Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b 109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 124 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
68da9f05 127
f3f0e1d2 128int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 129 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
130{
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 133}
1da177e4 134
1da177e4
LT
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137 return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 return (flags & VM_NORESERVE) ?
191c5424 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
0b0a0806 154 if (!(flags & VM_NORESERVE))
1da177e4
LT
155 vm_unacct_memory(VM_ACCT(size));
156}
157
77142517
KK
158static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160{
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169}
170
1da177e4
LT
171/*
172 * ... whereas tmpfs objects are accounted incrementally as
75edd345 173 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
800d8c63 177static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 178{
800d8c63
KS
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
0b0a0806 188 if (flags & VM_NORESERVE)
09cbfeaf 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
190}
191
0f079694
MR
192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193{
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212}
213
214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222}
223
759b9775 224static const struct super_operations shmem_ops;
f5e54d6e 225static const struct address_space_operations shmem_aops;
15ad7cdc 226static const struct file_operations shmem_file_operations;
92e1d5be
AV
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 230static const struct vm_operations_struct shmem_vm_ops;
779750d2 231static struct file_system_type shmem_fs_type;
1da177e4 232
b0506e48
MR
233bool vma_is_shmem(struct vm_area_struct *vma)
234{
235 return vma->vm_ops == &shmem_vm_ops;
236}
237
1da177e4 238static LIST_HEAD(shmem_swaplist);
cb5f7b9a 239static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 240
5b04c689
PE
241static int shmem_reserve_inode(struct super_block *sb)
242{
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254}
255
256static void shmem_free_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264}
265
46711810 266/**
41ffe5d5 267 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278static void shmem_recalc_inode(struct inode *inode)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
54af6042 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 287 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
288 }
289}
290
800d8c63
KS
291bool shmem_charge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 294 unsigned long flags;
800d8c63 295
0f079694 296 if (!shmem_inode_acct_block(inode, pages))
800d8c63 297 return false;
b1cc94ab 298
4595ef88 299 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
4595ef88 303 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
304 inode->i_mapping->nrpages += pages;
305
800d8c63
KS
306 return true;
307}
308
309void shmem_uncharge(struct inode *inode, long pages)
310{
311 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 312 unsigned long flags;
800d8c63 313
4595ef88 314 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
4595ef88 318 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 319
0f079694 320 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
321}
322
7a5d0fbb
HD
323/*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328{
f7942430 329 struct radix_tree_node *node;
7a5d0fbb 330 void **pslot;
6dbaf22c 331 void *item;
7a5d0fbb
HD
332
333 VM_BUG_ON(!expected);
6dbaf22c 334 VM_BUG_ON(!replacement);
b93b0163 335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
f7942430 336 if (!item)
6dbaf22c 337 return -ENOENT;
7a5d0fbb
HD
338 if (item != expected)
339 return -ENOENT;
b93b0163 340 __radix_tree_replace(&mapping->i_pages, node, pslot,
c7df8ad2 341 replacement, NULL);
7a5d0fbb
HD
342 return 0;
343}
344
d1899228
HD
345/*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354{
355 void *item;
356
357 rcu_read_lock();
b93b0163 358 item = radix_tree_lookup(&mapping->i_pages, index);
d1899228
HD
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361}
362
5a6e75f8
KS
363/*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377#define SHMEM_HUGE_NEVER 0
378#define SHMEM_HUGE_ALWAYS 1
379#define SHMEM_HUGE_WITHIN_SIZE 2
380#define SHMEM_HUGE_ADVISE 3
381
382/*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392#define SHMEM_HUGE_DENY (-1)
393#define SHMEM_HUGE_FORCE (-2)
394
e496cf3d 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
396/* ifdef here to avoid bloating shmem.o when not necessary */
397
398int shmem_huge __read_mostly;
399
f1f5929c 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
401static int shmem_parse_huge(const char *str)
402{
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416}
417
418static const char *shmem_format_huge(int huge)
419{
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437}
f1f5929c 438#endif
5a6e75f8 439
779750d2
KS
440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442{
443 LIST_HEAD(list), *pos, *next;
253fd0f0 444 LIST_HEAD(to_remove);
779750d2
KS
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 471 list_move(&info->shrinklist, &to_remove);
779750d2 472 removed++;
779750d2
KS
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
253fd0f0
KS
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
779750d2
KS
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
b3cd54b2
KS
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
779750d2 498
b3cd54b2 499 page = find_get_page(inode->i_mapping,
779750d2
KS
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
503
b3cd54b2 504 /* No huge page at the end of the file: nothing to split */
779750d2 505 if (!PageTransHuge(page)) {
779750d2
KS
506 put_page(page);
507 goto drop;
508 }
509
b3cd54b2
KS
510 /*
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
513 *
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
516 */
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
520 }
521
779750d2
KS
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
525
b3cd54b2
KS
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
779750d2
KS
529
530 split++;
531drop:
532 list_del_init(&info->shrinklist);
533 removed++;
b3cd54b2 534leave:
779750d2
KS
535 iput(inode);
536 }
537
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
542
543 return split;
544}
545
546static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
548{
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
553
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
555}
556
557static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
559{
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
562}
e496cf3d 563#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
564
565#define shmem_huge SHMEM_HUGE_DENY
566
779750d2
KS
567static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
569{
570 return 0;
571}
e496cf3d 572#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 573
46f65ec1
HD
574/*
575 * Like add_to_page_cache_locked, but error if expected item has gone.
576 */
577static int shmem_add_to_page_cache(struct page *page,
578 struct address_space *mapping,
fed400a1 579 pgoff_t index, void *expected)
46f65ec1 580{
800d8c63 581 int error, nr = hpage_nr_pages(page);
46f65ec1 582
800d8c63
KS
583 VM_BUG_ON_PAGE(PageTail(page), page);
584 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
585 VM_BUG_ON_PAGE(!PageLocked(page), page);
586 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 587 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 588
800d8c63 589 page_ref_add(page, nr);
b065b432
HD
590 page->mapping = mapping;
591 page->index = index;
592
b93b0163 593 xa_lock_irq(&mapping->i_pages);
800d8c63
KS
594 if (PageTransHuge(page)) {
595 void __rcu **results;
596 pgoff_t idx;
597 int i;
598
599 error = 0;
b93b0163 600 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
800d8c63
KS
601 &results, &idx, index, 1) &&
602 idx < index + HPAGE_PMD_NR) {
603 error = -EEXIST;
604 }
605
606 if (!error) {
607 for (i = 0; i < HPAGE_PMD_NR; i++) {
b93b0163 608 error = radix_tree_insert(&mapping->i_pages,
800d8c63
KS
609 index + i, page + i);
610 VM_BUG_ON(error);
611 }
612 count_vm_event(THP_FILE_ALLOC);
613 }
614 } else if (!expected) {
b93b0163 615 error = radix_tree_insert(&mapping->i_pages, index, page);
800d8c63 616 } else {
b065b432
HD
617 error = shmem_radix_tree_replace(mapping, index, expected,
618 page);
800d8c63
KS
619 }
620
46f65ec1 621 if (!error) {
800d8c63
KS
622 mapping->nrpages += nr;
623 if (PageTransHuge(page))
11fb9989
MG
624 __inc_node_page_state(page, NR_SHMEM_THPS);
625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b93b0163 627 xa_unlock_irq(&mapping->i_pages);
b065b432
HD
628 } else {
629 page->mapping = NULL;
b93b0163 630 xa_unlock_irq(&mapping->i_pages);
800d8c63 631 page_ref_sub(page, nr);
46f65ec1 632 }
46f65ec1
HD
633 return error;
634}
635
6922c0c7
HD
636/*
637 * Like delete_from_page_cache, but substitutes swap for page.
638 */
639static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640{
641 struct address_space *mapping = page->mapping;
642 int error;
643
800d8c63
KS
644 VM_BUG_ON_PAGE(PageCompound(page), page);
645
b93b0163 646 xa_lock_irq(&mapping->i_pages);
6922c0c7
HD
647 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
648 page->mapping = NULL;
649 mapping->nrpages--;
11fb9989
MG
650 __dec_node_page_state(page, NR_FILE_PAGES);
651 __dec_node_page_state(page, NR_SHMEM);
b93b0163 652 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 653 put_page(page);
6922c0c7
HD
654 BUG_ON(error);
655}
656
7a5d0fbb
HD
657/*
658 * Remove swap entry from radix tree, free the swap and its page cache.
659 */
660static int shmem_free_swap(struct address_space *mapping,
661 pgoff_t index, void *radswap)
662{
6dbaf22c 663 void *old;
7a5d0fbb 664
b93b0163
MW
665 xa_lock_irq(&mapping->i_pages);
666 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
667 xa_unlock_irq(&mapping->i_pages);
6dbaf22c
JW
668 if (old != radswap)
669 return -ENOENT;
670 free_swap_and_cache(radix_to_swp_entry(radswap));
671 return 0;
7a5d0fbb
HD
672}
673
6a15a370
VB
674/*
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 676 * given offsets are swapped out.
6a15a370 677 *
b93b0163 678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
679 * as long as the inode doesn't go away and racy results are not a problem.
680 */
48131e03
VB
681unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 pgoff_t start, pgoff_t end)
6a15a370 683{
6a15a370
VB
684 struct radix_tree_iter iter;
685 void **slot;
686 struct page *page;
48131e03 687 unsigned long swapped = 0;
6a15a370
VB
688
689 rcu_read_lock();
690
b93b0163 691 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
6a15a370
VB
692 if (iter.index >= end)
693 break;
694
695 page = radix_tree_deref_slot(slot);
696
2cf938aa
MW
697 if (radix_tree_deref_retry(page)) {
698 slot = radix_tree_iter_retry(&iter);
699 continue;
700 }
6a15a370
VB
701
702 if (radix_tree_exceptional_entry(page))
703 swapped++;
704
705 if (need_resched()) {
148deab2 706 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 707 cond_resched_rcu();
6a15a370
VB
708 }
709 }
710
711 rcu_read_unlock();
712
713 return swapped << PAGE_SHIFT;
714}
715
48131e03
VB
716/*
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
719 *
b93b0163 720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
721 * as long as the inode doesn't go away and racy results are not a problem.
722 */
723unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724{
725 struct inode *inode = file_inode(vma->vm_file);
726 struct shmem_inode_info *info = SHMEM_I(inode);
727 struct address_space *mapping = inode->i_mapping;
728 unsigned long swapped;
729
730 /* Be careful as we don't hold info->lock */
731 swapped = READ_ONCE(info->swapped);
732
733 /*
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
736 * already track.
737 */
738 if (!swapped)
739 return 0;
740
741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 return swapped << PAGE_SHIFT;
743
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping,
746 linear_page_index(vma, vma->vm_start),
747 linear_page_index(vma, vma->vm_end));
748}
749
24513264
HD
750/*
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752 */
753void shmem_unlock_mapping(struct address_space *mapping)
754{
755 struct pagevec pvec;
756 pgoff_t indices[PAGEVEC_SIZE];
757 pgoff_t index = 0;
758
86679820 759 pagevec_init(&pvec);
24513264
HD
760 /*
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 */
763 while (!mapping_unevictable(mapping)) {
764 /*
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 */
0cd6144a
JW
768 pvec.nr = find_get_entries(mapping, index,
769 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
770 if (!pvec.nr)
771 break;
772 index = indices[pvec.nr - 1] + 1;
0cd6144a 773 pagevec_remove_exceptionals(&pvec);
24513264
HD
774 check_move_unevictable_pages(pvec.pages, pvec.nr);
775 pagevec_release(&pvec);
776 cond_resched();
777 }
7a5d0fbb
HD
778}
779
780/*
781 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 783 */
1635f6a7
HD
784static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 bool unfalloc)
1da177e4 786{
285b2c4f 787 struct address_space *mapping = inode->i_mapping;
1da177e4 788 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 793 struct pagevec pvec;
7a5d0fbb
HD
794 pgoff_t indices[PAGEVEC_SIZE];
795 long nr_swaps_freed = 0;
285b2c4f 796 pgoff_t index;
bda97eab
HD
797 int i;
798
83e4fa9c
HD
799 if (lend == -1)
800 end = -1; /* unsigned, so actually very big */
bda97eab 801
86679820 802 pagevec_init(&pvec);
bda97eab 803 index = start;
83e4fa9c 804 while (index < end) {
0cd6144a
JW
805 pvec.nr = find_get_entries(mapping, index,
806 min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 pvec.pages, indices);
7a5d0fbb
HD
808 if (!pvec.nr)
809 break;
bda97eab
HD
810 for (i = 0; i < pagevec_count(&pvec); i++) {
811 struct page *page = pvec.pages[i];
812
7a5d0fbb 813 index = indices[i];
83e4fa9c 814 if (index >= end)
bda97eab
HD
815 break;
816
7a5d0fbb 817 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
818 if (unfalloc)
819 continue;
7a5d0fbb
HD
820 nr_swaps_freed += !shmem_free_swap(mapping,
821 index, page);
bda97eab 822 continue;
7a5d0fbb
HD
823 }
824
800d8c63
KS
825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826
7a5d0fbb 827 if (!trylock_page(page))
bda97eab 828 continue;
800d8c63
KS
829
830 if (PageTransTail(page)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page);
833 unlock_page(page);
834 continue;
835 } else if (PageTransHuge(page)) {
836 if (index == round_down(end, HPAGE_PMD_NR)) {
837 /*
838 * Range ends in the middle of THP:
839 * zero out the page
840 */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 }
845 index += HPAGE_PMD_NR - 1;
846 i += HPAGE_PMD_NR - 1;
847 }
848
1635f6a7 849 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
850 VM_BUG_ON_PAGE(PageTail(page), page);
851 if (page_mapping(page) == mapping) {
309381fe 852 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
853 truncate_inode_page(mapping, page);
854 }
bda97eab 855 }
bda97eab
HD
856 unlock_page(page);
857 }
0cd6144a 858 pagevec_remove_exceptionals(&pvec);
24513264 859 pagevec_release(&pvec);
bda97eab
HD
860 cond_resched();
861 index++;
862 }
1da177e4 863
83e4fa9c 864 if (partial_start) {
bda97eab 865 struct page *page = NULL;
9e18eb29 866 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 867 if (page) {
09cbfeaf 868 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
869 if (start > end) {
870 top = partial_end;
871 partial_end = 0;
872 }
873 zero_user_segment(page, partial_start, top);
874 set_page_dirty(page);
875 unlock_page(page);
09cbfeaf 876 put_page(page);
83e4fa9c
HD
877 }
878 }
879 if (partial_end) {
880 struct page *page = NULL;
9e18eb29 881 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
882 if (page) {
883 zero_user_segment(page, 0, partial_end);
bda97eab
HD
884 set_page_dirty(page);
885 unlock_page(page);
09cbfeaf 886 put_page(page);
bda97eab
HD
887 }
888 }
83e4fa9c
HD
889 if (start >= end)
890 return;
bda97eab
HD
891
892 index = start;
b1a36650 893 while (index < end) {
bda97eab 894 cond_resched();
0cd6144a
JW
895
896 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 897 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 898 pvec.pages, indices);
7a5d0fbb 899 if (!pvec.nr) {
b1a36650
HD
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index == start || end != -1)
bda97eab 902 break;
b1a36650 903 /* But if truncating, restart to make sure all gone */
bda97eab
HD
904 index = start;
905 continue;
906 }
bda97eab
HD
907 for (i = 0; i < pagevec_count(&pvec); i++) {
908 struct page *page = pvec.pages[i];
909
7a5d0fbb 910 index = indices[i];
83e4fa9c 911 if (index >= end)
bda97eab
HD
912 break;
913
7a5d0fbb 914 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
915 if (unfalloc)
916 continue;
b1a36650
HD
917 if (shmem_free_swap(mapping, index, page)) {
918 /* Swap was replaced by page: retry */
919 index--;
920 break;
921 }
922 nr_swaps_freed++;
7a5d0fbb
HD
923 continue;
924 }
925
bda97eab 926 lock_page(page);
800d8c63
KS
927
928 if (PageTransTail(page)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page);
931 unlock_page(page);
932 /*
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
936 */
937 if (index != round_down(end, HPAGE_PMD_NR))
938 start++;
939 continue;
940 } else if (PageTransHuge(page)) {
941 if (index == round_down(end, HPAGE_PMD_NR)) {
942 /*
943 * Range ends in the middle of THP:
944 * zero out the page
945 */
946 clear_highpage(page);
947 unlock_page(page);
948 continue;
949 }
950 index += HPAGE_PMD_NR - 1;
951 i += HPAGE_PMD_NR - 1;
952 }
953
1635f6a7 954 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
955 VM_BUG_ON_PAGE(PageTail(page), page);
956 if (page_mapping(page) == mapping) {
309381fe 957 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 958 truncate_inode_page(mapping, page);
b1a36650
HD
959 } else {
960 /* Page was replaced by swap: retry */
961 unlock_page(page);
962 index--;
963 break;
1635f6a7 964 }
7a5d0fbb 965 }
bda97eab
HD
966 unlock_page(page);
967 }
0cd6144a 968 pagevec_remove_exceptionals(&pvec);
24513264 969 pagevec_release(&pvec);
bda97eab
HD
970 index++;
971 }
94c1e62d 972
4595ef88 973 spin_lock_irq(&info->lock);
7a5d0fbb 974 info->swapped -= nr_swaps_freed;
1da177e4 975 shmem_recalc_inode(inode);
4595ef88 976 spin_unlock_irq(&info->lock);
1635f6a7 977}
1da177e4 978
1635f6a7
HD
979void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980{
981 shmem_undo_range(inode, lstart, lend, false);
078cd827 982 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 983}
94c1e62d 984EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 985
a528d35e
DH
986static int shmem_getattr(const struct path *path, struct kstat *stat,
987 u32 request_mask, unsigned int query_flags)
44a30220 988{
a528d35e 989 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
990 struct shmem_inode_info *info = SHMEM_I(inode);
991
d0424c42 992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 993 spin_lock_irq(&info->lock);
d0424c42 994 shmem_recalc_inode(inode);
4595ef88 995 spin_unlock_irq(&info->lock);
d0424c42 996 }
44a30220 997 generic_fillattr(inode, stat);
44a30220
YZ
998 return 0;
999}
1000
94c1e62d 1001static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1002{
75c3cfa8 1003 struct inode *inode = d_inode(dentry);
40e041a2 1004 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1005 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1006 int error;
1007
31051c85 1008 error = setattr_prepare(dentry, attr);
db78b877
CH
1009 if (error)
1010 return error;
1011
94c1e62d
HD
1012 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013 loff_t oldsize = inode->i_size;
1014 loff_t newsize = attr->ia_size;
3889e6e7 1015
40e041a2
DH
1016 /* protected by i_mutex */
1017 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019 return -EPERM;
1020
94c1e62d 1021 if (newsize != oldsize) {
77142517
KK
1022 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023 oldsize, newsize);
1024 if (error)
1025 return error;
94c1e62d 1026 i_size_write(inode, newsize);
078cd827 1027 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1028 }
afa2db2f 1029 if (newsize <= oldsize) {
94c1e62d 1030 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1031 if (oldsize > holebegin)
1032 unmap_mapping_range(inode->i_mapping,
1033 holebegin, 0, 1);
1034 if (info->alloced)
1035 shmem_truncate_range(inode,
1036 newsize, (loff_t)-1);
94c1e62d 1037 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1038 if (oldsize > holebegin)
1039 unmap_mapping_range(inode->i_mapping,
1040 holebegin, 0, 1);
779750d2
KS
1041
1042 /*
1043 * Part of the huge page can be beyond i_size: subject
1044 * to shrink under memory pressure.
