mm/shmem: remove duplicate include in memory.c
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
626c3920 39#include <linux/fs_parser.h>
86a2f3f2 40#include <linux/swapfile.h>
014bb1de 41#include "swap.h"
95cc09d6 42
853ac43a
MM
43static struct vfsmount *shm_mnt;
44
45#ifdef CONFIG_SHMEM
1da177e4
LT
46/*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
39f0247d 52#include <linux/xattr.h>
a5694255 53#include <linux/exportfs.h>
1c7c474c 54#include <linux/posix_acl.h>
feda821e 55#include <linux/posix_acl_xattr.h>
1da177e4 56#include <linux/mman.h>
1da177e4
LT
57#include <linux/string.h>
58#include <linux/slab.h>
59#include <linux/backing-dev.h>
60#include <linux/shmem_fs.h>
1da177e4 61#include <linux/writeback.h>
bda97eab 62#include <linux/pagevec.h>
41ffe5d5 63#include <linux/percpu_counter.h>
83e4fa9c 64#include <linux/falloc.h>
708e3508 65#include <linux/splice.h>
1da177e4
LT
66#include <linux/security.h>
67#include <linux/swapops.h>
68#include <linux/mempolicy.h>
69#include <linux/namei.h>
b00dc3ad 70#include <linux/ctype.h>
304dbdb7 71#include <linux/migrate.h>
c1f60a5a 72#include <linux/highmem.h>
680d794b 73#include <linux/seq_file.h>
92562927 74#include <linux/magic.h>
9183df25 75#include <linux/syscalls.h>
40e041a2 76#include <linux/fcntl.h>
9183df25 77#include <uapi/linux/memfd.h>
cfda0526 78#include <linux/userfaultfd_k.h>
4c27fe4c 79#include <linux/rmap.h>
2b4db796 80#include <linux/uuid.h>
304dbdb7 81
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4 83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 97 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
0b5071dd
AV
108struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
112 kuid_t uid;
113 kgid_t gid;
114 umode_t mode;
ea3271f7 115 bool full_inums;
0b5071dd
AV
116 int huge;
117 int seen;
118#define SHMEM_SEEN_BLOCKS 1
119#define SHMEM_SEEN_INODES 2
120#define SHMEM_SEEN_HUGE 4
ea3271f7 121#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
122};
123
b76db735 124#ifdef CONFIG_TMPFS
680d794b 125static unsigned long shmem_default_max_blocks(void)
126{
ca79b0c2 127 return totalram_pages() / 2;
680d794b 128}
129
130static unsigned long shmem_default_max_inodes(void)
131{
ca79b0c2
AK
132 unsigned long nr_pages = totalram_pages();
133
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 135}
b76db735 136#endif
680d794b 137
c5bf121e
VRP
138static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 struct page **pagep, enum sgp_type sgp,
140 gfp_t gfp, struct vm_area_struct *vma,
141 vm_fault_t *fault_type);
68da9f05 142static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 143 struct page **pagep, enum sgp_type sgp,
cfda0526 144 gfp_t gfp, struct vm_area_struct *vma,
2b740303 145 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 146
f3f0e1d2 147int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
149{
150 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 152}
1da177e4 153
1da177e4
LT
154static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155{
156 return sb->s_fs_info;
157}
158
159/*
160 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161 * for shared memory and for shared anonymous (/dev/zero) mappings
162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163 * consistent with the pre-accounting of private mappings ...
164 */
165static inline int shmem_acct_size(unsigned long flags, loff_t size)
166{
0b0a0806 167 return (flags & VM_NORESERVE) ?
191c5424 168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
169}
170
171static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172{
0b0a0806 173 if (!(flags & VM_NORESERVE))
1da177e4
LT
174 vm_unacct_memory(VM_ACCT(size));
175}
176
77142517
KK
177static inline int shmem_reacct_size(unsigned long flags,
178 loff_t oldsize, loff_t newsize)
179{
180 if (!(flags & VM_NORESERVE)) {
181 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 return security_vm_enough_memory_mm(current->mm,
183 VM_ACCT(newsize) - VM_ACCT(oldsize));
184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 }
187 return 0;
188}
189
1da177e4
LT
190/*
191 * ... whereas tmpfs objects are accounted incrementally as
75edd345 192 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195 */
800d8c63 196static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 197{
800d8c63
KS
198 if (!(flags & VM_NORESERVE))
199 return 0;
200
201 return security_vm_enough_memory_mm(current->mm,
202 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
203}
204
205static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206{
0b0a0806 207 if (flags & VM_NORESERVE)
09cbfeaf 208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
209}
210
0f079694
MR
211static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212{
213 struct shmem_inode_info *info = SHMEM_I(inode);
214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216 if (shmem_acct_block(info->flags, pages))
217 return false;
218
219 if (sbinfo->max_blocks) {
220 if (percpu_counter_compare(&sbinfo->used_blocks,
221 sbinfo->max_blocks - pages) > 0)
222 goto unacct;
223 percpu_counter_add(&sbinfo->used_blocks, pages);
224 }
225
226 return true;
227
228unacct:
229 shmem_unacct_blocks(info->flags, pages);
230 return false;
231}
232
233static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234{
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238 if (sbinfo->max_blocks)
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 shmem_unacct_blocks(info->flags, pages);
241}
242
759b9775 243static const struct super_operations shmem_ops;
30e6a51d 244const struct address_space_operations shmem_aops;
15ad7cdc 245static const struct file_operations shmem_file_operations;
92e1d5be
AV
246static const struct inode_operations shmem_inode_operations;
247static const struct inode_operations shmem_dir_inode_operations;
248static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 249static const struct vm_operations_struct shmem_vm_ops;
779750d2 250static struct file_system_type shmem_fs_type;
1da177e4 251
b0506e48
MR
252bool vma_is_shmem(struct vm_area_struct *vma)
253{
254 return vma->vm_ops == &shmem_vm_ops;
255}
256
1da177e4 257static LIST_HEAD(shmem_swaplist);
cb5f7b9a 258static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 259
e809d5f0
CD
260/*
261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262 * produces a novel ino for the newly allocated inode.
263 *
264 * It may also be called when making a hard link to permit the space needed by
265 * each dentry. However, in that case, no new inode number is needed since that
266 * internally draws from another pool of inode numbers (currently global
267 * get_next_ino()). This case is indicated by passing NULL as inop.
268 */
269#define SHMEM_INO_BATCH 1024
270static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
271{
272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
273 ino_t ino;
274
275 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 276 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
277 if (sbinfo->max_inodes) {
278 if (!sbinfo->free_inodes) {
bf11b9a8 279 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
280 return -ENOSPC;
281 }
282 sbinfo->free_inodes--;
5b04c689 283 }
e809d5f0
CD
284 if (inop) {
285 ino = sbinfo->next_ino++;
286 if (unlikely(is_zero_ino(ino)))
287 ino = sbinfo->next_ino++;
ea3271f7
CD
288 if (unlikely(!sbinfo->full_inums &&
289 ino > UINT_MAX)) {
e809d5f0
CD
290 /*
291 * Emulate get_next_ino uint wraparound for
292 * compatibility
293 */
ea3271f7
CD
294 if (IS_ENABLED(CONFIG_64BIT))
295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 __func__, MINOR(sb->s_dev));
297 sbinfo->next_ino = 1;
298 ino = sbinfo->next_ino++;
e809d5f0
CD
299 }
300 *inop = ino;
301 }
bf11b9a8 302 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
303 } else if (inop) {
304 /*
305 * __shmem_file_setup, one of our callers, is lock-free: it
306 * doesn't hold stat_lock in shmem_reserve_inode since
307 * max_inodes is always 0, and is called from potentially
308 * unknown contexts. As such, use a per-cpu batched allocator
309 * which doesn't require the per-sb stat_lock unless we are at
310 * the batch boundary.
ea3271f7
CD
311 *
312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 * shmem mounts are not exposed to userspace, so we don't need
314 * to worry about things like glibc compatibility.
e809d5f0
CD
315 */
316 ino_t *next_ino;
bf11b9a8 317
e809d5f0
CD
318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 ino = *next_ino;
320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 321 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
322 ino = sbinfo->next_ino;
323 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 324 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
325 if (unlikely(is_zero_ino(ino)))
326 ino++;
327 }
328 *inop = ino;
329 *next_ino = ++ino;
330 put_cpu();
5b04c689 331 }
e809d5f0 332
5b04c689
PE
333 return 0;
334}
335
336static void shmem_free_inode(struct super_block *sb)
337{
338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 if (sbinfo->max_inodes) {
bf11b9a8 340 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 341 sbinfo->free_inodes++;
bf11b9a8 342 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
343 }
344}
345
46711810 346/**
41ffe5d5 347 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
348 * @inode: inode to recalc
349 *
350 * We have to calculate the free blocks since the mm can drop
351 * undirtied hole pages behind our back.
352 *
353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355 *
356 * It has to be called with the spinlock held.
357 */
358static void shmem_recalc_inode(struct inode *inode)
359{
360 struct shmem_inode_info *info = SHMEM_I(inode);
361 long freed;
362
363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 if (freed > 0) {
365 info->alloced -= freed;
54af6042 366 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 367 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
368 }
369}
370
800d8c63
KS
371bool shmem_charge(struct inode *inode, long pages)
372{
373 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 374 unsigned long flags;
800d8c63 375
0f079694 376 if (!shmem_inode_acct_block(inode, pages))
800d8c63 377 return false;
b1cc94ab 378
aaa52e34
HD
379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 inode->i_mapping->nrpages += pages;
381
4595ef88 382 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
383 info->alloced += pages;
384 inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 shmem_recalc_inode(inode);
4595ef88 386 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 387
800d8c63
KS
388 return true;
389}
390
391void shmem_uncharge(struct inode *inode, long pages)
392{
393 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 394 unsigned long flags;
800d8c63 395
aaa52e34
HD
396 /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
4595ef88 398 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
399 info->alloced -= pages;
400 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 shmem_recalc_inode(inode);
4595ef88 402 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 403
0f079694 404 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
405}
406
7a5d0fbb 407/*
62f945b6 408 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 409 */
62f945b6 410static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
411 pgoff_t index, void *expected, void *replacement)
412{
62f945b6 413 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 414 void *item;
7a5d0fbb
HD
415
416 VM_BUG_ON(!expected);
6dbaf22c 417 VM_BUG_ON(!replacement);
62f945b6 418 item = xas_load(&xas);
7a5d0fbb
HD
419 if (item != expected)
420 return -ENOENT;
62f945b6 421 xas_store(&xas, replacement);
7a5d0fbb
HD
422 return 0;
423}
424
d1899228
HD
425/*
426 * Sometimes, before we decide whether to proceed or to fail, we must check
427 * that an entry was not already brought back from swap by a racing thread.
428 *
429 * Checking page is not enough: by the time a SwapCache page is locked, it
430 * might be reused, and again be SwapCache, using the same swap as before.
431 */
432static bool shmem_confirm_swap(struct address_space *mapping,
433 pgoff_t index, swp_entry_t swap)
434{
a12831bf 435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
436}
437
5a6e75f8
KS
438/*
439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440 *
441 * SHMEM_HUGE_NEVER:
442 * disables huge pages for the mount;
443 * SHMEM_HUGE_ALWAYS:
444 * enables huge pages for the mount;
445 * SHMEM_HUGE_WITHIN_SIZE:
446 * only allocate huge pages if the page will be fully within i_size,
447 * also respect fadvise()/madvise() hints;
448 * SHMEM_HUGE_ADVISE:
449 * only allocate huge pages if requested with fadvise()/madvise();
450 */
451
452#define SHMEM_HUGE_NEVER 0
453#define SHMEM_HUGE_ALWAYS 1
454#define SHMEM_HUGE_WITHIN_SIZE 2
455#define SHMEM_HUGE_ADVISE 3
456
457/*
458 * Special values.
459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460 *
461 * SHMEM_HUGE_DENY:
462 * disables huge on shm_mnt and all mounts, for emergency use;
463 * SHMEM_HUGE_FORCE:
464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465 *
466 */
467#define SHMEM_HUGE_DENY (-1)
468#define SHMEM_HUGE_FORCE (-2)
469
396bcc52 470#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
471/* ifdef here to avoid bloating shmem.o when not necessary */
472
5e6e5a12 473static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 474
5e6e5a12
HD
475bool shmem_is_huge(struct vm_area_struct *vma,
476 struct inode *inode, pgoff_t index)
c852023e 477{
c852023e 478 loff_t i_size;
c852023e 479
f7cd16a5
XR
480 if (!S_ISREG(inode->i_mode))
481 return false;
c852023e
HD
482 if (shmem_huge == SHMEM_HUGE_DENY)
483 return false;
5e6e5a12
HD
484 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
485 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 486 return false;
5e6e5a12
HD
487 if (shmem_huge == SHMEM_HUGE_FORCE)
488 return true;
489
490 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
491 case SHMEM_HUGE_ALWAYS:
492 return true;
493 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 494 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 495 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 496 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
497 return true;
498 fallthrough;
499 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
500 if (vma && (vma->vm_flags & VM_HUGEPAGE))
501 return true;
502 fallthrough;
c852023e 503 default:
c852023e
HD
504 return false;
505 }
506}
5a6e75f8 507
e5f2249a 508#if defined(CONFIG_SYSFS)
5a6e75f8
KS
509static int shmem_parse_huge(const char *str)
510{
511 if (!strcmp(str, "never"))
512 return SHMEM_HUGE_NEVER;
513 if (!strcmp(str, "always"))
514 return SHMEM_HUGE_ALWAYS;
515 if (!strcmp(str, "within_size"))
516 return SHMEM_HUGE_WITHIN_SIZE;
517 if (!strcmp(str, "advise"))
518 return SHMEM_HUGE_ADVISE;
519 if (!strcmp(str, "deny"))
520 return SHMEM_HUGE_DENY;
521 if (!strcmp(str, "force"))
522 return SHMEM_HUGE_FORCE;
523 return -EINVAL;
524}
e5f2249a 525#endif
5a6e75f8 526
e5f2249a 527#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
528static const char *shmem_format_huge(int huge)
529{
530 switch (huge) {
531 case SHMEM_HUGE_NEVER:
532 return "never";
533 case SHMEM_HUGE_ALWAYS:
534 return "always";
535 case SHMEM_HUGE_WITHIN_SIZE:
536 return "within_size";
537 case SHMEM_HUGE_ADVISE:
538 return "advise";
539 case SHMEM_HUGE_DENY:
540 return "deny";
541 case SHMEM_HUGE_FORCE:
542 return "force";
543 default:
544 VM_BUG_ON(1);
545 return "bad_val";
546 }
547}
f1f5929c 548#endif
5a6e75f8 549
779750d2
KS
550static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
551 struct shrink_control *sc, unsigned long nr_to_split)
552{
553 LIST_HEAD(list), *pos, *next;
253fd0f0 554 LIST_HEAD(to_remove);
779750d2
KS
555 struct inode *inode;
556 struct shmem_inode_info *info;
557 struct page *page;
558 unsigned long batch = sc ? sc->nr_to_scan : 128;
62c9827c 559 int split = 0;
779750d2
KS
560
561 if (list_empty(&sbinfo->shrinklist))
562 return SHRINK_STOP;
563
564 spin_lock(&sbinfo->shrinklist_lock);
565 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
566 info = list_entry(pos, struct shmem_inode_info, shrinklist);
567
568 /* pin the inode */
569 inode = igrab(&info->vfs_inode);
570
571 /* inode is about to be evicted */
572 if (!inode) {
573 list_del_init(&info->shrinklist);
779750d2
KS
574 goto next;
575 }
576
577 /* Check if there's anything to gain */
578 if (round_up(inode->i_size, PAGE_SIZE) ==
579 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 580 list_move(&info->shrinklist, &to_remove);
779750d2
KS
581 goto next;
582 }
583
584 list_move(&info->shrinklist, &list);
585next:
62c9827c 586 sbinfo->shrinklist_len--;
779750d2
KS
587 if (!--batch)
588 break;
589 }
590 spin_unlock(&sbinfo->shrinklist_lock);
591
253fd0f0
KS
592 list_for_each_safe(pos, next, &to_remove) {
593 info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 inode = &info->vfs_inode;
595 list_del_init(&info->shrinklist);
596 iput(inode);
597 }
598
779750d2
KS
599 list_for_each_safe(pos, next, &list) {
600 int ret;
601
602 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 inode = &info->vfs_inode;
604
b3cd54b2 605 if (nr_to_split && split >= nr_to_split)
62c9827c 606 goto move_back;
779750d2 607
b3cd54b2 608 page = find_get_page(inode->i_mapping,
779750d2
KS
609 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610 if (!page)
611 goto drop;
612
b3cd54b2 613 /* No huge page at the end of the file: nothing to split */
779750d2 614 if (!PageTransHuge(page)) {
779750d2
KS
615 put_page(page);
616 goto drop;
617 }
618
b3cd54b2 619 /*
62c9827c
GL
620 * Move the inode on the list back to shrinklist if we failed
621 * to lock the page at this time.
b3cd54b2
KS
622 *
623 * Waiting for the lock may lead to deadlock in the
624 * reclaim path.
