blktrace: fix use after free for struct blk_trace
[linux-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
626c3920 39#include <linux/fs_parser.h>
86a2f3f2 40#include <linux/swapfile.h>
95cc09d6 41
853ac43a
MM
42static struct vfsmount *shm_mnt;
43
44#ifdef CONFIG_SHMEM
1da177e4
LT
45/*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
39f0247d 51#include <linux/xattr.h>
a5694255 52#include <linux/exportfs.h>
1c7c474c 53#include <linux/posix_acl.h>
feda821e 54#include <linux/posix_acl_xattr.h>
1da177e4 55#include <linux/mman.h>
1da177e4
LT
56#include <linux/string.h>
57#include <linux/slab.h>
58#include <linux/backing-dev.h>
59#include <linux/shmem_fs.h>
1da177e4 60#include <linux/writeback.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4 82
dd56b046
MG
83#include "internal.h"
84
09cbfeaf
KS
85#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 87
1da177e4
LT
88/* Pretend that each entry is of this size in directory's i_size */
89#define BOGO_DIRENT_SIZE 20
90
69f07ec9
HD
91/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92#define SHORT_SYMLINK_LEN 128
93
1aac1400 94/*
f00cdc6d 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 96 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 97 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
98 */
99struct shmem_falloc {
8e205f77 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105};
106
0b5071dd
AV
107struct shmem_options {
108 unsigned long long blocks;
109 unsigned long long inodes;
110 struct mempolicy *mpol;
111 kuid_t uid;
112 kgid_t gid;
113 umode_t mode;
ea3271f7 114 bool full_inums;
0b5071dd
AV
115 int huge;
116 int seen;
117#define SHMEM_SEEN_BLOCKS 1
118#define SHMEM_SEEN_INODES 2
119#define SHMEM_SEEN_HUGE 4
ea3271f7 120#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
121};
122
b76db735 123#ifdef CONFIG_TMPFS
680d794b 124static unsigned long shmem_default_max_blocks(void)
125{
ca79b0c2 126 return totalram_pages() / 2;
680d794b 127}
128
129static unsigned long shmem_default_max_inodes(void)
130{
ca79b0c2
AK
131 unsigned long nr_pages = totalram_pages();
132
133 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 134}
b76db735 135#endif
680d794b 136
c5bf121e
VRP
137static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138 struct page **pagep, enum sgp_type sgp,
139 gfp_t gfp, struct vm_area_struct *vma,
140 vm_fault_t *fault_type);
68da9f05 141static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 142 struct page **pagep, enum sgp_type sgp,
cfda0526 143 gfp_t gfp, struct vm_area_struct *vma,
2b740303 144 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 145
f3f0e1d2 146int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 147 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
148{
149 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 151}
1da177e4 152
1da177e4
LT
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155 return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
0b0a0806 166 return (flags & VM_NORESERVE) ?
191c5424 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
0b0a0806 172 if (!(flags & VM_NORESERVE))
1da177e4
LT
173 vm_unacct_memory(VM_ACCT(size));
174}
175
77142517
KK
176static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178{
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187}
188
1da177e4
LT
189/*
190 * ... whereas tmpfs objects are accounted incrementally as
75edd345 191 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
800d8c63 195static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 196{
800d8c63
KS
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
202}
203
204static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205{
0b0a0806 206 if (flags & VM_NORESERVE)
09cbfeaf 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
208}
209
0f079694
MR
210static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211{
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214
215 if (shmem_acct_block(info->flags, pages))
216 return false;
217
218 if (sbinfo->max_blocks) {
219 if (percpu_counter_compare(&sbinfo->used_blocks,
220 sbinfo->max_blocks - pages) > 0)
221 goto unacct;
222 percpu_counter_add(&sbinfo->used_blocks, pages);
223 }
224
225 return true;
226
227unacct:
228 shmem_unacct_blocks(info->flags, pages);
229 return false;
230}
231
232static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233{
234 struct shmem_inode_info *info = SHMEM_I(inode);
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236
237 if (sbinfo->max_blocks)
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 shmem_unacct_blocks(info->flags, pages);
240}
241
759b9775 242static const struct super_operations shmem_ops;
30e6a51d 243const struct address_space_operations shmem_aops;
15ad7cdc 244static const struct file_operations shmem_file_operations;
92e1d5be
AV
245static const struct inode_operations shmem_inode_operations;
246static const struct inode_operations shmem_dir_inode_operations;
247static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 248static const struct vm_operations_struct shmem_vm_ops;
779750d2 249static struct file_system_type shmem_fs_type;
1da177e4 250
b0506e48
MR
251bool vma_is_shmem(struct vm_area_struct *vma)
252{
253 return vma->vm_ops == &shmem_vm_ops;
254}
255
1da177e4 256static LIST_HEAD(shmem_swaplist);
cb5f7b9a 257static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 258
e809d5f0
CD
259/*
260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261 * produces a novel ino for the newly allocated inode.