1045 */
1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1048 /*
1049 * _careful to defend against unlocked access to
1050 * ->shrink_list in shmem_unused_huge_shrink()
1051 */
1052 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1053 list_add_tail(&info->shrinklist,
1054 &sbinfo->shrinklist);
1055 sbinfo->shrinklist_len++;
1056 }
1057 spin_unlock(&sbinfo->shrinklist_lock);
1058 }
94c1e62d 1059 }
1da177e4
LT
1060 }
1061
db78b877 1062 setattr_copy(inode, attr);
db78b877 1063 if (attr->ia_valid & ATTR_MODE)
feda821e 1064 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1065 return error;
1066}
1067
1f895f75 1068static void shmem_evict_inode(struct inode *inode)
1da177e4 1069{
1da177e4 1070 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1072
3889e6e7 1073 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1074 shmem_unacct_size(info->flags, inode->i_size);
1075 inode->i_size = 0;
3889e6e7 1076 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1077 if (!list_empty(&info->shrinklist)) {
1078 spin_lock(&sbinfo->shrinklist_lock);
1079 if (!list_empty(&info->shrinklist)) {
1080 list_del_init(&info->shrinklist);
1081 sbinfo->shrinklist_len--;
1082 }
1083 spin_unlock(&sbinfo->shrinklist_lock);
1084 }
1da177e4 1085 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1086 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1087 list_del_init(&info->swaplist);
cb5f7b9a 1088 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1089 }
3ed47db3 1090 }
b09e0fa4 1091
38f38657 1092 simple_xattrs_free(&info->xattrs);
0f3c42f5 1093 WARN_ON(inode->i_blocks);
5b04c689 1094 shmem_free_inode(inode->i_sb);
dbd5768f 1095 clear_inode(inode);
1da177e4
LT
1096}
1097
478922e2
MW
1098static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099{
1100 struct radix_tree_iter iter;
1101 void **slot;
1102 unsigned long found = -1;
1103 unsigned int checked = 0;
1104
1105 rcu_read_lock();
1106 radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 if (*slot == item) {
1108 found = iter.index;
1109 break;
1110 }
1111 checked++;
1112 if ((checked % 4096) != 0)
1113 continue;
1114 slot = radix_tree_iter_resume(slot, &iter);
1115 cond_resched_rcu();
1116 }
1117
1118 rcu_read_unlock();
1119 return found;
1120}
1121
46f65ec1
HD
1122/*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1124 */
41ffe5d5 1125static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1126 swp_entry_t swap, struct page **pagep)
1da177e4 1127{
285b2c4f 1128 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1129 void *radswap;
41ffe5d5 1130 pgoff_t index;
bde05d1c
HD
1131 gfp_t gfp;
1132 int error = 0;
1da177e4 1133
46f65ec1 1134 radswap = swp_to_radix_entry(swap);
b93b0163 1135 index = find_swap_entry(&mapping->i_pages, radswap);
46f65ec1 1136 if (index == -1)
00501b53 1137 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1138
1b1b32f2
HD
1139 /*
1140 * Move _head_ to start search for next from here.
1f895f75 1141 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1142 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1143 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1144 */
1145 if (shmem_swaplist.next != &info->swaplist)
1146 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1147
bde05d1c
HD
1148 gfp = mapping_gfp_mask(mapping);
1149 if (shmem_should_replace_page(*pagep, gfp)) {
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 error = shmem_replace_page(pagep, gfp, info, index);
1152 mutex_lock(&shmem_swaplist_mutex);
1153 /*
1154 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1155 * allocation, but the inode might have been freed while we
1156 * dropped it: although a racing shmem_evict_inode() cannot
1157 * complete without emptying the radix_tree, our page lock
1158 * on this swapcache page is not enough to prevent that -
1159 * free_swap_and_cache() of our swap entry will only
1160 * trylock_page(), removing swap from radix_tree whatever.
1161 *
1162 * We must not proceed to shmem_add_to_page_cache() if the
1163 * inode has been freed, but of course we cannot rely on
1164 * inode or mapping or info to check that. However, we can
1165 * safely check if our swap entry is still in use (and here
1166 * it can't have got reused for another page): if it's still
1167 * in use, then the inode cannot have been freed yet, and we
1168 * can safely proceed (if it's no longer in use, that tells
1169 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1170 */
1171 if (!page_swapcount(*pagep))
1172 error = -ENOENT;
1173 }
1174
d13d1443 1175 /*
778dd893
HD
1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1179 */
bde05d1c
HD
1180 if (!error)
1181 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1182 radswap);
48f170fb 1183 if (error != -ENOMEM) {
46f65ec1
HD
1184 /*
1185 * Truncation and eviction use free_swap_and_cache(), which
1186 * only does trylock page: if we raced, best clean up here.
1187 */
bde05d1c
HD
1188 delete_from_swap_cache(*pagep);
1189 set_page_dirty(*pagep);
46f65ec1 1190 if (!error) {
4595ef88 1191 spin_lock_irq(&info->lock);
46f65ec1 1192 info->swapped--;
4595ef88 1193 spin_unlock_irq(&info->lock);
46f65ec1
HD
1194 swap_free(swap);
1195 }
1da177e4 1196 }
2e0e26c7 1197 return error;
1da177e4
LT
1198}
1199
1200/*
46f65ec1 1201 * Search through swapped inodes to find and replace swap by page.
1da177e4 1202 */
41ffe5d5 1203int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1204{
41ffe5d5 1205 struct list_head *this, *next;
1da177e4 1206 struct shmem_inode_info *info;
00501b53 1207 struct mem_cgroup *memcg;
bde05d1c
HD
1208 int error = 0;
1209
1210 /*
1211 * There's a faint possibility that swap page was replaced before
0142ef6c 1212 * caller locked it: caller will come back later with the right page.
bde05d1c 1213 */
0142ef6c 1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1215 goto out;
778dd893
HD
1216
1217 /*
1218 * Charge page using GFP_KERNEL while we can wait, before taking
1219 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 * Charged back to the user (not to caller) when swap account is used.
778dd893 1221 */
f627c2f5
KS
1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 false);
778dd893
HD
1224 if (error)
1225 goto out;
46f65ec1 1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1227 error = -EAGAIN;
1da177e4 1228
cb5f7b9a 1229 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1230 list_for_each_safe(this, next, &shmem_swaplist) {
1231 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1232 if (info->swapped)
00501b53 1233 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1234 else
1235 list_del_init(&info->swaplist);
cb5f7b9a 1236 cond_resched();
00501b53 1237 if (error != -EAGAIN)
778dd893 1238 break;
00501b53 1239 /* found nothing in this: move on to search the next */
1da177e4 1240 }
cb5f7b9a 1241 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1242
00501b53
JW
1243 if (error) {
1244 if (error != -ENOMEM)
1245 error = 0;
f627c2f5 1246 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1247 } else
f627c2f5 1248 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1249out:
aaa46865 1250 unlock_page(page);
09cbfeaf 1251 put_page(page);
778dd893 1252 return error;
1da177e4
LT
1253}
1254
1255/*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259{
1260 struct shmem_inode_info *info;
1da177e4 1261 struct address_space *mapping;
1da177e4 1262 struct inode *inode;
6922c0c7
HD
1263 swp_entry_t swap;
1264 pgoff_t index;
1da177e4 1265
800d8c63 1266 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1267 BUG_ON(!PageLocked(page));
1da177e4
LT
1268 mapping = page->mapping;
1269 index = page->index;
1270 inode = mapping->host;
1271 info = SHMEM_I(inode);
1272 if (info->flags & VM_LOCKED)
1273 goto redirty;
d9fe526a 1274 if (!total_swap_pages)
1da177e4
LT
1275 goto redirty;
1276
d9fe526a 1277 /*
97b713ba
CH
1278 * Our capabilities prevent regular writeback or sync from ever calling
1279 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 * its underlying filesystem, in which case tmpfs should write out to
1281 * swap only in response to memory pressure, and not for the writeback
1282 * threads or sync.
d9fe526a 1283 */
48f170fb
HD
1284 if (!wbc->for_reclaim) {
1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1286 goto redirty;
1287 }
1635f6a7
HD
1288
1289 /*
1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 * value into swapfile.c, the only way we can correctly account for a
1292 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1293 *
1294 * That's okay for a page already fallocated earlier, but if we have
1295 * not yet completed the fallocation, then (a) we want to keep track
1296 * of this page in case we have to undo it, and (b) it may not be a
1297 * good idea to continue anyway, once we're pushing into swap. So
1298 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1299 */
1300 if (!PageUptodate(page)) {
1aac1400
HD
1301 if (inode->i_private) {
1302 struct shmem_falloc *shmem_falloc;
1303 spin_lock(&inode->i_lock);
1304 shmem_falloc = inode->i_private;
1305 if (shmem_falloc &&
8e205f77 1306 !shmem_falloc->waitq &&
1aac1400
HD
1307 index >= shmem_falloc->start &&
1308 index < shmem_falloc->next)
1309 shmem_falloc->nr_unswapped++;
1310 else
1311 shmem_falloc = NULL;
1312 spin_unlock(&inode->i_lock);
1313 if (shmem_falloc)
1314 goto redirty;
1315 }
1635f6a7
HD
1316 clear_highpage(page);
1317 flush_dcache_page(page);
1318 SetPageUptodate(page);
1319 }
1320
38d8b4e6 1321 swap = get_swap_page(page);
48f170fb
HD
1322 if (!swap.val)
1323 goto redirty;
d9fe526a 1324
37e84351
VD
1325 if (mem_cgroup_try_charge_swap(page, swap))
1326 goto free_swap;
1327
b1dea800
HD
1328 /*
1329 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1330 * if it's not already there. Do it now before the page is
1331 * moved to swap cache, when its pagelock no longer protects
b1dea800 1332 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1333 * we've incremented swapped, because shmem_unuse_inode() will
1334 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1335 */
48f170fb
HD
1336 mutex_lock(&shmem_swaplist_mutex);
1337 if (list_empty(&info->swaplist))
1338 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1339
48f170fb 1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1341 spin_lock_irq(&info->lock);
6922c0c7 1342 shmem_recalc_inode(inode);
267a4c76 1343 info->swapped++;
4595ef88 1344 spin_unlock_irq(&info->lock);
6922c0c7 1345
267a4c76
HD
1346 swap_shmem_alloc(swap);
1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
6922c0c7 1349 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1350 BUG_ON(page_mapped(page));
9fab5619 1351 swap_writepage(page, wbc);
1da177e4
LT
1352 return 0;
1353 }
1354
6922c0c7 1355 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1356free_swap:
75f6d6d2 1357 put_swap_page(page, swap);
1da177e4
LT
1358redirty:
1359 set_page_dirty(page);
d9fe526a
HD
1360 if (wbc->for_reclaim)
1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1362 unlock_page(page);
1363 return 0;
1da177e4
LT
1364}
1365
75edd345 1366#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1367static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1368{
095f1fc4 1369 char buffer[64];
680d794b 1370
71fe804b 1371 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1372 return; /* show nothing */
680d794b 1373
a7a88b23 1374 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1375
1376 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1377}
71fe804b
LS
1378
1379static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380{
1381 struct mempolicy *mpol = NULL;
1382 if (sbinfo->mpol) {
1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1384 mpol = sbinfo->mpol;
1385 mpol_get(mpol);
1386 spin_unlock(&sbinfo->stat_lock);
1387 }
1388 return mpol;
1389}
75edd345
HD
1390#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392{
1393}
1394static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395{
1396 return NULL;
1397}
1398#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399#ifndef CONFIG_NUMA
1400#define vm_policy vm_private_data
1401#endif
680d794b 1402
800d8c63
KS
1403static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 struct shmem_inode_info *info, pgoff_t index)
1405{
1406 /* Create a pseudo vma that just contains the policy */
1407 vma->vm_start = 0;
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 vma->vm_ops = NULL;
1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412}
1413
1414static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415{
1416 /* Drop reference taken by mpol_shared_policy_lookup() */
1417 mpol_cond_put(vma->vm_policy);
1418}
1419
41ffe5d5
HD
1420static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1422{
1da177e4 1423 struct vm_area_struct pvma;
18a2f371 1424 struct page *page;
e9e9b7ec 1425 struct vm_fault vmf;
52cd3b07 1426
800d8c63 1427 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1428 vmf.vma = &pvma;
1429 vmf.address = 0;
1430 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1431 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1432
800d8c63
KS
1433 return page;
1434}
1435
1436static struct page *shmem_alloc_hugepage(gfp_t gfp,
1437 struct shmem_inode_info *info, pgoff_t index)
1438{
1439 struct vm_area_struct pvma;
1440 struct inode *inode = &info->vfs_inode;
1441 struct address_space *mapping = inode->i_mapping;
4620a06e 1442 pgoff_t idx, hindex;
800d8c63
KS
1443 void __rcu **results;
1444 struct page *page;
1445
e496cf3d 1446 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1447 return NULL;
1448
4620a06e 1449 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63 1450 rcu_read_lock();
b93b0163 1451 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
800d8c63
KS
1452 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1453 rcu_read_unlock();
1454 return NULL;
1455 }
1456 rcu_read_unlock();
18a2f371 1457
800d8c63
KS
1458 shmem_pseudo_vma_init(&pvma, info, hindex);
1459 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1460 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1461 shmem_pseudo_vma_destroy(&pvma);
1462 if (page)
1463 prep_transhuge_page(page);
18a2f371 1464 return page;
1da177e4
LT
1465}
1466
02098fea 1467static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1468 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1469{
1470 struct vm_area_struct pvma;
18a2f371 1471 struct page *page;
1da177e4 1472
800d8c63
KS
1473 shmem_pseudo_vma_init(&pvma, info, index);
1474 page = alloc_page_vma(gfp, &pvma, 0);
1475 shmem_pseudo_vma_destroy(&pvma);
1476
1477 return page;
1478}
1479
1480static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1481 struct inode *inode,
800d8c63
KS
1482 pgoff_t index, bool huge)
1483{
0f079694 1484 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1485 struct page *page;
1486 int nr;
1487 int err = -ENOSPC;
52cd3b07 1488
e496cf3d 1489 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1490 huge = false;
1491 nr = huge ? HPAGE_PMD_NR : 1;
1492
0f079694 1493 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1494 goto failed;
800d8c63
KS
1495
1496 if (huge)
1497 page = shmem_alloc_hugepage(gfp, info, index);
1498 else
1499 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1500 if (page) {
1501 __SetPageLocked(page);
1502 __SetPageSwapBacked(page);
800d8c63 1503 return page;
75edd345 1504 }
18a2f371 1505
800d8c63 1506 err = -ENOMEM;
0f079694 1507 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1508failed:
1509 return ERR_PTR(err);
1da177e4 1510}
71fe804b 1511
bde05d1c
HD
1512/*
1513 * When a page is moved from swapcache to shmem filecache (either by the
1514 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1515 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1516 * ignorance of the mapping it belongs to. If that mapping has special
1517 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1518 * we may need to copy to a suitable page before moving to filecache.