625 */
626 if (!trylock_page(page)) {
627 put_page(page);
62c9827c 628 goto move_back;
b3cd54b2
KS
629 }
630
779750d2
KS
631 ret = split_huge_page(page);
632 unlock_page(page);
633 put_page(page);
634
62c9827c 635 /* If split failed move the inode on the list back to shrinklist */
b3cd54b2 636 if (ret)
62c9827c 637 goto move_back;
779750d2
KS
638
639 split++;
640drop:
641 list_del_init(&info->shrinklist);
62c9827c
GL
642 goto put;
643move_back:
644 /*
645 * Make sure the inode is either on the global list or deleted
646 * from any local list before iput() since it could be deleted
647 * in another thread once we put the inode (then the local list
648 * is corrupted).
649 */
650 spin_lock(&sbinfo->shrinklist_lock);
651 list_move(&info->shrinklist, &sbinfo->shrinklist);
652 sbinfo->shrinklist_len++;
653 spin_unlock(&sbinfo->shrinklist_lock);
654put:
779750d2
KS
655 iput(inode);
656 }
657
779750d2
KS
658 return split;
659}
660
661static long shmem_unused_huge_scan(struct super_block *sb,
662 struct shrink_control *sc)
663{
664 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665
666 if (!READ_ONCE(sbinfo->shrinklist_len))
667 return SHRINK_STOP;
668
669 return shmem_unused_huge_shrink(sbinfo, sc, 0);
670}
671
672static long shmem_unused_huge_count(struct super_block *sb,
673 struct shrink_control *sc)
674{
675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 return READ_ONCE(sbinfo->shrinklist_len);
677}
396bcc52 678#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
679
680#define shmem_huge SHMEM_HUGE_DENY
681
5e6e5a12
HD
682bool shmem_is_huge(struct vm_area_struct *vma,
683 struct inode *inode, pgoff_t index)
684{
685 return false;
686}
687
779750d2
KS
688static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 struct shrink_control *sc, unsigned long nr_to_split)
690{
691 return 0;
692}
396bcc52 693#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 694
46f65ec1
HD
695/*
696 * Like add_to_page_cache_locked, but error if expected item has gone.
697 */
698static int shmem_add_to_page_cache(struct page *page,
699 struct address_space *mapping,
3fea5a49
JW
700 pgoff_t index, void *expected, gfp_t gfp,
701 struct mm_struct *charge_mm)
46f65ec1 702{
552446a4 703 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
d8c6546b 704 unsigned long nr = compound_nr(page);
3fea5a49 705 int error;
46f65ec1 706
800d8c63
KS
707 VM_BUG_ON_PAGE(PageTail(page), page);
708 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
709 VM_BUG_ON_PAGE(!PageLocked(page), page);
710 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 711 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 712
800d8c63 713 page_ref_add(page, nr);
b065b432
HD
714 page->mapping = mapping;
715 page->index = index;
716
4c6355b2 717 if (!PageSwapCache(page)) {
8f425e4e 718 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
4c6355b2
JW
719 if (error) {
720 if (PageTransHuge(page)) {
721 count_vm_event(THP_FILE_FALLBACK);
722 count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 }
724 goto error;
3fea5a49 725 }
3fea5a49
JW
726 }
727 cgroup_throttle_swaprate(page, gfp);
728
552446a4 729 do {
552446a4 730 xas_lock_irq(&xas);
6b24ca4a
MWO
731 if (expected != xas_find_conflict(&xas)) {
732 xas_set_err(&xas, -EEXIST);
733 goto unlock;
734 }
735 if (expected && xas_find_conflict(&xas)) {
552446a4 736 xas_set_err(&xas, -EEXIST);
552446a4 737 goto unlock;
800d8c63 738 }
6b24ca4a
MWO
739 xas_store(&xas, page);
740 if (xas_error(&xas))
741 goto unlock;
552446a4 742 if (PageTransHuge(page)) {
800d8c63 743 count_vm_event(THP_FILE_ALLOC);
57b2847d 744 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 745 }
800d8c63 746 mapping->nrpages += nr;
0d1c2072
JW
747 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
748 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
749unlock:
750 xas_unlock_irq(&xas);
751 } while (xas_nomem(&xas, gfp));
752
753 if (xas_error(&xas)) {
3fea5a49
JW
754 error = xas_error(&xas);
755 goto error;
46f65ec1 756 }
552446a4
MW
757
758 return 0;
3fea5a49
JW
759error:
760 page->mapping = NULL;
761 page_ref_sub(page, nr);
762 return error;
46f65ec1
HD
763}
764
6922c0c7
HD
765/*
766 * Like delete_from_page_cache, but substitutes swap for page.
767 */
768static void shmem_delete_from_page_cache(struct page *page, void *radswap)
769{
770 struct address_space *mapping = page->mapping;
771 int error;
772
800d8c63
KS
773 VM_BUG_ON_PAGE(PageCompound(page), page);
774
b93b0163 775 xa_lock_irq(&mapping->i_pages);
62f945b6 776 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
777 page->mapping = NULL;
778 mapping->nrpages--;
0d1c2072
JW
779 __dec_lruvec_page_state(page, NR_FILE_PAGES);
780 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 781 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 782 put_page(page);
6922c0c7
HD
783 BUG_ON(error);
784}
785
7a5d0fbb 786/*
c121d3bb 787 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
788 */
789static int shmem_free_swap(struct address_space *mapping,
790 pgoff_t index, void *radswap)
791{
6dbaf22c 792 void *old;
7a5d0fbb 793
55f3f7ea 794 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
795 if (old != radswap)
796 return -ENOENT;
797 free_swap_and_cache(radix_to_swp_entry(radswap));
798 return 0;
7a5d0fbb
HD
799}
800
6a15a370
VB
801/*
802 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 803 * given offsets are swapped out.
6a15a370 804 *
9608703e 805 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
806 * as long as the inode doesn't go away and racy results are not a problem.
807 */
48131e03
VB
808unsigned long shmem_partial_swap_usage(struct address_space *mapping,
809 pgoff_t start, pgoff_t end)
6a15a370 810{
7ae3424f 811 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 812 struct page *page;
48131e03 813 unsigned long swapped = 0;
6a15a370
VB
814
815 rcu_read_lock();
7ae3424f
MW
816 xas_for_each(&xas, page, end - 1) {
817 if (xas_retry(&xas, page))
2cf938aa 818 continue;
3159f943 819 if (xa_is_value(page))
6a15a370
VB
820 swapped++;
821
822 if (need_resched()) {
7ae3424f 823 xas_pause(&xas);
6a15a370 824 cond_resched_rcu();
6a15a370
VB
825 }
826 }
827
828 rcu_read_unlock();
829
830 return swapped << PAGE_SHIFT;
831}
832
48131e03
VB
833/*
834 * Determine (in bytes) how many of the shmem object's pages mapped by the
835 * given vma is swapped out.
836 *
9608703e 837 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
838 * as long as the inode doesn't go away and racy results are not a problem.
839 */
840unsigned long shmem_swap_usage(struct vm_area_struct *vma)
841{
842 struct inode *inode = file_inode(vma->vm_file);
843 struct shmem_inode_info *info = SHMEM_I(inode);
844 struct address_space *mapping = inode->i_mapping;
845 unsigned long swapped;
846
847 /* Be careful as we don't hold info->lock */
848 swapped = READ_ONCE(info->swapped);
849
850 /*
851 * The easier cases are when the shmem object has nothing in swap, or
852 * the vma maps it whole. Then we can simply use the stats that we
853 * already track.
854 */
855 if (!swapped)
856 return 0;
857
858 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
859 return swapped << PAGE_SHIFT;
860
861 /* Here comes the more involved part */
02399c88
PX
862 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
863 vma->vm_pgoff + vma_pages(vma));
48131e03
VB
864}
865
24513264
HD
866/*
867 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
868 */
869void shmem_unlock_mapping(struct address_space *mapping)
870{
871 struct pagevec pvec;
24513264
HD
872 pgoff_t index = 0;
873
86679820 874 pagevec_init(&pvec);
24513264
HD
875 /*
876 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
877 */
878 while (!mapping_unevictable(mapping)) {
96888e0a 879 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 880 break;
64e3d12f 881 check_move_unevictable_pages(&pvec);
24513264
HD
882 pagevec_release(&pvec);
883 cond_resched();
884 }
7a5d0fbb
HD
885}
886
b9a8a419 887static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
71725ed1 888{
b9a8a419
MWO
889 struct folio *folio;
890 struct page *page;
71725ed1 891
b9a8a419
MWO
892 /*
893 * At first avoid shmem_getpage(,,,SGP_READ): that fails
894 * beyond i_size, and reports fallocated pages as holes.
895 */
896 folio = __filemap_get_folio(inode->i_mapping, index,
897 FGP_ENTRY | FGP_LOCK, 0);
898 if (!xa_is_value(folio))
899 return folio;
900 /*
901 * But read a page back from swap if any of it is within i_size
902 * (although in some cases this is just a waste of time).
903 */
904 page = NULL;
905 shmem_getpage(inode, index, &page, SGP_READ);
906 return page ? page_folio(page) : NULL;
71725ed1
HD
907}
908
7a5d0fbb 909/*
7f4446ee 910 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 911 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 912 */
1635f6a7
HD
913static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914 bool unfalloc)
1da177e4 915{
285b2c4f 916 struct address_space *mapping = inode->i_mapping;
1da177e4 917 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
918 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
0e499ed3 920 struct folio_batch fbatch;
7a5d0fbb 921 pgoff_t indices[PAGEVEC_SIZE];
b9a8a419
MWO
922 struct folio *folio;
923 bool same_folio;
7a5d0fbb 924 long nr_swaps_freed = 0;
285b2c4f 925 pgoff_t index;
bda97eab
HD
926 int i;
927
83e4fa9c
HD
928 if (lend == -1)
929 end = -1; /* unsigned, so actually very big */
bda97eab 930
d144bf62
HD
931 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 info->fallocend = start;
933
51dcbdac 934 folio_batch_init(&fbatch);
bda97eab 935 index = start;
5c211ba2 936 while (index < end && find_lock_entries(mapping, index, end - 1,
51dcbdac
MWO
937 &fbatch, indices)) {
938 for (i = 0; i < folio_batch_count(&fbatch); i++) {
b9a8a419 939 folio = fbatch.folios[i];
bda97eab 940
7a5d0fbb 941 index = indices[i];
bda97eab 942
7b774aab 943 if (xa_is_value(folio)) {
1635f6a7
HD
944 if (unfalloc)
945 continue;
7a5d0fbb 946 nr_swaps_freed += !shmem_free_swap(mapping,
7b774aab 947 index, folio);
bda97eab 948 continue;
7a5d0fbb 949 }
7b774aab 950 index += folio_nr_pages(folio) - 1;
7a5d0fbb 951
7b774aab 952 if (!unfalloc || !folio_test_uptodate(folio))
1e84a3d9 953 truncate_inode_folio(mapping, folio);
7b774aab 954 folio_unlock(folio);
bda97eab 955 }
51dcbdac
MWO
956 folio_batch_remove_exceptionals(&fbatch);
957 folio_batch_release(&fbatch);
bda97eab
HD
958 cond_resched();
959 index++;
960 }
1da177e4 961
b9a8a419
MWO
962 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
963 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
964 if (folio) {
965 same_folio = lend < folio_pos(folio) + folio_size(folio);
966 folio_mark_dirty(folio);
967 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
968 start = folio->index + folio_nr_pages(folio);
969 if (same_folio)
970 end = folio->index;
83e4fa9c 971 }
b9a8a419
MWO
972 folio_unlock(folio);
973 folio_put(folio);
974 folio = NULL;
83e4fa9c 975 }
b9a8a419
MWO
976
977 if (!same_folio)
978 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
979 if (folio) {
980 folio_mark_dirty(folio);
981 if (!truncate_inode_partial_folio(folio, lstart, lend))
982 end = folio->index;
983 folio_unlock(folio);
984 folio_put(folio);
bda97eab
HD
985 }
986
987 index = start;
b1a36650 988 while (index < end) {
bda97eab 989 cond_resched();
0cd6144a 990
0e499ed3 991 if (!find_get_entries(mapping, index, end - 1, &fbatch,
cf2039af 992 indices)) {
b1a36650
HD
993 /* If all gone or hole-punch or unfalloc, we're done */
994 if (index == start || end != -1)
bda97eab 995 break;
b1a36650 996 /* But if truncating, restart to make sure all gone */
bda97eab
HD
997 index = start;
998 continue;
999 }
0e499ed3 1000 for (i = 0; i < folio_batch_count(&fbatch); i++) {
b9a8a419 1001 folio = fbatch.folios[i];
bda97eab 1002
7a5d0fbb 1003 index = indices[i];
0e499ed3 1004 if (xa_is_value(folio)) {
1635f6a7
HD
1005 if (unfalloc)
1006 continue;
0e499ed3 1007 if (shmem_free_swap(mapping, index, folio)) {
b1a36650
HD
1008 /* Swap was replaced by page: retry */
1009 index--;
1010 break;
1011 }
1012 nr_swaps_freed++;
7a5d0fbb
HD
1013 continue;
1014 }
1015
0e499ed3 1016 folio_lock(folio);
800d8c63 1017
0e499ed3 1018 if (!unfalloc || !folio_test_uptodate(folio)) {
0e499ed3 1019 if (folio_mapping(folio) != mapping) {
b1a36650 1020 /* Page was replaced by swap: retry */
0e499ed3 1021 folio_unlock(folio);
b1a36650
HD
1022 index--;
1023 break;
1635f6a7 1024 }
0e499ed3
MWO
1025 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1026 folio);
b9a8a419 1027 truncate_inode_folio(mapping, folio);
7a5d0fbb 1028 }
b9a8a419 1029 index = folio->index + folio_nr_pages(folio) - 1;
0e499ed3 1030 folio_unlock(folio);
bda97eab 1031 }
0e499ed3
MWO
1032 folio_batch_remove_exceptionals(&fbatch);
1033 folio_batch_release(&fbatch);
bda97eab
HD
1034 index++;
1035 }
94c1e62d 1036
4595ef88 1037 spin_lock_irq(&info->lock);
7a5d0fbb 1038 info->swapped -= nr_swaps_freed;
1da177e4 1039 shmem_recalc_inode(inode);
4595ef88 1040 spin_unlock_irq(&info->lock);
1635f6a7 1041}
1da177e4 1042
1635f6a7
HD
1043void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1044{
1045 shmem_undo_range(inode, lstart, lend, false);
078cd827 1046 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1047}
94c1e62d 1048EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1049
549c7297
CB
1050static int shmem_getattr(struct user_namespace *mnt_userns,
1051 const struct path *path, struct kstat *stat,
a528d35e 1052 u32 request_mask, unsigned int query_flags)
44a30220 1053{
a528d35e 1054 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1055 struct shmem_inode_info *info = SHMEM_I(inode);
1056
d0424c42 1057 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1058 spin_lock_irq(&info->lock);
d0424c42 1059 shmem_recalc_inode(inode);
4595ef88 1060 spin_unlock_irq(&info->lock);
d0424c42 1061 }
0d56a451 1062 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1063
a7fddc36 1064 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1065 stat->blksize = HPAGE_PMD_SIZE;
1066
f7cd16a5
XR
1067 if (request_mask & STATX_BTIME) {
1068 stat->result_mask |= STATX_BTIME;
1069 stat->btime.tv_sec = info->i_crtime.tv_sec;
1070 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1071 }
1072
44a30220
YZ
1073 return 0;
1074}
1075
549c7297
CB
1076static int shmem_setattr(struct user_namespace *mnt_userns,
1077 struct dentry *dentry, struct iattr *attr)
1da177e4 1078{
75c3cfa8 1079 struct inode *inode = d_inode(dentry);
40e041a2 1080 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1081 int error;
1082
2f221d6f 1083 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1084 if (error)
1085 return error;
1086
94c1e62d
HD
1087 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1088 loff_t oldsize = inode->i_size;
1089 loff_t newsize = attr->ia_size;
3889e6e7 1090
9608703e 1091 /* protected by i_rwsem */
40e041a2
DH
1092 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1093 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1094 return -EPERM;
1095
94c1e62d 1096 if (newsize != oldsize) {
77142517
KK
1097 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1098 oldsize, newsize);
1099 if (error)
1100 return error;
94c1e62d 1101 i_size_write(inode, newsize);
078cd827 1102 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1103 }
afa2db2f 1104 if (newsize <= oldsize) {
94c1e62d 1105 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1106 if (oldsize > holebegin)
1107 unmap_mapping_range(inode->i_mapping,
1108 holebegin, 0, 1);
1109 if (info->alloced)
1110 shmem_truncate_range(inode,
1111 newsize, (loff_t)-1);
94c1e62d 1112 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1113 if (oldsize > holebegin)
1114 unmap_mapping_range(inode->i_mapping,
1115 holebegin, 0, 1);
94c1e62d 1116 }
1da177e4
LT
1117 }
1118
2f221d6f 1119 setattr_copy(&init_user_ns, inode, attr);
db78b877 1120 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1121 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1122 return error;
1123}
1124
1f895f75 1125static void shmem_evict_inode(struct inode *inode)
1da177e4 1126{
1da177e4 1127 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1128 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1129
30e6a51d 1130 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1131 shmem_unacct_size(info->flags, inode->i_size);
1132 inode->i_size = 0;
bc786390 1133 mapping_set_exiting(inode->i_mapping);
3889e6e7 1134 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1135 if (!list_empty(&info->shrinklist)) {
1136 spin_lock(&sbinfo->shrinklist_lock);
1137 if (!list_empty(&info->shrinklist)) {
1138 list_del_init(&info->shrinklist);
1139 sbinfo->shrinklist_len--;
1140 }
1141 spin_unlock(&sbinfo->shrinklist_lock);
1142 }
af53d3e9
HD
1143 while (!list_empty(&info->swaplist)) {
1144 /* Wait while shmem_unuse() is scanning this inode... */
1145 wait_var_event(&info->stop_eviction,
1146 !atomic_read(&info->stop_eviction));
cb5f7b9a 1147 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1148 /* ...but beware of the race if we peeked too early */
1149 if (!atomic_read(&info->stop_eviction))
1150 list_del_init(&info->swaplist);
cb5f7b9a 1151 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1152 }
3ed47db3 1153 }
b09e0fa4 1154
38f38657 1155 simple_xattrs_free(&info->xattrs);
0f3c42f5 1156 WARN_ON(inode->i_blocks);
5b04c689 1157 shmem_free_inode(inode->i_sb);
dbd5768f 1158 clear_inode(inode);
1da177e4
LT
1159}
1160
b56a2d8a
VRP
1161static int shmem_find_swap_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices,
10a9c496 1164 unsigned int type)
478922e2 1165{
b56a2d8a
VRP
1166 XA_STATE(xas, &mapping->i_pages, start);
1167 struct page *page;
87039546 1168 swp_entry_t entry;
b56a2d8a
VRP
1169 unsigned int ret = 0;
1170
1171 if (!nr_entries)
1172 return 0;
478922e2
MW
1173
1174 rcu_read_lock();
b56a2d8a
VRP
1175 xas_for_each(&xas, page, ULONG_MAX) {
1176 if (xas_retry(&xas, page))
5b9c98f3 1177 continue;
b56a2d8a
VRP
1178
1179 if (!xa_is_value(page))
478922e2 1180 continue;
b56a2d8a 1181
87039546
HD
1182 entry = radix_to_swp_entry(page);
1183 if (swp_type(entry) != type)
1184 continue;
b56a2d8a
VRP
1185
1186 indices[ret] = xas.xa_index;
1187 entries[ret] = page;
1188
1189 if (need_resched()) {
1190 xas_pause(&xas);
1191 cond_resched_rcu();
1192 }
1193 if (++ret == nr_entries)
1194 break;
478922e2 1195 }
478922e2 1196 rcu_read_unlock();
e21a2955 1197
b56a2d8a 1198 return ret;
478922e2
MW
1199}
1200
46f65ec1 1201/*
b56a2d8a
VRP
1202 * Move the swapped pages for an inode to page cache. Returns the count
1203 * of pages swapped in, or the error in case of failure.
