mm: memcontrol: rewrite charge API
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
304dbdb7 69
1da177e4 70#include <asm/uaccess.h>
1da177e4
LT
71#include <asm/pgtable.h>
72
caefba17 73#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
74#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
1da177e4
LT
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
69f07ec9
HD
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
1aac1400 82/*
f00cdc6d
HD
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
86 */
87struct shmem_falloc {
8e205f77 88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93};
94
285b2c4f 95/* Flag allocation requirements to shmem_getpage */
1da177e4 96enum sgp_type {
1da177e4
LT
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
102};
103
b76db735 104#ifdef CONFIG_TMPFS
680d794b 105static unsigned long shmem_default_max_blocks(void)
106{
107 return totalram_pages / 2;
108}
109
110static unsigned long shmem_default_max_inodes(void)
111{
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113}
b76db735 114#endif
680d794b 115
bde05d1c
HD
116static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
119static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124{
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127}
1da177e4 128
1da177e4
LT
129static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130{
131 return sb->s_fs_info;
132}
133
134/*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140static inline int shmem_acct_size(unsigned long flags, loff_t size)
141{
0b0a0806 142 return (flags & VM_NORESERVE) ?
191c5424 143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
144}
145
146static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 if (!(flags & VM_NORESERVE))
1da177e4
LT
149 vm_unacct_memory(VM_ACCT(size));
150}
151
77142517
KK
152static inline int shmem_reacct_size(unsigned long flags,
153 loff_t oldsize, loff_t newsize)
154{
155 if (!(flags & VM_NORESERVE)) {
156 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157 return security_vm_enough_memory_mm(current->mm,
158 VM_ACCT(newsize) - VM_ACCT(oldsize));
159 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161 }
162 return 0;
163}
164
1da177e4
LT
165/*
166 * ... whereas tmpfs objects are accounted incrementally as
167 * pages are allocated, in order to allow huge sparse files.
168 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170 */
171static inline int shmem_acct_block(unsigned long flags)
172{
0b0a0806 173 return (flags & VM_NORESERVE) ?
191c5424 174 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
175}
176
177static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178{
0b0a0806 179 if (flags & VM_NORESERVE)
1da177e4
LT
180 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181}
182
759b9775 183static const struct super_operations shmem_ops;
f5e54d6e 184static const struct address_space_operations shmem_aops;
15ad7cdc 185static const struct file_operations shmem_file_operations;
92e1d5be
AV
186static const struct inode_operations shmem_inode_operations;
187static const struct inode_operations shmem_dir_inode_operations;
188static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 189static const struct vm_operations_struct shmem_vm_ops;
1da177e4 190
6c231b7b 191static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 192 .ra_pages = 0, /* No readahead */
4f98a2fe 193 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
194};
195
196static LIST_HEAD(shmem_swaplist);
cb5f7b9a 197static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 198
5b04c689
PE
199static int shmem_reserve_inode(struct super_block *sb)
200{
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212}
213
214static void shmem_free_inode(struct super_block *sb)
215{
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222}
223
46711810 224/**
41ffe5d5 225 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236static void shmem_recalc_inode(struct inode *inode)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
54af6042
HD
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 246 info->alloced -= freed;
54af6042 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 248 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
249 }
250}
251
7a5d0fbb
HD
252/*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257{
258 void **pslot;
6dbaf22c 259 void *item;
7a5d0fbb
HD
260
261 VM_BUG_ON(!expected);
6dbaf22c 262 VM_BUG_ON(!replacement);
7a5d0fbb 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
267 if (item != expected)
268 return -ENOENT;
6dbaf22c 269 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
270 return 0;
271}
272
d1899228
HD
273/*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282{
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289}
290
46f65ec1
HD
291/*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
fed400a1 296 pgoff_t index, void *expected)
46f65ec1 297{
b065b432 298 int error;
46f65ec1 299
309381fe
SL
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 302
b065b432
HD
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
46f65ec1 308 if (!expected)
b065b432
HD
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
46f65ec1 313 if (!error) {
b065b432
HD
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
46f65ec1 322 }
46f65ec1
HD
323 return error;
324}
325
6922c0c7
HD
326/*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330{
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343}
344
7a5d0fbb
HD
345/*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350{
6dbaf22c 351 void *old;
7a5d0fbb
HD
352
353 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 355 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
7a5d0fbb
HD
360}
361
24513264
HD
362/*
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364 */
365void shmem_unlock_mapping(struct address_space *mapping)
366{
367 struct pagevec pvec;
368 pgoff_t indices[PAGEVEC_SIZE];
369 pgoff_t index = 0;
370
371 pagevec_init(&pvec, 0);
372 /*
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 */
375 while (!mapping_unevictable(mapping)) {
376 /*
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 */
0cd6144a
JW
380 pvec.nr = find_get_entries(mapping, index,
381 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
382 if (!pvec.nr)
383 break;
384 index = indices[pvec.nr - 1] + 1;
0cd6144a 385 pagevec_remove_exceptionals(&pvec);
24513264
HD
386 check_move_unevictable_pages(pvec.pages, pvec.nr);
387 pagevec_release(&pvec);
388 cond_resched();
389 }
7a5d0fbb
HD
390}
391
392/*
393 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 395 */
1635f6a7
HD
396static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 bool unfalloc)
1da177e4 398{
285b2c4f 399 struct address_space *mapping = inode->i_mapping;
1da177e4 400 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 405 struct pagevec pvec;
7a5d0fbb
HD
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
285b2c4f 408 pgoff_t index;
bda97eab
HD
409 int i;
410
83e4fa9c
HD
411 if (lend == -1)
412 end = -1; /* unsigned, so actually very big */
bda97eab
HD
413
414 pagevec_init(&pvec, 0);
415 index = start;
83e4fa9c 416 while (index < end) {
0cd6144a
JW
417 pvec.nr = find_get_entries(mapping, index,
418 min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 pvec.pages, indices);
7a5d0fbb
HD
420 if (!pvec.nr)
421 break;
bda97eab
HD
422 mem_cgroup_uncharge_start();
423 for (i = 0; i < pagevec_count(&pvec); i++) {
424 struct page *page = pvec.pages[i];
425
7a5d0fbb 426 index = indices[i];
83e4fa9c 427 if (index >= end)
bda97eab
HD
428 break;
429
7a5d0fbb 430 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
431 if (unfalloc)
432 continue;
7a5d0fbb
HD
433 nr_swaps_freed += !shmem_free_swap(mapping,
434 index, page);
bda97eab 435 continue;
7a5d0fbb
HD
436 }
437
438 if (!trylock_page(page))
bda97eab 439 continue;
1635f6a7
HD
440 if (!unfalloc || !PageUptodate(page)) {
441 if (page->mapping == mapping) {
309381fe 442 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
443 truncate_inode_page(mapping, page);
444 }
bda97eab 445 }
bda97eab
HD
446 unlock_page(page);
447 }
0cd6144a 448 pagevec_remove_exceptionals(&pvec);
24513264 449 pagevec_release(&pvec);
bda97eab
HD
450 mem_cgroup_uncharge_end();
451 cond_resched();
452 index++;
453 }
1da177e4 454
83e4fa9c 455 if (partial_start) {
bda97eab
HD
456 struct page *page = NULL;
457 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
458 if (page) {
83e4fa9c
HD
459 unsigned int top = PAGE_CACHE_SIZE;
460 if (start > end) {
461 top = partial_end;
462 partial_end = 0;
463 }
464 zero_user_segment(page, partial_start, top);
465 set_page_dirty(page);
466 unlock_page(page);
467 page_cache_release(page);
468 }
469 }
470 if (partial_end) {
471 struct page *page = NULL;
472 shmem_getpage(inode, end, &page, SGP_READ, NULL);
473 if (page) {
474 zero_user_segment(page, 0, partial_end);
bda97eab
HD
475 set_page_dirty(page);
476 unlock_page(page);
477 page_cache_release(page);
478 }
479 }
83e4fa9c
HD
480 if (start >= end)
481 return;
bda97eab
HD
482
483 index = start;
b1a36650 484 while (index < end) {
bda97eab 485 cond_resched();
0cd6144a
JW
486
487 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 488 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 489 pvec.pages, indices);
7a5d0fbb 490 if (!pvec.nr) {
b1a36650
HD
491 /* If all gone or hole-punch or unfalloc, we're done */
492 if (index == start || end != -1)
bda97eab 493 break;
b1a36650 494 /* But if truncating, restart to make sure all gone */
bda97eab
HD
495 index = start;
496 continue;
497 }
bda97eab
HD
498 mem_cgroup_uncharge_start();
499 for (i = 0; i < pagevec_count(&pvec); i++) {
500 struct page *page = pvec.pages[i];
501
7a5d0fbb 502 index = indices[i];
83e4fa9c 503 if (index >= end)
bda97eab
HD
504 break;
505
7a5d0fbb 506 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
507 if (unfalloc)
508 continue;
b1a36650
HD
509 if (shmem_free_swap(mapping, index, page)) {
510 /* Swap was replaced by page: retry */
511 index--;
512 break;
513 }
514 nr_swaps_freed++;
7a5d0fbb
HD
515 continue;
516 }
517
bda97eab 518 lock_page(page);
1635f6a7
HD
519 if (!unfalloc || !PageUptodate(page)) {
520 if (page->mapping == mapping) {
309381fe 521 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 522 truncate_inode_page(mapping, page);
b1a36650
HD
523 } else {
524 /* Page was replaced by swap: retry */
525 unlock_page(page);
526 index--;
527 break;
1635f6a7 528 }
7a5d0fbb 529 }
bda97eab
HD
530 unlock_page(page);
531 }
0cd6144a 532 pagevec_remove_exceptionals(&pvec);
24513264 533 pagevec_release(&pvec);
bda97eab
HD
534 mem_cgroup_uncharge_end();
535 index++;
536 }
94c1e62d 537
1da177e4 538 spin_lock(&info->lock);
7a5d0fbb 539 info->swapped -= nr_swaps_freed;
1da177e4
LT
540 shmem_recalc_inode(inode);
541 spin_unlock(&info->lock);
1635f6a7 542}
1da177e4 543
1635f6a7
HD
544void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
545{
546 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 548}
94c1e62d 549EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 550
94c1e62d 551static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
552{
553 struct inode *inode = dentry->d_inode;
1da177e4
LT
554 int error;
555
db78b877
CH
556 error = inode_change_ok(inode, attr);
557 if (error)
558 return error;
559
94c1e62d
HD
560 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561 loff_t oldsize = inode->i_size;
562 loff_t newsize = attr->ia_size;
3889e6e7 563
94c1e62d 564 if (newsize != oldsize) {
77142517
KK
565 error = shmem_reacct_size(SHMEM_I(inode)->flags,
566 oldsize, newsize);
567 if (error)
568 return error;
94c1e62d
HD
569 i_size_write(inode, newsize);
570 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
571 }
572 if (newsize < oldsize) {
573 loff_t holebegin = round_up(newsize, PAGE_SIZE);
574 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
575 shmem_truncate_range(inode, newsize, (loff_t)-1);
576 /* unmap again to remove racily COWed private pages */
577 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
578 }
1da177e4
LT
579 }
580
db78b877 581 setattr_copy(inode, attr);
db78b877 582 if (attr->ia_valid & ATTR_MODE)
feda821e 583 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
584 return error;
585}
586
1f895f75 587static void shmem_evict_inode(struct inode *inode)
1da177e4 588{
1da177e4
LT
589 struct shmem_inode_info *info = SHMEM_I(inode);
590
3889e6e7 591 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
592 shmem_unacct_size(info->flags, inode->i_size);
593 inode->i_size = 0;
3889e6e7 594 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 595 if (!list_empty(&info->swaplist)) {
cb5f7b9a 596 mutex_lock(&shmem_swaplist_mutex);
1da177e4 597 list_del_init(&info->swaplist);
cb5f7b9a 598 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 599 }
69f07ec9
HD
600 } else
601 kfree(info->symlink);
b09e0fa4 602
38f38657 603 simple_xattrs_free(&info->xattrs);
0f3c42f5 604 WARN_ON(inode->i_blocks);
5b04c689 605 shmem_free_inode(inode->i_sb);
dbd5768f 606 clear_inode(inode);
1da177e4
LT
607}
608
46f65ec1
HD
609/*
610 * If swap found in inode, free it and move page from swapcache to filecache.