1519 *
1520 * In a future release, this may well be extended to respect cpuset and
1521 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1522 * but for now it is a simple matter of zone.
1523 */
1524static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1525{
1526 return page_zonenum(page) > gfp_zone(gfp);
1527}
1528
1529static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1530 struct shmem_inode_info *info, pgoff_t index)
1531{
1532 struct page *oldpage, *newpage;
1533 struct address_space *swap_mapping;
1534 pgoff_t swap_index;
1535 int error;
1536
1537 oldpage = *pagep;
1538 swap_index = page_private(oldpage);
1539 swap_mapping = page_mapping(oldpage);
1540
1541 /*
1542 * We have arrived here because our zones are constrained, so don't
1543 * limit chance of success by further cpuset and node constraints.
1544 */
1545 gfp &= ~GFP_CONSTRAINT_MASK;
1546 newpage = shmem_alloc_page(gfp, info, index);
1547 if (!newpage)
1548 return -ENOMEM;
bde05d1c 1549
09cbfeaf 1550 get_page(newpage);
bde05d1c 1551 copy_highpage(newpage, oldpage);
0142ef6c 1552 flush_dcache_page(newpage);
bde05d1c 1553
9956edf3
HD
1554 __SetPageLocked(newpage);
1555 __SetPageSwapBacked(newpage);
bde05d1c 1556 SetPageUptodate(newpage);
bde05d1c 1557 set_page_private(newpage, swap_index);
bde05d1c
HD
1558 SetPageSwapCache(newpage);
1559
1560 /*
1561 * Our caller will very soon move newpage out of swapcache, but it's
1562 * a nice clean interface for us to replace oldpage by newpage there.
1563 */
b93b0163 1564 xa_lock_irq(&swap_mapping->i_pages);
bde05d1c
HD
1565 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1566 newpage);
0142ef6c 1567 if (!error) {
11fb9989
MG
1568 __inc_node_page_state(newpage, NR_FILE_PAGES);
1569 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1570 }
b93b0163 1571 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1572
0142ef6c
HD
1573 if (unlikely(error)) {
1574 /*
1575 * Is this possible? I think not, now that our callers check
1576 * both PageSwapCache and page_private after getting page lock;
1577 * but be defensive. Reverse old to newpage for clear and free.
1578 */
1579 oldpage = newpage;
1580 } else {
6a93ca8f 1581 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1582 lru_cache_add_anon(newpage);
1583 *pagep = newpage;
1584 }
bde05d1c
HD
1585
1586 ClearPageSwapCache(oldpage);
1587 set_page_private(oldpage, 0);
1588
1589 unlock_page(oldpage);
09cbfeaf
KS
1590 put_page(oldpage);
1591 put_page(oldpage);
0142ef6c 1592 return error;
bde05d1c
HD
1593}
1594
1da177e4 1595/*
68da9f05 1596 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1597 *
1598 * If we allocate a new one we do not mark it dirty. That's up to the
1599 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1600 * entry since a page cannot live in both the swap and page cache.
1601 *
1602 * fault_mm and fault_type are only supplied by shmem_fault:
1603 * otherwise they are NULL.
1da177e4 1604 */
41ffe5d5 1605static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1606 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1607 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1608{
1609 struct address_space *mapping = inode->i_mapping;
23f919d4 1610 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1611 struct shmem_sb_info *sbinfo;
9e18eb29 1612 struct mm_struct *charge_mm;
00501b53 1613 struct mem_cgroup *memcg;
27ab7006 1614 struct page *page;
1da177e4 1615 swp_entry_t swap;
657e3038 1616 enum sgp_type sgp_huge = sgp;
800d8c63 1617 pgoff_t hindex = index;
1da177e4 1618 int error;
54af6042 1619 int once = 0;
1635f6a7 1620 int alloced = 0;
1da177e4 1621
09cbfeaf 1622 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1623 return -EFBIG;
657e3038
KS
1624 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1625 sgp = SGP_CACHE;
1da177e4 1626repeat:
54af6042 1627 swap.val = 0;
0cd6144a 1628 page = find_lock_entry(mapping, index);
54af6042
HD
1629 if (radix_tree_exceptional_entry(page)) {
1630 swap = radix_to_swp_entry(page);
1631 page = NULL;
1632 }
1633
75edd345 1634 if (sgp <= SGP_CACHE &&
09cbfeaf 1635 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1636 error = -EINVAL;
267a4c76 1637 goto unlock;
54af6042
HD
1638 }
1639
66d2f4d2
HD
1640 if (page && sgp == SGP_WRITE)
1641 mark_page_accessed(page);
1642
1635f6a7
HD
1643 /* fallocated page? */
1644 if (page && !PageUptodate(page)) {
1645 if (sgp != SGP_READ)
1646 goto clear;
1647 unlock_page(page);
09cbfeaf 1648 put_page(page);
1635f6a7
HD
1649 page = NULL;
1650 }
54af6042 1651 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1652 *pagep = page;
1653 return 0;
27ab7006
HD
1654 }
1655
1656 /*
54af6042
HD
1657 * Fast cache lookup did not find it:
1658 * bring it back from swap or allocate.
27ab7006 1659 */
54af6042 1660 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1661 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1662
1da177e4
LT
1663 if (swap.val) {
1664 /* Look it up and read it in.. */
ec560175 1665 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1666 if (!page) {
9e18eb29
ALC
1667 /* Or update major stats only when swapin succeeds?? */
1668 if (fault_type) {
68da9f05 1669 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1670 count_vm_event(PGMAJFAULT);
2262185c 1671 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1672 }
1673 /* Here we actually start the io */
41ffe5d5 1674 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1675 if (!page) {
54af6042
HD
1676 error = -ENOMEM;
1677 goto failed;
1da177e4 1678 }
1da177e4
LT
1679 }
1680
1681 /* We have to do this with page locked to prevent races */
54af6042 1682 lock_page(page);
0142ef6c 1683 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1684 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1685 error = -EEXIST; /* try again */
d1899228 1686 goto unlock;
bde05d1c 1687 }
27ab7006 1688 if (!PageUptodate(page)) {
1da177e4 1689 error = -EIO;
54af6042 1690 goto failed;
1da177e4 1691 }
54af6042
HD
1692 wait_on_page_writeback(page);
1693
bde05d1c
HD
1694 if (shmem_should_replace_page(page, gfp)) {
1695 error = shmem_replace_page(&page, gfp, info, index);
1696 if (error)
1697 goto failed;
1da177e4 1698 }
27ab7006 1699
9e18eb29 1700 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1701 false);
d1899228 1702 if (!error) {
aa3b1895 1703 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1704 swp_to_radix_entry(swap));
215c02bc
HD
1705 /*
1706 * We already confirmed swap under page lock, and make
1707 * no memory allocation here, so usually no possibility
1708 * of error; but free_swap_and_cache() only trylocks a
1709 * page, so it is just possible that the entry has been
1710 * truncated or holepunched since swap was confirmed.
1711 * shmem_undo_range() will have done some of the
1712 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1713 * the rest.
215c02bc
HD
1714 * Reset swap.val? No, leave it so "failed" goes back to
1715 * "repeat": reading a hole and writing should succeed.
1716 */
00501b53 1717 if (error) {
f627c2f5 1718 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1719 delete_from_swap_cache(page);
00501b53 1720 }
d1899228 1721 }
54af6042
HD
1722 if (error)
1723 goto failed;
1724
f627c2f5 1725 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1726
4595ef88 1727 spin_lock_irq(&info->lock);
285b2c4f 1728 info->swapped--;
54af6042 1729 shmem_recalc_inode(inode);
4595ef88 1730 spin_unlock_irq(&info->lock);
54af6042 1731
66d2f4d2
HD
1732 if (sgp == SGP_WRITE)
1733 mark_page_accessed(page);
1734
54af6042 1735 delete_from_swap_cache(page);
27ab7006
HD
1736 set_page_dirty(page);
1737 swap_free(swap);
1738
54af6042 1739 } else {
cfda0526
MR
1740 if (vma && userfaultfd_missing(vma)) {
1741 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1742 return 0;
1743 }
1744
800d8c63
KS
1745 /* shmem_symlink() */
1746 if (mapping->a_ops != &shmem_aops)
1747 goto alloc_nohuge;
657e3038 1748 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1749 goto alloc_nohuge;
1750 if (shmem_huge == SHMEM_HUGE_FORCE)
1751 goto alloc_huge;
1752 switch (sbinfo->huge) {
1753 loff_t i_size;
1754 pgoff_t off;
1755 case SHMEM_HUGE_NEVER:
1756 goto alloc_nohuge;
1757 case SHMEM_HUGE_WITHIN_SIZE:
1758 off = round_up(index, HPAGE_PMD_NR);
1759 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1760 if (i_size >= HPAGE_PMD_SIZE &&
1761 i_size >> PAGE_SHIFT >= off)
1762 goto alloc_huge;
1763 /* fallthrough */
1764 case SHMEM_HUGE_ADVISE:
657e3038
KS
1765 if (sgp_huge == SGP_HUGE)
1766 goto alloc_huge;
1767 /* TODO: implement fadvise() hints */
800d8c63 1768 goto alloc_nohuge;
54af6042 1769 }
1da177e4 1770
800d8c63 1771alloc_huge:
0f079694 1772 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1773 if (IS_ERR(page)) {
0f079694 1774alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1775 index, false);
1da177e4 1776 }
800d8c63 1777 if (IS_ERR(page)) {
779750d2 1778 int retry = 5;
800d8c63
KS
1779 error = PTR_ERR(page);
1780 page = NULL;
779750d2
KS
1781 if (error != -ENOSPC)
1782 goto failed;
1783 /*
1784 * Try to reclaim some spece by splitting a huge page
1785 * beyond i_size on the filesystem.
1786 */
1787 while (retry--) {
1788 int ret;
1789 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1790 if (ret == SHRINK_STOP)
1791 break;
1792 if (ret)
1793 goto alloc_nohuge;
1794 }
800d8c63
KS
1795 goto failed;
1796 }
1797
1798 if (PageTransHuge(page))
1799 hindex = round_down(index, HPAGE_PMD_NR);
1800 else
1801 hindex = index;
1802
66d2f4d2 1803 if (sgp == SGP_WRITE)
eb39d618 1804 __SetPageReferenced(page);
66d2f4d2 1805
9e18eb29 1806 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1807 PageTransHuge(page));
54af6042 1808 if (error)
800d8c63
KS
1809 goto unacct;
1810 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1811 compound_order(page));
b065b432 1812 if (!error) {
800d8c63 1813 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1814 NULL);
b065b432
HD
1815 radix_tree_preload_end();
1816 }
1817 if (error) {
800d8c63
KS
1818 mem_cgroup_cancel_charge(page, memcg,
1819 PageTransHuge(page));
1820 goto unacct;
b065b432 1821 }
800d8c63
KS
1822 mem_cgroup_commit_charge(page, memcg, false,
1823 PageTransHuge(page));
54af6042
HD
1824 lru_cache_add_anon(page);
1825
4595ef88 1826 spin_lock_irq(&info->lock);
800d8c63
KS
1827 info->alloced += 1 << compound_order(page);
1828 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1829 shmem_recalc_inode(inode);
4595ef88 1830 spin_unlock_irq(&info->lock);
1635f6a7 1831 alloced = true;
54af6042 1832
779750d2
KS
1833 if (PageTransHuge(page) &&
1834 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1835 hindex + HPAGE_PMD_NR - 1) {
1836 /*
1837 * Part of the huge page is beyond i_size: subject
1838 * to shrink under memory pressure.
1839 */
1840 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1841 /*
1842 * _careful to defend against unlocked access to
1843 * ->shrink_list in shmem_unused_huge_shrink()
1844 */
1845 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1846 list_add_tail(&info->shrinklist,
1847 &sbinfo->shrinklist);
1848 sbinfo->shrinklist_len++;
1849 }
1850 spin_unlock(&sbinfo->shrinklist_lock);
1851 }
1852
ec9516fb 1853 /*
1635f6a7
HD
1854 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1855 */
1856 if (sgp == SGP_FALLOC)
1857 sgp = SGP_WRITE;
1858clear:
1859 /*
1860 * Let SGP_WRITE caller clear ends if write does not fill page;
1861 * but SGP_FALLOC on a page fallocated earlier must initialize
1862 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1863 */
800d8c63
KS
1864 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1865 struct page *head = compound_head(page);
1866 int i;
1867
1868 for (i = 0; i < (1 << compound_order(head)); i++) {
1869 clear_highpage(head + i);
1870 flush_dcache_page(head + i);
1871 }
1872 SetPageUptodate(head);
ec9516fb 1873 }
1da177e4 1874 }
bde05d1c 1875
54af6042 1876 /* Perhaps the file has been truncated since we checked */
75edd345 1877 if (sgp <= SGP_CACHE &&
09cbfeaf 1878 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1879 if (alloced) {
1880 ClearPageDirty(page);
1881 delete_from_page_cache(page);
4595ef88 1882 spin_lock_irq(&info->lock);
267a4c76 1883 shmem_recalc_inode(inode);
4595ef88 1884 spin_unlock_irq(&info->lock);
267a4c76 1885 }
54af6042 1886 error = -EINVAL;
267a4c76 1887 goto unlock;
e83c32e8 1888 }
800d8c63 1889 *pagep = page + index - hindex;
54af6042 1890 return 0;
1da177e4 1891
59a16ead 1892 /*
54af6042 1893 * Error recovery.