46f65ec1 1204 */
b56a2d8a
VRP
1205static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1206 pgoff_t *indices)
1da177e4 1207{
b56a2d8a
VRP
1208 int i = 0;
1209 int ret = 0;
bde05d1c 1210 int error = 0;
b56a2d8a 1211 struct address_space *mapping = inode->i_mapping;
1da177e4 1212
b56a2d8a
VRP
1213 for (i = 0; i < pvec.nr; i++) {
1214 struct page *page = pvec.pages[i];
2e0e26c7 1215
b56a2d8a
VRP
1216 if (!xa_is_value(page))
1217 continue;
1218 error = shmem_swapin_page(inode, indices[i],
1219 &page, SGP_CACHE,
1220 mapping_gfp_mask(mapping),
1221 NULL, NULL);
1222 if (error == 0) {
1223 unlock_page(page);
1224 put_page(page);
1225 ret++;
1226 }
1227 if (error == -ENOMEM)
1228 break;
1229 error = 0;
bde05d1c 1230 }
b56a2d8a
VRP
1231 return error ? error : ret;
1232}
bde05d1c 1233
b56a2d8a
VRP
1234/*
1235 * If swap found in inode, free it and move page from swapcache to filecache.
1236 */
10a9c496 1237static int shmem_unuse_inode(struct inode *inode, unsigned int type)
b56a2d8a
VRP
1238{
1239 struct address_space *mapping = inode->i_mapping;
1240 pgoff_t start = 0;
1241 struct pagevec pvec;
1242 pgoff_t indices[PAGEVEC_SIZE];
b56a2d8a
VRP
1243 int ret = 0;
1244
1245 pagevec_init(&pvec);
1246 do {
1247 unsigned int nr_entries = PAGEVEC_SIZE;
1248
b56a2d8a 1249 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
10a9c496 1250 pvec.pages, indices, type);
b56a2d8a
VRP
1251 if (pvec.nr == 0) {
1252 ret = 0;
1253 break;
46f65ec1 1254 }
b56a2d8a
VRP
1255
1256 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1257 if (ret < 0)
1258 break;
1259
b56a2d8a
VRP
1260 start = indices[pvec.nr - 1];
1261 } while (true);
1262
1263 return ret;
1da177e4
LT
1264}
1265
1266/*
b56a2d8a
VRP
1267 * Read all the shared memory data that resides in the swap
1268 * device 'type' back into memory, so the swap device can be
1269 * unused.
1da177e4 1270 */
10a9c496 1271int shmem_unuse(unsigned int type)
1da177e4 1272{
b56a2d8a 1273 struct shmem_inode_info *info, *next;
bde05d1c
HD
1274 int error = 0;
1275
b56a2d8a
VRP
1276 if (list_empty(&shmem_swaplist))
1277 return 0;
1278
1279 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1280 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1281 if (!info->swapped) {
6922c0c7 1282 list_del_init(&info->swaplist);
b56a2d8a
VRP
1283 continue;
1284 }
af53d3e9
HD
1285 /*
1286 * Drop the swaplist mutex while searching the inode for swap;
1287 * but before doing so, make sure shmem_evict_inode() will not
1288 * remove placeholder inode from swaplist, nor let it be freed
1289 * (igrab() would protect from unlink, but not from unmount).
1290 */
1291 atomic_inc(&info->stop_eviction);
b56a2d8a 1292 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1293
10a9c496 1294 error = shmem_unuse_inode(&info->vfs_inode, type);
cb5f7b9a 1295 cond_resched();
b56a2d8a
VRP
1296
1297 mutex_lock(&shmem_swaplist_mutex);
1298 next = list_next_entry(info, swaplist);
1299 if (!info->swapped)
1300 list_del_init(&info->swaplist);
af53d3e9
HD
1301 if (atomic_dec_and_test(&info->stop_eviction))
1302 wake_up_var(&info->stop_eviction);
b56a2d8a 1303 if (error)
778dd893 1304 break;
1da177e4 1305 }
cb5f7b9a 1306 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1307
778dd893 1308 return error;
1da177e4
LT
1309}
1310
1311/*
1312 * Move the page from the page cache to the swap cache.
1313 */
1314static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1315{
1316 struct shmem_inode_info *info;
1da177e4 1317 struct address_space *mapping;
1da177e4 1318 struct inode *inode;
6922c0c7
HD
1319 swp_entry_t swap;
1320 pgoff_t index;
1da177e4 1321
1e6decf3
HD
1322 /*
1323 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1324 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1325 * and its shmem_writeback() needs them to be split when swapping.
1326 */
1327 if (PageTransCompound(page)) {
1328 /* Ensure the subpages are still dirty */
1329 SetPageDirty(page);
1330 if (split_huge_page(page) < 0)
1331 goto redirty;
1332 ClearPageDirty(page);
1333 }
1334
1da177e4 1335 BUG_ON(!PageLocked(page));
1da177e4
LT
1336 mapping = page->mapping;
1337 index = page->index;
1338 inode = mapping->host;
1339 info = SHMEM_I(inode);
1340 if (info->flags & VM_LOCKED)
1341 goto redirty;
d9fe526a 1342 if (!total_swap_pages)
1da177e4
LT
1343 goto redirty;
1344
d9fe526a 1345 /*
97b713ba
CH
1346 * Our capabilities prevent regular writeback or sync from ever calling
1347 * shmem_writepage; but a stacking filesystem might use ->writepage of
1348 * its underlying filesystem, in which case tmpfs should write out to
1349 * swap only in response to memory pressure, and not for the writeback
1350 * threads or sync.
d9fe526a 1351 */
48f170fb
HD
1352 if (!wbc->for_reclaim) {
1353 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1354 goto redirty;
1355 }
1635f6a7
HD
1356
1357 /*
1358 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1359 * value into swapfile.c, the only way we can correctly account for a
1360 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1361 *
1362 * That's okay for a page already fallocated earlier, but if we have
1363 * not yet completed the fallocation, then (a) we want to keep track
1364 * of this page in case we have to undo it, and (b) it may not be a
1365 * good idea to continue anyway, once we're pushing into swap. So
1366 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1367 */
1368 if (!PageUptodate(page)) {
1aac1400
HD
1369 if (inode->i_private) {
1370 struct shmem_falloc *shmem_falloc;
1371 spin_lock(&inode->i_lock);
1372 shmem_falloc = inode->i_private;
1373 if (shmem_falloc &&
8e205f77 1374 !shmem_falloc->waitq &&
1aac1400
HD
1375 index >= shmem_falloc->start &&
1376 index < shmem_falloc->next)
1377 shmem_falloc->nr_unswapped++;
1378 else
1379 shmem_falloc = NULL;
1380 spin_unlock(&inode->i_lock);
1381 if (shmem_falloc)
1382 goto redirty;
1383 }
1635f6a7
HD
1384 clear_highpage(page);
1385 flush_dcache_page(page);
1386 SetPageUptodate(page);
1387 }
1388
38d8b4e6 1389 swap = get_swap_page(page);
48f170fb
HD
1390 if (!swap.val)
1391 goto redirty;
d9fe526a 1392
b1dea800
HD
1393 /*
1394 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1395 * if it's not already there. Do it now before the page is
1396 * moved to swap cache, when its pagelock no longer protects
b1dea800 1397 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1398 * we've incremented swapped, because shmem_unuse_inode() will
1399 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1400 */
48f170fb
HD
1401 mutex_lock(&shmem_swaplist_mutex);
1402 if (list_empty(&info->swaplist))
b56a2d8a 1403 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1404
4afab1cd 1405 if (add_to_swap_cache(page, swap,
3852f676
JK
1406 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1407 NULL) == 0) {
4595ef88 1408 spin_lock_irq(&info->lock);
6922c0c7 1409 shmem_recalc_inode(inode);
267a4c76 1410 info->swapped++;
4595ef88 1411 spin_unlock_irq(&info->lock);
6922c0c7 1412
267a4c76
HD
1413 swap_shmem_alloc(swap);
1414 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1415
6922c0c7 1416 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1417 BUG_ON(page_mapped(page));
9fab5619 1418 swap_writepage(page, wbc);
1da177e4
LT
1419 return 0;
1420 }
1421
6922c0c7 1422 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1423 put_swap_page(page, swap);
1da177e4
LT
1424redirty:
1425 set_page_dirty(page);
d9fe526a
HD
1426 if (wbc->for_reclaim)
1427 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1428 unlock_page(page);
1429 return 0;
1da177e4
LT
1430}
1431
75edd345 1432#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1433static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1434{
095f1fc4 1435 char buffer[64];
680d794b 1436
71fe804b 1437 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1438 return; /* show nothing */
680d794b 1439
a7a88b23 1440 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1441
1442 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1443}
71fe804b
LS
1444
1445static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1446{
1447 struct mempolicy *mpol = NULL;
1448 if (sbinfo->mpol) {
bf11b9a8 1449 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1450 mpol = sbinfo->mpol;
1451 mpol_get(mpol);
bf11b9a8 1452 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1453 }
1454 return mpol;
1455}
75edd345
HD
1456#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1457static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458{
1459}
1460static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1461{
1462 return NULL;
1463}
1464#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1465#ifndef CONFIG_NUMA
1466#define vm_policy vm_private_data
1467#endif
680d794b 1468
800d8c63
KS
1469static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1470 struct shmem_inode_info *info, pgoff_t index)
1471{
1472 /* Create a pseudo vma that just contains the policy */
2c4541e2 1473 vma_init(vma, NULL);
800d8c63
KS
1474 /* Bias interleave by inode number to distribute better across nodes */
1475 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1476 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1477}
1478
1479static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1480{
1481 /* Drop reference taken by mpol_shared_policy_lookup() */
1482 mpol_cond_put(vma->vm_policy);
1483}
1484
41ffe5d5
HD
1485static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1486 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1487{
1da177e4 1488 struct vm_area_struct pvma;
18a2f371 1489 struct page *page;
8c63ca5b
WD
1490 struct vm_fault vmf = {
1491 .vma = &pvma,
1492 };
52cd3b07 1493
800d8c63 1494 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1495 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1496 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1497
800d8c63
KS
1498 return page;
1499}
1500
78cc8cdc
RR
1501/*
1502 * Make sure huge_gfp is always more limited than limit_gfp.
1503 * Some of the flags set permissions, while others set limitations.
1504 */
1505static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1506{
1507 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1508 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1509 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1510 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1511
1512 /* Allow allocations only from the originally specified zones. */
1513 result |= zoneflags;
78cc8cdc
RR
1514
1515 /*
1516 * Minimize the result gfp by taking the union with the deny flags,
1517 * and the intersection of the allow flags.
1518 */
1519 result |= (limit_gfp & denyflags);
1520 result |= (huge_gfp & limit_gfp) & allowflags;
1521
1522 return result;
1523}
1524
800d8c63
KS
1525static struct page *shmem_alloc_hugepage(gfp_t gfp,
1526 struct shmem_inode_info *info, pgoff_t index)
1527{
1528 struct vm_area_struct pvma;
7b8d046f
MW
1529 struct address_space *mapping = info->vfs_inode.i_mapping;
1530 pgoff_t hindex;
800d8c63
KS
1531 struct page *page;
1532
4620a06e 1533 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1534 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1535 XA_PRESENT))
800d8c63 1536 return NULL;
18a2f371 1537
800d8c63 1538 shmem_pseudo_vma_init(&pvma, info, hindex);
be1a13eb 1539 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
800d8c63
KS
1540 shmem_pseudo_vma_destroy(&pvma);
1541 if (page)
1542 prep_transhuge_page(page);
dcdf11ee
DR
1543 else
1544 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1545 return page;
1da177e4
LT
1546}
1547
02098fea 1548static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1549 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1550{
1551 struct vm_area_struct pvma;
18a2f371 1552 struct page *page;
1da177e4 1553
800d8c63
KS
1554 shmem_pseudo_vma_init(&pvma, info, index);
1555 page = alloc_page_vma(gfp, &pvma, 0);
1556 shmem_pseudo_vma_destroy(&pvma);
1557
1558 return page;
1559}
1560
1561static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1562 struct inode *inode,
800d8c63
KS
1563 pgoff_t index, bool huge)
1564{
0f079694 1565 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1566 struct page *page;
1567 int nr;
1568 int err = -ENOSPC;
52cd3b07 1569
396bcc52 1570 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1571 huge = false;
1572 nr = huge ? HPAGE_PMD_NR : 1;
1573
0f079694 1574 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1575 goto failed;
800d8c63
KS
1576
1577 if (huge)
1578 page = shmem_alloc_hugepage(gfp, info, index);
1579 else
1580 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1581 if (page) {
1582 __SetPageLocked(page);
1583 __SetPageSwapBacked(page);
800d8c63 1584 return page;
75edd345 1585 }
18a2f371 1586
800d8c63 1587 err = -ENOMEM;
0f079694 1588 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1589failed:
1590 return ERR_PTR(err);
1da177e4 1591}
71fe804b 1592
bde05d1c
HD
1593/*
1594 * When a page is moved from swapcache to shmem filecache (either by the
1595 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1596 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1597 * ignorance of the mapping it belongs to. If that mapping has special
1598 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1599 * we may need to copy to a suitable page before moving to filecache.
1600 *
1601 * In a future release, this may well be extended to respect cpuset and
1602 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1603 * but for now it is a simple matter of zone.
1604 */
1605static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1606{
1607 return page_zonenum(page) > gfp_zone(gfp);
1608}
1609
1610static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1611 struct shmem_inode_info *info, pgoff_t index)
1612{
1613 struct page *oldpage, *newpage;
d21bba2b 1614 struct folio *old, *new;
bde05d1c 1615 struct address_space *swap_mapping;
c1cb20d4 1616 swp_entry_t entry;
bde05d1c
HD
1617 pgoff_t swap_index;
1618 int error;
1619
1620 oldpage = *pagep;
c1cb20d4
YZ
1621 entry.val = page_private(oldpage);
1622 swap_index = swp_offset(entry);
bde05d1c
HD
1623 swap_mapping = page_mapping(oldpage);
1624
1625 /*
1626 * We have arrived here because our zones are constrained, so don't
1627 * limit chance of success by further cpuset and node constraints.
