slab);
1da177e4 2562 page++;
4776874f 2563 } while (--nr_pages);
1da177e4
LT
2564}
2565
2566/*
2567 * Grow (by 1) the number of slabs within a cache. This is called by
2568 * kmem_cache_alloc() when there are no active objs left in a cache.
2569 */
343e0d7a 2570static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2571{
b28a02de
PE
2572 struct slab *slabp;
2573 void *objp;
2574 size_t offset;
2575 gfp_t local_flags;
2576 unsigned long ctor_flags;
e498be7d 2577 struct kmem_list3 *l3;
1da177e4 2578
a737b3e2
AM
2579 /*
2580 * Be lazy and only check for valid flags here, keeping it out of the
2581 * critical path in kmem_cache_alloc().
1da177e4 2582 */
40094fa6 2583 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2584 if (flags & SLAB_NO_GROW)
2585 return 0;
2586
2587 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2588 local_flags = (flags & SLAB_LEVEL_MASK);
2589 if (!(local_flags & __GFP_WAIT))
2590 /*
2591 * Not allowed to sleep. Need to tell a constructor about
2592 * this - it might need to know...
2593 */
2594 ctor_flags |= SLAB_CTOR_ATOMIC;
2595
2e1217cf 2596 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2597 check_irq_off();
2e1217cf
RT
2598 l3 = cachep->nodelists[nodeid];
2599 spin_lock(&l3->list_lock);
1da177e4
LT
2600
2601 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2602 offset = l3->colour_next;
2603 l3->colour_next++;
2604 if (l3->colour_next >= cachep->colour)
2605 l3->colour_next = 0;
2606 spin_unlock(&l3->list_lock);
1da177e4 2607
2e1217cf 2608 offset *= cachep->colour_off;
1da177e4
LT
2609
2610 if (local_flags & __GFP_WAIT)
2611 local_irq_enable();
2612
2613 /*
2614 * The test for missing atomic flag is performed here, rather than
2615 * the more obvious place, simply to reduce the critical path length
2616 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2617 * will eventually be caught here (where it matters).
2618 */
2619 kmem_flagcheck(cachep, flags);
2620
a737b3e2
AM
2621 /*
2622 * Get mem for the objs. Attempt to allocate a physical page from
2623 * 'nodeid'.
e498be7d 2624 */
a737b3e2
AM
2625 objp = kmem_getpages(cachep, flags, nodeid);
2626 if (!objp)
1da177e4
LT
2627 goto failed;
2628
2629 /* Get slab management. */
5b74ada7 2630 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2631 if (!slabp)
1da177e4
LT
2632 goto opps1;
2633
e498be7d 2634 slabp->nodeid = nodeid;
4776874f 2635 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2636
2637 cache_init_objs(cachep, slabp, ctor_flags);
2638
2639 if (local_flags & __GFP_WAIT)
2640 local_irq_disable();
2641 check_irq_off();
e498be7d 2642 spin_lock(&l3->list_lock);
1da177e4
LT
2643
2644 /* Make slab active. */
e498be7d 2645 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2646 STATS_INC_GROWN(cachep);
e498be7d
CL
2647 l3->free_objects += cachep->num;
2648 spin_unlock(&l3->list_lock);
1da177e4 2649 return 1;
a737b3e2 2650opps1:
1da177e4 2651 kmem_freepages(cachep, objp);
a737b3e2 2652failed:
1da177e4
LT
2653 if (local_flags & __GFP_WAIT)
2654 local_irq_disable();
2655 return 0;
2656}
2657
2658#if DEBUG
2659
2660/*
2661 * Perform extra freeing checks:
2662 * - detect bad pointers.
2663 * - POISON/RED_ZONE checking
2664 * - destructor calls, for caches with POISON+dtor
2665 */
2666static void kfree_debugcheck(const void *objp)
2667{
2668 struct page *page;
2669
2670 if (!virt_addr_valid(objp)) {
2671 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2672 (unsigned long)objp);
2673 BUG();
1da177e4
LT
2674 }
2675 page = virt_to_page(objp);
2676 if (!PageSlab(page)) {
b28a02de
PE
2677 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2678 (unsigned long)objp);
1da177e4
LT
2679 BUG();
2680 }
2681}
2682
58ce1fd5
PE
2683static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2684{
2685 unsigned long redzone1, redzone2;
2686
2687 redzone1 = *dbg_redzone1(cache, obj);
2688 redzone2 = *dbg_redzone2(cache, obj);
2689
2690 /*
2691 * Redzone is ok.
2692 */
2693 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2694 return;
2695
2696 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2697 slab_error(cache, "double free detected");
2698 else
2699 slab_error(cache, "memory outside object was overwritten");
2700
2701 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2702 obj, redzone1, redzone2);
2703}
2704
343e0d7a 2705static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2706 void *caller)
1da177e4
LT
2707{
2708 struct page *page;
2709 unsigned int objnr;
2710 struct slab *slabp;
2711
3dafccf2 2712 objp -= obj_offset(cachep);
1da177e4
LT
2713 kfree_debugcheck(objp);
2714 page = virt_to_page(objp);
2715
065d41cb 2716 slabp = page_get_slab(page);
1da177e4
LT
2717
2718 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2719 verify_redzone_free(cachep, objp);
1da177e4
LT
2720 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2721 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2722 }
2723 if (cachep->flags & SLAB_STORE_USER)
2724 *dbg_userword(cachep, objp) = caller;
2725
8fea4e96 2726 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2727
2728 BUG_ON(objnr >= cachep->num);
8fea4e96 2729 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2730
2731 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2732 /*
2733 * Need to call the slab's constructor so the caller can
2734 * perform a verify of its state (debugging). Called without
2735 * the cache-lock held.
