mm/shmem: add __rcu annotations and properly deref radix entry
[linux-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b 109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 124 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
68da9f05 127
f3f0e1d2 128int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 129 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
130{
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 133}
1da177e4 134
1da177e4
LT
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137 return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 return (flags & VM_NORESERVE) ?
191c5424 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
0b0a0806 154 if (!(flags & VM_NORESERVE))
1da177e4
LT
155 vm_unacct_memory(VM_ACCT(size));
156}
157
77142517
KK
158static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160{
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169}
170
1da177e4
LT
171/*
172 * ... whereas tmpfs objects are accounted incrementally as
75edd345 173 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
800d8c63 177static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 178{
800d8c63
KS
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
0b0a0806 188 if (flags & VM_NORESERVE)
09cbfeaf 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
190}
191
0f079694
MR
192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193{
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212}
213
214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222}
223
759b9775 224static const struct super_operations shmem_ops;
f5e54d6e 225static const struct address_space_operations shmem_aops;
15ad7cdc 226static const struct file_operations shmem_file_operations;
92e1d5be
AV
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 230static const struct vm_operations_struct shmem_vm_ops;
779750d2 231static struct file_system_type shmem_fs_type;
1da177e4 232
b0506e48
MR
233bool vma_is_shmem(struct vm_area_struct *vma)
234{
235 return vma->vm_ops == &shmem_vm_ops;
236}
237
1da177e4 238static LIST_HEAD(shmem_swaplist);
cb5f7b9a 239static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 240
5b04c689
PE
241static int shmem_reserve_inode(struct super_block *sb)
242{
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254}
255
256static void shmem_free_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264}
265
46711810 266/**
41ffe5d5 267 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278static void shmem_recalc_inode(struct inode *inode)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
54af6042 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 287 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
288 }
289}
290
800d8c63
KS
291bool shmem_charge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 294 unsigned long flags;
800d8c63 295
0f079694 296 if (!shmem_inode_acct_block(inode, pages))
800d8c63 297 return false;
b1cc94ab 298
4595ef88 299 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
4595ef88 303 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
304 inode->i_mapping->nrpages += pages;
305
800d8c63
KS
306 return true;
307}
308
309void shmem_uncharge(struct inode *inode, long pages)
310{
311 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 312 unsigned long flags;
800d8c63 313
4595ef88 314 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
4595ef88 318 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 319
0f079694 320 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
321}
322
7a5d0fbb
HD
323/*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328{
f7942430 329 struct radix_tree_node *node;
5b9c98f3 330 void __rcu **pslot;
6dbaf22c 331 void *item;
7a5d0fbb
HD
332
333 VM_BUG_ON(!expected);
6dbaf22c 334 VM_BUG_ON(!replacement);
b93b0163 335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
f7942430 336 if (!item)
6dbaf22c 337 return -ENOENT;
7a5d0fbb
HD
338 if (item != expected)
339 return -ENOENT;
b93b0163 340 __radix_tree_replace(&mapping->i_pages, node, pslot,
c7df8ad2 341 replacement, NULL);
7a5d0fbb
HD
342 return 0;
343}
344
d1899228
HD
345/*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354{
355 void *item;
356
357 rcu_read_lock();
b93b0163 358 item = radix_tree_lookup(&mapping->i_pages, index);
d1899228
HD
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361}
362
5a6e75f8
KS
363/*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377#define SHMEM_HUGE_NEVER 0
378#define SHMEM_HUGE_ALWAYS 1
379#define SHMEM_HUGE_WITHIN_SIZE 2
380#define SHMEM_HUGE_ADVISE 3
381
382/*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392#define SHMEM_HUGE_DENY (-1)
393#define SHMEM_HUGE_FORCE (-2)
394
e496cf3d 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
396/* ifdef here to avoid bloating shmem.o when not necessary */
397
5b9c98f3 398static int shmem_huge __read_mostly;
5a6e75f8 399
f1f5929c 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
401static int shmem_parse_huge(const char *str)
402{
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416}
417
418static const char *shmem_format_huge(int huge)
419{
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437}
f1f5929c 438#endif
5a6e75f8 439
779750d2
KS
440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442{
443 LIST_HEAD(list), *pos, *next;
253fd0f0 444 LIST_HEAD(to_remove);
779750d2
KS
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 471 list_move(&info->shrinklist, &to_remove);
779750d2 472 removed++;
779750d2
KS
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
253fd0f0
KS
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
779750d2
KS
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
b3cd54b2
KS
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
779750d2 498
b3cd54b2 499 page = find_get_page(inode->i_mapping,
779750d2
KS
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
503
b3cd54b2 504 /* No huge page at the end of the file: nothing to split */
779750d2 505 if (!PageTransHuge(page)) {
779750d2
KS
506 put_page(page);
507 goto drop;
508 }
509
b3cd54b2
KS
510 /*
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
513 *
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
516 */
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
520 }
521
779750d2
KS
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
525
b3cd54b2
KS
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
779750d2
KS
529
530 split++;
531drop:
532 list_del_init(&info->shrinklist);
533 removed++;
b3cd54b2 534leave:
779750d2
KS
535 iput(inode);
536 }
537
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
542
543 return split;
544}
545
546static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
548{
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
553
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
555}
556
557static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
559{
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
562}
e496cf3d 563#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
564
565#define shmem_huge SHMEM_HUGE_DENY
566
779750d2
KS
567static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
569{
570 return 0;
571}
e496cf3d 572#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 573
46f65ec1
HD
574/*
575 * Like add_to_page_cache_locked, but error if expected item has gone.
576 */
577static int shmem_add_to_page_cache(struct page *page,
578 struct address_space *mapping,
fed400a1 579 pgoff_t index, void *expected)
46f65ec1 580{
800d8c63 581 int error, nr = hpage_nr_pages(page);
46f65ec1 582
800d8c63
KS
583 VM_BUG_ON_PAGE(PageTail(page), page);
584 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
585 VM_BUG_ON_PAGE(!PageLocked(page), page);
586 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 587 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 588
800d8c63 589 page_ref_add(page, nr);
b065b432
HD
590 page->mapping = mapping;
591 page->index = index;
592
b93b0163 593 xa_lock_irq(&mapping->i_pages);
800d8c63
KS
594 if (PageTransHuge(page)) {
595 void __rcu **results;
596 pgoff_t idx;
597 int i;
598
599 error = 0;
b93b0163 600 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
800d8c63
KS
601 &results, &idx, index, 1) &&
602 idx < index + HPAGE_PMD_NR) {
603 error = -EEXIST;
604 }
605
606 if (!error) {
607 for (i = 0; i < HPAGE_PMD_NR; i++) {
b93b0163 608 error = radix_tree_insert(&mapping->i_pages,
800d8c63
KS
609 index + i, page + i);
610 VM_BUG_ON(error);
611 }
612 count_vm_event(THP_FILE_ALLOC);
613 }
614 } else if (!expected) {
b93b0163 615 error = radix_tree_insert(&mapping->i_pages, index, page);
800d8c63 616 } else {
b065b432
HD
617 error = shmem_radix_tree_replace(mapping, index, expected,
618 page);
800d8c63
KS
619 }
620
46f65ec1 621 if (!error) {
800d8c63
KS
622 mapping->nrpages += nr;
623 if (PageTransHuge(page))
11fb9989
MG
624 __inc_node_page_state(page, NR_SHMEM_THPS);
625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b93b0163 627 xa_unlock_irq(&mapping->i_pages);
b065b432
HD
628 } else {
629 page->mapping = NULL;
b93b0163 630 xa_unlock_irq(&mapping->i_pages);
800d8c63 631 page_ref_sub(page, nr);
46f65ec1 632 }
46f65ec1
HD
633 return error;
634}
635
6922c0c7
HD
636/*
637 * Like delete_from_page_cache, but substitutes swap for page.
638 */
639static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640{
641 struct address_space *mapping = page->mapping;
642 int error;
643
800d8c63
KS
644 VM_BUG_ON_PAGE(PageCompound(page), page);
645
b93b0163 646 xa_lock_irq(&mapping->i_pages);
6922c0c7
HD
647 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
648 page->mapping = NULL;
649 mapping->nrpages--;
11fb9989
MG
650 __dec_node_page_state(page, NR_FILE_PAGES);
651 __dec_node_page_state(page, NR_SHMEM);
b93b0163 652 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 653 put_page(page);
6922c0c7
HD
654 BUG_ON(error);
655}
656
7a5d0fbb
HD
657/*
658 * Remove swap entry from radix tree, free the swap and its page cache.
659 */
660static int shmem_free_swap(struct address_space *mapping,
661 pgoff_t index, void *radswap)
662{
6dbaf22c 663 void *old;
7a5d0fbb 664
b93b0163
MW
665 xa_lock_irq(&mapping->i_pages);
666 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
667 xa_unlock_irq(&mapping->i_pages);
6dbaf22c
JW
668 if (old != radswap)
669 return -ENOENT;
670 free_swap_and_cache(radix_to_swp_entry(radswap));
671 return 0;
7a5d0fbb
HD
672}
673
6a15a370
VB
674/*
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 676 * given offsets are swapped out.
6a15a370 677 *
b93b0163 678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
679 * as long as the inode doesn't go away and racy results are not a problem.
680 */
48131e03
VB
681unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 pgoff_t start, pgoff_t end)
6a15a370 683{
6a15a370 684 struct radix_tree_iter iter;
5b9c98f3 685 void __rcu **slot;
6a15a370 686 struct page *page;
48131e03 687 unsigned long swapped = 0;
6a15a370
VB
688
689 rcu_read_lock();
690
b93b0163 691 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
6a15a370
VB
692 if (iter.index >= end)
693 break;
694
695 page = radix_tree_deref_slot(slot);
696
2cf938aa
MW
697 if (radix_tree_deref_retry(page)) {
698 slot = radix_tree_iter_retry(&iter);
699 continue;
700 }
6a15a370
VB
701
702 if (radix_tree_exceptional_entry(page))
703 swapped++;
704
705 if (need_resched()) {
148deab2 706 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 707 cond_resched_rcu();
6a15a370
VB
708 }
709 }
710
711 rcu_read_unlock();
712
713 return swapped << PAGE_SHIFT;
714}
715
48131e03
VB
716/*
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
719 *
b93b0163 720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
721 * as long as the inode doesn't go away and racy results are not a problem.
722 */
723unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724{
725 struct inode *inode = file_inode(vma->vm_file);
726 struct shmem_inode_info *info = SHMEM_I(inode);
727 struct address_space *mapping = inode->i_mapping;
728 unsigned long swapped;
729
730 /* Be careful as we don't hold info->lock */
731 swapped = READ_ONCE(info->swapped);
732
733 /*
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
736 * already track.
737 */
738 if (!swapped)
739 return 0;
740
741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 return swapped << PAGE_SHIFT;
743
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping,
746 linear_page_index(vma, vma->vm_start),
747 linear_page_index(vma, vma->vm_end));
748}
749
24513264
HD
750/*
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752 */
753void shmem_unlock_mapping(struct address_space *mapping)
754{
755 struct pagevec pvec;
756 pgoff_t indices[PAGEVEC_SIZE];
757 pgoff_t index = 0;
758
86679820 759 pagevec_init(&pvec);
24513264
HD
760 /*
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 */
763 while (!mapping_unevictable(mapping)) {
764 /*
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 */
0cd6144a
JW
768 pvec.nr = find_get_entries(mapping, index,
769 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
770 if (!pvec.nr)
771 break;
772 index = indices[pvec.nr - 1] + 1;
0cd6144a 773 pagevec_remove_exceptionals(&pvec);
24513264
HD
774 check_move_unevictable_pages(pvec.pages, pvec.nr);
775 pagevec_release(&pvec);
776 cond_resched();
777 }
7a5d0fbb
HD
778}
779
780/*
781 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 783 */
1635f6a7
HD
784static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 bool unfalloc)
1da177e4 786{
285b2c4f 787 struct address_space *mapping = inode->i_mapping;
1da177e4 788 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 793 struct pagevec pvec;
7a5d0fbb
HD
794 pgoff_t indices[PAGEVEC_SIZE];
795 long nr_swaps_freed = 0;
285b2c4f 796 pgoff_t index;
bda97eab
HD
797 int i;
798
83e4fa9c
HD
799 if (lend == -1)
800 end = -1; /* unsigned, so actually very big */
bda97eab 801
86679820 802 pagevec_init(&pvec);
bda97eab 803 index = start;
83e4fa9c 804 while (index < end) {
0cd6144a
JW
805 pvec.nr = find_get_entries(mapping, index,
806 min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 pvec.pages, indices);
7a5d0fbb
HD
808 if (!pvec.nr)
809 break;
bda97eab
HD
810 for (i = 0; i < pagevec_count(&pvec); i++) {
811 struct page *page = pvec.pages[i];
812
7a5d0fbb 813 index = indices[i];
83e4fa9c 814 if (index >= end)
bda97eab
HD
815 break;
816
7a5d0fbb 817 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
818 if (unfalloc)
819 continue;
7a5d0fbb
HD
820 nr_swaps_freed += !shmem_free_swap(mapping,
821 index, page);
bda97eab 822 continue;
7a5d0fbb
HD
823 }
824
800d8c63
KS
825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826
7a5d0fbb 827 if (!trylock_page(page))
bda97eab 828 continue;
800d8c63
KS
829
830 if (PageTransTail(page)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page);
833 unlock_page(page);
834 continue;
835 } else if (PageTransHuge(page)) {
836 if (index == round_down(end, HPAGE_PMD_NR)) {
837 /*
838 * Range ends in the middle of THP:
839 * zero out the page
840 */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 }
845 index += HPAGE_PMD_NR - 1;
846 i += HPAGE_PMD_NR - 1;
847 }
848
1635f6a7 849 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
850 VM_BUG_ON_PAGE(PageTail(page), page);
851 if (page_mapping(page) == mapping) {
309381fe 852 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
853 truncate_inode_page(mapping, page);
854 }
bda97eab 855 }
bda97eab
HD
856 unlock_page(page);
857 }
0cd6144a 858 pagevec_remove_exceptionals(&pvec);
24513264 859 pagevec_release(&pvec);
bda97eab
HD
860 cond_resched();
861 index++;
862 }
1da177e4 863
83e4fa9c 864 if (partial_start) {
bda97eab 865 struct page *page = NULL;
9e18eb29 866 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 867 if (page) {
09cbfeaf 868 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
869 if (start > end) {
870 top = partial_end;
871 partial_end = 0;
872 }
873 zero_user_segment(page, partial_start, top);
874 set_page_dirty(page);
875 unlock_page(page);
09cbfeaf 876 put_page(page);
83e4fa9c
HD
877 }
878 }
879 if (partial_end) {
880 struct page *page = NULL;
9e18eb29 881 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
882 if (page) {
883 zero_user_segment(page, 0, partial_end);
bda97eab
HD
884 set_page_dirty(page);
885 unlock_page(page);
09cbfeaf 886 put_page(page);
bda97eab
HD
887 }
888 }
83e4fa9c
HD
889 if (start >= end)
890 return;
bda97eab
HD
891
892 index = start;
b1a36650 893 while (index < end) {
bda97eab 894 cond_resched();
0cd6144a
JW
895
896 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 897 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 898 pvec.pages, indices);
7a5d0fbb 899 if (!pvec.nr) {
b1a36650
HD
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index == start || end != -1)
bda97eab 902 break;
b1a36650 903 /* But if truncating, restart to make sure all gone */
bda97eab
HD
904 index = start;
905 continue;
906 }
bda97eab
HD
907 for (i = 0; i < pagevec_count(&pvec); i++) {
908 struct page *page = pvec.pages[i];
909
7a5d0fbb 910 index = indices[i];
83e4fa9c 911 if (index >= end)
bda97eab
HD
912 break;
913
7a5d0fbb 914 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
915 if (unfalloc)
916 continue;
b1a36650
HD
917 if (shmem_free_swap(mapping, index, page)) {
918 /* Swap was replaced by page: retry */
919 index--;
920 break;
921 }
922 nr_swaps_freed++;
7a5d0fbb
HD
923 continue;
924 }
925
bda97eab 926 lock_page(page);
800d8c63
KS
927
928 if (PageTransTail(page)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page);
931 unlock_page(page);
932 /*
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
936 */
937 if (index != round_down(end, HPAGE_PMD_NR))
938 start++;
939 continue;
940 } else if (PageTransHuge(page)) {
941 if (index == round_down(end, HPAGE_PMD_NR)) {
942 /*
943 * Range ends in the middle of THP:
944 * zero out the page
945 */
946 clear_highpage(page);
947 unlock_page(page);
948 continue;
949 }
950 index += HPAGE_PMD_NR - 1;
951 i += HPAGE_PMD_NR - 1;
952 }
953
1635f6a7 954 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
955 VM_BUG_ON_PAGE(PageTail(page), page);
956 if (page_mapping(page) == mapping) {
309381fe 957 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 958 truncate_inode_page(mapping, page);
b1a36650
HD
959 } else {
960 /* Page was replaced by swap: retry */
961 unlock_page(page);
962 index--;
963 break;
1635f6a7 964 }
7a5d0fbb 965 }
bda97eab
HD
966 unlock_page(page);
967 }
0cd6144a 968 pagevec_remove_exceptionals(&pvec);
24513264 969 pagevec_release(&pvec);
bda97eab
HD
970 index++;
971 }
94c1e62d 972
4595ef88 973 spin_lock_irq(&info->lock);
7a5d0fbb 974 info->swapped -= nr_swaps_freed;
1da177e4 975 shmem_recalc_inode(inode);
4595ef88 976 spin_unlock_irq(&info->lock);
1635f6a7 977}
1da177e4 978
1635f6a7
HD
979void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980{
981 shmem_undo_range(inode, lstart, lend, false);
078cd827 982 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 983}
94c1e62d 984EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 985
a528d35e
DH
986static int shmem_getattr(const struct path *path, struct kstat *stat,
987 u32 request_mask, unsigned int query_flags)
44a30220 988{
a528d35e 989 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
990 struct shmem_inode_info *info = SHMEM_I(inode);
991
d0424c42 992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 993 spin_lock_irq(&info->lock);
d0424c42 994 shmem_recalc_inode(inode);
4595ef88 995 spin_unlock_irq(&info->lock);
d0424c42 996 }
44a30220 997 generic_fillattr(inode, stat);
44a30220
YZ
998 return 0;
999}
1000
94c1e62d 1001static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1002{
75c3cfa8 1003 struct inode *inode = d_inode(dentry);
40e041a2 1004 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1005 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1006 int error;
1007
31051c85 1008 error = setattr_prepare(dentry, attr);
db78b877
CH
1009 if (error)
1010 return error;
1011
94c1e62d
HD
1012 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013 loff_t oldsize = inode->i_size;
1014 loff_t newsize = attr->ia_size;
3889e6e7 1015
40e041a2
DH
1016 /* protected by i_mutex */
1017 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019 return -EPERM;
1020
94c1e62d 1021 if (newsize != oldsize) {
77142517
KK
1022 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023 oldsize, newsize);
1024 if (error)
1025 return error;
94c1e62d 1026 i_size_write(inode, newsize);
078cd827 1027 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1028 }
afa2db2f 1029 if (newsize <= oldsize) {
94c1e62d 1030 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1031 if (oldsize > holebegin)
1032 unmap_mapping_range(inode->i_mapping,
1033 holebegin, 0, 1);
1034 if (info->alloced)
1035 shmem_truncate_range(inode,
1036 newsize, (loff_t)-1);
94c1e62d 1037 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1038 if (oldsize > holebegin)
1039 unmap_mapping_range(inode->i_mapping,
1040 holebegin, 0, 1);
779750d2
KS
1041
1042 /*
1043 * Part of the huge page can be beyond i_size: subject
1044 * to shrink under memory pressure.