1628 */
1629 gfp &= ~GFP_CONSTRAINT_MASK;
1630 newpage = shmem_alloc_page(gfp, info, index);
1631 if (!newpage)
1632 return -ENOMEM;
bde05d1c 1633
09cbfeaf 1634 get_page(newpage);
bde05d1c 1635 copy_highpage(newpage, oldpage);
0142ef6c 1636 flush_dcache_page(newpage);
bde05d1c 1637
9956edf3
HD
1638 __SetPageLocked(newpage);
1639 __SetPageSwapBacked(newpage);
bde05d1c 1640 SetPageUptodate(newpage);
c1cb20d4 1641 set_page_private(newpage, entry.val);
bde05d1c
HD
1642 SetPageSwapCache(newpage);
1643
1644 /*
1645 * Our caller will very soon move newpage out of swapcache, but it's
1646 * a nice clean interface for us to replace oldpage by newpage there.
1647 */
b93b0163 1648 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1649 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1650 if (!error) {
d21bba2b
MWO
1651 old = page_folio(oldpage);
1652 new = page_folio(newpage);
1653 mem_cgroup_migrate(old, new);
0d1c2072
JW
1654 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1655 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1656 }
b93b0163 1657 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1658
0142ef6c
HD
1659 if (unlikely(error)) {
1660 /*
1661 * Is this possible? I think not, now that our callers check
1662 * both PageSwapCache and page_private after getting page lock;
1663 * but be defensive. Reverse old to newpage for clear and free.
1664 */
1665 oldpage = newpage;
1666 } else {
6058eaec 1667 lru_cache_add(newpage);
0142ef6c
HD
1668 *pagep = newpage;
1669 }
bde05d1c
HD
1670
1671 ClearPageSwapCache(oldpage);
1672 set_page_private(oldpage, 0);
1673
1674 unlock_page(oldpage);
09cbfeaf
KS
1675 put_page(oldpage);
1676 put_page(oldpage);
0142ef6c 1677 return error;
bde05d1c
HD
1678}
1679
c5bf121e
VRP
1680/*
1681 * Swap in the page pointed to by *pagep.
1682 * Caller has to make sure that *pagep contains a valid swapped page.
1683 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1684 * error code and NULL in *pagep.
c5bf121e
VRP
1685 */
1686static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1687 struct page **pagep, enum sgp_type sgp,
1688 gfp_t gfp, struct vm_area_struct *vma,
1689 vm_fault_t *fault_type)
1690{
1691 struct address_space *mapping = inode->i_mapping;
1692 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1693 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1694 struct page *page;
c5bf121e
VRP
1695 swp_entry_t swap;
1696 int error;
1697
1698 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1699 swap = radix_to_swp_entry(*pagep);
1700 *pagep = NULL;
1701
1702 /* Look it up and read it in.. */
1703 page = lookup_swap_cache(swap, NULL, 0);
1704 if (!page) {
1705 /* Or update major stats only when swapin succeeds?? */
1706 if (fault_type) {
1707 *fault_type |= VM_FAULT_MAJOR;
1708 count_vm_event(PGMAJFAULT);
1709 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1710 }
1711 /* Here we actually start the io */
1712 page = shmem_swapin(swap, gfp, info, index);
1713 if (!page) {
1714 error = -ENOMEM;
1715 goto failed;
1716 }
1717 }
1718
1719 /* We have to do this with page locked to prevent races */
1720 lock_page(page);
1721 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1722 !shmem_confirm_swap(mapping, index, swap)) {
1723 error = -EEXIST;
1724 goto unlock;
1725 }
1726 if (!PageUptodate(page)) {
1727 error = -EIO;
1728 goto failed;
1729 }
1730 wait_on_page_writeback(page);
1731
8a84802e
SP
1732 /*
1733 * Some architectures may have to restore extra metadata to the
1734 * physical page after reading from swap.
1735 */
1736 arch_swap_restore(swap, page);
1737
c5bf121e
VRP
1738 if (shmem_should_replace_page(page, gfp)) {
1739 error = shmem_replace_page(&page, gfp, info, index);
1740 if (error)
1741 goto failed;
1742 }
1743
14235ab3 1744 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1745 swp_to_radix_entry(swap), gfp,
1746 charge_mm);
1747 if (error)
14235ab3 1748 goto failed;
c5bf121e
VRP
1749
1750 spin_lock_irq(&info->lock);
1751 info->swapped--;
1752 shmem_recalc_inode(inode);
1753 spin_unlock_irq(&info->lock);
1754
1755 if (sgp == SGP_WRITE)
1756 mark_page_accessed(page);
1757
1758 delete_from_swap_cache(page);
1759 set_page_dirty(page);
1760 swap_free(swap);
1761
1762 *pagep = page;
1763 return 0;
1764failed:
1765 if (!shmem_confirm_swap(mapping, index, swap))
1766 error = -EEXIST;
1767unlock:
1768 if (page) {
1769 unlock_page(page);
1770 put_page(page);
1771 }
1772
1773 return error;
1774}
1775
1da177e4 1776/*
68da9f05 1777 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1778 *
1779 * If we allocate a new one we do not mark it dirty. That's up to the
1780 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1781 * entry since a page cannot live in both the swap and page cache.
1782 *
c949b097 1783 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1784 * otherwise they are NULL.
1da177e4 1785 */
41ffe5d5 1786static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1787 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1788 struct vm_area_struct *vma, struct vm_fault *vmf,
1789 vm_fault_t *fault_type)
1da177e4
LT
1790{
1791 struct address_space *mapping = inode->i_mapping;
23f919d4 1792 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1793 struct shmem_sb_info *sbinfo;
9e18eb29 1794 struct mm_struct *charge_mm;
27ab7006 1795 struct page *page;
800d8c63 1796 pgoff_t hindex = index;
164cc4fe 1797 gfp_t huge_gfp;
1da177e4 1798 int error;
54af6042 1799 int once = 0;
1635f6a7 1800 int alloced = 0;
1da177e4 1801
09cbfeaf 1802 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1803 return -EFBIG;
1da177e4 1804repeat:
c5bf121e
VRP
1805 if (sgp <= SGP_CACHE &&
1806 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1807 return -EINVAL;
1808 }
1809
1810 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1811 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1812
44835d20
MWO
1813 page = pagecache_get_page(mapping, index,
1814 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1815
1816 if (page && vma && userfaultfd_minor(vma)) {
1817 if (!xa_is_value(page)) {
1818 unlock_page(page);
1819 put_page(page);
1820 }
1821 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1822 return 0;
1823 }
1824
3159f943 1825 if (xa_is_value(page)) {
c5bf121e
VRP
1826 error = shmem_swapin_page(inode, index, &page,
1827 sgp, gfp, vma, fault_type);
1828 if (error == -EEXIST)
1829 goto repeat;
54af6042 1830
c5bf121e
VRP
1831 *pagep = page;
1832 return error;
54af6042
HD
1833 }
1834
acdd9f8e 1835 if (page) {
63ec1973 1836 hindex = page->index;
acdd9f8e
HD
1837 if (sgp == SGP_WRITE)
1838 mark_page_accessed(page);
1839 if (PageUptodate(page))
1840 goto out;
1841 /* fallocated page */
1635f6a7
HD
1842 if (sgp != SGP_READ)
1843 goto clear;
1844 unlock_page(page);
09cbfeaf 1845 put_page(page);
1635f6a7 1846 }
27ab7006
HD
1847
1848 /*
acdd9f8e
HD
1849 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1850 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1851 */
1852 *pagep = NULL;
1853 if (sgp == SGP_READ)
1854 return 0;
1855 if (sgp == SGP_NOALLOC)
1856 return -ENOENT;
1857
1858 /*
1859 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1860 */
54af6042 1861
c5bf121e
VRP
1862 if (vma && userfaultfd_missing(vma)) {
1863 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1864 return 0;
1865 }
cfda0526 1866
5e6e5a12 1867 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1868 goto alloc_nohuge;
1da177e4 1869
164cc4fe 1870 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1871 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1872 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1873 if (IS_ERR(page)) {
1874alloc_nohuge:
1875 page = shmem_alloc_and_acct_page(gfp, inode,
1876 index, false);
1877 }
1878 if (IS_ERR(page)) {
1879 int retry = 5;
800d8c63 1880
c5bf121e
VRP
1881 error = PTR_ERR(page);
1882 page = NULL;
1883 if (error != -ENOSPC)
1884 goto unlock;
1885 /*
1886 * Try to reclaim some space by splitting a huge page
1887 * beyond i_size on the filesystem.
1888 */
1889 while (retry--) {
1890 int ret;
66d2f4d2 1891
c5bf121e
VRP
1892 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1893 if (ret == SHRINK_STOP)
1894 break;
1895 if (ret)
1896 goto alloc_nohuge;
b065b432 1897 }
c5bf121e
VRP
1898 goto unlock;
1899 }
54af6042 1900
c5bf121e
VRP
1901 if (PageTransHuge(page))
1902 hindex = round_down(index, HPAGE_PMD_NR);
1903 else
1904 hindex = index;
54af6042 1905
c5bf121e
VRP
1906 if (sgp == SGP_WRITE)
1907 __SetPageReferenced(page);
1908
c5bf121e 1909 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1910 NULL, gfp & GFP_RECLAIM_MASK,
1911 charge_mm);
1912 if (error)
c5bf121e 1913 goto unacct;
6058eaec 1914 lru_cache_add(page);
779750d2 1915
c5bf121e 1916 spin_lock_irq(&info->lock);
d8c6546b 1917 info->alloced += compound_nr(page);
c5bf121e
VRP
1918 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1919 shmem_recalc_inode(inode);
1920 spin_unlock_irq(&info->lock);
1921 alloced = true;
1922
1923 if (PageTransHuge(page) &&
1924 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1925 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1926 /*
c5bf121e
VRP
1927 * Part of the huge page is beyond i_size: subject
1928 * to shrink under memory pressure.
1635f6a7 1929 */
c5bf121e 1930 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1931 /*
c5bf121e
VRP
1932 * _careful to defend against unlocked access to
1933 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1934 */
c5bf121e
VRP
1935 if (list_empty_careful(&info->shrinklist)) {
1936 list_add_tail(&info->shrinklist,
1937 &sbinfo->shrinklist);
1938 sbinfo->shrinklist_len++;
1939 }
1940 spin_unlock(&sbinfo->shrinklist_lock);
1941 }
800d8c63 1942
c5bf121e
VRP
1943 /*
1944 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1945 */
1946 if (sgp == SGP_FALLOC)
1947 sgp = SGP_WRITE;
1948clear:
1949 /*
1950 * Let SGP_WRITE caller clear ends if write does not fill page;
1951 * but SGP_FALLOC on a page fallocated earlier must initialize
1952 * it now, lest undo on failure cancel our earlier guarantee.
1953 */
1954 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1955 int i;
1956
63ec1973
MWO
1957 for (i = 0; i < compound_nr(page); i++) {
1958 clear_highpage(page + i);
1959 flush_dcache_page(page + i);
ec9516fb 1960 }
63ec1973 1961 SetPageUptodate(page);
1da177e4 1962 }
bde05d1c 1963
54af6042 1964 /* Perhaps the file has been truncated since we checked */
75edd345 1965 if (sgp <= SGP_CACHE &&
09cbfeaf 1966 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1967 if (alloced) {
1968 ClearPageDirty(page);
1969 delete_from_page_cache(page);
4595ef88 1970 spin_lock_irq(&info->lock);
267a4c76 1971 shmem_recalc_inode(inode);
4595ef88 1972 spin_unlock_irq(&info->lock);
267a4c76 1973 }
54af6042 1974 error = -EINVAL;
267a4c76 1975 goto unlock;
e83c32e8 1976 }
63ec1973 1977out:
800d8c63 1978 *pagep = page + index - hindex;
54af6042 1979 return 0;
1da177e4 1980
59a16ead 1981 /*
54af6042 1982 * Error recovery.
59a16ead 1983 */
54af6042 1984unacct:
d8c6546b 1985 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1986
1987 if (PageTransHuge(page)) {
1988 unlock_page(page);
1989 put_page(page);
1990 goto alloc_nohuge;
1991 }
d1899228 1992unlock:
27ab7006 1993 if (page) {
54af6042 1994 unlock_page(page);
09cbfeaf 1995 put_page(page);
54af6042
HD
1996 }
1997 if (error == -ENOSPC && !once++) {
4595ef88 1998 spin_lock_irq(&info->lock);
54af6042 1999 shmem_recalc_inode(inode);
4595ef88 2000 spin_unlock_irq(&info->lock);
27ab7006 2001 goto repeat;
ff36b801 2002 }
7f4446ee 2003 if (error == -EEXIST)
54af6042
HD
2004 goto repeat;
2005 return error;
1da177e4
LT
2006}
2007
10d20bd2
LT
2008/*
2009 * This is like autoremove_wake_function, but it removes the wait queue
2010 * entry unconditionally - even if something else had already woken the
2011 * target.
2012 */
ac6424b9 2013static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2014{
2015 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2016 list_del_init(&wait->entry);
10d20bd2
LT
2017 return ret;
2018}
2019
20acce67 2020static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2021{
11bac800 2022 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2023 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2024 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2025 int err;
2026 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2027
f00cdc6d
HD
2028 /*
2029 * Trinity finds that probing a hole which tmpfs is punching can
2030 * prevent the hole-punch from ever completing: which in turn
9608703e 2031 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2032 * faulting pages into the hole while it's being punched. Although
2033 * shmem_undo_range() does remove the additions, it may be unable to
2034 * keep up, as each new page needs its own unmap_mapping_range() call,
2035 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2036 *
2037 * It does not matter if we sometimes reach this check just before the
2038 * hole-punch begins, so that one fault then races with the punch:
2039 * we just need to make racing faults a rare case.
2040 *
2041 * The implementation below would be much simpler if we just used a
9608703e 2042 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2043 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2044 */
2045 if (unlikely(inode->i_private)) {
2046 struct shmem_falloc *shmem_falloc;
2047
2048 spin_lock(&inode->i_lock);
2049 shmem_falloc = inode->i_private;
8e205f77
HD
2050 if (shmem_falloc &&
2051 shmem_falloc->waitq &&
2052 vmf->pgoff >= shmem_falloc->start &&
2053 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2054 struct file *fpin;
8e205f77 2055 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2056 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2057
2058 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2059 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2060 if (fpin)
8e205f77 2061 ret = VM_FAULT_RETRY;
8e205f77
HD
2062
2063 shmem_falloc_waitq = shmem_falloc->waitq;
2064 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2065 TASK_UNINTERRUPTIBLE);
2066 spin_unlock(&inode->i_lock);
2067 schedule();
2068
2069 /*
2070 * shmem_falloc_waitq points into the shmem_fallocate()
2071 * stack of the hole-punching task: shmem_falloc_waitq
2072 * is usually invalid by the time we reach here, but
2073 * finish_wait() does not dereference it in that case;
2074 * though i_lock needed lest racing with wake_up_all().
2075 */
2076 spin_lock(&inode->i_lock);
2077 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2078 spin_unlock(&inode->i_lock);
8897c1b1
KS
2079
2080 if (fpin)
2081 fput(fpin);
8e205f77 2082 return ret;
f00cdc6d 2083 }
8e205f77 2084 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2085 }
2086
5e6e5a12 2087 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2088 gfp, vma, vmf, &ret);
20acce67
SJ
2089 if (err)
2090 return vmf_error(err);
68da9f05 2091 return ret;
1da177e4
LT
2092}
2093
c01d5b30
HD
2094unsigned long shmem_get_unmapped_area(struct file *file,
2095 unsigned long uaddr, unsigned long len,
2096 unsigned long pgoff, unsigned long flags)
2097{
2098 unsigned long (*get_area)(struct file *,
2099 unsigned long, unsigned long, unsigned long, unsigned long);
2100 unsigned long addr;
2101 unsigned long offset;
2102 unsigned long inflated_len;
2103 unsigned long inflated_addr;
2104 unsigned long inflated_offset;
2105
2106 if (len > TASK_SIZE)
2107 return -ENOMEM;
2108
2109 get_area = current->mm->get_unmapped_area;
2110 addr = get_area(file, uaddr, len, pgoff, flags);
2111
396bcc52 2112 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2113 return addr;
2114 if (IS_ERR_VALUE(addr))
2115 return addr;
2116 if (addr & ~PAGE_MASK)
2117 return addr;
2118 if (addr > TASK_SIZE - len)
2119 return addr;
2120
2121 if (shmem_huge == SHMEM_HUGE_DENY)
2122 return addr;
2123 if (len < HPAGE_PMD_SIZE)
2124 return addr;
2125 if (flags & MAP_FIXED)
2126 return addr;
2127 /*
2128 * Our priority is to support MAP_SHARED mapped hugely;
2129 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2130 * But if caller specified an address hint and we allocated area there
2131 * successfully, respect that as before.
c01d5b30 2132 */
99158997 2133 if (uaddr == addr)
c01d5b30
HD
2134 return addr;
2135
2136 if (shmem_huge != SHMEM_HUGE_FORCE) {
2137 struct super_block *sb;
2138
2139 if (file) {
2140 VM_BUG_ON(file->f_op != &shmem_file_operations);
2141 sb = file_inode(file)->i_sb;
2142 } else {
2143 /*
2144 * Called directly from mm/mmap.c, or drivers/char/mem.c
2145 * for "/dev/zero", to create a shared anonymous object.
