net: dsa: felix: fix broken VLAN-tagged PTP under VLAN-aware bridge
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
86a2f3f2 41#include <linux/swapfile.h>
95cc09d6 42
853ac43a
MM
43static struct vfsmount *shm_mnt;
44
45#ifdef CONFIG_SHMEM
1da177e4
LT
46/*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
39f0247d 52#include <linux/xattr.h>
a5694255 53#include <linux/exportfs.h>
1c7c474c 54#include <linux/posix_acl.h>
feda821e 55#include <linux/posix_acl_xattr.h>
1da177e4 56#include <linux/mman.h>
1da177e4
LT
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/backing-dev.h>
60#include <linux/shmem_fs.h>
1da177e4 61#include <linux/writeback.h>
bda97eab 62#include <linux/pagevec.h>
41ffe5d5 63#include <linux/percpu_counter.h>
83e4fa9c 64#include <linux/falloc.h>
708e3508 65#include <linux/splice.h>
1da177e4
LT
66#include <linux/security.h>
67#include <linux/swapops.h>
68#include <linux/mempolicy.h>
69#include <linux/namei.h>
b00dc3ad 70#include <linux/ctype.h>
304dbdb7 71#include <linux/migrate.h>
c1f60a5a 72#include <linux/highmem.h>
680d794b 73#include <linux/seq_file.h>
92562927 74#include <linux/magic.h>
9183df25 75#include <linux/syscalls.h>
40e041a2 76#include <linux/fcntl.h>
9183df25 77#include <uapi/linux/memfd.h>
cfda0526 78#include <linux/userfaultfd_k.h>
4c27fe4c 79#include <linux/rmap.h>
2b4db796 80#include <linux/uuid.h>
304dbdb7 81
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4 83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 97 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
0b5071dd
AV
108struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
112 kuid_t uid;
113 kgid_t gid;
114 umode_t mode;
ea3271f7 115 bool full_inums;
0b5071dd
AV
116 int huge;
117 int seen;
118#define SHMEM_SEEN_BLOCKS 1
119#define SHMEM_SEEN_INODES 2
120#define SHMEM_SEEN_HUGE 4
ea3271f7 121#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
122};
123
b76db735 124#ifdef CONFIG_TMPFS
680d794b 125static unsigned long shmem_default_max_blocks(void)
126{
ca79b0c2 127 return totalram_pages() / 2;
680d794b 128}
129
130static unsigned long shmem_default_max_inodes(void)
131{
ca79b0c2
AK
132 unsigned long nr_pages = totalram_pages();
133
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 135}
b76db735 136#endif
680d794b 137
c5bf121e
VRP
138static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 struct page **pagep, enum sgp_type sgp,
140 gfp_t gfp, struct vm_area_struct *vma,
141 vm_fault_t *fault_type);
68da9f05 142static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 143 struct page **pagep, enum sgp_type sgp,
cfda0526 144 gfp_t gfp, struct vm_area_struct *vma,
2b740303 145 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 146
f3f0e1d2 147int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
149{
150 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 152}
1da177e4 153
1da177e4
LT
154static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155{
156 return sb->s_fs_info;
157}
158
159/*
160 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161 * for shared memory and for shared anonymous (/dev/zero) mappings
162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163 * consistent with the pre-accounting of private mappings ...
164 */
165static inline int shmem_acct_size(unsigned long flags, loff_t size)
166{
0b0a0806 167 return (flags & VM_NORESERVE) ?
191c5424 168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
169}
170
171static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172{
0b0a0806 173 if (!(flags & VM_NORESERVE))
1da177e4
LT
174 vm_unacct_memory(VM_ACCT(size));
175}
176
77142517
KK
177static inline int shmem_reacct_size(unsigned long flags,
178 loff_t oldsize, loff_t newsize)
179{
180 if (!(flags & VM_NORESERVE)) {
181 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 return security_vm_enough_memory_mm(current->mm,
183 VM_ACCT(newsize) - VM_ACCT(oldsize));
184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 }
187 return 0;
188}
189
1da177e4
LT
190/*
191 * ... whereas tmpfs objects are accounted incrementally as
75edd345 192 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195 */
800d8c63 196static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 197{
800d8c63
KS
198 if (!(flags & VM_NORESERVE))
199 return 0;
200
201 return security_vm_enough_memory_mm(current->mm,
202 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
203}
204
205static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206{
0b0a0806 207 if (flags & VM_NORESERVE)
09cbfeaf 208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
209}
210
0f079694
MR
211static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212{
213 struct shmem_inode_info *info = SHMEM_I(inode);
214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216 if (shmem_acct_block(info->flags, pages))
217 return false;
218
219 if (sbinfo->max_blocks) {
220 if (percpu_counter_compare(&sbinfo->used_blocks,
221 sbinfo->max_blocks - pages) > 0)
222 goto unacct;
223 percpu_counter_add(&sbinfo->used_blocks, pages);
224 }
225
226 return true;
227
228unacct:
229 shmem_unacct_blocks(info->flags, pages);
230 return false;
231}
232
233static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234{
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238 if (sbinfo->max_blocks)
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 shmem_unacct_blocks(info->flags, pages);
241}
242
759b9775 243static const struct super_operations shmem_ops;
30e6a51d 244const struct address_space_operations shmem_aops;
15ad7cdc 245static const struct file_operations shmem_file_operations;
92e1d5be
AV
246static const struct inode_operations shmem_inode_operations;
247static const struct inode_operations shmem_dir_inode_operations;
248static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 249static const struct vm_operations_struct shmem_vm_ops;
779750d2 250static struct file_system_type shmem_fs_type;
1da177e4 251
b0506e48
MR
252bool vma_is_shmem(struct vm_area_struct *vma)
253{
254 return vma->vm_ops == &shmem_vm_ops;
255}
256
1da177e4 257static LIST_HEAD(shmem_swaplist);
cb5f7b9a 258static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 259
e809d5f0
CD
260/*
261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262 * produces a novel ino for the newly allocated inode.
263 *
264 * It may also be called when making a hard link to permit the space needed by
265 * each dentry. However, in that case, no new inode number is needed since that
266 * internally draws from another pool of inode numbers (currently global
267 * get_next_ino()). This case is indicated by passing NULL as inop.
268 */
269#define SHMEM_INO_BATCH 1024
270static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
271{
272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
273 ino_t ino;
274
275 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 276 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
277 if (sbinfo->max_inodes) {
278 if (!sbinfo->free_inodes) {
bf11b9a8 279 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
280 return -ENOSPC;
281 }
282 sbinfo->free_inodes--;
5b04c689 283 }
e809d5f0
CD
284 if (inop) {
285 ino = sbinfo->next_ino++;
286 if (unlikely(is_zero_ino(ino)))
287 ino = sbinfo->next_ino++;
ea3271f7
CD
288 if (unlikely(!sbinfo->full_inums &&
289 ino > UINT_MAX)) {
e809d5f0
CD
290 /*
291 * Emulate get_next_ino uint wraparound for
292 * compatibility
293 */
ea3271f7
CD
294 if (IS_ENABLED(CONFIG_64BIT))
295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 __func__, MINOR(sb->s_dev));
297 sbinfo->next_ino = 1;
298 ino = sbinfo->next_ino++;
e809d5f0
CD
299 }
300 *inop = ino;
301 }
bf11b9a8 302 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
303 } else if (inop) {
304 /*
305 * __shmem_file_setup, one of our callers, is lock-free: it
306 * doesn't hold stat_lock in shmem_reserve_inode since
307 * max_inodes is always 0, and is called from potentially
308 * unknown contexts. As such, use a per-cpu batched allocator
309 * which doesn't require the per-sb stat_lock unless we are at
310 * the batch boundary.
ea3271f7
CD
311 *
312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 * shmem mounts are not exposed to userspace, so we don't need
314 * to worry about things like glibc compatibility.
e809d5f0
CD
315 */
316 ino_t *next_ino;
bf11b9a8 317
e809d5f0
CD
318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 ino = *next_ino;
320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 321 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
322 ino = sbinfo->next_ino;
323 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 324 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
325 if (unlikely(is_zero_ino(ino)))
326 ino++;
327 }
328 *inop = ino;
329 *next_ino = ++ino;
330 put_cpu();
5b04c689 331 }
e809d5f0 332
5b04c689
PE
333 return 0;
334}
335
336static void shmem_free_inode(struct super_block *sb)
337{
338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 if (sbinfo->max_inodes) {
bf11b9a8 340 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 341 sbinfo->free_inodes++;
bf11b9a8 342 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
343 }
344}
345
46711810 346/**
41ffe5d5 347 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
348 * @inode: inode to recalc
349 *
350 * We have to calculate the free blocks since the mm can drop
351 * undirtied hole pages behind our back.
352 *
353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355 *
356 * It has to be called with the spinlock held.
357 */
358static void shmem_recalc_inode(struct inode *inode)
359{
360 struct shmem_inode_info *info = SHMEM_I(inode);
361 long freed;
362
363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 if (freed > 0) {
365 info->alloced -= freed;
54af6042 366 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 367 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
368 }
369}
370
800d8c63
KS
371bool shmem_charge(struct inode *inode, long pages)
372{
373 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 374 unsigned long flags;
800d8c63 375
0f079694 376 if (!shmem_inode_acct_block(inode, pages))
800d8c63 377 return false;
b1cc94ab 378
aaa52e34
HD
379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 inode->i_mapping->nrpages += pages;
381
4595ef88 382 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
383 info->alloced += pages;
384 inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 shmem_recalc_inode(inode);
4595ef88 386 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 387
800d8c63
KS
388 return true;
389}
390
391void shmem_uncharge(struct inode *inode, long pages)
392{
393 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 394 unsigned long flags;
800d8c63 395
aaa52e34
HD
396 /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
4595ef88 398 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
399 info->alloced -= pages;
400 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 shmem_recalc_inode(inode);
4595ef88 402 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 403
0f079694 404 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
405}
406
7a5d0fbb 407/*
62f945b6 408 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 409 */
62f945b6 410static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
411 pgoff_t index, void *expected, void *replacement)
412{
62f945b6 413 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 414 void *item;
7a5d0fbb
HD
415
416 VM_BUG_ON(!expected);
6dbaf22c 417 VM_BUG_ON(!replacement);
62f945b6 418 item = xas_load(&xas);
7a5d0fbb
HD
419 if (item != expected)
420 return -ENOENT;
62f945b6 421 xas_store(&xas, replacement);
7a5d0fbb
HD
422 return 0;
423}
424
d1899228
HD
425/*
426 * Sometimes, before we decide whether to proceed or to fail, we must check
427 * that an entry was not already brought back from swap by a racing thread.
428 *
429 * Checking page is not enough: by the time a SwapCache page is locked, it
430 * might be reused, and again be SwapCache, using the same swap as before.
431 */
432static bool shmem_confirm_swap(struct address_space *mapping,
433 pgoff_t index, swp_entry_t swap)
434{
a12831bf 435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
436}
437
5a6e75f8
KS
438/*
439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440 *
441 * SHMEM_HUGE_NEVER:
442 * disables huge pages for the mount;
443 * SHMEM_HUGE_ALWAYS:
444 * enables huge pages for the mount;
445 * SHMEM_HUGE_WITHIN_SIZE:
446 * only allocate huge pages if the page will be fully within i_size,
447 * also respect fadvise()/madvise() hints;
448 * SHMEM_HUGE_ADVISE:
449 * only allocate huge pages if requested with fadvise()/madvise();
450 */
451
452#define SHMEM_HUGE_NEVER 0
453#define SHMEM_HUGE_ALWAYS 1
454#define SHMEM_HUGE_WITHIN_SIZE 2
455#define SHMEM_HUGE_ADVISE 3
456
457/*
458 * Special values.
459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460 *
461 * SHMEM_HUGE_DENY:
462 * disables huge on shm_mnt and all mounts, for emergency use;
463 * SHMEM_HUGE_FORCE:
464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465 *
466 */
467#define SHMEM_HUGE_DENY (-1)
468#define SHMEM_HUGE_FORCE (-2)
469
396bcc52 470#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
471/* ifdef here to avoid bloating shmem.o when not necessary */
472
5e6e5a12 473static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 474
5e6e5a12
HD
475bool shmem_is_huge(struct vm_area_struct *vma,
476 struct inode *inode, pgoff_t index)
c852023e 477{
c852023e 478 loff_t i_size;
c852023e 479
c852023e
HD
480 if (shmem_huge == SHMEM_HUGE_DENY)
481 return false;
5e6e5a12
HD
482 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 484 return false;
5e6e5a12
HD
485 if (shmem_huge == SHMEM_HUGE_FORCE)
486 return true;
487
488 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
489 case SHMEM_HUGE_ALWAYS:
490 return true;
491 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 492 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 493 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 494 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
495 return true;
496 fallthrough;
497 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
498 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 return true;
500 fallthrough;
c852023e 501 default:
c852023e
HD
502 return false;
503 }
504}
5a6e75f8 505
e5f2249a 506#if defined(CONFIG_SYSFS)
5a6e75f8
KS
507static int shmem_parse_huge(const char *str)
508{
509 if (!strcmp(str, "never"))
510 return SHMEM_HUGE_NEVER;
511 if (!strcmp(str, "always"))
512 return SHMEM_HUGE_ALWAYS;
513 if (!strcmp(str, "within_size"))
514 return SHMEM_HUGE_WITHIN_SIZE;
515 if (!strcmp(str, "advise"))
516 return SHMEM_HUGE_ADVISE;
517 if (!strcmp(str, "deny"))
518 return SHMEM_HUGE_DENY;
519 if (!strcmp(str, "force"))
520 return SHMEM_HUGE_FORCE;
521 return -EINVAL;
522}
e5f2249a 523#endif
5a6e75f8 524
e5f2249a 525#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
526static const char *shmem_format_huge(int huge)
527{
528 switch (huge) {
529 case SHMEM_HUGE_NEVER:
530 return "never";
531 case SHMEM_HUGE_ALWAYS:
532 return "always";
533 case SHMEM_HUGE_WITHIN_SIZE:
534 return "within_size";
535 case SHMEM_HUGE_ADVISE:
536 return "advise";
537 case SHMEM_HUGE_DENY:
538 return "deny";
539 case SHMEM_HUGE_FORCE:
540 return "force";
541 default:
542 VM_BUG_ON(1);
543 return "bad_val";
544 }
545}
f1f5929c 546#endif
5a6e75f8 547
779750d2
KS
548static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 struct shrink_control *sc, unsigned long nr_to_split)
550{
551 LIST_HEAD(list), *pos, *next;
253fd0f0 552 LIST_HEAD(to_remove);
779750d2
KS
553 struct inode *inode;
554 struct shmem_inode_info *info;
555 struct page *page;
556 unsigned long batch = sc ? sc->nr_to_scan : 128;
557 int removed = 0, split = 0;
558
559 if (list_empty(&sbinfo->shrinklist))
560 return SHRINK_STOP;
561
562 spin_lock(&sbinfo->shrinklist_lock);
563 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566 /* pin the inode */
567 inode = igrab(&info->vfs_inode);
568
569 /* inode is about to be evicted */
570 if (!inode) {
571 list_del_init(&info->shrinklist);
572 removed++;
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 579 list_move(&info->shrinklist, &to_remove);
779750d2 580 removed++;
779750d2
KS
581 goto next;
582 }
583
584 list_move(&info->shrinklist, &list);
585next:
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
253fd0f0
KS
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
779750d2
KS
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
b3cd54b2
KS
604 if (nr_to_split && split >= nr_to_split)
605 goto leave;
779750d2 606
b3cd54b2 607 page = find_get_page(inode->i_mapping,
779750d2
KS
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
b3cd54b2 612 /* No huge page at the end of the file: nothing to split */
779750d2 613 if (!PageTransHuge(page)) {
779750d2
KS
614 put_page(page);
615 goto drop;
616 }
617
b3cd54b2
KS
618 /*
619 * Leave the inode on the list if we failed to lock
620 * the page at this time.
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
627 goto leave;
628 }
629
779750d2
KS
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
b3cd54b2
KS
634 /* If split failed leave the inode on the list */
635 if (ret)
636 goto leave;
779750d2
KS
637
638 split++;
639drop:
640 list_del_init(&info->shrinklist);
641 removed++;
b3cd54b2 642leave:
779750d2
KS
643 iput(inode);
644 }
645
646 spin_lock(&sbinfo->shrinklist_lock);
647 list_splice_tail(&list, &sbinfo->shrinklist);
648 sbinfo->shrinklist_len -= removed;
649 spin_unlock(&sbinfo->shrinklist_lock);
650
651 return split;
652}
653
654static long shmem_unused_huge_scan(struct super_block *sb,
655 struct shrink_control *sc)
656{
657 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658
659 if (!READ_ONCE(sbinfo->shrinklist_len))
660 return SHRINK_STOP;
661
662 return shmem_unused_huge_shrink(sbinfo, sc, 0);
663}
664
665static long shmem_unused_huge_count(struct super_block *sb,
666 struct shrink_control *sc)
667{
668 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 return READ_ONCE(sbinfo->shrinklist_len);
670}
396bcc52 671#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
672
673#define shmem_huge SHMEM_HUGE_DENY
674
5e6e5a12
HD
675bool shmem_is_huge(struct vm_area_struct *vma,
676 struct inode *inode, pgoff_t index)
677{
678 return false;
679}
680
779750d2
KS
681static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 struct shrink_control *sc, unsigned long nr_to_split)
683{
684 return 0;
685}
396bcc52 686#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 687
46f65ec1
HD
688/*
689 * Like add_to_page_cache_locked, but error if expected item has gone.