59a16ead 1894 */
54af6042 1895unacct:
0f079694 1896 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1897
1898 if (PageTransHuge(page)) {
1899 unlock_page(page);
1900 put_page(page);
1901 goto alloc_nohuge;
1902 }
54af6042 1903failed:
267a4c76 1904 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1905 error = -EEXIST;
1906unlock:
27ab7006 1907 if (page) {
54af6042 1908 unlock_page(page);
09cbfeaf 1909 put_page(page);
54af6042
HD
1910 }
1911 if (error == -ENOSPC && !once++) {
4595ef88 1912 spin_lock_irq(&info->lock);
54af6042 1913 shmem_recalc_inode(inode);
4595ef88 1914 spin_unlock_irq(&info->lock);
27ab7006 1915 goto repeat;
ff36b801 1916 }
d1899228 1917 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1918 goto repeat;
1919 return error;
1da177e4
LT
1920}
1921
10d20bd2
LT
1922/*
1923 * This is like autoremove_wake_function, but it removes the wait queue
1924 * entry unconditionally - even if something else had already woken the
1925 * target.
1926 */
ac6424b9 1927static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1928{
1929 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1930 list_del_init(&wait->entry);
10d20bd2
LT
1931 return ret;
1932}
1933
11bac800 1934static int shmem_fault(struct vm_fault *vmf)
1da177e4 1935{
11bac800 1936 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1937 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1938 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1939 enum sgp_type sgp;
1da177e4 1940 int error;
68da9f05 1941 int ret = VM_FAULT_LOCKED;
1da177e4 1942
f00cdc6d
HD
1943 /*
1944 * Trinity finds that probing a hole which tmpfs is punching can
1945 * prevent the hole-punch from ever completing: which in turn
1946 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1947 * faulting pages into the hole while it's being punched. Although
1948 * shmem_undo_range() does remove the additions, it may be unable to
1949 * keep up, as each new page needs its own unmap_mapping_range() call,
1950 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1951 *
1952 * It does not matter if we sometimes reach this check just before the
1953 * hole-punch begins, so that one fault then races with the punch:
1954 * we just need to make racing faults a rare case.
1955 *
1956 * The implementation below would be much simpler if we just used a
1957 * standard mutex or completion: but we cannot take i_mutex in fault,
1958 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1959 */
1960 if (unlikely(inode->i_private)) {
1961 struct shmem_falloc *shmem_falloc;
1962
1963 spin_lock(&inode->i_lock);
1964 shmem_falloc = inode->i_private;
8e205f77
HD
1965 if (shmem_falloc &&
1966 shmem_falloc->waitq &&
1967 vmf->pgoff >= shmem_falloc->start &&
1968 vmf->pgoff < shmem_falloc->next) {
1969 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1970 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1971
1972 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1973 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1974 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1975 /* It's polite to up mmap_sem if we can */
f00cdc6d 1976 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1977 ret = VM_FAULT_RETRY;
f00cdc6d 1978 }
8e205f77
HD
1979
1980 shmem_falloc_waitq = shmem_falloc->waitq;
1981 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1982 TASK_UNINTERRUPTIBLE);
1983 spin_unlock(&inode->i_lock);
1984 schedule();
1985
1986 /*
1987 * shmem_falloc_waitq points into the shmem_fallocate()
1988 * stack of the hole-punching task: shmem_falloc_waitq
1989 * is usually invalid by the time we reach here, but
1990 * finish_wait() does not dereference it in that case;
1991 * though i_lock needed lest racing with wake_up_all().
1992 */
1993 spin_lock(&inode->i_lock);
1994 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1995 spin_unlock(&inode->i_lock);
1996 return ret;
f00cdc6d 1997 }
8e205f77 1998 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1999 }
2000
657e3038 2001 sgp = SGP_CACHE;
18600332
MH
2002
2003 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2004 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2005 sgp = SGP_NOHUGE;
18600332
MH
2006 else if (vma->vm_flags & VM_HUGEPAGE)
2007 sgp = SGP_HUGE;
657e3038
KS
2008
2009 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2010 gfp, vma, vmf, &ret);
d0217ac0
NP
2011 if (error)
2012 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 2013 return ret;
1da177e4
LT
2014}
2015
c01d5b30
HD
2016unsigned long shmem_get_unmapped_area(struct file *file,
2017 unsigned long uaddr, unsigned long len,
2018 unsigned long pgoff, unsigned long flags)
2019{
2020 unsigned long (*get_area)(struct file *,
2021 unsigned long, unsigned long, unsigned long, unsigned long);
2022 unsigned long addr;
2023 unsigned long offset;
2024 unsigned long inflated_len;
2025 unsigned long inflated_addr;
2026 unsigned long inflated_offset;
2027
2028 if (len > TASK_SIZE)
2029 return -ENOMEM;
2030
2031 get_area = current->mm->get_unmapped_area;
2032 addr = get_area(file, uaddr, len, pgoff, flags);
2033
e496cf3d 2034 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2035 return addr;
2036 if (IS_ERR_VALUE(addr))
2037 return addr;
2038 if (addr & ~PAGE_MASK)
2039 return addr;
2040 if (addr > TASK_SIZE - len)
2041 return addr;
2042
2043 if (shmem_huge == SHMEM_HUGE_DENY)
2044 return addr;
2045 if (len < HPAGE_PMD_SIZE)
2046 return addr;
2047 if (flags & MAP_FIXED)
2048 return addr;
2049 /*
2050 * Our priority is to support MAP_SHARED mapped hugely;
2051 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2052 * But if caller specified an address hint, respect that as before.
2053 */
2054 if (uaddr)
2055 return addr;
2056
2057 if (shmem_huge != SHMEM_HUGE_FORCE) {
2058 struct super_block *sb;
2059
2060 if (file) {
2061 VM_BUG_ON(file->f_op != &shmem_file_operations);
2062 sb = file_inode(file)->i_sb;
2063 } else {
2064 /*
2065 * Called directly from mm/mmap.c, or drivers/char/mem.c
2066 * for "/dev/zero", to create a shared anonymous object.
2067 */
2068 if (IS_ERR(shm_mnt))
2069 return addr;
2070 sb = shm_mnt->mnt_sb;
2071 }
3089bf61 2072 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2073 return addr;
2074 }
2075
2076 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2077 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2078 return addr;
2079 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2080 return addr;
2081
2082 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2083 if (inflated_len > TASK_SIZE)
2084 return addr;
2085 if (inflated_len < len)
2086 return addr;
2087
2088 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2089 if (IS_ERR_VALUE(inflated_addr))
2090 return addr;
2091 if (inflated_addr & ~PAGE_MASK)
2092 return addr;
2093
2094 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2095 inflated_addr += offset - inflated_offset;
2096 if (inflated_offset > offset)
2097 inflated_addr += HPAGE_PMD_SIZE;
2098
2099 if (inflated_addr > TASK_SIZE - len)
2100 return addr;
2101 return inflated_addr;
2102}
2103
1da177e4 2104#ifdef CONFIG_NUMA
41ffe5d5 2105static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2106{
496ad9aa 2107 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2108 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2109}
2110
d8dc74f2
AB
2111static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2112 unsigned long addr)
1da177e4 2113{
496ad9aa 2114 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2115 pgoff_t index;
1da177e4 2116
41ffe5d5
HD
2117 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2118 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2119}
2120#endif
2121
2122int shmem_lock(struct file *file, int lock, struct user_struct *user)
2123{
496ad9aa 2124 struct inode *inode = file_inode(file);
1da177e4
LT
2125 struct shmem_inode_info *info = SHMEM_I(inode);
2126 int retval = -ENOMEM;
2127
4595ef88 2128 spin_lock_irq(&info->lock);
1da177e4
LT
2129 if (lock && !(info->flags & VM_LOCKED)) {
2130 if (!user_shm_lock(inode->i_size, user))
2131 goto out_nomem;
2132 info->flags |= VM_LOCKED;
89e004ea 2133 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2134 }
2135 if (!lock && (info->flags & VM_LOCKED) && user) {
2136 user_shm_unlock(inode->i_size, user);
2137 info->flags &= ~VM_LOCKED;
89e004ea 2138 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2139 }
2140 retval = 0;
89e004ea 2141
1da177e4 2142out_nomem:
4595ef88 2143 spin_unlock_irq(&info->lock);
1da177e4
LT
2144 return retval;
2145}
2146
9b83a6a8 2147static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2148{
2149 file_accessed(file);
2150 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2151 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2152 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2153 (vma->vm_end & HPAGE_PMD_MASK)) {
2154 khugepaged_enter(vma, vma->vm_flags);
2155 }
1da177e4
LT
2156 return 0;
2157}
2158
454abafe 2159static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2160 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2161{
2162 struct inode *inode;
2163 struct shmem_inode_info *info;
2164 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2165
5b04c689
PE
2166 if (shmem_reserve_inode(sb))
2167 return NULL;
1da177e4
LT
2168
2169 inode = new_inode(sb);
2170 if (inode) {
85fe4025 2171 inode->i_ino = get_next_ino();
454abafe 2172 inode_init_owner(inode, dir, mode);
1da177e4 2173 inode->i_blocks = 0;
078cd827 2174 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2175 inode->i_generation = get_seconds();
1da177e4
LT
2176 info = SHMEM_I(inode);
2177 memset(info, 0, (char *)inode - (char *)info);
2178 spin_lock_init(&info->lock);
40e041a2 2179 info->seals = F_SEAL_SEAL;
0b0a0806 2180 info->flags = flags & VM_NORESERVE;
779750d2 2181 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2182 INIT_LIST_HEAD(&info->swaplist);
38f38657 2183 simple_xattrs_init(&info->xattrs);
72c04902 2184 cache_no_acl(inode);
1da177e4
LT
2185
2186 switch (mode & S_IFMT) {
2187 default:
39f0247d 2188 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2189 init_special_inode(inode, mode, dev);
2190 break;
2191 case S_IFREG:
14fcc23f 2192 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2193 inode->i_op = &shmem_inode_operations;
2194 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2195 mpol_shared_policy_init(&info->policy,
2196 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2197 break;
2198 case S_IFDIR:
d8c76e6f 2199 inc_nlink(inode);
1da177e4
LT
2200 /* Some things misbehave if size == 0 on a directory */
2201 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2202 inode->i_op = &shmem_dir_inode_operations;
2203 inode->i_fop = &simple_dir_operations;
2204 break;
2205 case S_IFLNK:
2206 /*
2207 * Must not load anything in the rbtree,
2208 * mpol_free_shared_policy will not be called.
2209 */
71fe804b 2210 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2211 break;
2212 }
5b04c689
PE
2213 } else
2214 shmem_free_inode(sb);
1da177e4
LT
2215 return inode;
2216}
2217
0cd6144a
JW
2218bool shmem_mapping(struct address_space *mapping)
2219{
f8005451 2220 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2221}
2222
8d103963
MR
2223static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2224 pmd_t *dst_pmd,
2225 struct vm_area_struct *dst_vma,
2226 unsigned long dst_addr,
2227 unsigned long src_addr,
2228 bool zeropage,
2229 struct page **pagep)
4c27fe4c
MR
2230{
2231 struct inode *inode = file_inode(dst_vma->vm_file);
2232 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2233 struct address_space *mapping = inode->i_mapping;
2234 gfp_t gfp = mapping_gfp_mask(mapping);
2235 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2236 struct mem_cgroup *memcg;
2237 spinlock_t *ptl;
2238 void *page_kaddr;
2239 struct page *page;
2240 pte_t _dst_pte, *dst_pte;
2241 int ret;
2242
cb658a45 2243 ret = -ENOMEM;
0f079694 2244 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2245 goto out;
4c27fe4c 2246
cb658a45 2247 if (!*pagep) {
4c27fe4c
MR
2248 page = shmem_alloc_page(gfp, info, pgoff);
2249 if (!page)
0f079694 2250 goto out_unacct_blocks;
4c27fe4c 2251
8d103963
MR
2252 if (!zeropage) { /* mcopy_atomic */
2253 page_kaddr = kmap_atomic(page);
2254 ret = copy_from_user(page_kaddr,
2255 (const void __user *)src_addr,
2256 PAGE_SIZE);
2257 kunmap_atomic(page_kaddr);
2258
2259 /* fallback to copy_from_user outside mmap_sem */
2260 if (unlikely(ret)) {
2261 *pagep = page;
2262 shmem_inode_unacct_blocks(inode, 1);
2263 /* don't free the page */
2264 return -EFAULT;
2265 }
2266 } else { /* mfill_zeropage_atomic */
2267 clear_highpage(page);
4c27fe4c
MR
2268 }
2269 } else {
2270 page = *pagep;
2271 *pagep = NULL;
2272 }
2273
9cc90c66
AA
2274 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2275 __SetPageLocked(page);
2276 __SetPageSwapBacked(page);
a425d358 2277 __SetPageUptodate(page);
9cc90c66 2278
4c27fe4c
MR
2279 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2280 if (ret)
2281 goto out_release;
2282
2283 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2284 if (!ret) {
2285 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2286 radix_tree_preload_end();
2287 }
2288 if (ret)
2289 goto out_release_uncharge;
2290
2291 mem_cgroup_commit_charge(page, memcg, false, false);
2292
2293 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2294 if (dst_vma->vm_flags & VM_WRITE)
2295 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2296
2297 ret = -EEXIST;
2298 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2299 if (!pte_none(*dst_pte))
2300 goto out_release_uncharge_unlock;
2301
4c27fe4c
MR
2302 lru_cache_add_anon(page);
2303
2304 spin_lock(&info->lock);
2305 info->alloced++;
2306 inode->i_blocks += BLOCKS_PER_PAGE;
2307 shmem_recalc_inode(inode);
2308 spin_unlock(&info->lock);
2309
2310 inc_mm_counter(dst_mm, mm_counter_file(page));
2311 page_add_file_rmap(page, false);
2312 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2313
2314 /* No need to invalidate - it was non-present before */
2315 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2316 unlock_page(page);
2317 pte_unmap_unlock(dst_pte, ptl);
2318 ret = 0;
2319out:
2320 return ret;
2321out_release_uncharge_unlock:
2322 pte_unmap_unlock(dst_pte, ptl);
2323out_release_uncharge:
2324 mem_cgroup_cancel_charge(page, memcg, false);
2325out_release:
9cc90c66 2326 unlock_page(page);
4c27fe4c 2327 put_page(page);
4c27fe4c 2328out_unacct_blocks:
0f079694 2329 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2330 goto out;
2331}
2332
8d103963
MR
2333int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2334 pmd_t *dst_pmd,
2335 struct vm_area_struct *dst_vma,
2336 unsigned long dst_addr,
2337 unsigned long src_addr,
2338 struct page **pagep)
2339{
2340 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2341 dst_addr, src_addr, false, pagep);
2342}
2343
2344int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2345 pmd_t *dst_pmd,
2346 struct vm_area_struct *dst_vma,
2347 unsigned long dst_addr)
2348{
2349 struct page *page = NULL;
2350
2351 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2352 dst_addr, 0, true, &page);
2353}
2354
1da177e4 2355#ifdef CONFIG_TMPFS
92e1d5be 2356static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2357static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2358
6d9d88d0
JS
2359#ifdef CONFIG_TMPFS_XATTR
2360static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2361#else
2362#define shmem_initxattrs NULL
2363#endif
2364
1da177e4 2365static int
800d15a5
NP
2366shmem_write_begin(struct file *file, struct address_space *mapping,
2367 loff_t pos, unsigned len, unsigned flags,
2368 struct page **pagep, void **fsdata)
1da177e4 2369{
800d15a5 2370 struct inode *inode = mapping->host;
40e041a2 2371 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2372 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2373
2374 /* i_mutex is held by caller */
3f472cc9 2375 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2376 if (info->seals & F_SEAL_WRITE)
2377 return -EPERM;
2378 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2379 return -EPERM;
2380 }
2381
9e18eb29 2382 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2383}
2384
2385static int
2386shmem_write_end(struct file *file, struct address_space *mapping,
2387 loff_t pos, unsigned len, unsigned copied,
2388 struct page *page, void *fsdata)
2389{
2390 struct inode *inode = mapping->host;
2391
d3602444
HD
2392 if (pos + copied > inode->i_size)
2393 i_size_write(inode, pos + copied);
2394
ec9516fb 2395 if (!PageUptodate(page)) {
800d8c63
KS
2396 struct page *head = compound_head(page);
2397 if (PageTransCompound(page)) {
2398 int i;
2399
2400 for (i = 0; i < HPAGE_PMD_NR; i++) {
2401 if (head + i == page)
2402 continue;
2403 clear_highpage(head + i);
2404 flush_dcache_page(head + i);
2405 }
2406 }
09cbfeaf
KS
2407 if (copied < PAGE_SIZE) {
2408 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2409 zero_user_segments(page, 0, from,
09cbfeaf 2410 from + copied, PAGE_SIZE);
ec9516fb 2411 }
800d8c63 2412 SetPageUptodate(head);
ec9516fb 2413 }
800d15a5 2414 set_page_dirty(page);
6746aff7 2415 unlock_page(page);
09cbfeaf 2416 put_page(page);
800d15a5 2417
800d15a5 2418 return copied;
1da177e4
LT
2419}
2420
2ba5bbed 2421static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2422{
6e58e79d
AV
2423 struct file *file = iocb->ki_filp;
2424 struct inode *inode = file_inode(file);
1da177e4 2425 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2426 pgoff_t index;
2427 unsigned long offset;
a0ee5ec5 2428 enum sgp_type sgp = SGP_READ;
f7c1d074 2429 int error = 0;
cb66a7a1 2430 ssize_t retval = 0;
6e58e79d 2431 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2432
2433 /*
2434 * Might this read be for a stacking filesystem? Then when reading
2435 * holes of a sparse file, we actually need to allocate those pages,
2436 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2437 */
777eda2c 2438 if (!iter_is_iovec(to))
75edd345 2439 sgp = SGP_CACHE;
1da177e4 2440
09cbfeaf
KS
2441 index = *ppos >> PAGE_SHIFT;
2442 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2443
2444 for (;;) {
2445 struct page *page = NULL;
41ffe5d5
HD
2446 pgoff_t end_index;
2447 unsigned long nr, ret;
1da177e4
LT
2448 loff_t i_size = i_size_read(inode);
2449
09cbfeaf 2450 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2451 if (index > end_index)
2452 break;
2453 if (index == end_index) {
09cbfeaf 2454 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2455 if (nr <= offset)
2456 break;
2457 }
2458
9e18eb29 2459 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2460 if (error) {
2461 if (error == -EINVAL)
2462 error = 0;
1da177e4
LT
2463 break;
2464 }
75edd345
HD
2465 if (page) {
2466 if (sgp == SGP_CACHE)
2467 set_page_dirty(page);
d3602444 2468 unlock_page(page);
75edd345 2469 }
1da177e4
LT
2470
2471 /*
2472 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2473 * are called without i_mutex protection against truncate
1da177e4 2474 */
09cbfeaf 2475 nr = PAGE_SIZE;
1da177e4 2476 i_size = i_size_read(inode);
09cbfeaf 2477 end_index = i_size >> PAGE_SHIFT;
1da177e4 2478 if (index == end_index) {
09cbfeaf 2479 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2480 if (nr <= offset) {
2481 if (page)
09cbfeaf 2482 put_page(page);
1da177e4
LT
2483 break;
2484 }
2485 }
2486 nr -= offset;
2487
2488 if (page) {
2489 /*
2490 * If users can be writing to this page using arbitrary
2491 * virtual addresses, take care about potential aliasing
2492 * before reading the page on the kernel side.