611 */
41ffe5d5 612static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 613 swp_entry_t swap, struct page **pagep)
1da177e4 614{
285b2c4f 615 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 616 void *radswap;
41ffe5d5 617 pgoff_t index;
bde05d1c
HD
618 gfp_t gfp;
619 int error = 0;
1da177e4 620
46f65ec1 621 radswap = swp_to_radix_entry(swap);
e504f3fd 622 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 623 if (index == -1)
00501b53 624 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 625
1b1b32f2
HD
626 /*
627 * Move _head_ to start search for next from here.
1f895f75 628 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 629 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 630 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
631 */
632 if (shmem_swaplist.next != &info->swaplist)
633 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 634
bde05d1c
HD
635 gfp = mapping_gfp_mask(mapping);
636 if (shmem_should_replace_page(*pagep, gfp)) {
637 mutex_unlock(&shmem_swaplist_mutex);
638 error = shmem_replace_page(pagep, gfp, info, index);
639 mutex_lock(&shmem_swaplist_mutex);
640 /*
641 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
642 * allocation, but the inode might have been freed while we
643 * dropped it: although a racing shmem_evict_inode() cannot
644 * complete without emptying the radix_tree, our page lock
645 * on this swapcache page is not enough to prevent that -
646 * free_swap_and_cache() of our swap entry will only
647 * trylock_page(), removing swap from radix_tree whatever.
648 *
649 * We must not proceed to shmem_add_to_page_cache() if the
650 * inode has been freed, but of course we cannot rely on
651 * inode or mapping or info to check that. However, we can
652 * safely check if our swap entry is still in use (and here
653 * it can't have got reused for another page): if it's still
654 * in use, then the inode cannot have been freed yet, and we
655 * can safely proceed (if it's no longer in use, that tells
656 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
657 */
658 if (!page_swapcount(*pagep))
659 error = -ENOENT;
660 }
661
d13d1443 662 /*
778dd893
HD
663 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664 * but also to hold up shmem_evict_inode(): so inode cannot be freed
665 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 666 */
bde05d1c
HD
667 if (!error)
668 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 669 radswap);
48f170fb 670 if (error != -ENOMEM) {
46f65ec1
HD
671 /*
672 * Truncation and eviction use free_swap_and_cache(), which
673 * only does trylock page: if we raced, best clean up here.
674 */
bde05d1c
HD
675 delete_from_swap_cache(*pagep);
676 set_page_dirty(*pagep);
46f65ec1
HD
677 if (!error) {
678 spin_lock(&info->lock);
679 info->swapped--;
680 spin_unlock(&info->lock);
681 swap_free(swap);
682 }
1da177e4 683 }
2e0e26c7 684 return error;
1da177e4
LT
685}
686
687/*
46f65ec1 688 * Search through swapped inodes to find and replace swap by page.
1da177e4 689 */
41ffe5d5 690int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 691{
41ffe5d5 692 struct list_head *this, *next;
1da177e4 693 struct shmem_inode_info *info;
00501b53 694 struct mem_cgroup *memcg;
bde05d1c
HD
695 int error = 0;
696
697 /*
698 * There's a faint possibility that swap page was replaced before
0142ef6c 699 * caller locked it: caller will come back later with the right page.
bde05d1c 700 */
0142ef6c 701 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 702 goto out;
778dd893
HD
703
704 /*
705 * Charge page using GFP_KERNEL while we can wait, before taking
706 * the shmem_swaplist_mutex which might hold up shmem_writepage().
707 * Charged back to the user (not to caller) when swap account is used.
778dd893 708 */
00501b53 709 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
778dd893
HD
710 if (error)
711 goto out;
46f65ec1 712 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 713 error = -EAGAIN;
1da177e4 714
cb5f7b9a 715 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
716 list_for_each_safe(this, next, &shmem_swaplist) {
717 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 718 if (info->swapped)
00501b53 719 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
720 else
721 list_del_init(&info->swaplist);
cb5f7b9a 722 cond_resched();
00501b53 723 if (error != -EAGAIN)
778dd893 724 break;
00501b53 725 /* found nothing in this: move on to search the next */
1da177e4 726 }
cb5f7b9a 727 mutex_unlock(&shmem_swaplist_mutex);
778dd893 728
00501b53
JW
729 if (error) {
730 if (error != -ENOMEM)
731 error = 0;
732 mem_cgroup_cancel_charge(page, memcg);
733 } else
734 mem_cgroup_commit_charge(page, memcg, true);
778dd893 735out:
aaa46865
HD
736 unlock_page(page);
737 page_cache_release(page);
778dd893 738 return error;
1da177e4
LT
739}
740
741/*
742 * Move the page from the page cache to the swap cache.
743 */
744static int shmem_writepage(struct page *page, struct writeback_control *wbc)
745{
746 struct shmem_inode_info *info;
1da177e4 747 struct address_space *mapping;
1da177e4 748 struct inode *inode;
6922c0c7
HD
749 swp_entry_t swap;
750 pgoff_t index;
1da177e4
LT
751
752 BUG_ON(!PageLocked(page));
1da177e4
LT
753 mapping = page->mapping;
754 index = page->index;
755 inode = mapping->host;
756 info = SHMEM_I(inode);
757 if (info->flags & VM_LOCKED)
758 goto redirty;
d9fe526a 759 if (!total_swap_pages)
1da177e4
LT
760 goto redirty;
761
d9fe526a
HD
762 /*
763 * shmem_backing_dev_info's capabilities prevent regular writeback or
764 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 765 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 766 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 767 * and not for the writeback threads or sync.
d9fe526a 768 */
48f170fb
HD
769 if (!wbc->for_reclaim) {
770 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
771 goto redirty;
772 }
1635f6a7
HD
773
774 /*
775 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
776 * value into swapfile.c, the only way we can correctly account for a
777 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
778 *
779 * That's okay for a page already fallocated earlier, but if we have
780 * not yet completed the fallocation, then (a) we want to keep track
781 * of this page in case we have to undo it, and (b) it may not be a
782 * good idea to continue anyway, once we're pushing into swap. So
783 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
784 */
785 if (!PageUptodate(page)) {
1aac1400
HD
786 if (inode->i_private) {
787 struct shmem_falloc *shmem_falloc;
788 spin_lock(&inode->i_lock);
789 shmem_falloc = inode->i_private;
790 if (shmem_falloc &&
8e205f77 791 !shmem_falloc->waitq &&
1aac1400
HD
792 index >= shmem_falloc->start &&
793 index < shmem_falloc->next)
794 shmem_falloc->nr_unswapped++;
795 else
796 shmem_falloc = NULL;
797 spin_unlock(&inode->i_lock);
798 if (shmem_falloc)
799 goto redirty;
800 }
1635f6a7
HD
801 clear_highpage(page);
802 flush_dcache_page(page);
803 SetPageUptodate(page);
804 }
805
48f170fb
HD
806 swap = get_swap_page();
807 if (!swap.val)
808 goto redirty;
d9fe526a 809
b1dea800
HD
810 /*
811 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
812 * if it's not already there. Do it now before the page is
813 * moved to swap cache, when its pagelock no longer protects
b1dea800 814 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
815 * we've incremented swapped, because shmem_unuse_inode() will
816 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 817 */
48f170fb
HD
818 mutex_lock(&shmem_swaplist_mutex);
819 if (list_empty(&info->swaplist))
820 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 821
48f170fb 822 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 823 swap_shmem_alloc(swap);
6922c0c7
HD
824 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
825
826 spin_lock(&info->lock);
827 info->swapped++;
828 shmem_recalc_inode(inode);
826267cf 829 spin_unlock(&info->lock);
6922c0c7
HD
830
831 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 832 BUG_ON(page_mapped(page));
9fab5619 833 swap_writepage(page, wbc);
1da177e4
LT
834 return 0;
835 }
836
6922c0c7 837 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 838 swapcache_free(swap, NULL);
1da177e4
LT
839redirty:
840 set_page_dirty(page);
d9fe526a
HD
841 if (wbc->for_reclaim)
842 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
843 unlock_page(page);
844 return 0;
1da177e4
LT
845}
846
847#ifdef CONFIG_NUMA
680d794b 848#ifdef CONFIG_TMPFS
71fe804b 849static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 850{
095f1fc4 851 char buffer[64];
680d794b 852
71fe804b 853 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 854 return; /* show nothing */
680d794b 855
a7a88b23 856 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
857
858 seq_printf(seq, ",mpol=%s", buffer);
680d794b 859}
71fe804b
LS
860
861static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
862{
863 struct mempolicy *mpol = NULL;
864 if (sbinfo->mpol) {
865 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
866 mpol = sbinfo->mpol;
867 mpol_get(mpol);
868 spin_unlock(&sbinfo->stat_lock);
869 }
870 return mpol;
871}
680d794b 872#endif /* CONFIG_TMPFS */
873
41ffe5d5
HD
874static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
875 struct shmem_inode_info *info, pgoff_t index)
1da177e4 876{
1da177e4 877 struct vm_area_struct pvma;
18a2f371 878 struct page *page;
52cd3b07 879
1da177e4 880 /* Create a pseudo vma that just contains the policy */
c4cc6d07 881 pvma.vm_start = 0;
09c231cb
NZ
882 /* Bias interleave by inode number to distribute better across nodes */
883 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 884 pvma.vm_ops = NULL;
18a2f371
MG
885 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
886
887 page = swapin_readahead(swap, gfp, &pvma, 0);
888
889 /* Drop reference taken by mpol_shared_policy_lookup() */
890 mpol_cond_put(pvma.vm_policy);
891
892 return page;
1da177e4
LT
893}
894
02098fea 895static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 896 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
897{
898 struct vm_area_struct pvma;
18a2f371 899 struct page *page;
1da177e4 900
c4cc6d07
HD
901 /* Create a pseudo vma that just contains the policy */
902 pvma.vm_start = 0;
09c231cb
NZ
903 /* Bias interleave by inode number to distribute better across nodes */
904 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 905 pvma.vm_ops = NULL;
41ffe5d5 906 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 907
18a2f371
MG
908 page = alloc_page_vma(gfp, &pvma, 0);
909
910 /* Drop reference taken by mpol_shared_policy_lookup() */
911 mpol_cond_put(pvma.vm_policy);
912
913 return page;
1da177e4 914}
680d794b 915#else /* !CONFIG_NUMA */
916#ifdef CONFIG_TMPFS
41ffe5d5 917static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 918{
919}
920#endif /* CONFIG_TMPFS */
921
41ffe5d5
HD
922static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
923 struct shmem_inode_info *info, pgoff_t index)
1da177e4 924{
41ffe5d5 925 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
926}
927
02098fea 928static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 929 struct shmem_inode_info *info, pgoff_t index)
1da177e4 930{
e84e2e13 931 return alloc_page(gfp);
1da177e4 932}
680d794b 933#endif /* CONFIG_NUMA */
1da177e4 934
71fe804b
LS
935#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
936static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
937{
938 return NULL;
939}
940#endif
941
bde05d1c
HD
942/*
943 * When a page is moved from swapcache to shmem filecache (either by the
944 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
945 * shmem_unuse_inode()), it may have been read in earlier from swap, in
946 * ignorance of the mapping it belongs to. If that mapping has special
947 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
948 * we may need to copy to a suitable page before moving to filecache.