690 */
691static int shmem_add_to_page_cache(struct page *page,
692 struct address_space *mapping,
3fea5a49
JW
693 pgoff_t index, void *expected, gfp_t gfp,
694 struct mm_struct *charge_mm)
46f65ec1 695{
552446a4
MW
696 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697 unsigned long i = 0;
d8c6546b 698 unsigned long nr = compound_nr(page);
3fea5a49 699 int error;
46f65ec1 700
800d8c63
KS
701 VM_BUG_ON_PAGE(PageTail(page), page);
702 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
703 VM_BUG_ON_PAGE(!PageLocked(page), page);
704 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 705 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 706
800d8c63 707 page_ref_add(page, nr);
b065b432
HD
708 page->mapping = mapping;
709 page->index = index;
710
4c6355b2 711 if (!PageSwapCache(page)) {
8f425e4e 712 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
4c6355b2
JW
713 if (error) {
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_FALLBACK);
716 count_vm_event(THP_FILE_FALLBACK_CHARGE);
717 }
718 goto error;
3fea5a49 719 }
3fea5a49
JW
720 }
721 cgroup_throttle_swaprate(page, gfp);
722
552446a4
MW
723 do {
724 void *entry;
725 xas_lock_irq(&xas);
726 entry = xas_find_conflict(&xas);
727 if (entry != expected)
728 xas_set_err(&xas, -EEXIST);
729 xas_create_range(&xas);
730 if (xas_error(&xas))
731 goto unlock;
732next:
4101196b 733 xas_store(&xas, page);
552446a4
MW
734 if (++i < nr) {
735 xas_next(&xas);
736 goto next;
800d8c63 737 }
552446a4 738 if (PageTransHuge(page)) {
800d8c63 739 count_vm_event(THP_FILE_ALLOC);
57b2847d 740 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 741 }
800d8c63 742 mapping->nrpages += nr;
0d1c2072
JW
743 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
745unlock:
746 xas_unlock_irq(&xas);
747 } while (xas_nomem(&xas, gfp));
748
749 if (xas_error(&xas)) {
3fea5a49
JW
750 error = xas_error(&xas);
751 goto error;
46f65ec1 752 }
552446a4
MW
753
754 return 0;
3fea5a49
JW
755error:
756 page->mapping = NULL;
757 page_ref_sub(page, nr);
758 return error;
46f65ec1
HD
759}
760
6922c0c7
HD
761/*
762 * Like delete_from_page_cache, but substitutes swap for page.
763 */
764static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765{
766 struct address_space *mapping = page->mapping;
767 int error;
768
800d8c63
KS
769 VM_BUG_ON_PAGE(PageCompound(page), page);
770
b93b0163 771 xa_lock_irq(&mapping->i_pages);
62f945b6 772 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
773 page->mapping = NULL;
774 mapping->nrpages--;
0d1c2072
JW
775 __dec_lruvec_page_state(page, NR_FILE_PAGES);
776 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 777 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 778 put_page(page);
6922c0c7
HD
779 BUG_ON(error);
780}
781
7a5d0fbb 782/*
c121d3bb 783 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
784 */
785static int shmem_free_swap(struct address_space *mapping,
786 pgoff_t index, void *radswap)
787{
6dbaf22c 788 void *old;
7a5d0fbb 789
55f3f7ea 790 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
791 if (old != radswap)
792 return -ENOENT;
793 free_swap_and_cache(radix_to_swp_entry(radswap));
794 return 0;
7a5d0fbb
HD
795}
796
6a15a370
VB
797/*
798 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 799 * given offsets are swapped out.
6a15a370 800 *
9608703e 801 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
802 * as long as the inode doesn't go away and racy results are not a problem.
803 */
48131e03
VB
804unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 pgoff_t start, pgoff_t end)
6a15a370 806{
7ae3424f 807 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 808 struct page *page;
48131e03 809 unsigned long swapped = 0;
6a15a370
VB
810
811 rcu_read_lock();
7ae3424f
MW
812 xas_for_each(&xas, page, end - 1) {
813 if (xas_retry(&xas, page))
2cf938aa 814 continue;
3159f943 815 if (xa_is_value(page))
6a15a370
VB
816 swapped++;
817
818 if (need_resched()) {
7ae3424f 819 xas_pause(&xas);
6a15a370 820 cond_resched_rcu();
6a15a370
VB
821 }
822 }
823
824 rcu_read_unlock();
825
826 return swapped << PAGE_SHIFT;
827}
828
48131e03
VB
829/*
830 * Determine (in bytes) how many of the shmem object's pages mapped by the
831 * given vma is swapped out.
832 *
9608703e 833 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
834 * as long as the inode doesn't go away and racy results are not a problem.
835 */
836unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837{
838 struct inode *inode = file_inode(vma->vm_file);
839 struct shmem_inode_info *info = SHMEM_I(inode);
840 struct address_space *mapping = inode->i_mapping;
841 unsigned long swapped;
842
843 /* Be careful as we don't hold info->lock */
844 swapped = READ_ONCE(info->swapped);
845
846 /*
847 * The easier cases are when the shmem object has nothing in swap, or
848 * the vma maps it whole. Then we can simply use the stats that we
849 * already track.
850 */
851 if (!swapped)
852 return 0;
853
854 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 return swapped << PAGE_SHIFT;
856
857 /* Here comes the more involved part */
858 return shmem_partial_swap_usage(mapping,
859 linear_page_index(vma, vma->vm_start),
860 linear_page_index(vma, vma->vm_end));
861}
862
24513264
HD
863/*
864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865 */
866void shmem_unlock_mapping(struct address_space *mapping)
867{
868 struct pagevec pvec;
24513264
HD
869 pgoff_t index = 0;
870
86679820 871 pagevec_init(&pvec);
24513264
HD
872 /*
873 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 */
875 while (!mapping_unevictable(mapping)) {
96888e0a 876 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 877 break;
64e3d12f 878 check_move_unevictable_pages(&pvec);
24513264
HD
879 pagevec_release(&pvec);
880 cond_resched();
881 }
7a5d0fbb
HD
882}
883
71725ed1
HD
884/*
885 * Check whether a hole-punch or truncation needs to split a huge page,
886 * returning true if no split was required, or the split has been successful.
887 *
888 * Eviction (or truncation to 0 size) should never need to split a huge page;
889 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
890 * head, and then succeeded to trylock on tail.
891 *
892 * A split can only succeed when there are no additional references on the
893 * huge page: so the split below relies upon find_get_entries() having stopped
894 * when it found a subpage of the huge page, without getting further references.
895 */
896static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897{
898 if (!PageTransCompound(page))
899 return true;
900
901 /* Just proceed to delete a huge page wholly within the range punched */
902 if (PageHead(page) &&
903 page->index >= start && page->index + HPAGE_PMD_NR <= end)
904 return true;
905
906 /* Try to split huge page, so we can truly punch the hole or truncate */
907 return split_huge_page(page) >= 0;
908}
909
7a5d0fbb 910/*
7f4446ee 911 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 912 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 913 */
1635f6a7
HD
914static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915 bool unfalloc)
1da177e4 916{
285b2c4f 917 struct address_space *mapping = inode->i_mapping;
1da177e4 918 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
919 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
922 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 923 struct pagevec pvec;
7a5d0fbb
HD
924 pgoff_t indices[PAGEVEC_SIZE];
925 long nr_swaps_freed = 0;
285b2c4f 926 pgoff_t index;
bda97eab
HD
927 int i;
928
83e4fa9c
HD
929 if (lend == -1)
930 end = -1; /* unsigned, so actually very big */
bda97eab 931
d144bf62
HD
932 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933 info->fallocend = start;
934
86679820 935 pagevec_init(&pvec);
bda97eab 936 index = start;
5c211ba2
MWO
937 while (index < end && find_lock_entries(mapping, index, end - 1,
938 &pvec, indices)) {
bda97eab
HD
939 for (i = 0; i < pagevec_count(&pvec); i++) {
940 struct page *page = pvec.pages[i];
941
7a5d0fbb 942 index = indices[i];
bda97eab 943
3159f943 944 if (xa_is_value(page)) {
1635f6a7
HD
945 if (unfalloc)
946 continue;
7a5d0fbb
HD
947 nr_swaps_freed += !shmem_free_swap(mapping,
948 index, page);
bda97eab 949 continue;
7a5d0fbb 950 }
5c211ba2 951 index += thp_nr_pages(page) - 1;
7a5d0fbb 952
5c211ba2
MWO
953 if (!unfalloc || !PageUptodate(page))
954 truncate_inode_page(mapping, page);
bda97eab
HD
955 unlock_page(page);
956 }
0cd6144a 957 pagevec_remove_exceptionals(&pvec);
24513264 958 pagevec_release(&pvec);
bda97eab
HD
959 cond_resched();
960 index++;
961 }
1da177e4 962
83e4fa9c 963 if (partial_start) {
bda97eab 964 struct page *page = NULL;
9e18eb29 965 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 966 if (page) {
09cbfeaf 967 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
968 if (start > end) {
969 top = partial_end;
970 partial_end = 0;
971 }
972 zero_user_segment(page, partial_start, top);
973 set_page_dirty(page);
974 unlock_page(page);
09cbfeaf 975 put_page(page);
83e4fa9c
HD
976 }
977 }
978 if (partial_end) {
979 struct page *page = NULL;
9e18eb29 980 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
981 if (page) {
982 zero_user_segment(page, 0, partial_end);
bda97eab
HD
983 set_page_dirty(page);
984 unlock_page(page);
09cbfeaf 985 put_page(page);
bda97eab
HD
986 }
987 }
83e4fa9c
HD
988 if (start >= end)
989 return;
bda97eab
HD
990
991 index = start;
b1a36650 992 while (index < end) {
bda97eab 993 cond_resched();
0cd6144a 994
cf2039af
MWO
995 if (!find_get_entries(mapping, index, end - 1, &pvec,
996 indices)) {
b1a36650
HD
997 /* If all gone or hole-punch or unfalloc, we're done */
998 if (index == start || end != -1)
bda97eab 999 break;
b1a36650 1000 /* But if truncating, restart to make sure all gone */
bda97eab
HD
1001 index = start;
1002 continue;
1003 }
bda97eab
HD
1004 for (i = 0; i < pagevec_count(&pvec); i++) {
1005 struct page *page = pvec.pages[i];
1006
7a5d0fbb 1007 index = indices[i];
3159f943 1008 if (xa_is_value(page)) {
1635f6a7
HD
1009 if (unfalloc)
1010 continue;
b1a36650
HD
1011 if (shmem_free_swap(mapping, index, page)) {
1012 /* Swap was replaced by page: retry */
1013 index--;
1014 break;
1015 }
1016 nr_swaps_freed++;
7a5d0fbb
HD
1017 continue;
1018 }
1019
bda97eab 1020 lock_page(page);
800d8c63 1021
1635f6a7 1022 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1023 if (page_mapping(page) != mapping) {
b1a36650
HD
1024 /* Page was replaced by swap: retry */
1025 unlock_page(page);
1026 index--;
1027 break;
1635f6a7 1028 }
71725ed1
HD
1029 VM_BUG_ON_PAGE(PageWriteback(page), page);
1030 if (shmem_punch_compound(page, start, end))
1031 truncate_inode_page(mapping, page);
0783ac95 1032 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1033 /* Wipe the page and don't get stuck */
1034 clear_highpage(page);
1035 flush_dcache_page(page);
1036 set_page_dirty(page);
1037 if (index <
1038 round_up(start, HPAGE_PMD_NR))
1039 start = index + 1;
1040 }
7a5d0fbb 1041 }
bda97eab
HD
1042 unlock_page(page);
1043 }
0cd6144a 1044 pagevec_remove_exceptionals(&pvec);
24513264 1045 pagevec_release(&pvec);
bda97eab
HD
1046 index++;
1047 }
94c1e62d 1048
4595ef88 1049 spin_lock_irq(&info->lock);
7a5d0fbb 1050 info->swapped -= nr_swaps_freed;
1da177e4 1051 shmem_recalc_inode(inode);
4595ef88 1052 spin_unlock_irq(&info->lock);
1635f6a7 1053}
1da177e4 1054
1635f6a7
HD
1055void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056{
1057 shmem_undo_range(inode, lstart, lend, false);
078cd827 1058 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1059}
94c1e62d 1060EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1061
549c7297
CB
1062static int shmem_getattr(struct user_namespace *mnt_userns,
1063 const struct path *path, struct kstat *stat,
a528d35e 1064 u32 request_mask, unsigned int query_flags)
44a30220 1065{
a528d35e 1066 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1067 struct shmem_inode_info *info = SHMEM_I(inode);
1068
d0424c42 1069 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1070 spin_lock_irq(&info->lock);
d0424c42 1071 shmem_recalc_inode(inode);
4595ef88 1072 spin_unlock_irq(&info->lock);
d0424c42 1073 }
0d56a451 1074 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1075
a7fddc36 1076 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1077 stat->blksize = HPAGE_PMD_SIZE;
1078
44a30220
YZ
1079 return 0;
1080}
1081
549c7297
CB
1082static int shmem_setattr(struct user_namespace *mnt_userns,
1083 struct dentry *dentry, struct iattr *attr)
1da177e4 1084{
75c3cfa8 1085 struct inode *inode = d_inode(dentry);
40e041a2 1086 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1087 int error;
1088
2f221d6f 1089 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1090 if (error)
1091 return error;
1092
94c1e62d
HD
1093 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1094 loff_t oldsize = inode->i_size;
1095 loff_t newsize = attr->ia_size;
3889e6e7 1096
9608703e 1097 /* protected by i_rwsem */
40e041a2
DH
1098 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1099 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1100 return -EPERM;
1101
94c1e62d 1102 if (newsize != oldsize) {
77142517
KK
1103 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1104 oldsize, newsize);
1105 if (error)
1106 return error;
94c1e62d 1107 i_size_write(inode, newsize);
078cd827 1108 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1109 }
afa2db2f 1110 if (newsize <= oldsize) {
94c1e62d 1111 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1112 if (oldsize > holebegin)
1113 unmap_mapping_range(inode->i_mapping,
1114 holebegin, 0, 1);
1115 if (info->alloced)
1116 shmem_truncate_range(inode,
1117 newsize, (loff_t)-1);
94c1e62d 1118 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1119 if (oldsize > holebegin)
1120 unmap_mapping_range(inode->i_mapping,
1121 holebegin, 0, 1);
94c1e62d 1122 }
1da177e4
LT
1123 }
1124
2f221d6f 1125 setattr_copy(&init_user_ns, inode, attr);
db78b877 1126 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1127 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1128 return error;
1129}
1130
1f895f75 1131static void shmem_evict_inode(struct inode *inode)
1da177e4 1132{
1da177e4 1133 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1134 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1135
30e6a51d 1136 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1137 shmem_unacct_size(info->flags, inode->i_size);
1138 inode->i_size = 0;
3889e6e7 1139 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1140 if (!list_empty(&info->shrinklist)) {
1141 spin_lock(&sbinfo->shrinklist_lock);
1142 if (!list_empty(&info->shrinklist)) {
1143 list_del_init(&info->shrinklist);
1144 sbinfo->shrinklist_len--;
1145 }
1146 spin_unlock(&sbinfo->shrinklist_lock);
1147 }
af53d3e9
HD
1148 while (!list_empty(&info->swaplist)) {
1149 /* Wait while shmem_unuse() is scanning this inode... */
1150 wait_var_event(&info->stop_eviction,
1151 !atomic_read(&info->stop_eviction));
cb5f7b9a 1152 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1153 /* ...but beware of the race if we peeked too early */
1154 if (!atomic_read(&info->stop_eviction))
1155 list_del_init(&info->swaplist);
cb5f7b9a 1156 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1157 }
3ed47db3 1158 }
b09e0fa4 1159
38f38657 1160 simple_xattrs_free(&info->xattrs);
0f3c42f5 1161 WARN_ON(inode->i_blocks);
5b04c689 1162 shmem_free_inode(inode->i_sb);
dbd5768f 1163 clear_inode(inode);
1da177e4
LT
1164}
1165
b56a2d8a
VRP
1166static int shmem_find_swap_entries(struct address_space *mapping,
1167 pgoff_t start, unsigned int nr_entries,
1168 struct page **entries, pgoff_t *indices,
87039546 1169 unsigned int type, bool frontswap)
478922e2 1170{
b56a2d8a
VRP
1171 XA_STATE(xas, &mapping->i_pages, start);
1172 struct page *page;
87039546 1173 swp_entry_t entry;
b56a2d8a
VRP
1174 unsigned int ret = 0;
1175
1176 if (!nr_entries)
1177 return 0;
478922e2
MW
1178
1179 rcu_read_lock();
b56a2d8a
VRP
1180 xas_for_each(&xas, page, ULONG_MAX) {
1181 if (xas_retry(&xas, page))
5b9c98f3 1182 continue;
b56a2d8a
VRP
1183
1184 if (!xa_is_value(page))
478922e2 1185 continue;
b56a2d8a 1186
87039546
HD
1187 entry = radix_to_swp_entry(page);
1188 if (swp_type(entry) != type)
1189 continue;
1190 if (frontswap &&
1191 !frontswap_test(swap_info[type], swp_offset(entry)))
1192 continue;
b56a2d8a
VRP
1193
1194 indices[ret] = xas.xa_index;
1195 entries[ret] = page;
1196
1197 if (need_resched()) {
1198 xas_pause(&xas);
1199 cond_resched_rcu();
1200 }
1201 if (++ret == nr_entries)
1202 break;
478922e2 1203 }
478922e2 1204 rcu_read_unlock();
e21a2955 1205
b56a2d8a 1206 return ret;
478922e2
MW
1207}
1208
46f65ec1 1209/*
b56a2d8a
VRP
1210 * Move the swapped pages for an inode to page cache. Returns the count
1211 * of pages swapped in, or the error in case of failure.