1045 */
1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1048 /*
1049 * _careful to defend against unlocked access to
1050 * ->shrink_list in shmem_unused_huge_shrink()
1051 */
1052 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1053 list_add_tail(&info->shrinklist,
1054 &sbinfo->shrinklist);
1055 sbinfo->shrinklist_len++;
1056 }
1057 spin_unlock(&sbinfo->shrinklist_lock);
1058 }
94c1e62d 1059 }
1da177e4
LT
1060 }
1061
db78b877 1062 setattr_copy(inode, attr);
db78b877 1063 if (attr->ia_valid & ATTR_MODE)
feda821e 1064 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1065 return error;
1066}
1067
1f895f75 1068static void shmem_evict_inode(struct inode *inode)
1da177e4 1069{
1da177e4 1070 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1072
3889e6e7 1073 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1074 shmem_unacct_size(info->flags, inode->i_size);
1075 inode->i_size = 0;
3889e6e7 1076 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1077 if (!list_empty(&info->shrinklist)) {
1078 spin_lock(&sbinfo->shrinklist_lock);
1079 if (!list_empty(&info->shrinklist)) {
1080 list_del_init(&info->shrinklist);
1081 sbinfo->shrinklist_len--;
1082 }
1083 spin_unlock(&sbinfo->shrinklist_lock);
1084 }
1da177e4 1085 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1086 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1087 list_del_init(&info->swaplist);
cb5f7b9a 1088 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1089 }
3ed47db3 1090 }
b09e0fa4 1091
38f38657 1092 simple_xattrs_free(&info->xattrs);
0f3c42f5 1093 WARN_ON(inode->i_blocks);
5b04c689 1094 shmem_free_inode(inode->i_sb);
dbd5768f 1095 clear_inode(inode);
1da177e4
LT
1096}
1097
478922e2
MW
1098static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099{
1100 struct radix_tree_iter iter;
5b9c98f3 1101 void __rcu **slot;
478922e2
MW
1102 unsigned long found = -1;
1103 unsigned int checked = 0;
1104
1105 rcu_read_lock();
1106 radix_tree_for_each_slot(slot, root, &iter, 0) {
5b9c98f3
MK
1107 void *entry = radix_tree_deref_slot(slot);
1108
1109 if (radix_tree_deref_retry(entry)) {
1110 slot = radix_tree_iter_retry(&iter);
1111 continue;
1112 }
1113 if (entry == item) {
478922e2
MW
1114 found = iter.index;
1115 break;
1116 }
1117 checked++;
1118 if ((checked % 4096) != 0)
1119 continue;
1120 slot = radix_tree_iter_resume(slot, &iter);
1121 cond_resched_rcu();
1122 }
1123
1124 rcu_read_unlock();
1125 return found;
1126}
1127
46f65ec1
HD
1128/*
1129 * If swap found in inode, free it and move page from swapcache to filecache.
1130 */
41ffe5d5 1131static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1132 swp_entry_t swap, struct page **pagep)
1da177e4 1133{
285b2c4f 1134 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1135 void *radswap;
41ffe5d5 1136 pgoff_t index;
bde05d1c
HD
1137 gfp_t gfp;
1138 int error = 0;
1da177e4 1139
46f65ec1 1140 radswap = swp_to_radix_entry(swap);
b93b0163 1141 index = find_swap_entry(&mapping->i_pages, radswap);
46f65ec1 1142 if (index == -1)
00501b53 1143 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1144
1b1b32f2
HD
1145 /*
1146 * Move _head_ to start search for next from here.
1f895f75 1147 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1148 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1149 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1150 */
1151 if (shmem_swaplist.next != &info->swaplist)
1152 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1153
bde05d1c
HD
1154 gfp = mapping_gfp_mask(mapping);
1155 if (shmem_should_replace_page(*pagep, gfp)) {
1156 mutex_unlock(&shmem_swaplist_mutex);
1157 error = shmem_replace_page(pagep, gfp, info, index);
1158 mutex_lock(&shmem_swaplist_mutex);
1159 /*
1160 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1161 * allocation, but the inode might have been freed while we
1162 * dropped it: although a racing shmem_evict_inode() cannot
1163 * complete without emptying the radix_tree, our page lock
1164 * on this swapcache page is not enough to prevent that -
1165 * free_swap_and_cache() of our swap entry will only
1166 * trylock_page(), removing swap from radix_tree whatever.
1167 *
1168 * We must not proceed to shmem_add_to_page_cache() if the
1169 * inode has been freed, but of course we cannot rely on
1170 * inode or mapping or info to check that. However, we can
1171 * safely check if our swap entry is still in use (and here
1172 * it can't have got reused for another page): if it's still
1173 * in use, then the inode cannot have been freed yet, and we
1174 * can safely proceed (if it's no longer in use, that tells
1175 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1176 */
1177 if (!page_swapcount(*pagep))
1178 error = -ENOENT;
1179 }
1180
d13d1443 1181 /*
778dd893
HD
1182 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1183 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1184 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1185 */
bde05d1c
HD
1186 if (!error)
1187 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1188 radswap);
48f170fb 1189 if (error != -ENOMEM) {
46f65ec1
HD
1190 /*
1191 * Truncation and eviction use free_swap_and_cache(), which
1192 * only does trylock page: if we raced, best clean up here.
1193 */
bde05d1c
HD
1194 delete_from_swap_cache(*pagep);
1195 set_page_dirty(*pagep);
46f65ec1 1196 if (!error) {
4595ef88 1197 spin_lock_irq(&info->lock);
46f65ec1 1198 info->swapped--;
4595ef88 1199 spin_unlock_irq(&info->lock);
46f65ec1
HD
1200 swap_free(swap);
1201 }
1da177e4 1202 }
2e0e26c7 1203 return error;
1da177e4
LT
1204}
1205
1206/*
46f65ec1 1207 * Search through swapped inodes to find and replace swap by page.
1da177e4 1208 */
41ffe5d5 1209int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1210{
41ffe5d5 1211 struct list_head *this, *next;
1da177e4 1212 struct shmem_inode_info *info;
00501b53 1213 struct mem_cgroup *memcg;
bde05d1c
HD
1214 int error = 0;
1215
1216 /*
1217 * There's a faint possibility that swap page was replaced before
0142ef6c 1218 * caller locked it: caller will come back later with the right page.
bde05d1c 1219 */
0142ef6c 1220 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1221 goto out;
778dd893
HD
1222
1223 /*
1224 * Charge page using GFP_KERNEL while we can wait, before taking
1225 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1226 * Charged back to the user (not to caller) when swap account is used.
778dd893 1227 */
f627c2f5
KS
1228 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1229 false);
778dd893
HD
1230 if (error)
1231 goto out;
46f65ec1 1232 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1233 error = -EAGAIN;
1da177e4 1234
cb5f7b9a 1235 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1236 list_for_each_safe(this, next, &shmem_swaplist) {
1237 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1238 if (info->swapped)
00501b53 1239 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1240 else
1241 list_del_init(&info->swaplist);
cb5f7b9a 1242 cond_resched();
00501b53 1243 if (error != -EAGAIN)
778dd893 1244 break;
00501b53 1245 /* found nothing in this: move on to search the next */
1da177e4 1246 }
cb5f7b9a 1247 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1248
00501b53
JW
1249 if (error) {
1250 if (error != -ENOMEM)
1251 error = 0;
f627c2f5 1252 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1253 } else
f627c2f5 1254 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1255out:
aaa46865 1256 unlock_page(page);
09cbfeaf 1257 put_page(page);
778dd893 1258 return error;
1da177e4
LT
1259}
1260
1261/*
1262 * Move the page from the page cache to the swap cache.
1263 */
1264static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1265{
1266 struct shmem_inode_info *info;
1da177e4 1267 struct address_space *mapping;
1da177e4 1268 struct inode *inode;
6922c0c7
HD
1269 swp_entry_t swap;
1270 pgoff_t index;
1da177e4 1271
800d8c63 1272 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1273 BUG_ON(!PageLocked(page));
1da177e4
LT
1274 mapping = page->mapping;
1275 index = page->index;
1276 inode = mapping->host;
1277 info = SHMEM_I(inode);
1278 if (info->flags & VM_LOCKED)
1279 goto redirty;
d9fe526a 1280 if (!total_swap_pages)
1da177e4
LT
1281 goto redirty;
1282
d9fe526a 1283 /*
97b713ba
CH
1284 * Our capabilities prevent regular writeback or sync from ever calling
1285 * shmem_writepage; but a stacking filesystem might use ->writepage of
1286 * its underlying filesystem, in which case tmpfs should write out to
1287 * swap only in response to memory pressure, and not for the writeback
1288 * threads or sync.
d9fe526a 1289 */
48f170fb
HD
1290 if (!wbc->for_reclaim) {
1291 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1292 goto redirty;
1293 }
1635f6a7
HD
1294
1295 /*
1296 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1297 * value into swapfile.c, the only way we can correctly account for a
1298 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1299 *
1300 * That's okay for a page already fallocated earlier, but if we have
1301 * not yet completed the fallocation, then (a) we want to keep track
1302 * of this page in case we have to undo it, and (b) it may not be a
1303 * good idea to continue anyway, once we're pushing into swap. So
1304 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1305 */
1306 if (!PageUptodate(page)) {
1aac1400
HD
1307 if (inode->i_private) {
1308 struct shmem_falloc *shmem_falloc;
1309 spin_lock(&inode->i_lock);
1310 shmem_falloc = inode->i_private;
1311 if (shmem_falloc &&
8e205f77 1312 !shmem_falloc->waitq &&
1aac1400
HD
1313 index >= shmem_falloc->start &&
1314 index < shmem_falloc->next)
1315 shmem_falloc->nr_unswapped++;
1316 else
1317 shmem_falloc = NULL;
1318 spin_unlock(&inode->i_lock);
1319 if (shmem_falloc)
1320 goto redirty;
1321 }
1635f6a7
HD
1322 clear_highpage(page);
1323 flush_dcache_page(page);
1324 SetPageUptodate(page);
1325 }
1326
38d8b4e6 1327 swap = get_swap_page(page);
48f170fb
HD
1328 if (!swap.val)
1329 goto redirty;
d9fe526a 1330
b1dea800
HD
1331 /*
1332 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1333 * if it's not already there. Do it now before the page is
1334 * moved to swap cache, when its pagelock no longer protects
b1dea800 1335 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1336 * we've incremented swapped, because shmem_unuse_inode() will
1337 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1338 */
48f170fb
HD
1339 mutex_lock(&shmem_swaplist_mutex);
1340 if (list_empty(&info->swaplist))
1341 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1342
48f170fb 1343 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1344 spin_lock_irq(&info->lock);
6922c0c7 1345 shmem_recalc_inode(inode);
267a4c76 1346 info->swapped++;
4595ef88 1347 spin_unlock_irq(&info->lock);
6922c0c7 1348
267a4c76
HD
1349 swap_shmem_alloc(swap);
1350 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1351
6922c0c7 1352 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1353 BUG_ON(page_mapped(page));
9fab5619 1354 swap_writepage(page, wbc);
1da177e4
LT
1355 return 0;
1356 }
1357
6922c0c7 1358 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1359 put_swap_page(page, swap);
1da177e4
LT
1360redirty:
1361 set_page_dirty(page);
d9fe526a
HD
1362 if (wbc->for_reclaim)
1363 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1364 unlock_page(page);
1365 return 0;
1da177e4
LT
1366}
1367
75edd345 1368#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1369static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1370{
095f1fc4 1371 char buffer[64];
680d794b 1372
71fe804b 1373 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1374 return; /* show nothing */
680d794b 1375
a7a88b23 1376 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1377
1378 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1379}
71fe804b
LS
1380
1381static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1382{
1383 struct mempolicy *mpol = NULL;
1384 if (sbinfo->mpol) {
1385 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1386 mpol = sbinfo->mpol;
1387 mpol_get(mpol);
1388 spin_unlock(&sbinfo->stat_lock);
1389 }
1390 return mpol;
1391}
75edd345
HD
1392#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1393static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1394{
1395}
1396static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1397{
1398 return NULL;
1399}
1400#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1401#ifndef CONFIG_NUMA
1402#define vm_policy vm_private_data
1403#endif
680d794b 1404
800d8c63
KS
1405static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1406 struct shmem_inode_info *info, pgoff_t index)
1407{
1408 /* Create a pseudo vma that just contains the policy */
1409 vma->vm_start = 0;
1410 /* Bias interleave by inode number to distribute better across nodes */
1411 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1412 vma->vm_ops = NULL;
1413 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1414}
1415
1416static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1417{
1418 /* Drop reference taken by mpol_shared_policy_lookup() */
1419 mpol_cond_put(vma->vm_policy);
1420}
1421
41ffe5d5
HD
1422static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1423 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1424{
1da177e4 1425 struct vm_area_struct pvma;
18a2f371 1426 struct page *page;
e9e9b7ec 1427 struct vm_fault vmf;
52cd3b07 1428
800d8c63 1429 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1430 vmf.vma = &pvma;
1431 vmf.address = 0;
1432 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1433 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1434
800d8c63
KS
1435 return page;
1436}
1437
1438static struct page *shmem_alloc_hugepage(gfp_t gfp,
1439 struct shmem_inode_info *info, pgoff_t index)
1440{
1441 struct vm_area_struct pvma;
1442 struct inode *inode = &info->vfs_inode;
1443 struct address_space *mapping = inode->i_mapping;
4620a06e 1444 pgoff_t idx, hindex;
800d8c63
KS
1445 void __rcu **results;
1446 struct page *page;
1447
e496cf3d 1448 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1449 return NULL;
1450
4620a06e 1451 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63 1452 rcu_read_lock();
b93b0163 1453 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
800d8c63
KS
1454 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1455 rcu_read_unlock();
1456 return NULL;
1457 }
1458 rcu_read_unlock();
18a2f371 1459
800d8c63
KS
1460 shmem_pseudo_vma_init(&pvma, info, hindex);
1461 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1462 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1463 shmem_pseudo_vma_destroy(&pvma);
1464 if (page)
1465 prep_transhuge_page(page);
18a2f371 1466 return page;
1da177e4
LT
1467}
1468
02098fea 1469static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1470 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1471{
1472 struct vm_area_struct pvma;
18a2f371 1473 struct page *page;
1da177e4 1474
800d8c63
KS
1475 shmem_pseudo_vma_init(&pvma, info, index);
1476 page = alloc_page_vma(gfp, &pvma, 0);
1477 shmem_pseudo_vma_destroy(&pvma);
1478
1479 return page;
1480}
1481
1482static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1483 struct inode *inode,
800d8c63
KS
1484 pgoff_t index, bool huge)
1485{
0f079694 1486 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1487 struct page *page;
1488 int nr;
1489 int err = -ENOSPC;
52cd3b07 1490
e496cf3d 1491 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1492 huge = false;
1493 nr = huge ? HPAGE_PMD_NR : 1;
1494
0f079694 1495 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1496 goto failed;
800d8c63
KS
1497
1498 if (huge)
1499 page = shmem_alloc_hugepage(gfp, info, index);
1500 else
1501 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1502 if (page) {
1503 __SetPageLocked(page);
1504 __SetPageSwapBacked(page);
800d8c63 1505 return page;
75edd345 1506 }
18a2f371 1507
800d8c63 1508 err = -ENOMEM;
0f079694 1509 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1510failed:
1511 return ERR_PTR(err);
1da177e4 1512}
71fe804b 1513
bde05d1c
HD
1514/*
1515 * When a page is moved from swapcache to shmem filecache (either by the
1516 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1517 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1518 * ignorance of the mapping it belongs to. If that mapping has special
1519 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1520 * we may need to copy to a suitable page before moving to filecache.