1da177e4 2736 */
3dafccf2 2737 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2738 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2739 }
2740 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2741 /* we want to cache poison the object,
2742 * call the destruction callback
2743 */
3dafccf2 2744 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2745 }
871751e2
AV
2746#ifdef CONFIG_DEBUG_SLAB_LEAK
2747 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2748#endif
1da177e4
LT
2749 if (cachep->flags & SLAB_POISON) {
2750#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2751 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2752 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2753 kernel_map_pages(virt_to_page(objp),
3dafccf2 2754 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2755 } else {
2756 poison_obj(cachep, objp, POISON_FREE);
2757 }
2758#else
2759 poison_obj(cachep, objp, POISON_FREE);
2760#endif
2761 }
2762 return objp;
2763}
2764
343e0d7a 2765static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2766{
2767 kmem_bufctl_t i;
2768 int entries = 0;
b28a02de 2769
1da177e4
LT
2770 /* Check slab's freelist to see if this obj is there. */
2771 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2772 entries++;
2773 if (entries > cachep->num || i >= cachep->num)
2774 goto bad;
2775 }
2776 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2777bad:
2778 printk(KERN_ERR "slab: Internal list corruption detected in "
2779 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2780 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2781 for (i = 0;
264132bc 2782 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2783 i++) {
a737b3e2 2784 if (i % 16 == 0)
1da177e4 2785 printk("\n%03x:", i);
b28a02de 2786 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2787 }
2788 printk("\n");
2789 BUG();
2790 }
2791}
2792#else
2793#define kfree_debugcheck(x) do { } while(0)
2794#define cache_free_debugcheck(x,objp,z) (objp)
2795#define check_slabp(x,y) do { } while(0)
2796#endif
2797
343e0d7a 2798static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2799{
2800 int batchcount;
2801 struct kmem_list3 *l3;
2802 struct array_cache *ac;
2803
2804 check_irq_off();
9a2dba4b 2805 ac = cpu_cache_get(cachep);
a737b3e2 2806retry:
1da177e4
LT
2807 batchcount = ac->batchcount;
2808 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2809 /*
2810 * If there was little recent activity on this cache, then
2811 * perform only a partial refill. Otherwise we could generate
2812 * refill bouncing.
1da177e4
LT
2813 */
2814 batchcount = BATCHREFILL_LIMIT;
2815 }
e498be7d
CL
2816 l3 = cachep->nodelists[numa_node_id()];
2817
2818 BUG_ON(ac->avail > 0 || !l3);
2819 spin_lock(&l3->list_lock);
1da177e4 2820
3ded175a
CL
2821 /* See if we can refill from the shared array */
2822 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2823 goto alloc_done;
2824
1da177e4
LT
2825 while (batchcount > 0) {
2826 struct list_head *entry;
2827 struct slab *slabp;
2828 /* Get slab alloc is to come from. */
2829 entry = l3->slabs_partial.next;
2830 if (entry == &l3->slabs_partial) {
2831 l3->free_touched = 1;
2832 entry = l3->slabs_free.next;
2833 if (entry == &l3->slabs_free)
2834 goto must_grow;
2835 }
2836
2837 slabp = list_entry(entry, struct slab, list);
2838 check_slabp(cachep, slabp);
2839 check_spinlock_acquired(cachep);
2840 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2841 STATS_INC_ALLOCED(cachep);
2842 STATS_INC_ACTIVE(cachep);
2843 STATS_SET_HIGH(cachep);
2844
78d382d7
MD
2845 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2846 numa_node_id());
1da177e4
LT
2847 }
2848 check_slabp(cachep, slabp);
2849
2850 /* move slabp to correct slabp list: */
2851 list_del(&slabp->list);
2852 if (slabp->free == BUFCTL_END)
2853 list_add(&slabp->list, &l3->slabs_full);
2854 else
2855 list_add(&slabp->list, &l3->slabs_partial);
2856 }
2857
a737b3e2 2858must_grow:
1da177e4 2859 l3->free_objects -= ac->avail;
a737b3e2 2860alloc_done:
e498be7d 2861 spin_unlock(&l3->list_lock);
1da177e4
LT
2862
2863 if (unlikely(!ac->avail)) {
2864 int x;
e498be7d
CL
2865 x = cache_grow(cachep, flags, numa_node_id());
2866
a737b3e2 2867 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2868 ac = cpu_cache_get(cachep);
a737b3e2 2869 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2870 return NULL;
2871
a737b3e2 2872 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2873 goto retry;
2874 }
2875 ac->touched = 1;
e498be7d 2876 return ac->entry[--ac->avail];
1da177e4
LT
2877}
2878
a737b3e2
AM
2879static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2880 gfp_t flags)
1da177e4
LT
2881{
2882 might_sleep_if(flags & __GFP_WAIT);
2883#if DEBUG
2884 kmem_flagcheck(cachep, flags);
2885#endif
2886}
2887
2888#if DEBUG
a737b3e2
AM
2889static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2890 gfp_t flags, void *objp, void *caller)
1da177e4 2891{
b28a02de 2892 if (!objp)
1da177e4 2893 return objp;
b28a02de 2894 if (cachep->flags & SLAB_POISON) {
1da177e4 2895#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2896 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2897 kernel_map_pages(virt_to_page(objp),
3dafccf2 2898 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2899 else
2900 check_poison_obj(cachep, objp);
2901#else
2902 check_poison_obj(cachep, objp);
2903#endif
2904 poison_obj(cachep, objp, POISON_INUSE);
2905 }
2906 if (cachep->flags & SLAB_STORE_USER)
2907 *dbg_userword(cachep, objp) = caller;
2908
2909 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2910 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2911 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2912 slab_error(cachep, "double free, or memory outside"
2913 " object was overwritten");
b28a02de 2914 printk(KERN_ERR
a737b3e2
AM
2915 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2916 objp, *dbg_redzone1(cachep, objp),
2917 *dbg_redzone2(cachep, objp));
1da177e4
LT
2918 }
2919 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2920 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2921 }
871751e2
AV
2922#ifdef CONFIG_DEBUG_SLAB_LEAK
2923 {
2924 struct slab *slabp;
2925 unsigned objnr;
2926
2927 slabp = page_get_slab(virt_to_page(objp));
2928 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2929 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2930 }
2931#endif
3dafccf2 2932 objp += obj_offset(cachep);
1da177e4 2933 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2934 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2935
2936 if (!(flags & __GFP_WAIT))
2937 ctor_flags |= SLAB_CTOR_ATOMIC;
2938
2939 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2940 }
1da177e4
LT
2941 return objp;
2942}
2943#else
2944#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2945#endif
2946
343e0d7a 2947static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2948{
b28a02de 2949 void *objp;
1da177e4
LT
2950 struct array_cache *ac;
2951
dc85da15 2952#ifdef CONFIG_NUMA
b2455396 2953 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
2954 objp = alternate_node_alloc(cachep, flags);
2955 if (objp != NULL)
2956 return objp;
dc85da15
CL
2957 }
2958#endif
2959
5c382300 2960 check_irq_off();
9a2dba4b 2961 ac = cpu_cache_get(cachep);
1da177e4
LT
2962 if (likely(ac->avail)) {
2963 STATS_INC_ALLOCHIT(cachep);
2964 ac->touched = 1;
e498be7d 2965 objp = ac->entry[--ac->avail];
1da177e4
LT
2966 } else {
2967 STATS_INC_ALLOCMISS(cachep);
2968 objp = cache_alloc_refill(cachep, flags);
2969 }
5c382300
AK
2970 return objp;
2971}
2972
a737b3e2
AM
2973static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2974 gfp_t flags, void *caller)
5c382300
AK
2975{
2976 unsigned long save_flags;
b28a02de 2977 void *objp;
5c382300
AK
2978
2979 cache_alloc_debugcheck_before(cachep, flags);
2980
2981 local_irq_save(save_flags);
2982 objp = ____cache_alloc(cachep, flags);
1da177e4 2983 local_irq_restore(save_flags);
34342e86 2984 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2985 caller);
34342e86 2986 prefetchw(objp);
1da177e4
LT
2987 return objp;
2988}
2989
e498be7d 2990#ifdef CONFIG_NUMA
c61afb18 2991/*
b2455396 2992 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
2993 *
2994 * If we are in_interrupt, then process context, including cpusets and
2995 * mempolicy, may not apply and should not be used for allocation policy.