46f65ec1 1212 */
b56a2d8a
VRP
1213static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1214 pgoff_t *indices)
1da177e4 1215{
b56a2d8a
VRP
1216 int i = 0;
1217 int ret = 0;
bde05d1c 1218 int error = 0;
b56a2d8a 1219 struct address_space *mapping = inode->i_mapping;
1da177e4 1220
b56a2d8a
VRP
1221 for (i = 0; i < pvec.nr; i++) {
1222 struct page *page = pvec.pages[i];
2e0e26c7 1223
b56a2d8a
VRP
1224 if (!xa_is_value(page))
1225 continue;
1226 error = shmem_swapin_page(inode, indices[i],
1227 &page, SGP_CACHE,
1228 mapping_gfp_mask(mapping),
1229 NULL, NULL);
1230 if (error == 0) {
1231 unlock_page(page);
1232 put_page(page);
1233 ret++;
1234 }
1235 if (error == -ENOMEM)
1236 break;
1237 error = 0;
bde05d1c 1238 }
b56a2d8a
VRP
1239 return error ? error : ret;
1240}
bde05d1c 1241
b56a2d8a
VRP
1242/*
1243 * If swap found in inode, free it and move page from swapcache to filecache.
1244 */
1245static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1246 bool frontswap, unsigned long *fs_pages_to_unuse)
1247{
1248 struct address_space *mapping = inode->i_mapping;
1249 pgoff_t start = 0;
1250 struct pagevec pvec;
1251 pgoff_t indices[PAGEVEC_SIZE];
1252 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1253 int ret = 0;
1254
1255 pagevec_init(&pvec);
1256 do {
1257 unsigned int nr_entries = PAGEVEC_SIZE;
1258
1259 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1260 nr_entries = *fs_pages_to_unuse;
1261
1262 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1263 pvec.pages, indices,
87039546 1264 type, frontswap);
b56a2d8a
VRP
1265 if (pvec.nr == 0) {
1266 ret = 0;
1267 break;
46f65ec1 1268 }
b56a2d8a
VRP
1269
1270 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1271 if (ret < 0)
1272 break;
1273
1274 if (frontswap_partial) {
1275 *fs_pages_to_unuse -= ret;
1276 if (*fs_pages_to_unuse == 0) {
1277 ret = FRONTSWAP_PAGES_UNUSED;
1278 break;
1279 }
1280 }
1281
1282 start = indices[pvec.nr - 1];
1283 } while (true);
1284
1285 return ret;
1da177e4
LT
1286}
1287
1288/*
b56a2d8a
VRP
1289 * Read all the shared memory data that resides in the swap
1290 * device 'type' back into memory, so the swap device can be
1291 * unused.
1da177e4 1292 */
b56a2d8a
VRP
1293int shmem_unuse(unsigned int type, bool frontswap,
1294 unsigned long *fs_pages_to_unuse)
1da177e4 1295{
b56a2d8a 1296 struct shmem_inode_info *info, *next;
bde05d1c
HD
1297 int error = 0;
1298
b56a2d8a
VRP
1299 if (list_empty(&shmem_swaplist))
1300 return 0;
1301
1302 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1303 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1304 if (!info->swapped) {
6922c0c7 1305 list_del_init(&info->swaplist);
b56a2d8a
VRP
1306 continue;
1307 }
af53d3e9
HD
1308 /*
1309 * Drop the swaplist mutex while searching the inode for swap;
1310 * but before doing so, make sure shmem_evict_inode() will not
1311 * remove placeholder inode from swaplist, nor let it be freed
1312 * (igrab() would protect from unlink, but not from unmount).
1313 */
1314 atomic_inc(&info->stop_eviction);
b56a2d8a 1315 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1316
af53d3e9 1317 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1318 fs_pages_to_unuse);
cb5f7b9a 1319 cond_resched();
b56a2d8a
VRP
1320
1321 mutex_lock(&shmem_swaplist_mutex);
1322 next = list_next_entry(info, swaplist);
1323 if (!info->swapped)
1324 list_del_init(&info->swaplist);
af53d3e9
HD
1325 if (atomic_dec_and_test(&info->stop_eviction))
1326 wake_up_var(&info->stop_eviction);
b56a2d8a 1327 if (error)
778dd893 1328 break;
1da177e4 1329 }
cb5f7b9a 1330 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1331
778dd893 1332 return error;
1da177e4
LT
1333}
1334
1335/*
1336 * Move the page from the page cache to the swap cache.
1337 */
1338static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339{
1340 struct shmem_inode_info *info;
1da177e4 1341 struct address_space *mapping;
1da177e4 1342 struct inode *inode;
6922c0c7
HD
1343 swp_entry_t swap;
1344 pgoff_t index;
1da177e4 1345
1e6decf3
HD
1346 /*
1347 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1348 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1349 * and its shmem_writeback() needs them to be split when swapping.
1350 */
1351 if (PageTransCompound(page)) {
1352 /* Ensure the subpages are still dirty */
1353 SetPageDirty(page);
1354 if (split_huge_page(page) < 0)
1355 goto redirty;
1356 ClearPageDirty(page);
1357 }
1358
1da177e4 1359 BUG_ON(!PageLocked(page));
1da177e4
LT
1360 mapping = page->mapping;
1361 index = page->index;
1362 inode = mapping->host;
1363 info = SHMEM_I(inode);
1364 if (info->flags & VM_LOCKED)
1365 goto redirty;
d9fe526a 1366 if (!total_swap_pages)
1da177e4
LT
1367 goto redirty;
1368
d9fe526a 1369 /*
97b713ba
CH
1370 * Our capabilities prevent regular writeback or sync from ever calling
1371 * shmem_writepage; but a stacking filesystem might use ->writepage of
1372 * its underlying filesystem, in which case tmpfs should write out to
1373 * swap only in response to memory pressure, and not for the writeback
1374 * threads or sync.
d9fe526a 1375 */
48f170fb
HD
1376 if (!wbc->for_reclaim) {
1377 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1378 goto redirty;
1379 }
1635f6a7
HD
1380
1381 /*
1382 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383 * value into swapfile.c, the only way we can correctly account for a
1384 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1385 *
1386 * That's okay for a page already fallocated earlier, but if we have
1387 * not yet completed the fallocation, then (a) we want to keep track
1388 * of this page in case we have to undo it, and (b) it may not be a
1389 * good idea to continue anyway, once we're pushing into swap. So
1390 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1391 */
1392 if (!PageUptodate(page)) {
1aac1400
HD
1393 if (inode->i_private) {
1394 struct shmem_falloc *shmem_falloc;
1395 spin_lock(&inode->i_lock);
1396 shmem_falloc = inode->i_private;
1397 if (shmem_falloc &&
8e205f77 1398 !shmem_falloc->waitq &&
1aac1400
HD
1399 index >= shmem_falloc->start &&
1400 index < shmem_falloc->next)
1401 shmem_falloc->nr_unswapped++;
1402 else
1403 shmem_falloc = NULL;
1404 spin_unlock(&inode->i_lock);
1405 if (shmem_falloc)
1406 goto redirty;
1407 }
1635f6a7
HD
1408 clear_highpage(page);
1409 flush_dcache_page(page);
1410 SetPageUptodate(page);
1411 }
1412
38d8b4e6 1413 swap = get_swap_page(page);
48f170fb
HD
1414 if (!swap.val)
1415 goto redirty;
d9fe526a 1416
b1dea800
HD
1417 /*
1418 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1419 * if it's not already there. Do it now before the page is
1420 * moved to swap cache, when its pagelock no longer protects
b1dea800 1421 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1422 * we've incremented swapped, because shmem_unuse_inode() will
1423 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1424 */
48f170fb
HD
1425 mutex_lock(&shmem_swaplist_mutex);
1426 if (list_empty(&info->swaplist))
b56a2d8a 1427 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1428
4afab1cd 1429 if (add_to_swap_cache(page, swap,
3852f676
JK
1430 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431 NULL) == 0) {
4595ef88 1432 spin_lock_irq(&info->lock);
6922c0c7 1433 shmem_recalc_inode(inode);
267a4c76 1434 info->swapped++;
4595ef88 1435 spin_unlock_irq(&info->lock);
6922c0c7 1436
267a4c76
HD
1437 swap_shmem_alloc(swap);
1438 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439
6922c0c7 1440 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1441 BUG_ON(page_mapped(page));
9fab5619 1442 swap_writepage(page, wbc);
1da177e4
LT
1443 return 0;
1444 }
1445
6922c0c7 1446 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1447 put_swap_page(page, swap);
1da177e4
LT
1448redirty:
1449 set_page_dirty(page);
d9fe526a
HD
1450 if (wbc->for_reclaim)
1451 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1452 unlock_page(page);
1453 return 0;
1da177e4
LT
1454}
1455
75edd345 1456#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1457static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1458{
095f1fc4 1459 char buffer[64];
680d794b 1460
71fe804b 1461 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1462 return; /* show nothing */
680d794b 1463
a7a88b23 1464 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1465
1466 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1467}
71fe804b
LS
1468
1469static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470{
1471 struct mempolicy *mpol = NULL;
1472 if (sbinfo->mpol) {
bf11b9a8 1473 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1474 mpol = sbinfo->mpol;
1475 mpol_get(mpol);
bf11b9a8 1476 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1477 }
1478 return mpol;
1479}
75edd345
HD
1480#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482{
1483}
1484static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485{
1486 return NULL;
1487}
1488#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489#ifndef CONFIG_NUMA
1490#define vm_policy vm_private_data
1491#endif
680d794b 1492
800d8c63
KS
1493static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494 struct shmem_inode_info *info, pgoff_t index)
1495{
1496 /* Create a pseudo vma that just contains the policy */
2c4541e2 1497 vma_init(vma, NULL);
800d8c63
KS
1498 /* Bias interleave by inode number to distribute better across nodes */
1499 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1500 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501}
1502
1503static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504{
1505 /* Drop reference taken by mpol_shared_policy_lookup() */
1506 mpol_cond_put(vma->vm_policy);
1507}
1508
41ffe5d5
HD
1509static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1511{
1da177e4 1512 struct vm_area_struct pvma;
18a2f371 1513 struct page *page;
8c63ca5b
WD
1514 struct vm_fault vmf = {
1515 .vma = &pvma,
1516 };
52cd3b07 1517
800d8c63 1518 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1519 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1520 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1521
800d8c63
KS
1522 return page;
1523}
1524
78cc8cdc
RR
1525/*
1526 * Make sure huge_gfp is always more limited than limit_gfp.
1527 * Some of the flags set permissions, while others set limitations.
1528 */
1529static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530{
1531 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1532 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1533 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1534 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535
1536 /* Allow allocations only from the originally specified zones. */
1537 result |= zoneflags;
78cc8cdc
RR
1538
1539 /*
1540 * Minimize the result gfp by taking the union with the deny flags,
1541 * and the intersection of the allow flags.
1542 */
1543 result |= (limit_gfp & denyflags);
1544 result |= (huge_gfp & limit_gfp) & allowflags;
1545
1546 return result;
1547}
1548
800d8c63
KS
1549static struct page *shmem_alloc_hugepage(gfp_t gfp,
1550 struct shmem_inode_info *info, pgoff_t index)
1551{
1552 struct vm_area_struct pvma;
7b8d046f
MW
1553 struct address_space *mapping = info->vfs_inode.i_mapping;
1554 pgoff_t hindex;
800d8c63
KS
1555 struct page *page;
1556
4620a06e 1557 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1558 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1559 XA_PRESENT))
800d8c63 1560 return NULL;
18a2f371 1561
800d8c63 1562 shmem_pseudo_vma_init(&pvma, info, hindex);
164cc4fe
RR
1563 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564 true);
800d8c63
KS
1565 shmem_pseudo_vma_destroy(&pvma);
1566 if (page)
1567 prep_transhuge_page(page);
dcdf11ee
DR
1568 else
1569 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1570 return page;
1da177e4
LT
1571}
1572
02098fea 1573static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1574 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1575{
1576 struct vm_area_struct pvma;
18a2f371 1577 struct page *page;
1da177e4 1578
800d8c63
KS
1579 shmem_pseudo_vma_init(&pvma, info, index);
1580 page = alloc_page_vma(gfp, &pvma, 0);
1581 shmem_pseudo_vma_destroy(&pvma);
1582
1583 return page;
1584}
1585
1586static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1587 struct inode *inode,
800d8c63
KS
1588 pgoff_t index, bool huge)
1589{
0f079694 1590 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1591 struct page *page;
1592 int nr;
1593 int err = -ENOSPC;
52cd3b07 1594
396bcc52 1595 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1596 huge = false;
1597 nr = huge ? HPAGE_PMD_NR : 1;
1598
0f079694 1599 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1600 goto failed;
800d8c63
KS
1601
1602 if (huge)
1603 page = shmem_alloc_hugepage(gfp, info, index);
1604 else
1605 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1606 if (page) {
1607 __SetPageLocked(page);
1608 __SetPageSwapBacked(page);
800d8c63 1609 return page;
75edd345 1610 }
18a2f371 1611
800d8c63 1612 err = -ENOMEM;
0f079694 1613 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1614failed:
1615 return ERR_PTR(err);
1da177e4 1616}
71fe804b 1617
bde05d1c
HD
1618/*
1619 * When a page is moved from swapcache to shmem filecache (either by the
1620 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1621 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622 * ignorance of the mapping it belongs to. If that mapping has special
1623 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624 * we may need to copy to a suitable page before moving to filecache.
1625 *
1626 * In a future release, this may well be extended to respect cpuset and
1627 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628 * but for now it is a simple matter of zone.
1629 */
1630static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631{
1632 return page_zonenum(page) > gfp_zone(gfp);
1633}
1634
1635static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1636 struct shmem_inode_info *info, pgoff_t index)
1637{
1638 struct page *oldpage, *newpage;
d21bba2b 1639 struct folio *old, *new;
bde05d1c 1640 struct address_space *swap_mapping;
c1cb20d4 1641 swp_entry_t entry;
bde05d1c
HD
1642 pgoff_t swap_index;
1643 int error;
1644
1645 oldpage = *pagep;
c1cb20d4
YZ
1646 entry.val = page_private(oldpage);
1647 swap_index = swp_offset(entry);
bde05d1c
HD
1648 swap_mapping = page_mapping(oldpage);
1649
1650 /*
1651 * We have arrived here because our zones are constrained, so don't
1652 * limit chance of success by further cpuset and node constraints.
1653 */
1654 gfp &= ~GFP_CONSTRAINT_MASK;
1655 newpage = shmem_alloc_page(gfp, info, index);
1656 if (!newpage)
1657 return -ENOMEM;
bde05d1c 1658
09cbfeaf 1659 get_page(newpage);
bde05d1c 1660 copy_highpage(newpage, oldpage);
0142ef6c 1661 flush_dcache_page(newpage);
bde05d1c 1662
9956edf3
HD
1663 __SetPageLocked(newpage);
1664 __SetPageSwapBacked(newpage);
bde05d1c 1665 SetPageUptodate(newpage);
c1cb20d4 1666 set_page_private(newpage, entry.val);
bde05d1c
HD
1667 SetPageSwapCache(newpage);
1668
1669 /*
1670 * Our caller will very soon move newpage out of swapcache, but it's
1671 * a nice clean interface for us to replace oldpage by newpage there.