2493 */
2494 if (mapping_writably_mapped(mapping))
2495 flush_dcache_page(page);
2496 /*
2497 * Mark the page accessed if we read the beginning.
2498 */
2499 if (!offset)
2500 mark_page_accessed(page);
b5810039 2501 } else {
1da177e4 2502 page = ZERO_PAGE(0);
09cbfeaf 2503 get_page(page);
b5810039 2504 }
1da177e4
LT
2505
2506 /*
2507 * Ok, we have the page, and it's up-to-date, so
2508 * now we can copy it to user space...
1da177e4 2509 */
2ba5bbed 2510 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2511 retval += ret;
1da177e4 2512 offset += ret;
09cbfeaf
KS
2513 index += offset >> PAGE_SHIFT;
2514 offset &= ~PAGE_MASK;
1da177e4 2515
09cbfeaf 2516 put_page(page);
2ba5bbed 2517 if (!iov_iter_count(to))
1da177e4 2518 break;
6e58e79d
AV
2519 if (ret < nr) {
2520 error = -EFAULT;
2521 break;
2522 }
1da177e4
LT
2523 cond_resched();
2524 }
2525
09cbfeaf 2526 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2527 file_accessed(file);
2528 return retval ? retval : error;
1da177e4
LT
2529}
2530
220f2ac9
HD
2531/*
2532 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2533 */
2534static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2535 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2536{
2537 struct page *page;
2538 struct pagevec pvec;
2539 pgoff_t indices[PAGEVEC_SIZE];
2540 bool done = false;
2541 int i;
2542
86679820 2543 pagevec_init(&pvec);
220f2ac9
HD
2544 pvec.nr = 1; /* start small: we may be there already */
2545 while (!done) {
0cd6144a 2546 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2547 pvec.nr, pvec.pages, indices);
2548 if (!pvec.nr) {
965c8e59 2549 if (whence == SEEK_DATA)
220f2ac9
HD
2550 index = end;
2551 break;
2552 }
2553 for (i = 0; i < pvec.nr; i++, index++) {
2554 if (index < indices[i]) {
965c8e59 2555 if (whence == SEEK_HOLE) {
220f2ac9
HD
2556 done = true;
2557 break;
2558 }
2559 index = indices[i];
2560 }
2561 page = pvec.pages[i];
2562 if (page && !radix_tree_exceptional_entry(page)) {
2563 if (!PageUptodate(page))
2564 page = NULL;
2565 }
2566 if (index >= end ||
965c8e59
AM
2567 (page && whence == SEEK_DATA) ||
2568 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2569 done = true;
2570 break;
2571 }
2572 }
0cd6144a 2573 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2574 pagevec_release(&pvec);
2575 pvec.nr = PAGEVEC_SIZE;
2576 cond_resched();
2577 }
2578 return index;
2579}
2580
965c8e59 2581static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2582{
2583 struct address_space *mapping = file->f_mapping;
2584 struct inode *inode = mapping->host;
2585 pgoff_t start, end;
2586 loff_t new_offset;
2587
965c8e59
AM
2588 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2589 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2590 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2591 inode_lock(inode);
220f2ac9
HD
2592 /* We're holding i_mutex so we can access i_size directly */
2593
2594 if (offset < 0)
2595 offset = -EINVAL;
2596 else if (offset >= inode->i_size)
2597 offset = -ENXIO;
2598 else {
09cbfeaf
KS
2599 start = offset >> PAGE_SHIFT;
2600 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2601 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2602 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2603 if (new_offset > offset) {
2604 if (new_offset < inode->i_size)
2605 offset = new_offset;
965c8e59 2606 else if (whence == SEEK_DATA)
220f2ac9
HD
2607 offset = -ENXIO;
2608 else
2609 offset = inode->i_size;
2610 }
2611 }
2612
387aae6f
HD
2613 if (offset >= 0)
2614 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2615 inode_unlock(inode);
220f2ac9
HD
2616 return offset;
2617}
2618
05f65b5c
DH
2619/*
2620 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2621 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2622 */
2623#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2624#define LAST_SCAN 4 /* about 150ms max */
2625
2626static void shmem_tag_pins(struct address_space *mapping)
2627{
2628 struct radix_tree_iter iter;
2629 void **slot;
2630 pgoff_t start;
2631 struct page *page;
2632
2633 lru_add_drain();
2634 start = 0;
2635 rcu_read_lock();
2636
b93b0163 2637 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
05f65b5c
DH
2638 page = radix_tree_deref_slot(slot);
2639 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2640 if (radix_tree_deref_retry(page)) {
2641 slot = radix_tree_iter_retry(&iter);
2642 continue;
2643 }
05f65b5c 2644 } else if (page_count(page) - page_mapcount(page) > 1) {
b93b0163
MW
2645 xa_lock_irq(&mapping->i_pages);
2646 radix_tree_tag_set(&mapping->i_pages, iter.index,
05f65b5c 2647 SHMEM_TAG_PINNED);
b93b0163 2648 xa_unlock_irq(&mapping->i_pages);
05f65b5c
DH
2649 }
2650
2651 if (need_resched()) {
148deab2 2652 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2653 cond_resched_rcu();
05f65b5c
DH
2654 }
2655 }
2656 rcu_read_unlock();
2657}
2658
2659/*
2660 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2661 * via get_user_pages(), drivers might have some pending I/O without any active
2662 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2663 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2664 * them to be dropped.
2665 * The caller must guarantee that no new user will acquire writable references
2666 * to those pages to avoid races.
2667 */
40e041a2
DH
2668static int shmem_wait_for_pins(struct address_space *mapping)
2669{
05f65b5c
DH
2670 struct radix_tree_iter iter;
2671 void **slot;
2672 pgoff_t start;
2673 struct page *page;
2674 int error, scan;
2675
2676 shmem_tag_pins(mapping);
2677
2678 error = 0;
2679 for (scan = 0; scan <= LAST_SCAN; scan++) {
b93b0163 2680 if (!radix_tree_tagged(&mapping->i_pages, SHMEM_TAG_PINNED))
05f65b5c
DH
2681 break;
2682
2683 if (!scan)
2684 lru_add_drain_all();
2685 else if (schedule_timeout_killable((HZ << scan) / 200))
2686 scan = LAST_SCAN;
2687
2688 start = 0;
2689 rcu_read_lock();
b93b0163 2690 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter,
05f65b5c
DH
2691 start, SHMEM_TAG_PINNED) {
2692
2693 page = radix_tree_deref_slot(slot);
2694 if (radix_tree_exception(page)) {
2cf938aa
MW
2695 if (radix_tree_deref_retry(page)) {
2696 slot = radix_tree_iter_retry(&iter);
2697 continue;
2698 }
05f65b5c
DH
2699
2700 page = NULL;
2701 }
2702
2703 if (page &&
2704 page_count(page) - page_mapcount(page) != 1) {
2705 if (scan < LAST_SCAN)
2706 goto continue_resched;
2707
2708 /*
2709 * On the last scan, we clean up all those tags
2710 * we inserted; but make a note that we still
2711 * found pages pinned.
2712 */
2713 error = -EBUSY;
2714 }
2715
b93b0163
MW
2716 xa_lock_irq(&mapping->i_pages);
2717 radix_tree_tag_clear(&mapping->i_pages,
05f65b5c 2718 iter.index, SHMEM_TAG_PINNED);
b93b0163 2719 xa_unlock_irq(&mapping->i_pages);
05f65b5c
DH
2720continue_resched:
2721 if (need_resched()) {
148deab2 2722 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2723 cond_resched_rcu();
05f65b5c
DH
2724 }
2725 }
2726 rcu_read_unlock();
2727 }
2728
2729 return error;
40e041a2
DH
2730}
2731
47b9012e
MAL
2732static unsigned int *memfd_file_seals_ptr(struct file *file)
2733{
2734 if (file->f_op == &shmem_file_operations)
2735 return &SHMEM_I(file_inode(file))->seals;
2736
2737#ifdef CONFIG_HUGETLBFS
2738 if (file->f_op == &hugetlbfs_file_operations)
2739 return &HUGETLBFS_I(file_inode(file))->seals;
2740#endif
2741
2742 return NULL;
2743}
2744
40e041a2
DH
2745#define F_ALL_SEALS (F_SEAL_SEAL | \
2746 F_SEAL_SHRINK | \
2747 F_SEAL_GROW | \
2748 F_SEAL_WRITE)
2749
5aadc431 2750static int memfd_add_seals(struct file *file, unsigned int seals)
40e041a2
DH
2751{
2752 struct inode *inode = file_inode(file);
47b9012e 2753 unsigned int *file_seals;
40e041a2
DH
2754 int error;
2755
2756 /*
2757 * SEALING
2758 * Sealing allows multiple parties to share a shmem-file but restrict
2759 * access to a specific subset of file operations. Seals can only be
2760 * added, but never removed. This way, mutually untrusted parties can
2761 * share common memory regions with a well-defined policy. A malicious
2762 * peer can thus never perform unwanted operations on a shared object.
2763 *
2764 * Seals are only supported on special shmem-files and always affect
2765 * the whole underlying inode. Once a seal is set, it may prevent some
2766 * kinds of access to the file. Currently, the following seals are
2767 * defined:
2768 * SEAL_SEAL: Prevent further seals from being set on this file
2769 * SEAL_SHRINK: Prevent the file from shrinking
2770 * SEAL_GROW: Prevent the file from growing
2771 * SEAL_WRITE: Prevent write access to the file
2772 *
2773 * As we don't require any trust relationship between two parties, we
2774 * must prevent seals from being removed. Therefore, sealing a file
2775 * only adds a given set of seals to the file, it never touches
2776 * existing seals. Furthermore, the "setting seals"-operation can be
2777 * sealed itself, which basically prevents any further seal from being
2778 * added.
2779 *
2780 * Semantics of sealing are only defined on volatile files. Only
2781 * anonymous shmem files support sealing. More importantly, seals are
2782 * never written to disk. Therefore, there's no plan to support it on
2783 * other file types.
2784 */
2785
40e041a2
DH
2786 if (!(file->f_mode & FMODE_WRITE))
2787 return -EPERM;
2788 if (seals & ~(unsigned int)F_ALL_SEALS)
2789 return -EINVAL;
2790
5955102c 2791 inode_lock(inode);
40e041a2 2792
47b9012e
MAL
2793 file_seals = memfd_file_seals_ptr(file);
2794 if (!file_seals) {
2795 error = -EINVAL;
2796 goto unlock;
2797 }
2798
2799 if (*file_seals & F_SEAL_SEAL) {
40e041a2
DH
2800 error = -EPERM;
2801 goto unlock;
2802 }
2803
47b9012e 2804 if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
40e041a2
DH
2805 error = mapping_deny_writable(file->f_mapping);
2806 if (error)
2807 goto unlock;
2808
2809 error = shmem_wait_for_pins(file->f_mapping);
2810 if (error) {
2811 mapping_allow_writable(file->f_mapping);
2812 goto unlock;
2813 }
2814 }
2815
47b9012e 2816 *file_seals |= seals;
40e041a2
DH
2817 error = 0;
2818
2819unlock:
5955102c 2820 inode_unlock(inode);
40e041a2
DH
2821 return error;
2822}
40e041a2 2823
5aadc431 2824static int memfd_get_seals(struct file *file)
40e041a2 2825{
47b9012e 2826 unsigned int *seals = memfd_file_seals_ptr(file);
40e041a2 2827
47b9012e 2828 return seals ? *seals : -EINVAL;
40e041a2 2829}
40e041a2 2830
5aadc431 2831long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
40e041a2
DH
2832{
2833 long error;
2834
2835 switch (cmd) {
2836 case F_ADD_SEALS:
2837 /* disallow upper 32bit */
2838 if (arg > UINT_MAX)
2839 return -EINVAL;
2840
5aadc431 2841 error = memfd_add_seals(file, arg);
40e041a2
DH
2842 break;
2843 case F_GET_SEALS:
5aadc431 2844 error = memfd_get_seals(file);
40e041a2
DH
2845 break;
2846 default:
2847 error = -EINVAL;
2848 break;
2849 }
2850
2851 return error;
2852}
2853
83e4fa9c
HD
2854static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2855 loff_t len)
2856{
496ad9aa 2857 struct inode *inode = file_inode(file);
e2d12e22 2858 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2859 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2860 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2861 pgoff_t start, index, end;
2862 int error;
83e4fa9c 2863
13ace4d0
HD
2864 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2865 return -EOPNOTSUPP;
2866
5955102c 2867 inode_lock(inode);
83e4fa9c
HD
2868
2869 if (mode & FALLOC_FL_PUNCH_HOLE) {
2870 struct address_space *mapping = file->f_mapping;
2871 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2872 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2873 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2874
40e041a2
DH
2875 /* protected by i_mutex */
2876 if (info->seals & F_SEAL_WRITE) {
2877 error = -EPERM;
2878 goto out;
2879 }
2880
8e205f77 2881 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2882 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2883 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2884 spin_lock(&inode->i_lock);
2885 inode->i_private = &shmem_falloc;
2886 spin_unlock(&inode->i_lock);
2887
83e4fa9c
HD
2888 if ((u64)unmap_end > (u64)unmap_start)
2889 unmap_mapping_range(mapping, unmap_start,
2890 1 + unmap_end - unmap_start, 0);
2891 shmem_truncate_range(inode, offset, offset + len - 1);
2892 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2893
2894 spin_lock(&inode->i_lock);
2895 inode->i_private = NULL;
2896 wake_up_all(&shmem_falloc_waitq);
2055da97 2897 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2898 spin_unlock(&inode->i_lock);
83e4fa9c 2899 error = 0;
8e205f77 2900 goto out;
e2d12e22
HD
2901 }
2902
2903 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2904 error = inode_newsize_ok(inode, offset + len);
2905 if (error)
2906 goto out;
2907
40e041a2
DH
2908 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2909 error = -EPERM;
2910 goto out;
2911 }
2912
09cbfeaf
KS
2913 start = offset >> PAGE_SHIFT;
2914 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2915 /* Try to avoid a swapstorm if len is impossible to satisfy */
2916 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2917 error = -ENOSPC;
2918 goto out;
83e4fa9c
HD
2919 }
2920
8e205f77 2921 shmem_falloc.waitq = NULL;
1aac1400
HD
2922 shmem_falloc.start = start;
2923 shmem_falloc.next = start;
2924 shmem_falloc.nr_falloced = 0;
2925 shmem_falloc.nr_unswapped = 0;
2926 spin_lock(&inode->i_lock);
2927 inode->i_private = &shmem_falloc;
2928 spin_unlock(&inode->i_lock);
2929
e2d12e22
HD
2930 for (index = start; index < end; index++) {
2931 struct page *page;
2932
2933 /*
2934 * Good, the fallocate(2) manpage permits EINTR: we may have
2935 * been interrupted because we are using up too much memory.