2146 */
2147 if (IS_ERR(shm_mnt))
2148 return addr;
2149 sb = shm_mnt->mnt_sb;
2150 }
3089bf61 2151 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2152 return addr;
2153 }
2154
2155 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2156 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2157 return addr;
2158 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2159 return addr;
2160
2161 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2162 if (inflated_len > TASK_SIZE)
2163 return addr;
2164 if (inflated_len < len)
2165 return addr;
2166
99158997 2167 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2168 if (IS_ERR_VALUE(inflated_addr))
2169 return addr;
2170 if (inflated_addr & ~PAGE_MASK)
2171 return addr;
2172
2173 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2174 inflated_addr += offset - inflated_offset;
2175 if (inflated_offset > offset)
2176 inflated_addr += HPAGE_PMD_SIZE;
2177
2178 if (inflated_addr > TASK_SIZE - len)
2179 return addr;
2180 return inflated_addr;
2181}
2182
1da177e4 2183#ifdef CONFIG_NUMA
41ffe5d5 2184static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2185{
496ad9aa 2186 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2187 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2188}
2189
d8dc74f2
AB
2190static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2191 unsigned long addr)
1da177e4 2192{
496ad9aa 2193 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2194 pgoff_t index;
1da177e4 2195
41ffe5d5
HD
2196 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2197 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2198}
2199#endif
2200
d7c9e99a 2201int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2202{
496ad9aa 2203 struct inode *inode = file_inode(file);
1da177e4
LT
2204 struct shmem_inode_info *info = SHMEM_I(inode);
2205 int retval = -ENOMEM;
2206
ea0dfeb4
HD
2207 /*
2208 * What serializes the accesses to info->flags?
2209 * ipc_lock_object() when called from shmctl_do_lock(),
2210 * no serialization needed when called from shm_destroy().
2211 */
1da177e4 2212 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2213 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2214 goto out_nomem;
2215 info->flags |= VM_LOCKED;
89e004ea 2216 mapping_set_unevictable(file->f_mapping);
1da177e4 2217 }
d7c9e99a
AG
2218 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2219 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2220 info->flags &= ~VM_LOCKED;
89e004ea 2221 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2222 }
2223 retval = 0;
89e004ea 2224
1da177e4 2225out_nomem:
1da177e4
LT
2226 return retval;
2227}
2228
9b83a6a8 2229static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2230{
ab3948f5 2231 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2232 int ret;
ab3948f5 2233
22247efd
PX
2234 ret = seal_check_future_write(info->seals, vma);
2235 if (ret)
2236 return ret;
ab3948f5 2237
51b0bff2
CM
2238 /* arm64 - allow memory tagging on RAM-based files */
2239 vma->vm_flags |= VM_MTE_ALLOWED;
2240
1da177e4
LT
2241 file_accessed(file);
2242 vma->vm_ops = &shmem_vm_ops;
396bcc52 2243 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2244 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2245 (vma->vm_end & HPAGE_PMD_MASK)) {
2246 khugepaged_enter(vma, vma->vm_flags);
2247 }
1da177e4
LT
2248 return 0;
2249}
2250
454abafe 2251static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2252 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2253{
2254 struct inode *inode;
2255 struct shmem_inode_info *info;
2256 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2257 ino_t ino;
1da177e4 2258
e809d5f0 2259 if (shmem_reserve_inode(sb, &ino))
5b04c689 2260 return NULL;
1da177e4
LT
2261
2262 inode = new_inode(sb);
2263 if (inode) {
e809d5f0 2264 inode->i_ino = ino;
21cb47be 2265 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2266 inode->i_blocks = 0;
078cd827 2267 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2268 inode->i_generation = prandom_u32();
1da177e4
LT
2269 info = SHMEM_I(inode);
2270 memset(info, 0, (char *)inode - (char *)info);
2271 spin_lock_init(&info->lock);
af53d3e9 2272 atomic_set(&info->stop_eviction, 0);
40e041a2 2273 info->seals = F_SEAL_SEAL;
0b0a0806 2274 info->flags = flags & VM_NORESERVE;
f7cd16a5 2275 info->i_crtime = inode->i_mtime;
779750d2 2276 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2277 INIT_LIST_HEAD(&info->swaplist);
38f38657 2278 simple_xattrs_init(&info->xattrs);
72c04902 2279 cache_no_acl(inode);
ff36da69 2280 mapping_set_large_folios(inode->i_mapping);
1da177e4
LT
2281
2282 switch (mode & S_IFMT) {
2283 default:
39f0247d 2284 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2285 init_special_inode(inode, mode, dev);
2286 break;
2287 case S_IFREG:
14fcc23f 2288 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2289 inode->i_op = &shmem_inode_operations;
2290 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2291 mpol_shared_policy_init(&info->policy,
2292 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2293 break;
2294 case S_IFDIR:
d8c76e6f 2295 inc_nlink(inode);
1da177e4
LT
2296 /* Some things misbehave if size == 0 on a directory */
2297 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2298 inode->i_op = &shmem_dir_inode_operations;
2299 inode->i_fop = &simple_dir_operations;
2300 break;
2301 case S_IFLNK:
2302 /*
2303 * Must not load anything in the rbtree,
2304 * mpol_free_shared_policy will not be called.
2305 */
71fe804b 2306 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2307 break;
2308 }
b45d71fb
JFG
2309
2310 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2311 } else
2312 shmem_free_inode(sb);
1da177e4
LT
2313 return inode;
2314}
2315
3460f6e5
AR
2316#ifdef CONFIG_USERFAULTFD
2317int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2318 pmd_t *dst_pmd,
2319 struct vm_area_struct *dst_vma,
2320 unsigned long dst_addr,
2321 unsigned long src_addr,
8ee79edf 2322 bool zeropage, bool wp_copy,
3460f6e5 2323 struct page **pagep)
4c27fe4c
MR
2324{
2325 struct inode *inode = file_inode(dst_vma->vm_file);
2326 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2327 struct address_space *mapping = inode->i_mapping;
2328 gfp_t gfp = mapping_gfp_mask(mapping);
2329 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2330 void *page_kaddr;
2331 struct page *page;
4c27fe4c 2332 int ret;
3460f6e5 2333 pgoff_t max_off;
4c27fe4c 2334
7ed9d238
AR
2335 if (!shmem_inode_acct_block(inode, 1)) {
2336 /*
2337 * We may have got a page, returned -ENOENT triggering a retry,
2338 * and now we find ourselves with -ENOMEM. Release the page, to
2339 * avoid a BUG_ON in our caller.
2340 */
2341 if (unlikely(*pagep)) {
2342 put_page(*pagep);
2343 *pagep = NULL;
2344 }
7d64ae3a 2345 return -ENOMEM;
7ed9d238 2346 }
4c27fe4c 2347
cb658a45 2348 if (!*pagep) {
7d64ae3a 2349 ret = -ENOMEM;
4c27fe4c
MR
2350 page = shmem_alloc_page(gfp, info, pgoff);
2351 if (!page)
0f079694 2352 goto out_unacct_blocks;
4c27fe4c 2353
3460f6e5 2354 if (!zeropage) { /* COPY */
8d103963
MR
2355 page_kaddr = kmap_atomic(page);
2356 ret = copy_from_user(page_kaddr,
2357 (const void __user *)src_addr,
2358 PAGE_SIZE);
2359 kunmap_atomic(page_kaddr);
2360
c1e8d7c6 2361 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2362 if (unlikely(ret)) {
2363 *pagep = page;
7d64ae3a 2364 ret = -ENOENT;
8d103963 2365 /* don't free the page */
7d64ae3a 2366 goto out_unacct_blocks;
8d103963 2367 }
19b482c2
MS
2368
2369 flush_dcache_page(page);
3460f6e5 2370 } else { /* ZEROPAGE */
19b482c2 2371 clear_user_highpage(page, dst_addr);
4c27fe4c
MR
2372 }
2373 } else {
2374 page = *pagep;
2375 *pagep = NULL;
2376 }
2377
3460f6e5
AR
2378 VM_BUG_ON(PageLocked(page));
2379 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2380 __SetPageLocked(page);
2381 __SetPageSwapBacked(page);
a425d358 2382 __SetPageUptodate(page);
9cc90c66 2383
e2a50c1f 2384 ret = -EFAULT;
e2a50c1f 2385 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2386 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2387 goto out_release;
2388
552446a4 2389 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2390 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2391 if (ret)
3fea5a49 2392 goto out_release;
4c27fe4c 2393
7d64ae3a 2394 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
8ee79edf 2395 page, true, wp_copy);
7d64ae3a
AR
2396 if (ret)
2397 goto out_delete_from_cache;
4c27fe4c 2398
94b7cc01 2399 spin_lock_irq(&info->lock);
4c27fe4c
MR
2400 info->alloced++;
2401 inode->i_blocks += BLOCKS_PER_PAGE;
2402 shmem_recalc_inode(inode);
94b7cc01 2403 spin_unlock_irq(&info->lock);
4c27fe4c 2404
e2a50c1f 2405 unlock_page(page);
7d64ae3a
AR
2406 return 0;
2407out_delete_from_cache:
e2a50c1f 2408 delete_from_page_cache(page);
4c27fe4c 2409out_release:
9cc90c66 2410 unlock_page(page);
4c27fe4c 2411 put_page(page);
4c27fe4c 2412out_unacct_blocks:
0f079694 2413 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2414 return ret;
8d103963 2415}
3460f6e5 2416#endif /* CONFIG_USERFAULTFD */
8d103963 2417
1da177e4 2418#ifdef CONFIG_TMPFS
92e1d5be 2419static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2420static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2421
6d9d88d0
JS
2422#ifdef CONFIG_TMPFS_XATTR
2423static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2424#else
2425#define shmem_initxattrs NULL
2426#endif
2427
1da177e4 2428static int
800d15a5
NP
2429shmem_write_begin(struct file *file, struct address_space *mapping,
2430 loff_t pos, unsigned len, unsigned flags,
2431 struct page **pagep, void **fsdata)
1da177e4 2432{
800d15a5 2433 struct inode *inode = mapping->host;
40e041a2 2434 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2435 pgoff_t index = pos >> PAGE_SHIFT;
a7605426 2436 int ret = 0;
40e041a2 2437
9608703e 2438 /* i_rwsem is held by caller */
ab3948f5
JFG
2439 if (unlikely(info->seals & (F_SEAL_GROW |
2440 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2441 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2442 return -EPERM;
2443 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2444 return -EPERM;
2445 }
2446
a7605426
YS
2447 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2448
2449 if (ret)
2450 return ret;
2451
2452 if (PageHWPoison(*pagep)) {
2453 unlock_page(*pagep);
2454 put_page(*pagep);
2455 *pagep = NULL;
2456 return -EIO;
2457 }
2458
2459 return 0;
800d15a5
NP
2460}
2461
2462static int
2463shmem_write_end(struct file *file, struct address_space *mapping,
2464 loff_t pos, unsigned len, unsigned copied,
2465 struct page *page, void *fsdata)
2466{
2467 struct inode *inode = mapping->host;
2468
d3602444
HD
2469 if (pos + copied > inode->i_size)
2470 i_size_write(inode, pos + copied);
2471
ec9516fb 2472 if (!PageUptodate(page)) {
800d8c63
KS
2473 struct page *head = compound_head(page);
2474 if (PageTransCompound(page)) {
2475 int i;
2476
2477 for (i = 0; i < HPAGE_PMD_NR; i++) {
2478 if (head + i == page)
2479 continue;
2480 clear_highpage(head + i);
2481 flush_dcache_page(head + i);
2482 }
2483 }
09cbfeaf
KS
2484 if (copied < PAGE_SIZE) {
2485 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2486 zero_user_segments(page, 0, from,
09cbfeaf 2487 from + copied, PAGE_SIZE);
ec9516fb 2488 }
800d8c63 2489 SetPageUptodate(head);
ec9516fb 2490 }
800d15a5 2491 set_page_dirty(page);
6746aff7 2492 unlock_page(page);
09cbfeaf 2493 put_page(page);
800d15a5 2494
800d15a5 2495 return copied;
1da177e4
LT
2496}
2497
2ba5bbed 2498static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2499{
6e58e79d
AV
2500 struct file *file = iocb->ki_filp;
2501 struct inode *inode = file_inode(file);
1da177e4 2502 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2503 pgoff_t index;
2504 unsigned long offset;
f7c1d074 2505 int error = 0;
cb66a7a1 2506 ssize_t retval = 0;
6e58e79d 2507 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5 2508
09cbfeaf
KS
2509 index = *ppos >> PAGE_SHIFT;
2510 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2511
2512 for (;;) {
2513 struct page *page = NULL;
41ffe5d5
HD
2514 pgoff_t end_index;
2515 unsigned long nr, ret;
1da177e4
LT
2516 loff_t i_size = i_size_read(inode);
2517
09cbfeaf 2518 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2519 if (index > end_index)
2520 break;
2521 if (index == end_index) {
09cbfeaf 2522 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2523 if (nr <= offset)
2524 break;
2525 }
2526
56a8c8eb 2527 error = shmem_getpage(inode, index, &page, SGP_READ);
6e58e79d
AV
2528 if (error) {
2529 if (error == -EINVAL)
2530 error = 0;
1da177e4
LT
2531 break;
2532 }
75edd345 2533 if (page) {
d3602444 2534 unlock_page(page);
a7605426
YS
2535
2536 if (PageHWPoison(page)) {
2537 put_page(page);
2538 error = -EIO;
2539 break;
2540 }
75edd345 2541 }
1da177e4
LT
2542
2543 /*
2544 * We must evaluate after, since reads (unlike writes)
9608703e 2545 * are called without i_rwsem protection against truncate
1da177e4 2546 */
09cbfeaf 2547 nr = PAGE_SIZE;
1da177e4 2548 i_size = i_size_read(inode);
09cbfeaf 2549 end_index = i_size >> PAGE_SHIFT;
1da177e4 2550 if (index == end_index) {
09cbfeaf 2551 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2552 if (nr <= offset) {
2553 if (page)
09cbfeaf 2554 put_page(page);
1da177e4
LT
2555 break;
2556 }
2557 }
2558 nr -= offset;
2559
2560 if (page) {
2561 /*
2562 * If users can be writing to this page using arbitrary
2563 * virtual addresses, take care about potential aliasing
2564 * before reading the page on the kernel side.
2565 */
2566 if (mapping_writably_mapped(mapping))
2567 flush_dcache_page(page);
2568 /*
2569 * Mark the page accessed if we read the beginning.
2570 */
2571 if (!offset)
2572 mark_page_accessed(page);
1bdec44b
HD
2573 /*
2574 * Ok, we have the page, and it's up-to-date, so
2575 * now we can copy it to user space...
2576 */
2577 ret = copy_page_to_iter(page, offset, nr, to);
2578 put_page(page);
2579
2580 } else if (iter_is_iovec(to)) {
2581 /*
2582 * Copy to user tends to be so well optimized, but
2583 * clear_user() not so much, that it is noticeably
2584 * faster to copy the zero page instead of clearing.
2585 */
2586 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
b5810039 2587 } else {
1bdec44b
HD
2588 /*
2589 * But submitting the same page twice in a row to
2590 * splice() - or others? - can result in confusion:
2591 * so don't attempt that optimization on pipes etc.