1521 *
1522 * In a future release, this may well be extended to respect cpuset and
1523 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1524 * but for now it is a simple matter of zone.
1525 */
1526static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1527{
1528 return page_zonenum(page) > gfp_zone(gfp);
1529}
1530
1531static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1532 struct shmem_inode_info *info, pgoff_t index)
1533{
1534 struct page *oldpage, *newpage;
1535 struct address_space *swap_mapping;
1536 pgoff_t swap_index;
1537 int error;
1538
1539 oldpage = *pagep;
1540 swap_index = page_private(oldpage);
1541 swap_mapping = page_mapping(oldpage);
1542
1543 /*
1544 * We have arrived here because our zones are constrained, so don't
1545 * limit chance of success by further cpuset and node constraints.
1546 */
1547 gfp &= ~GFP_CONSTRAINT_MASK;
1548 newpage = shmem_alloc_page(gfp, info, index);
1549 if (!newpage)
1550 return -ENOMEM;
bde05d1c 1551
09cbfeaf 1552 get_page(newpage);
bde05d1c 1553 copy_highpage(newpage, oldpage);
0142ef6c 1554 flush_dcache_page(newpage);
bde05d1c 1555
9956edf3
HD
1556 __SetPageLocked(newpage);
1557 __SetPageSwapBacked(newpage);
bde05d1c 1558 SetPageUptodate(newpage);
bde05d1c 1559 set_page_private(newpage, swap_index);
bde05d1c
HD
1560 SetPageSwapCache(newpage);
1561
1562 /*
1563 * Our caller will very soon move newpage out of swapcache, but it's
1564 * a nice clean interface for us to replace oldpage by newpage there.
1565 */
b93b0163 1566 xa_lock_irq(&swap_mapping->i_pages);
bde05d1c
HD
1567 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1568 newpage);
0142ef6c 1569 if (!error) {
11fb9989
MG
1570 __inc_node_page_state(newpage, NR_FILE_PAGES);
1571 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1572 }
b93b0163 1573 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1574
0142ef6c
HD
1575 if (unlikely(error)) {
1576 /*
1577 * Is this possible? I think not, now that our callers check
1578 * both PageSwapCache and page_private after getting page lock;
1579 * but be defensive. Reverse old to newpage for clear and free.
1580 */
1581 oldpage = newpage;
1582 } else {
6a93ca8f 1583 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1584 lru_cache_add_anon(newpage);
1585 *pagep = newpage;
1586 }
bde05d1c
HD
1587
1588 ClearPageSwapCache(oldpage);
1589 set_page_private(oldpage, 0);
1590
1591 unlock_page(oldpage);
09cbfeaf
KS
1592 put_page(oldpage);
1593 put_page(oldpage);
0142ef6c 1594 return error;
bde05d1c
HD
1595}
1596
1da177e4 1597/*
68da9f05 1598 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1599 *
1600 * If we allocate a new one we do not mark it dirty. That's up to the
1601 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1602 * entry since a page cannot live in both the swap and page cache.
1603 *
1604 * fault_mm and fault_type are only supplied by shmem_fault:
1605 * otherwise they are NULL.
1da177e4 1606 */
41ffe5d5 1607static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1608 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1609 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1610{
1611 struct address_space *mapping = inode->i_mapping;
23f919d4 1612 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1613 struct shmem_sb_info *sbinfo;
9e18eb29 1614 struct mm_struct *charge_mm;
00501b53 1615 struct mem_cgroup *memcg;
27ab7006 1616 struct page *page;
1da177e4 1617 swp_entry_t swap;
657e3038 1618 enum sgp_type sgp_huge = sgp;
800d8c63 1619 pgoff_t hindex = index;
1da177e4 1620 int error;
54af6042 1621 int once = 0;
1635f6a7 1622 int alloced = 0;
1da177e4 1623
09cbfeaf 1624 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1625 return -EFBIG;
657e3038
KS
1626 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1627 sgp = SGP_CACHE;
1da177e4 1628repeat:
54af6042 1629 swap.val = 0;
0cd6144a 1630 page = find_lock_entry(mapping, index);
54af6042
HD
1631 if (radix_tree_exceptional_entry(page)) {
1632 swap = radix_to_swp_entry(page);
1633 page = NULL;
1634 }
1635
75edd345 1636 if (sgp <= SGP_CACHE &&
09cbfeaf 1637 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1638 error = -EINVAL;
267a4c76 1639 goto unlock;
54af6042
HD
1640 }
1641
66d2f4d2
HD
1642 if (page && sgp == SGP_WRITE)
1643 mark_page_accessed(page);
1644
1635f6a7
HD
1645 /* fallocated page? */
1646 if (page && !PageUptodate(page)) {
1647 if (sgp != SGP_READ)
1648 goto clear;
1649 unlock_page(page);
09cbfeaf 1650 put_page(page);
1635f6a7
HD
1651 page = NULL;
1652 }
54af6042 1653 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1654 *pagep = page;
1655 return 0;
27ab7006
HD
1656 }
1657
1658 /*
54af6042
HD
1659 * Fast cache lookup did not find it:
1660 * bring it back from swap or allocate.
27ab7006 1661 */
54af6042 1662 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1663 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1664
1da177e4
LT
1665 if (swap.val) {
1666 /* Look it up and read it in.. */
ec560175 1667 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1668 if (!page) {
9e18eb29
ALC
1669 /* Or update major stats only when swapin succeeds?? */
1670 if (fault_type) {
68da9f05 1671 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1672 count_vm_event(PGMAJFAULT);
2262185c 1673 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1674 }
1675 /* Here we actually start the io */
41ffe5d5 1676 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1677 if (!page) {
54af6042
HD
1678 error = -ENOMEM;
1679 goto failed;
1da177e4 1680 }
1da177e4
LT
1681 }
1682
1683 /* We have to do this with page locked to prevent races */
54af6042 1684 lock_page(page);
0142ef6c 1685 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1686 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1687 error = -EEXIST; /* try again */
d1899228 1688 goto unlock;
bde05d1c 1689 }
27ab7006 1690 if (!PageUptodate(page)) {
1da177e4 1691 error = -EIO;
54af6042 1692 goto failed;
1da177e4 1693 }
54af6042
HD
1694 wait_on_page_writeback(page);
1695
bde05d1c
HD
1696 if (shmem_should_replace_page(page, gfp)) {
1697 error = shmem_replace_page(&page, gfp, info, index);
1698 if (error)
1699 goto failed;
1da177e4 1700 }
27ab7006 1701
9e18eb29 1702 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1703 false);
d1899228 1704 if (!error) {
aa3b1895 1705 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1706 swp_to_radix_entry(swap));
215c02bc
HD
1707 /*
1708 * We already confirmed swap under page lock, and make
1709 * no memory allocation here, so usually no possibility
1710 * of error; but free_swap_and_cache() only trylocks a
1711 * page, so it is just possible that the entry has been
1712 * truncated or holepunched since swap was confirmed.
1713 * shmem_undo_range() will have done some of the
1714 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1715 * the rest.
215c02bc
HD
1716 * Reset swap.val? No, leave it so "failed" goes back to
1717 * "repeat": reading a hole and writing should succeed.
1718 */
00501b53 1719 if (error) {
f627c2f5 1720 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1721 delete_from_swap_cache(page);
00501b53 1722 }
d1899228 1723 }
54af6042
HD
1724 if (error)
1725 goto failed;
1726
f627c2f5 1727 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1728
4595ef88 1729 spin_lock_irq(&info->lock);
285b2c4f 1730 info->swapped--;
54af6042 1731 shmem_recalc_inode(inode);
4595ef88 1732 spin_unlock_irq(&info->lock);
54af6042 1733
66d2f4d2
HD
1734 if (sgp == SGP_WRITE)
1735 mark_page_accessed(page);
1736
54af6042 1737 delete_from_swap_cache(page);
27ab7006
HD
1738 set_page_dirty(page);
1739 swap_free(swap);
1740
54af6042 1741 } else {
cfda0526
MR
1742 if (vma && userfaultfd_missing(vma)) {
1743 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1744 return 0;
1745 }
1746
800d8c63
KS
1747 /* shmem_symlink() */
1748 if (mapping->a_ops != &shmem_aops)
1749 goto alloc_nohuge;
657e3038 1750 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1751 goto alloc_nohuge;
1752 if (shmem_huge == SHMEM_HUGE_FORCE)
1753 goto alloc_huge;
1754 switch (sbinfo->huge) {
1755 loff_t i_size;
1756 pgoff_t off;
1757 case SHMEM_HUGE_NEVER:
1758 goto alloc_nohuge;
1759 case SHMEM_HUGE_WITHIN_SIZE:
1760 off = round_up(index, HPAGE_PMD_NR);
1761 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1762 if (i_size >= HPAGE_PMD_SIZE &&
1763 i_size >> PAGE_SHIFT >= off)
1764 goto alloc_huge;
1765 /* fallthrough */
1766 case SHMEM_HUGE_ADVISE:
657e3038
KS
1767 if (sgp_huge == SGP_HUGE)
1768 goto alloc_huge;
1769 /* TODO: implement fadvise() hints */
800d8c63 1770 goto alloc_nohuge;
54af6042 1771 }
1da177e4 1772
800d8c63 1773alloc_huge:
0f079694 1774 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1775 if (IS_ERR(page)) {
0f079694 1776alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1777 index, false);
1da177e4 1778 }
800d8c63 1779 if (IS_ERR(page)) {
779750d2 1780 int retry = 5;
800d8c63
KS
1781 error = PTR_ERR(page);
1782 page = NULL;
779750d2
KS
1783 if (error != -ENOSPC)
1784 goto failed;
1785 /*
1786 * Try to reclaim some spece by splitting a huge page
1787 * beyond i_size on the filesystem.
1788 */
1789 while (retry--) {
1790 int ret;
1791 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1792 if (ret == SHRINK_STOP)
1793 break;
1794 if (ret)
1795 goto alloc_nohuge;
1796 }
800d8c63
KS
1797 goto failed;
1798 }
1799
1800 if (PageTransHuge(page))
1801 hindex = round_down(index, HPAGE_PMD_NR);
1802 else
1803 hindex = index;
1804
66d2f4d2 1805 if (sgp == SGP_WRITE)
eb39d618 1806 __SetPageReferenced(page);
66d2f4d2 1807
9e18eb29 1808 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1809 PageTransHuge(page));
54af6042 1810 if (error)
800d8c63
KS
1811 goto unacct;
1812 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1813 compound_order(page));
b065b432 1814 if (!error) {
800d8c63 1815 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1816 NULL);
b065b432
HD
1817 radix_tree_preload_end();
1818 }
1819 if (error) {
800d8c63
KS
1820 mem_cgroup_cancel_charge(page, memcg,
1821 PageTransHuge(page));
1822 goto unacct;
b065b432 1823 }
800d8c63
KS
1824 mem_cgroup_commit_charge(page, memcg, false,
1825 PageTransHuge(page));
54af6042
HD
1826 lru_cache_add_anon(page);
1827
4595ef88 1828 spin_lock_irq(&info->lock);
800d8c63
KS
1829 info->alloced += 1 << compound_order(page);
1830 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1831 shmem_recalc_inode(inode);
4595ef88 1832 spin_unlock_irq(&info->lock);
1635f6a7 1833 alloced = true;
54af6042 1834
779750d2
KS
1835 if (PageTransHuge(page) &&
1836 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1837 hindex + HPAGE_PMD_NR - 1) {
1838 /*
1839 * Part of the huge page is beyond i_size: subject
1840 * to shrink under memory pressure.
1841 */
1842 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1843 /*
1844 * _careful to defend against unlocked access to
1845 * ->shrink_list in shmem_unused_huge_shrink()
1846 */
1847 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1848 list_add_tail(&info->shrinklist,
1849 &sbinfo->shrinklist);
1850 sbinfo->shrinklist_len++;
1851 }
1852 spin_unlock(&sbinfo->shrinklist_lock);
1853 }
1854
ec9516fb 1855 /*
1635f6a7
HD
1856 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1857 */
1858 if (sgp == SGP_FALLOC)
1859 sgp = SGP_WRITE;
1860clear:
1861 /*
1862 * Let SGP_WRITE caller clear ends if write does not fill page;
1863 * but SGP_FALLOC on a page fallocated earlier must initialize
1864 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1865 */
800d8c63
KS
1866 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1867 struct page *head = compound_head(page);
1868 int i;
1869
1870 for (i = 0; i < (1 << compound_order(head)); i++) {
1871 clear_highpage(head + i);
1872 flush_dcache_page(head + i);
1873 }
1874 SetPageUptodate(head);
ec9516fb 1875 }
1da177e4 1876 }
bde05d1c 1877
54af6042 1878 /* Perhaps the file has been truncated since we checked */
75edd345 1879 if (sgp <= SGP_CACHE &&
09cbfeaf 1880 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1881 if (alloced) {
1882 ClearPageDirty(page);
1883 delete_from_page_cache(page);
4595ef88 1884 spin_lock_irq(&info->lock);
267a4c76 1885 shmem_recalc_inode(inode);
4595ef88 1886 spin_unlock_irq(&info->lock);
267a4c76 1887 }
54af6042 1888 error = -EINVAL;
267a4c76 1889 goto unlock;
e83c32e8 1890 }
800d8c63 1891 *pagep = page + index - hindex;
54af6042 1892 return 0;
1da177e4 1893
59a16ead 1894 /*
54af6042 1895 * Error recovery.
