mm: remove unnecessary wrapper function do_mmap_pgoff()
[linux-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4 85
dd56b046
MG
86#include "internal.h"
87
09cbfeaf
KS
88#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 90
1da177e4
LT
91/* Pretend that each entry is of this size in directory's i_size */
92#define BOGO_DIRENT_SIZE 20
93
69f07ec9
HD
94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95#define SHORT_SYMLINK_LEN 128
96
1aac1400 97/*
f00cdc6d
HD
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
101 */
102struct shmem_falloc {
8e205f77 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108};
109
0b5071dd
AV
110struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
ea3271f7 117 bool full_inums;
0b5071dd
AV
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
ea3271f7 123#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
124};
125
b76db735 126#ifdef CONFIG_TMPFS
680d794b 127static unsigned long shmem_default_max_blocks(void)
128{
ca79b0c2 129 return totalram_pages() / 2;
680d794b 130}
131
132static unsigned long shmem_default_max_inodes(void)
133{
ca79b0c2
AK
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 137}
b76db735 138#endif
680d794b 139
bde05d1c
HD
140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
68da9f05 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 148 struct page **pagep, enum sgp_type sgp,
cfda0526 149 gfp_t gfp, struct vm_area_struct *vma,
2b740303 150 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 151
f3f0e1d2 152int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 153 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
154{
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 157}
1da177e4 158
1da177e4
LT
159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160{
161 return sb->s_fs_info;
162}
163
164/*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170static inline int shmem_acct_size(unsigned long flags, loff_t size)
171{
0b0a0806 172 return (flags & VM_NORESERVE) ?
191c5424 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
174}
175
176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177{
0b0a0806 178 if (!(flags & VM_NORESERVE))
1da177e4
LT
179 vm_unacct_memory(VM_ACCT(size));
180}
181
77142517
KK
182static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184{
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193}
194
1da177e4
LT
195/*
196 * ... whereas tmpfs objects are accounted incrementally as
75edd345 197 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
800d8c63 201static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 202{
800d8c63
KS
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
0b0a0806 212 if (flags & VM_NORESERVE)
09cbfeaf 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
214}
215
0f079694
MR
216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217{
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236}
237
238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239{
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246}
247
759b9775 248static const struct super_operations shmem_ops;
f5e54d6e 249static const struct address_space_operations shmem_aops;
15ad7cdc 250static const struct file_operations shmem_file_operations;
92e1d5be
AV
251static const struct inode_operations shmem_inode_operations;
252static const struct inode_operations shmem_dir_inode_operations;
253static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 254static const struct vm_operations_struct shmem_vm_ops;
779750d2 255static struct file_system_type shmem_fs_type;
1da177e4 256
b0506e48
MR
257bool vma_is_shmem(struct vm_area_struct *vma)
258{
259 return vma->vm_ops == &shmem_vm_ops;
260}
261
1da177e4 262static LIST_HEAD(shmem_swaplist);
cb5f7b9a 263static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 264
e809d5f0
CD
265/*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274#define SHMEM_INO_BATCH 1024
275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
276{
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
5b04c689
PE
281 spin_lock(&sbinfo->stat_lock);
282 if (!sbinfo->free_inodes) {
283 spin_unlock(&sbinfo->stat_lock);
284 return -ENOSPC;
285 }
286 sbinfo->free_inodes--;
e809d5f0
CD
287 if (inop) {
288 ino = sbinfo->next_ino++;
289 if (unlikely(is_zero_ino(ino)))
290 ino = sbinfo->next_ino++;
ea3271f7
CD
291 if (unlikely(!sbinfo->full_inums &&
292 ino > UINT_MAX)) {
e809d5f0
CD
293 /*
294 * Emulate get_next_ino uint wraparound for
295 * compatibility
296 */
ea3271f7
CD
297 if (IS_ENABLED(CONFIG_64BIT))
298 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
299 __func__, MINOR(sb->s_dev));
300 sbinfo->next_ino = 1;
301 ino = sbinfo->next_ino++;
e809d5f0
CD
302 }
303 *inop = ino;
304 }
5b04c689 305 spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
306 } else if (inop) {
307 /*
308 * __shmem_file_setup, one of our callers, is lock-free: it
309 * doesn't hold stat_lock in shmem_reserve_inode since
310 * max_inodes is always 0, and is called from potentially
311 * unknown contexts. As such, use a per-cpu batched allocator
312 * which doesn't require the per-sb stat_lock unless we are at
313 * the batch boundary.
ea3271f7
CD
314 *
315 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
316 * shmem mounts are not exposed to userspace, so we don't need
317 * to worry about things like glibc compatibility.
e809d5f0
CD
318 */
319 ino_t *next_ino;
320 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
321 ino = *next_ino;
322 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
323 spin_lock(&sbinfo->stat_lock);
324 ino = sbinfo->next_ino;
325 sbinfo->next_ino += SHMEM_INO_BATCH;
326 spin_unlock(&sbinfo->stat_lock);
327 if (unlikely(is_zero_ino(ino)))
328 ino++;
329 }
330 *inop = ino;
331 *next_ino = ++ino;
332 put_cpu();
5b04c689 333 }
e809d5f0 334
5b04c689
PE
335 return 0;
336}
337
338static void shmem_free_inode(struct super_block *sb)
339{
340 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
341 if (sbinfo->max_inodes) {
342 spin_lock(&sbinfo->stat_lock);
343 sbinfo->free_inodes++;
344 spin_unlock(&sbinfo->stat_lock);
345 }
346}
347
46711810 348/**
41ffe5d5 349 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
350 * @inode: inode to recalc
351 *
352 * We have to calculate the free blocks since the mm can drop
353 * undirtied hole pages behind our back.
354 *
355 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
356 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
357 *
358 * It has to be called with the spinlock held.
359 */
360static void shmem_recalc_inode(struct inode *inode)
361{
362 struct shmem_inode_info *info = SHMEM_I(inode);
363 long freed;
364
365 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
366 if (freed > 0) {
367 info->alloced -= freed;
54af6042 368 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 369 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
370 }
371}
372
800d8c63
KS
373bool shmem_charge(struct inode *inode, long pages)
374{
375 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 376 unsigned long flags;
800d8c63 377
0f079694 378 if (!shmem_inode_acct_block(inode, pages))
800d8c63 379 return false;
b1cc94ab 380
aaa52e34
HD
381 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
382 inode->i_mapping->nrpages += pages;
383
4595ef88 384 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
385 info->alloced += pages;
386 inode->i_blocks += pages * BLOCKS_PER_PAGE;
387 shmem_recalc_inode(inode);
4595ef88 388 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 389
800d8c63
KS
390 return true;
391}
392
393void shmem_uncharge(struct inode *inode, long pages)
394{
395 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 396 unsigned long flags;
800d8c63 397
aaa52e34
HD
398 /* nrpages adjustment done by __delete_from_page_cache() or caller */
399
4595ef88 400 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
401 info->alloced -= pages;
402 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
403 shmem_recalc_inode(inode);
4595ef88 404 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 405
0f079694 406 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
407}
408
7a5d0fbb 409/*
62f945b6 410 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 411 */
62f945b6 412static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
413 pgoff_t index, void *expected, void *replacement)
414{
62f945b6 415 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 416 void *item;
7a5d0fbb
HD
417
418 VM_BUG_ON(!expected);
6dbaf22c 419 VM_BUG_ON(!replacement);
62f945b6 420 item = xas_load(&xas);
7a5d0fbb
HD
421 if (item != expected)
422 return -ENOENT;
62f945b6 423 xas_store(&xas, replacement);
7a5d0fbb
HD
424 return 0;
425}
426
d1899228
HD
427/*
428 * Sometimes, before we decide whether to proceed or to fail, we must check
429 * that an entry was not already brought back from swap by a racing thread.
430 *
431 * Checking page is not enough: by the time a SwapCache page is locked, it
432 * might be reused, and again be SwapCache, using the same swap as before.
433 */
434static bool shmem_confirm_swap(struct address_space *mapping,
435 pgoff_t index, swp_entry_t swap)
436{
a12831bf 437 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
438}
439
5a6e75f8
KS
440/*
441 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442 *
443 * SHMEM_HUGE_NEVER:
444 * disables huge pages for the mount;
445 * SHMEM_HUGE_ALWAYS:
446 * enables huge pages for the mount;
447 * SHMEM_HUGE_WITHIN_SIZE:
448 * only allocate huge pages if the page will be fully within i_size,
449 * also respect fadvise()/madvise() hints;
450 * SHMEM_HUGE_ADVISE:
451 * only allocate huge pages if requested with fadvise()/madvise();
452 */
453
454#define SHMEM_HUGE_NEVER 0
455#define SHMEM_HUGE_ALWAYS 1
456#define SHMEM_HUGE_WITHIN_SIZE 2
457#define SHMEM_HUGE_ADVISE 3
458
459/*
460 * Special values.
461 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462 *
463 * SHMEM_HUGE_DENY:
464 * disables huge on shm_mnt and all mounts, for emergency use;
465 * SHMEM_HUGE_FORCE:
466 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467 *
468 */
469#define SHMEM_HUGE_DENY (-1)
470#define SHMEM_HUGE_FORCE (-2)
471
396bcc52 472#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
473/* ifdef here to avoid bloating shmem.o when not necessary */
474
5b9c98f3 475static int shmem_huge __read_mostly;
5a6e75f8 476
e5f2249a 477#if defined(CONFIG_SYSFS)
5a6e75f8
KS
478static int shmem_parse_huge(const char *str)
479{
480 if (!strcmp(str, "never"))
481 return SHMEM_HUGE_NEVER;
482 if (!strcmp(str, "always"))
483 return SHMEM_HUGE_ALWAYS;
484 if (!strcmp(str, "within_size"))
485 return SHMEM_HUGE_WITHIN_SIZE;
486 if (!strcmp(str, "advise"))
487 return SHMEM_HUGE_ADVISE;
488 if (!strcmp(str, "deny"))
489 return SHMEM_HUGE_DENY;
490 if (!strcmp(str, "force"))
491 return SHMEM_HUGE_FORCE;
492 return -EINVAL;
493}
e5f2249a 494#endif
5a6e75f8 495
e5f2249a 496#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
497static const char *shmem_format_huge(int huge)
498{
499 switch (huge) {
500 case SHMEM_HUGE_NEVER:
501 return "never";
502 case SHMEM_HUGE_ALWAYS:
503 return "always";
504 case SHMEM_HUGE_WITHIN_SIZE:
505 return "within_size";
506 case SHMEM_HUGE_ADVISE:
507 return "advise";
508 case SHMEM_HUGE_DENY:
509 return "deny";
510 case SHMEM_HUGE_FORCE:
511 return "force";
512 default:
513 VM_BUG_ON(1);
514 return "bad_val";
515 }
516}
f1f5929c 517#endif
5a6e75f8 518
779750d2
KS
519static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
520 struct shrink_control *sc, unsigned long nr_to_split)
521{
522 LIST_HEAD(list), *pos, *next;
253fd0f0 523 LIST_HEAD(to_remove);
779750d2
KS
524 struct inode *inode;
525 struct shmem_inode_info *info;
526 struct page *page;
527 unsigned long batch = sc ? sc->nr_to_scan : 128;
528 int removed = 0, split = 0;
529
530 if (list_empty(&sbinfo->shrinklist))
531 return SHRINK_STOP;
532
533 spin_lock(&sbinfo->shrinklist_lock);
534 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
535 info = list_entry(pos, struct shmem_inode_info, shrinklist);
536
537 /* pin the inode */
538 inode = igrab(&info->vfs_inode);
539
540 /* inode is about to be evicted */
541 if (!inode) {
542 list_del_init(&info->shrinklist);
543 removed++;
544 goto next;
545 }
546
547 /* Check if there's anything to gain */
548 if (round_up(inode->i_size, PAGE_SIZE) ==
549 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 550 list_move(&info->shrinklist, &to_remove);
779750d2 551 removed++;
779750d2
KS
552 goto next;
553 }
554
555 list_move(&info->shrinklist, &list);
556next:
557 if (!--batch)
558 break;
559 }
560 spin_unlock(&sbinfo->shrinklist_lock);
561
253fd0f0
KS
562 list_for_each_safe(pos, next, &to_remove) {
563 info = list_entry(pos, struct shmem_inode_info, shrinklist);
564 inode = &info->vfs_inode;
565 list_del_init(&info->shrinklist);
566 iput(inode);
567 }
568
779750d2
KS
569 list_for_each_safe(pos, next, &list) {
570 int ret;
571
572 info = list_entry(pos, struct shmem_inode_info, shrinklist);
573 inode = &info->vfs_inode;
574
b3cd54b2
KS
575 if (nr_to_split && split >= nr_to_split)
576 goto leave;
779750d2 577
b3cd54b2 578 page = find_get_page(inode->i_mapping,
779750d2
KS
579 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
580 if (!page)
581 goto drop;
582
b3cd54b2 583 /* No huge page at the end of the file: nothing to split */
779750d2 584 if (!PageTransHuge(page)) {
779750d2
KS
585 put_page(page);
586 goto drop;
587 }
588
b3cd54b2
KS
589 /*
590 * Leave the inode on the list if we failed to lock
591 * the page at this time.
592 *
593 * Waiting for the lock may lead to deadlock in the
594 * reclaim path.
595 */
596 if (!trylock_page(page)) {
597 put_page(page);
598 goto leave;
599 }
600
779750d2
KS
601 ret = split_huge_page(page);
602 unlock_page(page);
603 put_page(page);
604
b3cd54b2
KS
605 /* If split failed leave the inode on the list */
606 if (ret)
607 goto leave;
779750d2
KS
608
609 split++;
610drop:
611 list_del_init(&info->shrinklist);
612 removed++;
b3cd54b2 613leave:
779750d2
KS
614 iput(inode);
615 }
616
617 spin_lock(&sbinfo->shrinklist_lock);
618 list_splice_tail(&list, &sbinfo->shrinklist);
619 sbinfo->shrinklist_len -= removed;
620 spin_unlock(&sbinfo->shrinklist_lock);
621
622 return split;
623}
624
625static long shmem_unused_huge_scan(struct super_block *sb,
626 struct shrink_control *sc)
627{
628 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
629
630 if (!READ_ONCE(sbinfo->shrinklist_len))
631 return SHRINK_STOP;
632
633 return shmem_unused_huge_shrink(sbinfo, sc, 0);
634}
635
636static long shmem_unused_huge_count(struct super_block *sb,
637 struct shrink_control *sc)
638{
639 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
640 return READ_ONCE(sbinfo->shrinklist_len);
641}
396bcc52 642#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
643
644#define shmem_huge SHMEM_HUGE_DENY
645
779750d2
KS
646static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
647 struct shrink_control *sc, unsigned long nr_to_split)
648{
649 return 0;
650}
396bcc52 651#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 652
89fdcd26
YS
653static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
654{
396bcc52 655 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
89fdcd26
YS
656 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
657 shmem_huge != SHMEM_HUGE_DENY)
658 return true;
659 return false;
660}
661
46f65ec1
HD
662/*
663 * Like add_to_page_cache_locked, but error if expected item has gone.
664 */
665static int shmem_add_to_page_cache(struct page *page,
666 struct address_space *mapping,
3fea5a49
JW
667 pgoff_t index, void *expected, gfp_t gfp,
668 struct mm_struct *charge_mm)
46f65ec1 669{
552446a4
MW
670 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
671 unsigned long i = 0;
d8c6546b 672 unsigned long nr = compound_nr(page);
3fea5a49 673 int error;
46f65ec1 674
800d8c63
KS
675 VM_BUG_ON_PAGE(PageTail(page), page);
676 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
677 VM_BUG_ON_PAGE(!PageLocked(page), page);
678 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 679 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 680
800d8c63 681 page_ref_add(page, nr);
b065b432
HD
682 page->mapping = mapping;
683 page->index = index;
684
4c6355b2 685 if (!PageSwapCache(page)) {
d9eb1ea2 686 error = mem_cgroup_charge(page, charge_mm, gfp);
4c6355b2
JW
687 if (error) {
688 if (PageTransHuge(page)) {
689 count_vm_event(THP_FILE_FALLBACK);
690 count_vm_event(THP_FILE_FALLBACK_CHARGE);
691 }
692 goto error;
3fea5a49 693 }
3fea5a49
JW
694 }
695 cgroup_throttle_swaprate(page, gfp);
696
552446a4
MW
697 do {
698 void *entry;
699 xas_lock_irq(&xas);
700 entry = xas_find_conflict(&xas);
701 if (entry != expected)
702 xas_set_err(&xas, -EEXIST);
703 xas_create_range(&xas);
704 if (xas_error(&xas))
705 goto unlock;
706next:
4101196b 707 xas_store(&xas, page);
552446a4
MW
708 if (++i < nr) {
709 xas_next(&xas);
710 goto next;
800d8c63 711 }
552446a4 712 if (PageTransHuge(page)) {
800d8c63 713 count_vm_event(THP_FILE_ALLOC);
552446a4 714 __inc_node_page_state(page, NR_SHMEM_THPS);
800d8c63 715 }
800d8c63 716 mapping->nrpages += nr;
0d1c2072
JW
717 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
718 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
719unlock:
720 xas_unlock_irq(&xas);
721 } while (xas_nomem(&xas, gfp));
722
723 if (xas_error(&xas)) {
3fea5a49
JW
724 error = xas_error(&xas);
725 goto error;
46f65ec1 726 }
552446a4
MW
727
728 return 0;
3fea5a49
JW
729error:
730 page->mapping = NULL;
731 page_ref_sub(page, nr);
732 return error;
46f65ec1
HD
733}
734
6922c0c7
HD
735/*
736 * Like delete_from_page_cache, but substitutes swap for page.