1672 */
b93b0163 1673 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1674 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1675 if (!error) {
d21bba2b
MWO
1676 old = page_folio(oldpage);
1677 new = page_folio(newpage);
1678 mem_cgroup_migrate(old, new);
0d1c2072
JW
1679 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1680 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1681 }
b93b0163 1682 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1683
0142ef6c
HD
1684 if (unlikely(error)) {
1685 /*
1686 * Is this possible? I think not, now that our callers check
1687 * both PageSwapCache and page_private after getting page lock;
1688 * but be defensive. Reverse old to newpage for clear and free.
1689 */
1690 oldpage = newpage;
1691 } else {
6058eaec 1692 lru_cache_add(newpage);
0142ef6c
HD
1693 *pagep = newpage;
1694 }
bde05d1c
HD
1695
1696 ClearPageSwapCache(oldpage);
1697 set_page_private(oldpage, 0);
1698
1699 unlock_page(oldpage);
09cbfeaf
KS
1700 put_page(oldpage);
1701 put_page(oldpage);
0142ef6c 1702 return error;
bde05d1c
HD
1703}
1704
c5bf121e
VRP
1705/*
1706 * Swap in the page pointed to by *pagep.
1707 * Caller has to make sure that *pagep contains a valid swapped page.
1708 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1709 * error code and NULL in *pagep.
c5bf121e
VRP
1710 */
1711static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1712 struct page **pagep, enum sgp_type sgp,
1713 gfp_t gfp, struct vm_area_struct *vma,
1714 vm_fault_t *fault_type)
1715{
1716 struct address_space *mapping = inode->i_mapping;
1717 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1718 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1719 struct page *page;
c5bf121e
VRP
1720 swp_entry_t swap;
1721 int error;
1722
1723 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1724 swap = radix_to_swp_entry(*pagep);
1725 *pagep = NULL;
1726
1727 /* Look it up and read it in.. */
1728 page = lookup_swap_cache(swap, NULL, 0);
1729 if (!page) {
1730 /* Or update major stats only when swapin succeeds?? */
1731 if (fault_type) {
1732 *fault_type |= VM_FAULT_MAJOR;
1733 count_vm_event(PGMAJFAULT);
1734 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1735 }
1736 /* Here we actually start the io */
1737 page = shmem_swapin(swap, gfp, info, index);
1738 if (!page) {
1739 error = -ENOMEM;
1740 goto failed;
1741 }
1742 }
1743
1744 /* We have to do this with page locked to prevent races */
1745 lock_page(page);
1746 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1747 !shmem_confirm_swap(mapping, index, swap)) {
1748 error = -EEXIST;
1749 goto unlock;
1750 }
1751 if (!PageUptodate(page)) {
1752 error = -EIO;
1753 goto failed;
1754 }
1755 wait_on_page_writeback(page);
1756
8a84802e
SP
1757 /*
1758 * Some architectures may have to restore extra metadata to the
1759 * physical page after reading from swap.
1760 */
1761 arch_swap_restore(swap, page);
1762
c5bf121e
VRP
1763 if (shmem_should_replace_page(page, gfp)) {
1764 error = shmem_replace_page(&page, gfp, info, index);
1765 if (error)
1766 goto failed;
1767 }
1768
14235ab3 1769 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1770 swp_to_radix_entry(swap), gfp,
1771 charge_mm);
1772 if (error)
14235ab3 1773 goto failed;
c5bf121e
VRP
1774
1775 spin_lock_irq(&info->lock);
1776 info->swapped--;
1777 shmem_recalc_inode(inode);
1778 spin_unlock_irq(&info->lock);
1779
1780 if (sgp == SGP_WRITE)
1781 mark_page_accessed(page);
1782
1783 delete_from_swap_cache(page);
1784 set_page_dirty(page);
1785 swap_free(swap);
1786
1787 *pagep = page;
1788 return 0;
1789failed:
1790 if (!shmem_confirm_swap(mapping, index, swap))
1791 error = -EEXIST;
1792unlock:
1793 if (page) {
1794 unlock_page(page);
1795 put_page(page);
1796 }
1797
1798 return error;
1799}
1800
1da177e4 1801/*
68da9f05 1802 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1803 *
1804 * If we allocate a new one we do not mark it dirty. That's up to the
1805 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1806 * entry since a page cannot live in both the swap and page cache.
1807 *
c949b097 1808 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1809 * otherwise they are NULL.
1da177e4 1810 */
41ffe5d5 1811static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1812 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1813 struct vm_area_struct *vma, struct vm_fault *vmf,
1814 vm_fault_t *fault_type)
1da177e4
LT
1815{
1816 struct address_space *mapping = inode->i_mapping;
23f919d4 1817 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1818 struct shmem_sb_info *sbinfo;
9e18eb29 1819 struct mm_struct *charge_mm;
27ab7006 1820 struct page *page;
800d8c63 1821 pgoff_t hindex = index;
164cc4fe 1822 gfp_t huge_gfp;
1da177e4 1823 int error;
54af6042 1824 int once = 0;
1635f6a7 1825 int alloced = 0;
1da177e4 1826
09cbfeaf 1827 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1828 return -EFBIG;
1da177e4 1829repeat:
c5bf121e
VRP
1830 if (sgp <= SGP_CACHE &&
1831 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1832 return -EINVAL;
1833 }
1834
1835 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1836 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1837
44835d20
MWO
1838 page = pagecache_get_page(mapping, index,
1839 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1840
1841 if (page && vma && userfaultfd_minor(vma)) {
1842 if (!xa_is_value(page)) {
1843 unlock_page(page);
1844 put_page(page);
1845 }
1846 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1847 return 0;
1848 }
1849
3159f943 1850 if (xa_is_value(page)) {
c5bf121e
VRP
1851 error = shmem_swapin_page(inode, index, &page,
1852 sgp, gfp, vma, fault_type);
1853 if (error == -EEXIST)
1854 goto repeat;
54af6042 1855
c5bf121e
VRP
1856 *pagep = page;
1857 return error;
54af6042
HD
1858 }
1859
acdd9f8e 1860 if (page) {
63ec1973 1861 hindex = page->index;
acdd9f8e
HD
1862 if (sgp == SGP_WRITE)
1863 mark_page_accessed(page);
1864 if (PageUptodate(page))
1865 goto out;
1866 /* fallocated page */
1635f6a7
HD
1867 if (sgp != SGP_READ)
1868 goto clear;
1869 unlock_page(page);
09cbfeaf 1870 put_page(page);
1635f6a7 1871 }
27ab7006
HD
1872
1873 /*
acdd9f8e
HD
1874 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1875 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1876 */
1877 *pagep = NULL;
1878 if (sgp == SGP_READ)
1879 return 0;
1880 if (sgp == SGP_NOALLOC)
1881 return -ENOENT;
1882
1883 /*
1884 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1885 */
54af6042 1886
c5bf121e
VRP
1887 if (vma && userfaultfd_missing(vma)) {
1888 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1889 return 0;
1890 }
cfda0526 1891
5e6e5a12
HD
1892 /* Never use a huge page for shmem_symlink() */
1893 if (S_ISLNK(inode->i_mode))
c5bf121e 1894 goto alloc_nohuge;
5e6e5a12 1895 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1896 goto alloc_nohuge;
1da177e4 1897
164cc4fe 1898 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1899 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1900 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1901 if (IS_ERR(page)) {
1902alloc_nohuge:
1903 page = shmem_alloc_and_acct_page(gfp, inode,
1904 index, false);
1905 }
1906 if (IS_ERR(page)) {
1907 int retry = 5;
800d8c63 1908
c5bf121e
VRP
1909 error = PTR_ERR(page);
1910 page = NULL;
1911 if (error != -ENOSPC)
1912 goto unlock;
1913 /*
1914 * Try to reclaim some space by splitting a huge page
1915 * beyond i_size on the filesystem.
1916 */
1917 while (retry--) {
1918 int ret;
66d2f4d2 1919
c5bf121e
VRP
1920 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1921 if (ret == SHRINK_STOP)
1922 break;
1923 if (ret)
1924 goto alloc_nohuge;
b065b432 1925 }
c5bf121e
VRP
1926 goto unlock;
1927 }
54af6042 1928
c5bf121e
VRP
1929 if (PageTransHuge(page))
1930 hindex = round_down(index, HPAGE_PMD_NR);
1931 else
1932 hindex = index;
54af6042 1933
c5bf121e
VRP
1934 if (sgp == SGP_WRITE)
1935 __SetPageReferenced(page);
1936
c5bf121e 1937 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1938 NULL, gfp & GFP_RECLAIM_MASK,
1939 charge_mm);
1940 if (error)
c5bf121e 1941 goto unacct;
6058eaec 1942 lru_cache_add(page);
779750d2 1943
c5bf121e 1944 spin_lock_irq(&info->lock);
d8c6546b 1945 info->alloced += compound_nr(page);
c5bf121e
VRP
1946 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1947 shmem_recalc_inode(inode);
1948 spin_unlock_irq(&info->lock);
1949 alloced = true;
1950
1951 if (PageTransHuge(page) &&
1952 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1953 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1954 /*
c5bf121e
VRP
1955 * Part of the huge page is beyond i_size: subject
1956 * to shrink under memory pressure.
1635f6a7 1957 */
c5bf121e 1958 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1959 /*
c5bf121e
VRP
1960 * _careful to defend against unlocked access to
1961 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1962 */
c5bf121e
VRP
1963 if (list_empty_careful(&info->shrinklist)) {
1964 list_add_tail(&info->shrinklist,
1965 &sbinfo->shrinklist);
1966 sbinfo->shrinklist_len++;
1967 }
1968 spin_unlock(&sbinfo->shrinklist_lock);
1969 }
800d8c63 1970
c5bf121e
VRP
1971 /*
1972 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1973 */
1974 if (sgp == SGP_FALLOC)
1975 sgp = SGP_WRITE;
1976clear:
1977 /*
1978 * Let SGP_WRITE caller clear ends if write does not fill page;
1979 * but SGP_FALLOC on a page fallocated earlier must initialize
1980 * it now, lest undo on failure cancel our earlier guarantee.
1981 */
1982 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1983 int i;
1984
63ec1973
MWO
1985 for (i = 0; i < compound_nr(page); i++) {
1986 clear_highpage(page + i);
1987 flush_dcache_page(page + i);
ec9516fb 1988 }
63ec1973 1989 SetPageUptodate(page);
1da177e4 1990 }
bde05d1c 1991
54af6042 1992 /* Perhaps the file has been truncated since we checked */
75edd345 1993 if (sgp <= SGP_CACHE &&
09cbfeaf 1994 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1995 if (alloced) {
1996 ClearPageDirty(page);
1997 delete_from_page_cache(page);
4595ef88 1998 spin_lock_irq(&info->lock);
267a4c76 1999 shmem_recalc_inode(inode);
4595ef88 2000 spin_unlock_irq(&info->lock);
267a4c76 2001 }
54af6042 2002 error = -EINVAL;
267a4c76 2003 goto unlock;
e83c32e8 2004 }
63ec1973 2005out:
800d8c63 2006 *pagep = page + index - hindex;
54af6042 2007 return 0;
1da177e4 2008
59a16ead 2009 /*
54af6042 2010 * Error recovery.
59a16ead 2011 */
54af6042 2012unacct:
d8c6546b 2013 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
2014
2015 if (PageTransHuge(page)) {
2016 unlock_page(page);
2017 put_page(page);
2018 goto alloc_nohuge;
2019 }
d1899228 2020unlock:
27ab7006 2021 if (page) {
54af6042 2022 unlock_page(page);
09cbfeaf 2023 put_page(page);
54af6042
HD
2024 }
2025 if (error == -ENOSPC && !once++) {
4595ef88 2026 spin_lock_irq(&info->lock);
54af6042 2027 shmem_recalc_inode(inode);
4595ef88 2028 spin_unlock_irq(&info->lock);
27ab7006 2029 goto repeat;
ff36b801 2030 }
7f4446ee 2031 if (error == -EEXIST)
54af6042
HD
2032 goto repeat;
2033 return error;
1da177e4
LT
2034}
2035
10d20bd2
LT
2036/*
2037 * This is like autoremove_wake_function, but it removes the wait queue
2038 * entry unconditionally - even if something else had already woken the
2039 * target.
2040 */
ac6424b9 2041static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2042{
2043 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2044 list_del_init(&wait->entry);
10d20bd2
LT
2045 return ret;
2046}
2047
20acce67 2048static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2049{
11bac800 2050 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2051 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2052 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2053 int err;
2054 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2055
f00cdc6d
HD
2056 /*
2057 * Trinity finds that probing a hole which tmpfs is punching can
2058 * prevent the hole-punch from ever completing: which in turn
9608703e 2059 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2060 * faulting pages into the hole while it's being punched. Although
2061 * shmem_undo_range() does remove the additions, it may be unable to
2062 * keep up, as each new page needs its own unmap_mapping_range() call,
2063 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2064 *
2065 * It does not matter if we sometimes reach this check just before the
2066 * hole-punch begins, so that one fault then races with the punch:
2067 * we just need to make racing faults a rare case.
2068 *
2069 * The implementation below would be much simpler if we just used a
9608703e 2070 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2071 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2072 */
2073 if (unlikely(inode->i_private)) {
2074 struct shmem_falloc *shmem_falloc;
2075
2076 spin_lock(&inode->i_lock);
2077 shmem_falloc = inode->i_private;
8e205f77
HD
2078 if (shmem_falloc &&
2079 shmem_falloc->waitq &&
2080 vmf->pgoff >= shmem_falloc->start &&
2081 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2082 struct file *fpin;
8e205f77 2083 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2084 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2085
2086 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2087 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2088 if (fpin)
8e205f77 2089 ret = VM_FAULT_RETRY;
8e205f77
HD
2090
2091 shmem_falloc_waitq = shmem_falloc->waitq;
2092 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2093 TASK_UNINTERRUPTIBLE);
2094 spin_unlock(&inode->i_lock);
2095 schedule();
2096
2097 /*
2098 * shmem_falloc_waitq points into the shmem_fallocate()
2099 * stack of the hole-punching task: shmem_falloc_waitq
2100 * is usually invalid by the time we reach here, but
2101 * finish_wait() does not dereference it in that case;
2102 * though i_lock needed lest racing with wake_up_all().
2103 */
2104 spin_lock(&inode->i_lock);
2105 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2106 spin_unlock(&inode->i_lock);
8897c1b1
KS
2107
2108 if (fpin)
2109 fput(fpin);
8e205f77 2110 return ret;
f00cdc6d 2111 }
8e205f77 2112 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2113 }
2114
5e6e5a12 2115 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2116 gfp, vma, vmf, &ret);
20acce67
SJ
2117 if (err)
2118 return vmf_error(err);
68da9f05 2119 return ret;
1da177e4
LT
2120}
2121
c01d5b30
HD
2122unsigned long shmem_get_unmapped_area(struct file *file,
2123 unsigned long uaddr, unsigned long len,
2124 unsigned long pgoff, unsigned long flags)
2125{
2126 unsigned long (*get_area)(struct file *,
2127 unsigned long, unsigned long, unsigned long, unsigned long);
2128 unsigned long addr;
2129 unsigned long offset;
2130 unsigned long inflated_len;
2131 unsigned long inflated_addr;
2132 unsigned long inflated_offset;
2133
2134 if (len > TASK_SIZE)
2135 return -ENOMEM;
2136
2137 get_area = current->mm->get_unmapped_area;
2138 addr = get_area(file, uaddr, len, pgoff, flags);
2139
396bcc52 2140 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2141 return addr;
2142 if (IS_ERR_VALUE(addr))
2143 return addr;
2144 if (addr & ~PAGE_MASK)
2145 return addr;
2146 if (addr > TASK_SIZE - len)
2147 return addr;
2148
2149 if (shmem_huge == SHMEM_HUGE_DENY)
2150 return addr;
2151 if (len < HPAGE_PMD_SIZE)
2152 return addr;
2153 if (flags & MAP_FIXED)
2154 return addr;
2155 /*
2156 * Our priority is to support MAP_SHARED mapped hugely;
2157 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2158 * But if caller specified an address hint and we allocated area there
2159 * successfully, respect that as before.
c01d5b30 2160 */
99158997 2161 if (uaddr == addr)
c01d5b30
HD
2162 return addr;
2163
2164 if (shmem_huge != SHMEM_HUGE_FORCE) {
2165 struct super_block *sb;
2166
2167 if (file) {
2168 VM_BUG_ON(file->f_op != &shmem_file_operations);
2169 sb = file_inode(file)->i_sb;
2170 } else {
2171 /*
2172 * Called directly from mm/mmap.c, or drivers/char/mem.c
2173 * for "/dev/zero", to create a shared anonymous object.