59a16ead 1896 */
54af6042 1897unacct:
0f079694 1898 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1899
1900 if (PageTransHuge(page)) {
1901 unlock_page(page);
1902 put_page(page);
1903 goto alloc_nohuge;
1904 }
54af6042 1905failed:
267a4c76 1906 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1907 error = -EEXIST;
1908unlock:
27ab7006 1909 if (page) {
54af6042 1910 unlock_page(page);
09cbfeaf 1911 put_page(page);
54af6042
HD
1912 }
1913 if (error == -ENOSPC && !once++) {
4595ef88 1914 spin_lock_irq(&info->lock);
54af6042 1915 shmem_recalc_inode(inode);
4595ef88 1916 spin_unlock_irq(&info->lock);
27ab7006 1917 goto repeat;
ff36b801 1918 }
d1899228 1919 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1920 goto repeat;
1921 return error;
1da177e4
LT
1922}
1923
10d20bd2
LT
1924/*
1925 * This is like autoremove_wake_function, but it removes the wait queue
1926 * entry unconditionally - even if something else had already woken the
1927 * target.
1928 */
ac6424b9 1929static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1930{
1931 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1932 list_del_init(&wait->entry);
10d20bd2
LT
1933 return ret;
1934}
1935
11bac800 1936static int shmem_fault(struct vm_fault *vmf)
1da177e4 1937{
11bac800 1938 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1939 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1940 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1941 enum sgp_type sgp;
1da177e4 1942 int error;
68da9f05 1943 int ret = VM_FAULT_LOCKED;
1da177e4 1944
f00cdc6d
HD
1945 /*
1946 * Trinity finds that probing a hole which tmpfs is punching can
1947 * prevent the hole-punch from ever completing: which in turn
1948 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1949 * faulting pages into the hole while it's being punched. Although
1950 * shmem_undo_range() does remove the additions, it may be unable to
1951 * keep up, as each new page needs its own unmap_mapping_range() call,
1952 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1953 *
1954 * It does not matter if we sometimes reach this check just before the
1955 * hole-punch begins, so that one fault then races with the punch:
1956 * we just need to make racing faults a rare case.
1957 *
1958 * The implementation below would be much simpler if we just used a
1959 * standard mutex or completion: but we cannot take i_mutex in fault,
1960 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1961 */
1962 if (unlikely(inode->i_private)) {
1963 struct shmem_falloc *shmem_falloc;
1964
1965 spin_lock(&inode->i_lock);
1966 shmem_falloc = inode->i_private;
8e205f77
HD
1967 if (shmem_falloc &&
1968 shmem_falloc->waitq &&
1969 vmf->pgoff >= shmem_falloc->start &&
1970 vmf->pgoff < shmem_falloc->next) {
1971 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1972 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1973
1974 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1975 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1976 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1977 /* It's polite to up mmap_sem if we can */
f00cdc6d 1978 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1979 ret = VM_FAULT_RETRY;
f00cdc6d 1980 }
8e205f77
HD
1981
1982 shmem_falloc_waitq = shmem_falloc->waitq;
1983 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1984 TASK_UNINTERRUPTIBLE);
1985 spin_unlock(&inode->i_lock);
1986 schedule();
1987
1988 /*
1989 * shmem_falloc_waitq points into the shmem_fallocate()
1990 * stack of the hole-punching task: shmem_falloc_waitq
1991 * is usually invalid by the time we reach here, but
1992 * finish_wait() does not dereference it in that case;
1993 * though i_lock needed lest racing with wake_up_all().
1994 */
1995 spin_lock(&inode->i_lock);
1996 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1997 spin_unlock(&inode->i_lock);
1998 return ret;
f00cdc6d 1999 }
8e205f77 2000 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2001 }
2002
657e3038 2003 sgp = SGP_CACHE;
18600332
MH
2004
2005 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2006 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2007 sgp = SGP_NOHUGE;
18600332
MH
2008 else if (vma->vm_flags & VM_HUGEPAGE)
2009 sgp = SGP_HUGE;
657e3038
KS
2010
2011 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2012 gfp, vma, vmf, &ret);
d0217ac0
NP
2013 if (error)
2014 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 2015 return ret;
1da177e4
LT
2016}
2017
c01d5b30
HD
2018unsigned long shmem_get_unmapped_area(struct file *file,
2019 unsigned long uaddr, unsigned long len,
2020 unsigned long pgoff, unsigned long flags)
2021{
2022 unsigned long (*get_area)(struct file *,
2023 unsigned long, unsigned long, unsigned long, unsigned long);
2024 unsigned long addr;
2025 unsigned long offset;
2026 unsigned long inflated_len;
2027 unsigned long inflated_addr;
2028 unsigned long inflated_offset;
2029
2030 if (len > TASK_SIZE)
2031 return -ENOMEM;
2032
2033 get_area = current->mm->get_unmapped_area;
2034 addr = get_area(file, uaddr, len, pgoff, flags);
2035
e496cf3d 2036 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2037 return addr;
2038 if (IS_ERR_VALUE(addr))
2039 return addr;
2040 if (addr & ~PAGE_MASK)
2041 return addr;
2042 if (addr > TASK_SIZE - len)
2043 return addr;
2044
2045 if (shmem_huge == SHMEM_HUGE_DENY)
2046 return addr;
2047 if (len < HPAGE_PMD_SIZE)
2048 return addr;
2049 if (flags & MAP_FIXED)
2050 return addr;
2051 /*
2052 * Our priority is to support MAP_SHARED mapped hugely;
2053 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2054 * But if caller specified an address hint, respect that as before.
2055 */
2056 if (uaddr)
2057 return addr;
2058
2059 if (shmem_huge != SHMEM_HUGE_FORCE) {
2060 struct super_block *sb;
2061
2062 if (file) {
2063 VM_BUG_ON(file->f_op != &shmem_file_operations);
2064 sb = file_inode(file)->i_sb;
2065 } else {
2066 /*
2067 * Called directly from mm/mmap.c, or drivers/char/mem.c
2068 * for "/dev/zero", to create a shared anonymous object.
2069 */
2070 if (IS_ERR(shm_mnt))
2071 return addr;
2072 sb = shm_mnt->mnt_sb;
2073 }
3089bf61 2074 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2075 return addr;
2076 }
2077
2078 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2079 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2080 return addr;
2081 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2082 return addr;
2083
2084 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2085 if (inflated_len > TASK_SIZE)
2086 return addr;
2087 if (inflated_len < len)
2088 return addr;
2089
2090 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2091 if (IS_ERR_VALUE(inflated_addr))
2092 return addr;
2093 if (inflated_addr & ~PAGE_MASK)
2094 return addr;
2095
2096 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2097 inflated_addr += offset - inflated_offset;
2098 if (inflated_offset > offset)
2099 inflated_addr += HPAGE_PMD_SIZE;
2100
2101 if (inflated_addr > TASK_SIZE - len)
2102 return addr;
2103 return inflated_addr;
2104}
2105
1da177e4 2106#ifdef CONFIG_NUMA
41ffe5d5 2107static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2108{
496ad9aa 2109 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2110 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2111}
2112
d8dc74f2
AB
2113static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2114 unsigned long addr)
1da177e4 2115{
496ad9aa 2116 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2117 pgoff_t index;
1da177e4 2118
41ffe5d5
HD
2119 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2120 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2121}
2122#endif
2123
2124int shmem_lock(struct file *file, int lock, struct user_struct *user)
2125{
496ad9aa 2126 struct inode *inode = file_inode(file);
1da177e4
LT
2127 struct shmem_inode_info *info = SHMEM_I(inode);
2128 int retval = -ENOMEM;
2129
4595ef88 2130 spin_lock_irq(&info->lock);
1da177e4
LT
2131 if (lock && !(info->flags & VM_LOCKED)) {
2132 if (!user_shm_lock(inode->i_size, user))
2133 goto out_nomem;
2134 info->flags |= VM_LOCKED;
89e004ea 2135 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2136 }
2137 if (!lock && (info->flags & VM_LOCKED) && user) {
2138 user_shm_unlock(inode->i_size, user);
2139 info->flags &= ~VM_LOCKED;
89e004ea 2140 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2141 }
2142 retval = 0;
89e004ea 2143
1da177e4 2144out_nomem:
4595ef88 2145 spin_unlock_irq(&info->lock);
1da177e4
LT
2146 return retval;
2147}
2148
9b83a6a8 2149static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2150{
2151 file_accessed(file);
2152 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2153 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2154 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2155 (vma->vm_end & HPAGE_PMD_MASK)) {
2156 khugepaged_enter(vma, vma->vm_flags);
2157 }
1da177e4
LT
2158 return 0;
2159}
2160
454abafe 2161static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2162 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2163{
2164 struct inode *inode;
2165 struct shmem_inode_info *info;
2166 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2167
5b04c689
PE
2168 if (shmem_reserve_inode(sb))
2169 return NULL;
1da177e4
LT
2170
2171 inode = new_inode(sb);
2172 if (inode) {
85fe4025 2173 inode->i_ino = get_next_ino();
454abafe 2174 inode_init_owner(inode, dir, mode);
1da177e4 2175 inode->i_blocks = 0;
078cd827 2176 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2177 inode->i_generation = get_seconds();
1da177e4
LT
2178 info = SHMEM_I(inode);
2179 memset(info, 0, (char *)inode - (char *)info);
2180 spin_lock_init(&info->lock);
40e041a2 2181 info->seals = F_SEAL_SEAL;
0b0a0806 2182 info->flags = flags & VM_NORESERVE;
779750d2 2183 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2184 INIT_LIST_HEAD(&info->swaplist);
38f38657 2185 simple_xattrs_init(&info->xattrs);
72c04902 2186 cache_no_acl(inode);
1da177e4
LT
2187
2188 switch (mode & S_IFMT) {
2189 default:
39f0247d 2190 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2191 init_special_inode(inode, mode, dev);
2192 break;
2193 case S_IFREG:
14fcc23f 2194 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2195 inode->i_op = &shmem_inode_operations;
2196 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2197 mpol_shared_policy_init(&info->policy,
2198 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2199 break;
2200 case S_IFDIR:
d8c76e6f 2201 inc_nlink(inode);
1da177e4
LT
2202 /* Some things misbehave if size == 0 on a directory */
2203 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2204 inode->i_op = &shmem_dir_inode_operations;
2205 inode->i_fop = &simple_dir_operations;
2206 break;
2207 case S_IFLNK:
2208 /*
2209 * Must not load anything in the rbtree,
2210 * mpol_free_shared_policy will not be called.
2211 */
71fe804b 2212 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2213 break;
2214 }
5b04c689
PE
2215 } else
2216 shmem_free_inode(sb);
1da177e4
LT
2217 return inode;
2218}
2219
0cd6144a
JW
2220bool shmem_mapping(struct address_space *mapping)
2221{
f8005451 2222 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2223}
2224
8d103963
MR
2225static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2226 pmd_t *dst_pmd,
2227 struct vm_area_struct *dst_vma,
2228 unsigned long dst_addr,
2229 unsigned long src_addr,
2230 bool zeropage,
2231 struct page **pagep)
4c27fe4c
MR
2232{
2233 struct inode *inode = file_inode(dst_vma->vm_file);
2234 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2235 struct address_space *mapping = inode->i_mapping;
2236 gfp_t gfp = mapping_gfp_mask(mapping);
2237 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2238 struct mem_cgroup *memcg;
2239 spinlock_t *ptl;
2240 void *page_kaddr;
2241 struct page *page;
2242 pte_t _dst_pte, *dst_pte;
2243 int ret;
2244
cb658a45 2245 ret = -ENOMEM;
0f079694 2246 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2247 goto out;
4c27fe4c 2248
cb658a45 2249 if (!*pagep) {
4c27fe4c
MR
2250 page = shmem_alloc_page(gfp, info, pgoff);
2251 if (!page)
0f079694 2252 goto out_unacct_blocks;
4c27fe4c 2253
8d103963
MR
2254 if (!zeropage) { /* mcopy_atomic */
2255 page_kaddr = kmap_atomic(page);
2256 ret = copy_from_user(page_kaddr,
2257 (const void __user *)src_addr,
2258 PAGE_SIZE);
2259 kunmap_atomic(page_kaddr);
2260
2261 /* fallback to copy_from_user outside mmap_sem */
2262 if (unlikely(ret)) {
2263 *pagep = page;
2264 shmem_inode_unacct_blocks(inode, 1);
2265 /* don't free the page */
2266 return -EFAULT;
2267 }
2268 } else { /* mfill_zeropage_atomic */
2269 clear_highpage(page);
4c27fe4c
MR
2270 }
2271 } else {
2272 page = *pagep;
2273 *pagep = NULL;
2274 }
2275
9cc90c66
AA
2276 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2277 __SetPageLocked(page);
2278 __SetPageSwapBacked(page);
a425d358 2279 __SetPageUptodate(page);
9cc90c66 2280
4c27fe4c
MR
2281 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2282 if (ret)
2283 goto out_release;
2284
2285 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2286 if (!ret) {
2287 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2288 radix_tree_preload_end();
2289 }
2290 if (ret)
2291 goto out_release_uncharge;
2292
2293 mem_cgroup_commit_charge(page, memcg, false, false);
2294
2295 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2296 if (dst_vma->vm_flags & VM_WRITE)
2297 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2298
2299 ret = -EEXIST;
2300 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2301 if (!pte_none(*dst_pte))
2302 goto out_release_uncharge_unlock;
2303
4c27fe4c
MR
2304 lru_cache_add_anon(page);
2305
2306 spin_lock(&info->lock);
2307 info->alloced++;
2308 inode->i_blocks += BLOCKS_PER_PAGE;
2309 shmem_recalc_inode(inode);
2310 spin_unlock(&info->lock);
2311
2312 inc_mm_counter(dst_mm, mm_counter_file(page));
2313 page_add_file_rmap(page, false);
2314 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2315
2316 /* No need to invalidate - it was non-present before */
2317 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2318 unlock_page(page);
2319 pte_unmap_unlock(dst_pte, ptl);
2320 ret = 0;
2321out:
2322 return ret;
2323out_release_uncharge_unlock:
2324 pte_unmap_unlock(dst_pte, ptl);
2325out_release_uncharge:
2326 mem_cgroup_cancel_charge(page, memcg, false);
2327out_release:
9cc90c66 2328 unlock_page(page);
4c27fe4c 2329 put_page(page);
4c27fe4c 2330out_unacct_blocks:
0f079694 2331 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2332 goto out;
2333}
2334
8d103963
MR
2335int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2336 pmd_t *dst_pmd,
2337 struct vm_area_struct *dst_vma,
2338 unsigned long dst_addr,
2339 unsigned long src_addr,
2340 struct page **pagep)
2341{
2342 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2343 dst_addr, src_addr, false, pagep);
2344}
2345
2346int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2347 pmd_t *dst_pmd,
2348 struct vm_area_struct *dst_vma,
2349 unsigned long dst_addr)
2350{
2351 struct page *page = NULL;
2352
2353 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2354 dst_addr, 0, true, &page);
2355}
2356
1da177e4 2357#ifdef CONFIG_TMPFS
92e1d5be 2358static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2359static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2360
6d9d88d0
JS
2361#ifdef CONFIG_TMPFS_XATTR
2362static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2363#else
2364#define shmem_initxattrs NULL
2365#endif
2366
1da177e4 2367static int
800d15a5
NP
2368shmem_write_begin(struct file *file, struct address_space *mapping,
2369 loff_t pos, unsigned len, unsigned flags,
2370 struct page **pagep, void **fsdata)
1da177e4 2371{
800d15a5 2372 struct inode *inode = mapping->host;
40e041a2 2373 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2374 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2375
2376 /* i_mutex is held by caller */
3f472cc9 2377 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2378 if (info->seals & F_SEAL_WRITE)
2379 return -EPERM;
2380 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2381 return -EPERM;
2382 }
2383
9e18eb29 2384 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2385}
2386
2387static int
2388shmem_write_end(struct file *file, struct address_space *mapping,
2389 loff_t pos, unsigned len, unsigned copied,
2390 struct page *page, void *fsdata)
2391{
2392 struct inode *inode = mapping->host;
2393
d3602444
HD
2394 if (pos + copied > inode->i_size)
2395 i_size_write(inode, pos + copied);
2396
ec9516fb 2397 if (!PageUptodate(page)) {
800d8c63
KS
2398 struct page *head = compound_head(page);
2399 if (PageTransCompound(page)) {
2400 int i;
2401
2402 for (i = 0; i < HPAGE_PMD_NR; i++) {
2403 if (head + i == page)
2404 continue;
2405 clear_highpage(head + i);
2406 flush_dcache_page(head + i);
2407 }
2408 }
09cbfeaf
KS
2409 if (copied < PAGE_SIZE) {
2410 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2411 zero_user_segments(page, 0, from,
09cbfeaf 2412 from + copied, PAGE_SIZE);
ec9516fb 2413 }
800d8c63 2414 SetPageUptodate(head);
ec9516fb 2415 }
800d15a5 2416 set_page_dirty(page);
6746aff7 2417 unlock_page(page);
09cbfeaf 2418 put_page(page);
800d15a5 2419
800d15a5 2420 return copied;
1da177e4
LT
2421}
2422
2ba5bbed 2423static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2424{
6e58e79d
AV
2425 struct file *file = iocb->ki_filp;
2426 struct inode *inode = file_inode(file);
1da177e4 2427 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2428 pgoff_t index;
2429 unsigned long offset;
a0ee5ec5 2430 enum sgp_type sgp = SGP_READ;
f7c1d074 2431 int error = 0;
cb66a7a1 2432 ssize_t retval = 0;
6e58e79d 2433 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2434
2435 /*
2436 * Might this read be for a stacking filesystem? Then when reading
2437 * holes of a sparse file, we actually need to allocate those pages,
2438 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2439 */
777eda2c 2440 if (!iter_is_iovec(to))
75edd345 2441 sgp = SGP_CACHE;
1da177e4 2442
09cbfeaf
KS
2443 index = *ppos >> PAGE_SHIFT;
2444 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2445
2446 for (;;) {
2447 struct page *page = NULL;
41ffe5d5
HD
2448 pgoff_t end_index;
2449 unsigned long nr, ret;
1da177e4
LT
2450 loff_t i_size = i_size_read(inode);
2451
09cbfeaf 2452 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2453 if (index > end_index)
2454 break;
2455 if (index == end_index) {
09cbfeaf 2456 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2457 if (nr <= offset)
2458 break;
2459 }
2460
9e18eb29 2461 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2462 if (error) {
2463 if (error == -EINVAL)
2464 error = 0;
1da177e4
LT
2465 break;
2466 }
75edd345
HD
2467 if (page) {
2468 if (sgp == SGP_CACHE)
2469 set_page_dirty(page);
d3602444 2470 unlock_page(page);
75edd345 2471 }
1da177e4
LT
2472
2473 /*
2474 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2475 * are called without i_mutex protection against truncate
1da177e4 2476 */
09cbfeaf 2477 nr = PAGE_SIZE;
1da177e4 2478 i_size = i_size_read(inode);
09cbfeaf 2479 end_index = i_size >> PAGE_SHIFT;
1da177e4 2480 if (index == end_index) {
09cbfeaf 2481 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2482 if (nr <= offset) {
2483 if (page)
09cbfeaf 2484 put_page(page);
1da177e4
LT
2485 break;
2486 }
2487 }
2488 nr -= offset;
2489
2490 if (page) {
2491 /*
2492 * If users can be writing to this page using arbitrary
2493 * virtual addresses, take care about potential aliasing
2494 * before reading the page on the kernel side.