949 *
950 * In a future release, this may well be extended to respect cpuset and
951 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
952 * but for now it is a simple matter of zone.
953 */
954static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
955{
956 return page_zonenum(page) > gfp_zone(gfp);
957}
958
959static int shmem_replace_page(struct page **pagep, gfp_t gfp,
960 struct shmem_inode_info *info, pgoff_t index)
961{
962 struct page *oldpage, *newpage;
963 struct address_space *swap_mapping;
964 pgoff_t swap_index;
965 int error;
966
967 oldpage = *pagep;
968 swap_index = page_private(oldpage);
969 swap_mapping = page_mapping(oldpage);
970
971 /*
972 * We have arrived here because our zones are constrained, so don't
973 * limit chance of success by further cpuset and node constraints.
974 */
975 gfp &= ~GFP_CONSTRAINT_MASK;
976 newpage = shmem_alloc_page(gfp, info, index);
977 if (!newpage)
978 return -ENOMEM;
bde05d1c 979
bde05d1c
HD
980 page_cache_get(newpage);
981 copy_highpage(newpage, oldpage);
0142ef6c 982 flush_dcache_page(newpage);
bde05d1c 983
bde05d1c 984 __set_page_locked(newpage);
bde05d1c 985 SetPageUptodate(newpage);
bde05d1c 986 SetPageSwapBacked(newpage);
bde05d1c 987 set_page_private(newpage, swap_index);
bde05d1c
HD
988 SetPageSwapCache(newpage);
989
990 /*
991 * Our caller will very soon move newpage out of swapcache, but it's
992 * a nice clean interface for us to replace oldpage by newpage there.
993 */
994 spin_lock_irq(&swap_mapping->tree_lock);
995 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
996 newpage);
0142ef6c
HD
997 if (!error) {
998 __inc_zone_page_state(newpage, NR_FILE_PAGES);
999 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1000 }
bde05d1c 1001 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1002
0142ef6c
HD
1003 if (unlikely(error)) {
1004 /*
1005 * Is this possible? I think not, now that our callers check
1006 * both PageSwapCache and page_private after getting page lock;
1007 * but be defensive. Reverse old to newpage for clear and free.
1008 */
1009 oldpage = newpage;
1010 } else {
1011 mem_cgroup_replace_page_cache(oldpage, newpage);
1012 lru_cache_add_anon(newpage);
1013 *pagep = newpage;
1014 }
bde05d1c
HD
1015
1016 ClearPageSwapCache(oldpage);
1017 set_page_private(oldpage, 0);
1018
1019 unlock_page(oldpage);
1020 page_cache_release(oldpage);
1021 page_cache_release(oldpage);
0142ef6c 1022 return error;
bde05d1c
HD
1023}
1024
1da177e4 1025/*
68da9f05 1026 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1027 *
1028 * If we allocate a new one we do not mark it dirty. That's up to the
1029 * vm. If we swap it in we mark it dirty since we also free the swap
1030 * entry since a page cannot live in both the swap and page cache
1031 */
41ffe5d5 1032static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1033 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1034{
1035 struct address_space *mapping = inode->i_mapping;
54af6042 1036 struct shmem_inode_info *info;
1da177e4 1037 struct shmem_sb_info *sbinfo;
00501b53 1038 struct mem_cgroup *memcg;
27ab7006 1039 struct page *page;
1da177e4
LT
1040 swp_entry_t swap;
1041 int error;
54af6042 1042 int once = 0;
1635f6a7 1043 int alloced = 0;
1da177e4 1044
41ffe5d5 1045 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1046 return -EFBIG;
1da177e4 1047repeat:
54af6042 1048 swap.val = 0;
0cd6144a 1049 page = find_lock_entry(mapping, index);
54af6042
HD
1050 if (radix_tree_exceptional_entry(page)) {
1051 swap = radix_to_swp_entry(page);
1052 page = NULL;
1053 }
1054
1635f6a7 1055 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1056 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1057 error = -EINVAL;
1058 goto failed;
1059 }
1060
66d2f4d2
HD
1061 if (page && sgp == SGP_WRITE)
1062 mark_page_accessed(page);
1063
1635f6a7
HD
1064 /* fallocated page? */
1065 if (page && !PageUptodate(page)) {
1066 if (sgp != SGP_READ)
1067 goto clear;
1068 unlock_page(page);
1069 page_cache_release(page);
1070 page = NULL;
1071 }
54af6042 1072 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1073 *pagep = page;
1074 return 0;
27ab7006
HD
1075 }
1076
1077 /*
54af6042
HD
1078 * Fast cache lookup did not find it:
1079 * bring it back from swap or allocate.
27ab7006 1080 */
54af6042
HD
1081 info = SHMEM_I(inode);
1082 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1083
1da177e4
LT
1084 if (swap.val) {
1085 /* Look it up and read it in.. */
27ab7006
HD
1086 page = lookup_swap_cache(swap);
1087 if (!page) {
1da177e4 1088 /* here we actually do the io */
68da9f05
HD
1089 if (fault_type)
1090 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1091 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1092 if (!page) {
54af6042
HD
1093 error = -ENOMEM;
1094 goto failed;
1da177e4 1095 }
1da177e4
LT
1096 }
1097
1098 /* We have to do this with page locked to prevent races */
54af6042 1099 lock_page(page);
0142ef6c 1100 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1101 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1102 error = -EEXIST; /* try again */
d1899228 1103 goto unlock;
bde05d1c 1104 }
27ab7006 1105 if (!PageUptodate(page)) {
1da177e4 1106 error = -EIO;
54af6042 1107 goto failed;
1da177e4 1108 }
54af6042
HD
1109 wait_on_page_writeback(page);
1110
bde05d1c
HD
1111 if (shmem_should_replace_page(page, gfp)) {
1112 error = shmem_replace_page(&page, gfp, info, index);
1113 if (error)
1114 goto failed;
1da177e4 1115 }
27ab7006 1116
00501b53 1117 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
d1899228 1118 if (!error) {
aa3b1895 1119 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1120 swp_to_radix_entry(swap));
215c02bc
HD
1121 /*
1122 * We already confirmed swap under page lock, and make
1123 * no memory allocation here, so usually no possibility
1124 * of error; but free_swap_and_cache() only trylocks a
1125 * page, so it is just possible that the entry has been
1126 * truncated or holepunched since swap was confirmed.
1127 * shmem_undo_range() will have done some of the
1128 * unaccounting, now delete_from_swap_cache() will do
1129 * the rest (including mem_cgroup_uncharge_swapcache).
1130 * Reset swap.val? No, leave it so "failed" goes back to
1131 * "repeat": reading a hole and writing should succeed.
1132 */
00501b53
JW
1133 if (error) {
1134 mem_cgroup_cancel_charge(page, memcg);
215c02bc 1135 delete_from_swap_cache(page);
00501b53 1136 }
d1899228 1137 }
54af6042
HD
1138 if (error)
1139 goto failed;
1140
00501b53
JW
1141 mem_cgroup_commit_charge(page, memcg, true);
1142
54af6042 1143 spin_lock(&info->lock);
285b2c4f 1144 info->swapped--;
54af6042 1145 shmem_recalc_inode(inode);
27ab7006 1146 spin_unlock(&info->lock);
54af6042 1147
66d2f4d2
HD
1148 if (sgp == SGP_WRITE)
1149 mark_page_accessed(page);
1150
54af6042 1151 delete_from_swap_cache(page);
27ab7006
HD
1152 set_page_dirty(page);
1153 swap_free(swap);
1154
54af6042
HD
1155 } else {
1156 if (shmem_acct_block(info->flags)) {
1157 error = -ENOSPC;
1158 goto failed;
1da177e4 1159 }
0edd73b3 1160 if (sbinfo->max_blocks) {
fc5da22a 1161 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1162 sbinfo->max_blocks) >= 0) {
1163 error = -ENOSPC;
1164 goto unacct;
1165 }
7e496299 1166 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1167 }
1da177e4 1168
54af6042
HD
1169 page = shmem_alloc_page(gfp, info, index);
1170 if (!page) {
1171 error = -ENOMEM;
1172 goto decused;
1da177e4
LT
1173 }
1174
07a42788 1175 __SetPageSwapBacked(page);
54af6042 1176 __set_page_locked(page);
66d2f4d2 1177 if (sgp == SGP_WRITE)
eb39d618 1178 __SetPageReferenced(page);
66d2f4d2 1179
00501b53 1180 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
54af6042
HD
1181 if (error)
1182 goto decused;
5e4c0d97 1183 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1184 if (!error) {
1185 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1186 NULL);
b065b432
HD
1187 radix_tree_preload_end();
1188 }
1189 if (error) {
00501b53 1190 mem_cgroup_cancel_charge(page, memcg);
b065b432
HD
1191 goto decused;
1192 }
00501b53 1193 mem_cgroup_commit_charge(page, memcg, false);
54af6042
HD
1194 lru_cache_add_anon(page);
1195
1196 spin_lock(&info->lock);
1da177e4 1197 info->alloced++;
54af6042
HD
1198 inode->i_blocks += BLOCKS_PER_PAGE;
1199 shmem_recalc_inode(inode);
1da177e4 1200 spin_unlock(&info->lock);
1635f6a7 1201 alloced = true;
54af6042 1202
ec9516fb 1203 /*
1635f6a7
HD
1204 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1205 */
1206 if (sgp == SGP_FALLOC)
1207 sgp = SGP_WRITE;
1208clear:
1209 /*
1210 * Let SGP_WRITE caller clear ends if write does not fill page;
1211 * but SGP_FALLOC on a page fallocated earlier must initialize
1212 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1213 */
1214 if (sgp != SGP_WRITE) {
1215 clear_highpage(page);
1216 flush_dcache_page(page);
1217 SetPageUptodate(page);
1218 }
a0ee5ec5 1219 if (sgp == SGP_DIRTY)
27ab7006 1220 set_page_dirty(page);
1da177e4 1221 }
bde05d1c 1222
54af6042 1223 /* Perhaps the file has been truncated since we checked */
1635f6a7 1224 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1225 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1226 error = -EINVAL;
1635f6a7
HD
1227 if (alloced)
1228 goto trunc;
1229 else
1230 goto failed;
e83c32e8 1231 }
54af6042
HD
1232 *pagep = page;
1233 return 0;
1da177e4 1234
59a16ead 1235 /*
54af6042 1236 * Error recovery.
59a16ead 1237 */
54af6042 1238trunc:
1635f6a7 1239 info = SHMEM_I(inode);
54af6042
HD
1240 ClearPageDirty(page);
1241 delete_from_page_cache(page);
1242 spin_lock(&info->lock);
1243 info->alloced--;
1244 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1245 spin_unlock(&info->lock);
54af6042 1246decused:
1635f6a7 1247 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1248 if (sbinfo->max_blocks)
1249 percpu_counter_add(&sbinfo->used_blocks, -1);
1250unacct:
1251 shmem_unacct_blocks(info->flags, 1);
1252failed:
d1899228
HD
1253 if (swap.val && error != -EINVAL &&
1254 !shmem_confirm_swap(mapping, index, swap))
1255 error = -EEXIST;
1256unlock:
27ab7006 1257 if (page) {
54af6042 1258 unlock_page(page);
27ab7006 1259 page_cache_release(page);
54af6042
HD
1260 }
1261 if (error == -ENOSPC && !once++) {
1262 info = SHMEM_I(inode);
1263 spin_lock(&info->lock);
1264 shmem_recalc_inode(inode);
1265 spin_unlock(&info->lock);
27ab7006 1266 goto repeat;
ff36b801 1267 }
d1899228 1268 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1269 goto repeat;
1270 return error;
1da177e4
LT
1271}
1272
d0217ac0 1273static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1274{
496ad9aa 1275 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1276 int error;
68da9f05 1277 int ret = VM_FAULT_LOCKED;
1da177e4 1278
f00cdc6d
HD
1279 /*
1280 * Trinity finds that probing a hole which tmpfs is punching can
1281 * prevent the hole-punch from ever completing: which in turn
1282 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1283 * faulting pages into the hole while it's being punched. Although
1284 * shmem_undo_range() does remove the additions, it may be unable to
1285 * keep up, as each new page needs its own unmap_mapping_range() call,
1286 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1287 *
1288 * It does not matter if we sometimes reach this check just before the
1289 * hole-punch begins, so that one fault then races with the punch:
1290 * we just need to make racing faults a rare case.