262 *
263 * It may also be called when making a hard link to permit the space needed by
264 * each dentry. However, in that case, no new inode number is needed since that
265 * internally draws from another pool of inode numbers (currently global
266 * get_next_ino()). This case is indicated by passing NULL as inop.
267 */
268#define SHMEM_INO_BATCH 1024
269static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
270{
271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
272 ino_t ino;
273
274 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 275 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
276 if (sbinfo->max_inodes) {
277 if (!sbinfo->free_inodes) {
bf11b9a8 278 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
279 return -ENOSPC;
280 }
281 sbinfo->free_inodes--;
5b04c689 282 }
e809d5f0
CD
283 if (inop) {
284 ino = sbinfo->next_ino++;
285 if (unlikely(is_zero_ino(ino)))
286 ino = sbinfo->next_ino++;
ea3271f7
CD
287 if (unlikely(!sbinfo->full_inums &&
288 ino > UINT_MAX)) {
e809d5f0
CD
289 /*
290 * Emulate get_next_ino uint wraparound for
291 * compatibility
292 */
ea3271f7
CD
293 if (IS_ENABLED(CONFIG_64BIT))
294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 __func__, MINOR(sb->s_dev));
296 sbinfo->next_ino = 1;
297 ino = sbinfo->next_ino++;
e809d5f0
CD
298 }
299 *inop = ino;
300 }
bf11b9a8 301 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
302 } else if (inop) {
303 /*
304 * __shmem_file_setup, one of our callers, is lock-free: it
305 * doesn't hold stat_lock in shmem_reserve_inode since
306 * max_inodes is always 0, and is called from potentially
307 * unknown contexts. As such, use a per-cpu batched allocator
308 * which doesn't require the per-sb stat_lock unless we are at
309 * the batch boundary.
ea3271f7
CD
310 *
311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 * shmem mounts are not exposed to userspace, so we don't need
313 * to worry about things like glibc compatibility.
e809d5f0
CD
314 */
315 ino_t *next_ino;
bf11b9a8 316
e809d5f0
CD
317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 ino = *next_ino;
319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 320 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
321 ino = sbinfo->next_ino;
322 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 323 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
324 if (unlikely(is_zero_ino(ino)))
325 ino++;
326 }
327 *inop = ino;
328 *next_ino = ++ino;
329 put_cpu();
5b04c689 330 }
e809d5f0 331
5b04c689
PE
332 return 0;
333}
334
335static void shmem_free_inode(struct super_block *sb)
336{
337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 if (sbinfo->max_inodes) {
bf11b9a8 339 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 340 sbinfo->free_inodes++;
bf11b9a8 341 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
342 }
343}
344
46711810 345/**
41ffe5d5 346 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
347 * @inode: inode to recalc
348 *
349 * We have to calculate the free blocks since the mm can drop
350 * undirtied hole pages behind our back.
351 *
352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354 *
355 * It has to be called with the spinlock held.
356 */
357static void shmem_recalc_inode(struct inode *inode)
358{
359 struct shmem_inode_info *info = SHMEM_I(inode);
360 long freed;
361
362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 if (freed > 0) {
364 info->alloced -= freed;
54af6042 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 366 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
367 }
368}
369
800d8c63
KS
370bool shmem_charge(struct inode *inode, long pages)
371{
372 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 373 unsigned long flags;
800d8c63 374
0f079694 375 if (!shmem_inode_acct_block(inode, pages))
800d8c63 376 return false;
b1cc94ab 377
aaa52e34
HD
378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 inode->i_mapping->nrpages += pages;
380
4595ef88 381 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
382 info->alloced += pages;
383 inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 shmem_recalc_inode(inode);
4595ef88 385 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 386
800d8c63
KS
387 return true;
388}
389
390void shmem_uncharge(struct inode *inode, long pages)
391{
392 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 393 unsigned long flags;
800d8c63 394
aaa52e34
HD
395 /* nrpages adjustment done by __delete_from_page_cache() or caller */
396
4595ef88 397 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
398 info->alloced -= pages;
399 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 shmem_recalc_inode(inode);
4595ef88 401 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 402
0f079694 403 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
404}
405
7a5d0fbb 406/*
62f945b6 407 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 408 */
62f945b6 409static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
410 pgoff_t index, void *expected, void *replacement)
411{
62f945b6 412 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 413 void *item;
7a5d0fbb
HD
414
415 VM_BUG_ON(!expected);
6dbaf22c 416 VM_BUG_ON(!replacement);
62f945b6 417 item = xas_load(&xas);
7a5d0fbb
HD
418 if (item != expected)
419 return -ENOENT;
62f945b6 420 xas_store(&xas, replacement);
7a5d0fbb
HD
421 return 0;
422}
423
d1899228
HD
424/*
425 * Sometimes, before we decide whether to proceed or to fail, we must check
426 * that an entry was not already brought back from swap by a racing thread.