2495 */
2496 if (mapping_writably_mapped(mapping))
2497 flush_dcache_page(page);
2498 /*
2499 * Mark the page accessed if we read the beginning.
2500 */
2501 if (!offset)
2502 mark_page_accessed(page);
b5810039 2503 } else {
1da177e4 2504 page = ZERO_PAGE(0);
09cbfeaf 2505 get_page(page);
b5810039 2506 }
1da177e4
LT
2507
2508 /*
2509 * Ok, we have the page, and it's up-to-date, so
2510 * now we can copy it to user space...
1da177e4 2511 */
2ba5bbed 2512 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2513 retval += ret;
1da177e4 2514 offset += ret;
09cbfeaf
KS
2515 index += offset >> PAGE_SHIFT;
2516 offset &= ~PAGE_MASK;
1da177e4 2517
09cbfeaf 2518 put_page(page);
2ba5bbed 2519 if (!iov_iter_count(to))
1da177e4 2520 break;
6e58e79d
AV
2521 if (ret < nr) {
2522 error = -EFAULT;
2523 break;
2524 }
1da177e4
LT
2525 cond_resched();
2526 }
2527
09cbfeaf 2528 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2529 file_accessed(file);
2530 return retval ? retval : error;
1da177e4
LT
2531}
2532
220f2ac9
HD
2533/*
2534 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2535 */
2536static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2537 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2538{
2539 struct page *page;
2540 struct pagevec pvec;
2541 pgoff_t indices[PAGEVEC_SIZE];
2542 bool done = false;
2543 int i;
2544
86679820 2545 pagevec_init(&pvec);
220f2ac9
HD
2546 pvec.nr = 1; /* start small: we may be there already */
2547 while (!done) {
0cd6144a 2548 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2549 pvec.nr, pvec.pages, indices);
2550 if (!pvec.nr) {
965c8e59 2551 if (whence == SEEK_DATA)
220f2ac9
HD
2552 index = end;
2553 break;
2554 }
2555 for (i = 0; i < pvec.nr; i++, index++) {
2556 if (index < indices[i]) {
965c8e59 2557 if (whence == SEEK_HOLE) {
220f2ac9
HD
2558 done = true;
2559 break;
2560 }
2561 index = indices[i];
2562 }
2563 page = pvec.pages[i];
2564 if (page && !radix_tree_exceptional_entry(page)) {
2565 if (!PageUptodate(page))
2566 page = NULL;
2567 }
2568 if (index >= end ||
965c8e59
AM
2569 (page && whence == SEEK_DATA) ||
2570 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2571 done = true;
2572 break;
2573 }
2574 }
0cd6144a 2575 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2576 pagevec_release(&pvec);
2577 pvec.nr = PAGEVEC_SIZE;
2578 cond_resched();
2579 }
2580 return index;
2581}
2582
965c8e59 2583static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2584{
2585 struct address_space *mapping = file->f_mapping;
2586 struct inode *inode = mapping->host;
2587 pgoff_t start, end;
2588 loff_t new_offset;
2589
965c8e59
AM
2590 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2591 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2592 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2593 inode_lock(inode);
220f2ac9
HD
2594 /* We're holding i_mutex so we can access i_size directly */
2595
2596 if (offset < 0)
2597 offset = -EINVAL;
2598 else if (offset >= inode->i_size)
2599 offset = -ENXIO;
2600 else {
09cbfeaf
KS
2601 start = offset >> PAGE_SHIFT;
2602 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2603 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2604 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2605 if (new_offset > offset) {
2606 if (new_offset < inode->i_size)
2607 offset = new_offset;
965c8e59 2608 else if (whence == SEEK_DATA)
220f2ac9
HD
2609 offset = -ENXIO;
2610 else
2611 offset = inode->i_size;
2612 }
2613 }
2614
387aae6f
HD
2615 if (offset >= 0)
2616 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2617 inode_unlock(inode);
220f2ac9
HD
2618 return offset;
2619}
2620
05f65b5c
DH
2621/*
2622 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2623 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2624 */
2625#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2626#define LAST_SCAN 4 /* about 150ms max */
2627
2628static void shmem_tag_pins(struct address_space *mapping)
2629{
2630 struct radix_tree_iter iter;
5b9c98f3 2631 void __rcu **slot;
05f65b5c
DH
2632 pgoff_t start;
2633 struct page *page;
2634
2635 lru_add_drain();
2636 start = 0;
2637 rcu_read_lock();
2638
b93b0163 2639 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
05f65b5c
DH
2640 page = radix_tree_deref_slot(slot);
2641 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2642 if (radix_tree_deref_retry(page)) {
2643 slot = radix_tree_iter_retry(&iter);
2644 continue;
2645 }
05f65b5c 2646 } else if (page_count(page) - page_mapcount(page) > 1) {
b93b0163
MW
2647 xa_lock_irq(&mapping->i_pages);
2648 radix_tree_tag_set(&mapping->i_pages, iter.index,
05f65b5c 2649 SHMEM_TAG_PINNED);
b93b0163 2650 xa_unlock_irq(&mapping->i_pages);
05f65b5c
DH
2651 }
2652
2653 if (need_resched()) {
148deab2 2654 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2655 cond_resched_rcu();
05f65b5c
DH
2656 }
2657 }
2658 rcu_read_unlock();
2659}
2660
2661/*
2662 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2663 * via get_user_pages(), drivers might have some pending I/O without any active
2664 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2665 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2666 * them to be dropped.
2667 * The caller must guarantee that no new user will acquire writable references
2668 * to those pages to avoid races.
2669 */
40e041a2
DH
2670static int shmem_wait_for_pins(struct address_space *mapping)
2671{
05f65b5c 2672 struct radix_tree_iter iter;
5b9c98f3 2673 void __rcu **slot;
05f65b5c
DH
2674 pgoff_t start;
2675 struct page *page;
2676 int error, scan;
2677
2678 shmem_tag_pins(mapping);
2679
2680 error = 0;
2681 for (scan = 0; scan <= LAST_SCAN; scan++) {
b93b0163 2682 if (!radix_tree_tagged(&mapping->i_pages, SHMEM_TAG_PINNED))
05f65b5c
DH
2683 break;
2684
2685 if (!scan)
2686 lru_add_drain_all();
2687 else if (schedule_timeout_killable((HZ << scan) / 200))
2688 scan = LAST_SCAN;
2689
2690 start = 0;
2691 rcu_read_lock();
b93b0163 2692 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter,
05f65b5c
DH
2693 start, SHMEM_TAG_PINNED) {
2694
2695 page = radix_tree_deref_slot(slot);
2696 if (radix_tree_exception(page)) {
2cf938aa
MW
2697 if (radix_tree_deref_retry(page)) {
2698 slot = radix_tree_iter_retry(&iter);
2699 continue;
2700 }
05f65b5c
DH
2701
2702 page = NULL;
2703 }
2704
2705 if (page &&
2706 page_count(page) - page_mapcount(page) != 1) {
2707 if (scan < LAST_SCAN)
2708 goto continue_resched;
2709
2710 /*
2711 * On the last scan, we clean up all those tags
2712 * we inserted; but make a note that we still
2713 * found pages pinned.
2714 */
2715 error = -EBUSY;
2716 }
2717
b93b0163
MW
2718 xa_lock_irq(&mapping->i_pages);
2719 radix_tree_tag_clear(&mapping->i_pages,
05f65b5c 2720 iter.index, SHMEM_TAG_PINNED);
b93b0163 2721 xa_unlock_irq(&mapping->i_pages);
05f65b5c
DH
2722continue_resched:
2723 if (need_resched()) {
148deab2 2724 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2725 cond_resched_rcu();
05f65b5c
DH
2726 }
2727 }
2728 rcu_read_unlock();
2729 }
2730
2731 return error;
40e041a2
DH
2732}
2733
47b9012e
MAL
2734static unsigned int *memfd_file_seals_ptr(struct file *file)
2735{
2736 if (file->f_op == &shmem_file_operations)
2737 return &SHMEM_I(file_inode(file))->seals;
2738
2739#ifdef CONFIG_HUGETLBFS
2740 if (file->f_op == &hugetlbfs_file_operations)
2741 return &HUGETLBFS_I(file_inode(file))->seals;
2742#endif
2743
2744 return NULL;
2745}
2746
40e041a2
DH
2747#define F_ALL_SEALS (F_SEAL_SEAL | \
2748 F_SEAL_SHRINK | \
2749 F_SEAL_GROW | \
2750 F_SEAL_WRITE)
2751
5aadc431 2752static int memfd_add_seals(struct file *file, unsigned int seals)
40e041a2
DH
2753{
2754 struct inode *inode = file_inode(file);
47b9012e 2755 unsigned int *file_seals;
40e041a2
DH
2756 int error;
2757
2758 /*
2759 * SEALING
2760 * Sealing allows multiple parties to share a shmem-file but restrict
2761 * access to a specific subset of file operations. Seals can only be
2762 * added, but never removed. This way, mutually untrusted parties can
2763 * share common memory regions with a well-defined policy. A malicious
2764 * peer can thus never perform unwanted operations on a shared object.
2765 *
2766 * Seals are only supported on special shmem-files and always affect
2767 * the whole underlying inode. Once a seal is set, it may prevent some
2768 * kinds of access to the file. Currently, the following seals are
2769 * defined:
2770 * SEAL_SEAL: Prevent further seals from being set on this file
2771 * SEAL_SHRINK: Prevent the file from shrinking
2772 * SEAL_GROW: Prevent the file from growing
2773 * SEAL_WRITE: Prevent write access to the file
2774 *
2775 * As we don't require any trust relationship between two parties, we
2776 * must prevent seals from being removed. Therefore, sealing a file
2777 * only adds a given set of seals to the file, it never touches
2778 * existing seals. Furthermore, the "setting seals"-operation can be
2779 * sealed itself, which basically prevents any further seal from being
2780 * added.
2781 *
2782 * Semantics of sealing are only defined on volatile files. Only
2783 * anonymous shmem files support sealing. More importantly, seals are
2784 * never written to disk. Therefore, there's no plan to support it on
2785 * other file types.
2786 */
2787
40e041a2
DH
2788 if (!(file->f_mode & FMODE_WRITE))
2789 return -EPERM;
2790 if (seals & ~(unsigned int)F_ALL_SEALS)
2791 return -EINVAL;
2792
5955102c 2793 inode_lock(inode);
40e041a2 2794
47b9012e
MAL
2795 file_seals = memfd_file_seals_ptr(file);
2796 if (!file_seals) {
2797 error = -EINVAL;
2798 goto unlock;
2799 }
2800
2801 if (*file_seals & F_SEAL_SEAL) {
40e041a2
DH
2802 error = -EPERM;
2803 goto unlock;
2804 }
2805
47b9012e 2806 if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
40e041a2
DH
2807 error = mapping_deny_writable(file->f_mapping);
2808 if (error)
2809 goto unlock;
2810
2811 error = shmem_wait_for_pins(file->f_mapping);
2812 if (error) {
2813 mapping_allow_writable(file->f_mapping);
2814 goto unlock;
2815 }
2816 }
2817
47b9012e 2818 *file_seals |= seals;
40e041a2
DH
2819 error = 0;
2820
2821unlock:
5955102c 2822 inode_unlock(inode);
40e041a2
DH
2823 return error;
2824}
40e041a2 2825
5aadc431 2826static int memfd_get_seals(struct file *file)
40e041a2 2827{
47b9012e 2828 unsigned int *seals = memfd_file_seals_ptr(file);
40e041a2 2829
47b9012e 2830 return seals ? *seals : -EINVAL;
40e041a2 2831}
40e041a2 2832
5aadc431 2833long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
40e041a2
DH
2834{
2835 long error;
2836
2837 switch (cmd) {
2838 case F_ADD_SEALS:
2839 /* disallow upper 32bit */
2840 if (arg > UINT_MAX)
2841 return -EINVAL;
2842
5aadc431 2843 error = memfd_add_seals(file, arg);
40e041a2
DH
2844 break;
2845 case F_GET_SEALS:
5aadc431 2846 error = memfd_get_seals(file);
40e041a2
DH
2847 break;
2848 default:
2849 error = -EINVAL;
2850 break;
2851 }
2852
2853 return error;
2854}
2855
83e4fa9c
HD
2856static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2857 loff_t len)
2858{
496ad9aa 2859 struct inode *inode = file_inode(file);
e2d12e22 2860 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2861 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2862 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2863 pgoff_t start, index, end;
2864 int error;
83e4fa9c 2865
13ace4d0
HD
2866 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2867 return -EOPNOTSUPP;
2868
5955102c 2869 inode_lock(inode);
83e4fa9c
HD
2870
2871 if (mode & FALLOC_FL_PUNCH_HOLE) {
2872 struct address_space *mapping = file->f_mapping;
2873 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2874 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2875 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2876
40e041a2
DH
2877 /* protected by i_mutex */
2878 if (info->seals & F_SEAL_WRITE) {
2879 error = -EPERM;
2880 goto out;
2881 }
2882
8e205f77 2883 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2884 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2885 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2886 spin_lock(&inode->i_lock);
2887 inode->i_private = &shmem_falloc;
2888 spin_unlock(&inode->i_lock);
2889
83e4fa9c
HD
2890 if ((u64)unmap_end > (u64)unmap_start)
2891 unmap_mapping_range(mapping, unmap_start,
2892 1 + unmap_end - unmap_start, 0);
2893 shmem_truncate_range(inode, offset, offset + len - 1);
2894 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2895
2896 spin_lock(&inode->i_lock);
2897 inode->i_private = NULL;
2898 wake_up_all(&shmem_falloc_waitq);
2055da97 2899 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2900 spin_unlock(&inode->i_lock);
83e4fa9c 2901 error = 0;
8e205f77 2902 goto out;
e2d12e22
HD
2903 }
2904
2905 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2906 error = inode_newsize_ok(inode, offset + len);
2907 if (error)
2908 goto out;
2909
40e041a2
DH
2910 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2911 error = -EPERM;
2912 goto out;
2913 }
2914
09cbfeaf
KS
2915 start = offset >> PAGE_SHIFT;
2916 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2917 /* Try to avoid a swapstorm if len is impossible to satisfy */
2918 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2919 error = -ENOSPC;
2920 goto out;
83e4fa9c
HD
2921 }
2922
8e205f77 2923 shmem_falloc.waitq = NULL;
1aac1400
HD
2924 shmem_falloc.start = start;
2925 shmem_falloc.next = start;
2926 shmem_falloc.nr_falloced = 0;
2927 shmem_falloc.nr_unswapped = 0;
2928 spin_lock(&inode->i_lock);
2929 inode->i_private = &shmem_falloc;
2930 spin_unlock(&inode->i_lock);
2931
e2d12e22
HD
2932 for (index = start; index < end; index++) {
2933 struct page *page;
2934
2935 /*
2936 * Good, the fallocate(2) manpage permits EINTR: we may have
2937 * been interrupted because we are using up too much memory.