2592 */
2593 ret = iov_iter_zero(nr, to);
b5810039 2594 }
1da177e4 2595
6e58e79d 2596 retval += ret;
1da177e4 2597 offset += ret;
09cbfeaf
KS
2598 index += offset >> PAGE_SHIFT;
2599 offset &= ~PAGE_MASK;
1da177e4 2600
2ba5bbed 2601 if (!iov_iter_count(to))
1da177e4 2602 break;
6e58e79d
AV
2603 if (ret < nr) {
2604 error = -EFAULT;
2605 break;
2606 }
1da177e4
LT
2607 cond_resched();
2608 }
2609
09cbfeaf 2610 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2611 file_accessed(file);
2612 return retval ? retval : error;
1da177e4
LT
2613}
2614
965c8e59 2615static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2616{
2617 struct address_space *mapping = file->f_mapping;
2618 struct inode *inode = mapping->host;
220f2ac9 2619
965c8e59
AM
2620 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2621 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2622 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2623 if (offset < 0)
2624 return -ENXIO;
2625
5955102c 2626 inode_lock(inode);
9608703e 2627 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2628 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2629 if (offset >= 0)
2630 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2631 inode_unlock(inode);
220f2ac9
HD
2632 return offset;
2633}
2634
83e4fa9c
HD
2635static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2636 loff_t len)
2637{
496ad9aa 2638 struct inode *inode = file_inode(file);
e2d12e22 2639 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2640 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2641 struct shmem_falloc shmem_falloc;
d144bf62 2642 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2643 int error;
83e4fa9c 2644
13ace4d0
HD
2645 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2646 return -EOPNOTSUPP;
2647
5955102c 2648 inode_lock(inode);
83e4fa9c
HD
2649
2650 if (mode & FALLOC_FL_PUNCH_HOLE) {
2651 struct address_space *mapping = file->f_mapping;
2652 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2653 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2654 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2655
9608703e 2656 /* protected by i_rwsem */
ab3948f5 2657 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2658 error = -EPERM;
2659 goto out;
2660 }
2661
8e205f77 2662 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2663 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2664 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2665 spin_lock(&inode->i_lock);
2666 inode->i_private = &shmem_falloc;
2667 spin_unlock(&inode->i_lock);
2668
83e4fa9c
HD
2669 if ((u64)unmap_end > (u64)unmap_start)
2670 unmap_mapping_range(mapping, unmap_start,
2671 1 + unmap_end - unmap_start, 0);
2672 shmem_truncate_range(inode, offset, offset + len - 1);
2673 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2674
2675 spin_lock(&inode->i_lock);
2676 inode->i_private = NULL;
2677 wake_up_all(&shmem_falloc_waitq);
2055da97 2678 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2679 spin_unlock(&inode->i_lock);
83e4fa9c 2680 error = 0;
8e205f77 2681 goto out;
e2d12e22
HD
2682 }
2683
2684 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2685 error = inode_newsize_ok(inode, offset + len);
2686 if (error)
2687 goto out;
2688
40e041a2
DH
2689 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2690 error = -EPERM;
2691 goto out;
2692 }
2693
09cbfeaf
KS
2694 start = offset >> PAGE_SHIFT;
2695 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2696 /* Try to avoid a swapstorm if len is impossible to satisfy */
2697 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2698 error = -ENOSPC;
2699 goto out;
83e4fa9c
HD
2700 }
2701
8e205f77 2702 shmem_falloc.waitq = NULL;
1aac1400
HD
2703 shmem_falloc.start = start;
2704 shmem_falloc.next = start;
2705 shmem_falloc.nr_falloced = 0;
2706 shmem_falloc.nr_unswapped = 0;
2707 spin_lock(&inode->i_lock);
2708 inode->i_private = &shmem_falloc;
2709 spin_unlock(&inode->i_lock);
2710
d144bf62
HD
2711 /*
2712 * info->fallocend is only relevant when huge pages might be
2713 * involved: to prevent split_huge_page() freeing fallocated
2714 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2715 */
2716 undo_fallocend = info->fallocend;
2717 if (info->fallocend < end)
2718 info->fallocend = end;
2719
050dcb5c 2720 for (index = start; index < end; ) {
e2d12e22
HD
2721 struct page *page;
2722
2723 /*
2724 * Good, the fallocate(2) manpage permits EINTR: we may have
2725 * been interrupted because we are using up too much memory.
2726 */
2727 if (signal_pending(current))
2728 error = -EINTR;
1aac1400
HD
2729 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2730 error = -ENOMEM;
e2d12e22 2731 else
9e18eb29 2732 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2733 if (error) {
d144bf62 2734 info->fallocend = undo_fallocend;
1635f6a7 2735 /* Remove the !PageUptodate pages we added */
7f556567
HD
2736 if (index > start) {
2737 shmem_undo_range(inode,
2738 (loff_t)start << PAGE_SHIFT,
2739 ((loff_t)index << PAGE_SHIFT) - 1, true);
2740 }
1aac1400 2741 goto undone;
e2d12e22
HD
2742 }
2743
050dcb5c
HD
2744 index++;
2745 /*
2746 * Here is a more important optimization than it appears:
2747 * a second SGP_FALLOC on the same huge page will clear it,
2748 * making it PageUptodate and un-undoable if we fail later.
2749 */
2750 if (PageTransCompound(page)) {
2751 index = round_up(index, HPAGE_PMD_NR);
2752 /* Beware 32-bit wraparound */
2753 if (!index)
2754 index--;
2755 }
2756
1aac1400
HD
2757 /*
2758 * Inform shmem_writepage() how far we have reached.
2759 * No need for lock or barrier: we have the page lock.
2760 */
1aac1400 2761 if (!PageUptodate(page))
050dcb5c
HD
2762 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2763 shmem_falloc.next = index;
1aac1400 2764
e2d12e22 2765 /*
1635f6a7
HD
2766 * If !PageUptodate, leave it that way so that freeable pages
2767 * can be recognized if we need to rollback on error later.
2768 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2769 * than free the pages we are allocating (and SGP_CACHE pages
2770 * might still be clean: we now need to mark those dirty too).
2771 */
2772 set_page_dirty(page);
2773 unlock_page(page);
09cbfeaf 2774 put_page(page);
e2d12e22
HD
2775 cond_resched();
2776 }
2777
2778 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2779 i_size_write(inode, offset + len);
078cd827 2780 inode->i_ctime = current_time(inode);
1aac1400
HD
2781undone:
2782 spin_lock(&inode->i_lock);
2783 inode->i_private = NULL;
2784 spin_unlock(&inode->i_lock);
e2d12e22 2785out:
5955102c 2786 inode_unlock(inode);
83e4fa9c
HD
2787 return error;
2788}
2789
726c3342 2790static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2791{
726c3342 2792 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2793
2794 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2795 buf->f_bsize = PAGE_SIZE;
1da177e4 2796 buf->f_namelen = NAME_MAX;
0edd73b3 2797 if (sbinfo->max_blocks) {
1da177e4 2798 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2799 buf->f_bavail =
2800 buf->f_bfree = sbinfo->max_blocks -
2801 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2802 }
2803 if (sbinfo->max_inodes) {
1da177e4
LT
2804 buf->f_files = sbinfo->max_inodes;
2805 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2806 }
2807 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2808
2809 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2810
1da177e4
LT
2811 return 0;
2812}
2813
2814/*
2815 * File creation. Allocate an inode, and we're done..
2816 */
2817static int
549c7297
CB
2818shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2819 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2820{
0b0a0806 2821 struct inode *inode;
1da177e4
LT
2822 int error = -ENOSPC;
2823
454abafe 2824 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2825 if (inode) {
feda821e
CH
2826 error = simple_acl_create(dir, inode);
2827 if (error)
2828 goto out_iput;
2a7dba39 2829 error = security_inode_init_security(inode, dir,
9d8f13ba 2830 &dentry->d_name,
6d9d88d0 2831 shmem_initxattrs, NULL);
feda821e
CH
2832 if (error && error != -EOPNOTSUPP)
2833 goto out_iput;
37ec43cd 2834
718deb6b 2835 error = 0;
1da177e4 2836 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2837 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2838 d_instantiate(dentry, inode);
2839 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2840 }
2841 return error;
feda821e
CH
2842out_iput:
2843 iput(inode);
2844 return error;
1da177e4
LT
2845}
2846
60545d0d 2847static int
549c7297
CB
2848shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2849 struct dentry *dentry, umode_t mode)
60545d0d
AV
2850{
2851 struct inode *inode;
2852 int error = -ENOSPC;
2853
2854 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2855 if (inode) {
2856 error = security_inode_init_security(inode, dir,
2857 NULL,
2858 shmem_initxattrs, NULL);
feda821e
CH
2859 if (error && error != -EOPNOTSUPP)
2860 goto out_iput;
2861 error = simple_acl_create(dir, inode);
2862 if (error)
2863 goto out_iput;
60545d0d
AV
2864 d_tmpfile(dentry, inode);
2865 }
2866 return error;
feda821e
CH
2867out_iput:
2868 iput(inode);
2869 return error;
60545d0d
AV
2870}
2871
549c7297
CB
2872static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2873 struct dentry *dentry, umode_t mode)
1da177e4
LT
2874{
2875 int error;
2876
549c7297
CB
2877 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2878 mode | S_IFDIR, 0)))
1da177e4 2879 return error;
d8c76e6f 2880 inc_nlink(dir);
1da177e4
LT
2881 return 0;
2882}
2883
549c7297
CB
2884static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2885 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2886{
549c7297 2887 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2888}
2889
2890/*
2891 * Link a file..
2892 */
2893static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2894{
75c3cfa8 2895 struct inode *inode = d_inode(old_dentry);
29b00e60 2896 int ret = 0;
1da177e4
LT
2897
2898 /*
2899 * No ordinary (disk based) filesystem counts links as inodes;
2900 * but each new link needs a new dentry, pinning lowmem, and
2901 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2902 * But if an O_TMPFILE file is linked into the tmpfs, the
2903 * first link must skip that, to get the accounting right.
1da177e4 2904 */
1062af92 2905 if (inode->i_nlink) {
e809d5f0 2906 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2907 if (ret)
2908 goto out;
2909 }
1da177e4
LT
2910
2911 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2912 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2913 inc_nlink(inode);
7de9c6ee 2914 ihold(inode); /* New dentry reference */
1da177e4
LT
2915 dget(dentry); /* Extra pinning count for the created dentry */
2916 d_instantiate(dentry, inode);
5b04c689
PE
2917out:
2918 return ret;
1da177e4
LT
2919}
2920
2921static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2922{
75c3cfa8 2923 struct inode *inode = d_inode(dentry);
1da177e4 2924
5b04c689
PE
2925 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2926 shmem_free_inode(inode->i_sb);
1da177e4
LT
2927
2928 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2929 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2930 drop_nlink(inode);
1da177e4
LT
2931 dput(dentry); /* Undo the count from "create" - this does all the work */
2932 return 0;
2933}
2934
2935static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2936{
2937 if (!simple_empty(dentry))
2938 return -ENOTEMPTY;
2939
75c3cfa8 2940 drop_nlink(d_inode(dentry));
9a53c3a7 2941 drop_nlink(dir);
1da177e4
LT
2942 return shmem_unlink(dir, dentry);
2943}
2944
549c7297
CB
2945static int shmem_whiteout(struct user_namespace *mnt_userns,
2946 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2947{
2948 struct dentry *whiteout;
2949 int error;
2950
2951 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2952 if (!whiteout)
2953 return -ENOMEM;
2954
549c7297 2955 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2956 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2957 dput(whiteout);
2958 if (error)
2959 return error;
2960
2961 /*
2962 * Cheat and hash the whiteout while the old dentry is still in
2963 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2964 *
2965 * d_lookup() will consistently find one of them at this point,
2966 * not sure which one, but that isn't even important.
2967 */
2968 d_rehash(whiteout);
2969 return 0;
2970}
2971
1da177e4
LT
2972/*
2973 * The VFS layer already does all the dentry stuff for rename,
2974 * we just have to decrement the usage count for the target if
2975 * it exists so that the VFS layer correctly free's it when it
2976 * gets overwritten.
2977 */
549c7297
CB
2978static int shmem_rename2(struct user_namespace *mnt_userns,
2979 struct inode *old_dir, struct dentry *old_dentry,
2980 struct inode *new_dir, struct dentry *new_dentry,
2981 unsigned int flags)
1da177e4 2982{
75c3cfa8 2983 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2984 int they_are_dirs = S_ISDIR(inode->i_mode);
2985
46fdb794 2986 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2987 return -EINVAL;
2988
37456771 2989 if (flags & RENAME_EXCHANGE)
6429e463 2990 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
37456771 2991
1da177e4
LT
2992 if (!simple_empty(new_dentry))
2993 return -ENOTEMPTY;
2994
46fdb794
MS
2995 if (flags & RENAME_WHITEOUT) {
2996 int error;
2997
549c7297 2998 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
2999 if (error)
3000 return error;
3001 }
3002
75c3cfa8 3003 if (d_really_is_positive(new_dentry)) {
1da177e4 3004 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3005 if (they_are_dirs) {
75c3cfa8 3006 drop_nlink(d_inode(new_dentry));
9a53c3a7 3007 drop_nlink(old_dir);
b928095b 3008 }
1da177e4 3009 } else if (they_are_dirs) {
9a53c3a7 3010 drop_nlink(old_dir);
d8c76e6f 3011 inc_nlink(new_dir);
1da177e4
LT
3012 }
3013
3014 old_dir->i_size -= BOGO_DIRENT_SIZE;
3015 new_dir->i_size += BOGO_DIRENT_SIZE;
3016 old_dir->i_ctime = old_dir->i_mtime =
3017 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3018 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3019 return 0;
3020}
3021
549c7297
CB
3022static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3023 struct dentry *dentry, const char *symname)
1da177e4
LT
3024{
3025 int error;
3026 int len;
3027 struct inode *inode;
9276aad6 3028 struct page *page;
1da177e4
LT
3029
3030 len = strlen(symname) + 1;
09cbfeaf 3031 if (len > PAGE_SIZE)
1da177e4
LT
3032 return -ENAMETOOLONG;
3033
0825a6f9
JP
3034 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3035 VM_NORESERVE);
1da177e4
LT
3036 if (!inode)
3037 return -ENOSPC;
3038
9d8f13ba 3039 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3040 shmem_initxattrs, NULL);
343c3d7f
MN
3041 if (error && error != -EOPNOTSUPP) {
3042 iput(inode);
3043 return error;
570bc1c2
SS
3044 }
3045
1da177e4 3046 inode->i_size = len-1;
69f07ec9 3047 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3048 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3049 if (!inode->i_link) {
69f07ec9
HD
3050 iput(inode);
3051 return -ENOMEM;
3052 }
3053 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3054 } else {
e8ecde25 3055 inode_nohighmem(inode);
9e18eb29 3056 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3057 if (error) {
3058 iput(inode);
3059 return error;
3060 }
14fcc23f 3061 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3062 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3063 memcpy(page_address(page), symname, len);
ec9516fb 3064 SetPageUptodate(page);
1da177e4 3065 set_page_dirty(page);
6746aff7 3066 unlock_page(page);
09cbfeaf 3067 put_page(page);
1da177e4 3068 }
1da177e4 3069 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3070 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3071 d_instantiate(dentry, inode);
3072 dget(dentry);
3073 return 0;
3074}
3075
fceef393 3076static void shmem_put_link(void *arg)
1da177e4 3077{
fceef393
AV
3078 mark_page_accessed(arg);
3079 put_page(arg);
1da177e4
LT
3080}
3081
6b255391 3082static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3083 struct inode *inode,
3084 struct delayed_call *done)
1da177e4 3085{
1da177e4 3086 struct page *page = NULL;
6b255391 3087 int error;
6a6c9904
AV
3088 if (!dentry) {
3089 page = find_get_page(inode->i_mapping, 0);
3090 if (!page)
3091 return ERR_PTR(-ECHILD);
a7605426
YS
3092 if (PageHWPoison(page) ||
3093 !PageUptodate(page)) {
6a6c9904
AV
3094 put_page(page);
3095 return ERR_PTR(-ECHILD);
3096 }
3097 } else {
9e18eb29 3098 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3099 if (error)
3100 return ERR_PTR(error);
a7605426
YS
3101 if (!page)
3102 return ERR_PTR(-ECHILD);
3103 if (PageHWPoison(page)) {
3104 unlock_page(page);
3105 put_page(page);
3106 return ERR_PTR(-ECHILD);
3107 }
6a6c9904
AV
3108 unlock_page(page);
3109 }
fceef393 3110 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3111 return page_address(page);
1da177e4
LT
3112}
3113
b09e0fa4 3114#ifdef CONFIG_TMPFS_XATTR
46711810 3115/*
b09e0fa4
EP
3116 * Superblocks without xattr inode operations may get some security.* xattr
3117 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3118 * like ACLs, we also need to implement the security.* handlers at
3119 * filesystem level, though.
3120 */
3121
6d9d88d0
JS
3122/*
3123 * Callback for security_inode_init_security() for acquiring xattrs.