2996 */
2997static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2998{
2999 int nid_alloc, nid_here;
3000
3001 if (in_interrupt())
3002 return NULL;
3003 nid_alloc = nid_here = numa_node_id();
3004 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3005 nid_alloc = cpuset_mem_spread_node();
3006 else if (current->mempolicy)
3007 nid_alloc = slab_node(current->mempolicy);
3008 if (nid_alloc != nid_here)
3009 return __cache_alloc_node(cachep, flags, nid_alloc);
3010 return NULL;
3011}
3012
e498be7d
CL
3013/*
3014 * A interface to enable slab creation on nodeid
1da177e4 3015 */
a737b3e2
AM
3016static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3017 int nodeid)
e498be7d
CL
3018{
3019 struct list_head *entry;
b28a02de
PE
3020 struct slab *slabp;
3021 struct kmem_list3 *l3;
3022 void *obj;
b28a02de
PE
3023 int x;
3024
3025 l3 = cachep->nodelists[nodeid];
3026 BUG_ON(!l3);
3027
a737b3e2 3028retry:
ca3b9b91 3029 check_irq_off();
b28a02de
PE
3030 spin_lock(&l3->list_lock);
3031 entry = l3->slabs_partial.next;
3032 if (entry == &l3->slabs_partial) {
3033 l3->free_touched = 1;
3034 entry = l3->slabs_free.next;
3035 if (entry == &l3->slabs_free)
3036 goto must_grow;
3037 }
3038
3039 slabp = list_entry(entry, struct slab, list);
3040 check_spinlock_acquired_node(cachep, nodeid);
3041 check_slabp(cachep, slabp);
3042
3043 STATS_INC_NODEALLOCS(cachep);
3044 STATS_INC_ACTIVE(cachep);
3045 STATS_SET_HIGH(cachep);
3046
3047 BUG_ON(slabp->inuse == cachep->num);
3048
78d382d7 3049 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3050 check_slabp(cachep, slabp);
3051 l3->free_objects--;
3052 /* move slabp to correct slabp list: */
3053 list_del(&slabp->list);
3054
a737b3e2 3055 if (slabp->free == BUFCTL_END)
b28a02de 3056 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3057 else
b28a02de 3058 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3059
b28a02de
PE
3060 spin_unlock(&l3->list_lock);
3061 goto done;
e498be7d 3062
a737b3e2 3063must_grow:
b28a02de
PE
3064 spin_unlock(&l3->list_lock);
3065 x = cache_grow(cachep, flags, nodeid);
1da177e4 3066
b28a02de
PE
3067 if (!x)
3068 return NULL;
e498be7d 3069
b28a02de 3070 goto retry;
a737b3e2 3071done:
b28a02de 3072 return obj;
e498be7d
CL
3073}
3074#endif
3075
3076/*
3077 * Caller needs to acquire correct kmem_list's list_lock
3078 */
343e0d7a 3079static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3080 int node)
1da177e4
LT
3081{
3082 int i;
e498be7d 3083 struct kmem_list3 *l3;
1da177e4
LT
3084
3085 for (i = 0; i < nr_objects; i++) {
3086 void *objp = objpp[i];
3087 struct slab *slabp;
1da177e4 3088
6ed5eb22 3089 slabp = virt_to_slab(objp);
ff69416e 3090 l3 = cachep->nodelists[node];
1da177e4 3091 list_del(&slabp->list);
ff69416e 3092 check_spinlock_acquired_node(cachep, node);
1da177e4 3093 check_slabp(cachep, slabp);
78d382d7 3094 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3095 STATS_DEC_ACTIVE(cachep);
e498be7d 3096 l3->free_objects++;
1da177e4
LT
3097 check_slabp(cachep, slabp);
3098
3099 /* fixup slab chains */
3100 if (slabp->inuse == 0) {
e498be7d
CL
3101 if (l3->free_objects > l3->free_limit) {
3102 l3->free_objects -= cachep->num;
2b2d5493
IM
3103 /*
3104 * It is safe to drop the lock. The slab is
3105 * no longer linked to the cache. cachep
3106 * cannot disappear - we are using it and
3107 * all destruction of caches must be
3108 * serialized properly by the user.
3109 */
3110 spin_unlock(&l3->list_lock);
1da177e4 3111 slab_destroy(cachep, slabp);
2b2d5493 3112 spin_lock(&l3->list_lock);
1da177e4 3113 } else {
e498be7d 3114 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3115 }
3116 } else {
3117 /* Unconditionally move a slab to the end of the
3118 * partial list on free - maximum time for the
3119 * other objects to be freed, too.
3120 */
e498be7d 3121 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3122 }
3123 }
3124}
3125
343e0d7a 3126static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3127{
3128 int batchcount;
e498be7d 3129 struct kmem_list3 *l3;
ff69416e 3130 int node = numa_node_id();
1da177e4
LT
3131
3132 batchcount = ac->batchcount;
3133#if DEBUG
3134 BUG_ON(!batchcount || batchcount > ac->avail);
3135#endif
3136 check_irq_off();
ff69416e 3137 l3 = cachep->nodelists[node];
2b2d5493 3138 spin_lock_nested(&l3->list_lock, SINGLE_DEPTH_NESTING);
e498be7d
CL
3139 if (l3->shared) {
3140 struct array_cache *shared_array = l3->shared;
b28a02de 3141 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3142 if (max) {
3143 if (batchcount > max)
3144 batchcount = max;
e498be7d 3145 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3146 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3147 shared_array->avail += batchcount;
3148 goto free_done;
3149 }
3150 }
3151
ff69416e 3152 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3153free_done:
1da177e4
LT
3154#if STATS
3155 {
3156 int i = 0;
3157 struct list_head *p;
3158
e498be7d
CL
3159 p = l3->slabs_free.next;
3160 while (p != &(l3->slabs_free)) {
1da177e4
LT
3161 struct slab *slabp;
3162
3163 slabp = list_entry(p, struct slab, list);
3164 BUG_ON(slabp->inuse);
3165
3166 i++;
3167 p = p->next;
3168 }
3169 STATS_SET_FREEABLE(cachep, i);
3170 }
3171#endif
e498be7d 3172 spin_unlock(&l3->list_lock);
1da177e4 3173 ac->avail -= batchcount;
a737b3e2 3174 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3175}
3176
3177/*
a737b3e2
AM
3178 * Release an obj back to its cache. If the obj has a constructed state, it must
3179 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3180 */
2b2d5493 3181static void __cache_free(struct kmem_cache *cachep, void *objp, int nesting)
1da177e4 3182{
9a2dba4b 3183 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3184
3185 check_irq_off();
3186 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3187
2b2d5493 3188 if (cache_free_alien(cachep, objp, nesting))
729bd0b7
PE
3189 return;
3190
1da177e4
LT
3191 if (likely(ac->avail < ac->limit)) {
3192 STATS_INC_FREEHIT(cachep);
e498be7d 3193 ac->entry[ac->avail++] = objp;
1da177e4
LT
3194 return;
3195 } else {
3196 STATS_INC_FREEMISS(cachep);
3197 cache_flusharray(cachep, ac);
e498be7d 3198 ac->entry[ac->avail++] = objp;
1da177e4
LT
3199 }
3200}
3201
3202/**
3203 * kmem_cache_alloc - Allocate an object
3204 * @cachep: The cache to allocate from.