737 */
738static void shmem_delete_from_page_cache(struct page *page, void *radswap)
739{
740 struct address_space *mapping = page->mapping;
741 int error;
742
800d8c63
KS
743 VM_BUG_ON_PAGE(PageCompound(page), page);
744
b93b0163 745 xa_lock_irq(&mapping->i_pages);
62f945b6 746 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
747 page->mapping = NULL;
748 mapping->nrpages--;
0d1c2072
JW
749 __dec_lruvec_page_state(page, NR_FILE_PAGES);
750 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 751 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 752 put_page(page);
6922c0c7
HD
753 BUG_ON(error);
754}
755
7a5d0fbb 756/*
c121d3bb 757 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
758 */
759static int shmem_free_swap(struct address_space *mapping,
760 pgoff_t index, void *radswap)
761{
6dbaf22c 762 void *old;
7a5d0fbb 763
55f3f7ea 764 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
765 if (old != radswap)
766 return -ENOENT;
767 free_swap_and_cache(radix_to_swp_entry(radswap));
768 return 0;
7a5d0fbb
HD
769}
770
6a15a370
VB
771/*
772 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 773 * given offsets are swapped out.
6a15a370 774 *
b93b0163 775 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
776 * as long as the inode doesn't go away and racy results are not a problem.
777 */
48131e03
VB
778unsigned long shmem_partial_swap_usage(struct address_space *mapping,
779 pgoff_t start, pgoff_t end)
6a15a370 780{
7ae3424f 781 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 782 struct page *page;
48131e03 783 unsigned long swapped = 0;
6a15a370
VB
784
785 rcu_read_lock();
7ae3424f
MW
786 xas_for_each(&xas, page, end - 1) {
787 if (xas_retry(&xas, page))
2cf938aa 788 continue;
3159f943 789 if (xa_is_value(page))
6a15a370
VB
790 swapped++;
791
792 if (need_resched()) {
7ae3424f 793 xas_pause(&xas);
6a15a370 794 cond_resched_rcu();
6a15a370
VB
795 }
796 }
797
798 rcu_read_unlock();
799
800 return swapped << PAGE_SHIFT;
801}
802
48131e03
VB
803/*
804 * Determine (in bytes) how many of the shmem object's pages mapped by the
805 * given vma is swapped out.
806 *
b93b0163 807 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
808 * as long as the inode doesn't go away and racy results are not a problem.
809 */
810unsigned long shmem_swap_usage(struct vm_area_struct *vma)
811{
812 struct inode *inode = file_inode(vma->vm_file);
813 struct shmem_inode_info *info = SHMEM_I(inode);
814 struct address_space *mapping = inode->i_mapping;
815 unsigned long swapped;
816
817 /* Be careful as we don't hold info->lock */
818 swapped = READ_ONCE(info->swapped);
819
820 /*
821 * The easier cases are when the shmem object has nothing in swap, or
822 * the vma maps it whole. Then we can simply use the stats that we
823 * already track.
824 */
825 if (!swapped)
826 return 0;
827
828 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
829 return swapped << PAGE_SHIFT;
830
831 /* Here comes the more involved part */
832 return shmem_partial_swap_usage(mapping,
833 linear_page_index(vma, vma->vm_start),
834 linear_page_index(vma, vma->vm_end));
835}
836
24513264
HD
837/*
838 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
839 */
840void shmem_unlock_mapping(struct address_space *mapping)
841{
842 struct pagevec pvec;
843 pgoff_t indices[PAGEVEC_SIZE];
844 pgoff_t index = 0;
845
86679820 846 pagevec_init(&pvec);
24513264
HD
847 /*
848 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
849 */
850 while (!mapping_unevictable(mapping)) {
851 /*
852 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
853 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
854 */
0cd6144a
JW
855 pvec.nr = find_get_entries(mapping, index,
856 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
857 if (!pvec.nr)
858 break;
859 index = indices[pvec.nr - 1] + 1;
0cd6144a 860 pagevec_remove_exceptionals(&pvec);
64e3d12f 861 check_move_unevictable_pages(&pvec);
24513264
HD
862 pagevec_release(&pvec);
863 cond_resched();
864 }
7a5d0fbb
HD
865}
866
71725ed1
HD
867/*
868 * Check whether a hole-punch or truncation needs to split a huge page,
869 * returning true if no split was required, or the split has been successful.
870 *
871 * Eviction (or truncation to 0 size) should never need to split a huge page;
872 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
873 * head, and then succeeded to trylock on tail.
874 *
875 * A split can only succeed when there are no additional references on the
876 * huge page: so the split below relies upon find_get_entries() having stopped
877 * when it found a subpage of the huge page, without getting further references.
878 */
879static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
880{
881 if (!PageTransCompound(page))
882 return true;
883
884 /* Just proceed to delete a huge page wholly within the range punched */
885 if (PageHead(page) &&
886 page->index >= start && page->index + HPAGE_PMD_NR <= end)
887 return true;
888
889 /* Try to split huge page, so we can truly punch the hole or truncate */
890 return split_huge_page(page) >= 0;
891}
892
7a5d0fbb 893/*
7f4446ee 894 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 895 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 896 */
1635f6a7
HD
897static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
898 bool unfalloc)
1da177e4 899{
285b2c4f 900 struct address_space *mapping = inode->i_mapping;
1da177e4 901 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
902 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
903 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
904 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
905 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 906 struct pagevec pvec;
7a5d0fbb
HD
907 pgoff_t indices[PAGEVEC_SIZE];
908 long nr_swaps_freed = 0;
285b2c4f 909 pgoff_t index;
bda97eab
HD
910 int i;
911
83e4fa9c
HD
912 if (lend == -1)
913 end = -1; /* unsigned, so actually very big */
bda97eab 914
86679820 915 pagevec_init(&pvec);
bda97eab 916 index = start;
83e4fa9c 917 while (index < end) {
0cd6144a
JW
918 pvec.nr = find_get_entries(mapping, index,
919 min(end - index, (pgoff_t)PAGEVEC_SIZE),
920 pvec.pages, indices);
7a5d0fbb
HD
921 if (!pvec.nr)
922 break;
bda97eab
HD
923 for (i = 0; i < pagevec_count(&pvec); i++) {
924 struct page *page = pvec.pages[i];
925
7a5d0fbb 926 index = indices[i];
83e4fa9c 927 if (index >= end)
bda97eab
HD
928 break;
929
3159f943 930 if (xa_is_value(page)) {
1635f6a7
HD
931 if (unfalloc)
932 continue;
7a5d0fbb
HD
933 nr_swaps_freed += !shmem_free_swap(mapping,
934 index, page);
bda97eab 935 continue;
7a5d0fbb
HD
936 }
937
800d8c63
KS
938 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
939
7a5d0fbb 940 if (!trylock_page(page))
bda97eab 941 continue;
800d8c63 942
71725ed1
HD
943 if ((!unfalloc || !PageUptodate(page)) &&
944 page_mapping(page) == mapping) {
945 VM_BUG_ON_PAGE(PageWriteback(page), page);
946 if (shmem_punch_compound(page, start, end))
1635f6a7 947 truncate_inode_page(mapping, page);
bda97eab 948 }
bda97eab
HD
949 unlock_page(page);
950 }
0cd6144a 951 pagevec_remove_exceptionals(&pvec);
24513264 952 pagevec_release(&pvec);
bda97eab
HD
953 cond_resched();
954 index++;
955 }
1da177e4 956
83e4fa9c 957 if (partial_start) {
bda97eab 958 struct page *page = NULL;
9e18eb29 959 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 960 if (page) {
09cbfeaf 961 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
962 if (start > end) {
963 top = partial_end;
964 partial_end = 0;
965 }
966 zero_user_segment(page, partial_start, top);
967 set_page_dirty(page);
968 unlock_page(page);
09cbfeaf 969 put_page(page);
83e4fa9c
HD
970 }
971 }
972 if (partial_end) {
973 struct page *page = NULL;
9e18eb29 974 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
975 if (page) {
976 zero_user_segment(page, 0, partial_end);
bda97eab
HD
977 set_page_dirty(page);
978 unlock_page(page);
09cbfeaf 979 put_page(page);
bda97eab
HD
980 }
981 }
83e4fa9c
HD
982 if (start >= end)
983 return;
bda97eab
HD
984
985 index = start;
b1a36650 986 while (index < end) {
bda97eab 987 cond_resched();
0cd6144a
JW
988
989 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 990 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 991 pvec.pages, indices);
7a5d0fbb 992 if (!pvec.nr) {
b1a36650
HD
993 /* If all gone or hole-punch or unfalloc, we're done */
994 if (index == start || end != -1)
bda97eab 995 break;
b1a36650 996 /* But if truncating, restart to make sure all gone */
bda97eab
HD
997 index = start;
998 continue;
999 }
bda97eab
HD
1000 for (i = 0; i < pagevec_count(&pvec); i++) {
1001 struct page *page = pvec.pages[i];
1002
7a5d0fbb 1003 index = indices[i];
83e4fa9c 1004 if (index >= end)
bda97eab
HD
1005 break;
1006
3159f943 1007 if (xa_is_value(page)) {
1635f6a7
HD
1008 if (unfalloc)
1009 continue;
b1a36650
HD
1010 if (shmem_free_swap(mapping, index, page)) {
1011 /* Swap was replaced by page: retry */
1012 index--;
1013 break;
1014 }
1015 nr_swaps_freed++;
7a5d0fbb
HD
1016 continue;
1017 }
1018
bda97eab 1019 lock_page(page);
800d8c63 1020
1635f6a7 1021 if (!unfalloc || !PageUptodate(page)) {
71725ed1 1022 if (page_mapping(page) != mapping) {
b1a36650
HD
1023 /* Page was replaced by swap: retry */
1024 unlock_page(page);
1025 index--;
1026 break;
1635f6a7 1027 }
71725ed1
HD
1028 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 if (shmem_punch_compound(page, start, end))
1030 truncate_inode_page(mapping, page);
0783ac95 1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
71725ed1
HD
1032 /* Wipe the page and don't get stuck */
1033 clear_highpage(page);
1034 flush_dcache_page(page);
1035 set_page_dirty(page);
1036 if (index <
1037 round_up(start, HPAGE_PMD_NR))
1038 start = index + 1;
1039 }
7a5d0fbb 1040 }
bda97eab
HD
1041 unlock_page(page);
1042 }
0cd6144a 1043 pagevec_remove_exceptionals(&pvec);
24513264 1044 pagevec_release(&pvec);
bda97eab
HD
1045 index++;
1046 }
94c1e62d 1047
4595ef88 1048 spin_lock_irq(&info->lock);
7a5d0fbb 1049 info->swapped -= nr_swaps_freed;
1da177e4 1050 shmem_recalc_inode(inode);
4595ef88 1051 spin_unlock_irq(&info->lock);
1635f6a7 1052}
1da177e4 1053
1635f6a7
HD
1054void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055{
1056 shmem_undo_range(inode, lstart, lend, false);
078cd827 1057 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1058}
94c1e62d 1059EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1060
a528d35e
DH
1061static int shmem_getattr(const struct path *path, struct kstat *stat,
1062 u32 request_mask, unsigned int query_flags)
44a30220 1063{
a528d35e 1064 struct inode *inode = path->dentry->d_inode;
44a30220 1065 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1066 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1067
d0424c42 1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1069 spin_lock_irq(&info->lock);
d0424c42 1070 shmem_recalc_inode(inode);
4595ef88 1071 spin_unlock_irq(&info->lock);
d0424c42 1072 }
44a30220 1073 generic_fillattr(inode, stat);
89fdcd26
YS
1074
1075 if (is_huge_enabled(sb_info))
1076 stat->blksize = HPAGE_PMD_SIZE;
1077
44a30220
YZ
1078 return 0;
1079}
1080
94c1e62d 1081static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1082{
75c3cfa8 1083 struct inode *inode = d_inode(dentry);
40e041a2 1084 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1086 int error;
1087
31051c85 1088 error = setattr_prepare(dentry, attr);
db78b877
CH
1089 if (error)
1090 return error;
1091
94c1e62d
HD
1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 loff_t oldsize = inode->i_size;
1094 loff_t newsize = attr->ia_size;
3889e6e7 1095
40e041a2
DH
1096 /* protected by i_mutex */
1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099 return -EPERM;
1100
94c1e62d 1101 if (newsize != oldsize) {
77142517
KK
1102 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103 oldsize, newsize);
1104 if (error)
1105 return error;
94c1e62d 1106 i_size_write(inode, newsize);
078cd827 1107 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1108 }
afa2db2f 1109 if (newsize <= oldsize) {
94c1e62d 1110 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1111 if (oldsize > holebegin)
1112 unmap_mapping_range(inode->i_mapping,
1113 holebegin, 0, 1);
1114 if (info->alloced)
1115 shmem_truncate_range(inode,
1116 newsize, (loff_t)-1);
94c1e62d 1117 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1120 holebegin, 0, 1);
779750d2
KS
1121
1122 /*
1123 * Part of the huge page can be beyond i_size: subject
1124 * to shrink under memory pressure.
1125 */
396bcc52 1126 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
779750d2 1127 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1128 /*
1129 * _careful to defend against unlocked access to
1130 * ->shrink_list in shmem_unused_huge_shrink()
1131 */
1132 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1133 list_add_tail(&info->shrinklist,
1134 &sbinfo->shrinklist);
1135 sbinfo->shrinklist_len++;
1136 }
1137 spin_unlock(&sbinfo->shrinklist_lock);
1138 }
94c1e62d 1139 }
1da177e4
LT
1140 }
1141
db78b877 1142 setattr_copy(inode, attr);
db78b877 1143 if (attr->ia_valid & ATTR_MODE)
feda821e 1144 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1145 return error;
1146}
1147
1f895f75 1148static void shmem_evict_inode(struct inode *inode)
1da177e4 1149{
1da177e4 1150 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1152
3889e6e7 1153 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1154 shmem_unacct_size(info->flags, inode->i_size);
1155 inode->i_size = 0;
3889e6e7 1156 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1157 if (!list_empty(&info->shrinklist)) {
1158 spin_lock(&sbinfo->shrinklist_lock);
1159 if (!list_empty(&info->shrinklist)) {
1160 list_del_init(&info->shrinklist);
1161 sbinfo->shrinklist_len--;
1162 }
1163 spin_unlock(&sbinfo->shrinklist_lock);
1164 }
af53d3e9
HD
1165 while (!list_empty(&info->swaplist)) {
1166 /* Wait while shmem_unuse() is scanning this inode... */
1167 wait_var_event(&info->stop_eviction,
1168 !atomic_read(&info->stop_eviction));
cb5f7b9a 1169 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1170 /* ...but beware of the race if we peeked too early */
1171 if (!atomic_read(&info->stop_eviction))
1172 list_del_init(&info->swaplist);
cb5f7b9a 1173 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1174 }
3ed47db3 1175 }
b09e0fa4 1176
38f38657 1177 simple_xattrs_free(&info->xattrs);
0f3c42f5 1178 WARN_ON(inode->i_blocks);
5b04c689 1179 shmem_free_inode(inode->i_sb);
dbd5768f 1180 clear_inode(inode);
1da177e4
LT
1181}
1182
b56a2d8a
VRP
1183extern struct swap_info_struct *swap_info[];
1184
1185static int shmem_find_swap_entries(struct address_space *mapping,
1186 pgoff_t start, unsigned int nr_entries,
1187 struct page **entries, pgoff_t *indices,
87039546 1188 unsigned int type, bool frontswap)
478922e2 1189{
b56a2d8a
VRP
1190 XA_STATE(xas, &mapping->i_pages, start);
1191 struct page *page;
87039546 1192 swp_entry_t entry;
b56a2d8a
VRP
1193 unsigned int ret = 0;
1194
1195 if (!nr_entries)
1196 return 0;
478922e2
MW
1197
1198 rcu_read_lock();
b56a2d8a
VRP
1199 xas_for_each(&xas, page, ULONG_MAX) {
1200 if (xas_retry(&xas, page))
5b9c98f3 1201 continue;
b56a2d8a
VRP
1202
1203 if (!xa_is_value(page))
478922e2 1204 continue;
b56a2d8a 1205
87039546
HD
1206 entry = radix_to_swp_entry(page);
1207 if (swp_type(entry) != type)
1208 continue;
1209 if (frontswap &&
1210 !frontswap_test(swap_info[type], swp_offset(entry)))
1211 continue;
b56a2d8a
VRP
1212
1213 indices[ret] = xas.xa_index;
1214 entries[ret] = page;
1215
1216 if (need_resched()) {
1217 xas_pause(&xas);
1218 cond_resched_rcu();
1219 }
1220 if (++ret == nr_entries)
1221 break;
478922e2 1222 }
478922e2 1223 rcu_read_unlock();
e21a2955 1224
b56a2d8a 1225 return ret;
478922e2
MW
1226}
1227
46f65ec1 1228/*
b56a2d8a
VRP
1229 * Move the swapped pages for an inode to page cache. Returns the count
1230 * of pages swapped in, or the error in case of failure.