1291 *
1292 * The implementation below would be much simpler if we just used a
1293 * standard mutex or completion: but we cannot take i_mutex in fault,
1294 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1295 */
1296 if (unlikely(inode->i_private)) {
1297 struct shmem_falloc *shmem_falloc;
1298
1299 spin_lock(&inode->i_lock);
1300 shmem_falloc = inode->i_private;
8e205f77
HD
1301 if (shmem_falloc &&
1302 shmem_falloc->waitq &&
1303 vmf->pgoff >= shmem_falloc->start &&
1304 vmf->pgoff < shmem_falloc->next) {
1305 wait_queue_head_t *shmem_falloc_waitq;
1306 DEFINE_WAIT(shmem_fault_wait);
1307
1308 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1309 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1310 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1311 /* It's polite to up mmap_sem if we can */
f00cdc6d 1312 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1313 ret = VM_FAULT_RETRY;
f00cdc6d 1314 }
8e205f77
HD
1315
1316 shmem_falloc_waitq = shmem_falloc->waitq;
1317 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1318 TASK_UNINTERRUPTIBLE);
1319 spin_unlock(&inode->i_lock);
1320 schedule();
1321
1322 /*
1323 * shmem_falloc_waitq points into the shmem_fallocate()
1324 * stack of the hole-punching task: shmem_falloc_waitq
1325 * is usually invalid by the time we reach here, but
1326 * finish_wait() does not dereference it in that case;
1327 * though i_lock needed lest racing with wake_up_all().
1328 */
1329 spin_lock(&inode->i_lock);
1330 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1331 spin_unlock(&inode->i_lock);
1332 return ret;
f00cdc6d 1333 }
8e205f77 1334 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1335 }
1336
27d54b39 1337 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1338 if (error)
1339 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1340
456f998e
YH
1341 if (ret & VM_FAULT_MAJOR) {
1342 count_vm_event(PGMAJFAULT);
1343 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1344 }
68da9f05 1345 return ret;
1da177e4
LT
1346}
1347
1da177e4 1348#ifdef CONFIG_NUMA
41ffe5d5 1349static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1350{
496ad9aa 1351 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1352 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1353}
1354
d8dc74f2
AB
1355static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1356 unsigned long addr)
1da177e4 1357{
496ad9aa 1358 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1359 pgoff_t index;
1da177e4 1360
41ffe5d5
HD
1361 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1362 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1363}
1364#endif
1365
1366int shmem_lock(struct file *file, int lock, struct user_struct *user)
1367{
496ad9aa 1368 struct inode *inode = file_inode(file);
1da177e4
LT
1369 struct shmem_inode_info *info = SHMEM_I(inode);
1370 int retval = -ENOMEM;
1371
1372 spin_lock(&info->lock);
1373 if (lock && !(info->flags & VM_LOCKED)) {
1374 if (!user_shm_lock(inode->i_size, user))
1375 goto out_nomem;
1376 info->flags |= VM_LOCKED;
89e004ea 1377 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1378 }
1379 if (!lock && (info->flags & VM_LOCKED) && user) {
1380 user_shm_unlock(inode->i_size, user);
1381 info->flags &= ~VM_LOCKED;
89e004ea 1382 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1383 }
1384 retval = 0;
89e004ea 1385
1da177e4
LT
1386out_nomem:
1387 spin_unlock(&info->lock);
1388 return retval;
1389}
1390
9b83a6a8 1391static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1392{
1393 file_accessed(file);
1394 vma->vm_ops = &shmem_vm_ops;
1395 return 0;
1396}
1397
454abafe 1398static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1399 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1400{
1401 struct inode *inode;
1402 struct shmem_inode_info *info;
1403 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1404
5b04c689
PE
1405 if (shmem_reserve_inode(sb))
1406 return NULL;
1da177e4
LT
1407
1408 inode = new_inode(sb);
1409 if (inode) {
85fe4025 1410 inode->i_ino = get_next_ino();
454abafe 1411 inode_init_owner(inode, dir, mode);
1da177e4 1412 inode->i_blocks = 0;
1da177e4
LT
1413 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1414 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1415 inode->i_generation = get_seconds();
1da177e4
LT
1416 info = SHMEM_I(inode);
1417 memset(info, 0, (char *)inode - (char *)info);
1418 spin_lock_init(&info->lock);
0b0a0806 1419 info->flags = flags & VM_NORESERVE;
1da177e4 1420 INIT_LIST_HEAD(&info->swaplist);
38f38657 1421 simple_xattrs_init(&info->xattrs);
72c04902 1422 cache_no_acl(inode);
1da177e4
LT
1423
1424 switch (mode & S_IFMT) {
1425 default:
39f0247d 1426 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1427 init_special_inode(inode, mode, dev);
1428 break;
1429 case S_IFREG:
14fcc23f 1430 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1431 inode->i_op = &shmem_inode_operations;
1432 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1433 mpol_shared_policy_init(&info->policy,
1434 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1435 break;
1436 case S_IFDIR:
d8c76e6f 1437 inc_nlink(inode);
1da177e4
LT
1438 /* Some things misbehave if size == 0 on a directory */
1439 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1440 inode->i_op = &shmem_dir_inode_operations;
1441 inode->i_fop = &simple_dir_operations;
1442 break;
1443 case S_IFLNK:
1444 /*
1445 * Must not load anything in the rbtree,
1446 * mpol_free_shared_policy will not be called.
1447 */
71fe804b 1448 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1449 break;
1450 }
5b04c689
PE
1451 } else
1452 shmem_free_inode(sb);
1da177e4
LT
1453 return inode;
1454}
1455
0cd6144a
JW
1456bool shmem_mapping(struct address_space *mapping)
1457{
1458 return mapping->backing_dev_info == &shmem_backing_dev_info;
1459}
1460
1da177e4 1461#ifdef CONFIG_TMPFS
92e1d5be 1462static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1463static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1464
6d9d88d0
JS
1465#ifdef CONFIG_TMPFS_XATTR
1466static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1467#else
1468#define shmem_initxattrs NULL
1469#endif
1470
1da177e4 1471static int
800d15a5
NP
1472shmem_write_begin(struct file *file, struct address_space *mapping,
1473 loff_t pos, unsigned len, unsigned flags,
1474 struct page **pagep, void **fsdata)
1da177e4 1475{
800d15a5
NP
1476 struct inode *inode = mapping->host;
1477 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
66d2f4d2 1478 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1479}
1480
1481static int
1482shmem_write_end(struct file *file, struct address_space *mapping,
1483 loff_t pos, unsigned len, unsigned copied,
1484 struct page *page, void *fsdata)
1485{
1486 struct inode *inode = mapping->host;
1487
d3602444
HD
1488 if (pos + copied > inode->i_size)
1489 i_size_write(inode, pos + copied);
1490
ec9516fb
HD
1491 if (!PageUptodate(page)) {
1492 if (copied < PAGE_CACHE_SIZE) {
1493 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1494 zero_user_segments(page, 0, from,
1495 from + copied, PAGE_CACHE_SIZE);
1496 }
1497 SetPageUptodate(page);
1498 }
800d15a5 1499 set_page_dirty(page);
6746aff7 1500 unlock_page(page);
800d15a5
NP
1501 page_cache_release(page);
1502
800d15a5 1503 return copied;
1da177e4
LT
1504}
1505
2ba5bbed 1506static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1507{
6e58e79d
AV
1508 struct file *file = iocb->ki_filp;
1509 struct inode *inode = file_inode(file);
1da177e4 1510 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1511 pgoff_t index;
1512 unsigned long offset;
a0ee5ec5 1513 enum sgp_type sgp = SGP_READ;
f7c1d074 1514 int error = 0;
cb66a7a1 1515 ssize_t retval = 0;
6e58e79d 1516 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1517
1518 /*
1519 * Might this read be for a stacking filesystem? Then when reading
1520 * holes of a sparse file, we actually need to allocate those pages,
1521 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1522 */
1523 if (segment_eq(get_fs(), KERNEL_DS))
1524 sgp = SGP_DIRTY;
1da177e4
LT
1525
1526 index = *ppos >> PAGE_CACHE_SHIFT;
1527 offset = *ppos & ~PAGE_CACHE_MASK;
1528
1529 for (;;) {
1530 struct page *page = NULL;
41ffe5d5
HD
1531 pgoff_t end_index;
1532 unsigned long nr, ret;
1da177e4
LT
1533 loff_t i_size = i_size_read(inode);
1534
1535 end_index = i_size >> PAGE_CACHE_SHIFT;
1536 if (index > end_index)
1537 break;
1538 if (index == end_index) {
1539 nr = i_size & ~PAGE_CACHE_MASK;
1540 if (nr <= offset)
1541 break;
1542 }
1543
6e58e79d
AV
1544 error = shmem_getpage(inode, index, &page, sgp, NULL);
1545 if (error) {
1546 if (error == -EINVAL)
1547 error = 0;
1da177e4
LT
1548 break;
1549 }
d3602444
HD
1550 if (page)
1551 unlock_page(page);
1da177e4
LT
1552
1553 /*
1554 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1555 * are called without i_mutex protection against truncate
1da177e4
LT
1556 */
1557 nr = PAGE_CACHE_SIZE;
1558 i_size = i_size_read(inode);
1559 end_index = i_size >> PAGE_CACHE_SHIFT;
1560 if (index == end_index) {
1561 nr = i_size & ~PAGE_CACHE_MASK;
1562 if (nr <= offset) {
1563 if (page)
1564 page_cache_release(page);
1565 break;
1566 }
1567 }
1568 nr -= offset;
1569
1570 if (page) {
1571 /*
1572 * If users can be writing to this page using arbitrary
1573 * virtual addresses, take care about potential aliasing
1574 * before reading the page on the kernel side.
1575 */
1576 if (mapping_writably_mapped(mapping))
1577 flush_dcache_page(page);
1578 /*
1579 * Mark the page accessed if we read the beginning.
1580 */
1581 if (!offset)
1582 mark_page_accessed(page);
b5810039 1583 } else {
1da177e4 1584 page = ZERO_PAGE(0);
b5810039
NP
1585 page_cache_get(page);
1586 }
1da177e4
LT
1587
1588 /*
1589 * Ok, we have the page, and it's up-to-date, so
1590 * now we can copy it to user space...