3205 * @flags: See kmalloc().
3206 *
3207 * Allocate an object from this cache. The flags are only relevant
3208 * if the cache has no available objects.
3209 */
343e0d7a 3210void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3211{
7fd6b141 3212 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3213}
3214EXPORT_SYMBOL(kmem_cache_alloc);
3215
a8c0f9a4
PE
3216/**
3217 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3218 * @cache: The cache to allocate from.
3219 * @flags: See kmalloc().
3220 *
3221 * Allocate an object from this cache and set the allocated memory to zero.
3222 * The flags are only relevant if the cache has no available objects.
3223 */
3224void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3225{
3226 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3227 if (ret)
3228 memset(ret, 0, obj_size(cache));
3229 return ret;
3230}
3231EXPORT_SYMBOL(kmem_cache_zalloc);
3232
1da177e4
LT
3233/**
3234 * kmem_ptr_validate - check if an untrusted pointer might
3235 * be a slab entry.
3236 * @cachep: the cache we're checking against
3237 * @ptr: pointer to validate
3238 *
3239 * This verifies that the untrusted pointer looks sane:
3240 * it is _not_ a guarantee that the pointer is actually
3241 * part of the slab cache in question, but it at least
3242 * validates that the pointer can be dereferenced and
3243 * looks half-way sane.
3244 *
3245 * Currently only used for dentry validation.
3246 */
343e0d7a 3247int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3248{
b28a02de 3249 unsigned long addr = (unsigned long)ptr;
1da177e4 3250 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3251 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3252 unsigned long size = cachep->buffer_size;
1da177e4
LT
3253 struct page *page;
3254
3255 if (unlikely(addr < min_addr))
3256 goto out;
3257 if (unlikely(addr > (unsigned long)high_memory - size))
3258 goto out;
3259 if (unlikely(addr & align_mask))
3260 goto out;
3261 if (unlikely(!kern_addr_valid(addr)))
3262 goto out;
3263 if (unlikely(!kern_addr_valid(addr + size - 1)))
3264 goto out;
3265 page = virt_to_page(ptr);
3266 if (unlikely(!PageSlab(page)))
3267 goto out;
065d41cb 3268 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3269 goto out;
3270 return 1;
a737b3e2 3271out:
1da177e4
LT
3272 return 0;
3273}
3274
3275#ifdef CONFIG_NUMA
3276/**
3277 * kmem_cache_alloc_node - Allocate an object on the specified node
3278 * @cachep: The cache to allocate from.
3279 * @flags: See kmalloc().
3280 * @nodeid: node number of the target node.
3281 *
3282 * Identical to kmem_cache_alloc, except that this function is slow
3283 * and can sleep. And it will allocate memory on the given node, which
3284 * can improve the performance for cpu bound structures.
e498be7d
CL
3285 * New and improved: it will now make sure that the object gets
3286 * put on the correct node list so that there is no false sharing.
1da177e4 3287 */
343e0d7a 3288void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3289{
e498be7d
CL
3290 unsigned long save_flags;
3291 void *ptr;
1da177e4 3292
e498be7d
CL
3293 cache_alloc_debugcheck_before(cachep, flags);
3294 local_irq_save(save_flags);
18f820f6
CL
3295
3296 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3297 !cachep->nodelists[nodeid])
5c382300
AK
3298 ptr = ____cache_alloc(cachep, flags);
3299 else
3300 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3301 local_irq_restore(save_flags);
18f820f6
CL
3302
3303 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3304 __builtin_return_address(0));
1da177e4 3305
e498be7d 3306 return ptr;
1da177e4
LT
3307}
3308EXPORT_SYMBOL(kmem_cache_alloc_node);
3309
dd0fc66f 3310void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3311{
343e0d7a 3312 struct kmem_cache *cachep;
97e2bde4
MS
3313
3314 cachep = kmem_find_general_cachep(size, flags);
3315 if (unlikely(cachep == NULL))
3316 return NULL;
3317 return kmem_cache_alloc_node(cachep, flags, node);
3318}
3319EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3320#endif
3321
3322/**
800590f5 3323 * __do_kmalloc - allocate memory
1da177e4 3324 * @size: how many bytes of memory are required.
800590f5 3325 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3326 * @caller: function caller for debug tracking of the caller
1da177e4 3327 */
7fd6b141
PE
3328static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3329 void *caller)
1da177e4 3330{
343e0d7a 3331 struct kmem_cache *cachep;
1da177e4 3332
97e2bde4
MS
3333 /* If you want to save a few bytes .text space: replace
3334 * __ with kmem_.
3335 * Then kmalloc uses the uninlined functions instead of the inline
3336 * functions.
3337 */
3338 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3339 if (unlikely(cachep == NULL))
3340 return NULL;
7fd6b141
PE
3341 return __cache_alloc(cachep, flags, caller);
3342}
3343
7fd6b141
PE
3344
3345void *__kmalloc(size_t size, gfp_t flags)
3346{
871751e2 3347#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3348 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3349#else
3350 return __do_kmalloc(size, flags, __builtin_return_address(0));
3351#endif
1da177e4
LT
3352}
3353EXPORT_SYMBOL(__kmalloc);
3354
871751e2 3355#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3356void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3357{
3358 return __do_kmalloc(size, flags, caller);
3359}
3360EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3361#endif
3362
1da177e4
LT
3363#ifdef CONFIG_SMP
3364/**
3365 * __alloc_percpu - allocate one copy of the object for every present
3366 * cpu in the system, zeroing them.