2936 */
2937 if (signal_pending(current))
2938 error = -EINTR;
1aac1400
HD
2939 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2940 error = -ENOMEM;
e2d12e22 2941 else
9e18eb29 2942 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2943 if (error) {
1635f6a7 2944 /* Remove the !PageUptodate pages we added */
7f556567
HD
2945 if (index > start) {
2946 shmem_undo_range(inode,
2947 (loff_t)start << PAGE_SHIFT,
2948 ((loff_t)index << PAGE_SHIFT) - 1, true);
2949 }
1aac1400 2950 goto undone;
e2d12e22
HD
2951 }
2952
1aac1400
HD
2953 /*
2954 * Inform shmem_writepage() how far we have reached.
2955 * No need for lock or barrier: we have the page lock.
2956 */
2957 shmem_falloc.next++;
2958 if (!PageUptodate(page))
2959 shmem_falloc.nr_falloced++;
2960
e2d12e22 2961 /*
1635f6a7
HD
2962 * If !PageUptodate, leave it that way so that freeable pages
2963 * can be recognized if we need to rollback on error later.
2964 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2965 * than free the pages we are allocating (and SGP_CACHE pages
2966 * might still be clean: we now need to mark those dirty too).
2967 */
2968 set_page_dirty(page);
2969 unlock_page(page);
09cbfeaf 2970 put_page(page);
e2d12e22
HD
2971 cond_resched();
2972 }
2973
2974 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2975 i_size_write(inode, offset + len);
078cd827 2976 inode->i_ctime = current_time(inode);
1aac1400
HD
2977undone:
2978 spin_lock(&inode->i_lock);
2979 inode->i_private = NULL;
2980 spin_unlock(&inode->i_lock);
e2d12e22 2981out:
5955102c 2982 inode_unlock(inode);
83e4fa9c
HD
2983 return error;
2984}
2985
726c3342 2986static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2987{
726c3342 2988 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2989
2990 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2991 buf->f_bsize = PAGE_SIZE;
1da177e4 2992 buf->f_namelen = NAME_MAX;
0edd73b3 2993 if (sbinfo->max_blocks) {
1da177e4 2994 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2995 buf->f_bavail =
2996 buf->f_bfree = sbinfo->max_blocks -
2997 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2998 }
2999 if (sbinfo->max_inodes) {
1da177e4
LT
3000 buf->f_files = sbinfo->max_inodes;
3001 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
3002 }
3003 /* else leave those fields 0 like simple_statfs */
3004 return 0;
3005}
3006
3007/*
3008 * File creation. Allocate an inode, and we're done..
3009 */
3010static int
1a67aafb 3011shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 3012{
0b0a0806 3013 struct inode *inode;
1da177e4
LT
3014 int error = -ENOSPC;
3015
454abafe 3016 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 3017 if (inode) {
feda821e
CH
3018 error = simple_acl_create(dir, inode);
3019 if (error)
3020 goto out_iput;
2a7dba39 3021 error = security_inode_init_security(inode, dir,
9d8f13ba 3022 &dentry->d_name,
6d9d88d0 3023 shmem_initxattrs, NULL);
feda821e
CH
3024 if (error && error != -EOPNOTSUPP)
3025 goto out_iput;
37ec43cd 3026
718deb6b 3027 error = 0;
1da177e4 3028 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3029 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3030 d_instantiate(dentry, inode);
3031 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
3032 }
3033 return error;
feda821e
CH
3034out_iput:
3035 iput(inode);
3036 return error;
1da177e4
LT
3037}
3038
60545d0d
AV
3039static int
3040shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3041{
3042 struct inode *inode;
3043 int error = -ENOSPC;
3044
3045 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3046 if (inode) {
3047 error = security_inode_init_security(inode, dir,
3048 NULL,
3049 shmem_initxattrs, NULL);
feda821e
CH
3050 if (error && error != -EOPNOTSUPP)
3051 goto out_iput;
3052 error = simple_acl_create(dir, inode);
3053 if (error)
3054 goto out_iput;
60545d0d
AV
3055 d_tmpfile(dentry, inode);
3056 }
3057 return error;
feda821e
CH
3058out_iput:
3059 iput(inode);
3060 return error;
60545d0d
AV
3061}
3062
18bb1db3 3063static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3064{
3065 int error;
3066
3067 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3068 return error;
d8c76e6f 3069 inc_nlink(dir);
1da177e4
LT
3070 return 0;
3071}
3072
4acdaf27 3073static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3074 bool excl)
1da177e4
LT
3075{
3076 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3077}
3078
3079/*
3080 * Link a file..
3081 */
3082static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3083{
75c3cfa8 3084 struct inode *inode = d_inode(old_dentry);
5b04c689 3085 int ret;
1da177e4
LT
3086
3087 /*
3088 * No ordinary (disk based) filesystem counts links as inodes;
3089 * but each new link needs a new dentry, pinning lowmem, and
3090 * tmpfs dentries cannot be pruned until they are unlinked.
3091 */
5b04c689
PE
3092 ret = shmem_reserve_inode(inode->i_sb);
3093 if (ret)
3094 goto out;
1da177e4
LT
3095
3096 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3097 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3098 inc_nlink(inode);
7de9c6ee 3099 ihold(inode); /* New dentry reference */
1da177e4
LT
3100 dget(dentry); /* Extra pinning count for the created dentry */
3101 d_instantiate(dentry, inode);
5b04c689
PE
3102out:
3103 return ret;
1da177e4
LT
3104}
3105
3106static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3107{
75c3cfa8 3108 struct inode *inode = d_inode(dentry);
1da177e4 3109
5b04c689
PE
3110 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3111 shmem_free_inode(inode->i_sb);
1da177e4
LT
3112
3113 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3114 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3115 drop_nlink(inode);
1da177e4
LT
3116 dput(dentry); /* Undo the count from "create" - this does all the work */
3117 return 0;
3118}
3119
3120static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3121{
3122 if (!simple_empty(dentry))
3123 return -ENOTEMPTY;
3124
75c3cfa8 3125 drop_nlink(d_inode(dentry));
9a53c3a7 3126 drop_nlink(dir);
1da177e4
LT
3127 return shmem_unlink(dir, dentry);
3128}
3129
37456771
MS
3130static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3131{
e36cb0b8
DH
3132 bool old_is_dir = d_is_dir(old_dentry);
3133 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3134
3135 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3136 if (old_is_dir) {
3137 drop_nlink(old_dir);
3138 inc_nlink(new_dir);
3139 } else {
3140 drop_nlink(new_dir);
3141 inc_nlink(old_dir);
3142 }
3143 }
3144 old_dir->i_ctime = old_dir->i_mtime =
3145 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3146 d_inode(old_dentry)->i_ctime =
078cd827 3147 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3148
3149 return 0;
3150}
3151
46fdb794
MS
3152static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3153{
3154 struct dentry *whiteout;
3155 int error;
3156
3157 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3158 if (!whiteout)
3159 return -ENOMEM;
3160
3161 error = shmem_mknod(old_dir, whiteout,
3162 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3163 dput(whiteout);
3164 if (error)
3165 return error;
3166
3167 /*
3168 * Cheat and hash the whiteout while the old dentry is still in
3169 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3170 *
3171 * d_lookup() will consistently find one of them at this point,
3172 * not sure which one, but that isn't even important.
3173 */
3174 d_rehash(whiteout);
3175 return 0;
3176}
3177
1da177e4
LT
3178/*
3179 * The VFS layer already does all the dentry stuff for rename,
3180 * we just have to decrement the usage count for the target if
3181 * it exists so that the VFS layer correctly free's it when it
3182 * gets overwritten.
3183 */
3b69ff51 3184static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3185{
75c3cfa8 3186 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3187 int they_are_dirs = S_ISDIR(inode->i_mode);
3188
46fdb794 3189 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3190 return -EINVAL;
3191
37456771
MS
3192 if (flags & RENAME_EXCHANGE)
3193 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3194
1da177e4
LT
3195 if (!simple_empty(new_dentry))
3196 return -ENOTEMPTY;
3197
46fdb794
MS
3198 if (flags & RENAME_WHITEOUT) {
3199 int error;
3200
3201 error = shmem_whiteout(old_dir, old_dentry);
3202 if (error)
3203 return error;
3204 }
3205
75c3cfa8 3206 if (d_really_is_positive(new_dentry)) {
1da177e4 3207 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3208 if (they_are_dirs) {
75c3cfa8 3209 drop_nlink(d_inode(new_dentry));
9a53c3a7 3210 drop_nlink(old_dir);
b928095b 3211 }
1da177e4 3212 } else if (they_are_dirs) {
9a53c3a7 3213 drop_nlink(old_dir);
d8c76e6f 3214 inc_nlink(new_dir);
1da177e4
LT
3215 }
3216
3217 old_dir->i_size -= BOGO_DIRENT_SIZE;
3218 new_dir->i_size += BOGO_DIRENT_SIZE;
3219 old_dir->i_ctime = old_dir->i_mtime =
3220 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3221 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3222 return 0;
3223}
3224
3225static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3226{
3227 int error;
3228 int len;
3229 struct inode *inode;
9276aad6 3230 struct page *page;
1da177e4
LT
3231
3232 len = strlen(symname) + 1;
09cbfeaf 3233 if (len > PAGE_SIZE)
1da177e4
LT
3234 return -ENAMETOOLONG;
3235
454abafe 3236 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3237 if (!inode)
3238 return -ENOSPC;
3239
9d8f13ba 3240 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3241 shmem_initxattrs, NULL);
570bc1c2
SS
3242 if (error) {
3243 if (error != -EOPNOTSUPP) {
3244 iput(inode);
3245 return error;
3246 }
3247 error = 0;
3248 }
3249
1da177e4 3250 inode->i_size = len-1;
69f07ec9 3251 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3252 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3253 if (!inode->i_link) {
69f07ec9
HD
3254 iput(inode);
3255 return -ENOMEM;
3256 }
3257 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3258 } else {
e8ecde25 3259 inode_nohighmem(inode);
9e18eb29 3260 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3261 if (error) {
3262 iput(inode);
3263 return error;
3264 }
14fcc23f 3265 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3266 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3267 memcpy(page_address(page), symname, len);
ec9516fb 3268 SetPageUptodate(page);
1da177e4 3269 set_page_dirty(page);
6746aff7 3270 unlock_page(page);
09cbfeaf 3271 put_page(page);
1da177e4 3272 }
1da177e4 3273 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3274 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3275 d_instantiate(dentry, inode);
3276 dget(dentry);
3277 return 0;
3278}
3279
fceef393 3280static void shmem_put_link(void *arg)
1da177e4 3281{
fceef393
AV
3282 mark_page_accessed(arg);
3283 put_page(arg);
1da177e4
LT
3284}
3285
6b255391 3286static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3287 struct inode *inode,
3288 struct delayed_call *done)
1da177e4 3289{
1da177e4 3290 struct page *page = NULL;
6b255391 3291 int error;
6a6c9904
AV
3292 if (!dentry) {
3293 page = find_get_page(inode->i_mapping, 0);
3294 if (!page)
3295 return ERR_PTR(-ECHILD);
3296 if (!PageUptodate(page)) {
3297 put_page(page);
3298 return ERR_PTR(-ECHILD);
3299 }
3300 } else {
9e18eb29 3301 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3302 if (error)
3303 return ERR_PTR(error);
3304 unlock_page(page);
3305 }
fceef393 3306 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3307 return page_address(page);
1da177e4
LT
3308}
3309
b09e0fa4 3310#ifdef CONFIG_TMPFS_XATTR
46711810 3311/*
b09e0fa4
EP
3312 * Superblocks without xattr inode operations may get some security.* xattr
3313 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3314 * like ACLs, we also need to implement the security.* handlers at
3315 * filesystem level, though.
3316 */
3317
6d9d88d0
JS
3318/*
3319 * Callback for security_inode_init_security() for acquiring xattrs.