2174 */
2175 if (IS_ERR(shm_mnt))
2176 return addr;
2177 sb = shm_mnt->mnt_sb;
2178 }
3089bf61 2179 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2180 return addr;
2181 }
2182
2183 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2184 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2185 return addr;
2186 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2187 return addr;
2188
2189 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2190 if (inflated_len > TASK_SIZE)
2191 return addr;
2192 if (inflated_len < len)
2193 return addr;
2194
99158997 2195 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2196 if (IS_ERR_VALUE(inflated_addr))
2197 return addr;
2198 if (inflated_addr & ~PAGE_MASK)
2199 return addr;
2200
2201 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2202 inflated_addr += offset - inflated_offset;
2203 if (inflated_offset > offset)
2204 inflated_addr += HPAGE_PMD_SIZE;
2205
2206 if (inflated_addr > TASK_SIZE - len)
2207 return addr;
2208 return inflated_addr;
2209}
2210
1da177e4 2211#ifdef CONFIG_NUMA
41ffe5d5 2212static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2213{
496ad9aa 2214 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2215 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2216}
2217
d8dc74f2
AB
2218static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2219 unsigned long addr)
1da177e4 2220{
496ad9aa 2221 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2222 pgoff_t index;
1da177e4 2223
41ffe5d5
HD
2224 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2225 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2226}
2227#endif
2228
d7c9e99a 2229int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2230{
496ad9aa 2231 struct inode *inode = file_inode(file);
1da177e4
LT
2232 struct shmem_inode_info *info = SHMEM_I(inode);
2233 int retval = -ENOMEM;
2234
ea0dfeb4
HD
2235 /*
2236 * What serializes the accesses to info->flags?
2237 * ipc_lock_object() when called from shmctl_do_lock(),
2238 * no serialization needed when called from shm_destroy().
2239 */
1da177e4 2240 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2241 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2242 goto out_nomem;
2243 info->flags |= VM_LOCKED;
89e004ea 2244 mapping_set_unevictable(file->f_mapping);
1da177e4 2245 }
d7c9e99a
AG
2246 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2247 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2248 info->flags &= ~VM_LOCKED;
89e004ea 2249 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2250 }
2251 retval = 0;
89e004ea 2252
1da177e4 2253out_nomem:
1da177e4
LT
2254 return retval;
2255}
2256
9b83a6a8 2257static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2258{
ab3948f5 2259 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2260 int ret;
ab3948f5 2261
22247efd
PX
2262 ret = seal_check_future_write(info->seals, vma);
2263 if (ret)
2264 return ret;
ab3948f5 2265
51b0bff2
CM
2266 /* arm64 - allow memory tagging on RAM-based files */
2267 vma->vm_flags |= VM_MTE_ALLOWED;
2268
1da177e4
LT
2269 file_accessed(file);
2270 vma->vm_ops = &shmem_vm_ops;
396bcc52 2271 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2272 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2273 (vma->vm_end & HPAGE_PMD_MASK)) {
2274 khugepaged_enter(vma, vma->vm_flags);
2275 }
1da177e4
LT
2276 return 0;
2277}
2278
454abafe 2279static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2280 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2281{
2282 struct inode *inode;
2283 struct shmem_inode_info *info;
2284 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2285 ino_t ino;
1da177e4 2286
e809d5f0 2287 if (shmem_reserve_inode(sb, &ino))
5b04c689 2288 return NULL;
1da177e4
LT
2289
2290 inode = new_inode(sb);
2291 if (inode) {
e809d5f0 2292 inode->i_ino = ino;
21cb47be 2293 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2294 inode->i_blocks = 0;
078cd827 2295 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2296 inode->i_generation = prandom_u32();
1da177e4
LT
2297 info = SHMEM_I(inode);
2298 memset(info, 0, (char *)inode - (char *)info);
2299 spin_lock_init(&info->lock);
af53d3e9 2300 atomic_set(&info->stop_eviction, 0);
40e041a2 2301 info->seals = F_SEAL_SEAL;
0b0a0806 2302 info->flags = flags & VM_NORESERVE;
779750d2 2303 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2304 INIT_LIST_HEAD(&info->swaplist);
38f38657 2305 simple_xattrs_init(&info->xattrs);
72c04902 2306 cache_no_acl(inode);
1da177e4
LT
2307
2308 switch (mode & S_IFMT) {
2309 default:
39f0247d 2310 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2311 init_special_inode(inode, mode, dev);
2312 break;
2313 case S_IFREG:
14fcc23f 2314 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2315 inode->i_op = &shmem_inode_operations;
2316 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2317 mpol_shared_policy_init(&info->policy,
2318 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2319 break;
2320 case S_IFDIR:
d8c76e6f 2321 inc_nlink(inode);
1da177e4
LT
2322 /* Some things misbehave if size == 0 on a directory */
2323 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 inode->i_op = &shmem_dir_inode_operations;
2325 inode->i_fop = &simple_dir_operations;
2326 break;
2327 case S_IFLNK:
2328 /*
2329 * Must not load anything in the rbtree,
2330 * mpol_free_shared_policy will not be called.
2331 */
71fe804b 2332 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2333 break;
2334 }
b45d71fb
JFG
2335
2336 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2337 } else
2338 shmem_free_inode(sb);
1da177e4
LT
2339 return inode;
2340}
2341
3460f6e5
AR
2342#ifdef CONFIG_USERFAULTFD
2343int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 pmd_t *dst_pmd,
2345 struct vm_area_struct *dst_vma,
2346 unsigned long dst_addr,
2347 unsigned long src_addr,
2348 bool zeropage,
2349 struct page **pagep)
4c27fe4c
MR
2350{
2351 struct inode *inode = file_inode(dst_vma->vm_file);
2352 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2353 struct address_space *mapping = inode->i_mapping;
2354 gfp_t gfp = mapping_gfp_mask(mapping);
2355 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2356 void *page_kaddr;
2357 struct page *page;
4c27fe4c 2358 int ret;
3460f6e5 2359 pgoff_t max_off;
4c27fe4c 2360
7ed9d238
AR
2361 if (!shmem_inode_acct_block(inode, 1)) {
2362 /*
2363 * We may have got a page, returned -ENOENT triggering a retry,
2364 * and now we find ourselves with -ENOMEM. Release the page, to
2365 * avoid a BUG_ON in our caller.
2366 */
2367 if (unlikely(*pagep)) {
2368 put_page(*pagep);
2369 *pagep = NULL;
2370 }
7d64ae3a 2371 return -ENOMEM;
7ed9d238 2372 }
4c27fe4c 2373
cb658a45 2374 if (!*pagep) {
7d64ae3a 2375 ret = -ENOMEM;
4c27fe4c
MR
2376 page = shmem_alloc_page(gfp, info, pgoff);
2377 if (!page)
0f079694 2378 goto out_unacct_blocks;
4c27fe4c 2379
3460f6e5 2380 if (!zeropage) { /* COPY */
8d103963
MR
2381 page_kaddr = kmap_atomic(page);
2382 ret = copy_from_user(page_kaddr,
2383 (const void __user *)src_addr,
2384 PAGE_SIZE);
2385 kunmap_atomic(page_kaddr);
2386
c1e8d7c6 2387 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2388 if (unlikely(ret)) {
2389 *pagep = page;
7d64ae3a 2390 ret = -ENOENT;
8d103963 2391 /* don't free the page */
7d64ae3a 2392 goto out_unacct_blocks;
8d103963 2393 }
3460f6e5 2394 } else { /* ZEROPAGE */
8d103963 2395 clear_highpage(page);
4c27fe4c
MR
2396 }
2397 } else {
2398 page = *pagep;
2399 *pagep = NULL;
2400 }
2401
3460f6e5
AR
2402 VM_BUG_ON(PageLocked(page));
2403 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2404 __SetPageLocked(page);
2405 __SetPageSwapBacked(page);
a425d358 2406 __SetPageUptodate(page);
9cc90c66 2407
e2a50c1f 2408 ret = -EFAULT;
e2a50c1f 2409 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2410 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2411 goto out_release;
2412
552446a4 2413 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2414 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2415 if (ret)
3fea5a49 2416 goto out_release;
4c27fe4c 2417
7d64ae3a
AR
2418 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2419 page, true, false);
2420 if (ret)
2421 goto out_delete_from_cache;
4c27fe4c 2422
94b7cc01 2423 spin_lock_irq(&info->lock);
4c27fe4c
MR
2424 info->alloced++;
2425 inode->i_blocks += BLOCKS_PER_PAGE;
2426 shmem_recalc_inode(inode);
94b7cc01 2427 spin_unlock_irq(&info->lock);
4c27fe4c 2428
7d64ae3a 2429 SetPageDirty(page);
e2a50c1f 2430 unlock_page(page);
7d64ae3a
AR
2431 return 0;
2432out_delete_from_cache:
e2a50c1f 2433 delete_from_page_cache(page);
4c27fe4c 2434out_release:
9cc90c66 2435 unlock_page(page);
4c27fe4c 2436 put_page(page);
4c27fe4c 2437out_unacct_blocks:
0f079694 2438 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2439 return ret;
8d103963 2440}
3460f6e5 2441#endif /* CONFIG_USERFAULTFD */
8d103963 2442
1da177e4 2443#ifdef CONFIG_TMPFS
92e1d5be 2444static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2445static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2446
6d9d88d0
JS
2447#ifdef CONFIG_TMPFS_XATTR
2448static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2449#else
2450#define shmem_initxattrs NULL
2451#endif
2452
1da177e4 2453static int
800d15a5
NP
2454shmem_write_begin(struct file *file, struct address_space *mapping,
2455 loff_t pos, unsigned len, unsigned flags,
2456 struct page **pagep, void **fsdata)
1da177e4 2457{
800d15a5 2458 struct inode *inode = mapping->host;
40e041a2 2459 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2460 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2 2461
9608703e 2462 /* i_rwsem is held by caller */
ab3948f5
JFG
2463 if (unlikely(info->seals & (F_SEAL_GROW |
2464 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2465 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2466 return -EPERM;
2467 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2468 return -EPERM;
2469 }
2470
9e18eb29 2471 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2472}
2473
2474static int
2475shmem_write_end(struct file *file, struct address_space *mapping,
2476 loff_t pos, unsigned len, unsigned copied,
2477 struct page *page, void *fsdata)
2478{
2479 struct inode *inode = mapping->host;
2480
d3602444
HD
2481 if (pos + copied > inode->i_size)
2482 i_size_write(inode, pos + copied);
2483
ec9516fb 2484 if (!PageUptodate(page)) {
800d8c63
KS
2485 struct page *head = compound_head(page);
2486 if (PageTransCompound(page)) {
2487 int i;
2488
2489 for (i = 0; i < HPAGE_PMD_NR; i++) {
2490 if (head + i == page)
2491 continue;
2492 clear_highpage(head + i);
2493 flush_dcache_page(head + i);
2494 }
2495 }
09cbfeaf
KS
2496 if (copied < PAGE_SIZE) {
2497 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2498 zero_user_segments(page, 0, from,
09cbfeaf 2499 from + copied, PAGE_SIZE);
ec9516fb 2500 }
800d8c63 2501 SetPageUptodate(head);
ec9516fb 2502 }
800d15a5 2503 set_page_dirty(page);
6746aff7 2504 unlock_page(page);
09cbfeaf 2505 put_page(page);
800d15a5 2506
800d15a5 2507 return copied;
1da177e4
LT
2508}
2509
2ba5bbed 2510static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2511{
6e58e79d
AV
2512 struct file *file = iocb->ki_filp;
2513 struct inode *inode = file_inode(file);
1da177e4 2514 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2515 pgoff_t index;
2516 unsigned long offset;
a0ee5ec5 2517 enum sgp_type sgp = SGP_READ;
f7c1d074 2518 int error = 0;
cb66a7a1 2519 ssize_t retval = 0;
6e58e79d 2520 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2521
2522 /*
2523 * Might this read be for a stacking filesystem? Then when reading
2524 * holes of a sparse file, we actually need to allocate those pages,
2525 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2526 */
777eda2c 2527 if (!iter_is_iovec(to))
75edd345 2528 sgp = SGP_CACHE;
1da177e4 2529
09cbfeaf
KS
2530 index = *ppos >> PAGE_SHIFT;
2531 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2532
2533 for (;;) {
2534 struct page *page = NULL;
41ffe5d5
HD
2535 pgoff_t end_index;
2536 unsigned long nr, ret;
1da177e4
LT
2537 loff_t i_size = i_size_read(inode);
2538
09cbfeaf 2539 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2540 if (index > end_index)
2541 break;
2542 if (index == end_index) {
09cbfeaf 2543 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2544 if (nr <= offset)
2545 break;
2546 }
2547
9e18eb29 2548 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2549 if (error) {
2550 if (error == -EINVAL)
2551 error = 0;
1da177e4
LT
2552 break;
2553 }
75edd345
HD
2554 if (page) {
2555 if (sgp == SGP_CACHE)
2556 set_page_dirty(page);
d3602444 2557 unlock_page(page);
75edd345 2558 }
1da177e4
LT
2559
2560 /*
2561 * We must evaluate after, since reads (unlike writes)
9608703e 2562 * are called without i_rwsem protection against truncate
1da177e4 2563 */
09cbfeaf 2564 nr = PAGE_SIZE;
1da177e4 2565 i_size = i_size_read(inode);
09cbfeaf 2566 end_index = i_size >> PAGE_SHIFT;
1da177e4 2567 if (index == end_index) {
09cbfeaf 2568 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2569 if (nr <= offset) {
2570 if (page)
09cbfeaf 2571 put_page(page);
1da177e4
LT
2572 break;
2573 }
2574 }
2575 nr -= offset;
2576
2577 if (page) {
2578 /*
2579 * If users can be writing to this page using arbitrary
2580 * virtual addresses, take care about potential aliasing
2581 * before reading the page on the kernel side.
2582 */
2583 if (mapping_writably_mapped(mapping))
2584 flush_dcache_page(page);
2585 /*
2586 * Mark the page accessed if we read the beginning.
2587 */
2588 if (!offset)
2589 mark_page_accessed(page);
b5810039 2590 } else {
1da177e4 2591 page = ZERO_PAGE(0);
09cbfeaf 2592 get_page(page);
b5810039 2593 }
1da177e4
LT
2594
2595 /*
2596 * Ok, we have the page, and it's up-to-date, so
2597 * now we can copy it to user space...
1da177e4 2598 */
2ba5bbed 2599 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2600 retval += ret;
1da177e4 2601 offset += ret;
09cbfeaf
KS
2602 index += offset >> PAGE_SHIFT;
2603 offset &= ~PAGE_MASK;
1da177e4 2604
09cbfeaf 2605 put_page(page);
2ba5bbed 2606 if (!iov_iter_count(to))
1da177e4 2607 break;
6e58e79d
AV
2608 if (ret < nr) {
2609 error = -EFAULT;
2610 break;
2611 }
1da177e4
LT
2612 cond_resched();
2613 }
2614
09cbfeaf 2615 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2616 file_accessed(file);
2617 return retval ? retval : error;
1da177e4
LT
2618}
2619
965c8e59 2620static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2621{
2622 struct address_space *mapping = file->f_mapping;
2623 struct inode *inode = mapping->host;
220f2ac9 2624
965c8e59
AM
2625 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2626 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2627 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2628 if (offset < 0)
2629 return -ENXIO;
2630
5955102c 2631 inode_lock(inode);
9608703e 2632 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2633 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2634 if (offset >= 0)
2635 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2636 inode_unlock(inode);
220f2ac9
HD
2637 return offset;
2638}
2639
83e4fa9c
HD
2640static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2641 loff_t len)
2642{
496ad9aa 2643 struct inode *inode = file_inode(file);
e2d12e22 2644 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2645 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2646 struct shmem_falloc shmem_falloc;
d144bf62 2647 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2648 int error;
83e4fa9c 2649
13ace4d0
HD
2650 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2651 return -EOPNOTSUPP;
2652
5955102c 2653 inode_lock(inode);
83e4fa9c
HD
2654
2655 if (mode & FALLOC_FL_PUNCH_HOLE) {
2656 struct address_space *mapping = file->f_mapping;
2657 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2658 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2659 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2660
9608703e 2661 /* protected by i_rwsem */
ab3948f5 2662 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2663 error = -EPERM;
2664 goto out;
2665 }
2666
8e205f77 2667 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2668 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2669 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2670 spin_lock(&inode->i_lock);
2671 inode->i_private = &shmem_falloc;
2672 spin_unlock(&inode->i_lock);
2673
83e4fa9c
HD
2674 if ((u64)unmap_end > (u64)unmap_start)
2675 unmap_mapping_range(mapping, unmap_start,
2676 1 + unmap_end - unmap_start, 0);
2677 shmem_truncate_range(inode, offset, offset + len - 1);
2678 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2679
2680 spin_lock(&inode->i_lock);
2681 inode->i_private = NULL;
2682 wake_up_all(&shmem_falloc_waitq);
2055da97 2683 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2684 spin_unlock(&inode->i_lock);
83e4fa9c 2685 error = 0;
8e205f77 2686 goto out;
e2d12e22
HD
2687 }
2688
2689 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2690 error = inode_newsize_ok(inode, offset + len);
2691 if (error)
2692 goto out;
2693
40e041a2
DH
2694 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2695 error = -EPERM;
2696 goto out;
2697 }
2698
09cbfeaf
KS
2699 start = offset >> PAGE_SHIFT;
2700 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2701 /* Try to avoid a swapstorm if len is impossible to satisfy */
2702 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2703 error = -ENOSPC;
2704 goto out;
83e4fa9c
HD
2705 }
2706
8e205f77 2707 shmem_falloc.waitq = NULL;
1aac1400
HD
2708 shmem_falloc.start = start;
2709 shmem_falloc.next = start;
2710 shmem_falloc.nr_falloced = 0;
2711 shmem_falloc.nr_unswapped = 0;
2712 spin_lock(&inode->i_lock);
2713 inode->i_private = &shmem_falloc;
2714 spin_unlock(&inode->i_lock);
2715
d144bf62
HD
2716 /*
2717 * info->fallocend is only relevant when huge pages might be
2718 * involved: to prevent split_huge_page() freeing fallocated
2719 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2720 */
2721 undo_fallocend = info->fallocend;
2722 if (info->fallocend < end)
2723 info->fallocend = end;
2724
050dcb5c 2725 for (index = start; index < end; ) {
e2d12e22
HD
2726 struct page *page;
2727
2728 /*
2729 * Good, the fallocate(2) manpage permits EINTR: we may have
2730 * been interrupted because we are using up too much memory.