3367 * Objects should be dereferenced using the per_cpu_ptr macro only.
3368 *
3369 * @size: how many bytes of memory are required.
1da177e4 3370 */
f9f75005 3371void *__alloc_percpu(size_t size)
1da177e4
LT
3372{
3373 int i;
b28a02de 3374 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3375
3376 if (!pdata)
3377 return NULL;
3378
e498be7d
CL
3379 /*
3380 * Cannot use for_each_online_cpu since a cpu may come online
3381 * and we have no way of figuring out how to fix the array
3382 * that we have allocated then....
3383 */
0a945022 3384 for_each_possible_cpu(i) {
e498be7d
CL
3385 int node = cpu_to_node(i);
3386
3387 if (node_online(node))
3388 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3389 else
3390 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3391
3392 if (!pdata->ptrs[i])
3393 goto unwind_oom;
3394 memset(pdata->ptrs[i], 0, size);
3395 }
3396
3397 /* Catch derefs w/o wrappers */
b28a02de 3398 return (void *)(~(unsigned long)pdata);
1da177e4 3399
a737b3e2 3400unwind_oom:
1da177e4
LT
3401 while (--i >= 0) {
3402 if (!cpu_possible(i))
3403 continue;
3404 kfree(pdata->ptrs[i]);
3405 }
3406 kfree(pdata);
3407 return NULL;
3408}
3409EXPORT_SYMBOL(__alloc_percpu);
3410#endif
3411
3412/**
3413 * kmem_cache_free - Deallocate an object
3414 * @cachep: The cache the allocation was from.
3415 * @objp: The previously allocated object.
3416 *
3417 * Free an object which was previously allocated from this
3418 * cache.
3419 */
343e0d7a 3420void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3421{
3422 unsigned long flags;
3423
ddc2e812
PE
3424 BUG_ON(virt_to_cache(objp) != cachep);
3425
1da177e4 3426 local_irq_save(flags);
2b2d5493 3427 __cache_free(cachep, objp, 0);
1da177e4
LT
3428 local_irq_restore(flags);
3429}
3430EXPORT_SYMBOL(kmem_cache_free);
3431
1da177e4
LT
3432/**
3433 * kfree - free previously allocated memory
3434 * @objp: pointer returned by kmalloc.
3435 *
80e93eff
PE
3436 * If @objp is NULL, no operation is performed.
3437 *
1da177e4
LT
3438 * Don't free memory not originally allocated by kmalloc()
3439 * or you will run into trouble.
3440 */
3441void kfree(const void *objp)
3442{
343e0d7a 3443 struct kmem_cache *c;
1da177e4
LT
3444 unsigned long flags;
3445
3446 if (unlikely(!objp))
3447 return;
3448 local_irq_save(flags);
3449 kfree_debugcheck(objp);
6ed5eb22 3450 c = virt_to_cache(objp);
f9b8404c 3451 debug_check_no_locks_freed(objp, obj_size(c));
2b2d5493 3452 __cache_free(c, (void *)objp, 0);
1da177e4
LT
3453 local_irq_restore(flags);
3454}
3455EXPORT_SYMBOL(kfree);
3456
3457#ifdef CONFIG_SMP
3458/**
3459 * free_percpu - free previously allocated percpu memory
3460 * @objp: pointer returned by alloc_percpu.
3461 *
3462 * Don't free memory not originally allocated by alloc_percpu()
3463 * The complemented objp is to check for that.
3464 */
b28a02de 3465void free_percpu(const void *objp)
1da177e4
LT
3466{
3467 int i;
b28a02de 3468 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3469
e498be7d
CL
3470 /*
3471 * We allocate for all cpus so we cannot use for online cpu here.
3472 */
0a945022 3473 for_each_possible_cpu(i)
b28a02de 3474 kfree(p->ptrs[i]);
1da177e4
LT
3475 kfree(p);
3476}
3477EXPORT_SYMBOL(free_percpu);
3478#endif
3479
343e0d7a 3480unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3481{
3dafccf2 3482 return obj_size(cachep);
1da177e4
LT
3483}
3484EXPORT_SYMBOL(kmem_cache_size);
3485
343e0d7a 3486const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3487{
3488 return cachep->name;
3489}
3490EXPORT_SYMBOL_GPL(kmem_cache_name);
3491
e498be7d 3492/*
0718dc2a 3493 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3494 */
343e0d7a 3495static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3496{
3497 int node;
3498 struct kmem_list3 *l3;
cafeb02e
CL
3499 struct array_cache *new_shared;
3500 struct array_cache **new_alien;
e498be7d
CL
3501
3502 for_each_online_node(node) {
cafeb02e 3503
a737b3e2
AM
3504 new_alien = alloc_alien_cache(node, cachep->limit);
3505 if (!new_alien)
e498be7d 3506 goto fail;
cafeb02e 3507
0718dc2a
CL
3508 new_shared = alloc_arraycache(node,
3509 cachep->shared*cachep->batchcount,
a737b3e2 3510 0xbaadf00d);
0718dc2a
CL
3511 if (!new_shared) {
3512 free_alien_cache(new_alien);
e498be7d 3513 goto fail;
0718dc2a 3514 }
cafeb02e 3515
a737b3e2
AM
3516 l3 = cachep->nodelists[node];
3517 if (l3) {
cafeb02e
CL
3518 struct array_cache *shared = l3->shared;
3519
e498be7d
CL
3520 spin_lock_irq(&l3->list_lock);
3521
cafeb02e 3522 if (shared)
0718dc2a
CL
3523 free_block(cachep, shared->entry,
3524 shared->avail, node);
e498be7d 3525
cafeb02e
CL
3526 l3->shared = new_shared;
3527 if (!l3->alien) {
e498be7d
CL
3528 l3->alien = new_alien;
3529 new_alien = NULL;
3530 }
b28a02de 3531 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3532 cachep->batchcount + cachep->num;
e498be7d 3533 spin_unlock_irq(&l3->list_lock);
cafeb02e 3534 kfree(shared);
e498be7d
CL
3535 free_alien_cache(new_alien);
3536 continue;
3537 }
a737b3e2 3538 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3539 if (!l3) {
3540 free_alien_cache(new_alien);
3541 kfree(new_shared);
e498be7d 3542 goto fail;
0718dc2a 3543 }
e498be7d
CL
3544
3545 kmem_list3_init(l3);
3546 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3547 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3548 l3->shared = new_shared;
e498be7d 3549 l3->alien = new_alien;
b28a02de 3550 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3551 cachep->batchcount + cachep->num;
e498be7d
CL
3552 cachep->nodelists[node] = l3;
3553 }
cafeb02e 3554 return 0;
0718dc2a 3555
a737b3e2 3556fail:
0718dc2a
CL
3557 if (!cachep->next.next) {
3558 /* Cache is not active yet. Roll back what we did */
3559 node--;
3560 while (node >= 0) {
3561 if (cachep->nodelists[node]) {
3562 l3 = cachep->nodelists[node];
3563
3564 kfree(l3->shared);
3565 free_alien_cache(l3->alien);
3566 kfree(l3);
3567 cachep->nodelists[node] = NULL;
3568 }
3569 node--;
3570 }
3571 }
cafeb02e 3572 return -ENOMEM;
e498be7d
CL
3573}
3574