46f65ec1 1231 */
b56a2d8a
VRP
1232static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1233 pgoff_t *indices)
1da177e4 1234{
b56a2d8a
VRP
1235 int i = 0;
1236 int ret = 0;
bde05d1c 1237 int error = 0;
b56a2d8a 1238 struct address_space *mapping = inode->i_mapping;
1da177e4 1239
b56a2d8a
VRP
1240 for (i = 0; i < pvec.nr; i++) {
1241 struct page *page = pvec.pages[i];
2e0e26c7 1242
b56a2d8a
VRP
1243 if (!xa_is_value(page))
1244 continue;
1245 error = shmem_swapin_page(inode, indices[i],
1246 &page, SGP_CACHE,
1247 mapping_gfp_mask(mapping),
1248 NULL, NULL);
1249 if (error == 0) {
1250 unlock_page(page);
1251 put_page(page);
1252 ret++;
1253 }
1254 if (error == -ENOMEM)
1255 break;
1256 error = 0;
bde05d1c 1257 }
b56a2d8a
VRP
1258 return error ? error : ret;
1259}
bde05d1c 1260
b56a2d8a
VRP
1261/*
1262 * If swap found in inode, free it and move page from swapcache to filecache.
1263 */
1264static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1265 bool frontswap, unsigned long *fs_pages_to_unuse)
1266{
1267 struct address_space *mapping = inode->i_mapping;
1268 pgoff_t start = 0;
1269 struct pagevec pvec;
1270 pgoff_t indices[PAGEVEC_SIZE];
1271 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1272 int ret = 0;
1273
1274 pagevec_init(&pvec);
1275 do {
1276 unsigned int nr_entries = PAGEVEC_SIZE;
1277
1278 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1279 nr_entries = *fs_pages_to_unuse;
1280
1281 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1282 pvec.pages, indices,
87039546 1283 type, frontswap);
b56a2d8a
VRP
1284 if (pvec.nr == 0) {
1285 ret = 0;
1286 break;
46f65ec1 1287 }
b56a2d8a
VRP
1288
1289 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1290 if (ret < 0)
1291 break;
1292
1293 if (frontswap_partial) {
1294 *fs_pages_to_unuse -= ret;
1295 if (*fs_pages_to_unuse == 0) {
1296 ret = FRONTSWAP_PAGES_UNUSED;
1297 break;
1298 }
1299 }
1300
1301 start = indices[pvec.nr - 1];
1302 } while (true);
1303
1304 return ret;
1da177e4
LT
1305}
1306
1307/*
b56a2d8a
VRP
1308 * Read all the shared memory data that resides in the swap
1309 * device 'type' back into memory, so the swap device can be
1310 * unused.
1da177e4 1311 */
b56a2d8a
VRP
1312int shmem_unuse(unsigned int type, bool frontswap,
1313 unsigned long *fs_pages_to_unuse)
1da177e4 1314{
b56a2d8a 1315 struct shmem_inode_info *info, *next;
bde05d1c
HD
1316 int error = 0;
1317
b56a2d8a
VRP
1318 if (list_empty(&shmem_swaplist))
1319 return 0;
1320
1321 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1322 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1323 if (!info->swapped) {
6922c0c7 1324 list_del_init(&info->swaplist);
b56a2d8a
VRP
1325 continue;
1326 }
af53d3e9
HD
1327 /*
1328 * Drop the swaplist mutex while searching the inode for swap;
1329 * but before doing so, make sure shmem_evict_inode() will not
1330 * remove placeholder inode from swaplist, nor let it be freed
1331 * (igrab() would protect from unlink, but not from unmount).
1332 */
1333 atomic_inc(&info->stop_eviction);
b56a2d8a 1334 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1335
af53d3e9 1336 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1337 fs_pages_to_unuse);
cb5f7b9a 1338 cond_resched();
b56a2d8a
VRP
1339
1340 mutex_lock(&shmem_swaplist_mutex);
1341 next = list_next_entry(info, swaplist);
1342 if (!info->swapped)
1343 list_del_init(&info->swaplist);
af53d3e9
HD
1344 if (atomic_dec_and_test(&info->stop_eviction))
1345 wake_up_var(&info->stop_eviction);
b56a2d8a 1346 if (error)
778dd893 1347 break;
1da177e4 1348 }
cb5f7b9a 1349 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1350
778dd893 1351 return error;
1da177e4
LT
1352}
1353
1354/*
1355 * Move the page from the page cache to the swap cache.
1356 */
1357static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1358{
1359 struct shmem_inode_info *info;
1da177e4 1360 struct address_space *mapping;
1da177e4 1361 struct inode *inode;
6922c0c7
HD
1362 swp_entry_t swap;
1363 pgoff_t index;
1da177e4 1364
800d8c63 1365 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1366 BUG_ON(!PageLocked(page));
1da177e4
LT
1367 mapping = page->mapping;
1368 index = page->index;
1369 inode = mapping->host;
1370 info = SHMEM_I(inode);
1371 if (info->flags & VM_LOCKED)
1372 goto redirty;
d9fe526a 1373 if (!total_swap_pages)
1da177e4
LT
1374 goto redirty;
1375
d9fe526a 1376 /*
97b713ba
CH
1377 * Our capabilities prevent regular writeback or sync from ever calling
1378 * shmem_writepage; but a stacking filesystem might use ->writepage of
1379 * its underlying filesystem, in which case tmpfs should write out to
1380 * swap only in response to memory pressure, and not for the writeback
1381 * threads or sync.
d9fe526a 1382 */
48f170fb
HD
1383 if (!wbc->for_reclaim) {
1384 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1385 goto redirty;
1386 }
1635f6a7
HD
1387
1388 /*
1389 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1390 * value into swapfile.c, the only way we can correctly account for a
1391 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1392 *
1393 * That's okay for a page already fallocated earlier, but if we have
1394 * not yet completed the fallocation, then (a) we want to keep track
1395 * of this page in case we have to undo it, and (b) it may not be a
1396 * good idea to continue anyway, once we're pushing into swap. So
1397 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1398 */
1399 if (!PageUptodate(page)) {
1aac1400
HD
1400 if (inode->i_private) {
1401 struct shmem_falloc *shmem_falloc;
1402 spin_lock(&inode->i_lock);
1403 shmem_falloc = inode->i_private;
1404 if (shmem_falloc &&
8e205f77 1405 !shmem_falloc->waitq &&
1aac1400
HD
1406 index >= shmem_falloc->start &&
1407 index < shmem_falloc->next)
1408 shmem_falloc->nr_unswapped++;
1409 else
1410 shmem_falloc = NULL;
1411 spin_unlock(&inode->i_lock);
1412 if (shmem_falloc)
1413 goto redirty;
1414 }
1635f6a7
HD
1415 clear_highpage(page);
1416 flush_dcache_page(page);
1417 SetPageUptodate(page);
1418 }
1419
38d8b4e6 1420 swap = get_swap_page(page);
48f170fb
HD
1421 if (!swap.val)
1422 goto redirty;
d9fe526a 1423
b1dea800
HD
1424 /*
1425 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1426 * if it's not already there. Do it now before the page is
1427 * moved to swap cache, when its pagelock no longer protects
b1dea800 1428 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1429 * we've incremented swapped, because shmem_unuse_inode() will
1430 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1431 */
48f170fb
HD
1432 mutex_lock(&shmem_swaplist_mutex);
1433 if (list_empty(&info->swaplist))
b56a2d8a 1434 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1435
4afab1cd
YS
1436 if (add_to_swap_cache(page, swap,
1437 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
4595ef88 1438 spin_lock_irq(&info->lock);
6922c0c7 1439 shmem_recalc_inode(inode);
267a4c76 1440 info->swapped++;
4595ef88 1441 spin_unlock_irq(&info->lock);
6922c0c7 1442
267a4c76
HD
1443 swap_shmem_alloc(swap);
1444 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1445
6922c0c7 1446 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1447 BUG_ON(page_mapped(page));
9fab5619 1448 swap_writepage(page, wbc);
1da177e4
LT
1449 return 0;
1450 }
1451
6922c0c7 1452 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1453 put_swap_page(page, swap);
1da177e4
LT
1454redirty:
1455 set_page_dirty(page);
d9fe526a
HD
1456 if (wbc->for_reclaim)
1457 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1458 unlock_page(page);
1459 return 0;
1da177e4
LT
1460}
1461
75edd345 1462#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1463static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1464{
095f1fc4 1465 char buffer[64];
680d794b 1466
71fe804b 1467 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1468 return; /* show nothing */
680d794b 1469
a7a88b23 1470 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1471
1472 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1473}
71fe804b
LS
1474
1475static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1476{
1477 struct mempolicy *mpol = NULL;
1478 if (sbinfo->mpol) {
1479 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1480 mpol = sbinfo->mpol;
1481 mpol_get(mpol);
1482 spin_unlock(&sbinfo->stat_lock);
1483 }
1484 return mpol;
1485}
75edd345
HD
1486#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1487static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1488{
1489}
1490static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1491{
1492 return NULL;
1493}
1494#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1495#ifndef CONFIG_NUMA
1496#define vm_policy vm_private_data
1497#endif
680d794b 1498
800d8c63
KS
1499static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1500 struct shmem_inode_info *info, pgoff_t index)
1501{
1502 /* Create a pseudo vma that just contains the policy */
2c4541e2 1503 vma_init(vma, NULL);
800d8c63
KS
1504 /* Bias interleave by inode number to distribute better across nodes */
1505 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1506 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1507}
1508
1509static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1510{
1511 /* Drop reference taken by mpol_shared_policy_lookup() */
1512 mpol_cond_put(vma->vm_policy);
1513}
1514
41ffe5d5
HD
1515static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1516 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1517{
1da177e4 1518 struct vm_area_struct pvma;
18a2f371 1519 struct page *page;
e9e9b7ec 1520 struct vm_fault vmf;
52cd3b07 1521
800d8c63 1522 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1523 vmf.vma = &pvma;
1524 vmf.address = 0;
1525 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1526 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1527
800d8c63
KS
1528 return page;
1529}
1530
1531static struct page *shmem_alloc_hugepage(gfp_t gfp,
1532 struct shmem_inode_info *info, pgoff_t index)
1533{
1534 struct vm_area_struct pvma;
7b8d046f
MW
1535 struct address_space *mapping = info->vfs_inode.i_mapping;
1536 pgoff_t hindex;
800d8c63
KS
1537 struct page *page;
1538
4620a06e 1539 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1540 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1541 XA_PRESENT))
800d8c63 1542 return NULL;
18a2f371 1543
800d8c63
KS
1544 shmem_pseudo_vma_init(&pvma, info, hindex);
1545 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
19deb769 1546 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
800d8c63
KS
1547 shmem_pseudo_vma_destroy(&pvma);
1548 if (page)
1549 prep_transhuge_page(page);
dcdf11ee
DR
1550 else
1551 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1552 return page;
1da177e4
LT
1553}
1554
02098fea 1555static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1556 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1557{
1558 struct vm_area_struct pvma;
18a2f371 1559 struct page *page;
1da177e4 1560
800d8c63
KS
1561 shmem_pseudo_vma_init(&pvma, info, index);
1562 page = alloc_page_vma(gfp, &pvma, 0);
1563 shmem_pseudo_vma_destroy(&pvma);
1564
1565 return page;
1566}
1567
1568static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1569 struct inode *inode,
800d8c63
KS
1570 pgoff_t index, bool huge)
1571{
0f079694 1572 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1573 struct page *page;
1574 int nr;
1575 int err = -ENOSPC;
52cd3b07 1576
396bcc52 1577 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1578 huge = false;
1579 nr = huge ? HPAGE_PMD_NR : 1;
1580
0f079694 1581 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1582 goto failed;
800d8c63
KS
1583
1584 if (huge)
1585 page = shmem_alloc_hugepage(gfp, info, index);
1586 else
1587 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1588 if (page) {
1589 __SetPageLocked(page);
1590 __SetPageSwapBacked(page);
800d8c63 1591 return page;
75edd345 1592 }
18a2f371 1593
800d8c63 1594 err = -ENOMEM;
0f079694 1595 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1596failed:
1597 return ERR_PTR(err);
1da177e4 1598}
71fe804b 1599
bde05d1c
HD
1600/*
1601 * When a page is moved from swapcache to shmem filecache (either by the
1602 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1603 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1604 * ignorance of the mapping it belongs to. If that mapping has special
1605 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1606 * we may need to copy to a suitable page before moving to filecache.
1607 *
1608 * In a future release, this may well be extended to respect cpuset and
1609 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1610 * but for now it is a simple matter of zone.
1611 */
1612static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1613{
1614 return page_zonenum(page) > gfp_zone(gfp);
1615}
1616
1617static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1618 struct shmem_inode_info *info, pgoff_t index)
1619{
1620 struct page *oldpage, *newpage;
1621 struct address_space *swap_mapping;
c1cb20d4 1622 swp_entry_t entry;
bde05d1c
HD
1623 pgoff_t swap_index;
1624 int error;
1625
1626 oldpage = *pagep;
c1cb20d4
YZ
1627 entry.val = page_private(oldpage);
1628 swap_index = swp_offset(entry);
bde05d1c
HD
1629 swap_mapping = page_mapping(oldpage);
1630
1631 /*
1632 * We have arrived here because our zones are constrained, so don't
1633 * limit chance of success by further cpuset and node constraints.
1634 */
1635 gfp &= ~GFP_CONSTRAINT_MASK;
1636 newpage = shmem_alloc_page(gfp, info, index);
1637 if (!newpage)
1638 return -ENOMEM;
bde05d1c 1639
09cbfeaf 1640 get_page(newpage);
bde05d1c 1641 copy_highpage(newpage, oldpage);
0142ef6c 1642 flush_dcache_page(newpage);
bde05d1c 1643
9956edf3
HD
1644 __SetPageLocked(newpage);
1645 __SetPageSwapBacked(newpage);
bde05d1c 1646 SetPageUptodate(newpage);
c1cb20d4 1647 set_page_private(newpage, entry.val);
bde05d1c
HD
1648 SetPageSwapCache(newpage);
1649
1650 /*
1651 * Our caller will very soon move newpage out of swapcache, but it's
1652 * a nice clean interface for us to replace oldpage by newpage there.
1653 */
b93b0163 1654 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1655 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1656 if (!error) {
0d1c2072
JW
1657 mem_cgroup_migrate(oldpage, newpage);
1658 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1659 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1660 }
b93b0163 1661 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1662
0142ef6c
HD
1663 if (unlikely(error)) {
1664 /*
1665 * Is this possible? I think not, now that our callers check
1666 * both PageSwapCache and page_private after getting page lock;
1667 * but be defensive. Reverse old to newpage for clear and free.
1668 */
1669 oldpage = newpage;
1670 } else {
6058eaec 1671 lru_cache_add(newpage);
0142ef6c
HD
1672 *pagep = newpage;
1673 }
bde05d1c
HD
1674
1675 ClearPageSwapCache(oldpage);
1676 set_page_private(oldpage, 0);
1677
1678 unlock_page(oldpage);
09cbfeaf
KS
1679 put_page(oldpage);
1680 put_page(oldpage);
0142ef6c 1681 return error;
bde05d1c
HD
1682}
1683
c5bf121e
VRP
1684/*
1685 * Swap in the page pointed to by *pagep.
1686 * Caller has to make sure that *pagep contains a valid swapped page.
1687 * Returns 0 and the page in pagep if success. On failure, returns the
1688 * the error code and NULL in *pagep.