3124 */
3125static int shmem_initxattrs(struct inode *inode,
3126 const struct xattr *xattr_array,
3127 void *fs_info)
3128{
3129 struct shmem_inode_info *info = SHMEM_I(inode);
3130 const struct xattr *xattr;
38f38657 3131 struct simple_xattr *new_xattr;
6d9d88d0
JS
3132 size_t len;
3133
3134 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3135 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3136 if (!new_xattr)
3137 return -ENOMEM;
3138
3139 len = strlen(xattr->name) + 1;
3140 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3141 GFP_KERNEL);
3142 if (!new_xattr->name) {
3bef735a 3143 kvfree(new_xattr);
6d9d88d0
JS
3144 return -ENOMEM;
3145 }
3146
3147 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3148 XATTR_SECURITY_PREFIX_LEN);
3149 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3150 xattr->name, len);
3151
38f38657 3152 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3153 }
3154
3155 return 0;
3156}
3157
aa7c5241 3158static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3159 struct dentry *unused, struct inode *inode,
3160 const char *name, void *buffer, size_t size)
b09e0fa4 3161{
b296821a 3162 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3163
aa7c5241 3164 name = xattr_full_name(handler, name);
38f38657 3165 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3166}
3167
aa7c5241 3168static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3169 struct user_namespace *mnt_userns,
59301226
AV
3170 struct dentry *unused, struct inode *inode,
3171 const char *name, const void *value,
3172 size_t size, int flags)
b09e0fa4 3173{
59301226 3174 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3175
aa7c5241 3176 name = xattr_full_name(handler, name);
a46a2295 3177 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3178}
3179
aa7c5241
AG
3180static const struct xattr_handler shmem_security_xattr_handler = {
3181 .prefix = XATTR_SECURITY_PREFIX,
3182 .get = shmem_xattr_handler_get,
3183 .set = shmem_xattr_handler_set,
3184};
b09e0fa4 3185
aa7c5241
AG
3186static const struct xattr_handler shmem_trusted_xattr_handler = {
3187 .prefix = XATTR_TRUSTED_PREFIX,
3188 .get = shmem_xattr_handler_get,
3189 .set = shmem_xattr_handler_set,
3190};
b09e0fa4 3191
aa7c5241
AG
3192static const struct xattr_handler *shmem_xattr_handlers[] = {
3193#ifdef CONFIG_TMPFS_POSIX_ACL
3194 &posix_acl_access_xattr_handler,
3195 &posix_acl_default_xattr_handler,
3196#endif
3197 &shmem_security_xattr_handler,
3198 &shmem_trusted_xattr_handler,
3199 NULL
3200};
b09e0fa4
EP
3201
3202static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3203{
75c3cfa8 3204 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3205 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3206}
3207#endif /* CONFIG_TMPFS_XATTR */
3208
69f07ec9 3209static const struct inode_operations shmem_short_symlink_operations = {
f7cd16a5 3210 .getattr = shmem_getattr,
6b255391 3211 .get_link = simple_get_link,
b09e0fa4 3212#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3213 .listxattr = shmem_listxattr,
b09e0fa4
EP
3214#endif
3215};
3216
3217static const struct inode_operations shmem_symlink_inode_operations = {
f7cd16a5 3218 .getattr = shmem_getattr,
6b255391 3219 .get_link = shmem_get_link,
b09e0fa4 3220#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3221 .listxattr = shmem_listxattr,
39f0247d 3222#endif
b09e0fa4 3223};
39f0247d 3224
91828a40
DG
3225static struct dentry *shmem_get_parent(struct dentry *child)
3226{
3227 return ERR_PTR(-ESTALE);
3228}
3229
3230static int shmem_match(struct inode *ino, void *vfh)
3231{
3232 __u32 *fh = vfh;
3233 __u64 inum = fh[2];
3234 inum = (inum << 32) | fh[1];
3235 return ino->i_ino == inum && fh[0] == ino->i_generation;
3236}
3237
12ba780d
AG
3238/* Find any alias of inode, but prefer a hashed alias */
3239static struct dentry *shmem_find_alias(struct inode *inode)
3240{
3241 struct dentry *alias = d_find_alias(inode);
3242
3243 return alias ?: d_find_any_alias(inode);
3244}
3245
3246
480b116c
CH
3247static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3248 struct fid *fid, int fh_len, int fh_type)
91828a40 3249{
91828a40 3250 struct inode *inode;
480b116c 3251 struct dentry *dentry = NULL;
35c2a7f4 3252 u64 inum;
480b116c
CH
3253
3254 if (fh_len < 3)
3255 return NULL;
91828a40 3256
35c2a7f4
HD
3257 inum = fid->raw[2];
3258 inum = (inum << 32) | fid->raw[1];
3259
480b116c
CH
3260 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3261 shmem_match, fid->raw);
91828a40 3262 if (inode) {
12ba780d 3263 dentry = shmem_find_alias(inode);
91828a40
DG
3264 iput(inode);
3265 }
3266
480b116c 3267 return dentry;
91828a40
DG
3268}
3269
b0b0382b
AV
3270static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3271 struct inode *parent)
91828a40 3272{
5fe0c237
AK
3273 if (*len < 3) {
3274 *len = 3;
94e07a75 3275 return FILEID_INVALID;
5fe0c237 3276 }
91828a40 3277
1d3382cb 3278 if (inode_unhashed(inode)) {
91828a40
DG
3279 /* Unfortunately insert_inode_hash is not idempotent,
3280 * so as we hash inodes here rather than at creation
3281 * time, we need a lock to ensure we only try
3282 * to do it once
3283 */
3284 static DEFINE_SPINLOCK(lock);
3285 spin_lock(&lock);
1d3382cb 3286 if (inode_unhashed(inode))
91828a40
DG
3287 __insert_inode_hash(inode,
3288 inode->i_ino + inode->i_generation);
3289 spin_unlock(&lock);
3290 }
3291
3292 fh[0] = inode->i_generation;
3293 fh[1] = inode->i_ino;
3294 fh[2] = ((__u64)inode->i_ino) >> 32;
3295
3296 *len = 3;
3297 return 1;
3298}
3299
39655164 3300static const struct export_operations shmem_export_ops = {
91828a40 3301 .get_parent = shmem_get_parent,
91828a40 3302 .encode_fh = shmem_encode_fh,
480b116c 3303 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3304};
3305
626c3920
AV
3306enum shmem_param {
3307 Opt_gid,
3308 Opt_huge,
3309 Opt_mode,
3310 Opt_mpol,
3311 Opt_nr_blocks,
3312 Opt_nr_inodes,
3313 Opt_size,
3314 Opt_uid,
ea3271f7
CD
3315 Opt_inode32,
3316 Opt_inode64,
626c3920
AV
3317};
3318
5eede625 3319static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3320 {"never", SHMEM_HUGE_NEVER },
3321 {"always", SHMEM_HUGE_ALWAYS },
3322 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3323 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3324 {}
3325};
3326
d7167b14 3327const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3328 fsparam_u32 ("gid", Opt_gid),
2710c957 3329 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3330 fsparam_u32oct("mode", Opt_mode),
3331 fsparam_string("mpol", Opt_mpol),
3332 fsparam_string("nr_blocks", Opt_nr_blocks),
3333 fsparam_string("nr_inodes", Opt_nr_inodes),
3334 fsparam_string("size", Opt_size),
3335 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3336 fsparam_flag ("inode32", Opt_inode32),
3337 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3338 {}
3339};
3340
f3235626 3341static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3342{
f3235626 3343 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3344 struct fs_parse_result result;
3345 unsigned long long size;
e04dc423 3346 char *rest;
626c3920
AV
3347 int opt;
3348
d7167b14 3349 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3350 if (opt < 0)
626c3920 3351 return opt;
1da177e4 3352
626c3920
AV
3353 switch (opt) {
3354 case Opt_size:
3355 size = memparse(param->string, &rest);
e04dc423
AV
3356 if (*rest == '%') {
3357 size <<= PAGE_SHIFT;
3358 size *= totalram_pages();
3359 do_div(size, 100);
3360 rest++;
3361 }
3362 if (*rest)
626c3920 3363 goto bad_value;
e04dc423
AV
3364 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3365 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3366 break;
3367 case Opt_nr_blocks:
3368 ctx->blocks = memparse(param->string, &rest);
e04dc423 3369 if (*rest)
626c3920 3370 goto bad_value;
e04dc423 3371 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3372 break;
3373 case Opt_nr_inodes:
3374 ctx->inodes = memparse(param->string, &rest);
e04dc423 3375 if (*rest)
626c3920 3376 goto bad_value;
e04dc423 3377 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3378 break;
3379 case Opt_mode:
3380 ctx->mode = result.uint_32 & 07777;
3381 break;
3382 case Opt_uid:
3383 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3384 if (!uid_valid(ctx->uid))
626c3920
AV
3385 goto bad_value;
3386 break;
3387 case Opt_gid:
3388 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3389 if (!gid_valid(ctx->gid))
626c3920
AV
3390 goto bad_value;
3391 break;
3392 case Opt_huge:
3393 ctx->huge = result.uint_32;
3394 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3395 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3396 has_transparent_hugepage()))
3397 goto unsupported_parameter;
e04dc423 3398 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3399 break;
3400 case Opt_mpol:
3401 if (IS_ENABLED(CONFIG_NUMA)) {
3402 mpol_put(ctx->mpol);
3403 ctx->mpol = NULL;
3404 if (mpol_parse_str(param->string, &ctx->mpol))
3405 goto bad_value;
3406 break;
3407 }
3408 goto unsupported_parameter;
ea3271f7
CD
3409 case Opt_inode32:
3410 ctx->full_inums = false;
3411 ctx->seen |= SHMEM_SEEN_INUMS;
3412 break;
3413 case Opt_inode64:
3414 if (sizeof(ino_t) < 8) {
3415 return invalfc(fc,
3416 "Cannot use inode64 with <64bit inums in kernel\n");
3417 }
3418 ctx->full_inums = true;
3419 ctx->seen |= SHMEM_SEEN_INUMS;
3420 break;
e04dc423
AV
3421 }
3422 return 0;
3423
626c3920 3424unsupported_parameter:
f35aa2bc 3425 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3426bad_value:
f35aa2bc 3427 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3428}
3429
f3235626 3430static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3431{
f3235626
DH
3432 char *options = data;
3433
33f37c64
AV
3434 if (options) {
3435 int err = security_sb_eat_lsm_opts(options, &fc->security);
3436 if (err)
3437 return err;
3438 }
3439
b00dc3ad 3440 while (options != NULL) {
626c3920 3441 char *this_char = options;
b00dc3ad
HD
3442 for (;;) {
3443 /*
3444 * NUL-terminate this option: unfortunately,
3445 * mount options form a comma-separated list,
3446 * but mpol's nodelist may also contain commas.
3447 */
3448 options = strchr(options, ',');
3449 if (options == NULL)
3450 break;
3451 options++;
3452 if (!isdigit(*options)) {
3453 options[-1] = '\0';
3454 break;
3455 }
3456 }
626c3920 3457 if (*this_char) {
68d68ff6 3458 char *value = strchr(this_char, '=');
f3235626 3459 size_t len = 0;
626c3920
AV
3460 int err;
3461
3462 if (value) {
3463 *value++ = '\0';
f3235626 3464 len = strlen(value);
626c3920 3465 }
f3235626
DH
3466 err = vfs_parse_fs_string(fc, this_char, value, len);
3467 if (err < 0)
3468 return err;
1da177e4 3469 }
1da177e4
LT
3470 }
3471 return 0;
1da177e4
LT
3472}
3473
f3235626
DH
3474/*
3475 * Reconfigure a shmem filesystem.
3476 *
3477 * Note that we disallow change from limited->unlimited blocks/inodes while any
3478 * are in use; but we must separately disallow unlimited->limited, because in
3479 * that case we have no record of how much is already in use.
3480 */
3481static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3482{
f3235626
DH
3483 struct shmem_options *ctx = fc->fs_private;
3484 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3485 unsigned long inodes;
bf11b9a8 3486 struct mempolicy *mpol = NULL;
f3235626 3487 const char *err;
1da177e4 3488
bf11b9a8 3489 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3490 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3491 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3492 if (!sbinfo->max_blocks) {
3493 err = "Cannot retroactively limit size";
0b5071dd 3494 goto out;
f3235626 3495 }
0b5071dd 3496 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3497 ctx->blocks) > 0) {
3498 err = "Too small a size for current use";
0b5071dd 3499 goto out;
f3235626 3500 }
0b5071dd 3501 }
f3235626
DH
3502 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3503 if (!sbinfo->max_inodes) {
3504 err = "Cannot retroactively limit inodes";
0b5071dd 3505 goto out;
f3235626
DH
3506 }
3507 if (ctx->inodes < inodes) {
3508 err = "Too few inodes for current use";
0b5071dd 3509 goto out;
f3235626 3510 }
0b5071dd 3511 }
0edd73b3 3512
ea3271f7
CD
3513 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3514 sbinfo->next_ino > UINT_MAX) {
3515 err = "Current inum too high to switch to 32-bit inums";
3516 goto out;
3517 }
3518
f3235626
DH
3519 if (ctx->seen & SHMEM_SEEN_HUGE)
3520 sbinfo->huge = ctx->huge;
ea3271f7
CD
3521 if (ctx->seen & SHMEM_SEEN_INUMS)
3522 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3523 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3524 sbinfo->max_blocks = ctx->blocks;
3525 if (ctx->seen & SHMEM_SEEN_INODES) {
3526 sbinfo->max_inodes = ctx->inodes;
3527 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3528 }
71fe804b 3529
5f00110f
GT
3530 /*
3531 * Preserve previous mempolicy unless mpol remount option was specified.
3532 */
f3235626 3533 if (ctx->mpol) {
bf11b9a8 3534 mpol = sbinfo->mpol;
f3235626
DH
3535 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3536 ctx->mpol = NULL;
5f00110f 3537 }
bf11b9a8
SAS
3538 raw_spin_unlock(&sbinfo->stat_lock);
3539 mpol_put(mpol);
f3235626 3540 return 0;
0edd73b3 3541out:
bf11b9a8 3542 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3543 return invalfc(fc, "%s", err);
1da177e4 3544}
680d794b 3545
34c80b1d 3546static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3547{
34c80b1d 3548 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3549
3550 if (sbinfo->max_blocks != shmem_default_max_blocks())
3551 seq_printf(seq, ",size=%luk",
09cbfeaf 3552 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3553 if (sbinfo->max_inodes != shmem_default_max_inodes())
3554 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3555 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3556 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3557 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3558 seq_printf(seq, ",uid=%u",
3559 from_kuid_munged(&init_user_ns, sbinfo->uid));
3560 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3561 seq_printf(seq, ",gid=%u",
3562 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3563
3564 /*
3565 * Showing inode{64,32} might be useful even if it's the system default,
3566 * since then people don't have to resort to checking both here and
3567 * /proc/config.gz to confirm 64-bit inums were successfully applied
3568 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3569 *
3570 * We hide it when inode64 isn't the default and we are using 32-bit
3571 * inodes, since that probably just means the feature isn't even under
3572 * consideration.
3573 *
3574 * As such:
3575 *
3576 * +-----------------+-----------------+
3577 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3578 * +------------------+-----------------+-----------------+
3579 * | full_inums=true | show | show |
3580 * | full_inums=false | show | hide |
3581 * +------------------+-----------------+-----------------+
3582 *
3583 */
3584 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3585 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3586#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3587 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3588 if (sbinfo->huge)
3589 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3590#endif
71fe804b 3591 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3592 return 0;
3593}
9183df25 3594
680d794b 3595#endif /* CONFIG_TMPFS */
1da177e4
LT
3596
3597static void shmem_put_super(struct super_block *sb)
3598{
602586a8
HD
3599 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3600
e809d5f0 3601 free_percpu(sbinfo->ino_batch);
602586a8 3602 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3603 mpol_put(sbinfo->mpol);
602586a8 3604 kfree(sbinfo);
1da177e4
LT
3605 sb->s_fs_info = NULL;
3606}
3607
f3235626 3608static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3609{
f3235626 3610 struct shmem_options *ctx = fc->fs_private;
1da177e4 3611 struct inode *inode;
0edd73b3 3612 struct shmem_sb_info *sbinfo;
680d794b 3613
3614 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3615 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3616 L1_CACHE_BYTES), GFP_KERNEL);
3617 if (!sbinfo)
3618 return -ENOMEM;
3619
680d794b 3620 sb->s_fs_info = sbinfo;
1da177e4 3621
0edd73b3 3622#ifdef CONFIG_TMPFS
1da177e4
LT
3623 /*
3624 * Per default we only allow half of the physical ram per
3625 * tmpfs instance, limiting inodes to one per page of lowmem;
3626 * but the internal instance is left unlimited.