1da177e4 3575struct ccupdate_struct {
343e0d7a 3576 struct kmem_cache *cachep;
1da177e4
LT
3577 struct array_cache *new[NR_CPUS];
3578};
3579
3580static void do_ccupdate_local(void *info)
3581{
a737b3e2 3582 struct ccupdate_struct *new = info;
1da177e4
LT
3583 struct array_cache *old;
3584
3585 check_irq_off();
9a2dba4b 3586 old = cpu_cache_get(new->cachep);
e498be7d 3587
1da177e4
LT
3588 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3589 new->new[smp_processor_id()] = old;
3590}
3591
b5d8ca7c 3592/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3593static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3594 int batchcount, int shared)
1da177e4
LT
3595{
3596 struct ccupdate_struct new;
e498be7d 3597 int i, err;
1da177e4 3598
b28a02de 3599 memset(&new.new, 0, sizeof(new.new));
e498be7d 3600 for_each_online_cpu(i) {
a737b3e2
AM
3601 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3602 batchcount);
e498be7d 3603 if (!new.new[i]) {
b28a02de
PE
3604 for (i--; i >= 0; i--)
3605 kfree(new.new[i]);
e498be7d 3606 return -ENOMEM;
1da177e4
LT
3607 }
3608 }
3609 new.cachep = cachep;
3610
a07fa394 3611 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3612
1da177e4 3613 check_irq_on();
1da177e4
LT
3614 cachep->batchcount = batchcount;
3615 cachep->limit = limit;
e498be7d 3616 cachep->shared = shared;
1da177e4 3617
e498be7d 3618 for_each_online_cpu(i) {
1da177e4
LT
3619 struct array_cache *ccold = new.new[i];
3620 if (!ccold)
3621 continue;
e498be7d 3622 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3623 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3624 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3625 kfree(ccold);
3626 }
1da177e4 3627
e498be7d
CL
3628 err = alloc_kmemlist(cachep);
3629 if (err) {
3630 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3631 cachep->name, -err);
e498be7d 3632 BUG();
1da177e4 3633 }
1da177e4
LT
3634 return 0;
3635}
3636
b5d8ca7c 3637/* Called with cache_chain_mutex held always */
343e0d7a 3638static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3639{
3640 int err;
3641 int limit, shared;
3642
a737b3e2
AM
3643 /*
3644 * The head array serves three purposes:
1da177e4
LT
3645 * - create a LIFO ordering, i.e. return objects that are cache-warm
3646 * - reduce the number of spinlock operations.
a737b3e2 3647 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3648 * bufctl chains: array operations are cheaper.
3649 * The numbers are guessed, we should auto-tune as described by
3650 * Bonwick.
3651 */
3dafccf2 3652 if (cachep->buffer_size > 131072)
1da177e4 3653 limit = 1;
3dafccf2 3654 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3655 limit = 8;
3dafccf2 3656 else if (cachep->buffer_size > 1024)
1da177e4 3657 limit = 24;
3dafccf2 3658 else if (cachep->buffer_size > 256)
1da177e4
LT
3659 limit = 54;
3660 else
3661 limit = 120;
3662
a737b3e2
AM
3663 /*
3664 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3665 * allocation behaviour: Most allocs on one cpu, most free operations
3666 * on another cpu. For these cases, an efficient object passing between
3667 * cpus is necessary. This is provided by a shared array. The array
3668 * replaces Bonwick's magazine layer.
3669 * On uniprocessor, it's functionally equivalent (but less efficient)
3670 * to a larger limit. Thus disabled by default.
3671 */
3672 shared = 0;
3673#ifdef CONFIG_SMP
3dafccf2 3674 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3675 shared = 8;
3676#endif
3677
3678#if DEBUG
a737b3e2
AM
3679 /*
3680 * With debugging enabled, large batchcount lead to excessively long
3681 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3682 */
3683 if (limit > 32)
3684 limit = 32;
3685#endif
b28a02de 3686 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3687 if (err)
3688 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3689 cachep->name, -err);
1da177e4
LT
3690}
3691
1b55253a
CL
3692/*
3693 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3694 * necessary. Note that the l3 listlock also protects the array_cache
3695 * if drain_array() is used on the shared array.
1b55253a
CL
3696 */
3697void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3698 struct array_cache *ac, int force, int node)
1da177e4
LT
3699{
3700 int tofree;
3701
1b55253a
CL
3702 if (!ac || !ac->avail)
3703 return;
1da177e4
LT
3704 if (ac->touched && !force) {
3705 ac->touched = 0;
b18e7e65 3706 } else {
1b55253a 3707 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3708 if (ac->avail) {
3709 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3710 if (tofree > ac->avail)
3711 tofree = (ac->avail + 1) / 2;
3712 free_block(cachep, ac->entry, tofree, node);
3713 ac->avail -= tofree;
3714 memmove(ac->entry, &(ac->entry[tofree]),
3715 sizeof(void *) * ac->avail);
3716 }
1b55253a 3717 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3718 }
3719}
3720
3721/**
3722 * cache_reap - Reclaim memory from caches.
1e5d5331 3723 * @unused: unused parameter
1da177e4
LT
3724 *
3725 * Called from workqueue/eventd every few seconds.
3726 * Purpose:
3727 * - clear the per-cpu caches for this CPU.
3728 * - return freeable pages to the main free memory pool.
3729 *
a737b3e2
AM
3730 * If we cannot acquire the cache chain mutex then just give up - we'll try
3731 * again on the next iteration.
1da177e4
LT
3732 */
3733static void cache_reap(void *unused)
3734{
7a7c381d 3735 struct kmem_cache *searchp;
e498be7d 3736 struct kmem_list3 *l3;
aab2207c 3737 int node = numa_node_id();
1da177e4 3738
fc0abb14 3739 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3740 /* Give up. Setup the next iteration. */
b28a02de
PE
3741 schedule_delayed_work(&__get_cpu_var(reap_work),
3742 REAPTIMEOUT_CPUC);
1da177e4
LT
3743 return;
3744 }
3745
7a7c381d 3746 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3747 check_irq_on();
3748
35386e3b
CL
3749 /*
3750 * We only take the l3 lock if absolutely necessary and we
3751 * have established with reasonable certainty that
3752 * we can do some work if the lock was obtained.