2938 */
2939 if (signal_pending(current))
2940 error = -EINTR;
1aac1400
HD
2941 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2942 error = -ENOMEM;
e2d12e22 2943 else
9e18eb29 2944 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2945 if (error) {
1635f6a7 2946 /* Remove the !PageUptodate pages we added */
7f556567
HD
2947 if (index > start) {
2948 shmem_undo_range(inode,
2949 (loff_t)start << PAGE_SHIFT,
2950 ((loff_t)index << PAGE_SHIFT) - 1, true);
2951 }
1aac1400 2952 goto undone;
e2d12e22
HD
2953 }
2954
1aac1400
HD
2955 /*
2956 * Inform shmem_writepage() how far we have reached.
2957 * No need for lock or barrier: we have the page lock.
2958 */
2959 shmem_falloc.next++;
2960 if (!PageUptodate(page))
2961 shmem_falloc.nr_falloced++;
2962
e2d12e22 2963 /*
1635f6a7
HD
2964 * If !PageUptodate, leave it that way so that freeable pages
2965 * can be recognized if we need to rollback on error later.
2966 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2967 * than free the pages we are allocating (and SGP_CACHE pages
2968 * might still be clean: we now need to mark those dirty too).
2969 */
2970 set_page_dirty(page);
2971 unlock_page(page);
09cbfeaf 2972 put_page(page);
e2d12e22
HD
2973 cond_resched();
2974 }
2975
2976 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2977 i_size_write(inode, offset + len);
078cd827 2978 inode->i_ctime = current_time(inode);
1aac1400
HD
2979undone:
2980 spin_lock(&inode->i_lock);
2981 inode->i_private = NULL;
2982 spin_unlock(&inode->i_lock);
e2d12e22 2983out:
5955102c 2984 inode_unlock(inode);
83e4fa9c
HD
2985 return error;
2986}
2987
726c3342 2988static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2989{
726c3342 2990 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2991
2992 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2993 buf->f_bsize = PAGE_SIZE;
1da177e4 2994 buf->f_namelen = NAME_MAX;
0edd73b3 2995 if (sbinfo->max_blocks) {
1da177e4 2996 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2997 buf->f_bavail =
2998 buf->f_bfree = sbinfo->max_blocks -
2999 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
3000 }
3001 if (sbinfo->max_inodes) {
1da177e4
LT
3002 buf->f_files = sbinfo->max_inodes;
3003 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
3004 }
3005 /* else leave those fields 0 like simple_statfs */
3006 return 0;
3007}
3008
3009/*
3010 * File creation. Allocate an inode, and we're done..
3011 */
3012static int
1a67aafb 3013shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 3014{
0b0a0806 3015 struct inode *inode;
1da177e4
LT
3016 int error = -ENOSPC;
3017
454abafe 3018 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 3019 if (inode) {
feda821e
CH
3020 error = simple_acl_create(dir, inode);
3021 if (error)
3022 goto out_iput;
2a7dba39 3023 error = security_inode_init_security(inode, dir,
9d8f13ba 3024 &dentry->d_name,
6d9d88d0 3025 shmem_initxattrs, NULL);
feda821e
CH
3026 if (error && error != -EOPNOTSUPP)
3027 goto out_iput;
37ec43cd 3028
718deb6b 3029 error = 0;
1da177e4 3030 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3031 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3032 d_instantiate(dentry, inode);
3033 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
3034 }
3035 return error;
feda821e
CH
3036out_iput:
3037 iput(inode);
3038 return error;
1da177e4
LT
3039}
3040
60545d0d
AV
3041static int
3042shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3043{
3044 struct inode *inode;
3045 int error = -ENOSPC;
3046
3047 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3048 if (inode) {
3049 error = security_inode_init_security(inode, dir,
3050 NULL,
3051 shmem_initxattrs, NULL);
feda821e
CH
3052 if (error && error != -EOPNOTSUPP)
3053 goto out_iput;
3054 error = simple_acl_create(dir, inode);
3055 if (error)
3056 goto out_iput;
60545d0d
AV
3057 d_tmpfile(dentry, inode);
3058 }
3059 return error;
feda821e
CH
3060out_iput:
3061 iput(inode);
3062 return error;
60545d0d
AV
3063}
3064
18bb1db3 3065static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3066{
3067 int error;
3068
3069 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3070 return error;
d8c76e6f 3071 inc_nlink(dir);
1da177e4
LT
3072 return 0;
3073}
3074
4acdaf27 3075static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3076 bool excl)
1da177e4
LT
3077{
3078 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3079}
3080
3081/*
3082 * Link a file..
3083 */
3084static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3085{
75c3cfa8 3086 struct inode *inode = d_inode(old_dentry);
5b04c689 3087 int ret;
1da177e4
LT
3088
3089 /*
3090 * No ordinary (disk based) filesystem counts links as inodes;
3091 * but each new link needs a new dentry, pinning lowmem, and
3092 * tmpfs dentries cannot be pruned until they are unlinked.
3093 */
5b04c689
PE
3094 ret = shmem_reserve_inode(inode->i_sb);
3095 if (ret)
3096 goto out;
1da177e4
LT
3097
3098 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3099 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3100 inc_nlink(inode);
7de9c6ee 3101 ihold(inode); /* New dentry reference */
1da177e4
LT
3102 dget(dentry); /* Extra pinning count for the created dentry */
3103 d_instantiate(dentry, inode);
5b04c689
PE
3104out:
3105 return ret;
1da177e4
LT
3106}
3107
3108static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3109{
75c3cfa8 3110 struct inode *inode = d_inode(dentry);
1da177e4 3111
5b04c689
PE
3112 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3113 shmem_free_inode(inode->i_sb);
1da177e4
LT
3114
3115 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3116 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3117 drop_nlink(inode);
1da177e4
LT
3118 dput(dentry); /* Undo the count from "create" - this does all the work */
3119 return 0;
3120}
3121
3122static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3123{
3124 if (!simple_empty(dentry))
3125 return -ENOTEMPTY;
3126
75c3cfa8 3127 drop_nlink(d_inode(dentry));
9a53c3a7 3128 drop_nlink(dir);
1da177e4
LT
3129 return shmem_unlink(dir, dentry);
3130}
3131
37456771
MS
3132static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3133{
e36cb0b8
DH
3134 bool old_is_dir = d_is_dir(old_dentry);
3135 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3136
3137 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3138 if (old_is_dir) {
3139 drop_nlink(old_dir);
3140 inc_nlink(new_dir);
3141 } else {
3142 drop_nlink(new_dir);
3143 inc_nlink(old_dir);
3144 }
3145 }
3146 old_dir->i_ctime = old_dir->i_mtime =
3147 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3148 d_inode(old_dentry)->i_ctime =
078cd827 3149 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3150
3151 return 0;
3152}
3153
46fdb794
MS
3154static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3155{
3156 struct dentry *whiteout;
3157 int error;
3158
3159 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3160 if (!whiteout)
3161 return -ENOMEM;
3162
3163 error = shmem_mknod(old_dir, whiteout,
3164 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3165 dput(whiteout);
3166 if (error)
3167 return error;
3168
3169 /*
3170 * Cheat and hash the whiteout while the old dentry is still in
3171 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3172 *
3173 * d_lookup() will consistently find one of them at this point,
3174 * not sure which one, but that isn't even important.
3175 */
3176 d_rehash(whiteout);
3177 return 0;
3178}
3179
1da177e4
LT
3180/*
3181 * The VFS layer already does all the dentry stuff for rename,
3182 * we just have to decrement the usage count for the target if
3183 * it exists so that the VFS layer correctly free's it when it
3184 * gets overwritten.
3185 */
3b69ff51 3186static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3187{
75c3cfa8 3188 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3189 int they_are_dirs = S_ISDIR(inode->i_mode);
3190
46fdb794 3191 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3192 return -EINVAL;
3193
37456771
MS
3194 if (flags & RENAME_EXCHANGE)
3195 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3196
1da177e4
LT
3197 if (!simple_empty(new_dentry))
3198 return -ENOTEMPTY;
3199
46fdb794
MS
3200 if (flags & RENAME_WHITEOUT) {
3201 int error;
3202
3203 error = shmem_whiteout(old_dir, old_dentry);
3204 if (error)
3205 return error;
3206 }
3207
75c3cfa8 3208 if (d_really_is_positive(new_dentry)) {
1da177e4 3209 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3210 if (they_are_dirs) {
75c3cfa8 3211 drop_nlink(d_inode(new_dentry));
9a53c3a7 3212 drop_nlink(old_dir);
b928095b 3213 }
1da177e4 3214 } else if (they_are_dirs) {
9a53c3a7 3215 drop_nlink(old_dir);
d8c76e6f 3216 inc_nlink(new_dir);
1da177e4
LT
3217 }
3218
3219 old_dir->i_size -= BOGO_DIRENT_SIZE;
3220 new_dir->i_size += BOGO_DIRENT_SIZE;
3221 old_dir->i_ctime = old_dir->i_mtime =
3222 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3223 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3224 return 0;
3225}
3226
3227static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3228{
3229 int error;
3230 int len;
3231 struct inode *inode;
9276aad6 3232 struct page *page;
1da177e4
LT
3233
3234 len = strlen(symname) + 1;
09cbfeaf 3235 if (len > PAGE_SIZE)
1da177e4
LT
3236 return -ENAMETOOLONG;
3237
454abafe 3238 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3239 if (!inode)
3240 return -ENOSPC;
3241
9d8f13ba 3242 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3243 shmem_initxattrs, NULL);
570bc1c2
SS
3244 if (error) {
3245 if (error != -EOPNOTSUPP) {
3246 iput(inode);
3247 return error;
3248 }
3249 error = 0;
3250 }
3251
1da177e4 3252 inode->i_size = len-1;
69f07ec9 3253 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3254 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3255 if (!inode->i_link) {
69f07ec9
HD
3256 iput(inode);
3257 return -ENOMEM;
3258 }
3259 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3260 } else {
e8ecde25 3261 inode_nohighmem(inode);
9e18eb29 3262 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3263 if (error) {
3264 iput(inode);
3265 return error;
3266 }
14fcc23f 3267 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3268 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3269 memcpy(page_address(page), symname, len);
ec9516fb 3270 SetPageUptodate(page);
1da177e4 3271 set_page_dirty(page);
6746aff7 3272 unlock_page(page);
09cbfeaf 3273 put_page(page);
1da177e4 3274 }
1da177e4 3275 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3276 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3277 d_instantiate(dentry, inode);
3278 dget(dentry);
3279 return 0;
3280}
3281
fceef393 3282static void shmem_put_link(void *arg)
1da177e4 3283{
fceef393
AV
3284 mark_page_accessed(arg);
3285 put_page(arg);
1da177e4
LT
3286}
3287
6b255391 3288static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3289 struct inode *inode,
3290 struct delayed_call *done)
1da177e4 3291{
1da177e4 3292 struct page *page = NULL;
6b255391 3293 int error;
6a6c9904
AV
3294 if (!dentry) {
3295 page = find_get_page(inode->i_mapping, 0);
3296 if (!page)
3297 return ERR_PTR(-ECHILD);
3298 if (!PageUptodate(page)) {
3299 put_page(page);
3300 return ERR_PTR(-ECHILD);
3301 }
3302 } else {
9e18eb29 3303 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3304 if (error)
3305 return ERR_PTR(error);
3306 unlock_page(page);
3307 }
fceef393 3308 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3309 return page_address(page);
1da177e4
LT
3310}
3311
b09e0fa4 3312#ifdef CONFIG_TMPFS_XATTR
46711810 3313/*
b09e0fa4
EP
3314 * Superblocks without xattr inode operations may get some security.* xattr
3315 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3316 * like ACLs, we also need to implement the security.* handlers at
3317 * filesystem level, though.
3318 */
3319
6d9d88d0
JS
3320/*
3321 * Callback for security_inode_init_security() for acquiring xattrs.