2731 */
2732 if (signal_pending(current))
2733 error = -EINTR;
1aac1400
HD
2734 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2735 error = -ENOMEM;
e2d12e22 2736 else
9e18eb29 2737 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2738 if (error) {
d144bf62 2739 info->fallocend = undo_fallocend;
1635f6a7 2740 /* Remove the !PageUptodate pages we added */
7f556567
HD
2741 if (index > start) {
2742 shmem_undo_range(inode,
2743 (loff_t)start << PAGE_SHIFT,
2744 ((loff_t)index << PAGE_SHIFT) - 1, true);
2745 }
1aac1400 2746 goto undone;
e2d12e22
HD
2747 }
2748
050dcb5c
HD
2749 index++;
2750 /*
2751 * Here is a more important optimization than it appears:
2752 * a second SGP_FALLOC on the same huge page will clear it,
2753 * making it PageUptodate and un-undoable if we fail later.
2754 */
2755 if (PageTransCompound(page)) {
2756 index = round_up(index, HPAGE_PMD_NR);
2757 /* Beware 32-bit wraparound */
2758 if (!index)
2759 index--;
2760 }
2761
1aac1400
HD
2762 /*
2763 * Inform shmem_writepage() how far we have reached.
2764 * No need for lock or barrier: we have the page lock.
2765 */
1aac1400 2766 if (!PageUptodate(page))
050dcb5c
HD
2767 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2768 shmem_falloc.next = index;
1aac1400 2769
e2d12e22 2770 /*
1635f6a7
HD
2771 * If !PageUptodate, leave it that way so that freeable pages
2772 * can be recognized if we need to rollback on error later.
2773 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2774 * than free the pages we are allocating (and SGP_CACHE pages
2775 * might still be clean: we now need to mark those dirty too).
2776 */
2777 set_page_dirty(page);
2778 unlock_page(page);
09cbfeaf 2779 put_page(page);
e2d12e22
HD
2780 cond_resched();
2781 }
2782
2783 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2784 i_size_write(inode, offset + len);
078cd827 2785 inode->i_ctime = current_time(inode);
1aac1400
HD
2786undone:
2787 spin_lock(&inode->i_lock);
2788 inode->i_private = NULL;
2789 spin_unlock(&inode->i_lock);
e2d12e22 2790out:
5955102c 2791 inode_unlock(inode);
83e4fa9c
HD
2792 return error;
2793}
2794
726c3342 2795static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2796{
726c3342 2797 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2798
2799 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2800 buf->f_bsize = PAGE_SIZE;
1da177e4 2801 buf->f_namelen = NAME_MAX;
0edd73b3 2802 if (sbinfo->max_blocks) {
1da177e4 2803 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2804 buf->f_bavail =
2805 buf->f_bfree = sbinfo->max_blocks -
2806 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2807 }
2808 if (sbinfo->max_inodes) {
1da177e4
LT
2809 buf->f_files = sbinfo->max_inodes;
2810 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2811 }
2812 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2813
2814 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2815
1da177e4
LT
2816 return 0;
2817}
2818
2819/*
2820 * File creation. Allocate an inode, and we're done..
2821 */
2822static int
549c7297
CB
2823shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2824 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2825{
0b0a0806 2826 struct inode *inode;
1da177e4
LT
2827 int error = -ENOSPC;
2828
454abafe 2829 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2830 if (inode) {
feda821e
CH
2831 error = simple_acl_create(dir, inode);
2832 if (error)
2833 goto out_iput;
2a7dba39 2834 error = security_inode_init_security(inode, dir,
9d8f13ba 2835 &dentry->d_name,
6d9d88d0 2836 shmem_initxattrs, NULL);
feda821e
CH
2837 if (error && error != -EOPNOTSUPP)
2838 goto out_iput;
37ec43cd 2839
718deb6b 2840 error = 0;
1da177e4 2841 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2842 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2843 d_instantiate(dentry, inode);
2844 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2845 }
2846 return error;
feda821e
CH
2847out_iput:
2848 iput(inode);
2849 return error;
1da177e4
LT
2850}
2851
60545d0d 2852static int
549c7297
CB
2853shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2854 struct dentry *dentry, umode_t mode)
60545d0d
AV
2855{
2856 struct inode *inode;
2857 int error = -ENOSPC;
2858
2859 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2860 if (inode) {
2861 error = security_inode_init_security(inode, dir,
2862 NULL,
2863 shmem_initxattrs, NULL);
feda821e
CH
2864 if (error && error != -EOPNOTSUPP)
2865 goto out_iput;
2866 error = simple_acl_create(dir, inode);
2867 if (error)
2868 goto out_iput;
60545d0d
AV
2869 d_tmpfile(dentry, inode);
2870 }
2871 return error;
feda821e
CH
2872out_iput:
2873 iput(inode);
2874 return error;
60545d0d
AV
2875}
2876
549c7297
CB
2877static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2878 struct dentry *dentry, umode_t mode)
1da177e4
LT
2879{
2880 int error;
2881
549c7297
CB
2882 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2883 mode | S_IFDIR, 0)))
1da177e4 2884 return error;
d8c76e6f 2885 inc_nlink(dir);
1da177e4
LT
2886 return 0;
2887}
2888
549c7297
CB
2889static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2890 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2891{
549c7297 2892 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2893}
2894
2895/*
2896 * Link a file..
2897 */
2898static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2899{
75c3cfa8 2900 struct inode *inode = d_inode(old_dentry);
29b00e60 2901 int ret = 0;
1da177e4
LT
2902
2903 /*
2904 * No ordinary (disk based) filesystem counts links as inodes;
2905 * but each new link needs a new dentry, pinning lowmem, and
2906 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2907 * But if an O_TMPFILE file is linked into the tmpfs, the
2908 * first link must skip that, to get the accounting right.
1da177e4 2909 */
1062af92 2910 if (inode->i_nlink) {
e809d5f0 2911 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2912 if (ret)
2913 goto out;
2914 }
1da177e4
LT
2915
2916 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2917 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2918 inc_nlink(inode);
7de9c6ee 2919 ihold(inode); /* New dentry reference */
1da177e4
LT
2920 dget(dentry); /* Extra pinning count for the created dentry */
2921 d_instantiate(dentry, inode);
5b04c689
PE
2922out:
2923 return ret;
1da177e4
LT
2924}
2925
2926static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2927{
75c3cfa8 2928 struct inode *inode = d_inode(dentry);
1da177e4 2929
5b04c689
PE
2930 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931 shmem_free_inode(inode->i_sb);
1da177e4
LT
2932
2933 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2934 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2935 drop_nlink(inode);
1da177e4
LT
2936 dput(dentry); /* Undo the count from "create" - this does all the work */
2937 return 0;
2938}
2939
2940static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2941{
2942 if (!simple_empty(dentry))
2943 return -ENOTEMPTY;
2944
75c3cfa8 2945 drop_nlink(d_inode(dentry));
9a53c3a7 2946 drop_nlink(dir);
1da177e4
LT
2947 return shmem_unlink(dir, dentry);
2948}
2949
37456771
MS
2950static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2951{
e36cb0b8
DH
2952 bool old_is_dir = d_is_dir(old_dentry);
2953 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2954
2955 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956 if (old_is_dir) {
2957 drop_nlink(old_dir);
2958 inc_nlink(new_dir);
2959 } else {
2960 drop_nlink(new_dir);
2961 inc_nlink(old_dir);
2962 }
2963 }
2964 old_dir->i_ctime = old_dir->i_mtime =
2965 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2966 d_inode(old_dentry)->i_ctime =
078cd827 2967 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2968
2969 return 0;
2970}
2971
549c7297
CB
2972static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2974{
2975 struct dentry *whiteout;
2976 int error;
2977
2978 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 if (!whiteout)
2980 return -ENOMEM;
2981
549c7297 2982 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2983 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 dput(whiteout);
2985 if (error)
2986 return error;
2987
2988 /*
2989 * Cheat and hash the whiteout while the old dentry is still in
2990 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 *
2992 * d_lookup() will consistently find one of them at this point,
2993 * not sure which one, but that isn't even important.
2994 */
2995 d_rehash(whiteout);
2996 return 0;
2997}
2998
1da177e4
LT
2999/*
3000 * The VFS layer already does all the dentry stuff for rename,
3001 * we just have to decrement the usage count for the target if
3002 * it exists so that the VFS layer correctly free's it when it
3003 * gets overwritten.
3004 */
549c7297
CB
3005static int shmem_rename2(struct user_namespace *mnt_userns,
3006 struct inode *old_dir, struct dentry *old_dentry,
3007 struct inode *new_dir, struct dentry *new_dentry,
3008 unsigned int flags)
1da177e4 3009{
75c3cfa8 3010 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3011 int they_are_dirs = S_ISDIR(inode->i_mode);
3012
46fdb794 3013 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3014 return -EINVAL;
3015
37456771
MS
3016 if (flags & RENAME_EXCHANGE)
3017 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018
1da177e4
LT
3019 if (!simple_empty(new_dentry))
3020 return -ENOTEMPTY;
3021
46fdb794
MS
3022 if (flags & RENAME_WHITEOUT) {
3023 int error;
3024
549c7297 3025 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
3026 if (error)
3027 return error;
3028 }
3029
75c3cfa8 3030 if (d_really_is_positive(new_dentry)) {
1da177e4 3031 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3032 if (they_are_dirs) {
75c3cfa8 3033 drop_nlink(d_inode(new_dentry));
9a53c3a7 3034 drop_nlink(old_dir);
b928095b 3035 }
1da177e4 3036 } else if (they_are_dirs) {
9a53c3a7 3037 drop_nlink(old_dir);
d8c76e6f 3038 inc_nlink(new_dir);
1da177e4
LT
3039 }
3040
3041 old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 new_dir->i_size += BOGO_DIRENT_SIZE;
3043 old_dir->i_ctime = old_dir->i_mtime =
3044 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3045 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3046 return 0;
3047}
3048
549c7297
CB
3049static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 struct dentry *dentry, const char *symname)
1da177e4
LT
3051{
3052 int error;
3053 int len;
3054 struct inode *inode;
9276aad6 3055 struct page *page;
1da177e4
LT
3056
3057 len = strlen(symname) + 1;
09cbfeaf 3058 if (len > PAGE_SIZE)
1da177e4
LT
3059 return -ENAMETOOLONG;
3060
0825a6f9
JP
3061 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 VM_NORESERVE);
1da177e4
LT
3063 if (!inode)
3064 return -ENOSPC;
3065
9d8f13ba 3066 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3067 shmem_initxattrs, NULL);
343c3d7f
MN
3068 if (error && error != -EOPNOTSUPP) {
3069 iput(inode);
3070 return error;
570bc1c2
SS
3071 }
3072
1da177e4 3073 inode->i_size = len-1;
69f07ec9 3074 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3075 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 if (!inode->i_link) {
69f07ec9
HD
3077 iput(inode);
3078 return -ENOMEM;
3079 }
3080 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3081 } else {
e8ecde25 3082 inode_nohighmem(inode);
9e18eb29 3083 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3084 if (error) {
3085 iput(inode);
3086 return error;
3087 }
14fcc23f 3088 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3089 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3090 memcpy(page_address(page), symname, len);
ec9516fb 3091 SetPageUptodate(page);
1da177e4 3092 set_page_dirty(page);
6746aff7 3093 unlock_page(page);
09cbfeaf 3094 put_page(page);
1da177e4 3095 }
1da177e4 3096 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3097 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3098 d_instantiate(dentry, inode);
3099 dget(dentry);
3100 return 0;
3101}
3102
fceef393 3103static void shmem_put_link(void *arg)
1da177e4 3104{
fceef393
AV
3105 mark_page_accessed(arg);
3106 put_page(arg);
1da177e4
LT
3107}
3108
6b255391 3109static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3110 struct inode *inode,
3111 struct delayed_call *done)
1da177e4 3112{
1da177e4 3113 struct page *page = NULL;
6b255391 3114 int error;
6a6c9904
AV
3115 if (!dentry) {
3116 page = find_get_page(inode->i_mapping, 0);
3117 if (!page)
3118 return ERR_PTR(-ECHILD);
3119 if (!PageUptodate(page)) {
3120 put_page(page);
3121 return ERR_PTR(-ECHILD);
3122 }
3123 } else {
9e18eb29 3124 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3125 if (error)
3126 return ERR_PTR(error);
3127 unlock_page(page);
3128 }
fceef393 3129 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3130 return page_address(page);
1da177e4
LT
3131}
3132
b09e0fa4 3133#ifdef CONFIG_TMPFS_XATTR
46711810 3134/*
b09e0fa4
EP
3135 * Superblocks without xattr inode operations may get some security.* xattr
3136 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3137 * like ACLs, we also need to implement the security.* handlers at
3138 * filesystem level, though.
3139 */
3140
6d9d88d0
JS
3141/*
3142 * Callback for security_inode_init_security() for acquiring xattrs.