3753 */
aab2207c 3754 l3 = searchp->nodelists[node];
35386e3b 3755
8fce4d8e 3756 reap_alien(searchp, l3);
1da177e4 3757
aab2207c 3758 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3759
35386e3b
CL
3760 /*
3761 * These are racy checks but it does not matter
3762 * if we skip one check or scan twice.
3763 */
e498be7d 3764 if (time_after(l3->next_reap, jiffies))
35386e3b 3765 goto next;
1da177e4 3766
e498be7d 3767 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3768
aab2207c 3769 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3770
ed11d9eb 3771 if (l3->free_touched)
e498be7d 3772 l3->free_touched = 0;
ed11d9eb
CL
3773 else {
3774 int freed;
1da177e4 3775
ed11d9eb
CL
3776 freed = drain_freelist(searchp, l3, (l3->free_limit +
3777 5 * searchp->num - 1) / (5 * searchp->num));
3778 STATS_ADD_REAPED(searchp, freed);
3779 }
35386e3b 3780next:
1da177e4
LT
3781 cond_resched();
3782 }
3783 check_irq_on();
fc0abb14 3784 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3785 next_reap_node();
2244b95a 3786 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3787 /* Set up the next iteration */
cd61ef62 3788 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3789}
3790
3791#ifdef CONFIG_PROC_FS
3792
85289f98 3793static void print_slabinfo_header(struct seq_file *m)
1da177e4 3794{
85289f98
PE
3795 /*
3796 * Output format version, so at least we can change it
3797 * without _too_ many complaints.
3798 */
1da177e4 3799#if STATS
85289f98 3800 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3801#else
85289f98 3802 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3803#endif
85289f98
PE
3804 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3805 "<objperslab> <pagesperslab>");
3806 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3807 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3808#if STATS
85289f98 3809 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3810 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3811 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3812#endif
85289f98
PE
3813 seq_putc(m, '\n');
3814}
3815
3816static void *s_start(struct seq_file *m, loff_t *pos)
3817{
3818 loff_t n = *pos;
3819 struct list_head *p;
3820
fc0abb14 3821 mutex_lock(&cache_chain_mutex);
85289f98
PE
3822 if (!n)
3823 print_slabinfo_header(m);
1da177e4
LT
3824 p = cache_chain.next;
3825 while (n--) {
3826 p = p->next;
3827 if (p == &cache_chain)
3828 return NULL;
3829 }
343e0d7a 3830 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3831}
3832
3833static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3834{
343e0d7a 3835 struct kmem_cache *cachep = p;
1da177e4 3836 ++*pos;
a737b3e2
AM
3837 return cachep->next.next == &cache_chain ?
3838 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3839}
3840
3841static void s_stop(struct seq_file *m, void *p)
3842{
fc0abb14 3843 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3844}
3845
3846static int s_show(struct seq_file *m, void *p)
3847{
343e0d7a 3848 struct kmem_cache *cachep = p;
b28a02de
PE
3849 struct slab *slabp;
3850 unsigned long active_objs;
3851 unsigned long num_objs;
3852 unsigned long active_slabs = 0;
3853 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3854 const char *name;
1da177e4 3855 char *error = NULL;
e498be7d
CL
3856 int node;
3857 struct kmem_list3 *l3;
1da177e4 3858
1da177e4
LT
3859 active_objs = 0;
3860 num_slabs = 0;
e498be7d
CL
3861 for_each_online_node(node) {
3862 l3 = cachep->nodelists[node];
3863 if (!l3)
3864 continue;
3865
ca3b9b91
RT
3866 check_irq_on();
3867 spin_lock_irq(&l3->list_lock);
e498be7d 3868
7a7c381d 3869 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3870 if (slabp->inuse != cachep->num && !error)
3871 error = "slabs_full accounting error";
3872 active_objs += cachep->num;
3873 active_slabs++;
3874 }
7a7c381d 3875 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3876 if (slabp->inuse == cachep->num && !error)
3877 error = "slabs_partial inuse accounting error";
3878 if (!slabp->inuse && !error)
3879 error = "slabs_partial/inuse accounting error";
3880 active_objs += slabp->inuse;
3881 active_slabs++;
3882 }
7a7c381d 3883 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3884 if (slabp->inuse && !error)
3885 error = "slabs_free/inuse accounting error";
3886 num_slabs++;
3887 }
3888 free_objects += l3->free_objects;
4484ebf1
RT
3889 if (l3->shared)
3890 shared_avail += l3->shared->avail;
e498be7d 3891
ca3b9b91 3892 spin_unlock_irq(&l3->list_lock);
1da177e4 3893 }
b28a02de
PE
3894 num_slabs += active_slabs;
3895 num_objs = num_slabs * cachep->num;
e498be7d 3896 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3897 error = "free_objects accounting error";
3898
b28a02de 3899 name = cachep->name;
1da177e4
LT
3900 if (error)
3901 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3902
3903 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3904 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3905 cachep->num, (1 << cachep->gfporder));
1da177e4 3906 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3907 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3908 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3909 active_slabs, num_slabs, shared_avail);
1da177e4 3910#if STATS
b28a02de 3911 { /* list3 stats */
1da177e4
LT
3912 unsigned long high = cachep->high_mark;
3913 unsigned long allocs = cachep->num_allocations;
3914 unsigned long grown = cachep->grown;
3915 unsigned long reaped = cachep->reaped;
3916 unsigned long errors = cachep->errors;
3917 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3918 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3919 unsigned long node_frees = cachep->node_frees;
fb7faf33 3920 unsigned long overflows = cachep->node_overflow;
1da177e4 3921
e498be7d 3922 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3923 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3924 reaped, errors, max_freeable, node_allocs,
fb7faf33 3925 node_frees, overflows);
1da177e4
LT
3926 }
3927 /* cpu stats */
3928 {
3929 unsigned long allochit = atomic_read(&cachep->allochit);
3930 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3931 unsigned long freehit = atomic_read(&cachep->freehit);
3932 unsigned long freemiss = atomic_read(&cachep->freemiss);
3933
3934 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3935 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3936 }
3937#endif
3938 seq_putc(m, '\n');