1689 */
1690static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1691 struct page **pagep, enum sgp_type sgp,
1692 gfp_t gfp, struct vm_area_struct *vma,
1693 vm_fault_t *fault_type)
1694{
1695 struct address_space *mapping = inode->i_mapping;
1696 struct shmem_inode_info *info = SHMEM_I(inode);
1697 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
c5bf121e
VRP
1698 struct page *page;
1699 swp_entry_t swap;
1700 int error;
1701
1702 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1703 swap = radix_to_swp_entry(*pagep);
1704 *pagep = NULL;
1705
1706 /* Look it up and read it in.. */
1707 page = lookup_swap_cache(swap, NULL, 0);
1708 if (!page) {
1709 /* Or update major stats only when swapin succeeds?? */
1710 if (fault_type) {
1711 *fault_type |= VM_FAULT_MAJOR;
1712 count_vm_event(PGMAJFAULT);
1713 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1714 }
1715 /* Here we actually start the io */
1716 page = shmem_swapin(swap, gfp, info, index);
1717 if (!page) {
1718 error = -ENOMEM;
1719 goto failed;
1720 }
1721 }
1722
1723 /* We have to do this with page locked to prevent races */
1724 lock_page(page);
1725 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1726 !shmem_confirm_swap(mapping, index, swap)) {
1727 error = -EEXIST;
1728 goto unlock;
1729 }
1730 if (!PageUptodate(page)) {
1731 error = -EIO;
1732 goto failed;
1733 }
1734 wait_on_page_writeback(page);
1735
1736 if (shmem_should_replace_page(page, gfp)) {
1737 error = shmem_replace_page(&page, gfp, info, index);
1738 if (error)
1739 goto failed;
1740 }
1741
14235ab3 1742 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1743 swp_to_radix_entry(swap), gfp,
1744 charge_mm);
1745 if (error)
14235ab3 1746 goto failed;
c5bf121e
VRP
1747
1748 spin_lock_irq(&info->lock);
1749 info->swapped--;
1750 shmem_recalc_inode(inode);
1751 spin_unlock_irq(&info->lock);
1752
1753 if (sgp == SGP_WRITE)
1754 mark_page_accessed(page);
1755
1756 delete_from_swap_cache(page);
1757 set_page_dirty(page);
1758 swap_free(swap);
1759
1760 *pagep = page;
1761 return 0;
1762failed:
1763 if (!shmem_confirm_swap(mapping, index, swap))
1764 error = -EEXIST;
1765unlock:
1766 if (page) {
1767 unlock_page(page);
1768 put_page(page);
1769 }
1770
1771 return error;
1772}
1773
1da177e4 1774/*
68da9f05 1775 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1776 *
1777 * If we allocate a new one we do not mark it dirty. That's up to the
1778 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1779 * entry since a page cannot live in both the swap and page cache.
1780 *
28eb3c80 1781 * vmf and fault_type are only supplied by shmem_fault:
9e18eb29 1782 * otherwise they are NULL.
1da177e4 1783 */
41ffe5d5 1784static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1785 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1786 struct vm_area_struct *vma, struct vm_fault *vmf,
1787 vm_fault_t *fault_type)
1da177e4
LT
1788{
1789 struct address_space *mapping = inode->i_mapping;
23f919d4 1790 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1791 struct shmem_sb_info *sbinfo;
9e18eb29 1792 struct mm_struct *charge_mm;
27ab7006 1793 struct page *page;
657e3038 1794 enum sgp_type sgp_huge = sgp;
800d8c63 1795 pgoff_t hindex = index;
1da177e4 1796 int error;
54af6042 1797 int once = 0;
1635f6a7 1798 int alloced = 0;
1da177e4 1799
09cbfeaf 1800 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1801 return -EFBIG;
657e3038
KS
1802 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1803 sgp = SGP_CACHE;
1da177e4 1804repeat:
c5bf121e
VRP
1805 if (sgp <= SGP_CACHE &&
1806 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1807 return -EINVAL;
1808 }
1809
1810 sbinfo = SHMEM_SB(inode->i_sb);
1811 charge_mm = vma ? vma->vm_mm : current->mm;
1812
0cd6144a 1813 page = find_lock_entry(mapping, index);
3159f943 1814 if (xa_is_value(page)) {
c5bf121e
VRP
1815 error = shmem_swapin_page(inode, index, &page,
1816 sgp, gfp, vma, fault_type);
1817 if (error == -EEXIST)
1818 goto repeat;
54af6042 1819
c5bf121e
VRP
1820 *pagep = page;
1821 return error;
54af6042
HD
1822 }
1823
66d2f4d2
HD
1824 if (page && sgp == SGP_WRITE)
1825 mark_page_accessed(page);
1826
1635f6a7
HD
1827 /* fallocated page? */
1828 if (page && !PageUptodate(page)) {
1829 if (sgp != SGP_READ)
1830 goto clear;
1831 unlock_page(page);
09cbfeaf 1832 put_page(page);
1635f6a7
HD
1833 page = NULL;
1834 }
c5bf121e 1835 if (page || sgp == SGP_READ) {
54af6042
HD
1836 *pagep = page;
1837 return 0;
27ab7006
HD
1838 }
1839
1840 /*
54af6042
HD
1841 * Fast cache lookup did not find it:
1842 * bring it back from swap or allocate.
27ab7006 1843 */
54af6042 1844
c5bf121e
VRP
1845 if (vma && userfaultfd_missing(vma)) {
1846 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1847 return 0;
1848 }
cfda0526 1849
c5bf121e
VRP
1850 /* shmem_symlink() */
1851 if (mapping->a_ops != &shmem_aops)
1852 goto alloc_nohuge;
1853 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1854 goto alloc_nohuge;
1855 if (shmem_huge == SHMEM_HUGE_FORCE)
1856 goto alloc_huge;
1857 switch (sbinfo->huge) {
c5bf121e
VRP
1858 case SHMEM_HUGE_NEVER:
1859 goto alloc_nohuge;
27d80fa2
KC
1860 case SHMEM_HUGE_WITHIN_SIZE: {
1861 loff_t i_size;
1862 pgoff_t off;
1863
c5bf121e
VRP
1864 off = round_up(index, HPAGE_PMD_NR);
1865 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1866 if (i_size >= HPAGE_PMD_SIZE &&
1867 i_size >> PAGE_SHIFT >= off)
800d8c63 1868 goto alloc_huge;
27d80fa2
KC
1869
1870 fallthrough;
1871 }
c5bf121e
VRP
1872 case SHMEM_HUGE_ADVISE:
1873 if (sgp_huge == SGP_HUGE)
1874 goto alloc_huge;
1875 /* TODO: implement fadvise() hints */
1876 goto alloc_nohuge;
1877 }
1da177e4 1878
800d8c63 1879alloc_huge:
c5bf121e
VRP
1880 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1881 if (IS_ERR(page)) {
1882alloc_nohuge:
1883 page = shmem_alloc_and_acct_page(gfp, inode,
1884 index, false);
1885 }
1886 if (IS_ERR(page)) {
1887 int retry = 5;
800d8c63 1888
c5bf121e
VRP
1889 error = PTR_ERR(page);
1890 page = NULL;
1891 if (error != -ENOSPC)
1892 goto unlock;
1893 /*
1894 * Try to reclaim some space by splitting a huge page
1895 * beyond i_size on the filesystem.
1896 */
1897 while (retry--) {
1898 int ret;
66d2f4d2 1899
c5bf121e
VRP
1900 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1901 if (ret == SHRINK_STOP)
1902 break;
1903 if (ret)
1904 goto alloc_nohuge;
b065b432 1905 }
c5bf121e
VRP
1906 goto unlock;
1907 }
54af6042 1908
c5bf121e
VRP
1909 if (PageTransHuge(page))
1910 hindex = round_down(index, HPAGE_PMD_NR);
1911 else
1912 hindex = index;
54af6042 1913
c5bf121e
VRP
1914 if (sgp == SGP_WRITE)
1915 __SetPageReferenced(page);
1916
c5bf121e 1917 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1918 NULL, gfp & GFP_RECLAIM_MASK,
1919 charge_mm);
1920 if (error)
c5bf121e 1921 goto unacct;
6058eaec 1922 lru_cache_add(page);
779750d2 1923
c5bf121e 1924 spin_lock_irq(&info->lock);
d8c6546b 1925 info->alloced += compound_nr(page);
c5bf121e
VRP
1926 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1927 shmem_recalc_inode(inode);
1928 spin_unlock_irq(&info->lock);
1929 alloced = true;
1930
1931 if (PageTransHuge(page) &&
1932 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1933 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1934 /*
c5bf121e
VRP
1935 * Part of the huge page is beyond i_size: subject
1936 * to shrink under memory pressure.
1635f6a7 1937 */
c5bf121e 1938 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1939 /*
c5bf121e
VRP
1940 * _careful to defend against unlocked access to
1941 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1942 */
c5bf121e
VRP
1943 if (list_empty_careful(&info->shrinklist)) {
1944 list_add_tail(&info->shrinklist,
1945 &sbinfo->shrinklist);
1946 sbinfo->shrinklist_len++;
1947 }
1948 spin_unlock(&sbinfo->shrinklist_lock);
1949 }
800d8c63 1950
c5bf121e
VRP
1951 /*
1952 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1953 */
1954 if (sgp == SGP_FALLOC)
1955 sgp = SGP_WRITE;
1956clear:
1957 /*
1958 * Let SGP_WRITE caller clear ends if write does not fill page;
1959 * but SGP_FALLOC on a page fallocated earlier must initialize
1960 * it now, lest undo on failure cancel our earlier guarantee.
1961 */
1962 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1963 struct page *head = compound_head(page);
1964 int i;
1965
d8c6546b 1966 for (i = 0; i < compound_nr(head); i++) {
c5bf121e
VRP
1967 clear_highpage(head + i);
1968 flush_dcache_page(head + i);
ec9516fb 1969 }
c5bf121e 1970 SetPageUptodate(head);
1da177e4 1971 }
bde05d1c 1972
54af6042 1973 /* Perhaps the file has been truncated since we checked */
75edd345 1974 if (sgp <= SGP_CACHE &&
09cbfeaf 1975 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1976 if (alloced) {
1977 ClearPageDirty(page);
1978 delete_from_page_cache(page);
4595ef88 1979 spin_lock_irq(&info->lock);
267a4c76 1980 shmem_recalc_inode(inode);
4595ef88 1981 spin_unlock_irq(&info->lock);
267a4c76 1982 }
54af6042 1983 error = -EINVAL;
267a4c76 1984 goto unlock;
e83c32e8 1985 }
800d8c63 1986 *pagep = page + index - hindex;
54af6042 1987 return 0;
1da177e4 1988
59a16ead 1989 /*
54af6042 1990 * Error recovery.
59a16ead 1991 */
54af6042 1992unacct:
d8c6546b 1993 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1994
1995 if (PageTransHuge(page)) {
1996 unlock_page(page);
1997 put_page(page);
1998 goto alloc_nohuge;
1999 }
d1899228 2000unlock:
27ab7006 2001 if (page) {
54af6042 2002 unlock_page(page);
09cbfeaf 2003 put_page(page);
54af6042
HD
2004 }
2005 if (error == -ENOSPC && !once++) {
4595ef88 2006 spin_lock_irq(&info->lock);
54af6042 2007 shmem_recalc_inode(inode);
4595ef88 2008 spin_unlock_irq(&info->lock);
27ab7006 2009 goto repeat;
ff36b801 2010 }
7f4446ee 2011 if (error == -EEXIST)
54af6042
HD
2012 goto repeat;
2013 return error;
1da177e4
LT
2014}
2015
10d20bd2
LT
2016/*
2017 * This is like autoremove_wake_function, but it removes the wait queue
2018 * entry unconditionally - even if something else had already woken the
2019 * target.
2020 */
ac6424b9 2021static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2022{
2023 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2024 list_del_init(&wait->entry);
10d20bd2
LT
2025 return ret;
2026}
2027
20acce67 2028static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2029{
11bac800 2030 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2031 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2032 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 2033 enum sgp_type sgp;
20acce67
SJ
2034 int err;
2035 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2036
f00cdc6d
HD
2037 /*
2038 * Trinity finds that probing a hole which tmpfs is punching can
2039 * prevent the hole-punch from ever completing: which in turn
2040 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
2041 * faulting pages into the hole while it's being punched. Although
2042 * shmem_undo_range() does remove the additions, it may be unable to
2043 * keep up, as each new page needs its own unmap_mapping_range() call,
2044 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2045 *
2046 * It does not matter if we sometimes reach this check just before the
2047 * hole-punch begins, so that one fault then races with the punch:
2048 * we just need to make racing faults a rare case.
2049 *
2050 * The implementation below would be much simpler if we just used a
2051 * standard mutex or completion: but we cannot take i_mutex in fault,
2052 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2053 */
2054 if (unlikely(inode->i_private)) {
2055 struct shmem_falloc *shmem_falloc;
2056
2057 spin_lock(&inode->i_lock);
2058 shmem_falloc = inode->i_private;
8e205f77
HD
2059 if (shmem_falloc &&
2060 shmem_falloc->waitq &&
2061 vmf->pgoff >= shmem_falloc->start &&
2062 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2063 struct file *fpin;
8e205f77 2064 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2065 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2066
2067 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2068 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2069 if (fpin)
8e205f77 2070 ret = VM_FAULT_RETRY;
8e205f77
HD
2071
2072 shmem_falloc_waitq = shmem_falloc->waitq;
2073 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2074 TASK_UNINTERRUPTIBLE);
2075 spin_unlock(&inode->i_lock);
2076 schedule();
2077
2078 /*
2079 * shmem_falloc_waitq points into the shmem_fallocate()
2080 * stack of the hole-punching task: shmem_falloc_waitq
2081 * is usually invalid by the time we reach here, but
2082 * finish_wait() does not dereference it in that case;
2083 * though i_lock needed lest racing with wake_up_all().
2084 */
2085 spin_lock(&inode->i_lock);
2086 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2087 spin_unlock(&inode->i_lock);
8897c1b1
KS
2088
2089 if (fpin)
2090 fput(fpin);
8e205f77 2091 return ret;
f00cdc6d 2092 }
8e205f77 2093 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2094 }
2095
657e3038 2096 sgp = SGP_CACHE;
18600332
MH
2097
2098 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2099 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2100 sgp = SGP_NOHUGE;
18600332
MH
2101 else if (vma->vm_flags & VM_HUGEPAGE)
2102 sgp = SGP_HUGE;
657e3038 2103
20acce67 2104 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2105 gfp, vma, vmf, &ret);
20acce67
SJ
2106 if (err)
2107 return vmf_error(err);
68da9f05 2108 return ret;
1da177e4
LT
2109}
2110
c01d5b30
HD
2111unsigned long shmem_get_unmapped_area(struct file *file,
2112 unsigned long uaddr, unsigned long len,
2113 unsigned long pgoff, unsigned long flags)
2114{
2115 unsigned long (*get_area)(struct file *,
2116 unsigned long, unsigned long, unsigned long, unsigned long);
2117 unsigned long addr;
2118 unsigned long offset;
2119 unsigned long inflated_len;
2120 unsigned long inflated_addr;
2121 unsigned long inflated_offset;
2122
2123 if (len > TASK_SIZE)
2124 return -ENOMEM;
2125
2126 get_area = current->mm->get_unmapped_area;
2127 addr = get_area(file, uaddr, len, pgoff, flags);
2128
396bcc52 2129 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2130 return addr;
2131 if (IS_ERR_VALUE(addr))
2132 return addr;
2133 if (addr & ~PAGE_MASK)
2134 return addr;
2135 if (addr > TASK_SIZE - len)
2136 return addr;
2137
2138 if (shmem_huge == SHMEM_HUGE_DENY)
2139 return addr;
2140 if (len < HPAGE_PMD_SIZE)
2141 return addr;
2142 if (flags & MAP_FIXED)
2143 return addr;
2144 /*
2145 * Our priority is to support MAP_SHARED mapped hugely;
2146 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2147 * But if caller specified an address hint and we allocated area there
2148 * successfully, respect that as before.
c01d5b30 2149 */
99158997 2150 if (uaddr == addr)
c01d5b30
HD
2151 return addr;
2152
2153 if (shmem_huge != SHMEM_HUGE_FORCE) {
2154 struct super_block *sb;
2155
2156 if (file) {
2157 VM_BUG_ON(file->f_op != &shmem_file_operations);
2158 sb = file_inode(file)->i_sb;
2159 } else {
2160 /*
2161 * Called directly from mm/mmap.c, or drivers/char/mem.c
2162 * for "/dev/zero", to create a shared anonymous object.
2163 */
2164 if (IS_ERR(shm_mnt))
2165 return addr;
2166 sb = shm_mnt->mnt_sb;
2167 }
3089bf61 2168 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2169 return addr;
2170 }
2171
2172 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2173 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2174 return addr;
2175 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2176 return addr;
2177
2178 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2179 if (inflated_len > TASK_SIZE)
2180 return addr;
2181 if (inflated_len < len)
2182 return addr;
2183
99158997 2184 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2185 if (IS_ERR_VALUE(inflated_addr))
2186 return addr;
2187 if (inflated_addr & ~PAGE_MASK)
2188 return addr;
2189
2190 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2191 inflated_addr += offset - inflated_offset;
2192 if (inflated_offset > offset)
2193 inflated_addr += HPAGE_PMD_SIZE;
2194
2195 if (inflated_addr > TASK_SIZE - len)
2196 return addr;
2197 return inflated_addr;
2198}
2199
1da177e4 2200#ifdef CONFIG_NUMA
41ffe5d5 2201static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2202{
496ad9aa 2203 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2204 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2205}
2206
d8dc74f2
AB
2207static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2208 unsigned long addr)
1da177e4 2209{
496ad9aa 2210 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2211 pgoff_t index;
1da177e4 2212
41ffe5d5
HD
2213 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2214 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2215}
2216#endif
2217
2218int shmem_lock(struct file *file, int lock, struct user_struct *user)
2219{
496ad9aa 2220 struct inode *inode = file_inode(file);
1da177e4
LT
2221 struct shmem_inode_info *info = SHMEM_I(inode);
2222 int retval = -ENOMEM;
2223
ea0dfeb4
HD
2224 /*
2225 * What serializes the accesses to info->flags?
2226 * ipc_lock_object() when called from shmctl_do_lock(),
2227 * no serialization needed when called from shm_destroy().