3627 */
1751e8a6 3628 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3629 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3630 ctx->blocks = shmem_default_max_blocks();
3631 if (!(ctx->seen & SHMEM_SEEN_INODES))
3632 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3633 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3634 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3635 } else {
1751e8a6 3636 sb->s_flags |= SB_NOUSER;
1da177e4 3637 }
91828a40 3638 sb->s_export_op = &shmem_export_ops;
1751e8a6 3639 sb->s_flags |= SB_NOSEC;
1da177e4 3640#else
1751e8a6 3641 sb->s_flags |= SB_NOUSER;
1da177e4 3642#endif
f3235626
DH
3643 sbinfo->max_blocks = ctx->blocks;
3644 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3645 if (sb->s_flags & SB_KERNMOUNT) {
3646 sbinfo->ino_batch = alloc_percpu(ino_t);
3647 if (!sbinfo->ino_batch)
3648 goto failed;
3649 }
f3235626
DH
3650 sbinfo->uid = ctx->uid;
3651 sbinfo->gid = ctx->gid;
ea3271f7 3652 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3653 sbinfo->mode = ctx->mode;
3654 sbinfo->huge = ctx->huge;
3655 sbinfo->mpol = ctx->mpol;
3656 ctx->mpol = NULL;
1da177e4 3657
bf11b9a8 3658 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3659 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3660 goto failed;
779750d2
KS
3661 spin_lock_init(&sbinfo->shrinklist_lock);
3662 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3663
285b2c4f 3664 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3665 sb->s_blocksize = PAGE_SIZE;
3666 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3667 sb->s_magic = TMPFS_MAGIC;
3668 sb->s_op = &shmem_ops;
cfd95a9c 3669 sb->s_time_gran = 1;
b09e0fa4 3670#ifdef CONFIG_TMPFS_XATTR
39f0247d 3671 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3672#endif
3673#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3674 sb->s_flags |= SB_POSIXACL;
39f0247d 3675#endif
2b4db796 3676 uuid_gen(&sb->s_uuid);
0edd73b3 3677
454abafe 3678 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3679 if (!inode)
3680 goto failed;
680d794b 3681 inode->i_uid = sbinfo->uid;
3682 inode->i_gid = sbinfo->gid;
318ceed0
AV
3683 sb->s_root = d_make_root(inode);
3684 if (!sb->s_root)
48fde701 3685 goto failed;
1da177e4
LT
3686 return 0;
3687
1da177e4
LT
3688failed:
3689 shmem_put_super(sb);
f2b346e4 3690 return -ENOMEM;
1da177e4
LT
3691}
3692
f3235626
DH
3693static int shmem_get_tree(struct fs_context *fc)
3694{
3695 return get_tree_nodev(fc, shmem_fill_super);
3696}
3697
3698static void shmem_free_fc(struct fs_context *fc)
3699{
3700 struct shmem_options *ctx = fc->fs_private;
3701
3702 if (ctx) {
3703 mpol_put(ctx->mpol);
3704 kfree(ctx);
3705 }
3706}
3707
3708static const struct fs_context_operations shmem_fs_context_ops = {
3709 .free = shmem_free_fc,
3710 .get_tree = shmem_get_tree,
3711#ifdef CONFIG_TMPFS
3712 .parse_monolithic = shmem_parse_options,
3713 .parse_param = shmem_parse_one,
3714 .reconfigure = shmem_reconfigure,
3715#endif
3716};
3717
fcc234f8 3718static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3719
3720static struct inode *shmem_alloc_inode(struct super_block *sb)
3721{
41ffe5d5 3722 struct shmem_inode_info *info;
fd60b288 3723 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
41ffe5d5 3724 if (!info)
1da177e4 3725 return NULL;
41ffe5d5 3726 return &info->vfs_inode;
1da177e4
LT
3727}
3728
74b1da56 3729static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3730{
84e710da
AV
3731 if (S_ISLNK(inode->i_mode))
3732 kfree(inode->i_link);
fa0d7e3d
NP
3733 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3734}
3735
1da177e4
LT
3736static void shmem_destroy_inode(struct inode *inode)
3737{
09208d15 3738 if (S_ISREG(inode->i_mode))
1da177e4 3739 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3740}
3741
41ffe5d5 3742static void shmem_init_inode(void *foo)
1da177e4 3743{
41ffe5d5
HD
3744 struct shmem_inode_info *info = foo;
3745 inode_init_once(&info->vfs_inode);
1da177e4
LT
3746}
3747
9a8ec03e 3748static void shmem_init_inodecache(void)
1da177e4
LT
3749{
3750 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3751 sizeof(struct shmem_inode_info),
5d097056 3752 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3753}
3754
41ffe5d5 3755static void shmem_destroy_inodecache(void)
1da177e4 3756{
1a1d92c1 3757 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3758}
3759
a7605426
YS
3760/* Keep the page in page cache instead of truncating it */
3761static int shmem_error_remove_page(struct address_space *mapping,
3762 struct page *page)
3763{
3764 return 0;
3765}
3766
30e6a51d 3767const struct address_space_operations shmem_aops = {
1da177e4 3768 .writepage = shmem_writepage,
46de8b97 3769 .dirty_folio = noop_dirty_folio,
1da177e4 3770#ifdef CONFIG_TMPFS
800d15a5
NP
3771 .write_begin = shmem_write_begin,
3772 .write_end = shmem_write_end,
1da177e4 3773#endif
1c93923c 3774#ifdef CONFIG_MIGRATION
304dbdb7 3775 .migratepage = migrate_page,
1c93923c 3776#endif
a7605426 3777 .error_remove_page = shmem_error_remove_page,
1da177e4 3778};
30e6a51d 3779EXPORT_SYMBOL(shmem_aops);
1da177e4 3780
15ad7cdc 3781static const struct file_operations shmem_file_operations = {
1da177e4 3782 .mmap = shmem_mmap,
c01d5b30 3783 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3784#ifdef CONFIG_TMPFS
220f2ac9 3785 .llseek = shmem_file_llseek,
2ba5bbed 3786 .read_iter = shmem_file_read_iter,
8174202b 3787 .write_iter = generic_file_write_iter,
1b061d92 3788 .fsync = noop_fsync,
82c156f8 3789 .splice_read = generic_file_splice_read,
f6cb85d0 3790 .splice_write = iter_file_splice_write,
83e4fa9c 3791 .fallocate = shmem_fallocate,
1da177e4
LT
3792#endif
3793};
3794
92e1d5be 3795static const struct inode_operations shmem_inode_operations = {
44a30220 3796 .getattr = shmem_getattr,
94c1e62d 3797 .setattr = shmem_setattr,
b09e0fa4 3798#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3799 .listxattr = shmem_listxattr,
feda821e 3800 .set_acl = simple_set_acl,
b09e0fa4 3801#endif
1da177e4
LT
3802};
3803
92e1d5be 3804static const struct inode_operations shmem_dir_inode_operations = {
1da177e4 3805#ifdef CONFIG_TMPFS
f7cd16a5 3806 .getattr = shmem_getattr,
1da177e4
LT
3807 .create = shmem_create,
3808 .lookup = simple_lookup,
3809 .link = shmem_link,
3810 .unlink = shmem_unlink,
3811 .symlink = shmem_symlink,
3812 .mkdir = shmem_mkdir,
3813 .rmdir = shmem_rmdir,
3814 .mknod = shmem_mknod,
2773bf00 3815 .rename = shmem_rename2,
60545d0d 3816 .tmpfile = shmem_tmpfile,
1da177e4 3817#endif
b09e0fa4 3818#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3819 .listxattr = shmem_listxattr,
b09e0fa4 3820#endif
39f0247d 3821#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3822 .setattr = shmem_setattr,
feda821e 3823 .set_acl = simple_set_acl,
39f0247d
AG
3824#endif
3825};
3826
92e1d5be 3827static const struct inode_operations shmem_special_inode_operations = {
f7cd16a5 3828 .getattr = shmem_getattr,
b09e0fa4 3829#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3830 .listxattr = shmem_listxattr,
b09e0fa4 3831#endif
39f0247d 3832#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3833 .setattr = shmem_setattr,
feda821e 3834 .set_acl = simple_set_acl,
39f0247d 3835#endif
1da177e4
LT
3836};
3837
759b9775 3838static const struct super_operations shmem_ops = {
1da177e4 3839 .alloc_inode = shmem_alloc_inode,
74b1da56 3840 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3841 .destroy_inode = shmem_destroy_inode,
3842#ifdef CONFIG_TMPFS
3843 .statfs = shmem_statfs,
680d794b 3844 .show_options = shmem_show_options,
1da177e4 3845#endif
1f895f75 3846 .evict_inode = shmem_evict_inode,
1da177e4
LT
3847 .drop_inode = generic_delete_inode,
3848 .put_super = shmem_put_super,
396bcc52 3849#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3850 .nr_cached_objects = shmem_unused_huge_count,
3851 .free_cached_objects = shmem_unused_huge_scan,
3852#endif
1da177e4
LT
3853};
3854
f0f37e2f 3855static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3856 .fault = shmem_fault,
d7c17551 3857 .map_pages = filemap_map_pages,
1da177e4
LT
3858#ifdef CONFIG_NUMA
3859 .set_policy = shmem_set_policy,
3860 .get_policy = shmem_get_policy,
3861#endif
3862};
3863
f3235626 3864int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3865{
f3235626
DH
3866 struct shmem_options *ctx;
3867
3868 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3869 if (!ctx)
3870 return -ENOMEM;
3871
3872 ctx->mode = 0777 | S_ISVTX;
3873 ctx->uid = current_fsuid();
3874 ctx->gid = current_fsgid();
3875
3876 fc->fs_private = ctx;
3877 fc->ops = &shmem_fs_context_ops;
3878 return 0;
1da177e4
LT
3879}
3880
41ffe5d5 3881static struct file_system_type shmem_fs_type = {
1da177e4
LT
3882 .owner = THIS_MODULE,
3883 .name = "tmpfs",
f3235626
DH
3884 .init_fs_context = shmem_init_fs_context,
3885#ifdef CONFIG_TMPFS
d7167b14 3886 .parameters = shmem_fs_parameters,
f3235626 3887#endif
1da177e4 3888 .kill_sb = kill_litter_super,
ff36da69 3889 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3890};
1da177e4 3891
9096bbe9 3892void __init shmem_init(void)
1da177e4
LT
3893{
3894 int error;
3895
9a8ec03e 3896 shmem_init_inodecache();
1da177e4 3897
41ffe5d5 3898 error = register_filesystem(&shmem_fs_type);
1da177e4 3899 if (error) {
1170532b 3900 pr_err("Could not register tmpfs\n");
1da177e4
LT
3901 goto out2;
3902 }
95dc112a 3903
ca4e0519 3904 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3905 if (IS_ERR(shm_mnt)) {
3906 error = PTR_ERR(shm_mnt);
1170532b 3907 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3908 goto out1;
3909 }
5a6e75f8 3910
396bcc52 3911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3912 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3913 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3914 else
5e6e5a12 3915 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3916#endif
9096bbe9 3917 return;
1da177e4
LT
3918
3919out1:
41ffe5d5 3920 unregister_filesystem(&shmem_fs_type);
1da177e4 3921out2:
41ffe5d5 3922 shmem_destroy_inodecache();
1da177e4 3923 shm_mnt = ERR_PTR(error);
1da177e4 3924}
853ac43a 3925
396bcc52 3926#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3927static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3928 struct kobj_attribute *attr, char *buf)
5a6e75f8 3929{
26083eb6 3930 static const int values[] = {
5a6e75f8
KS
3931 SHMEM_HUGE_ALWAYS,
3932 SHMEM_HUGE_WITHIN_SIZE,
3933 SHMEM_HUGE_ADVISE,
3934 SHMEM_HUGE_NEVER,
3935 SHMEM_HUGE_DENY,
3936 SHMEM_HUGE_FORCE,
3937 };
79d4d38a
JP
3938 int len = 0;
3939 int i;
5a6e75f8 3940
79d4d38a
JP
3941 for (i = 0; i < ARRAY_SIZE(values); i++) {
3942 len += sysfs_emit_at(buf, len,
3943 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3944 i ? " " : "",
3945 shmem_format_huge(values[i]));
5a6e75f8 3946 }
79d4d38a
JP
3947
3948 len += sysfs_emit_at(buf, len, "\n");
3949
3950 return len;
5a6e75f8
KS
3951}
3952
3953static ssize_t shmem_enabled_store(struct kobject *kobj,
3954 struct kobj_attribute *attr, const char *buf, size_t count)
3955{
3956 char tmp[16];
3957 int huge;
3958
3959 if (count + 1 > sizeof(tmp))
3960 return -EINVAL;
3961 memcpy(tmp, buf, count);
3962 tmp[count] = '\0';
3963 if (count && tmp[count - 1] == '\n')
3964 tmp[count - 1] = '\0';
3965
3966 huge = shmem_parse_huge(tmp);
3967 if (huge == -EINVAL)
3968 return -EINVAL;
3969 if (!has_transparent_hugepage() &&
3970 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3971 return -EINVAL;
3972
3973 shmem_huge = huge;
435c0b87 3974 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3975 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3976 return count;
3977}
3978
4bfa8ada 3979struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
396bcc52 3980#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3981
853ac43a
MM
3982#else /* !CONFIG_SHMEM */
3983
3984/*
3985 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3986 *
3987 * This is intended for small system where the benefits of the full
3988 * shmem code (swap-backed and resource-limited) are outweighed by
3989 * their complexity. On systems without swap this code should be
3990 * effectively equivalent, but much lighter weight.
3991 */
3992
41ffe5d5 3993static struct file_system_type shmem_fs_type = {
853ac43a 3994 .name = "tmpfs",
f3235626 3995 .init_fs_context = ramfs_init_fs_context,
d7167b14 3996 .parameters = ramfs_fs_parameters,
853ac43a 3997 .kill_sb = kill_litter_super,
2b8576cb 3998 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3999};
4000
9096bbe9 4001void __init shmem_init(void)
853ac43a 4002{
41ffe5d5 4003 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4004
41ffe5d5 4005 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a 4006 BUG_ON(IS_ERR(shm_mnt));
853ac43a
MM
4007}
4008
10a9c496 4009int shmem_unuse(unsigned int type)
853ac43a
MM
4010{
4011 return 0;
4012}
4013
d7c9e99a 4014int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4015{
4016 return 0;
4017}
4018
24513264
HD
4019void shmem_unlock_mapping(struct address_space *mapping)
4020{
4021}
4022
c01d5b30
HD
4023#ifdef CONFIG_MMU
4024unsigned long shmem_get_unmapped_area(struct file *file,
4025 unsigned long addr, unsigned long len,
4026 unsigned long pgoff, unsigned long flags)
4027{
4028 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4029}
4030#endif
4031
41ffe5d5 4032void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4033{
41ffe5d5 4034 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4035}
4036EXPORT_SYMBOL_GPL(shmem_truncate_range);
4037
0b0a0806
HD
4038#define shmem_vm_ops generic_file_vm_ops
4039#define shmem_file_operations ramfs_file_operations
454abafe 4040#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4041#define shmem_acct_size(flags, size) 0
4042#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4043
4044#endif /* CONFIG_SHMEM */
4045
4046/* common code */
1da177e4 4047
703321b6 4048static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4049 unsigned long flags, unsigned int i_flags)
1da177e4 4050{
1da177e4 4051 struct inode *inode;
93dec2da 4052 struct file *res;
1da177e4 4053
703321b6
MA
4054 if (IS_ERR(mnt))
4055 return ERR_CAST(mnt);
1da177e4 4056
285b2c4f 4057 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4058 return ERR_PTR(-EINVAL);
4059
4060 if (shmem_acct_size(flags, size))
4061 return ERR_PTR(-ENOMEM);
4062
93dec2da
AV
4063 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4064 flags);
dac2d1f6
AV
4065 if (unlikely(!inode)) {
4066 shmem_unacct_size(flags, size);
4067 return ERR_PTR(-ENOSPC);
4068 }
c7277090 4069 inode->i_flags |= i_flags;
1da177e4 4070 inode->i_size = size;
6d6b77f1 4071 clear_nlink(inode); /* It is unlinked */
26567cdb 4072 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4073 if (!IS_ERR(res))
4074 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4075 &shmem_file_operations);
26567cdb 4076 if (IS_ERR(res))
93dec2da 4077 iput(inode);
6b4d0b27 4078 return res;
1da177e4 4079}
c7277090
EP
4080
4081/**
4082 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4083 * kernel internal. There will be NO LSM permission checks against the
4084 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4085 * higher layer. The users are the big_key and shm implementations. LSM
4086 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4087 * @name: name for dentry (to be seen in /proc/<pid>/maps
4088 * @size: size to be set for the file
4089 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4090 */
4091struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4092{
703321b6 4093 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4094}
4095
4096/**
4097 * shmem_file_setup - get an unlinked file living in tmpfs
4098 * @name: name for dentry (to be seen in /proc/<pid>/maps
4099 * @size: size to be set for the file
4100 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4101 */
4102struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4103{
703321b6 4104 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4105}
395e0ddc 4106EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4107
703321b6
MA
4108/**
4109 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4110 * @mnt: the tmpfs mount where the file will be created
4111 * @name: name for dentry (to be seen in /proc/<pid>/maps
4112 * @size: size to be set for the file
4113 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4114 */
4115struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4116 loff_t size, unsigned long flags)
4117{
4118 return __shmem_file_setup(mnt, name, size, flags, 0);
4119}
4120EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4121
46711810 4122/**
1da177e4 4123 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4124 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4125 */
4126int shmem_zero_setup(struct vm_area_struct *vma)
4127{
4128 struct file *file;
4129 loff_t size = vma->vm_end - vma->vm_start;
4130
66fc1303 4131 /*
c1e8d7c6 4132 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4133 * between XFS directory reading and selinux: since this file is only
4134 * accessible to the user through its mapping, use S_PRIVATE flag to
4135 * bypass file security, in the same way as shmem_kernel_file_setup().
4136 */
703321b6 4137 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4138 if (IS_ERR(file))
4139 return PTR_ERR(file);
4140
4141 if (vma->vm_file)
4142 fput(vma->vm_file);
4143 vma->vm_file = file;
4144 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4145
396bcc52 4146 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4147 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4148 (vma->vm_end & HPAGE_PMD_MASK)) {
4149 khugepaged_enter(vma, vma->vm_flags);
4150 }
4151
1da177e4
LT
4152 return 0;
4153}
d9d90e5e
HD
4154
4155/**
4156 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4157 * @mapping: the page's address_space
4158 * @index: the page index
4159 * @gfp: the page allocator flags to use if allocating
4160 *
4161 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4162 * with any new page allocations done using the specified allocation flags.
4163 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4164 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4165 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4166 *
68da9f05
HD
4167 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4168 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4169 */
4170struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4171 pgoff_t index, gfp_t gfp)
4172{
68da9f05
HD
4173#ifdef CONFIG_SHMEM
4174 struct inode *inode = mapping->host;
9276aad6 4175 struct page *page;
68da9f05
HD
4176 int error;
4177
30e6a51d 4178 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4179 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4180 gfp, NULL, NULL, NULL);
68da9f05 4181 if (error)
a7605426
YS
4182 return ERR_PTR(error);
4183
4184 unlock_page(page);
4185 if (PageHWPoison(page)) {
4186 put_page(page);
4187 return ERR_PTR(-EIO);
4188 }
4189
68da9f05
HD
4190 return page;
4191#else
4192 /*
4193 * The tiny !SHMEM case uses ramfs without swap
4194 */
d9d90e5e 4195 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4196#endif
d9d90e5e
HD
4197}
4198EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);