1da177e4 1591 */
2ba5bbed 1592 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1593 retval += ret;
1da177e4
LT
1594 offset += ret;
1595 index += offset >> PAGE_CACHE_SHIFT;
1596 offset &= ~PAGE_CACHE_MASK;
1597
1598 page_cache_release(page);
2ba5bbed 1599 if (!iov_iter_count(to))
1da177e4 1600 break;
6e58e79d
AV
1601 if (ret < nr) {
1602 error = -EFAULT;
1603 break;
1604 }
1da177e4
LT
1605 cond_resched();
1606 }
1607
1608 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1609 file_accessed(file);
1610 return retval ? retval : error;
1da177e4
LT
1611}
1612
708e3508
HD
1613static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1614 struct pipe_inode_info *pipe, size_t len,
1615 unsigned int flags)
1616{
1617 struct address_space *mapping = in->f_mapping;
71f0e07a 1618 struct inode *inode = mapping->host;
708e3508
HD
1619 unsigned int loff, nr_pages, req_pages;
1620 struct page *pages[PIPE_DEF_BUFFERS];
1621 struct partial_page partial[PIPE_DEF_BUFFERS];
1622 struct page *page;
1623 pgoff_t index, end_index;
1624 loff_t isize, left;
1625 int error, page_nr;
1626 struct splice_pipe_desc spd = {
1627 .pages = pages,
1628 .partial = partial,
047fe360 1629 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1630 .flags = flags,
1631 .ops = &page_cache_pipe_buf_ops,
1632 .spd_release = spd_release_page,
1633 };
1634
71f0e07a 1635 isize = i_size_read(inode);
708e3508
HD
1636 if (unlikely(*ppos >= isize))
1637 return 0;
1638
1639 left = isize - *ppos;
1640 if (unlikely(left < len))
1641 len = left;
1642
1643 if (splice_grow_spd(pipe, &spd))
1644 return -ENOMEM;
1645
1646 index = *ppos >> PAGE_CACHE_SHIFT;
1647 loff = *ppos & ~PAGE_CACHE_MASK;
1648 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1649 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1650
708e3508
HD
1651 spd.nr_pages = find_get_pages_contig(mapping, index,
1652 nr_pages, spd.pages);
1653 index += spd.nr_pages;
708e3508 1654 error = 0;
708e3508 1655
71f0e07a 1656 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1657 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1658 if (error)
1659 break;
1660 unlock_page(page);
708e3508
HD
1661 spd.pages[spd.nr_pages++] = page;
1662 index++;
1663 }
1664
708e3508
HD
1665 index = *ppos >> PAGE_CACHE_SHIFT;
1666 nr_pages = spd.nr_pages;
1667 spd.nr_pages = 0;
71f0e07a 1668
708e3508
HD
1669 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1670 unsigned int this_len;
1671
1672 if (!len)
1673 break;
1674
708e3508
HD
1675 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1676 page = spd.pages[page_nr];
1677
71f0e07a 1678 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1679 error = shmem_getpage(inode, index, &page,
1680 SGP_CACHE, NULL);
1681 if (error)
708e3508 1682 break;
71f0e07a
HD
1683 unlock_page(page);
1684 page_cache_release(spd.pages[page_nr]);
1685 spd.pages[page_nr] = page;
708e3508 1686 }
71f0e07a
HD
1687
1688 isize = i_size_read(inode);
708e3508
HD
1689 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1690 if (unlikely(!isize || index > end_index))
1691 break;
1692
708e3508
HD
1693 if (end_index == index) {
1694 unsigned int plen;
1695
708e3508
HD
1696 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1697 if (plen <= loff)
1698 break;
1699
708e3508
HD
1700 this_len = min(this_len, plen - loff);
1701 len = this_len;
1702 }
1703
1704 spd.partial[page_nr].offset = loff;
1705 spd.partial[page_nr].len = this_len;
1706 len -= this_len;
1707 loff = 0;
1708 spd.nr_pages++;
1709 index++;
1710 }
1711
708e3508
HD
1712 while (page_nr < nr_pages)
1713 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1714
1715 if (spd.nr_pages)
1716 error = splice_to_pipe(pipe, &spd);
1717
047fe360 1718 splice_shrink_spd(&spd);
708e3508
HD
1719
1720 if (error > 0) {
1721 *ppos += error;
1722 file_accessed(in);
1723 }
1724 return error;
1725}
1726
220f2ac9
HD
1727/*
1728 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1729 */
1730static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1731 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1732{
1733 struct page *page;
1734 struct pagevec pvec;
1735 pgoff_t indices[PAGEVEC_SIZE];
1736 bool done = false;
1737 int i;
1738
1739 pagevec_init(&pvec, 0);
1740 pvec.nr = 1; /* start small: we may be there already */
1741 while (!done) {
0cd6144a 1742 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1743 pvec.nr, pvec.pages, indices);
1744 if (!pvec.nr) {
965c8e59 1745 if (whence == SEEK_DATA)
220f2ac9
HD
1746 index = end;
1747 break;
1748 }
1749 for (i = 0; i < pvec.nr; i++, index++) {
1750 if (index < indices[i]) {
965c8e59 1751 if (whence == SEEK_HOLE) {
220f2ac9
HD
1752 done = true;
1753 break;
1754 }
1755 index = indices[i];
1756 }
1757 page = pvec.pages[i];
1758 if (page && !radix_tree_exceptional_entry(page)) {
1759 if (!PageUptodate(page))
1760 page = NULL;
1761 }
1762 if (index >= end ||
965c8e59
AM
1763 (page && whence == SEEK_DATA) ||
1764 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1765 done = true;
1766 break;
1767 }
1768 }
0cd6144a 1769 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1770 pagevec_release(&pvec);
1771 pvec.nr = PAGEVEC_SIZE;
1772 cond_resched();
1773 }
1774 return index;
1775}
1776
965c8e59 1777static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1778{
1779 struct address_space *mapping = file->f_mapping;
1780 struct inode *inode = mapping->host;
1781 pgoff_t start, end;
1782 loff_t new_offset;
1783
965c8e59
AM
1784 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1785 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1786 MAX_LFS_FILESIZE, i_size_read(inode));
1787 mutex_lock(&inode->i_mutex);
1788 /* We're holding i_mutex so we can access i_size directly */
1789
1790 if (offset < 0)
1791 offset = -EINVAL;
1792 else if (offset >= inode->i_size)
1793 offset = -ENXIO;
1794 else {
1795 start = offset >> PAGE_CACHE_SHIFT;
1796 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1797 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1798 new_offset <<= PAGE_CACHE_SHIFT;
1799 if (new_offset > offset) {
1800 if (new_offset < inode->i_size)
1801 offset = new_offset;
965c8e59 1802 else if (whence == SEEK_DATA)
220f2ac9
HD
1803 offset = -ENXIO;
1804 else
1805 offset = inode->i_size;
1806 }
1807 }
1808
387aae6f
HD
1809 if (offset >= 0)
1810 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1811 mutex_unlock(&inode->i_mutex);
1812 return offset;
1813}
1814
83e4fa9c
HD
1815static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1816 loff_t len)
1817{
496ad9aa 1818 struct inode *inode = file_inode(file);
e2d12e22 1819 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1820 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1821 pgoff_t start, index, end;
1822 int error;
83e4fa9c 1823
13ace4d0
HD
1824 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1825 return -EOPNOTSUPP;
1826
83e4fa9c
HD
1827 mutex_lock(&inode->i_mutex);
1828
1829 if (mode & FALLOC_FL_PUNCH_HOLE) {
1830 struct address_space *mapping = file->f_mapping;
1831 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1832 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 1833 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 1834
8e205f77 1835 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
1836 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1837 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1838 spin_lock(&inode->i_lock);
1839 inode->i_private = &shmem_falloc;
1840 spin_unlock(&inode->i_lock);
1841
83e4fa9c
HD
1842 if ((u64)unmap_end > (u64)unmap_start)
1843 unmap_mapping_range(mapping, unmap_start,
1844 1 + unmap_end - unmap_start, 0);
1845 shmem_truncate_range(inode, offset, offset + len - 1);
1846 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
1847
1848 spin_lock(&inode->i_lock);
1849 inode->i_private = NULL;
1850 wake_up_all(&shmem_falloc_waitq);
1851 spin_unlock(&inode->i_lock);
83e4fa9c 1852 error = 0;
8e205f77 1853 goto out;
e2d12e22
HD
1854 }
1855
1856 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1857 error = inode_newsize_ok(inode, offset + len);
1858 if (error)
1859 goto out;
1860
1861 start = offset >> PAGE_CACHE_SHIFT;
1862 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1863 /* Try to avoid a swapstorm if len is impossible to satisfy */
1864 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1865 error = -ENOSPC;
1866 goto out;
83e4fa9c
HD
1867 }
1868
8e205f77 1869 shmem_falloc.waitq = NULL;
1aac1400
HD
1870 shmem_falloc.start = start;
1871 shmem_falloc.next = start;
1872 shmem_falloc.nr_falloced = 0;
1873 shmem_falloc.nr_unswapped = 0;
1874 spin_lock(&inode->i_lock);
1875 inode->i_private = &shmem_falloc;
1876 spin_unlock(&inode->i_lock);
1877
e2d12e22
HD
1878 for (index = start; index < end; index++) {
1879 struct page *page;
1880
1881 /*
1882 * Good, the fallocate(2) manpage permits EINTR: we may have
1883 * been interrupted because we are using up too much memory.
1884 */
1885 if (signal_pending(current))
1886 error = -EINTR;
1aac1400
HD
1887 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1888 error = -ENOMEM;
e2d12e22 1889 else
1635f6a7 1890 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1891 NULL);
1892 if (error) {
1635f6a7
HD
1893 /* Remove the !PageUptodate pages we added */
1894 shmem_undo_range(inode,
1895 (loff_t)start << PAGE_CACHE_SHIFT,
1896 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1897 goto undone;
e2d12e22
HD
1898 }
1899
1aac1400
HD
1900 /*
1901 * Inform shmem_writepage() how far we have reached.
1902 * No need for lock or barrier: we have the page lock.
1903 */
1904 shmem_falloc.next++;
1905 if (!PageUptodate(page))
1906 shmem_falloc.nr_falloced++;
1907
e2d12e22 1908 /*
1635f6a7
HD
1909 * If !PageUptodate, leave it that way so that freeable pages
1910 * can be recognized if we need to rollback on error later.
1911 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1912 * than free the pages we are allocating (and SGP_CACHE pages
1913 * might still be clean: we now need to mark those dirty too).
1914 */
1915 set_page_dirty(page);
1916 unlock_page(page);
1917 page_cache_release(page);
1918 cond_resched();
1919 }
1920
1921 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1922 i_size_write(inode, offset + len);
e2d12e22 1923 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1924undone:
1925 spin_lock(&inode->i_lock);
1926 inode->i_private = NULL;
1927 spin_unlock(&inode->i_lock);
e2d12e22 1928out:
83e4fa9c
HD
1929 mutex_unlock(&inode->i_mutex);
1930 return error;
1931}
1932
726c3342 1933static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1934{
726c3342 1935 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1936
1937 buf->f_type = TMPFS_MAGIC;
1938 buf->f_bsize = PAGE_CACHE_SIZE;
1939 buf->f_namelen = NAME_MAX;
0edd73b3 1940 if (sbinfo->max_blocks) {
1da177e4 1941 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1942 buf->f_bavail =
1943 buf->f_bfree = sbinfo->max_blocks -
1944 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1945 }
1946 if (sbinfo->max_inodes) {
1da177e4
LT
1947 buf->f_files = sbinfo->max_inodes;
1948 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1949 }
1950 /* else leave those fields 0 like simple_statfs */
1951 return 0;
1952}
1953
1954/*
1955 * File creation. Allocate an inode, and we're done..