2228 */
1da177e4
LT
2229 if (lock && !(info->flags & VM_LOCKED)) {
2230 if (!user_shm_lock(inode->i_size, user))
2231 goto out_nomem;
2232 info->flags |= VM_LOCKED;
89e004ea 2233 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2234 }
2235 if (!lock && (info->flags & VM_LOCKED) && user) {
2236 user_shm_unlock(inode->i_size, user);
2237 info->flags &= ~VM_LOCKED;
89e004ea 2238 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2239 }
2240 retval = 0;
89e004ea 2241
1da177e4 2242out_nomem:
1da177e4
LT
2243 return retval;
2244}
2245
9b83a6a8 2246static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2247{
ab3948f5
JFG
2248 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2249
2250 if (info->seals & F_SEAL_FUTURE_WRITE) {
2251 /*
2252 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2253 * "future write" seal active.
2254 */
2255 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2256 return -EPERM;
2257
2258 /*
05d35110
NG
2259 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2260 * MAP_SHARED and read-only, take care to not allow mprotect to
2261 * revert protections on such mappings. Do this only for shared
2262 * mappings. For private mappings, don't need to mask
2263 * VM_MAYWRITE as we still want them to be COW-writable.
ab3948f5 2264 */
05d35110
NG
2265 if (vma->vm_flags & VM_SHARED)
2266 vma->vm_flags &= ~(VM_MAYWRITE);
ab3948f5
JFG
2267 }
2268
1da177e4
LT
2269 file_accessed(file);
2270 vma->vm_ops = &shmem_vm_ops;
396bcc52 2271 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2272 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2273 (vma->vm_end & HPAGE_PMD_MASK)) {
2274 khugepaged_enter(vma, vma->vm_flags);
2275 }
1da177e4
LT
2276 return 0;
2277}
2278
454abafe 2279static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2280 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2281{
2282 struct inode *inode;
2283 struct shmem_inode_info *info;
2284 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2285 ino_t ino;
1da177e4 2286
e809d5f0 2287 if (shmem_reserve_inode(sb, &ino))
5b04c689 2288 return NULL;
1da177e4
LT
2289
2290 inode = new_inode(sb);
2291 if (inode) {
e809d5f0 2292 inode->i_ino = ino;
454abafe 2293 inode_init_owner(inode, dir, mode);
1da177e4 2294 inode->i_blocks = 0;
078cd827 2295 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2296 inode->i_generation = prandom_u32();
1da177e4
LT
2297 info = SHMEM_I(inode);
2298 memset(info, 0, (char *)inode - (char *)info);
2299 spin_lock_init(&info->lock);
af53d3e9 2300 atomic_set(&info->stop_eviction, 0);
40e041a2 2301 info->seals = F_SEAL_SEAL;
0b0a0806 2302 info->flags = flags & VM_NORESERVE;
779750d2 2303 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2304 INIT_LIST_HEAD(&info->swaplist);
38f38657 2305 simple_xattrs_init(&info->xattrs);
72c04902 2306 cache_no_acl(inode);
1da177e4
LT
2307
2308 switch (mode & S_IFMT) {
2309 default:
39f0247d 2310 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2311 init_special_inode(inode, mode, dev);
2312 break;
2313 case S_IFREG:
14fcc23f 2314 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2315 inode->i_op = &shmem_inode_operations;
2316 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2317 mpol_shared_policy_init(&info->policy,
2318 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2319 break;
2320 case S_IFDIR:
d8c76e6f 2321 inc_nlink(inode);
1da177e4
LT
2322 /* Some things misbehave if size == 0 on a directory */
2323 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 inode->i_op = &shmem_dir_inode_operations;
2325 inode->i_fop = &simple_dir_operations;
2326 break;
2327 case S_IFLNK:
2328 /*
2329 * Must not load anything in the rbtree,
2330 * mpol_free_shared_policy will not be called.
2331 */
71fe804b 2332 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2333 break;
2334 }
b45d71fb
JFG
2335
2336 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2337 } else
2338 shmem_free_inode(sb);
1da177e4
LT
2339 return inode;
2340}
2341
0cd6144a
JW
2342bool shmem_mapping(struct address_space *mapping)
2343{
f8005451 2344 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2345}
2346
8d103963
MR
2347static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2348 pmd_t *dst_pmd,
2349 struct vm_area_struct *dst_vma,
2350 unsigned long dst_addr,
2351 unsigned long src_addr,
2352 bool zeropage,
2353 struct page **pagep)
4c27fe4c
MR
2354{
2355 struct inode *inode = file_inode(dst_vma->vm_file);
2356 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2357 struct address_space *mapping = inode->i_mapping;
2358 gfp_t gfp = mapping_gfp_mask(mapping);
2359 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2360 spinlock_t *ptl;
2361 void *page_kaddr;
2362 struct page *page;
2363 pte_t _dst_pte, *dst_pte;
2364 int ret;
e2a50c1f 2365 pgoff_t offset, max_off;
4c27fe4c 2366
cb658a45 2367 ret = -ENOMEM;
0f079694 2368 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2369 goto out;
4c27fe4c 2370
cb658a45 2371 if (!*pagep) {
4c27fe4c
MR
2372 page = shmem_alloc_page(gfp, info, pgoff);
2373 if (!page)
0f079694 2374 goto out_unacct_blocks;
4c27fe4c 2375
8d103963
MR
2376 if (!zeropage) { /* mcopy_atomic */
2377 page_kaddr = kmap_atomic(page);
2378 ret = copy_from_user(page_kaddr,
2379 (const void __user *)src_addr,
2380 PAGE_SIZE);
2381 kunmap_atomic(page_kaddr);
2382
c1e8d7c6 2383 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2384 if (unlikely(ret)) {
2385 *pagep = page;
2386 shmem_inode_unacct_blocks(inode, 1);
2387 /* don't free the page */
9e368259 2388 return -ENOENT;
8d103963
MR
2389 }
2390 } else { /* mfill_zeropage_atomic */
2391 clear_highpage(page);
4c27fe4c
MR
2392 }
2393 } else {
2394 page = *pagep;
2395 *pagep = NULL;
2396 }
2397
9cc90c66
AA
2398 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2399 __SetPageLocked(page);
2400 __SetPageSwapBacked(page);
a425d358 2401 __SetPageUptodate(page);
9cc90c66 2402
e2a50c1f
AA
2403 ret = -EFAULT;
2404 offset = linear_page_index(dst_vma, dst_addr);
2405 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2406 if (unlikely(offset >= max_off))
2407 goto out_release;
2408
552446a4 2409 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2410 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2411 if (ret)
3fea5a49 2412 goto out_release;
4c27fe4c
MR
2413
2414 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2415 if (dst_vma->vm_flags & VM_WRITE)
2416 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2417 else {
2418 /*
2419 * We don't set the pte dirty if the vma has no
2420 * VM_WRITE permission, so mark the page dirty or it
2421 * could be freed from under us. We could do it
2422 * unconditionally before unlock_page(), but doing it
2423 * only if VM_WRITE is not set is faster.
2424 */
2425 set_page_dirty(page);
2426 }
4c27fe4c 2427
4c27fe4c 2428 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2429
2430 ret = -EFAULT;
2431 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2432 if (unlikely(offset >= max_off))
3fea5a49 2433 goto out_release_unlock;
e2a50c1f
AA
2434
2435 ret = -EEXIST;
4c27fe4c 2436 if (!pte_none(*dst_pte))
3fea5a49 2437 goto out_release_unlock;
4c27fe4c 2438
6058eaec 2439 lru_cache_add(page);
4c27fe4c 2440
94b7cc01 2441 spin_lock_irq(&info->lock);
4c27fe4c
MR
2442 info->alloced++;
2443 inode->i_blocks += BLOCKS_PER_PAGE;
2444 shmem_recalc_inode(inode);
94b7cc01 2445 spin_unlock_irq(&info->lock);
4c27fe4c
MR
2446
2447 inc_mm_counter(dst_mm, mm_counter_file(page));
2448 page_add_file_rmap(page, false);
2449 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2450
2451 /* No need to invalidate - it was non-present before */
2452 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2453 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2454 unlock_page(page);
4c27fe4c
MR
2455 ret = 0;
2456out:
2457 return ret;
3fea5a49 2458out_release_unlock:
4c27fe4c 2459 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2460 ClearPageDirty(page);
e2a50c1f 2461 delete_from_page_cache(page);
4c27fe4c 2462out_release:
9cc90c66 2463 unlock_page(page);
4c27fe4c 2464 put_page(page);
4c27fe4c 2465out_unacct_blocks:
0f079694 2466 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2467 goto out;
2468}
2469
8d103963
MR
2470int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2471 pmd_t *dst_pmd,
2472 struct vm_area_struct *dst_vma,
2473 unsigned long dst_addr,
2474 unsigned long src_addr,
2475 struct page **pagep)
2476{
2477 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2478 dst_addr, src_addr, false, pagep);
2479}
2480
2481int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2482 pmd_t *dst_pmd,
2483 struct vm_area_struct *dst_vma,
2484 unsigned long dst_addr)
2485{
2486 struct page *page = NULL;
2487
2488 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2489 dst_addr, 0, true, &page);
2490}
2491
1da177e4 2492#ifdef CONFIG_TMPFS
92e1d5be 2493static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2494static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2495
6d9d88d0
JS
2496#ifdef CONFIG_TMPFS_XATTR
2497static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2498#else
2499#define shmem_initxattrs NULL
2500#endif
2501
1da177e4 2502static int
800d15a5
NP
2503shmem_write_begin(struct file *file, struct address_space *mapping,
2504 loff_t pos, unsigned len, unsigned flags,
2505 struct page **pagep, void **fsdata)
1da177e4 2506{
800d15a5 2507 struct inode *inode = mapping->host;
40e041a2 2508 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2509 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2510
2511 /* i_mutex is held by caller */
ab3948f5
JFG
2512 if (unlikely(info->seals & (F_SEAL_GROW |
2513 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2514 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2515 return -EPERM;
2516 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2517 return -EPERM;
2518 }
2519
9e18eb29 2520 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2521}
2522
2523static int
2524shmem_write_end(struct file *file, struct address_space *mapping,
2525 loff_t pos, unsigned len, unsigned copied,
2526 struct page *page, void *fsdata)
2527{
2528 struct inode *inode = mapping->host;
2529
d3602444
HD
2530 if (pos + copied > inode->i_size)
2531 i_size_write(inode, pos + copied);
2532
ec9516fb 2533 if (!PageUptodate(page)) {
800d8c63
KS
2534 struct page *head = compound_head(page);
2535 if (PageTransCompound(page)) {
2536 int i;
2537
2538 for (i = 0; i < HPAGE_PMD_NR; i++) {
2539 if (head + i == page)
2540 continue;
2541 clear_highpage(head + i);
2542 flush_dcache_page(head + i);
2543 }
2544 }
09cbfeaf
KS
2545 if (copied < PAGE_SIZE) {
2546 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2547 zero_user_segments(page, 0, from,
09cbfeaf 2548 from + copied, PAGE_SIZE);
ec9516fb 2549 }
800d8c63 2550 SetPageUptodate(head);
ec9516fb 2551 }
800d15a5 2552 set_page_dirty(page);
6746aff7 2553 unlock_page(page);
09cbfeaf 2554 put_page(page);
800d15a5 2555
800d15a5 2556 return copied;
1da177e4
LT
2557}
2558
2ba5bbed 2559static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2560{
6e58e79d
AV
2561 struct file *file = iocb->ki_filp;
2562 struct inode *inode = file_inode(file);
1da177e4 2563 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2564 pgoff_t index;
2565 unsigned long offset;
a0ee5ec5 2566 enum sgp_type sgp = SGP_READ;
f7c1d074 2567 int error = 0;
cb66a7a1 2568 ssize_t retval = 0;
6e58e79d 2569 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2570
2571 /*
2572 * Might this read be for a stacking filesystem? Then when reading
2573 * holes of a sparse file, we actually need to allocate those pages,
2574 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2575 */
777eda2c 2576 if (!iter_is_iovec(to))
75edd345 2577 sgp = SGP_CACHE;
1da177e4 2578
09cbfeaf
KS
2579 index = *ppos >> PAGE_SHIFT;
2580 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2581
2582 for (;;) {
2583 struct page *page = NULL;
41ffe5d5
HD
2584 pgoff_t end_index;
2585 unsigned long nr, ret;
1da177e4
LT
2586 loff_t i_size = i_size_read(inode);
2587
09cbfeaf 2588 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2589 if (index > end_index)
2590 break;
2591 if (index == end_index) {
09cbfeaf 2592 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2593 if (nr <= offset)
2594 break;
2595 }
2596
9e18eb29 2597 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2598 if (error) {
2599 if (error == -EINVAL)
2600 error = 0;
1da177e4
LT
2601 break;
2602 }
75edd345
HD
2603 if (page) {
2604 if (sgp == SGP_CACHE)
2605 set_page_dirty(page);
d3602444 2606 unlock_page(page);
75edd345 2607 }
1da177e4
LT
2608
2609 /*
2610 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2611 * are called without i_mutex protection against truncate
1da177e4 2612 */
09cbfeaf 2613 nr = PAGE_SIZE;
1da177e4 2614 i_size = i_size_read(inode);
09cbfeaf 2615 end_index = i_size >> PAGE_SHIFT;
1da177e4 2616 if (index == end_index) {
09cbfeaf 2617 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2618 if (nr <= offset) {
2619 if (page)
09cbfeaf 2620 put_page(page);
1da177e4
LT
2621 break;
2622 }
2623 }
2624 nr -= offset;
2625
2626 if (page) {
2627 /*
2628 * If users can be writing to this page using arbitrary
2629 * virtual addresses, take care about potential aliasing
2630 * before reading the page on the kernel side.
2631 */
2632 if (mapping_writably_mapped(mapping))
2633 flush_dcache_page(page);
2634 /*
2635 * Mark the page accessed if we read the beginning.
2636 */
2637 if (!offset)
2638 mark_page_accessed(page);
b5810039 2639 } else {
1da177e4 2640 page = ZERO_PAGE(0);
09cbfeaf 2641 get_page(page);
b5810039 2642 }
1da177e4
LT
2643
2644 /*
2645 * Ok, we have the page, and it's up-to-date, so
2646 * now we can copy it to user space...