3322 */
3323static int shmem_initxattrs(struct inode *inode,
3324 const struct xattr *xattr_array,
3325 void *fs_info)
3326{
3327 struct shmem_inode_info *info = SHMEM_I(inode);
3328 const struct xattr *xattr;
38f38657 3329 struct simple_xattr *new_xattr;
6d9d88d0
JS
3330 size_t len;
3331
3332 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3333 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3334 if (!new_xattr)
3335 return -ENOMEM;
3336
3337 len = strlen(xattr->name) + 1;
3338 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3339 GFP_KERNEL);
3340 if (!new_xattr->name) {
3341 kfree(new_xattr);
3342 return -ENOMEM;
3343 }
3344
3345 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3346 XATTR_SECURITY_PREFIX_LEN);
3347 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3348 xattr->name, len);
3349
38f38657 3350 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3351 }
3352
3353 return 0;
3354}
3355
aa7c5241 3356static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3357 struct dentry *unused, struct inode *inode,
3358 const char *name, void *buffer, size_t size)
b09e0fa4 3359{
b296821a 3360 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3361
aa7c5241 3362 name = xattr_full_name(handler, name);
38f38657 3363 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3364}
3365
aa7c5241 3366static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3367 struct dentry *unused, struct inode *inode,
3368 const char *name, const void *value,
3369 size_t size, int flags)
b09e0fa4 3370{
59301226 3371 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3372
aa7c5241 3373 name = xattr_full_name(handler, name);
38f38657 3374 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3375}
3376
aa7c5241
AG
3377static const struct xattr_handler shmem_security_xattr_handler = {
3378 .prefix = XATTR_SECURITY_PREFIX,
3379 .get = shmem_xattr_handler_get,
3380 .set = shmem_xattr_handler_set,
3381};
b09e0fa4 3382
aa7c5241
AG
3383static const struct xattr_handler shmem_trusted_xattr_handler = {
3384 .prefix = XATTR_TRUSTED_PREFIX,
3385 .get = shmem_xattr_handler_get,
3386 .set = shmem_xattr_handler_set,
3387};
b09e0fa4 3388
aa7c5241
AG
3389static const struct xattr_handler *shmem_xattr_handlers[] = {
3390#ifdef CONFIG_TMPFS_POSIX_ACL
3391 &posix_acl_access_xattr_handler,
3392 &posix_acl_default_xattr_handler,
3393#endif
3394 &shmem_security_xattr_handler,
3395 &shmem_trusted_xattr_handler,
3396 NULL
3397};
b09e0fa4
EP
3398
3399static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3400{
75c3cfa8 3401 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3402 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3403}
3404#endif /* CONFIG_TMPFS_XATTR */
3405
69f07ec9 3406static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3407 .get_link = simple_get_link,
b09e0fa4 3408#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3409 .listxattr = shmem_listxattr,
b09e0fa4
EP
3410#endif
3411};
3412
3413static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3414 .get_link = shmem_get_link,
b09e0fa4 3415#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3416 .listxattr = shmem_listxattr,
39f0247d 3417#endif
b09e0fa4 3418};
39f0247d 3419
91828a40
DG
3420static struct dentry *shmem_get_parent(struct dentry *child)
3421{
3422 return ERR_PTR(-ESTALE);
3423}
3424
3425static int shmem_match(struct inode *ino, void *vfh)
3426{
3427 __u32 *fh = vfh;
3428 __u64 inum = fh[2];
3429 inum = (inum << 32) | fh[1];
3430 return ino->i_ino == inum && fh[0] == ino->i_generation;
3431}
3432
480b116c
CH
3433static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3434 struct fid *fid, int fh_len, int fh_type)
91828a40 3435{
91828a40 3436 struct inode *inode;
480b116c 3437 struct dentry *dentry = NULL;
35c2a7f4 3438 u64 inum;
480b116c
CH
3439
3440 if (fh_len < 3)
3441 return NULL;
91828a40 3442
35c2a7f4
HD
3443 inum = fid->raw[2];
3444 inum = (inum << 32) | fid->raw[1];
3445
480b116c
CH
3446 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3447 shmem_match, fid->raw);
91828a40 3448 if (inode) {
480b116c 3449 dentry = d_find_alias(inode);
91828a40
DG
3450 iput(inode);
3451 }
3452
480b116c 3453 return dentry;
91828a40
DG
3454}
3455
b0b0382b
AV
3456static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3457 struct inode *parent)
91828a40 3458{
5fe0c237
AK
3459 if (*len < 3) {
3460 *len = 3;
94e07a75 3461 return FILEID_INVALID;
5fe0c237 3462 }
91828a40 3463
1d3382cb 3464 if (inode_unhashed(inode)) {
91828a40
DG
3465 /* Unfortunately insert_inode_hash is not idempotent,
3466 * so as we hash inodes here rather than at creation
3467 * time, we need a lock to ensure we only try
3468 * to do it once
3469 */
3470 static DEFINE_SPINLOCK(lock);
3471 spin_lock(&lock);
1d3382cb 3472 if (inode_unhashed(inode))
91828a40
DG
3473 __insert_inode_hash(inode,
3474 inode->i_ino + inode->i_generation);
3475 spin_unlock(&lock);
3476 }
3477
3478 fh[0] = inode->i_generation;
3479 fh[1] = inode->i_ino;
3480 fh[2] = ((__u64)inode->i_ino) >> 32;
3481
3482 *len = 3;
3483 return 1;
3484}
3485
39655164 3486static const struct export_operations shmem_export_ops = {
91828a40 3487 .get_parent = shmem_get_parent,
91828a40 3488 .encode_fh = shmem_encode_fh,
480b116c 3489 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3490};
3491
680d794b 3492static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3493 bool remount)
1da177e4
LT
3494{
3495 char *this_char, *value, *rest;
49cd0a5c 3496 struct mempolicy *mpol = NULL;
8751e039
EB
3497 uid_t uid;
3498 gid_t gid;
1da177e4 3499
b00dc3ad
HD
3500 while (options != NULL) {
3501 this_char = options;
3502 for (;;) {
3503 /*
3504 * NUL-terminate this option: unfortunately,
3505 * mount options form a comma-separated list,
3506 * but mpol's nodelist may also contain commas.
3507 */
3508 options = strchr(options, ',');
3509 if (options == NULL)
3510 break;
3511 options++;
3512 if (!isdigit(*options)) {
3513 options[-1] = '\0';
3514 break;
3515 }
3516 }
1da177e4
LT
3517 if (!*this_char)
3518 continue;
3519 if ((value = strchr(this_char,'=')) != NULL) {
3520 *value++ = 0;
3521 } else {
1170532b
JP
3522 pr_err("tmpfs: No value for mount option '%s'\n",
3523 this_char);
49cd0a5c 3524 goto error;
1da177e4
LT
3525 }
3526
3527 if (!strcmp(this_char,"size")) {
3528 unsigned long long size;
3529 size = memparse(value,&rest);
3530 if (*rest == '%') {
3531 size <<= PAGE_SHIFT;
3532 size *= totalram_pages;
3533 do_div(size, 100);
3534 rest++;
3535 }
3536 if (*rest)
3537 goto bad_val;
680d794b 3538 sbinfo->max_blocks =
09cbfeaf 3539 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3540 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3541 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3542 if (*rest)
3543 goto bad_val;
3544 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3545 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3546 if (*rest)
3547 goto bad_val;
3548 } else if (!strcmp(this_char,"mode")) {
680d794b 3549 if (remount)
1da177e4 3550 continue;
680d794b 3551 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3552 if (*rest)
3553 goto bad_val;
3554 } else if (!strcmp(this_char,"uid")) {
680d794b 3555 if (remount)
1da177e4 3556 continue;
8751e039 3557 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3558 if (*rest)
3559 goto bad_val;
8751e039
EB
3560 sbinfo->uid = make_kuid(current_user_ns(), uid);
3561 if (!uid_valid(sbinfo->uid))
3562 goto bad_val;
1da177e4 3563 } else if (!strcmp(this_char,"gid")) {
680d794b 3564 if (remount)
1da177e4 3565 continue;
8751e039 3566 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3567 if (*rest)
3568 goto bad_val;
8751e039
EB
3569 sbinfo->gid = make_kgid(current_user_ns(), gid);
3570 if (!gid_valid(sbinfo->gid))
3571 goto bad_val;
e496cf3d 3572#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3573 } else if (!strcmp(this_char, "huge")) {
3574 int huge;
3575 huge = shmem_parse_huge(value);
3576 if (huge < 0)
3577 goto bad_val;
3578 if (!has_transparent_hugepage() &&
3579 huge != SHMEM_HUGE_NEVER)
3580 goto bad_val;
3581 sbinfo->huge = huge;
3582#endif
3583#ifdef CONFIG_NUMA
7339ff83 3584 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3585 mpol_put(mpol);
3586 mpol = NULL;
3587 if (mpol_parse_str(value, &mpol))
7339ff83 3588 goto bad_val;
5a6e75f8 3589#endif
1da177e4 3590 } else {
1170532b 3591 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3592 goto error;
1da177e4
LT
3593 }
3594 }
49cd0a5c 3595 sbinfo->mpol = mpol;
1da177e4
LT
3596 return 0;
3597
3598bad_val:
1170532b 3599 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3600 value, this_char);
49cd0a5c
GT
3601error:
3602 mpol_put(mpol);
1da177e4
LT
3603 return 1;
3604
3605}
3606
3607static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3608{
3609 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3610 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3611 unsigned long inodes;
3612 int error = -EINVAL;
3613
5f00110f 3614 config.mpol = NULL;
680d794b 3615 if (shmem_parse_options(data, &config, true))
0edd73b3 3616 return error;
1da177e4 3617
0edd73b3 3618 spin_lock(&sbinfo->stat_lock);
0edd73b3 3619 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3620 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3621 goto out;
680d794b 3622 if (config.max_inodes < inodes)
0edd73b3
HD
3623 goto out;
3624 /*
54af6042 3625 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3626 * but we must separately disallow unlimited->limited, because
3627 * in that case we have no record of how much is already in use.
3628 */
680d794b 3629 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3630 goto out;
680d794b 3631 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3632 goto out;
3633
3634 error = 0;
5a6e75f8 3635 sbinfo->huge = config.huge;
680d794b 3636 sbinfo->max_blocks = config.max_blocks;
680d794b 3637 sbinfo->max_inodes = config.max_inodes;
3638 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3639
5f00110f
GT
3640 /*
3641 * Preserve previous mempolicy unless mpol remount option was specified.
3642 */
3643 if (config.mpol) {
3644 mpol_put(sbinfo->mpol);
3645 sbinfo->mpol = config.mpol; /* transfers initial ref */
3646 }
0edd73b3
HD
3647out:
3648 spin_unlock(&sbinfo->stat_lock);
3649 return error;
1da177e4 3650}
680d794b 3651
34c80b1d 3652static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3653{
34c80b1d 3654 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3655
3656 if (sbinfo->max_blocks != shmem_default_max_blocks())
3657 seq_printf(seq, ",size=%luk",
09cbfeaf 3658 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3659 if (sbinfo->max_inodes != shmem_default_max_inodes())
3660 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3661 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3662 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3663 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3664 seq_printf(seq, ",uid=%u",
3665 from_kuid_munged(&init_user_ns, sbinfo->uid));
3666 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3667 seq_printf(seq, ",gid=%u",
3668 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3669#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3670 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3671 if (sbinfo->huge)
3672 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3673#endif
71fe804b 3674 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3675 return 0;
3676}
9183df25
DH
3677
3678#define MFD_NAME_PREFIX "memfd:"
3679#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3680#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3681
749df87b 3682#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
9183df25
DH
3683
3684SYSCALL_DEFINE2(memfd_create,
3685 const char __user *, uname,
3686 unsigned int, flags)
3687{
47b9012e 3688 unsigned int *file_seals;
9183df25
DH
3689 struct file *file;
3690 int fd, error;
3691 char *name;
3692 long len;
3693
749df87b
MK
3694 if (!(flags & MFD_HUGETLB)) {
3695 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3696 return -EINVAL;
3697 } else {
749df87b
MK
3698 /* Allow huge page size encoding in flags. */
3699 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3700 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3701 return -EINVAL;
3702 }
9183df25
DH
3703
3704 /* length includes terminating zero */
3705 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3706 if (len <= 0)
3707 return -EFAULT;
3708 if (len > MFD_NAME_MAX_LEN + 1)
3709 return -EINVAL;
3710
0ee931c4 3711 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
9183df25
DH
3712 if (!name)
3713 return -ENOMEM;
3714
3715 strcpy(name, MFD_NAME_PREFIX);
3716 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3717 error = -EFAULT;
3718 goto err_name;
3719 }
3720
3721 /* terminating-zero may have changed after strnlen_user() returned */
3722 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3723 error = -EFAULT;
3724 goto err_name;
3725 }
3726
3727 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3728 if (fd < 0) {
3729 error = fd;
3730 goto err_name;
3731 }
3732
749df87b
MK
3733 if (flags & MFD_HUGETLB) {
3734 struct user_struct *user = NULL;
3735
3736 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3737 HUGETLB_ANONHUGE_INODE,
3738 (flags >> MFD_HUGE_SHIFT) &
3739 MFD_HUGE_MASK);
3740 } else
3741 file = shmem_file_setup(name, 0, VM_NORESERVE);
9183df25
DH
3742 if (IS_ERR(file)) {
3743 error = PTR_ERR(file);
3744 goto err_fd;
3745 }
9183df25
DH
3746 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3747 file->f_flags |= O_RDWR | O_LARGEFILE;
749df87b
MK
3748
3749 if (flags & MFD_ALLOW_SEALING) {
47b9012e
MAL
3750 file_seals = memfd_file_seals_ptr(file);
3751 *file_seals &= ~F_SEAL_SEAL;
749df87b 3752 }
9183df25
DH
3753
3754 fd_install(fd, file);
3755 kfree(name);
3756 return fd;
3757
3758err_fd:
3759 put_unused_fd(fd);
3760err_name:
3761 kfree(name);
3762 return error;
3763}
3764
680d794b 3765#endif /* CONFIG_TMPFS */
1da177e4
LT
3766
3767static void shmem_put_super(struct super_block *sb)
3768{
602586a8
HD
3769 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3770
3771 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3772 mpol_put(sbinfo->mpol);
602586a8 3773 kfree(sbinfo);
1da177e4
LT
3774 sb->s_fs_info = NULL;
3775}
3776
2b2af54a 3777int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3778{
3779 struct inode *inode;
0edd73b3 3780 struct shmem_sb_info *sbinfo;
680d794b 3781 int err = -ENOMEM;
3782
3783 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3784 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3785 L1_CACHE_BYTES), GFP_KERNEL);
3786 if (!sbinfo)
3787 return -ENOMEM;
3788
680d794b 3789 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3790 sbinfo->uid = current_fsuid();
3791 sbinfo->gid = current_fsgid();
680d794b 3792 sb->s_fs_info = sbinfo;
1da177e4 3793
0edd73b3 3794#ifdef CONFIG_TMPFS
1da177e4
LT
3795 /*
3796 * Per default we only allow half of the physical ram per
3797 * tmpfs instance, limiting inodes to one per page of lowmem;
3798 * but the internal instance is left unlimited.