1956 */
1957static int
1a67aafb 1958shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1959{
0b0a0806 1960 struct inode *inode;
1da177e4
LT
1961 int error = -ENOSPC;
1962
454abafe 1963 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1964 if (inode) {
feda821e
CH
1965 error = simple_acl_create(dir, inode);
1966 if (error)
1967 goto out_iput;
2a7dba39 1968 error = security_inode_init_security(inode, dir,
9d8f13ba 1969 &dentry->d_name,
6d9d88d0 1970 shmem_initxattrs, NULL);
feda821e
CH
1971 if (error && error != -EOPNOTSUPP)
1972 goto out_iput;
37ec43cd 1973
718deb6b 1974 error = 0;
1da177e4
LT
1975 dir->i_size += BOGO_DIRENT_SIZE;
1976 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1977 d_instantiate(dentry, inode);
1978 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1979 }
1980 return error;
feda821e
CH
1981out_iput:
1982 iput(inode);
1983 return error;
1da177e4
LT
1984}
1985
60545d0d
AV
1986static int
1987shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1988{
1989 struct inode *inode;
1990 int error = -ENOSPC;
1991
1992 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1993 if (inode) {
1994 error = security_inode_init_security(inode, dir,
1995 NULL,
1996 shmem_initxattrs, NULL);
feda821e
CH
1997 if (error && error != -EOPNOTSUPP)
1998 goto out_iput;
1999 error = simple_acl_create(dir, inode);
2000 if (error)
2001 goto out_iput;
60545d0d
AV
2002 d_tmpfile(dentry, inode);
2003 }
2004 return error;
feda821e
CH
2005out_iput:
2006 iput(inode);
2007 return error;
60545d0d
AV
2008}
2009
18bb1db3 2010static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2011{
2012 int error;
2013
2014 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2015 return error;
d8c76e6f 2016 inc_nlink(dir);
1da177e4
LT
2017 return 0;
2018}
2019
4acdaf27 2020static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2021 bool excl)
1da177e4
LT
2022{
2023 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2024}
2025
2026/*
2027 * Link a file..
2028 */
2029static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2030{
2031 struct inode *inode = old_dentry->d_inode;
5b04c689 2032 int ret;
1da177e4
LT
2033
2034 /*
2035 * No ordinary (disk based) filesystem counts links as inodes;
2036 * but each new link needs a new dentry, pinning lowmem, and
2037 * tmpfs dentries cannot be pruned until they are unlinked.
2038 */
5b04c689
PE
2039 ret = shmem_reserve_inode(inode->i_sb);
2040 if (ret)
2041 goto out;
1da177e4
LT
2042
2043 dir->i_size += BOGO_DIRENT_SIZE;
2044 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2045 inc_nlink(inode);
7de9c6ee 2046 ihold(inode); /* New dentry reference */
1da177e4
LT
2047 dget(dentry); /* Extra pinning count for the created dentry */
2048 d_instantiate(dentry, inode);
5b04c689
PE
2049out:
2050 return ret;
1da177e4
LT
2051}
2052
2053static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2054{
2055 struct inode *inode = dentry->d_inode;
2056
5b04c689
PE
2057 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2058 shmem_free_inode(inode->i_sb);
1da177e4
LT
2059
2060 dir->i_size -= BOGO_DIRENT_SIZE;
2061 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2062 drop_nlink(inode);
1da177e4
LT
2063 dput(dentry); /* Undo the count from "create" - this does all the work */
2064 return 0;
2065}
2066
2067static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2068{
2069 if (!simple_empty(dentry))
2070 return -ENOTEMPTY;
2071
9a53c3a7
DH
2072 drop_nlink(dentry->d_inode);
2073 drop_nlink(dir);
1da177e4
LT
2074 return shmem_unlink(dir, dentry);
2075}
2076
2077/*
2078 * The VFS layer already does all the dentry stuff for rename,
2079 * we just have to decrement the usage count for the target if
2080 * it exists so that the VFS layer correctly free's it when it
2081 * gets overwritten.
2082 */
2083static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2084{
2085 struct inode *inode = old_dentry->d_inode;
2086 int they_are_dirs = S_ISDIR(inode->i_mode);
2087
2088 if (!simple_empty(new_dentry))
2089 return -ENOTEMPTY;
2090
2091 if (new_dentry->d_inode) {
2092 (void) shmem_unlink(new_dir, new_dentry);
2093 if (they_are_dirs)
9a53c3a7 2094 drop_nlink(old_dir);
1da177e4 2095 } else if (they_are_dirs) {
9a53c3a7 2096 drop_nlink(old_dir);
d8c76e6f 2097 inc_nlink(new_dir);
1da177e4
LT
2098 }
2099
2100 old_dir->i_size -= BOGO_DIRENT_SIZE;
2101 new_dir->i_size += BOGO_DIRENT_SIZE;
2102 old_dir->i_ctime = old_dir->i_mtime =
2103 new_dir->i_ctime = new_dir->i_mtime =
2104 inode->i_ctime = CURRENT_TIME;
2105 return 0;
2106}
2107
2108static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2109{
2110 int error;
2111 int len;
2112 struct inode *inode;
9276aad6 2113 struct page *page;
1da177e4
LT
2114 char *kaddr;
2115 struct shmem_inode_info *info;
2116
2117 len = strlen(symname) + 1;
2118 if (len > PAGE_CACHE_SIZE)
2119 return -ENAMETOOLONG;
2120
454abafe 2121 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2122 if (!inode)
2123 return -ENOSPC;
2124
9d8f13ba 2125 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2126 shmem_initxattrs, NULL);
570bc1c2
SS
2127 if (error) {
2128 if (error != -EOPNOTSUPP) {
2129 iput(inode);
2130 return error;
2131 }
2132 error = 0;
2133 }
2134
1da177e4
LT
2135 info = SHMEM_I(inode);
2136 inode->i_size = len-1;
69f07ec9
HD
2137 if (len <= SHORT_SYMLINK_LEN) {
2138 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2139 if (!info->symlink) {
2140 iput(inode);
2141 return -ENOMEM;
2142 }
2143 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2144 } else {
2145 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2146 if (error) {
2147 iput(inode);
2148 return error;
2149 }
14fcc23f 2150 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2151 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2152 kaddr = kmap_atomic(page);
1da177e4 2153 memcpy(kaddr, symname, len);
9b04c5fe 2154 kunmap_atomic(kaddr);
ec9516fb 2155 SetPageUptodate(page);
1da177e4 2156 set_page_dirty(page);
6746aff7 2157 unlock_page(page);
1da177e4
LT
2158 page_cache_release(page);
2159 }
1da177e4
LT
2160 dir->i_size += BOGO_DIRENT_SIZE;
2161 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2162 d_instantiate(dentry, inode);
2163 dget(dentry);
2164 return 0;
2165}
2166
69f07ec9 2167static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2168{
69f07ec9 2169 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2170 return NULL;
1da177e4
LT
2171}
2172
cc314eef 2173static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2174{
2175 struct page *page = NULL;
41ffe5d5
HD
2176 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2177 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2178 if (page)
2179 unlock_page(page);
cc314eef 2180 return page;
1da177e4
LT
2181}
2182
cc314eef 2183static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2184{
2185 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2186 struct page *page = cookie;
1da177e4
LT
2187 kunmap(page);
2188 mark_page_accessed(page);
2189 page_cache_release(page);
1da177e4
LT
2190 }
2191}
2192
b09e0fa4 2193#ifdef CONFIG_TMPFS_XATTR
46711810 2194/*
b09e0fa4
EP
2195 * Superblocks without xattr inode operations may get some security.* xattr
2196 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2197 * like ACLs, we also need to implement the security.* handlers at
2198 * filesystem level, though.
2199 */
2200
6d9d88d0
JS
2201/*
2202 * Callback for security_inode_init_security() for acquiring xattrs.
2203 */
2204static int shmem_initxattrs(struct inode *inode,
2205 const struct xattr *xattr_array,
2206 void *fs_info)
2207{
2208 struct shmem_inode_info *info = SHMEM_I(inode);
2209 const struct xattr *xattr;
38f38657 2210 struct simple_xattr *new_xattr;
6d9d88d0
JS
2211 size_t len;
2212
2213 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2214 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2215 if (!new_xattr)
2216 return -ENOMEM;
2217
2218 len = strlen(xattr->name) + 1;
2219 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2220 GFP_KERNEL);
2221 if (!new_xattr->name) {
2222 kfree(new_xattr);
2223 return -ENOMEM;
2224 }
2225
2226 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2227 XATTR_SECURITY_PREFIX_LEN);
2228 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2229 xattr->name, len);
2230
38f38657 2231 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2232 }
2233
2234 return 0;
2235}
2236
bb435453 2237static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2238#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2239 &posix_acl_access_xattr_handler,
2240 &posix_acl_default_xattr_handler,
b09e0fa4 2241#endif
39f0247d
AG
2242 NULL
2243};
b09e0fa4
EP
2244
2245static int shmem_xattr_validate(const char *name)
2246{
2247 struct { const char *prefix; size_t len; } arr[] = {
2248 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2249 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2250 };
2251 int i;
2252
2253 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2254 size_t preflen = arr[i].len;
2255 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2256 if (!name[preflen])
2257 return -EINVAL;
2258 return 0;
2259 }
2260 }
2261 return -EOPNOTSUPP;
2262}
2263
2264static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2265 void *buffer, size_t size)
2266{
38f38657 2267 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2268 int err;
2269
2270 /*
2271 * If this is a request for a synthetic attribute in the system.*
2272 * namespace use the generic infrastructure to resolve a handler
2273 * for it via sb->s_xattr.
2274 */
2275 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2276 return generic_getxattr(dentry, name, buffer, size);
2277
2278 err = shmem_xattr_validate(name);
2279 if (err)
2280 return err;
2281
38f38657 2282 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2283}
2284
2285static int shmem_setxattr(struct dentry *dentry, const char *name,
2286 const void *value, size_t size, int flags)
2287{
38f38657 2288 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2289 int err;
2290
2291 /*
2292 * If this is a request for a synthetic attribute in the system.*
2293 * namespace use the generic infrastructure to resolve a handler
2294 * for it via sb->s_xattr.
2295 */
2296 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2297 return generic_setxattr(dentry, name, value, size, flags);
2298
2299 err = shmem_xattr_validate(name);
2300 if (err)
2301 return err;
2302
38f38657 2303 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2304}
2305
2306static int shmem_removexattr(struct dentry *dentry, const char *name)
2307{
38f38657 2308 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2309 int err;
2310
2311 /*
2312 * If this is a request for a synthetic attribute in the system.*
2313 * namespace use the generic infrastructure to resolve a handler
2314 * for it via sb->s_xattr.