1da177e4 2647 */
2ba5bbed 2648 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2649 retval += ret;
1da177e4 2650 offset += ret;
09cbfeaf
KS
2651 index += offset >> PAGE_SHIFT;
2652 offset &= ~PAGE_MASK;
1da177e4 2653
09cbfeaf 2654 put_page(page);
2ba5bbed 2655 if (!iov_iter_count(to))
1da177e4 2656 break;
6e58e79d
AV
2657 if (ret < nr) {
2658 error = -EFAULT;
2659 break;
2660 }
1da177e4
LT
2661 cond_resched();
2662 }
2663
09cbfeaf 2664 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2665 file_accessed(file);
2666 return retval ? retval : error;
1da177e4
LT
2667}
2668
220f2ac9 2669/*
7f4446ee 2670 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
220f2ac9
HD
2671 */
2672static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2673 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2674{
2675 struct page *page;
2676 struct pagevec pvec;
2677 pgoff_t indices[PAGEVEC_SIZE];
2678 bool done = false;
2679 int i;
2680
86679820 2681 pagevec_init(&pvec);
220f2ac9
HD
2682 pvec.nr = 1; /* start small: we may be there already */
2683 while (!done) {
0cd6144a 2684 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2685 pvec.nr, pvec.pages, indices);
2686 if (!pvec.nr) {
965c8e59 2687 if (whence == SEEK_DATA)
220f2ac9
HD
2688 index = end;
2689 break;
2690 }
2691 for (i = 0; i < pvec.nr; i++, index++) {
2692 if (index < indices[i]) {
965c8e59 2693 if (whence == SEEK_HOLE) {
220f2ac9
HD
2694 done = true;
2695 break;
2696 }
2697 index = indices[i];
2698 }
2699 page = pvec.pages[i];
3159f943 2700 if (page && !xa_is_value(page)) {
220f2ac9
HD
2701 if (!PageUptodate(page))
2702 page = NULL;
2703 }
2704 if (index >= end ||
965c8e59
AM
2705 (page && whence == SEEK_DATA) ||
2706 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2707 done = true;
2708 break;
2709 }
2710 }
0cd6144a 2711 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2712 pagevec_release(&pvec);
2713 pvec.nr = PAGEVEC_SIZE;
2714 cond_resched();
2715 }
2716 return index;
2717}
2718
965c8e59 2719static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2720{
2721 struct address_space *mapping = file->f_mapping;
2722 struct inode *inode = mapping->host;
2723 pgoff_t start, end;
2724 loff_t new_offset;
2725
965c8e59
AM
2726 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2727 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2728 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2729 inode_lock(inode);
220f2ac9
HD
2730 /* We're holding i_mutex so we can access i_size directly */
2731
1a413646 2732 if (offset < 0 || offset >= inode->i_size)
220f2ac9
HD
2733 offset = -ENXIO;
2734 else {
09cbfeaf
KS
2735 start = offset >> PAGE_SHIFT;
2736 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2737 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2738 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2739 if (new_offset > offset) {
2740 if (new_offset < inode->i_size)
2741 offset = new_offset;
965c8e59 2742 else if (whence == SEEK_DATA)
220f2ac9
HD
2743 offset = -ENXIO;
2744 else
2745 offset = inode->i_size;
2746 }
2747 }
2748
387aae6f
HD
2749 if (offset >= 0)
2750 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2751 inode_unlock(inode);
220f2ac9
HD
2752 return offset;
2753}
2754
83e4fa9c
HD
2755static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2756 loff_t len)
2757{
496ad9aa 2758 struct inode *inode = file_inode(file);
e2d12e22 2759 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2760 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2761 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2762 pgoff_t start, index, end;
2763 int error;
83e4fa9c 2764
13ace4d0
HD
2765 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2766 return -EOPNOTSUPP;
2767
5955102c 2768 inode_lock(inode);
83e4fa9c
HD
2769
2770 if (mode & FALLOC_FL_PUNCH_HOLE) {
2771 struct address_space *mapping = file->f_mapping;
2772 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2773 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2774 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2775
40e041a2 2776 /* protected by i_mutex */
ab3948f5 2777 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2778 error = -EPERM;
2779 goto out;
2780 }
2781
8e205f77 2782 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2783 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2784 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2785 spin_lock(&inode->i_lock);
2786 inode->i_private = &shmem_falloc;
2787 spin_unlock(&inode->i_lock);
2788
83e4fa9c
HD
2789 if ((u64)unmap_end > (u64)unmap_start)
2790 unmap_mapping_range(mapping, unmap_start,
2791 1 + unmap_end - unmap_start, 0);
2792 shmem_truncate_range(inode, offset, offset + len - 1);
2793 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2794
2795 spin_lock(&inode->i_lock);
2796 inode->i_private = NULL;
2797 wake_up_all(&shmem_falloc_waitq);
2055da97 2798 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2799 spin_unlock(&inode->i_lock);
83e4fa9c 2800 error = 0;
8e205f77 2801 goto out;
e2d12e22
HD
2802 }
2803
2804 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2805 error = inode_newsize_ok(inode, offset + len);
2806 if (error)
2807 goto out;
2808
40e041a2
DH
2809 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2810 error = -EPERM;
2811 goto out;
2812 }
2813
09cbfeaf
KS
2814 start = offset >> PAGE_SHIFT;
2815 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2816 /* Try to avoid a swapstorm if len is impossible to satisfy */
2817 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2818 error = -ENOSPC;
2819 goto out;
83e4fa9c
HD
2820 }
2821
8e205f77 2822 shmem_falloc.waitq = NULL;
1aac1400
HD
2823 shmem_falloc.start = start;
2824 shmem_falloc.next = start;
2825 shmem_falloc.nr_falloced = 0;
2826 shmem_falloc.nr_unswapped = 0;
2827 spin_lock(&inode->i_lock);
2828 inode->i_private = &shmem_falloc;
2829 spin_unlock(&inode->i_lock);
2830
e2d12e22
HD
2831 for (index = start; index < end; index++) {
2832 struct page *page;
2833
2834 /*
2835 * Good, the fallocate(2) manpage permits EINTR: we may have
2836 * been interrupted because we are using up too much memory.
2837 */
2838 if (signal_pending(current))
2839 error = -EINTR;
1aac1400
HD
2840 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2841 error = -ENOMEM;
e2d12e22 2842 else
9e18eb29 2843 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2844 if (error) {
1635f6a7 2845 /* Remove the !PageUptodate pages we added */
7f556567
HD
2846 if (index > start) {
2847 shmem_undo_range(inode,
2848 (loff_t)start << PAGE_SHIFT,
2849 ((loff_t)index << PAGE_SHIFT) - 1, true);
2850 }
1aac1400 2851 goto undone;
e2d12e22
HD
2852 }
2853
1aac1400
HD
2854 /*
2855 * Inform shmem_writepage() how far we have reached.
2856 * No need for lock or barrier: we have the page lock.
2857 */
2858 shmem_falloc.next++;
2859 if (!PageUptodate(page))
2860 shmem_falloc.nr_falloced++;
2861
e2d12e22 2862 /*
1635f6a7
HD
2863 * If !PageUptodate, leave it that way so that freeable pages
2864 * can be recognized if we need to rollback on error later.
2865 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2866 * than free the pages we are allocating (and SGP_CACHE pages
2867 * might still be clean: we now need to mark those dirty too).
2868 */
2869 set_page_dirty(page);
2870 unlock_page(page);
09cbfeaf 2871 put_page(page);
e2d12e22
HD
2872 cond_resched();
2873 }
2874
2875 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876 i_size_write(inode, offset + len);
078cd827 2877 inode->i_ctime = current_time(inode);
1aac1400
HD
2878undone:
2879 spin_lock(&inode->i_lock);
2880 inode->i_private = NULL;
2881 spin_unlock(&inode->i_lock);
e2d12e22 2882out:
5955102c 2883 inode_unlock(inode);
83e4fa9c
HD
2884 return error;
2885}
2886
726c3342 2887static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2888{
726c3342 2889 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2890
2891 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2892 buf->f_bsize = PAGE_SIZE;
1da177e4 2893 buf->f_namelen = NAME_MAX;
0edd73b3 2894 if (sbinfo->max_blocks) {
1da177e4 2895 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2896 buf->f_bavail =
2897 buf->f_bfree = sbinfo->max_blocks -
2898 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2899 }
2900 if (sbinfo->max_inodes) {
1da177e4
LT
2901 buf->f_files = sbinfo->max_inodes;
2902 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2903 }
2904 /* else leave those fields 0 like simple_statfs */
2905 return 0;
2906}
2907
2908/*
2909 * File creation. Allocate an inode, and we're done..
2910 */
2911static int
1a67aafb 2912shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2913{
0b0a0806 2914 struct inode *inode;
1da177e4
LT
2915 int error = -ENOSPC;
2916
454abafe 2917 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2918 if (inode) {
feda821e
CH
2919 error = simple_acl_create(dir, inode);
2920 if (error)
2921 goto out_iput;
2a7dba39 2922 error = security_inode_init_security(inode, dir,
9d8f13ba 2923 &dentry->d_name,
6d9d88d0 2924 shmem_initxattrs, NULL);
feda821e
CH
2925 if (error && error != -EOPNOTSUPP)
2926 goto out_iput;
37ec43cd 2927
718deb6b 2928 error = 0;
1da177e4 2929 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2930 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2931 d_instantiate(dentry, inode);
2932 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2933 }
2934 return error;
feda821e
CH
2935out_iput:
2936 iput(inode);
2937 return error;
1da177e4
LT
2938}
2939
60545d0d
AV
2940static int
2941shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2942{
2943 struct inode *inode;
2944 int error = -ENOSPC;
2945
2946 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2947 if (inode) {
2948 error = security_inode_init_security(inode, dir,
2949 NULL,
2950 shmem_initxattrs, NULL);
feda821e
CH
2951 if (error && error != -EOPNOTSUPP)
2952 goto out_iput;
2953 error = simple_acl_create(dir, inode);
2954 if (error)
2955 goto out_iput;
60545d0d
AV
2956 d_tmpfile(dentry, inode);
2957 }
2958 return error;
feda821e
CH
2959out_iput:
2960 iput(inode);
2961 return error;
60545d0d
AV
2962}
2963
18bb1db3 2964static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2965{
2966 int error;
2967
2968 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2969 return error;
d8c76e6f 2970 inc_nlink(dir);
1da177e4
LT
2971 return 0;
2972}
2973
4acdaf27 2974static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2975 bool excl)
1da177e4
LT
2976{
2977 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2978}
2979
2980/*
2981 * Link a file..
2982 */
2983static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2984{
75c3cfa8 2985 struct inode *inode = d_inode(old_dentry);
29b00e60 2986 int ret = 0;
1da177e4
LT
2987
2988 /*
2989 * No ordinary (disk based) filesystem counts links as inodes;
2990 * but each new link needs a new dentry, pinning lowmem, and
2991 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2992 * But if an O_TMPFILE file is linked into the tmpfs, the
2993 * first link must skip that, to get the accounting right.
1da177e4 2994 */
1062af92 2995 if (inode->i_nlink) {
e809d5f0 2996 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2997 if (ret)
2998 goto out;
2999 }
1da177e4
LT
3000
3001 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3002 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3003 inc_nlink(inode);
7de9c6ee 3004 ihold(inode); /* New dentry reference */
1da177e4
LT
3005 dget(dentry); /* Extra pinning count for the created dentry */
3006 d_instantiate(dentry, inode);
5b04c689
PE
3007out:
3008 return ret;
1da177e4
LT
3009}
3010
3011static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3012{
75c3cfa8 3013 struct inode *inode = d_inode(dentry);
1da177e4 3014
5b04c689
PE
3015 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3016 shmem_free_inode(inode->i_sb);
1da177e4
LT
3017
3018 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3019 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3020 drop_nlink(inode);
1da177e4
LT
3021 dput(dentry); /* Undo the count from "create" - this does all the work */
3022 return 0;
3023}
3024
3025static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3026{
3027 if (!simple_empty(dentry))
3028 return -ENOTEMPTY;
3029
75c3cfa8 3030 drop_nlink(d_inode(dentry));
9a53c3a7 3031 drop_nlink(dir);
1da177e4
LT
3032 return shmem_unlink(dir, dentry);
3033}
3034
37456771
MS
3035static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3036{
e36cb0b8
DH
3037 bool old_is_dir = d_is_dir(old_dentry);
3038 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3039
3040 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3041 if (old_is_dir) {
3042 drop_nlink(old_dir);
3043 inc_nlink(new_dir);
3044 } else {
3045 drop_nlink(new_dir);
3046 inc_nlink(old_dir);
3047 }
3048 }
3049 old_dir->i_ctime = old_dir->i_mtime =
3050 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3051 d_inode(old_dentry)->i_ctime =
078cd827 3052 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3053
3054 return 0;
3055}
3056
46fdb794
MS
3057static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3058{
3059 struct dentry *whiteout;
3060 int error;
3061
3062 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3063 if (!whiteout)
3064 return -ENOMEM;
3065
3066 error = shmem_mknod(old_dir, whiteout,
3067 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3068 dput(whiteout);
3069 if (error)
3070 return error;
3071
3072 /*
3073 * Cheat and hash the whiteout while the old dentry is still in
3074 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3075 *
3076 * d_lookup() will consistently find one of them at this point,
3077 * not sure which one, but that isn't even important.
3078 */
3079 d_rehash(whiteout);
3080 return 0;
3081}
3082
1da177e4
LT
3083/*
3084 * The VFS layer already does all the dentry stuff for rename,
3085 * we just have to decrement the usage count for the target if
3086 * it exists so that the VFS layer correctly free's it when it
3087 * gets overwritten.
3088 */
3b69ff51 3089static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3090{
75c3cfa8 3091 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3092 int they_are_dirs = S_ISDIR(inode->i_mode);
3093
46fdb794 3094 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3095 return -EINVAL;
3096
37456771
MS
3097 if (flags & RENAME_EXCHANGE)
3098 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3099
1da177e4
LT
3100 if (!simple_empty(new_dentry))
3101 return -ENOTEMPTY;
3102
46fdb794
MS
3103 if (flags & RENAME_WHITEOUT) {
3104 int error;
3105
3106 error = shmem_whiteout(old_dir, old_dentry);
3107 if (error)
3108 return error;
3109 }
3110
75c3cfa8 3111 if (d_really_is_positive(new_dentry)) {
1da177e4 3112 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3113 if (they_are_dirs) {
75c3cfa8 3114 drop_nlink(d_inode(new_dentry));
9a53c3a7 3115 drop_nlink(old_dir);
b928095b 3116 }
1da177e4 3117 } else if (they_are_dirs) {
9a53c3a7 3118 drop_nlink(old_dir);
d8c76e6f 3119 inc_nlink(new_dir);
1da177e4
LT
3120 }
3121
3122 old_dir->i_size -= BOGO_DIRENT_SIZE;
3123 new_dir->i_size += BOGO_DIRENT_SIZE;
3124 old_dir->i_ctime = old_dir->i_mtime =
3125 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3126 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3127 return 0;
3128}
3129
3130static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3131{
3132 int error;
3133 int len;
3134 struct inode *inode;
9276aad6 3135 struct page *page;
1da177e4
LT
3136
3137 len = strlen(symname) + 1;
09cbfeaf 3138 if (len > PAGE_SIZE)
1da177e4
LT
3139 return -ENAMETOOLONG;
3140
0825a6f9
JP
3141 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3142 VM_NORESERVE);
1da177e4
LT
3143 if (!inode)
3144 return -ENOSPC;
3145
9d8f13ba 3146 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3147 shmem_initxattrs, NULL);
343c3d7f
MN
3148 if (error && error != -EOPNOTSUPP) {
3149 iput(inode);
3150 return error;
570bc1c2
SS
3151 }
3152
1da177e4 3153 inode->i_size = len-1;
69f07ec9 3154 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3155 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3156 if (!inode->i_link) {
69f07ec9
HD
3157 iput(inode);
3158 return -ENOMEM;
3159 }
3160 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3161 } else {
e8ecde25 3162 inode_nohighmem(inode);
9e18eb29 3163 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3164 if (error) {
3165 iput(inode);
3166 return error;
3167 }
14fcc23f 3168 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3169 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3170 memcpy(page_address(page), symname, len);
ec9516fb 3171 SetPageUptodate(page);
1da177e4 3172 set_page_dirty(page);
6746aff7 3173 unlock_page(page);
09cbfeaf 3174 put_page(page);
1da177e4 3175 }
1da177e4 3176 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3177 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3178 d_instantiate(dentry, inode);
3179 dget(dentry);
3180 return 0;
3181}
3182
fceef393 3183static void shmem_put_link(void *arg)
1da177e4 3184{
fceef393
AV
3185 mark_page_accessed(arg);
3186 put_page(arg);
1da177e4
LT
3187}
3188
6b255391 3189static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3190 struct inode *inode,
3191 struct delayed_call *done)
1da177e4 3192{
1da177e4 3193 struct page *page = NULL;
6b255391 3194 int error;
6a6c9904
AV
3195 if (!dentry) {
3196 page = find_get_page(inode->i_mapping, 0);
3197 if (!page)
3198 return ERR_PTR(-ECHILD);
3199 if (!PageUptodate(page)) {
3200 put_page(page);
3201 return ERR_PTR(-ECHILD);
3202 }
3203 } else {
9e18eb29 3204 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3205 if (error)
3206 return ERR_PTR(error);
3207 unlock_page(page);
3208 }
fceef393 3209 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3210 return page_address(page);
1da177e4
LT
3211}
3212
b09e0fa4 3213#ifdef CONFIG_TMPFS_XATTR
46711810 3214/*
b09e0fa4
EP
3215 * Superblocks without xattr inode operations may get some security.* xattr
3216 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3217 * like ACLs, we also need to implement the security.* handlers at
3218 * filesystem level, though.
3219 */
3220
6d9d88d0
JS
3221/*
3222 * Callback for security_inode_init_security() for acquiring xattrs.