3320 */
3321static int shmem_initxattrs(struct inode *inode,
3322 const struct xattr *xattr_array,
3323 void *fs_info)
3324{
3325 struct shmem_inode_info *info = SHMEM_I(inode);
3326 const struct xattr *xattr;
38f38657 3327 struct simple_xattr *new_xattr;
6d9d88d0
JS
3328 size_t len;
3329
3330 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3331 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3332 if (!new_xattr)
3333 return -ENOMEM;
3334
3335 len = strlen(xattr->name) + 1;
3336 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3337 GFP_KERNEL);
3338 if (!new_xattr->name) {
3339 kfree(new_xattr);
3340 return -ENOMEM;
3341 }
3342
3343 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3344 XATTR_SECURITY_PREFIX_LEN);
3345 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3346 xattr->name, len);
3347
38f38657 3348 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3349 }
3350
3351 return 0;
3352}
3353
aa7c5241 3354static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3355 struct dentry *unused, struct inode *inode,
3356 const char *name, void *buffer, size_t size)
b09e0fa4 3357{
b296821a 3358 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3359
aa7c5241 3360 name = xattr_full_name(handler, name);
38f38657 3361 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3362}
3363
aa7c5241 3364static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3365 struct dentry *unused, struct inode *inode,
3366 const char *name, const void *value,
3367 size_t size, int flags)
b09e0fa4 3368{
59301226 3369 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3370
aa7c5241 3371 name = xattr_full_name(handler, name);
38f38657 3372 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3373}
3374
aa7c5241
AG
3375static const struct xattr_handler shmem_security_xattr_handler = {
3376 .prefix = XATTR_SECURITY_PREFIX,
3377 .get = shmem_xattr_handler_get,
3378 .set = shmem_xattr_handler_set,
3379};
b09e0fa4 3380
aa7c5241
AG
3381static const struct xattr_handler shmem_trusted_xattr_handler = {
3382 .prefix = XATTR_TRUSTED_PREFIX,
3383 .get = shmem_xattr_handler_get,
3384 .set = shmem_xattr_handler_set,
3385};
b09e0fa4 3386
aa7c5241
AG
3387static const struct xattr_handler *shmem_xattr_handlers[] = {
3388#ifdef CONFIG_TMPFS_POSIX_ACL
3389 &posix_acl_access_xattr_handler,
3390 &posix_acl_default_xattr_handler,
3391#endif
3392 &shmem_security_xattr_handler,
3393 &shmem_trusted_xattr_handler,
3394 NULL
3395};
b09e0fa4
EP
3396
3397static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3398{
75c3cfa8 3399 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3400 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3401}
3402#endif /* CONFIG_TMPFS_XATTR */
3403
69f07ec9 3404static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3405 .get_link = simple_get_link,
b09e0fa4 3406#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3407 .listxattr = shmem_listxattr,
b09e0fa4
EP
3408#endif
3409};
3410
3411static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3412 .get_link = shmem_get_link,
b09e0fa4 3413#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3414 .listxattr = shmem_listxattr,
39f0247d 3415#endif
b09e0fa4 3416};
39f0247d 3417
91828a40
DG
3418static struct dentry *shmem_get_parent(struct dentry *child)
3419{
3420 return ERR_PTR(-ESTALE);
3421}
3422
3423static int shmem_match(struct inode *ino, void *vfh)
3424{
3425 __u32 *fh = vfh;
3426 __u64 inum = fh[2];
3427 inum = (inum << 32) | fh[1];
3428 return ino->i_ino == inum && fh[0] == ino->i_generation;
3429}
3430
480b116c
CH
3431static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3432 struct fid *fid, int fh_len, int fh_type)
91828a40 3433{
91828a40 3434 struct inode *inode;
480b116c 3435 struct dentry *dentry = NULL;
35c2a7f4 3436 u64 inum;
480b116c
CH
3437
3438 if (fh_len < 3)
3439 return NULL;
91828a40 3440
35c2a7f4
HD
3441 inum = fid->raw[2];
3442 inum = (inum << 32) | fid->raw[1];
3443
480b116c
CH
3444 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3445 shmem_match, fid->raw);
91828a40 3446 if (inode) {
480b116c 3447 dentry = d_find_alias(inode);
91828a40
DG
3448 iput(inode);
3449 }
3450
480b116c 3451 return dentry;
91828a40
DG
3452}
3453
b0b0382b
AV
3454static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3455 struct inode *parent)
91828a40 3456{
5fe0c237
AK
3457 if (*len < 3) {
3458 *len = 3;
94e07a75 3459 return FILEID_INVALID;
5fe0c237 3460 }
91828a40 3461
1d3382cb 3462 if (inode_unhashed(inode)) {
91828a40
DG
3463 /* Unfortunately insert_inode_hash is not idempotent,
3464 * so as we hash inodes here rather than at creation
3465 * time, we need a lock to ensure we only try
3466 * to do it once
3467 */
3468 static DEFINE_SPINLOCK(lock);
3469 spin_lock(&lock);
1d3382cb 3470 if (inode_unhashed(inode))
91828a40
DG
3471 __insert_inode_hash(inode,
3472 inode->i_ino + inode->i_generation);
3473 spin_unlock(&lock);
3474 }
3475
3476 fh[0] = inode->i_generation;
3477 fh[1] = inode->i_ino;
3478 fh[2] = ((__u64)inode->i_ino) >> 32;
3479
3480 *len = 3;
3481 return 1;
3482}
3483
39655164 3484static const struct export_operations shmem_export_ops = {
91828a40 3485 .get_parent = shmem_get_parent,
91828a40 3486 .encode_fh = shmem_encode_fh,
480b116c 3487 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3488};
3489
680d794b 3490static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3491 bool remount)
1da177e4
LT
3492{
3493 char *this_char, *value, *rest;
49cd0a5c 3494 struct mempolicy *mpol = NULL;
8751e039
EB
3495 uid_t uid;
3496 gid_t gid;
1da177e4 3497
b00dc3ad
HD
3498 while (options != NULL) {
3499 this_char = options;
3500 for (;;) {
3501 /*
3502 * NUL-terminate this option: unfortunately,
3503 * mount options form a comma-separated list,
3504 * but mpol's nodelist may also contain commas.
3505 */
3506 options = strchr(options, ',');
3507 if (options == NULL)
3508 break;
3509 options++;
3510 if (!isdigit(*options)) {
3511 options[-1] = '\0';
3512 break;
3513 }
3514 }
1da177e4
LT
3515 if (!*this_char)
3516 continue;
3517 if ((value = strchr(this_char,'=')) != NULL) {
3518 *value++ = 0;
3519 } else {
1170532b
JP
3520 pr_err("tmpfs: No value for mount option '%s'\n",
3521 this_char);
49cd0a5c 3522 goto error;
1da177e4
LT
3523 }
3524
3525 if (!strcmp(this_char,"size")) {
3526 unsigned long long size;
3527 size = memparse(value,&rest);
3528 if (*rest == '%') {
3529 size <<= PAGE_SHIFT;
3530 size *= totalram_pages;
3531 do_div(size, 100);
3532 rest++;
3533 }
3534 if (*rest)
3535 goto bad_val;
680d794b 3536 sbinfo->max_blocks =
09cbfeaf 3537 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3538 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3539 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3540 if (*rest)
3541 goto bad_val;
3542 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3543 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3544 if (*rest)
3545 goto bad_val;
3546 } else if (!strcmp(this_char,"mode")) {
680d794b 3547 if (remount)
1da177e4 3548 continue;
680d794b 3549 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3550 if (*rest)
3551 goto bad_val;
3552 } else if (!strcmp(this_char,"uid")) {
680d794b 3553 if (remount)
1da177e4 3554 continue;
8751e039 3555 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3556 if (*rest)
3557 goto bad_val;
8751e039
EB
3558 sbinfo->uid = make_kuid(current_user_ns(), uid);
3559 if (!uid_valid(sbinfo->uid))
3560 goto bad_val;
1da177e4 3561 } else if (!strcmp(this_char,"gid")) {
680d794b 3562 if (remount)
1da177e4 3563 continue;
8751e039 3564 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3565 if (*rest)
3566 goto bad_val;
8751e039
EB
3567 sbinfo->gid = make_kgid(current_user_ns(), gid);
3568 if (!gid_valid(sbinfo->gid))
3569 goto bad_val;
e496cf3d 3570#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3571 } else if (!strcmp(this_char, "huge")) {
3572 int huge;
3573 huge = shmem_parse_huge(value);
3574 if (huge < 0)
3575 goto bad_val;
3576 if (!has_transparent_hugepage() &&
3577 huge != SHMEM_HUGE_NEVER)
3578 goto bad_val;
3579 sbinfo->huge = huge;
3580#endif
3581#ifdef CONFIG_NUMA
7339ff83 3582 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3583 mpol_put(mpol);
3584 mpol = NULL;
3585 if (mpol_parse_str(value, &mpol))
7339ff83 3586 goto bad_val;
5a6e75f8 3587#endif
1da177e4 3588 } else {
1170532b 3589 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3590 goto error;
1da177e4
LT
3591 }
3592 }
49cd0a5c 3593 sbinfo->mpol = mpol;
1da177e4
LT
3594 return 0;
3595
3596bad_val:
1170532b 3597 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3598 value, this_char);
49cd0a5c
GT
3599error:
3600 mpol_put(mpol);
1da177e4
LT
3601 return 1;
3602
3603}
3604
3605static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3606{
3607 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3608 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3609 unsigned long inodes;
3610 int error = -EINVAL;
3611
5f00110f 3612 config.mpol = NULL;
680d794b 3613 if (shmem_parse_options(data, &config, true))
0edd73b3 3614 return error;
1da177e4 3615
0edd73b3 3616 spin_lock(&sbinfo->stat_lock);
0edd73b3 3617 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3618 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3619 goto out;
680d794b 3620 if (config.max_inodes < inodes)
0edd73b3
HD
3621 goto out;
3622 /*
54af6042 3623 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3624 * but we must separately disallow unlimited->limited, because
3625 * in that case we have no record of how much is already in use.
3626 */
680d794b 3627 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3628 goto out;
680d794b 3629 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3630 goto out;
3631
3632 error = 0;
5a6e75f8 3633 sbinfo->huge = config.huge;
680d794b 3634 sbinfo->max_blocks = config.max_blocks;
680d794b 3635 sbinfo->max_inodes = config.max_inodes;
3636 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3637
5f00110f
GT
3638 /*
3639 * Preserve previous mempolicy unless mpol remount option was specified.
3640 */
3641 if (config.mpol) {
3642 mpol_put(sbinfo->mpol);
3643 sbinfo->mpol = config.mpol; /* transfers initial ref */
3644 }
0edd73b3
HD
3645out:
3646 spin_unlock(&sbinfo->stat_lock);
3647 return error;
1da177e4 3648}
680d794b 3649
34c80b1d 3650static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3651{
34c80b1d 3652 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3653
3654 if (sbinfo->max_blocks != shmem_default_max_blocks())
3655 seq_printf(seq, ",size=%luk",
09cbfeaf 3656 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3657 if (sbinfo->max_inodes != shmem_default_max_inodes())
3658 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3659 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3660 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3661 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3662 seq_printf(seq, ",uid=%u",
3663 from_kuid_munged(&init_user_ns, sbinfo->uid));
3664 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3665 seq_printf(seq, ",gid=%u",
3666 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3667#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3668 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3669 if (sbinfo->huge)
3670 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3671#endif
71fe804b 3672 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3673 return 0;
3674}
9183df25
DH
3675
3676#define MFD_NAME_PREFIX "memfd:"
3677#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3678#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3679
749df87b 3680#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
9183df25
DH
3681
3682SYSCALL_DEFINE2(memfd_create,
3683 const char __user *, uname,
3684 unsigned int, flags)
3685{
47b9012e 3686 unsigned int *file_seals;
9183df25
DH
3687 struct file *file;
3688 int fd, error;
3689 char *name;
3690 long len;
3691
749df87b
MK
3692 if (!(flags & MFD_HUGETLB)) {
3693 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3694 return -EINVAL;
3695 } else {
749df87b
MK
3696 /* Allow huge page size encoding in flags. */
3697 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3698 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3699 return -EINVAL;
3700 }
9183df25
DH
3701
3702 /* length includes terminating zero */
3703 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3704 if (len <= 0)
3705 return -EFAULT;
3706 if (len > MFD_NAME_MAX_LEN + 1)
3707 return -EINVAL;
3708
0ee931c4 3709 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
9183df25
DH
3710 if (!name)
3711 return -ENOMEM;
3712
3713 strcpy(name, MFD_NAME_PREFIX);
3714 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3715 error = -EFAULT;
3716 goto err_name;
3717 }
3718
3719 /* terminating-zero may have changed after strnlen_user() returned */
3720 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3721 error = -EFAULT;
3722 goto err_name;
3723 }
3724
3725 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3726 if (fd < 0) {
3727 error = fd;
3728 goto err_name;
3729 }
3730
749df87b
MK
3731 if (flags & MFD_HUGETLB) {
3732 struct user_struct *user = NULL;
3733
3734 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3735 HUGETLB_ANONHUGE_INODE,
3736 (flags >> MFD_HUGE_SHIFT) &
3737 MFD_HUGE_MASK);
3738 } else
3739 file = shmem_file_setup(name, 0, VM_NORESERVE);
9183df25
DH
3740 if (IS_ERR(file)) {
3741 error = PTR_ERR(file);
3742 goto err_fd;
3743 }
9183df25
DH
3744 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3745 file->f_flags |= O_RDWR | O_LARGEFILE;
749df87b
MK
3746
3747 if (flags & MFD_ALLOW_SEALING) {
47b9012e
MAL
3748 file_seals = memfd_file_seals_ptr(file);
3749 *file_seals &= ~F_SEAL_SEAL;
749df87b 3750 }
9183df25
DH
3751
3752 fd_install(fd, file);
3753 kfree(name);
3754 return fd;
3755
3756err_fd:
3757 put_unused_fd(fd);
3758err_name:
3759 kfree(name);
3760 return error;
3761}
3762
680d794b 3763#endif /* CONFIG_TMPFS */
1da177e4
LT
3764
3765static void shmem_put_super(struct super_block *sb)
3766{
602586a8
HD
3767 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3768
3769 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3770 mpol_put(sbinfo->mpol);
602586a8 3771 kfree(sbinfo);
1da177e4
LT
3772 sb->s_fs_info = NULL;
3773}
3774
2b2af54a 3775int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3776{
3777 struct inode *inode;
0edd73b3 3778 struct shmem_sb_info *sbinfo;
680d794b 3779 int err = -ENOMEM;
3780
3781 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3782 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3783 L1_CACHE_BYTES), GFP_KERNEL);
3784 if (!sbinfo)
3785 return -ENOMEM;
3786
680d794b 3787 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3788 sbinfo->uid = current_fsuid();
3789 sbinfo->gid = current_fsgid();
680d794b 3790 sb->s_fs_info = sbinfo;
1da177e4 3791
0edd73b3 3792#ifdef CONFIG_TMPFS
1da177e4
LT
3793 /*
3794 * Per default we only allow half of the physical ram per
3795 * tmpfs instance, limiting inodes to one per page of lowmem;
3796 * but the internal instance is left unlimited.