2315 */
2316 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2317 return generic_removexattr(dentry, name);
2318
2319 err = shmem_xattr_validate(name);
2320 if (err)
2321 return err;
2322
38f38657 2323 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2324}
2325
2326static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2327{
38f38657
AR
2328 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2329 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2330}
2331#endif /* CONFIG_TMPFS_XATTR */
2332
69f07ec9 2333static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2334 .readlink = generic_readlink,
69f07ec9 2335 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2336#ifdef CONFIG_TMPFS_XATTR
2337 .setxattr = shmem_setxattr,
2338 .getxattr = shmem_getxattr,
2339 .listxattr = shmem_listxattr,
2340 .removexattr = shmem_removexattr,
2341#endif
2342};
2343
2344static const struct inode_operations shmem_symlink_inode_operations = {
2345 .readlink = generic_readlink,
2346 .follow_link = shmem_follow_link,
2347 .put_link = shmem_put_link,
2348#ifdef CONFIG_TMPFS_XATTR
2349 .setxattr = shmem_setxattr,
2350 .getxattr = shmem_getxattr,
2351 .listxattr = shmem_listxattr,
2352 .removexattr = shmem_removexattr,
39f0247d 2353#endif
b09e0fa4 2354};
39f0247d 2355
91828a40
DG
2356static struct dentry *shmem_get_parent(struct dentry *child)
2357{
2358 return ERR_PTR(-ESTALE);
2359}
2360
2361static int shmem_match(struct inode *ino, void *vfh)
2362{
2363 __u32 *fh = vfh;
2364 __u64 inum = fh[2];
2365 inum = (inum << 32) | fh[1];
2366 return ino->i_ino == inum && fh[0] == ino->i_generation;
2367}
2368
480b116c
CH
2369static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2370 struct fid *fid, int fh_len, int fh_type)
91828a40 2371{
91828a40 2372 struct inode *inode;
480b116c 2373 struct dentry *dentry = NULL;
35c2a7f4 2374 u64 inum;
480b116c
CH
2375
2376 if (fh_len < 3)
2377 return NULL;
91828a40 2378
35c2a7f4
HD
2379 inum = fid->raw[2];
2380 inum = (inum << 32) | fid->raw[1];
2381
480b116c
CH
2382 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2383 shmem_match, fid->raw);
91828a40 2384 if (inode) {
480b116c 2385 dentry = d_find_alias(inode);
91828a40
DG
2386 iput(inode);
2387 }
2388
480b116c 2389 return dentry;
91828a40
DG
2390}
2391
b0b0382b
AV
2392static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2393 struct inode *parent)
91828a40 2394{
5fe0c237
AK
2395 if (*len < 3) {
2396 *len = 3;
94e07a75 2397 return FILEID_INVALID;
5fe0c237 2398 }
91828a40 2399
1d3382cb 2400 if (inode_unhashed(inode)) {
91828a40
DG
2401 /* Unfortunately insert_inode_hash is not idempotent,
2402 * so as we hash inodes here rather than at creation
2403 * time, we need a lock to ensure we only try
2404 * to do it once
2405 */
2406 static DEFINE_SPINLOCK(lock);
2407 spin_lock(&lock);
1d3382cb 2408 if (inode_unhashed(inode))
91828a40
DG
2409 __insert_inode_hash(inode,
2410 inode->i_ino + inode->i_generation);
2411 spin_unlock(&lock);
2412 }
2413
2414 fh[0] = inode->i_generation;
2415 fh[1] = inode->i_ino;
2416 fh[2] = ((__u64)inode->i_ino) >> 32;
2417
2418 *len = 3;
2419 return 1;
2420}
2421
39655164 2422static const struct export_operations shmem_export_ops = {
91828a40 2423 .get_parent = shmem_get_parent,
91828a40 2424 .encode_fh = shmem_encode_fh,
480b116c 2425 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2426};
2427
680d794b 2428static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2429 bool remount)
1da177e4
LT
2430{
2431 char *this_char, *value, *rest;
49cd0a5c 2432 struct mempolicy *mpol = NULL;
8751e039
EB
2433 uid_t uid;
2434 gid_t gid;
1da177e4 2435
b00dc3ad
HD
2436 while (options != NULL) {
2437 this_char = options;
2438 for (;;) {
2439 /*
2440 * NUL-terminate this option: unfortunately,
2441 * mount options form a comma-separated list,
2442 * but mpol's nodelist may also contain commas.
2443 */
2444 options = strchr(options, ',');
2445 if (options == NULL)
2446 break;
2447 options++;
2448 if (!isdigit(*options)) {
2449 options[-1] = '\0';
2450 break;
2451 }
2452 }
1da177e4
LT
2453 if (!*this_char)
2454 continue;
2455 if ((value = strchr(this_char,'=')) != NULL) {
2456 *value++ = 0;
2457 } else {
2458 printk(KERN_ERR
2459 "tmpfs: No value for mount option '%s'\n",
2460 this_char);
49cd0a5c 2461 goto error;
1da177e4
LT
2462 }
2463
2464 if (!strcmp(this_char,"size")) {
2465 unsigned long long size;
2466 size = memparse(value,&rest);
2467 if (*rest == '%') {
2468 size <<= PAGE_SHIFT;
2469 size *= totalram_pages;
2470 do_div(size, 100);
2471 rest++;
2472 }
2473 if (*rest)
2474 goto bad_val;
680d794b 2475 sbinfo->max_blocks =
2476 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2477 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2478 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2479 if (*rest)
2480 goto bad_val;
2481 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2482 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2483 if (*rest)
2484 goto bad_val;
2485 } else if (!strcmp(this_char,"mode")) {
680d794b 2486 if (remount)
1da177e4 2487 continue;
680d794b 2488 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2489 if (*rest)
2490 goto bad_val;
2491 } else if (!strcmp(this_char,"uid")) {
680d794b 2492 if (remount)
1da177e4 2493 continue;
8751e039 2494 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2495 if (*rest)
2496 goto bad_val;
8751e039
EB
2497 sbinfo->uid = make_kuid(current_user_ns(), uid);
2498 if (!uid_valid(sbinfo->uid))
2499 goto bad_val;
1da177e4 2500 } else if (!strcmp(this_char,"gid")) {
680d794b 2501 if (remount)
1da177e4 2502 continue;
8751e039 2503 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2504 if (*rest)
2505 goto bad_val;
8751e039
EB
2506 sbinfo->gid = make_kgid(current_user_ns(), gid);
2507 if (!gid_valid(sbinfo->gid))
2508 goto bad_val;
7339ff83 2509 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2510 mpol_put(mpol);
2511 mpol = NULL;
2512 if (mpol_parse_str(value, &mpol))
7339ff83 2513 goto bad_val;
1da177e4
LT
2514 } else {
2515 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2516 this_char);
49cd0a5c 2517 goto error;
1da177e4
LT
2518 }
2519 }
49cd0a5c 2520 sbinfo->mpol = mpol;
1da177e4
LT
2521 return 0;
2522
2523bad_val:
2524 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2525 value, this_char);
49cd0a5c
GT
2526error:
2527 mpol_put(mpol);
1da177e4
LT
2528 return 1;
2529
2530}
2531
2532static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2533{
2534 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2535 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2536 unsigned long inodes;
2537 int error = -EINVAL;
2538
5f00110f 2539 config.mpol = NULL;
680d794b 2540 if (shmem_parse_options(data, &config, true))
0edd73b3 2541 return error;
1da177e4 2542
0edd73b3 2543 spin_lock(&sbinfo->stat_lock);
0edd73b3 2544 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2545 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2546 goto out;
680d794b 2547 if (config.max_inodes < inodes)
0edd73b3
HD
2548 goto out;
2549 /*
54af6042 2550 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2551 * but we must separately disallow unlimited->limited, because
2552 * in that case we have no record of how much is already in use.
2553 */
680d794b 2554 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2555 goto out;
680d794b 2556 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2557 goto out;
2558
2559 error = 0;
680d794b 2560 sbinfo->max_blocks = config.max_blocks;
680d794b 2561 sbinfo->max_inodes = config.max_inodes;
2562 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2563
5f00110f
GT
2564 /*
2565 * Preserve previous mempolicy unless mpol remount option was specified.
2566 */
2567 if (config.mpol) {
2568 mpol_put(sbinfo->mpol);
2569 sbinfo->mpol = config.mpol; /* transfers initial ref */
2570 }
0edd73b3
HD
2571out:
2572 spin_unlock(&sbinfo->stat_lock);
2573 return error;
1da177e4 2574}
680d794b 2575
34c80b1d 2576static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2577{
34c80b1d 2578 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 2579
2580 if (sbinfo->max_blocks != shmem_default_max_blocks())
2581 seq_printf(seq, ",size=%luk",
2582 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2583 if (sbinfo->max_inodes != shmem_default_max_inodes())
2584 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2585 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2586 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2587 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2588 seq_printf(seq, ",uid=%u",
2589 from_kuid_munged(&init_user_ns, sbinfo->uid));
2590 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2591 seq_printf(seq, ",gid=%u",
2592 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2593 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2594 return 0;
2595}
2596#endif /* CONFIG_TMPFS */
1da177e4
LT
2597
2598static void shmem_put_super(struct super_block *sb)
2599{
602586a8
HD
2600 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2601
2602 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2603 mpol_put(sbinfo->mpol);
602586a8 2604 kfree(sbinfo);
1da177e4
LT
2605 sb->s_fs_info = NULL;
2606}
2607
2b2af54a 2608int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2609{
2610 struct inode *inode;
0edd73b3 2611 struct shmem_sb_info *sbinfo;
680d794b 2612 int err = -ENOMEM;
2613
2614 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2615 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2616 L1_CACHE_BYTES), GFP_KERNEL);
2617 if (!sbinfo)
2618 return -ENOMEM;
2619
680d794b 2620 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2621 sbinfo->uid = current_fsuid();
2622 sbinfo->gid = current_fsgid();
680d794b 2623 sb->s_fs_info = sbinfo;
1da177e4 2624
0edd73b3 2625#ifdef CONFIG_TMPFS
1da177e4
LT
2626 /*
2627 * Per default we only allow half of the physical ram per
2628 * tmpfs instance, limiting inodes to one per page of lowmem;
2629 * but the internal instance is left unlimited.
2630 */
ca4e0519 2631 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b 2632 sbinfo->max_blocks = shmem_default_max_blocks();
2633 sbinfo->max_inodes = shmem_default_max_inodes();
2634 if (shmem_parse_options(data, sbinfo, false)) {
2635 err = -EINVAL;
2636 goto failed;
2637 }
ca4e0519
AV
2638 } else {
2639 sb->s_flags |= MS_NOUSER;
1da177e4 2640 }
91828a40 2641 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2642 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2643#else
2644 sb->s_flags |= MS_NOUSER;
2645#endif
2646
0edd73b3 2647 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2648 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2649 goto failed;
680d794b 2650 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2651
285b2c4f 2652 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2653 sb->s_blocksize = PAGE_CACHE_SIZE;
2654 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2655 sb->s_magic = TMPFS_MAGIC;
2656 sb->s_op = &shmem_ops;
cfd95a9c 2657 sb->s_time_gran = 1;
b09e0fa4 2658#ifdef CONFIG_TMPFS_XATTR
39f0247d 2659 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2660#endif
2661#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2662 sb->s_flags |= MS_POSIXACL;
2663#endif
0edd73b3 2664
454abafe 2665 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2666 if (!inode)
2667 goto failed;
680d794b 2668 inode->i_uid = sbinfo->uid;
2669 inode->i_gid = sbinfo->gid;
318ceed0
AV
2670 sb->s_root = d_make_root(inode);
2671 if (!sb->s_root)
48fde701 2672 goto failed;
1da177e4
LT
2673 return 0;
2674
1da177e4
LT
2675failed:
2676 shmem_put_super(sb);
2677 return err;
2678}
2679
fcc234f8 2680static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2681
2682static struct inode *shmem_alloc_inode(struct super_block *sb)
2683{
41ffe5d5
HD
2684 struct shmem_inode_info *info;
2685 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2686 if (!info)
1da177e4 2687 return NULL;
41ffe5d5 2688 return &info->vfs_inode;
1da177e4
LT
2689}
2690
41ffe5d5 2691static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2692{
2693 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2694 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2695}
2696
1da177e4
LT
2697static void shmem_destroy_inode(struct inode *inode)
2698{
09208d15 2699 if (S_ISREG(inode->i_mode))
1da177e4 2700 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2701 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2702}