3143 */
3144static int shmem_initxattrs(struct inode *inode,
3145 const struct xattr *xattr_array,
3146 void *fs_info)
3147{
3148 struct shmem_inode_info *info = SHMEM_I(inode);
3149 const struct xattr *xattr;
38f38657 3150 struct simple_xattr *new_xattr;
6d9d88d0
JS
3151 size_t len;
3152
3153 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3154 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3155 if (!new_xattr)
3156 return -ENOMEM;
3157
3158 len = strlen(xattr->name) + 1;
3159 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3160 GFP_KERNEL);
3161 if (!new_xattr->name) {
3bef735a 3162 kvfree(new_xattr);
6d9d88d0
JS
3163 return -ENOMEM;
3164 }
3165
3166 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3167 XATTR_SECURITY_PREFIX_LEN);
3168 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3169 xattr->name, len);
3170
38f38657 3171 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3172 }
3173
3174 return 0;
3175}
3176
aa7c5241 3177static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3178 struct dentry *unused, struct inode *inode,
3179 const char *name, void *buffer, size_t size)
b09e0fa4 3180{
b296821a 3181 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3182
aa7c5241 3183 name = xattr_full_name(handler, name);
38f38657 3184 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3185}
3186
aa7c5241 3187static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3188 struct user_namespace *mnt_userns,
59301226
AV
3189 struct dentry *unused, struct inode *inode,
3190 const char *name, const void *value,
3191 size_t size, int flags)
b09e0fa4 3192{
59301226 3193 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3194
aa7c5241 3195 name = xattr_full_name(handler, name);
a46a2295 3196 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3197}
3198
aa7c5241
AG
3199static const struct xattr_handler shmem_security_xattr_handler = {
3200 .prefix = XATTR_SECURITY_PREFIX,
3201 .get = shmem_xattr_handler_get,
3202 .set = shmem_xattr_handler_set,
3203};
b09e0fa4 3204
aa7c5241
AG
3205static const struct xattr_handler shmem_trusted_xattr_handler = {
3206 .prefix = XATTR_TRUSTED_PREFIX,
3207 .get = shmem_xattr_handler_get,
3208 .set = shmem_xattr_handler_set,
3209};
b09e0fa4 3210
aa7c5241
AG
3211static const struct xattr_handler *shmem_xattr_handlers[] = {
3212#ifdef CONFIG_TMPFS_POSIX_ACL
3213 &posix_acl_access_xattr_handler,
3214 &posix_acl_default_xattr_handler,
3215#endif
3216 &shmem_security_xattr_handler,
3217 &shmem_trusted_xattr_handler,
3218 NULL
3219};
b09e0fa4
EP
3220
3221static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3222{
75c3cfa8 3223 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3224 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3225}
3226#endif /* CONFIG_TMPFS_XATTR */
3227
69f07ec9 3228static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3229 .get_link = simple_get_link,
b09e0fa4 3230#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3231 .listxattr = shmem_listxattr,
b09e0fa4
EP
3232#endif
3233};
3234
3235static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3236 .get_link = shmem_get_link,
b09e0fa4 3237#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3238 .listxattr = shmem_listxattr,
39f0247d 3239#endif
b09e0fa4 3240};
39f0247d 3241
91828a40
DG
3242static struct dentry *shmem_get_parent(struct dentry *child)
3243{
3244 return ERR_PTR(-ESTALE);
3245}
3246
3247static int shmem_match(struct inode *ino, void *vfh)
3248{
3249 __u32 *fh = vfh;
3250 __u64 inum = fh[2];
3251 inum = (inum << 32) | fh[1];
3252 return ino->i_ino == inum && fh[0] == ino->i_generation;
3253}
3254
12ba780d
AG
3255/* Find any alias of inode, but prefer a hashed alias */
3256static struct dentry *shmem_find_alias(struct inode *inode)
3257{
3258 struct dentry *alias = d_find_alias(inode);
3259
3260 return alias ?: d_find_any_alias(inode);
3261}
3262
3263
480b116c
CH
3264static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265 struct fid *fid, int fh_len, int fh_type)
91828a40 3266{
91828a40 3267 struct inode *inode;
480b116c 3268 struct dentry *dentry = NULL;
35c2a7f4 3269 u64 inum;
480b116c
CH
3270
3271 if (fh_len < 3)
3272 return NULL;
91828a40 3273
35c2a7f4
HD
3274 inum = fid->raw[2];
3275 inum = (inum << 32) | fid->raw[1];
3276
480b116c
CH
3277 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278 shmem_match, fid->raw);
91828a40 3279 if (inode) {
12ba780d 3280 dentry = shmem_find_alias(inode);
91828a40
DG
3281 iput(inode);
3282 }
3283
480b116c 3284 return dentry;
91828a40
DG
3285}
3286
b0b0382b
AV
3287static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288 struct inode *parent)
91828a40 3289{
5fe0c237
AK
3290 if (*len < 3) {
3291 *len = 3;
94e07a75 3292 return FILEID_INVALID;
5fe0c237 3293 }
91828a40 3294
1d3382cb 3295 if (inode_unhashed(inode)) {
91828a40
DG
3296 /* Unfortunately insert_inode_hash is not idempotent,
3297 * so as we hash inodes here rather than at creation
3298 * time, we need a lock to ensure we only try
3299 * to do it once
3300 */
3301 static DEFINE_SPINLOCK(lock);
3302 spin_lock(&lock);
1d3382cb 3303 if (inode_unhashed(inode))
91828a40
DG
3304 __insert_inode_hash(inode,
3305 inode->i_ino + inode->i_generation);
3306 spin_unlock(&lock);
3307 }
3308
3309 fh[0] = inode->i_generation;
3310 fh[1] = inode->i_ino;
3311 fh[2] = ((__u64)inode->i_ino) >> 32;
3312
3313 *len = 3;
3314 return 1;
3315}
3316
39655164 3317static const struct export_operations shmem_export_ops = {
91828a40 3318 .get_parent = shmem_get_parent,
91828a40 3319 .encode_fh = shmem_encode_fh,
480b116c 3320 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3321};
3322
626c3920
AV
3323enum shmem_param {
3324 Opt_gid,
3325 Opt_huge,
3326 Opt_mode,
3327 Opt_mpol,
3328 Opt_nr_blocks,
3329 Opt_nr_inodes,
3330 Opt_size,
3331 Opt_uid,
ea3271f7
CD
3332 Opt_inode32,
3333 Opt_inode64,
626c3920
AV
3334};
3335
5eede625 3336static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3337 {"never", SHMEM_HUGE_NEVER },
3338 {"always", SHMEM_HUGE_ALWAYS },
3339 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3340 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3341 {}
3342};
3343
d7167b14 3344const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3345 fsparam_u32 ("gid", Opt_gid),
2710c957 3346 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3347 fsparam_u32oct("mode", Opt_mode),
3348 fsparam_string("mpol", Opt_mpol),
3349 fsparam_string("nr_blocks", Opt_nr_blocks),
3350 fsparam_string("nr_inodes", Opt_nr_inodes),
3351 fsparam_string("size", Opt_size),
3352 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3353 fsparam_flag ("inode32", Opt_inode32),
3354 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3355 {}
3356};
3357
f3235626 3358static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3359{
f3235626 3360 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3361 struct fs_parse_result result;
3362 unsigned long long size;
e04dc423 3363 char *rest;
626c3920
AV
3364 int opt;
3365
d7167b14 3366 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3367 if (opt < 0)
626c3920 3368 return opt;
1da177e4 3369
626c3920
AV
3370 switch (opt) {
3371 case Opt_size:
3372 size = memparse(param->string, &rest);
e04dc423
AV
3373 if (*rest == '%') {
3374 size <<= PAGE_SHIFT;
3375 size *= totalram_pages();
3376 do_div(size, 100);
3377 rest++;
3378 }
3379 if (*rest)
626c3920 3380 goto bad_value;
e04dc423
AV
3381 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3382 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3383 break;
3384 case Opt_nr_blocks:
3385 ctx->blocks = memparse(param->string, &rest);
e04dc423 3386 if (*rest)
626c3920 3387 goto bad_value;
e04dc423 3388 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3389 break;
3390 case Opt_nr_inodes:
3391 ctx->inodes = memparse(param->string, &rest);
e04dc423 3392 if (*rest)
626c3920 3393 goto bad_value;
e04dc423 3394 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3395 break;
3396 case Opt_mode:
3397 ctx->mode = result.uint_32 & 07777;
3398 break;
3399 case Opt_uid:
3400 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3401 if (!uid_valid(ctx->uid))
626c3920
AV
3402 goto bad_value;
3403 break;
3404 case Opt_gid:
3405 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3406 if (!gid_valid(ctx->gid))
626c3920
AV
3407 goto bad_value;
3408 break;
3409 case Opt_huge:
3410 ctx->huge = result.uint_32;
3411 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3412 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3413 has_transparent_hugepage()))
3414 goto unsupported_parameter;
e04dc423 3415 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3416 break;
3417 case Opt_mpol:
3418 if (IS_ENABLED(CONFIG_NUMA)) {
3419 mpol_put(ctx->mpol);
3420 ctx->mpol = NULL;
3421 if (mpol_parse_str(param->string, &ctx->mpol))
3422 goto bad_value;
3423 break;
3424 }
3425 goto unsupported_parameter;
ea3271f7
CD
3426 case Opt_inode32:
3427 ctx->full_inums = false;
3428 ctx->seen |= SHMEM_SEEN_INUMS;
3429 break;
3430 case Opt_inode64:
3431 if (sizeof(ino_t) < 8) {
3432 return invalfc(fc,
3433 "Cannot use inode64 with <64bit inums in kernel\n");
3434 }
3435 ctx->full_inums = true;
3436 ctx->seen |= SHMEM_SEEN_INUMS;
3437 break;
e04dc423
AV
3438 }
3439 return 0;
3440
626c3920 3441unsupported_parameter:
f35aa2bc 3442 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3443bad_value:
f35aa2bc 3444 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3445}
3446
f3235626 3447static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3448{
f3235626
DH
3449 char *options = data;
3450
33f37c64
AV
3451 if (options) {
3452 int err = security_sb_eat_lsm_opts(options, &fc->security);
3453 if (err)
3454 return err;
3455 }
3456
b00dc3ad 3457 while (options != NULL) {
626c3920 3458 char *this_char = options;
b00dc3ad
HD
3459 for (;;) {
3460 /*
3461 * NUL-terminate this option: unfortunately,
3462 * mount options form a comma-separated list,
3463 * but mpol's nodelist may also contain commas.
3464 */
3465 options = strchr(options, ',');
3466 if (options == NULL)
3467 break;
3468 options++;
3469 if (!isdigit(*options)) {
3470 options[-1] = '\0';
3471 break;
3472 }
3473 }
626c3920 3474 if (*this_char) {
68d68ff6 3475 char *value = strchr(this_char, '=');
f3235626 3476 size_t len = 0;
626c3920
AV
3477 int err;
3478
3479 if (value) {
3480 *value++ = '\0';
f3235626 3481 len = strlen(value);
626c3920 3482 }
f3235626
DH
3483 err = vfs_parse_fs_string(fc, this_char, value, len);
3484 if (err < 0)
3485 return err;
1da177e4 3486 }
1da177e4
LT
3487 }
3488 return 0;
1da177e4
LT
3489}
3490
f3235626
DH
3491/*
3492 * Reconfigure a shmem filesystem.
3493 *
3494 * Note that we disallow change from limited->unlimited blocks/inodes while any
3495 * are in use; but we must separately disallow unlimited->limited, because in
3496 * that case we have no record of how much is already in use.
3497 */
3498static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3499{
f3235626
DH
3500 struct shmem_options *ctx = fc->fs_private;
3501 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3502 unsigned long inodes;
bf11b9a8 3503 struct mempolicy *mpol = NULL;
f3235626 3504 const char *err;
1da177e4 3505
bf11b9a8 3506 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3507 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3508 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3509 if (!sbinfo->max_blocks) {
3510 err = "Cannot retroactively limit size";
0b5071dd 3511 goto out;
f3235626 3512 }
0b5071dd 3513 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3514 ctx->blocks) > 0) {
3515 err = "Too small a size for current use";
0b5071dd 3516 goto out;
f3235626 3517 }
0b5071dd 3518 }
f3235626
DH
3519 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3520 if (!sbinfo->max_inodes) {
3521 err = "Cannot retroactively limit inodes";
0b5071dd 3522 goto out;
f3235626
DH
3523 }
3524 if (ctx->inodes < inodes) {
3525 err = "Too few inodes for current use";
0b5071dd 3526 goto out;
f3235626 3527 }
0b5071dd 3528 }
0edd73b3 3529
ea3271f7
CD
3530 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3531 sbinfo->next_ino > UINT_MAX) {
3532 err = "Current inum too high to switch to 32-bit inums";
3533 goto out;
3534 }
3535
f3235626
DH
3536 if (ctx->seen & SHMEM_SEEN_HUGE)
3537 sbinfo->huge = ctx->huge;
ea3271f7
CD
3538 if (ctx->seen & SHMEM_SEEN_INUMS)
3539 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3540 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3541 sbinfo->max_blocks = ctx->blocks;
3542 if (ctx->seen & SHMEM_SEEN_INODES) {
3543 sbinfo->max_inodes = ctx->inodes;
3544 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3545 }
71fe804b 3546
5f00110f
GT
3547 /*
3548 * Preserve previous mempolicy unless mpol remount option was specified.
3549 */
f3235626 3550 if (ctx->mpol) {
bf11b9a8 3551 mpol = sbinfo->mpol;
f3235626
DH
3552 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3553 ctx->mpol = NULL;
5f00110f 3554 }
bf11b9a8
SAS
3555 raw_spin_unlock(&sbinfo->stat_lock);
3556 mpol_put(mpol);
f3235626 3557 return 0;
0edd73b3 3558out:
bf11b9a8 3559 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3560 return invalfc(fc, "%s", err);
1da177e4 3561}
680d794b 3562
34c80b1d 3563static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3564{
34c80b1d 3565 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3566
3567 if (sbinfo->max_blocks != shmem_default_max_blocks())
3568 seq_printf(seq, ",size=%luk",
09cbfeaf 3569 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3570 if (sbinfo->max_inodes != shmem_default_max_inodes())
3571 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3572 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3573 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3574 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3575 seq_printf(seq, ",uid=%u",
3576 from_kuid_munged(&init_user_ns, sbinfo->uid));
3577 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3578 seq_printf(seq, ",gid=%u",
3579 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3580
3581 /*
3582 * Showing inode{64,32} might be useful even if it's the system default,
3583 * since then people don't have to resort to checking both here and
3584 * /proc/config.gz to confirm 64-bit inums were successfully applied
3585 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3586 *
3587 * We hide it when inode64 isn't the default and we are using 32-bit
3588 * inodes, since that probably just means the feature isn't even under
3589 * consideration.
3590 *
3591 * As such:
3592 *
3593 * +-----------------+-----------------+
3594 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3595 * +------------------+-----------------+-----------------+
3596 * | full_inums=true | show | show |
3597 * | full_inums=false | show | hide |
3598 * +------------------+-----------------+-----------------+
3599 *
3600 */
3601 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3602 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3603#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3604 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3605 if (sbinfo->huge)
3606 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3607#endif
71fe804b 3608 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3609 return 0;
3610}
9183df25 3611
680d794b 3612#endif /* CONFIG_TMPFS */
1da177e4
LT
3613
3614static void shmem_put_super(struct super_block *sb)
3615{
602586a8
HD
3616 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3617
e809d5f0 3618 free_percpu(sbinfo->ino_batch);
602586a8 3619 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3620 mpol_put(sbinfo->mpol);
602586a8 3621 kfree(sbinfo);
1da177e4
LT
3622 sb->s_fs_info = NULL;
3623}
3624
f3235626 3625static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3626{
f3235626 3627 struct shmem_options *ctx = fc->fs_private;
1da177e4 3628 struct inode *inode;
0edd73b3 3629 struct shmem_sb_info *sbinfo;
680d794b 3630
3631 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3632 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3633 L1_CACHE_BYTES), GFP_KERNEL);
3634 if (!sbinfo)
3635 return -ENOMEM;
3636
680d794b 3637 sb->s_fs_info = sbinfo;
1da177e4 3638
0edd73b3 3639#ifdef CONFIG_TMPFS
1da177e4
LT
3640 /*
3641 * Per default we only allow half of the physical ram per
3642 * tmpfs instance, limiting inodes to one per page of lowmem;
3643 * but the internal instance is left unlimited.