1da177e4
LT
3939 return 0;
3940}
3941
3942/*
3943 * slabinfo_op - iterator that generates /proc/slabinfo
3944 *
3945 * Output layout:
3946 * cache-name
3947 * num-active-objs
3948 * total-objs
3949 * object size
3950 * num-active-slabs
3951 * total-slabs
3952 * num-pages-per-slab
3953 * + further values on SMP and with statistics enabled
3954 */
3955
3956struct seq_operations slabinfo_op = {
b28a02de
PE
3957 .start = s_start,
3958 .next = s_next,
3959 .stop = s_stop,
3960 .show = s_show,
1da177e4
LT
3961};
3962
3963#define MAX_SLABINFO_WRITE 128
3964/**
3965 * slabinfo_write - Tuning for the slab allocator
3966 * @file: unused
3967 * @buffer: user buffer
3968 * @count: data length
3969 * @ppos: unused
3970 */
b28a02de
PE
3971ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3972 size_t count, loff_t *ppos)
1da177e4 3973{
b28a02de 3974 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 3975 int limit, batchcount, shared, res;
7a7c381d 3976 struct kmem_cache *cachep;
b28a02de 3977
1da177e4
LT
3978 if (count > MAX_SLABINFO_WRITE)
3979 return -EINVAL;
3980 if (copy_from_user(&kbuf, buffer, count))
3981 return -EFAULT;
b28a02de 3982 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3983
3984 tmp = strchr(kbuf, ' ');
3985 if (!tmp)
3986 return -EINVAL;
3987 *tmp = '\0';
3988 tmp++;
3989 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3990 return -EINVAL;
3991
3992 /* Find the cache in the chain of caches. */
fc0abb14 3993 mutex_lock(&cache_chain_mutex);
1da177e4 3994 res = -EINVAL;
7a7c381d 3995 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 3996 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3997 if (limit < 1 || batchcount < 1 ||
3998 batchcount > limit || shared < 0) {
e498be7d 3999 res = 0;
1da177e4 4000 } else {
e498be7d 4001 res = do_tune_cpucache(cachep, limit,
b28a02de 4002 batchcount, shared);
1da177e4
LT
4003 }
4004 break;
4005 }
4006 }
fc0abb14 4007 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4008 if (res >= 0)
4009 res = count;
4010 return res;
4011}
871751e2
AV
4012
4013#ifdef CONFIG_DEBUG_SLAB_LEAK
4014
4015static void *leaks_start(struct seq_file *m, loff_t *pos)
4016{
4017 loff_t n = *pos;
4018 struct list_head *p;
4019
4020 mutex_lock(&cache_chain_mutex);
4021 p = cache_chain.next;
4022 while (n--) {
4023 p = p->next;
4024 if (p == &cache_chain)
4025 return NULL;
4026 }
4027 return list_entry(p, struct kmem_cache, next);
4028}
4029
4030static inline int add_caller(unsigned long *n, unsigned long v)
4031{
4032 unsigned long *p;
4033 int l;
4034 if (!v)
4035 return 1;
4036 l = n[1];
4037 p = n + 2;
4038 while (l) {
4039 int i = l/2;
4040 unsigned long *q = p + 2 * i;
4041 if (*q == v) {
4042 q[1]++;
4043 return 1;
4044 }
4045 if (*q > v) {
4046 l = i;
4047 } else {
4048 p = q + 2;
4049 l -= i + 1;
4050 }
4051 }
4052 if (++n[1] == n[0])
4053 return 0;
4054 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4055 p[0] = v;
4056 p[1] = 1;
4057 return 1;
4058}
4059
4060static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4061{
4062 void *p;
4063 int i;
4064 if (n[0] == n[1])
4065 return;
4066 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4067 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4068 continue;
4069 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4070 return;
4071 }
4072}
4073
4074static void show_symbol(struct seq_file *m, unsigned long address)
4075{
4076#ifdef CONFIG_KALLSYMS
4077 char *modname;
4078 const char *name;
4079 unsigned long offset, size;
4080 char namebuf[KSYM_NAME_LEN+1];
4081
4082 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4083
4084 if (name) {
4085 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4086 if (modname)
4087 seq_printf(m, " [%s]", modname);
4088 return;
4089 }
4090#endif
4091 seq_printf(m, "%p", (void *)address);
4092}
4093
4094static int leaks_show(struct seq_file *m, void *p)
4095{
4096 struct kmem_cache *cachep = p;
871751e2
AV
4097 struct slab *slabp;
4098 struct kmem_list3 *l3;
4099 const char *name;
4100 unsigned long *n = m->private;
4101 int node;
4102 int i;
4103
4104 if (!(cachep->flags & SLAB_STORE_USER))
4105 return 0;
4106 if (!(cachep->flags & SLAB_RED_ZONE))
4107 return 0;
4108
4109 /* OK, we can do it */
4110
4111 n[1] = 0;
4112
4113 for_each_online_node(node) {
4114 l3 = cachep->nodelists[node];
4115 if (!l3)
4116 continue;
4117
4118 check_irq_on();
4119 spin_lock_irq(&l3->list_lock);
4120
7a7c381d 4121 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4122 handle_slab(n, cachep, slabp);
7a7c381d 4123 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4124 handle_slab(n, cachep, slabp);
871751e2
AV
4125 spin_unlock_irq(&l3->list_lock);
4126 }
4127 name = cachep->name;
4128 if (n[0] == n[1]) {
4129 /* Increase the buffer size */
4130 mutex_unlock(&cache_chain_mutex);
4131 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4132 if (!m->private) {
4133 /* Too bad, we are really out */
4134 m->private = n;
4135 mutex_lock(&cache_chain_mutex);
4136 return -ENOMEM;
4137 }
4138 *(unsigned long *)m->private = n[0] * 2;
4139 kfree(n);
4140 mutex_lock(&cache_chain_mutex);
4141 /* Now make sure this entry will be retried */
4142 m->count = m->size;
4143 return 0;
4144 }
4145 for (i = 0; i < n[1]; i++) {
4146 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4147 show_symbol(m, n[2*i+2]);
4148 seq_putc(m, '\n');
4149 }
4150 return 0;
4151}
4152
4153struct seq_operations slabstats_op = {
4154 .start = leaks_start,
4155 .next = s_next,
4156 .stop = s_stop,
4157 .show = leaks_show,
4158};
4159#endif
1da177e4
LT
4160#endif
4161
00e145b6
MS
4162/**
4163 * ksize - get the actual amount of memory allocated for a given object
4164 * @objp: Pointer to the object
4165 *
4166 * kmalloc may internally round up allocations and return more memory
4167 * than requested. ksize() can be used to determine the actual amount of
4168 * memory allocated. The caller may use this additional memory, even though
4169 * a smaller amount of memory was initially specified with the kmalloc call.
4170 * The caller must guarantee that objp points to a valid object previously
4171 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4172 * must not be freed during the duration of the call.
4173 */
1da177e4
LT
4174unsigned int ksize(const void *objp)
4175{
00e145b6
MS
4176 if (unlikely(objp == NULL))
4177 return 0;
1da177e4 4178
6ed5eb22 4179 return obj_size(virt_to_cache(objp));
1da177e4 4180}