3799 */
1751e8a6 3800 if (!(sb->s_flags & SB_KERNMOUNT)) {
680d794b 3801 sbinfo->max_blocks = shmem_default_max_blocks();
3802 sbinfo->max_inodes = shmem_default_max_inodes();
3803 if (shmem_parse_options(data, sbinfo, false)) {
3804 err = -EINVAL;
3805 goto failed;
3806 }
ca4e0519 3807 } else {
1751e8a6 3808 sb->s_flags |= SB_NOUSER;
1da177e4 3809 }
91828a40 3810 sb->s_export_op = &shmem_export_ops;
1751e8a6 3811 sb->s_flags |= SB_NOSEC;
1da177e4 3812#else
1751e8a6 3813 sb->s_flags |= SB_NOUSER;
1da177e4
LT
3814#endif
3815
0edd73b3 3816 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3817 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3818 goto failed;
680d794b 3819 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3820 spin_lock_init(&sbinfo->shrinklist_lock);
3821 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3822
285b2c4f 3823 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3824 sb->s_blocksize = PAGE_SIZE;
3825 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3826 sb->s_magic = TMPFS_MAGIC;
3827 sb->s_op = &shmem_ops;
cfd95a9c 3828 sb->s_time_gran = 1;
b09e0fa4 3829#ifdef CONFIG_TMPFS_XATTR
39f0247d 3830 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3831#endif
3832#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3833 sb->s_flags |= SB_POSIXACL;
39f0247d 3834#endif
2b4db796 3835 uuid_gen(&sb->s_uuid);
0edd73b3 3836
454abafe 3837 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3838 if (!inode)
3839 goto failed;
680d794b 3840 inode->i_uid = sbinfo->uid;
3841 inode->i_gid = sbinfo->gid;
318ceed0
AV
3842 sb->s_root = d_make_root(inode);
3843 if (!sb->s_root)
48fde701 3844 goto failed;
1da177e4
LT
3845 return 0;
3846
1da177e4
LT
3847failed:
3848 shmem_put_super(sb);
3849 return err;
3850}
3851
fcc234f8 3852static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3853
3854static struct inode *shmem_alloc_inode(struct super_block *sb)
3855{
41ffe5d5
HD
3856 struct shmem_inode_info *info;
3857 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3858 if (!info)
1da177e4 3859 return NULL;
41ffe5d5 3860 return &info->vfs_inode;
1da177e4
LT
3861}
3862
41ffe5d5 3863static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3864{
3865 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3866 if (S_ISLNK(inode->i_mode))
3867 kfree(inode->i_link);
fa0d7e3d
NP
3868 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3869}
3870
1da177e4
LT
3871static void shmem_destroy_inode(struct inode *inode)
3872{
09208d15 3873 if (S_ISREG(inode->i_mode))
1da177e4 3874 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3875 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3876}
3877
41ffe5d5 3878static void shmem_init_inode(void *foo)
1da177e4 3879{
41ffe5d5
HD
3880 struct shmem_inode_info *info = foo;
3881 inode_init_once(&info->vfs_inode);
1da177e4
LT
3882}
3883
9a8ec03e 3884static void shmem_init_inodecache(void)
1da177e4
LT
3885{
3886 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3887 sizeof(struct shmem_inode_info),
5d097056 3888 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3889}
3890
41ffe5d5 3891static void shmem_destroy_inodecache(void)
1da177e4 3892{
1a1d92c1 3893 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3894}
3895
f5e54d6e 3896static const struct address_space_operations shmem_aops = {
1da177e4 3897 .writepage = shmem_writepage,
76719325 3898 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3899#ifdef CONFIG_TMPFS
800d15a5
NP
3900 .write_begin = shmem_write_begin,
3901 .write_end = shmem_write_end,
1da177e4 3902#endif
1c93923c 3903#ifdef CONFIG_MIGRATION
304dbdb7 3904 .migratepage = migrate_page,
1c93923c 3905#endif
aa261f54 3906 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3907};
3908
15ad7cdc 3909static const struct file_operations shmem_file_operations = {
1da177e4 3910 .mmap = shmem_mmap,
c01d5b30 3911 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3912#ifdef CONFIG_TMPFS
220f2ac9 3913 .llseek = shmem_file_llseek,
2ba5bbed 3914 .read_iter = shmem_file_read_iter,
8174202b 3915 .write_iter = generic_file_write_iter,
1b061d92 3916 .fsync = noop_fsync,
82c156f8 3917 .splice_read = generic_file_splice_read,
f6cb85d0 3918 .splice_write = iter_file_splice_write,
83e4fa9c 3919 .fallocate = shmem_fallocate,
1da177e4
LT
3920#endif
3921};
3922
92e1d5be 3923static const struct inode_operations shmem_inode_operations = {
44a30220 3924 .getattr = shmem_getattr,
94c1e62d 3925 .setattr = shmem_setattr,
b09e0fa4 3926#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3927 .listxattr = shmem_listxattr,
feda821e 3928 .set_acl = simple_set_acl,
b09e0fa4 3929#endif
1da177e4
LT
3930};
3931
92e1d5be 3932static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3933#ifdef CONFIG_TMPFS
3934 .create = shmem_create,
3935 .lookup = simple_lookup,
3936 .link = shmem_link,
3937 .unlink = shmem_unlink,
3938 .symlink = shmem_symlink,
3939 .mkdir = shmem_mkdir,
3940 .rmdir = shmem_rmdir,
3941 .mknod = shmem_mknod,
2773bf00 3942 .rename = shmem_rename2,
60545d0d 3943 .tmpfile = shmem_tmpfile,
1da177e4 3944#endif
b09e0fa4 3945#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3946 .listxattr = shmem_listxattr,
b09e0fa4 3947#endif
39f0247d 3948#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3949 .setattr = shmem_setattr,
feda821e 3950 .set_acl = simple_set_acl,
39f0247d
AG
3951#endif
3952};
3953
92e1d5be 3954static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3955#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3956 .listxattr = shmem_listxattr,
b09e0fa4 3957#endif
39f0247d 3958#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3959 .setattr = shmem_setattr,
feda821e 3960 .set_acl = simple_set_acl,
39f0247d 3961#endif
1da177e4
LT
3962};
3963
759b9775 3964static const struct super_operations shmem_ops = {
1da177e4
LT
3965 .alloc_inode = shmem_alloc_inode,
3966 .destroy_inode = shmem_destroy_inode,
3967#ifdef CONFIG_TMPFS
3968 .statfs = shmem_statfs,
3969 .remount_fs = shmem_remount_fs,
680d794b 3970 .show_options = shmem_show_options,
1da177e4 3971#endif
1f895f75 3972 .evict_inode = shmem_evict_inode,
1da177e4
LT
3973 .drop_inode = generic_delete_inode,
3974 .put_super = shmem_put_super,
779750d2
KS
3975#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3976 .nr_cached_objects = shmem_unused_huge_count,
3977 .free_cached_objects = shmem_unused_huge_scan,
3978#endif
1da177e4
LT
3979};
3980
f0f37e2f 3981static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3982 .fault = shmem_fault,
d7c17551 3983 .map_pages = filemap_map_pages,
1da177e4
LT
3984#ifdef CONFIG_NUMA
3985 .set_policy = shmem_set_policy,
3986 .get_policy = shmem_get_policy,
3987#endif
3988};
3989
3c26ff6e
AV
3990static struct dentry *shmem_mount(struct file_system_type *fs_type,
3991 int flags, const char *dev_name, void *data)
1da177e4 3992{
3c26ff6e 3993 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3994}
3995
41ffe5d5 3996static struct file_system_type shmem_fs_type = {
1da177e4
LT
3997 .owner = THIS_MODULE,
3998 .name = "tmpfs",
3c26ff6e 3999 .mount = shmem_mount,
1da177e4 4000 .kill_sb = kill_litter_super,
2b8576cb 4001 .fs_flags = FS_USERNS_MOUNT,
1da177e4 4002};
1da177e4 4003
41ffe5d5 4004int __init shmem_init(void)
1da177e4
LT
4005{
4006 int error;
4007
16203a7a
RL
4008 /* If rootfs called this, don't re-init */
4009 if (shmem_inode_cachep)
4010 return 0;
4011
9a8ec03e 4012 shmem_init_inodecache();
1da177e4 4013
41ffe5d5 4014 error = register_filesystem(&shmem_fs_type);
1da177e4 4015 if (error) {
1170532b 4016 pr_err("Could not register tmpfs\n");
1da177e4
LT
4017 goto out2;
4018 }
95dc112a 4019
ca4e0519 4020 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
4021 if (IS_ERR(shm_mnt)) {
4022 error = PTR_ERR(shm_mnt);
1170532b 4023 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
4024 goto out1;
4025 }
5a6e75f8 4026
e496cf3d 4027#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 4028 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4029 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4030 else
4031 shmem_huge = 0; /* just in case it was patched */
4032#endif
1da177e4
LT
4033 return 0;
4034
4035out1:
41ffe5d5 4036 unregister_filesystem(&shmem_fs_type);
1da177e4 4037out2:
41ffe5d5 4038 shmem_destroy_inodecache();
1da177e4
LT
4039 shm_mnt = ERR_PTR(error);
4040 return error;
4041}
853ac43a 4042
e496cf3d 4043#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4044static ssize_t shmem_enabled_show(struct kobject *kobj,
4045 struct kobj_attribute *attr, char *buf)
4046{
4047 int values[] = {
4048 SHMEM_HUGE_ALWAYS,
4049 SHMEM_HUGE_WITHIN_SIZE,
4050 SHMEM_HUGE_ADVISE,
4051 SHMEM_HUGE_NEVER,
4052 SHMEM_HUGE_DENY,
4053 SHMEM_HUGE_FORCE,
4054 };
4055 int i, count;
4056
4057 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4058 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4059
4060 count += sprintf(buf + count, fmt,
4061 shmem_format_huge(values[i]));
4062 }
4063 buf[count - 1] = '\n';
4064 return count;
4065}
4066
4067static ssize_t shmem_enabled_store(struct kobject *kobj,
4068 struct kobj_attribute *attr, const char *buf, size_t count)
4069{
4070 char tmp[16];
4071 int huge;
4072
4073 if (count + 1 > sizeof(tmp))
4074 return -EINVAL;
4075 memcpy(tmp, buf, count);
4076 tmp[count] = '\0';
4077 if (count && tmp[count - 1] == '\n')
4078 tmp[count - 1] = '\0';
4079
4080 huge = shmem_parse_huge(tmp);
4081 if (huge == -EINVAL)
4082 return -EINVAL;
4083 if (!has_transparent_hugepage() &&
4084 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4085 return -EINVAL;
4086
4087 shmem_huge = huge;
435c0b87 4088 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4089 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4090 return count;
4091}
4092
4093struct kobj_attribute shmem_enabled_attr =
4094 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4095#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4096
3b33719c 4097#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4098bool shmem_huge_enabled(struct vm_area_struct *vma)
4099{
4100 struct inode *inode = file_inode(vma->vm_file);
4101 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4102 loff_t i_size;
4103 pgoff_t off;
4104
4105 if (shmem_huge == SHMEM_HUGE_FORCE)
4106 return true;
4107 if (shmem_huge == SHMEM_HUGE_DENY)
4108 return false;
4109 switch (sbinfo->huge) {
4110 case SHMEM_HUGE_NEVER:
4111 return false;
4112 case SHMEM_HUGE_ALWAYS:
4113 return true;
4114 case SHMEM_HUGE_WITHIN_SIZE:
4115 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4116 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4117 if (i_size >= HPAGE_PMD_SIZE &&
4118 i_size >> PAGE_SHIFT >= off)
4119 return true;
c8402871 4120 /* fall through */
f3f0e1d2
KS
4121 case SHMEM_HUGE_ADVISE:
4122 /* TODO: implement fadvise() hints */
4123 return (vma->vm_flags & VM_HUGEPAGE);
4124 default:
4125 VM_BUG_ON(1);
4126 return false;
4127 }
4128}
3b33719c 4129#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4130
853ac43a
MM
4131#else /* !CONFIG_SHMEM */
4132
4133/*
4134 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4135 *
4136 * This is intended for small system where the benefits of the full
4137 * shmem code (swap-backed and resource-limited) are outweighed by
4138 * their complexity. On systems without swap this code should be
4139 * effectively equivalent, but much lighter weight.
4140 */
4141
41ffe5d5 4142static struct file_system_type shmem_fs_type = {
853ac43a 4143 .name = "tmpfs",
3c26ff6e 4144 .mount = ramfs_mount,
853ac43a 4145 .kill_sb = kill_litter_super,
2b8576cb 4146 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4147};
4148
41ffe5d5 4149int __init shmem_init(void)
853ac43a 4150{
41ffe5d5 4151 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4152
41ffe5d5 4153 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4154 BUG_ON(IS_ERR(shm_mnt));
4155
4156 return 0;
4157}
4158
41ffe5d5 4159int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4160{
4161 return 0;
4162}
4163
3f96b79a
HD
4164int shmem_lock(struct file *file, int lock, struct user_struct *user)
4165{
4166 return 0;
4167}
4168
24513264
HD
4169void shmem_unlock_mapping(struct address_space *mapping)
4170{
4171}
4172
c01d5b30
HD
4173#ifdef CONFIG_MMU
4174unsigned long shmem_get_unmapped_area(struct file *file,
4175 unsigned long addr, unsigned long len,
4176 unsigned long pgoff, unsigned long flags)
4177{
4178 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4179}
4180#endif
4181
41ffe5d5 4182void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4183{
41ffe5d5 4184 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4185}
4186EXPORT_SYMBOL_GPL(shmem_truncate_range);
4187
0b0a0806
HD
4188#define shmem_vm_ops generic_file_vm_ops
4189#define shmem_file_operations ramfs_file_operations
454abafe 4190#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4191#define shmem_acct_size(flags, size) 0
4192#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4193
4194#endif /* CONFIG_SHMEM */
4195
4196/* common code */
1da177e4 4197
19938e35 4198static const struct dentry_operations anon_ops = {
118b2302 4199 .d_dname = simple_dname
3451538a
AV
4200};
4201
703321b6 4202static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4203 unsigned long flags, unsigned int i_flags)
1da177e4 4204{
6b4d0b27 4205 struct file *res;
1da177e4 4206 struct inode *inode;
2c48b9c4 4207 struct path path;
3451538a 4208 struct super_block *sb;
1da177e4
LT
4209 struct qstr this;
4210
703321b6
MA
4211 if (IS_ERR(mnt))
4212 return ERR_CAST(mnt);
1da177e4 4213
285b2c4f 4214 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4215 return ERR_PTR(-EINVAL);
4216
4217 if (shmem_acct_size(flags, size))
4218 return ERR_PTR(-ENOMEM);
4219
6b4d0b27 4220 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4221 this.name = name;
4222 this.len = strlen(name);
4223 this.hash = 0; /* will go */
703321b6
MA
4224 sb = mnt->mnt_sb;
4225 path.mnt = mntget(mnt);
3451538a 4226 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4227 if (!path.dentry)
1da177e4 4228 goto put_memory;
3451538a 4229 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4230
6b4d0b27 4231 res = ERR_PTR(-ENOSPC);
3451538a 4232 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4233 if (!inode)
66ee4b88 4234 goto put_memory;
1da177e4 4235
c7277090 4236 inode->i_flags |= i_flags;
2c48b9c4 4237 d_instantiate(path.dentry, inode);
1da177e4 4238 inode->i_size = size;
6d6b77f1 4239 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4240 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4241 if (IS_ERR(res))
66ee4b88 4242 goto put_path;
4b42af81 4243
6b4d0b27 4244 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4245 &shmem_file_operations);
6b4d0b27 4246 if (IS_ERR(res))
66ee4b88 4247 goto put_path;
4b42af81 4248
6b4d0b27 4249 return res;
1da177e4 4250
1da177e4
LT
4251put_memory:
4252 shmem_unacct_size(flags, size);
66ee4b88
KK
4253put_path:
4254 path_put(&path);
6b4d0b27 4255 return res;
1da177e4 4256}
c7277090
EP
4257
4258/**
4259 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4260 * kernel internal. There will be NO LSM permission checks against the
4261 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4262 * higher layer. The users are the big_key and shm implementations. LSM
4263 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4264 * @name: name for dentry (to be seen in /proc/<pid>/maps
4265 * @size: size to be set for the file
4266 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4267 */
4268struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4269{
703321b6 4270 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4271}
4272
4273/**
4274 * shmem_file_setup - get an unlinked file living in tmpfs
4275 * @name: name for dentry (to be seen in /proc/<pid>/maps
4276 * @size: size to be set for the file
4277 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4278 */
4279struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4280{
703321b6 4281 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4282}
395e0ddc 4283EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4284
703321b6
MA
4285/**
4286 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4287 * @mnt: the tmpfs mount where the file will be created
4288 * @name: name for dentry (to be seen in /proc/<pid>/maps
4289 * @size: size to be set for the file
4290 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4291 */
4292struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4293 loff_t size, unsigned long flags)
4294{
4295 return __shmem_file_setup(mnt, name, size, flags, 0);
4296}
4297EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4298
46711810 4299/**
1da177e4 4300 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4301 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4302 */
4303int shmem_zero_setup(struct vm_area_struct *vma)
4304{
4305 struct file *file;
4306 loff_t size = vma->vm_end - vma->vm_start;
4307
66fc1303
HD
4308 /*
4309 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4310 * between XFS directory reading and selinux: since this file is only
4311 * accessible to the user through its mapping, use S_PRIVATE flag to
4312 * bypass file security, in the same way as shmem_kernel_file_setup().
4313 */
703321b6 4314 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4315 if (IS_ERR(file))
4316 return PTR_ERR(file);
4317
4318 if (vma->vm_file)
4319 fput(vma->vm_file);
4320 vma->vm_file = file;
4321 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4322
e496cf3d 4323 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4324 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4325 (vma->vm_end & HPAGE_PMD_MASK)) {
4326 khugepaged_enter(vma, vma->vm_flags);
4327 }
4328
1da177e4
LT
4329 return 0;
4330}
d9d90e5e
HD
4331
4332/**
4333 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4334 * @mapping: the page's address_space
4335 * @index: the page index
4336 * @gfp: the page allocator flags to use if allocating
4337 *
4338 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4339 * with any new page allocations done using the specified allocation flags.
4340 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4341 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4342 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4343 *
68da9f05
HD
4344 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4345 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4346 */
4347struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4348 pgoff_t index, gfp_t gfp)
4349{
68da9f05
HD
4350#ifdef CONFIG_SHMEM
4351 struct inode *inode = mapping->host;
9276aad6 4352 struct page *page;
68da9f05
HD
4353 int error;
4354
4355 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4356 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4357 gfp, NULL, NULL, NULL);
68da9f05
HD
4358 if (error)
4359 page = ERR_PTR(error);
4360 else
4361 unlock_page(page);
4362 return page;
4363#else
4364 /*
4365 * The tiny !SHMEM case uses ramfs without swap
4366 */
d9d90e5e 4367 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4368#endif
d9d90e5e
HD
4369}
4370EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);