2703
41ffe5d5 2704static void shmem_init_inode(void *foo)
1da177e4 2705{
41ffe5d5
HD
2706 struct shmem_inode_info *info = foo;
2707 inode_init_once(&info->vfs_inode);
1da177e4
LT
2708}
2709
41ffe5d5 2710static int shmem_init_inodecache(void)
1da177e4
LT
2711{
2712 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2713 sizeof(struct shmem_inode_info),
41ffe5d5 2714 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2715 return 0;
2716}
2717
41ffe5d5 2718static void shmem_destroy_inodecache(void)
1da177e4 2719{
1a1d92c1 2720 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2721}
2722
f5e54d6e 2723static const struct address_space_operations shmem_aops = {
1da177e4 2724 .writepage = shmem_writepage,
76719325 2725 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2726#ifdef CONFIG_TMPFS
800d15a5
NP
2727 .write_begin = shmem_write_begin,
2728 .write_end = shmem_write_end,
1da177e4 2729#endif
304dbdb7 2730 .migratepage = migrate_page,
aa261f54 2731 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2732};
2733
15ad7cdc 2734static const struct file_operations shmem_file_operations = {
1da177e4
LT
2735 .mmap = shmem_mmap,
2736#ifdef CONFIG_TMPFS
220f2ac9 2737 .llseek = shmem_file_llseek,
2ba5bbed 2738 .read = new_sync_read,
8174202b 2739 .write = new_sync_write,
2ba5bbed 2740 .read_iter = shmem_file_read_iter,
8174202b 2741 .write_iter = generic_file_write_iter,
1b061d92 2742 .fsync = noop_fsync,
708e3508 2743 .splice_read = shmem_file_splice_read,
f6cb85d0 2744 .splice_write = iter_file_splice_write,
83e4fa9c 2745 .fallocate = shmem_fallocate,
1da177e4
LT
2746#endif
2747};
2748
92e1d5be 2749static const struct inode_operations shmem_inode_operations = {
94c1e62d 2750 .setattr = shmem_setattr,
b09e0fa4
EP
2751#ifdef CONFIG_TMPFS_XATTR
2752 .setxattr = shmem_setxattr,
2753 .getxattr = shmem_getxattr,
2754 .listxattr = shmem_listxattr,
2755 .removexattr = shmem_removexattr,
feda821e 2756 .set_acl = simple_set_acl,
b09e0fa4 2757#endif
1da177e4
LT
2758};
2759
92e1d5be 2760static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2761#ifdef CONFIG_TMPFS
2762 .create = shmem_create,
2763 .lookup = simple_lookup,
2764 .link = shmem_link,
2765 .unlink = shmem_unlink,
2766 .symlink = shmem_symlink,
2767 .mkdir = shmem_mkdir,
2768 .rmdir = shmem_rmdir,
2769 .mknod = shmem_mknod,
2770 .rename = shmem_rename,
60545d0d 2771 .tmpfile = shmem_tmpfile,
1da177e4 2772#endif
b09e0fa4
EP
2773#ifdef CONFIG_TMPFS_XATTR
2774 .setxattr = shmem_setxattr,
2775 .getxattr = shmem_getxattr,
2776 .listxattr = shmem_listxattr,
2777 .removexattr = shmem_removexattr,
2778#endif
39f0247d 2779#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2780 .setattr = shmem_setattr,
feda821e 2781 .set_acl = simple_set_acl,
39f0247d
AG
2782#endif
2783};
2784
92e1d5be 2785static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2786#ifdef CONFIG_TMPFS_XATTR
2787 .setxattr = shmem_setxattr,
2788 .getxattr = shmem_getxattr,
2789 .listxattr = shmem_listxattr,
2790 .removexattr = shmem_removexattr,
2791#endif
39f0247d 2792#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2793 .setattr = shmem_setattr,
feda821e 2794 .set_acl = simple_set_acl,
39f0247d 2795#endif
1da177e4
LT
2796};
2797
759b9775 2798static const struct super_operations shmem_ops = {
1da177e4
LT
2799 .alloc_inode = shmem_alloc_inode,
2800 .destroy_inode = shmem_destroy_inode,
2801#ifdef CONFIG_TMPFS
2802 .statfs = shmem_statfs,
2803 .remount_fs = shmem_remount_fs,
680d794b 2804 .show_options = shmem_show_options,
1da177e4 2805#endif
1f895f75 2806 .evict_inode = shmem_evict_inode,
1da177e4
LT
2807 .drop_inode = generic_delete_inode,
2808 .put_super = shmem_put_super,
2809};
2810
f0f37e2f 2811static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2812 .fault = shmem_fault,
d7c17551 2813 .map_pages = filemap_map_pages,
1da177e4
LT
2814#ifdef CONFIG_NUMA
2815 .set_policy = shmem_set_policy,
2816 .get_policy = shmem_get_policy,
2817#endif
0b173bc4 2818 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2819};
2820
3c26ff6e
AV
2821static struct dentry *shmem_mount(struct file_system_type *fs_type,
2822 int flags, const char *dev_name, void *data)
1da177e4 2823{
3c26ff6e 2824 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2825}
2826
41ffe5d5 2827static struct file_system_type shmem_fs_type = {
1da177e4
LT
2828 .owner = THIS_MODULE,
2829 .name = "tmpfs",
3c26ff6e 2830 .mount = shmem_mount,
1da177e4 2831 .kill_sb = kill_litter_super,
2b8576cb 2832 .fs_flags = FS_USERNS_MOUNT,
1da177e4 2833};
1da177e4 2834
41ffe5d5 2835int __init shmem_init(void)
1da177e4
LT
2836{
2837 int error;
2838
16203a7a
RL
2839 /* If rootfs called this, don't re-init */
2840 if (shmem_inode_cachep)
2841 return 0;
2842
e0bf68dd
PZ
2843 error = bdi_init(&shmem_backing_dev_info);
2844 if (error)
2845 goto out4;
2846
41ffe5d5 2847 error = shmem_init_inodecache();
1da177e4
LT
2848 if (error)
2849 goto out3;
2850
41ffe5d5 2851 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2852 if (error) {
2853 printk(KERN_ERR "Could not register tmpfs\n");
2854 goto out2;
2855 }
95dc112a 2856
ca4e0519 2857 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
2858 if (IS_ERR(shm_mnt)) {
2859 error = PTR_ERR(shm_mnt);
2860 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2861 goto out1;
2862 }
2863 return 0;
2864
2865out1:
41ffe5d5 2866 unregister_filesystem(&shmem_fs_type);
1da177e4 2867out2:
41ffe5d5 2868 shmem_destroy_inodecache();
1da177e4 2869out3:
e0bf68dd
PZ
2870 bdi_destroy(&shmem_backing_dev_info);
2871out4:
1da177e4
LT
2872 shm_mnt = ERR_PTR(error);
2873 return error;
2874}
853ac43a
MM
2875
2876#else /* !CONFIG_SHMEM */
2877
2878/*
2879 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2880 *
2881 * This is intended for small system where the benefits of the full
2882 * shmem code (swap-backed and resource-limited) are outweighed by
2883 * their complexity. On systems without swap this code should be
2884 * effectively equivalent, but much lighter weight.
2885 */
2886
41ffe5d5 2887static struct file_system_type shmem_fs_type = {
853ac43a 2888 .name = "tmpfs",
3c26ff6e 2889 .mount = ramfs_mount,
853ac43a 2890 .kill_sb = kill_litter_super,
2b8576cb 2891 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
2892};
2893
41ffe5d5 2894int __init shmem_init(void)
853ac43a 2895{
41ffe5d5 2896 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2897
41ffe5d5 2898 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2899 BUG_ON(IS_ERR(shm_mnt));
2900
2901 return 0;
2902}
2903
41ffe5d5 2904int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2905{
2906 return 0;
2907}
2908
3f96b79a
HD
2909int shmem_lock(struct file *file, int lock, struct user_struct *user)
2910{
2911 return 0;
2912}
2913
24513264
HD
2914void shmem_unlock_mapping(struct address_space *mapping)
2915{
2916}
2917
41ffe5d5 2918void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2919{
41ffe5d5 2920 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2921}
2922EXPORT_SYMBOL_GPL(shmem_truncate_range);
2923
0b0a0806
HD
2924#define shmem_vm_ops generic_file_vm_ops
2925#define shmem_file_operations ramfs_file_operations
454abafe 2926#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2927#define shmem_acct_size(flags, size) 0
2928#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2929
2930#endif /* CONFIG_SHMEM */
2931
2932/* common code */
1da177e4 2933
3451538a 2934static struct dentry_operations anon_ops = {
118b2302 2935 .d_dname = simple_dname
3451538a
AV
2936};
2937
c7277090
EP
2938static struct file *__shmem_file_setup(const char *name, loff_t size,
2939 unsigned long flags, unsigned int i_flags)
1da177e4 2940{
6b4d0b27 2941 struct file *res;
1da177e4 2942 struct inode *inode;
2c48b9c4 2943 struct path path;
3451538a 2944 struct super_block *sb;
1da177e4
LT
2945 struct qstr this;
2946
2947 if (IS_ERR(shm_mnt))
6b4d0b27 2948 return ERR_CAST(shm_mnt);
1da177e4 2949
285b2c4f 2950 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2951 return ERR_PTR(-EINVAL);
2952
2953 if (shmem_acct_size(flags, size))
2954 return ERR_PTR(-ENOMEM);
2955
6b4d0b27 2956 res = ERR_PTR(-ENOMEM);
1da177e4
LT
2957 this.name = name;
2958 this.len = strlen(name);
2959 this.hash = 0; /* will go */
3451538a 2960 sb = shm_mnt->mnt_sb;
66ee4b88 2961 path.mnt = mntget(shm_mnt);
3451538a 2962 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 2963 if (!path.dentry)
1da177e4 2964 goto put_memory;
3451538a 2965 d_set_d_op(path.dentry, &anon_ops);
1da177e4 2966
6b4d0b27 2967 res = ERR_PTR(-ENOSPC);
3451538a 2968 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2969 if (!inode)
66ee4b88 2970 goto put_memory;
1da177e4 2971
c7277090 2972 inode->i_flags |= i_flags;
2c48b9c4 2973 d_instantiate(path.dentry, inode);
1da177e4 2974 inode->i_size = size;
6d6b77f1 2975 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
2976 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2977 if (IS_ERR(res))
66ee4b88 2978 goto put_path;
4b42af81 2979
6b4d0b27 2980 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 2981 &shmem_file_operations);
6b4d0b27 2982 if (IS_ERR(res))
66ee4b88 2983 goto put_path;
4b42af81 2984
6b4d0b27 2985 return res;
1da177e4 2986
1da177e4
LT
2987put_memory:
2988 shmem_unacct_size(flags, size);
66ee4b88
KK
2989put_path:
2990 path_put(&path);
6b4d0b27 2991 return res;
1da177e4 2992}
c7277090
EP
2993
2994/**
2995 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2996 * kernel internal. There will be NO LSM permission checks against the
2997 * underlying inode. So users of this interface must do LSM checks at a
2998 * higher layer. The one user is the big_key implementation. LSM checks
2999 * are provided at the key level rather than the inode level.
3000 * @name: name for dentry (to be seen in /proc/<pid>/maps
3001 * @size: size to be set for the file
3002 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3003 */
3004struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3005{
3006 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3007}
3008
3009/**
3010 * shmem_file_setup - get an unlinked file living in tmpfs
3011 * @name: name for dentry (to be seen in /proc/<pid>/maps
3012 * @size: size to be set for the file
3013 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3014 */
3015struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3016{
3017 return __shmem_file_setup(name, size, flags, 0);
3018}
395e0ddc 3019EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3020
46711810 3021/**
1da177e4 3022 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3023 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3024 */
3025int shmem_zero_setup(struct vm_area_struct *vma)
3026{
3027 struct file *file;
3028 loff_t size = vma->vm_end - vma->vm_start;
3029
3030 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3031 if (IS_ERR(file))
3032 return PTR_ERR(file);
3033
3034 if (vma->vm_file)
3035 fput(vma->vm_file);
3036 vma->vm_file = file;
3037 vma->vm_ops = &shmem_vm_ops;
3038 return 0;
3039}
d9d90e5e
HD
3040
3041/**
3042 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3043 * @mapping: the page's address_space
3044 * @index: the page index
3045 * @gfp: the page allocator flags to use if allocating
3046 *
3047 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3048 * with any new page allocations done using the specified allocation flags.
3049 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3050 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3051 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3052 *
68da9f05
HD
3053 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3054 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3055 */
3056struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3057 pgoff_t index, gfp_t gfp)
3058{
68da9f05
HD
3059#ifdef CONFIG_SHMEM
3060 struct inode *inode = mapping->host;
9276aad6 3061 struct page *page;
68da9f05
HD
3062 int error;
3063
3064 BUG_ON(mapping->a_ops != &shmem_aops);
3065 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3066 if (error)
3067 page = ERR_PTR(error);
3068 else
3069 unlock_page(page);
3070 return page;
3071#else
3072 /*
3073 * The tiny !SHMEM case uses ramfs without swap
3074 */
d9d90e5e 3075 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3076#endif
d9d90e5e
HD
3077}
3078EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);