3223 */
3224static int shmem_initxattrs(struct inode *inode,
3225 const struct xattr *xattr_array,
3226 void *fs_info)
3227{
3228 struct shmem_inode_info *info = SHMEM_I(inode);
3229 const struct xattr *xattr;
38f38657 3230 struct simple_xattr *new_xattr;
6d9d88d0
JS
3231 size_t len;
3232
3233 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3234 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3235 if (!new_xattr)
3236 return -ENOMEM;
3237
3238 len = strlen(xattr->name) + 1;
3239 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3240 GFP_KERNEL);
3241 if (!new_xattr->name) {
3bef735a 3242 kvfree(new_xattr);
6d9d88d0
JS
3243 return -ENOMEM;
3244 }
3245
3246 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3247 XATTR_SECURITY_PREFIX_LEN);
3248 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3249 xattr->name, len);
3250
38f38657 3251 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3252 }
3253
3254 return 0;
3255}
3256
aa7c5241 3257static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3258 struct dentry *unused, struct inode *inode,
3259 const char *name, void *buffer, size_t size)
b09e0fa4 3260{
b296821a 3261 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3262
aa7c5241 3263 name = xattr_full_name(handler, name);
38f38657 3264 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3265}
3266
aa7c5241 3267static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3268 struct dentry *unused, struct inode *inode,
3269 const char *name, const void *value,
3270 size_t size, int flags)
b09e0fa4 3271{
59301226 3272 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3273
aa7c5241 3274 name = xattr_full_name(handler, name);
a46a2295 3275 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3276}
3277
aa7c5241
AG
3278static const struct xattr_handler shmem_security_xattr_handler = {
3279 .prefix = XATTR_SECURITY_PREFIX,
3280 .get = shmem_xattr_handler_get,
3281 .set = shmem_xattr_handler_set,
3282};
b09e0fa4 3283
aa7c5241
AG
3284static const struct xattr_handler shmem_trusted_xattr_handler = {
3285 .prefix = XATTR_TRUSTED_PREFIX,
3286 .get = shmem_xattr_handler_get,
3287 .set = shmem_xattr_handler_set,
3288};
b09e0fa4 3289
aa7c5241
AG
3290static const struct xattr_handler *shmem_xattr_handlers[] = {
3291#ifdef CONFIG_TMPFS_POSIX_ACL
3292 &posix_acl_access_xattr_handler,
3293 &posix_acl_default_xattr_handler,
3294#endif
3295 &shmem_security_xattr_handler,
3296 &shmem_trusted_xattr_handler,
3297 NULL
3298};
b09e0fa4
EP
3299
3300static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3301{
75c3cfa8 3302 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3303 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3304}
3305#endif /* CONFIG_TMPFS_XATTR */
3306
69f07ec9 3307static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3308 .get_link = simple_get_link,
b09e0fa4 3309#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3310 .listxattr = shmem_listxattr,
b09e0fa4
EP
3311#endif
3312};
3313
3314static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3315 .get_link = shmem_get_link,
b09e0fa4 3316#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3317 .listxattr = shmem_listxattr,
39f0247d 3318#endif
b09e0fa4 3319};
39f0247d 3320
91828a40
DG
3321static struct dentry *shmem_get_parent(struct dentry *child)
3322{
3323 return ERR_PTR(-ESTALE);
3324}
3325
3326static int shmem_match(struct inode *ino, void *vfh)
3327{
3328 __u32 *fh = vfh;
3329 __u64 inum = fh[2];
3330 inum = (inum << 32) | fh[1];
3331 return ino->i_ino == inum && fh[0] == ino->i_generation;
3332}
3333
12ba780d
AG
3334/* Find any alias of inode, but prefer a hashed alias */
3335static struct dentry *shmem_find_alias(struct inode *inode)
3336{
3337 struct dentry *alias = d_find_alias(inode);
3338
3339 return alias ?: d_find_any_alias(inode);
3340}
3341
3342
480b116c
CH
3343static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3344 struct fid *fid, int fh_len, int fh_type)
91828a40 3345{
91828a40 3346 struct inode *inode;
480b116c 3347 struct dentry *dentry = NULL;
35c2a7f4 3348 u64 inum;
480b116c
CH
3349
3350 if (fh_len < 3)
3351 return NULL;
91828a40 3352
35c2a7f4
HD
3353 inum = fid->raw[2];
3354 inum = (inum << 32) | fid->raw[1];
3355
480b116c
CH
3356 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3357 shmem_match, fid->raw);
91828a40 3358 if (inode) {
12ba780d 3359 dentry = shmem_find_alias(inode);
91828a40
DG
3360 iput(inode);
3361 }
3362
480b116c 3363 return dentry;
91828a40
DG
3364}
3365
b0b0382b
AV
3366static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3367 struct inode *parent)
91828a40 3368{
5fe0c237
AK
3369 if (*len < 3) {
3370 *len = 3;
94e07a75 3371 return FILEID_INVALID;
5fe0c237 3372 }
91828a40 3373
1d3382cb 3374 if (inode_unhashed(inode)) {
91828a40
DG
3375 /* Unfortunately insert_inode_hash is not idempotent,
3376 * so as we hash inodes here rather than at creation
3377 * time, we need a lock to ensure we only try
3378 * to do it once
3379 */
3380 static DEFINE_SPINLOCK(lock);
3381 spin_lock(&lock);
1d3382cb 3382 if (inode_unhashed(inode))
91828a40
DG
3383 __insert_inode_hash(inode,
3384 inode->i_ino + inode->i_generation);
3385 spin_unlock(&lock);
3386 }
3387
3388 fh[0] = inode->i_generation;
3389 fh[1] = inode->i_ino;
3390 fh[2] = ((__u64)inode->i_ino) >> 32;
3391
3392 *len = 3;
3393 return 1;
3394}
3395
39655164 3396static const struct export_operations shmem_export_ops = {
91828a40 3397 .get_parent = shmem_get_parent,
91828a40 3398 .encode_fh = shmem_encode_fh,
480b116c 3399 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3400};
3401
626c3920
AV
3402enum shmem_param {
3403 Opt_gid,
3404 Opt_huge,
3405 Opt_mode,
3406 Opt_mpol,
3407 Opt_nr_blocks,
3408 Opt_nr_inodes,
3409 Opt_size,
3410 Opt_uid,
ea3271f7
CD
3411 Opt_inode32,
3412 Opt_inode64,
626c3920
AV
3413};
3414
5eede625 3415static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3416 {"never", SHMEM_HUGE_NEVER },
3417 {"always", SHMEM_HUGE_ALWAYS },
3418 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3419 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3420 {}
3421};
3422
d7167b14 3423const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3424 fsparam_u32 ("gid", Opt_gid),
2710c957 3425 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3426 fsparam_u32oct("mode", Opt_mode),
3427 fsparam_string("mpol", Opt_mpol),
3428 fsparam_string("nr_blocks", Opt_nr_blocks),
3429 fsparam_string("nr_inodes", Opt_nr_inodes),
3430 fsparam_string("size", Opt_size),
3431 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3432 fsparam_flag ("inode32", Opt_inode32),
3433 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3434 {}
3435};
3436
f3235626 3437static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3438{
f3235626 3439 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3440 struct fs_parse_result result;
3441 unsigned long long size;
e04dc423 3442 char *rest;
626c3920
AV
3443 int opt;
3444
d7167b14 3445 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3446 if (opt < 0)
626c3920 3447 return opt;
1da177e4 3448
626c3920
AV
3449 switch (opt) {
3450 case Opt_size:
3451 size = memparse(param->string, &rest);
e04dc423
AV
3452 if (*rest == '%') {
3453 size <<= PAGE_SHIFT;
3454 size *= totalram_pages();
3455 do_div(size, 100);
3456 rest++;
3457 }
3458 if (*rest)
626c3920 3459 goto bad_value;
e04dc423
AV
3460 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3461 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3462 break;
3463 case Opt_nr_blocks:
3464 ctx->blocks = memparse(param->string, &rest);
e04dc423 3465 if (*rest)
626c3920 3466 goto bad_value;
e04dc423 3467 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3468 break;
3469 case Opt_nr_inodes:
3470 ctx->inodes = memparse(param->string, &rest);
e04dc423 3471 if (*rest)
626c3920 3472 goto bad_value;
e04dc423 3473 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3474 break;
3475 case Opt_mode:
3476 ctx->mode = result.uint_32 & 07777;
3477 break;
3478 case Opt_uid:
3479 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3480 if (!uid_valid(ctx->uid))
626c3920
AV
3481 goto bad_value;
3482 break;
3483 case Opt_gid:
3484 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3485 if (!gid_valid(ctx->gid))
626c3920
AV
3486 goto bad_value;
3487 break;
3488 case Opt_huge:
3489 ctx->huge = result.uint_32;
3490 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3491 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3492 has_transparent_hugepage()))
3493 goto unsupported_parameter;
e04dc423 3494 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3495 break;
3496 case Opt_mpol:
3497 if (IS_ENABLED(CONFIG_NUMA)) {
3498 mpol_put(ctx->mpol);
3499 ctx->mpol = NULL;
3500 if (mpol_parse_str(param->string, &ctx->mpol))
3501 goto bad_value;
3502 break;
3503 }
3504 goto unsupported_parameter;
ea3271f7
CD
3505 case Opt_inode32:
3506 ctx->full_inums = false;
3507 ctx->seen |= SHMEM_SEEN_INUMS;
3508 break;
3509 case Opt_inode64:
3510 if (sizeof(ino_t) < 8) {
3511 return invalfc(fc,
3512 "Cannot use inode64 with <64bit inums in kernel\n");
3513 }
3514 ctx->full_inums = true;
3515 ctx->seen |= SHMEM_SEEN_INUMS;
3516 break;
e04dc423
AV
3517 }
3518 return 0;
3519
626c3920 3520unsupported_parameter:
f35aa2bc 3521 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3522bad_value:
f35aa2bc 3523 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3524}
3525
f3235626 3526static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3527{
f3235626
DH
3528 char *options = data;
3529
33f37c64
AV
3530 if (options) {
3531 int err = security_sb_eat_lsm_opts(options, &fc->security);
3532 if (err)
3533 return err;
3534 }
3535
b00dc3ad 3536 while (options != NULL) {
626c3920 3537 char *this_char = options;
b00dc3ad
HD
3538 for (;;) {
3539 /*
3540 * NUL-terminate this option: unfortunately,
3541 * mount options form a comma-separated list,
3542 * but mpol's nodelist may also contain commas.
3543 */
3544 options = strchr(options, ',');
3545 if (options == NULL)
3546 break;
3547 options++;
3548 if (!isdigit(*options)) {
3549 options[-1] = '\0';
3550 break;
3551 }
3552 }
626c3920
AV
3553 if (*this_char) {
3554 char *value = strchr(this_char,'=');
f3235626 3555 size_t len = 0;
626c3920
AV
3556 int err;
3557
3558 if (value) {
3559 *value++ = '\0';
f3235626 3560 len = strlen(value);
626c3920 3561 }
f3235626
DH
3562 err = vfs_parse_fs_string(fc, this_char, value, len);
3563 if (err < 0)
3564 return err;
1da177e4 3565 }
1da177e4
LT
3566 }
3567 return 0;
1da177e4
LT
3568}
3569
f3235626
DH
3570/*
3571 * Reconfigure a shmem filesystem.
3572 *
3573 * Note that we disallow change from limited->unlimited blocks/inodes while any
3574 * are in use; but we must separately disallow unlimited->limited, because in
3575 * that case we have no record of how much is already in use.
3576 */
3577static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3578{
f3235626
DH
3579 struct shmem_options *ctx = fc->fs_private;
3580 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3581 unsigned long inodes;
f3235626 3582 const char *err;
1da177e4 3583
0edd73b3 3584 spin_lock(&sbinfo->stat_lock);
0edd73b3 3585 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3586 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3587 if (!sbinfo->max_blocks) {
3588 err = "Cannot retroactively limit size";
0b5071dd 3589 goto out;
f3235626 3590 }
0b5071dd 3591 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3592 ctx->blocks) > 0) {
3593 err = "Too small a size for current use";
0b5071dd 3594 goto out;
f3235626 3595 }
0b5071dd 3596 }
f3235626
DH
3597 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3598 if (!sbinfo->max_inodes) {
3599 err = "Cannot retroactively limit inodes";
0b5071dd 3600 goto out;
f3235626
DH
3601 }
3602 if (ctx->inodes < inodes) {
3603 err = "Too few inodes for current use";
0b5071dd 3604 goto out;
f3235626 3605 }
0b5071dd 3606 }
0edd73b3 3607
ea3271f7
CD
3608 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3609 sbinfo->next_ino > UINT_MAX) {
3610 err = "Current inum too high to switch to 32-bit inums";
3611 goto out;
3612 }
3613
f3235626
DH
3614 if (ctx->seen & SHMEM_SEEN_HUGE)
3615 sbinfo->huge = ctx->huge;
ea3271f7
CD
3616 if (ctx->seen & SHMEM_SEEN_INUMS)
3617 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3618 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3619 sbinfo->max_blocks = ctx->blocks;
3620 if (ctx->seen & SHMEM_SEEN_INODES) {
3621 sbinfo->max_inodes = ctx->inodes;
3622 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3623 }
71fe804b 3624
5f00110f
GT
3625 /*
3626 * Preserve previous mempolicy unless mpol remount option was specified.
3627 */
f3235626 3628 if (ctx->mpol) {
5f00110f 3629 mpol_put(sbinfo->mpol);
f3235626
DH
3630 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3631 ctx->mpol = NULL;
5f00110f 3632 }
f3235626
DH
3633 spin_unlock(&sbinfo->stat_lock);
3634 return 0;
0edd73b3
HD
3635out:
3636 spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3637 return invalfc(fc, "%s", err);
1da177e4 3638}
680d794b 3639
34c80b1d 3640static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3641{
34c80b1d 3642 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3643
3644 if (sbinfo->max_blocks != shmem_default_max_blocks())
3645 seq_printf(seq, ",size=%luk",
09cbfeaf 3646 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3647 if (sbinfo->max_inodes != shmem_default_max_inodes())
3648 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3649 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3650 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3651 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3652 seq_printf(seq, ",uid=%u",
3653 from_kuid_munged(&init_user_ns, sbinfo->uid));
3654 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3655 seq_printf(seq, ",gid=%u",
3656 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3657
3658 /*
3659 * Showing inode{64,32} might be useful even if it's the system default,
3660 * since then people don't have to resort to checking both here and
3661 * /proc/config.gz to confirm 64-bit inums were successfully applied
3662 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3663 *
3664 * We hide it when inode64 isn't the default and we are using 32-bit
3665 * inodes, since that probably just means the feature isn't even under
3666 * consideration.
3667 *
3668 * As such:
3669 *
3670 * +-----------------+-----------------+
3671 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3672 * +------------------+-----------------+-----------------+
3673 * | full_inums=true | show | show |
3674 * | full_inums=false | show | hide |
3675 * +------------------+-----------------+-----------------+
3676 *
3677 */
3678 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3679 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3680#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3681 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3682 if (sbinfo->huge)
3683 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3684#endif
71fe804b 3685 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3686 return 0;
3687}
9183df25 3688
680d794b 3689#endif /* CONFIG_TMPFS */
1da177e4
LT
3690
3691static void shmem_put_super(struct super_block *sb)
3692{
602586a8
HD
3693 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3694
e809d5f0 3695 free_percpu(sbinfo->ino_batch);
602586a8 3696 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3697 mpol_put(sbinfo->mpol);
602586a8 3698 kfree(sbinfo);
1da177e4
LT
3699 sb->s_fs_info = NULL;
3700}
3701
f3235626 3702static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3703{
f3235626 3704 struct shmem_options *ctx = fc->fs_private;
1da177e4 3705 struct inode *inode;
0edd73b3 3706 struct shmem_sb_info *sbinfo;
680d794b 3707 int err = -ENOMEM;
3708
3709 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3710 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3711 L1_CACHE_BYTES), GFP_KERNEL);
3712 if (!sbinfo)
3713 return -ENOMEM;
3714
680d794b 3715 sb->s_fs_info = sbinfo;
1da177e4 3716
0edd73b3 3717#ifdef CONFIG_TMPFS
1da177e4
LT
3718 /*
3719 * Per default we only allow half of the physical ram per
3720 * tmpfs instance, limiting inodes to one per page of lowmem;
3721 * but the internal instance is left unlimited.