3644 */
1751e8a6 3645 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3646 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3647 ctx->blocks = shmem_default_max_blocks();
3648 if (!(ctx->seen & SHMEM_SEEN_INODES))
3649 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3650 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3651 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3652 } else {
1751e8a6 3653 sb->s_flags |= SB_NOUSER;
1da177e4 3654 }
91828a40 3655 sb->s_export_op = &shmem_export_ops;
1751e8a6 3656 sb->s_flags |= SB_NOSEC;
1da177e4 3657#else
1751e8a6 3658 sb->s_flags |= SB_NOUSER;
1da177e4 3659#endif
f3235626
DH
3660 sbinfo->max_blocks = ctx->blocks;
3661 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3662 if (sb->s_flags & SB_KERNMOUNT) {
3663 sbinfo->ino_batch = alloc_percpu(ino_t);
3664 if (!sbinfo->ino_batch)
3665 goto failed;
3666 }
f3235626
DH
3667 sbinfo->uid = ctx->uid;
3668 sbinfo->gid = ctx->gid;
ea3271f7 3669 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3670 sbinfo->mode = ctx->mode;
3671 sbinfo->huge = ctx->huge;
3672 sbinfo->mpol = ctx->mpol;
3673 ctx->mpol = NULL;
1da177e4 3674
bf11b9a8 3675 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3676 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3677 goto failed;
779750d2
KS
3678 spin_lock_init(&sbinfo->shrinklist_lock);
3679 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3680
285b2c4f 3681 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3682 sb->s_blocksize = PAGE_SIZE;
3683 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3684 sb->s_magic = TMPFS_MAGIC;
3685 sb->s_op = &shmem_ops;
cfd95a9c 3686 sb->s_time_gran = 1;
b09e0fa4 3687#ifdef CONFIG_TMPFS_XATTR
39f0247d 3688 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3689#endif
3690#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3691 sb->s_flags |= SB_POSIXACL;
39f0247d 3692#endif
2b4db796 3693 uuid_gen(&sb->s_uuid);
0edd73b3 3694
454abafe 3695 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3696 if (!inode)
3697 goto failed;
680d794b 3698 inode->i_uid = sbinfo->uid;
3699 inode->i_gid = sbinfo->gid;
318ceed0
AV
3700 sb->s_root = d_make_root(inode);
3701 if (!sb->s_root)
48fde701 3702 goto failed;
1da177e4
LT
3703 return 0;
3704
1da177e4
LT
3705failed:
3706 shmem_put_super(sb);
f2b346e4 3707 return -ENOMEM;
1da177e4
LT
3708}
3709
f3235626
DH
3710static int shmem_get_tree(struct fs_context *fc)
3711{
3712 return get_tree_nodev(fc, shmem_fill_super);
3713}
3714
3715static void shmem_free_fc(struct fs_context *fc)
3716{
3717 struct shmem_options *ctx = fc->fs_private;
3718
3719 if (ctx) {
3720 mpol_put(ctx->mpol);
3721 kfree(ctx);
3722 }
3723}
3724
3725static const struct fs_context_operations shmem_fs_context_ops = {
3726 .free = shmem_free_fc,
3727 .get_tree = shmem_get_tree,
3728#ifdef CONFIG_TMPFS
3729 .parse_monolithic = shmem_parse_options,
3730 .parse_param = shmem_parse_one,
3731 .reconfigure = shmem_reconfigure,
3732#endif
3733};
3734
fcc234f8 3735static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3736
3737static struct inode *shmem_alloc_inode(struct super_block *sb)
3738{
41ffe5d5
HD
3739 struct shmem_inode_info *info;
3740 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3741 if (!info)
1da177e4 3742 return NULL;
41ffe5d5 3743 return &info->vfs_inode;
1da177e4
LT
3744}
3745
74b1da56 3746static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3747{
84e710da
AV
3748 if (S_ISLNK(inode->i_mode))
3749 kfree(inode->i_link);
fa0d7e3d
NP
3750 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3751}
3752
1da177e4
LT
3753static void shmem_destroy_inode(struct inode *inode)
3754{
09208d15 3755 if (S_ISREG(inode->i_mode))
1da177e4 3756 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3757}
3758
41ffe5d5 3759static void shmem_init_inode(void *foo)
1da177e4 3760{
41ffe5d5
HD
3761 struct shmem_inode_info *info = foo;
3762 inode_init_once(&info->vfs_inode);
1da177e4
LT
3763}
3764
9a8ec03e 3765static void shmem_init_inodecache(void)
1da177e4
LT
3766{
3767 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3768 sizeof(struct shmem_inode_info),
5d097056 3769 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3770}
3771
41ffe5d5 3772static void shmem_destroy_inodecache(void)
1da177e4 3773{
1a1d92c1 3774 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3775}
3776
30e6a51d 3777const struct address_space_operations shmem_aops = {
1da177e4 3778 .writepage = shmem_writepage,
76719325 3779 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3780#ifdef CONFIG_TMPFS
800d15a5
NP
3781 .write_begin = shmem_write_begin,
3782 .write_end = shmem_write_end,
1da177e4 3783#endif
1c93923c 3784#ifdef CONFIG_MIGRATION
304dbdb7 3785 .migratepage = migrate_page,
1c93923c 3786#endif
aa261f54 3787 .error_remove_page = generic_error_remove_page,
1da177e4 3788};
30e6a51d 3789EXPORT_SYMBOL(shmem_aops);
1da177e4 3790
15ad7cdc 3791static const struct file_operations shmem_file_operations = {
1da177e4 3792 .mmap = shmem_mmap,
c01d5b30 3793 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3794#ifdef CONFIG_TMPFS
220f2ac9 3795 .llseek = shmem_file_llseek,
2ba5bbed 3796 .read_iter = shmem_file_read_iter,
8174202b 3797 .write_iter = generic_file_write_iter,
1b061d92 3798 .fsync = noop_fsync,
82c156f8 3799 .splice_read = generic_file_splice_read,
f6cb85d0 3800 .splice_write = iter_file_splice_write,
83e4fa9c 3801 .fallocate = shmem_fallocate,
1da177e4
LT
3802#endif
3803};
3804
92e1d5be 3805static const struct inode_operations shmem_inode_operations = {
44a30220 3806 .getattr = shmem_getattr,
94c1e62d 3807 .setattr = shmem_setattr,
b09e0fa4 3808#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3809 .listxattr = shmem_listxattr,
feda821e 3810 .set_acl = simple_set_acl,
b09e0fa4 3811#endif
1da177e4
LT
3812};
3813
92e1d5be 3814static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3815#ifdef CONFIG_TMPFS
3816 .create = shmem_create,
3817 .lookup = simple_lookup,
3818 .link = shmem_link,
3819 .unlink = shmem_unlink,
3820 .symlink = shmem_symlink,
3821 .mkdir = shmem_mkdir,
3822 .rmdir = shmem_rmdir,
3823 .mknod = shmem_mknod,
2773bf00 3824 .rename = shmem_rename2,
60545d0d 3825 .tmpfile = shmem_tmpfile,
1da177e4 3826#endif
b09e0fa4 3827#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3828 .listxattr = shmem_listxattr,
b09e0fa4 3829#endif
39f0247d 3830#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3831 .setattr = shmem_setattr,
feda821e 3832 .set_acl = simple_set_acl,
39f0247d
AG
3833#endif
3834};
3835
92e1d5be 3836static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3837#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3838 .listxattr = shmem_listxattr,
b09e0fa4 3839#endif
39f0247d 3840#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3841 .setattr = shmem_setattr,
feda821e 3842 .set_acl = simple_set_acl,
39f0247d 3843#endif
1da177e4
LT
3844};
3845
759b9775 3846static const struct super_operations shmem_ops = {
1da177e4 3847 .alloc_inode = shmem_alloc_inode,
74b1da56 3848 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3849 .destroy_inode = shmem_destroy_inode,
3850#ifdef CONFIG_TMPFS
3851 .statfs = shmem_statfs,
680d794b 3852 .show_options = shmem_show_options,
1da177e4 3853#endif
1f895f75 3854 .evict_inode = shmem_evict_inode,
1da177e4
LT
3855 .drop_inode = generic_delete_inode,
3856 .put_super = shmem_put_super,
396bcc52 3857#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3858 .nr_cached_objects = shmem_unused_huge_count,
3859 .free_cached_objects = shmem_unused_huge_scan,
3860#endif
1da177e4
LT
3861};
3862
f0f37e2f 3863static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3864 .fault = shmem_fault,
d7c17551 3865 .map_pages = filemap_map_pages,
1da177e4
LT
3866#ifdef CONFIG_NUMA
3867 .set_policy = shmem_set_policy,
3868 .get_policy = shmem_get_policy,
3869#endif
3870};
3871
f3235626 3872int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3873{
f3235626
DH
3874 struct shmem_options *ctx;
3875
3876 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3877 if (!ctx)
3878 return -ENOMEM;
3879
3880 ctx->mode = 0777 | S_ISVTX;
3881 ctx->uid = current_fsuid();
3882 ctx->gid = current_fsgid();
3883
3884 fc->fs_private = ctx;
3885 fc->ops = &shmem_fs_context_ops;
3886 return 0;
1da177e4
LT
3887}
3888
41ffe5d5 3889static struct file_system_type shmem_fs_type = {
1da177e4
LT
3890 .owner = THIS_MODULE,
3891 .name = "tmpfs",
f3235626
DH
3892 .init_fs_context = shmem_init_fs_context,
3893#ifdef CONFIG_TMPFS
d7167b14 3894 .parameters = shmem_fs_parameters,
f3235626 3895#endif
1da177e4 3896 .kill_sb = kill_litter_super,
01c70267 3897 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
1da177e4 3898};
1da177e4 3899
41ffe5d5 3900int __init shmem_init(void)
1da177e4
LT
3901{
3902 int error;
3903
9a8ec03e 3904 shmem_init_inodecache();
1da177e4 3905
41ffe5d5 3906 error = register_filesystem(&shmem_fs_type);
1da177e4 3907 if (error) {
1170532b 3908 pr_err("Could not register tmpfs\n");
1da177e4
LT
3909 goto out2;
3910 }
95dc112a 3911
ca4e0519 3912 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3913 if (IS_ERR(shm_mnt)) {
3914 error = PTR_ERR(shm_mnt);
1170532b 3915 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3916 goto out1;
3917 }
5a6e75f8 3918
396bcc52 3919#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3920 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3921 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3922 else
5e6e5a12 3923 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3924#endif
1da177e4
LT
3925 return 0;
3926
3927out1:
41ffe5d5 3928 unregister_filesystem(&shmem_fs_type);
1da177e4 3929out2:
41ffe5d5 3930 shmem_destroy_inodecache();
1da177e4
LT
3931 shm_mnt = ERR_PTR(error);
3932 return error;
3933}
853ac43a 3934
396bcc52 3935#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3936static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3937 struct kobj_attribute *attr, char *buf)
5a6e75f8 3938{
26083eb6 3939 static const int values[] = {
5a6e75f8
KS
3940 SHMEM_HUGE_ALWAYS,
3941 SHMEM_HUGE_WITHIN_SIZE,
3942 SHMEM_HUGE_ADVISE,
3943 SHMEM_HUGE_NEVER,
3944 SHMEM_HUGE_DENY,
3945 SHMEM_HUGE_FORCE,
3946 };
79d4d38a
JP
3947 int len = 0;
3948 int i;
5a6e75f8 3949
79d4d38a
JP
3950 for (i = 0; i < ARRAY_SIZE(values); i++) {
3951 len += sysfs_emit_at(buf, len,
3952 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3953 i ? " " : "",
3954 shmem_format_huge(values[i]));
5a6e75f8 3955 }
79d4d38a
JP
3956
3957 len += sysfs_emit_at(buf, len, "\n");
3958
3959 return len;
5a6e75f8
KS
3960}
3961
3962static ssize_t shmem_enabled_store(struct kobject *kobj,
3963 struct kobj_attribute *attr, const char *buf, size_t count)
3964{
3965 char tmp[16];
3966 int huge;
3967
3968 if (count + 1 > sizeof(tmp))
3969 return -EINVAL;
3970 memcpy(tmp, buf, count);
3971 tmp[count] = '\0';
3972 if (count && tmp[count - 1] == '\n')
3973 tmp[count - 1] = '\0';
3974
3975 huge = shmem_parse_huge(tmp);
3976 if (huge == -EINVAL)
3977 return -EINVAL;
3978 if (!has_transparent_hugepage() &&
3979 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3980 return -EINVAL;
3981
3982 shmem_huge = huge;
435c0b87 3983 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3984 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3985 return count;
3986}
3987
3988struct kobj_attribute shmem_enabled_attr =
3989 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 3990#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3991
853ac43a
MM
3992#else /* !CONFIG_SHMEM */
3993
3994/*
3995 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3996 *
3997 * This is intended for small system where the benefits of the full
3998 * shmem code (swap-backed and resource-limited) are outweighed by
3999 * their complexity. On systems without swap this code should be
4000 * effectively equivalent, but much lighter weight.
4001 */
4002
41ffe5d5 4003static struct file_system_type shmem_fs_type = {
853ac43a 4004 .name = "tmpfs",
f3235626 4005 .init_fs_context = ramfs_init_fs_context,
d7167b14 4006 .parameters = ramfs_fs_parameters,
853ac43a 4007 .kill_sb = kill_litter_super,
2b8576cb 4008 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4009};
4010
41ffe5d5 4011int __init shmem_init(void)
853ac43a 4012{
41ffe5d5 4013 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4014
41ffe5d5 4015 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4016 BUG_ON(IS_ERR(shm_mnt));
4017
4018 return 0;
4019}
4020
b56a2d8a
VRP
4021int shmem_unuse(unsigned int type, bool frontswap,
4022 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4023{
4024 return 0;
4025}
4026
d7c9e99a 4027int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4028{
4029 return 0;
4030}
4031
24513264
HD
4032void shmem_unlock_mapping(struct address_space *mapping)
4033{
4034}
4035
c01d5b30
HD
4036#ifdef CONFIG_MMU
4037unsigned long shmem_get_unmapped_area(struct file *file,
4038 unsigned long addr, unsigned long len,
4039 unsigned long pgoff, unsigned long flags)
4040{
4041 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4042}
4043#endif
4044
41ffe5d5 4045void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4046{
41ffe5d5 4047 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4048}
4049EXPORT_SYMBOL_GPL(shmem_truncate_range);
4050
0b0a0806
HD
4051#define shmem_vm_ops generic_file_vm_ops
4052#define shmem_file_operations ramfs_file_operations
454abafe 4053#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4054#define shmem_acct_size(flags, size) 0
4055#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4056
4057#endif /* CONFIG_SHMEM */
4058
4059/* common code */
1da177e4 4060
703321b6 4061static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4062 unsigned long flags, unsigned int i_flags)
1da177e4 4063{
1da177e4 4064 struct inode *inode;
93dec2da 4065 struct file *res;
1da177e4 4066
703321b6
MA
4067 if (IS_ERR(mnt))
4068 return ERR_CAST(mnt);
1da177e4 4069
285b2c4f 4070 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4071 return ERR_PTR(-EINVAL);
4072
4073 if (shmem_acct_size(flags, size))
4074 return ERR_PTR(-ENOMEM);
4075
93dec2da
AV
4076 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4077 flags);
dac2d1f6
AV
4078 if (unlikely(!inode)) {
4079 shmem_unacct_size(flags, size);
4080 return ERR_PTR(-ENOSPC);
4081 }
c7277090 4082 inode->i_flags |= i_flags;
1da177e4 4083 inode->i_size = size;
6d6b77f1 4084 clear_nlink(inode); /* It is unlinked */
26567cdb 4085 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4086 if (!IS_ERR(res))
4087 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4088 &shmem_file_operations);
26567cdb 4089 if (IS_ERR(res))
93dec2da 4090 iput(inode);
6b4d0b27 4091 return res;
1da177e4 4092}
c7277090
EP
4093
4094/**
4095 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4096 * kernel internal. There will be NO LSM permission checks against the
4097 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4098 * higher layer. The users are the big_key and shm implementations. LSM
4099 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4100 * @name: name for dentry (to be seen in /proc/<pid>/maps
4101 * @size: size to be set for the file
4102 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4103 */
4104struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4105{
703321b6 4106 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4107}
4108
4109/**
4110 * shmem_file_setup - get an unlinked file living in tmpfs
4111 * @name: name for dentry (to be seen in /proc/<pid>/maps
4112 * @size: size to be set for the file
4113 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4114 */
4115struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4116{
703321b6 4117 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4118}
395e0ddc 4119EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4120
703321b6
MA
4121/**
4122 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4123 * @mnt: the tmpfs mount where the file will be created
4124 * @name: name for dentry (to be seen in /proc/<pid>/maps
4125 * @size: size to be set for the file
4126 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4127 */
4128struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4129 loff_t size, unsigned long flags)
4130{
4131 return __shmem_file_setup(mnt, name, size, flags, 0);
4132}
4133EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4134
46711810 4135/**
1da177e4 4136 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4137 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4138 */
4139int shmem_zero_setup(struct vm_area_struct *vma)
4140{
4141 struct file *file;
4142 loff_t size = vma->vm_end - vma->vm_start;
4143
66fc1303 4144 /*
c1e8d7c6 4145 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4146 * between XFS directory reading and selinux: since this file is only
4147 * accessible to the user through its mapping, use S_PRIVATE flag to
4148 * bypass file security, in the same way as shmem_kernel_file_setup().
4149 */
703321b6 4150 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4151 if (IS_ERR(file))
4152 return PTR_ERR(file);
4153
4154 if (vma->vm_file)
4155 fput(vma->vm_file);
4156 vma->vm_file = file;
4157 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4158
396bcc52 4159 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4160 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4161 (vma->vm_end & HPAGE_PMD_MASK)) {
4162 khugepaged_enter(vma, vma->vm_flags);
4163 }
4164
1da177e4
LT
4165 return 0;
4166}
d9d90e5e
HD
4167
4168/**
4169 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4170 * @mapping: the page's address_space
4171 * @index: the page index
4172 * @gfp: the page allocator flags to use if allocating
4173 *
4174 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4175 * with any new page allocations done using the specified allocation flags.
4176 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4177 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4178 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4179 *
68da9f05
HD
4180 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4181 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4182 */
4183struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4184 pgoff_t index, gfp_t gfp)
4185{
68da9f05
HD
4186#ifdef CONFIG_SHMEM
4187 struct inode *inode = mapping->host;
9276aad6 4188 struct page *page;
68da9f05
HD
4189 int error;
4190
30e6a51d 4191 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4192 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4193 gfp, NULL, NULL, NULL);
68da9f05
HD
4194 if (error)
4195 page = ERR_PTR(error);
4196 else
4197 unlock_page(page);
4198 return page;
4199#else
4200 /*
4201 * The tiny !SHMEM case uses ramfs without swap
4202 */
d9d90e5e 4203 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4204#endif
d9d90e5e
HD
4205}
4206EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);