3797 */
1751e8a6 3798 if (!(sb->s_flags & SB_KERNMOUNT)) {
680d794b 3799 sbinfo->max_blocks = shmem_default_max_blocks();
3800 sbinfo->max_inodes = shmem_default_max_inodes();
3801 if (shmem_parse_options(data, sbinfo, false)) {
3802 err = -EINVAL;
3803 goto failed;
3804 }
ca4e0519 3805 } else {
1751e8a6 3806 sb->s_flags |= SB_NOUSER;
1da177e4 3807 }
91828a40 3808 sb->s_export_op = &shmem_export_ops;
1751e8a6 3809 sb->s_flags |= SB_NOSEC;
1da177e4 3810#else
1751e8a6 3811 sb->s_flags |= SB_NOUSER;
1da177e4
LT
3812#endif
3813
0edd73b3 3814 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3815 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3816 goto failed;
680d794b 3817 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3818 spin_lock_init(&sbinfo->shrinklist_lock);
3819 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3820
285b2c4f 3821 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3822 sb->s_blocksize = PAGE_SIZE;
3823 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3824 sb->s_magic = TMPFS_MAGIC;
3825 sb->s_op = &shmem_ops;
cfd95a9c 3826 sb->s_time_gran = 1;
b09e0fa4 3827#ifdef CONFIG_TMPFS_XATTR
39f0247d 3828 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3829#endif
3830#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3831 sb->s_flags |= SB_POSIXACL;
39f0247d 3832#endif
2b4db796 3833 uuid_gen(&sb->s_uuid);
0edd73b3 3834
454abafe 3835 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3836 if (!inode)
3837 goto failed;
680d794b 3838 inode->i_uid = sbinfo->uid;
3839 inode->i_gid = sbinfo->gid;
318ceed0
AV
3840 sb->s_root = d_make_root(inode);
3841 if (!sb->s_root)
48fde701 3842 goto failed;
1da177e4
LT
3843 return 0;
3844
1da177e4
LT
3845failed:
3846 shmem_put_super(sb);
3847 return err;
3848}
3849
fcc234f8 3850static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3851
3852static struct inode *shmem_alloc_inode(struct super_block *sb)
3853{
41ffe5d5
HD
3854 struct shmem_inode_info *info;
3855 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3856 if (!info)
1da177e4 3857 return NULL;
41ffe5d5 3858 return &info->vfs_inode;
1da177e4
LT
3859}
3860
41ffe5d5 3861static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3862{
3863 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3864 if (S_ISLNK(inode->i_mode))
3865 kfree(inode->i_link);
fa0d7e3d
NP
3866 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3867}
3868
1da177e4
LT
3869static void shmem_destroy_inode(struct inode *inode)
3870{
09208d15 3871 if (S_ISREG(inode->i_mode))
1da177e4 3872 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3873 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3874}
3875
41ffe5d5 3876static void shmem_init_inode(void *foo)
1da177e4 3877{
41ffe5d5
HD
3878 struct shmem_inode_info *info = foo;
3879 inode_init_once(&info->vfs_inode);
1da177e4
LT
3880}
3881
9a8ec03e 3882static void shmem_init_inodecache(void)
1da177e4
LT
3883{
3884 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3885 sizeof(struct shmem_inode_info),
5d097056 3886 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3887}
3888
41ffe5d5 3889static void shmem_destroy_inodecache(void)
1da177e4 3890{
1a1d92c1 3891 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3892}
3893
f5e54d6e 3894static const struct address_space_operations shmem_aops = {
1da177e4 3895 .writepage = shmem_writepage,
76719325 3896 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3897#ifdef CONFIG_TMPFS
800d15a5
NP
3898 .write_begin = shmem_write_begin,
3899 .write_end = shmem_write_end,
1da177e4 3900#endif
1c93923c 3901#ifdef CONFIG_MIGRATION
304dbdb7 3902 .migratepage = migrate_page,
1c93923c 3903#endif
aa261f54 3904 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3905};
3906
15ad7cdc 3907static const struct file_operations shmem_file_operations = {
1da177e4 3908 .mmap = shmem_mmap,
c01d5b30 3909 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3910#ifdef CONFIG_TMPFS
220f2ac9 3911 .llseek = shmem_file_llseek,
2ba5bbed 3912 .read_iter = shmem_file_read_iter,
8174202b 3913 .write_iter = generic_file_write_iter,
1b061d92 3914 .fsync = noop_fsync,
82c156f8 3915 .splice_read = generic_file_splice_read,
f6cb85d0 3916 .splice_write = iter_file_splice_write,
83e4fa9c 3917 .fallocate = shmem_fallocate,
1da177e4
LT
3918#endif
3919};
3920
92e1d5be 3921static const struct inode_operations shmem_inode_operations = {
44a30220 3922 .getattr = shmem_getattr,
94c1e62d 3923 .setattr = shmem_setattr,
b09e0fa4 3924#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3925 .listxattr = shmem_listxattr,
feda821e 3926 .set_acl = simple_set_acl,
b09e0fa4 3927#endif
1da177e4
LT
3928};
3929
92e1d5be 3930static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3931#ifdef CONFIG_TMPFS
3932 .create = shmem_create,
3933 .lookup = simple_lookup,
3934 .link = shmem_link,
3935 .unlink = shmem_unlink,
3936 .symlink = shmem_symlink,
3937 .mkdir = shmem_mkdir,
3938 .rmdir = shmem_rmdir,
3939 .mknod = shmem_mknod,
2773bf00 3940 .rename = shmem_rename2,
60545d0d 3941 .tmpfile = shmem_tmpfile,
1da177e4 3942#endif
b09e0fa4 3943#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3944 .listxattr = shmem_listxattr,
b09e0fa4 3945#endif
39f0247d 3946#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3947 .setattr = shmem_setattr,
feda821e 3948 .set_acl = simple_set_acl,
39f0247d
AG
3949#endif
3950};
3951
92e1d5be 3952static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3953#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3954 .listxattr = shmem_listxattr,
b09e0fa4 3955#endif
39f0247d 3956#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3957 .setattr = shmem_setattr,
feda821e 3958 .set_acl = simple_set_acl,
39f0247d 3959#endif
1da177e4
LT
3960};
3961
759b9775 3962static const struct super_operations shmem_ops = {
1da177e4
LT
3963 .alloc_inode = shmem_alloc_inode,
3964 .destroy_inode = shmem_destroy_inode,
3965#ifdef CONFIG_TMPFS
3966 .statfs = shmem_statfs,
3967 .remount_fs = shmem_remount_fs,
680d794b 3968 .show_options = shmem_show_options,
1da177e4 3969#endif
1f895f75 3970 .evict_inode = shmem_evict_inode,
1da177e4
LT
3971 .drop_inode = generic_delete_inode,
3972 .put_super = shmem_put_super,
779750d2
KS
3973#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3974 .nr_cached_objects = shmem_unused_huge_count,
3975 .free_cached_objects = shmem_unused_huge_scan,
3976#endif
1da177e4
LT
3977};
3978
f0f37e2f 3979static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3980 .fault = shmem_fault,
d7c17551 3981 .map_pages = filemap_map_pages,
1da177e4
LT
3982#ifdef CONFIG_NUMA
3983 .set_policy = shmem_set_policy,
3984 .get_policy = shmem_get_policy,
3985#endif
3986};
3987
3c26ff6e
AV
3988static struct dentry *shmem_mount(struct file_system_type *fs_type,
3989 int flags, const char *dev_name, void *data)
1da177e4 3990{
3c26ff6e 3991 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3992}
3993
41ffe5d5 3994static struct file_system_type shmem_fs_type = {
1da177e4
LT
3995 .owner = THIS_MODULE,
3996 .name = "tmpfs",
3c26ff6e 3997 .mount = shmem_mount,
1da177e4 3998 .kill_sb = kill_litter_super,
2b8576cb 3999 .fs_flags = FS_USERNS_MOUNT,
1da177e4 4000};
1da177e4 4001
41ffe5d5 4002int __init shmem_init(void)
1da177e4
LT
4003{
4004 int error;
4005
16203a7a
RL
4006 /* If rootfs called this, don't re-init */
4007 if (shmem_inode_cachep)
4008 return 0;
4009
9a8ec03e 4010 shmem_init_inodecache();
1da177e4 4011
41ffe5d5 4012 error = register_filesystem(&shmem_fs_type);
1da177e4 4013 if (error) {
1170532b 4014 pr_err("Could not register tmpfs\n");
1da177e4
LT
4015 goto out2;
4016 }
95dc112a 4017
ca4e0519 4018 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
4019 if (IS_ERR(shm_mnt)) {
4020 error = PTR_ERR(shm_mnt);
1170532b 4021 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
4022 goto out1;
4023 }
5a6e75f8 4024
e496cf3d 4025#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 4026 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4027 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4028 else
4029 shmem_huge = 0; /* just in case it was patched */
4030#endif
1da177e4
LT
4031 return 0;
4032
4033out1:
41ffe5d5 4034 unregister_filesystem(&shmem_fs_type);
1da177e4 4035out2:
41ffe5d5 4036 shmem_destroy_inodecache();
1da177e4
LT
4037 shm_mnt = ERR_PTR(error);
4038 return error;
4039}
853ac43a 4040
e496cf3d 4041#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4042static ssize_t shmem_enabled_show(struct kobject *kobj,
4043 struct kobj_attribute *attr, char *buf)
4044{
4045 int values[] = {
4046 SHMEM_HUGE_ALWAYS,
4047 SHMEM_HUGE_WITHIN_SIZE,
4048 SHMEM_HUGE_ADVISE,
4049 SHMEM_HUGE_NEVER,
4050 SHMEM_HUGE_DENY,
4051 SHMEM_HUGE_FORCE,
4052 };
4053 int i, count;
4054
4055 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4056 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4057
4058 count += sprintf(buf + count, fmt,
4059 shmem_format_huge(values[i]));
4060 }
4061 buf[count - 1] = '\n';
4062 return count;
4063}
4064
4065static ssize_t shmem_enabled_store(struct kobject *kobj,
4066 struct kobj_attribute *attr, const char *buf, size_t count)
4067{
4068 char tmp[16];
4069 int huge;
4070
4071 if (count + 1 > sizeof(tmp))
4072 return -EINVAL;
4073 memcpy(tmp, buf, count);
4074 tmp[count] = '\0';
4075 if (count && tmp[count - 1] == '\n')
4076 tmp[count - 1] = '\0';
4077
4078 huge = shmem_parse_huge(tmp);
4079 if (huge == -EINVAL)
4080 return -EINVAL;
4081 if (!has_transparent_hugepage() &&
4082 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4083 return -EINVAL;
4084
4085 shmem_huge = huge;
435c0b87 4086 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4087 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4088 return count;
4089}
4090
4091struct kobj_attribute shmem_enabled_attr =
4092 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4093#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4094
3b33719c 4095#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4096bool shmem_huge_enabled(struct vm_area_struct *vma)
4097{
4098 struct inode *inode = file_inode(vma->vm_file);
4099 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4100 loff_t i_size;
4101 pgoff_t off;
4102
4103 if (shmem_huge == SHMEM_HUGE_FORCE)
4104 return true;
4105 if (shmem_huge == SHMEM_HUGE_DENY)
4106 return false;
4107 switch (sbinfo->huge) {
4108 case SHMEM_HUGE_NEVER:
4109 return false;
4110 case SHMEM_HUGE_ALWAYS:
4111 return true;
4112 case SHMEM_HUGE_WITHIN_SIZE:
4113 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4114 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4115 if (i_size >= HPAGE_PMD_SIZE &&
4116 i_size >> PAGE_SHIFT >= off)
4117 return true;
c8402871 4118 /* fall through */
f3f0e1d2
KS
4119 case SHMEM_HUGE_ADVISE:
4120 /* TODO: implement fadvise() hints */
4121 return (vma->vm_flags & VM_HUGEPAGE);
4122 default:
4123 VM_BUG_ON(1);
4124 return false;
4125 }
4126}
3b33719c 4127#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4128
853ac43a
MM
4129#else /* !CONFIG_SHMEM */
4130
4131/*
4132 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4133 *
4134 * This is intended for small system where the benefits of the full
4135 * shmem code (swap-backed and resource-limited) are outweighed by
4136 * their complexity. On systems without swap this code should be
4137 * effectively equivalent, but much lighter weight.
4138 */
4139
41ffe5d5 4140static struct file_system_type shmem_fs_type = {
853ac43a 4141 .name = "tmpfs",
3c26ff6e 4142 .mount = ramfs_mount,
853ac43a 4143 .kill_sb = kill_litter_super,
2b8576cb 4144 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4145};
4146
41ffe5d5 4147int __init shmem_init(void)
853ac43a 4148{
41ffe5d5 4149 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4150
41ffe5d5 4151 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4152 BUG_ON(IS_ERR(shm_mnt));
4153
4154 return 0;
4155}
4156
41ffe5d5 4157int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4158{
4159 return 0;
4160}
4161
3f96b79a
HD
4162int shmem_lock(struct file *file, int lock, struct user_struct *user)
4163{
4164 return 0;
4165}
4166
24513264
HD
4167void shmem_unlock_mapping(struct address_space *mapping)
4168{
4169}
4170
c01d5b30
HD
4171#ifdef CONFIG_MMU
4172unsigned long shmem_get_unmapped_area(struct file *file,
4173 unsigned long addr, unsigned long len,
4174 unsigned long pgoff, unsigned long flags)
4175{
4176 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4177}
4178#endif
4179
41ffe5d5 4180void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4181{
41ffe5d5 4182 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4183}
4184EXPORT_SYMBOL_GPL(shmem_truncate_range);
4185
0b0a0806
HD
4186#define shmem_vm_ops generic_file_vm_ops
4187#define shmem_file_operations ramfs_file_operations
454abafe 4188#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4189#define shmem_acct_size(flags, size) 0
4190#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4191
4192#endif /* CONFIG_SHMEM */
4193
4194/* common code */
1da177e4 4195
19938e35 4196static const struct dentry_operations anon_ops = {
118b2302 4197 .d_dname = simple_dname
3451538a
AV
4198};
4199
703321b6 4200static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4201 unsigned long flags, unsigned int i_flags)
1da177e4 4202{
6b4d0b27 4203 struct file *res;
1da177e4 4204 struct inode *inode;
2c48b9c4 4205 struct path path;
3451538a 4206 struct super_block *sb;
1da177e4
LT
4207 struct qstr this;
4208
703321b6
MA
4209 if (IS_ERR(mnt))
4210 return ERR_CAST(mnt);
1da177e4 4211
285b2c4f 4212 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4213 return ERR_PTR(-EINVAL);
4214
4215 if (shmem_acct_size(flags, size))
4216 return ERR_PTR(-ENOMEM);
4217
6b4d0b27 4218 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4219 this.name = name;
4220 this.len = strlen(name);
4221 this.hash = 0; /* will go */
703321b6
MA
4222 sb = mnt->mnt_sb;
4223 path.mnt = mntget(mnt);
3451538a 4224 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4225 if (!path.dentry)
1da177e4 4226 goto put_memory;
3451538a 4227 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4228
6b4d0b27 4229 res = ERR_PTR(-ENOSPC);
3451538a 4230 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4231 if (!inode)
66ee4b88 4232 goto put_memory;
1da177e4 4233
c7277090 4234 inode->i_flags |= i_flags;
2c48b9c4 4235 d_instantiate(path.dentry, inode);
1da177e4 4236 inode->i_size = size;
6d6b77f1 4237 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4238 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4239 if (IS_ERR(res))
66ee4b88 4240 goto put_path;
4b42af81 4241
6b4d0b27 4242 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4243 &shmem_file_operations);
6b4d0b27 4244 if (IS_ERR(res))
66ee4b88 4245 goto put_path;
4b42af81 4246
6b4d0b27 4247 return res;
1da177e4 4248
1da177e4
LT
4249put_memory:
4250 shmem_unacct_size(flags, size);
66ee4b88
KK
4251put_path:
4252 path_put(&path);
6b4d0b27 4253 return res;
1da177e4 4254}
c7277090
EP
4255
4256/**
4257 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4258 * kernel internal. There will be NO LSM permission checks against the
4259 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4260 * higher layer. The users are the big_key and shm implementations. LSM
4261 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4262 * @name: name for dentry (to be seen in /proc/<pid>/maps
4263 * @size: size to be set for the file
4264 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4265 */
4266struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4267{
703321b6 4268 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4269}
4270
4271/**
4272 * shmem_file_setup - get an unlinked file living in tmpfs
4273 * @name: name for dentry (to be seen in /proc/<pid>/maps
4274 * @size: size to be set for the file
4275 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4276 */
4277struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4278{
703321b6 4279 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4280}
395e0ddc 4281EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4282
703321b6
MA
4283/**
4284 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4285 * @mnt: the tmpfs mount where the file will be created
4286 * @name: name for dentry (to be seen in /proc/<pid>/maps
4287 * @size: size to be set for the file
4288 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4289 */
4290struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4291 loff_t size, unsigned long flags)
4292{
4293 return __shmem_file_setup(mnt, name, size, flags, 0);
4294}
4295EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4296
46711810 4297/**
1da177e4 4298 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4299 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4300 */
4301int shmem_zero_setup(struct vm_area_struct *vma)
4302{
4303 struct file *file;
4304 loff_t size = vma->vm_end - vma->vm_start;
4305
66fc1303
HD
4306 /*
4307 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4308 * between XFS directory reading and selinux: since this file is only
4309 * accessible to the user through its mapping, use S_PRIVATE flag to
4310 * bypass file security, in the same way as shmem_kernel_file_setup().
4311 */
703321b6 4312 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4313 if (IS_ERR(file))
4314 return PTR_ERR(file);
4315
4316 if (vma->vm_file)
4317 fput(vma->vm_file);
4318 vma->vm_file = file;
4319 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4320
e496cf3d 4321 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4322 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4323 (vma->vm_end & HPAGE_PMD_MASK)) {
4324 khugepaged_enter(vma, vma->vm_flags);
4325 }
4326
1da177e4
LT
4327 return 0;
4328}
d9d90e5e
HD
4329
4330/**
4331 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4332 * @mapping: the page's address_space
4333 * @index: the page index
4334 * @gfp: the page allocator flags to use if allocating
4335 *
4336 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4337 * with any new page allocations done using the specified allocation flags.
4338 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4339 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4340 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4341 *
68da9f05
HD
4342 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4343 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4344 */
4345struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4346 pgoff_t index, gfp_t gfp)
4347{
68da9f05
HD
4348#ifdef CONFIG_SHMEM
4349 struct inode *inode = mapping->host;
9276aad6 4350 struct page *page;
68da9f05
HD
4351 int error;
4352
4353 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4354 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4355 gfp, NULL, NULL, NULL);
68da9f05
HD
4356 if (error)
4357 page = ERR_PTR(error);
4358 else
4359 unlock_page(page);
4360 return page;
4361#else
4362 /*
4363 * The tiny !SHMEM case uses ramfs without swap
4364 */
d9d90e5e 4365 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4366#endif
d9d90e5e
HD
4367}
4368EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);