3722 */
1751e8a6 3723 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3724 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3725 ctx->blocks = shmem_default_max_blocks();
3726 if (!(ctx->seen & SHMEM_SEEN_INODES))
3727 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3728 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3729 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3730 } else {
1751e8a6 3731 sb->s_flags |= SB_NOUSER;
1da177e4 3732 }
91828a40 3733 sb->s_export_op = &shmem_export_ops;
1751e8a6 3734 sb->s_flags |= SB_NOSEC;
1da177e4 3735#else
1751e8a6 3736 sb->s_flags |= SB_NOUSER;
1da177e4 3737#endif
f3235626
DH
3738 sbinfo->max_blocks = ctx->blocks;
3739 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3740 if (sb->s_flags & SB_KERNMOUNT) {
3741 sbinfo->ino_batch = alloc_percpu(ino_t);
3742 if (!sbinfo->ino_batch)
3743 goto failed;
3744 }
f3235626
DH
3745 sbinfo->uid = ctx->uid;
3746 sbinfo->gid = ctx->gid;
ea3271f7 3747 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3748 sbinfo->mode = ctx->mode;
3749 sbinfo->huge = ctx->huge;
3750 sbinfo->mpol = ctx->mpol;
3751 ctx->mpol = NULL;
1da177e4 3752
0edd73b3 3753 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3754 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3755 goto failed;
779750d2
KS
3756 spin_lock_init(&sbinfo->shrinklist_lock);
3757 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3758
285b2c4f 3759 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3760 sb->s_blocksize = PAGE_SIZE;
3761 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3762 sb->s_magic = TMPFS_MAGIC;
3763 sb->s_op = &shmem_ops;
cfd95a9c 3764 sb->s_time_gran = 1;
b09e0fa4 3765#ifdef CONFIG_TMPFS_XATTR
39f0247d 3766 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3767#endif
3768#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3769 sb->s_flags |= SB_POSIXACL;
39f0247d 3770#endif
2b4db796 3771 uuid_gen(&sb->s_uuid);
0edd73b3 3772
454abafe 3773 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3774 if (!inode)
3775 goto failed;
680d794b 3776 inode->i_uid = sbinfo->uid;
3777 inode->i_gid = sbinfo->gid;
318ceed0
AV
3778 sb->s_root = d_make_root(inode);
3779 if (!sb->s_root)
48fde701 3780 goto failed;
1da177e4
LT
3781 return 0;
3782
1da177e4
LT
3783failed:
3784 shmem_put_super(sb);
3785 return err;
3786}
3787
f3235626
DH
3788static int shmem_get_tree(struct fs_context *fc)
3789{
3790 return get_tree_nodev(fc, shmem_fill_super);
3791}
3792
3793static void shmem_free_fc(struct fs_context *fc)
3794{
3795 struct shmem_options *ctx = fc->fs_private;
3796
3797 if (ctx) {
3798 mpol_put(ctx->mpol);
3799 kfree(ctx);
3800 }
3801}
3802
3803static const struct fs_context_operations shmem_fs_context_ops = {
3804 .free = shmem_free_fc,
3805 .get_tree = shmem_get_tree,
3806#ifdef CONFIG_TMPFS
3807 .parse_monolithic = shmem_parse_options,
3808 .parse_param = shmem_parse_one,
3809 .reconfigure = shmem_reconfigure,
3810#endif
3811};
3812
fcc234f8 3813static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3814
3815static struct inode *shmem_alloc_inode(struct super_block *sb)
3816{
41ffe5d5
HD
3817 struct shmem_inode_info *info;
3818 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3819 if (!info)
1da177e4 3820 return NULL;
41ffe5d5 3821 return &info->vfs_inode;
1da177e4
LT
3822}
3823
74b1da56 3824static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3825{
84e710da
AV
3826 if (S_ISLNK(inode->i_mode))
3827 kfree(inode->i_link);
fa0d7e3d
NP
3828 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3829}
3830
1da177e4
LT
3831static void shmem_destroy_inode(struct inode *inode)
3832{
09208d15 3833 if (S_ISREG(inode->i_mode))
1da177e4 3834 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3835}
3836
41ffe5d5 3837static void shmem_init_inode(void *foo)
1da177e4 3838{
41ffe5d5
HD
3839 struct shmem_inode_info *info = foo;
3840 inode_init_once(&info->vfs_inode);
1da177e4
LT
3841}
3842
9a8ec03e 3843static void shmem_init_inodecache(void)
1da177e4
LT
3844{
3845 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3846 sizeof(struct shmem_inode_info),
5d097056 3847 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3848}
3849
41ffe5d5 3850static void shmem_destroy_inodecache(void)
1da177e4 3851{
1a1d92c1 3852 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3853}
3854
f5e54d6e 3855static const struct address_space_operations shmem_aops = {
1da177e4 3856 .writepage = shmem_writepage,
76719325 3857 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3858#ifdef CONFIG_TMPFS
800d15a5
NP
3859 .write_begin = shmem_write_begin,
3860 .write_end = shmem_write_end,
1da177e4 3861#endif
1c93923c 3862#ifdef CONFIG_MIGRATION
304dbdb7 3863 .migratepage = migrate_page,
1c93923c 3864#endif
aa261f54 3865 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3866};
3867
15ad7cdc 3868static const struct file_operations shmem_file_operations = {
1da177e4 3869 .mmap = shmem_mmap,
c01d5b30 3870 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3871#ifdef CONFIG_TMPFS
220f2ac9 3872 .llseek = shmem_file_llseek,
2ba5bbed 3873 .read_iter = shmem_file_read_iter,
8174202b 3874 .write_iter = generic_file_write_iter,
1b061d92 3875 .fsync = noop_fsync,
82c156f8 3876 .splice_read = generic_file_splice_read,
f6cb85d0 3877 .splice_write = iter_file_splice_write,
83e4fa9c 3878 .fallocate = shmem_fallocate,
1da177e4
LT
3879#endif
3880};
3881
92e1d5be 3882static const struct inode_operations shmem_inode_operations = {
44a30220 3883 .getattr = shmem_getattr,
94c1e62d 3884 .setattr = shmem_setattr,
b09e0fa4 3885#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3886 .listxattr = shmem_listxattr,
feda821e 3887 .set_acl = simple_set_acl,
b09e0fa4 3888#endif
1da177e4
LT
3889};
3890
92e1d5be 3891static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3892#ifdef CONFIG_TMPFS
3893 .create = shmem_create,
3894 .lookup = simple_lookup,
3895 .link = shmem_link,
3896 .unlink = shmem_unlink,
3897 .symlink = shmem_symlink,
3898 .mkdir = shmem_mkdir,
3899 .rmdir = shmem_rmdir,
3900 .mknod = shmem_mknod,
2773bf00 3901 .rename = shmem_rename2,
60545d0d 3902 .tmpfile = shmem_tmpfile,
1da177e4 3903#endif
b09e0fa4 3904#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3905 .listxattr = shmem_listxattr,
b09e0fa4 3906#endif
39f0247d 3907#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3908 .setattr = shmem_setattr,
feda821e 3909 .set_acl = simple_set_acl,
39f0247d
AG
3910#endif
3911};
3912
92e1d5be 3913static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3914#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3915 .listxattr = shmem_listxattr,
b09e0fa4 3916#endif
39f0247d 3917#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3918 .setattr = shmem_setattr,
feda821e 3919 .set_acl = simple_set_acl,
39f0247d 3920#endif
1da177e4
LT
3921};
3922
759b9775 3923static const struct super_operations shmem_ops = {
1da177e4 3924 .alloc_inode = shmem_alloc_inode,
74b1da56 3925 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3926 .destroy_inode = shmem_destroy_inode,
3927#ifdef CONFIG_TMPFS
3928 .statfs = shmem_statfs,
680d794b 3929 .show_options = shmem_show_options,
1da177e4 3930#endif
1f895f75 3931 .evict_inode = shmem_evict_inode,
1da177e4
LT
3932 .drop_inode = generic_delete_inode,
3933 .put_super = shmem_put_super,
396bcc52 3934#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3935 .nr_cached_objects = shmem_unused_huge_count,
3936 .free_cached_objects = shmem_unused_huge_scan,
3937#endif
1da177e4
LT
3938};
3939
f0f37e2f 3940static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3941 .fault = shmem_fault,
d7c17551 3942 .map_pages = filemap_map_pages,
1da177e4
LT
3943#ifdef CONFIG_NUMA
3944 .set_policy = shmem_set_policy,
3945 .get_policy = shmem_get_policy,
3946#endif
3947};
3948
f3235626 3949int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3950{
f3235626
DH
3951 struct shmem_options *ctx;
3952
3953 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3954 if (!ctx)
3955 return -ENOMEM;
3956
3957 ctx->mode = 0777 | S_ISVTX;
3958 ctx->uid = current_fsuid();
3959 ctx->gid = current_fsgid();
3960
3961 fc->fs_private = ctx;
3962 fc->ops = &shmem_fs_context_ops;
3963 return 0;
1da177e4
LT
3964}
3965
41ffe5d5 3966static struct file_system_type shmem_fs_type = {
1da177e4
LT
3967 .owner = THIS_MODULE,
3968 .name = "tmpfs",
f3235626
DH
3969 .init_fs_context = shmem_init_fs_context,
3970#ifdef CONFIG_TMPFS
d7167b14 3971 .parameters = shmem_fs_parameters,
f3235626 3972#endif
1da177e4 3973 .kill_sb = kill_litter_super,
2b8576cb 3974 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3975};
1da177e4 3976
41ffe5d5 3977int __init shmem_init(void)
1da177e4
LT
3978{
3979 int error;
3980
9a8ec03e 3981 shmem_init_inodecache();
1da177e4 3982
41ffe5d5 3983 error = register_filesystem(&shmem_fs_type);
1da177e4 3984 if (error) {
1170532b 3985 pr_err("Could not register tmpfs\n");
1da177e4
LT
3986 goto out2;
3987 }
95dc112a 3988
ca4e0519 3989 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3990 if (IS_ERR(shm_mnt)) {
3991 error = PTR_ERR(shm_mnt);
1170532b 3992 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3993 goto out1;
3994 }
5a6e75f8 3995
396bcc52 3996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3997 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3998 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3999 else
4000 shmem_huge = 0; /* just in case it was patched */
4001#endif
1da177e4
LT
4002 return 0;
4003
4004out1:
41ffe5d5 4005 unregister_filesystem(&shmem_fs_type);
1da177e4 4006out2:
41ffe5d5 4007 shmem_destroy_inodecache();
1da177e4
LT
4008 shm_mnt = ERR_PTR(error);
4009 return error;
4010}
853ac43a 4011
396bcc52 4012#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4013static ssize_t shmem_enabled_show(struct kobject *kobj,
4014 struct kobj_attribute *attr, char *buf)
4015{
26083eb6 4016 static const int values[] = {
5a6e75f8
KS
4017 SHMEM_HUGE_ALWAYS,
4018 SHMEM_HUGE_WITHIN_SIZE,
4019 SHMEM_HUGE_ADVISE,
4020 SHMEM_HUGE_NEVER,
4021 SHMEM_HUGE_DENY,
4022 SHMEM_HUGE_FORCE,
4023 };
4024 int i, count;
4025
4026 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4027 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4028
4029 count += sprintf(buf + count, fmt,
4030 shmem_format_huge(values[i]));
4031 }
4032 buf[count - 1] = '\n';
4033 return count;
4034}
4035
4036static ssize_t shmem_enabled_store(struct kobject *kobj,
4037 struct kobj_attribute *attr, const char *buf, size_t count)
4038{
4039 char tmp[16];
4040 int huge;
4041
4042 if (count + 1 > sizeof(tmp))
4043 return -EINVAL;
4044 memcpy(tmp, buf, count);
4045 tmp[count] = '\0';
4046 if (count && tmp[count - 1] == '\n')
4047 tmp[count - 1] = '\0';
4048
4049 huge = shmem_parse_huge(tmp);
4050 if (huge == -EINVAL)
4051 return -EINVAL;
4052 if (!has_transparent_hugepage() &&
4053 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4054 return -EINVAL;
4055
4056 shmem_huge = huge;
435c0b87 4057 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4058 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4059 return count;
4060}
4061
4062struct kobj_attribute shmem_enabled_attr =
4063 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 4064#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 4065
396bcc52 4066#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f3f0e1d2
KS
4067bool shmem_huge_enabled(struct vm_area_struct *vma)
4068{
4069 struct inode *inode = file_inode(vma->vm_file);
4070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4071 loff_t i_size;
4072 pgoff_t off;
4073
c0630669
YS
4074 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4075 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4076 return false;
f3f0e1d2
KS
4077 if (shmem_huge == SHMEM_HUGE_FORCE)
4078 return true;
4079 if (shmem_huge == SHMEM_HUGE_DENY)
4080 return false;
4081 switch (sbinfo->huge) {
4082 case SHMEM_HUGE_NEVER:
4083 return false;
4084 case SHMEM_HUGE_ALWAYS:
4085 return true;
4086 case SHMEM_HUGE_WITHIN_SIZE:
4087 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4088 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4089 if (i_size >= HPAGE_PMD_SIZE &&
4090 i_size >> PAGE_SHIFT >= off)
4091 return true;
e4a9bc58 4092 fallthrough;
f3f0e1d2
KS
4093 case SHMEM_HUGE_ADVISE:
4094 /* TODO: implement fadvise() hints */
4095 return (vma->vm_flags & VM_HUGEPAGE);
4096 default:
4097 VM_BUG_ON(1);
4098 return false;
4099 }
4100}
396bcc52 4101#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 4102
853ac43a
MM
4103#else /* !CONFIG_SHMEM */
4104
4105/*
4106 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4107 *
4108 * This is intended for small system where the benefits of the full
4109 * shmem code (swap-backed and resource-limited) are outweighed by
4110 * their complexity. On systems without swap this code should be
4111 * effectively equivalent, but much lighter weight.
4112 */
4113
41ffe5d5 4114static struct file_system_type shmem_fs_type = {
853ac43a 4115 .name = "tmpfs",
f3235626 4116 .init_fs_context = ramfs_init_fs_context,
d7167b14 4117 .parameters = ramfs_fs_parameters,
853ac43a 4118 .kill_sb = kill_litter_super,
2b8576cb 4119 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4120};
4121
41ffe5d5 4122int __init shmem_init(void)
853ac43a 4123{
41ffe5d5 4124 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4125
41ffe5d5 4126 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4127 BUG_ON(IS_ERR(shm_mnt));
4128
4129 return 0;
4130}
4131
b56a2d8a
VRP
4132int shmem_unuse(unsigned int type, bool frontswap,
4133 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4134{
4135 return 0;
4136}
4137
3f96b79a
HD
4138int shmem_lock(struct file *file, int lock, struct user_struct *user)
4139{
4140 return 0;
4141}
4142
24513264
HD
4143void shmem_unlock_mapping(struct address_space *mapping)
4144{
4145}
4146
c01d5b30
HD
4147#ifdef CONFIG_MMU
4148unsigned long shmem_get_unmapped_area(struct file *file,
4149 unsigned long addr, unsigned long len,
4150 unsigned long pgoff, unsigned long flags)
4151{
4152 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4153}
4154#endif
4155
41ffe5d5 4156void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4157{
41ffe5d5 4158 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4159}
4160EXPORT_SYMBOL_GPL(shmem_truncate_range);
4161
0b0a0806
HD
4162#define shmem_vm_ops generic_file_vm_ops
4163#define shmem_file_operations ramfs_file_operations
454abafe 4164#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4165#define shmem_acct_size(flags, size) 0
4166#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4167
4168#endif /* CONFIG_SHMEM */
4169
4170/* common code */
1da177e4 4171
703321b6 4172static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4173 unsigned long flags, unsigned int i_flags)
1da177e4 4174{
1da177e4 4175 struct inode *inode;
93dec2da 4176 struct file *res;
1da177e4 4177
703321b6
MA
4178 if (IS_ERR(mnt))
4179 return ERR_CAST(mnt);
1da177e4 4180
285b2c4f 4181 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4182 return ERR_PTR(-EINVAL);
4183
4184 if (shmem_acct_size(flags, size))
4185 return ERR_PTR(-ENOMEM);
4186
93dec2da
AV
4187 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4188 flags);
dac2d1f6
AV
4189 if (unlikely(!inode)) {
4190 shmem_unacct_size(flags, size);
4191 return ERR_PTR(-ENOSPC);
4192 }
c7277090 4193 inode->i_flags |= i_flags;
1da177e4 4194 inode->i_size = size;
6d6b77f1 4195 clear_nlink(inode); /* It is unlinked */
26567cdb 4196 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4197 if (!IS_ERR(res))
4198 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4199 &shmem_file_operations);
26567cdb 4200 if (IS_ERR(res))
93dec2da 4201 iput(inode);
6b4d0b27 4202 return res;
1da177e4 4203}
c7277090
EP
4204
4205/**
4206 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4207 * kernel internal. There will be NO LSM permission checks against the
4208 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4209 * higher layer. The users are the big_key and shm implementations. LSM
4210 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4211 * @name: name for dentry (to be seen in /proc/<pid>/maps
4212 * @size: size to be set for the file
4213 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4214 */
4215struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4216{
703321b6 4217 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4218}
4219
4220/**
4221 * shmem_file_setup - get an unlinked file living in tmpfs
4222 * @name: name for dentry (to be seen in /proc/<pid>/maps
4223 * @size: size to be set for the file
4224 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4225 */
4226struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4227{
703321b6 4228 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4229}
395e0ddc 4230EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4231
703321b6
MA
4232/**
4233 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4234 * @mnt: the tmpfs mount where the file will be created
4235 * @name: name for dentry (to be seen in /proc/<pid>/maps
4236 * @size: size to be set for the file
4237 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4238 */
4239struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4240 loff_t size, unsigned long flags)
4241{
4242 return __shmem_file_setup(mnt, name, size, flags, 0);
4243}
4244EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4245
46711810 4246/**
1da177e4 4247 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4248 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4249 */
4250int shmem_zero_setup(struct vm_area_struct *vma)
4251{
4252 struct file *file;
4253 loff_t size = vma->vm_end - vma->vm_start;
4254
66fc1303 4255 /*
c1e8d7c6 4256 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4257 * between XFS directory reading and selinux: since this file is only
4258 * accessible to the user through its mapping, use S_PRIVATE flag to
4259 * bypass file security, in the same way as shmem_kernel_file_setup().
4260 */
703321b6 4261 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4262 if (IS_ERR(file))
4263 return PTR_ERR(file);
4264
4265 if (vma->vm_file)
4266 fput(vma->vm_file);
4267 vma->vm_file = file;
4268 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4269
396bcc52 4270 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4271 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4272 (vma->vm_end & HPAGE_PMD_MASK)) {
4273 khugepaged_enter(vma, vma->vm_flags);
4274 }
4275
1da177e4
LT
4276 return 0;
4277}
d9d90e5e
HD
4278
4279/**
4280 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4281 * @mapping: the page's address_space
4282 * @index: the page index
4283 * @gfp: the page allocator flags to use if allocating
4284 *
4285 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4286 * with any new page allocations done using the specified allocation flags.
4287 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4288 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4289 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4290 *
68da9f05
HD
4291 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4292 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4293 */
4294struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4295 pgoff_t index, gfp_t gfp)
4296{
68da9f05
HD
4297#ifdef CONFIG_SHMEM
4298 struct inode *inode = mapping->host;
9276aad6 4299 struct page *page;
68da9f05
HD
4300 int error;
4301
4302 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4303 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4304 gfp, NULL, NULL, NULL);
68da9f05
HD
4305 if (error)
4306 page = ERR_PTR(error);
4307 else
4308 unlock_page(page);
4309 return page;
4310#else
4311 /*
4312 * The tiny !SHMEM case uses ramfs without swap
4313 */
d9d90e5e 4314 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4315#endif
d9d90e5e
HD
4316}
4317EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);