427 *
428 * Checking page is not enough: by the time a SwapCache page is locked, it
429 * might be reused, and again be SwapCache, using the same swap as before.
430 */
431static bool shmem_confirm_swap(struct address_space *mapping,
432 pgoff_t index, swp_entry_t swap)
433{
a12831bf 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
435}
436
5a6e75f8
KS
437/*
438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439 *
440 * SHMEM_HUGE_NEVER:
441 * disables huge pages for the mount;
442 * SHMEM_HUGE_ALWAYS:
443 * enables huge pages for the mount;
444 * SHMEM_HUGE_WITHIN_SIZE:
445 * only allocate huge pages if the page will be fully within i_size,
446 * also respect fadvise()/madvise() hints;
447 * SHMEM_HUGE_ADVISE:
448 * only allocate huge pages if requested with fadvise()/madvise();
449 */
450
451#define SHMEM_HUGE_NEVER 0
452#define SHMEM_HUGE_ALWAYS 1
453#define SHMEM_HUGE_WITHIN_SIZE 2
454#define SHMEM_HUGE_ADVISE 3
455
456/*
457 * Special values.
458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459 *
460 * SHMEM_HUGE_DENY:
461 * disables huge on shm_mnt and all mounts, for emergency use;
462 * SHMEM_HUGE_FORCE:
463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464 *
465 */
466#define SHMEM_HUGE_DENY (-1)
467#define SHMEM_HUGE_FORCE (-2)
468
396bcc52 469#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
470/* ifdef here to avoid bloating shmem.o when not necessary */
471
5e6e5a12 472static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 473
5e6e5a12
HD
474bool shmem_is_huge(struct vm_area_struct *vma,
475 struct inode *inode, pgoff_t index)
c852023e 476{
c852023e 477 loff_t i_size;
c852023e 478
c852023e
HD
479 if (shmem_huge == SHMEM_HUGE_DENY)
480 return false;
5e6e5a12
HD
481 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
482 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 483 return false;
5e6e5a12
HD
484 if (shmem_huge == SHMEM_HUGE_FORCE)
485 return true;
486
487 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
488 case SHMEM_HUGE_ALWAYS:
489 return true;
490 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 491 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 492 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 493 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
494 return true;
495 fallthrough;
496 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
497 if (vma && (vma->vm_flags & VM_HUGEPAGE))
498 return true;
499 fallthrough;
c852023e 500 default:
c852023e
HD
501 return false;
502 }
503}
5a6e75f8 504
e5f2249a 505#if defined(CONFIG_SYSFS)
5a6e75f8
KS
506static int shmem_parse_huge(const char *str)
507{
508 if (!strcmp(str, "never"))
509 return SHMEM_HUGE_NEVER;
510 if (!strcmp(str, "always"))
511 return SHMEM_HUGE_ALWAYS;
512 if (!strcmp(str, "within_size"))
513 return SHMEM_HUGE_WITHIN_SIZE;
514 if (!strcmp(str, "advise"))
515 return SHMEM_HUGE_ADVISE;
516 if (!strcmp(str, "deny"))
517 return SHMEM_HUGE_DENY;
518 if (!strcmp(str, "force"))
519 return SHMEM_HUGE_FORCE;
520 return -EINVAL;
521}
e5f2249a 522#endif
5a6e75f8 523
e5f2249a 524#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
525static const char *shmem_format_huge(int huge)
526{
527 switch (huge) {
528 case SHMEM_HUGE_NEVER:
529 return "never";
530 case SHMEM_HUGE_ALWAYS:
531 return "always";
532 case SHMEM_HUGE_WITHIN_SIZE:
533 return "within_size";
534 case SHMEM_HUGE_ADVISE:
535 return "advise";
536 case SHMEM_HUGE_DENY:
537 return "deny";
538 case SHMEM_HUGE_FORCE:
539 return "force";
540 default:
541 VM_BUG_ON(1);
542 return "bad_val";
543 }
544}
f1f5929c 545#endif
5a6e75f8 546
779750d2
KS
547static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
548 struct shrink_control *sc, unsigned long nr_to_split)
549{
550 LIST_HEAD(list), *pos, *next;
253fd0f0 551 LIST_HEAD(to_remove);
779750d2
KS
552 struct inode *inode;
553 struct shmem_inode_info *info;
554 struct page *page;
555 unsigned long batch = sc ? sc->nr_to_scan : 128;
62c9827c 556 int split = 0;
779750d2
KS
557
558 if (list_empty(&sbinfo->shrinklist))
559 return SHRINK_STOP;
560
561 spin_lock(&sbinfo->shrinklist_lock);
562 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
563 info = list_entry(pos, struct shmem_inode_info, shrinklist);
564
565 /* pin the inode */
566 inode = igrab(&info->vfs_inode);
567
568 /* inode is about to be evicted */
569 if (!inode) {
570 list_del_init(&info->shrinklist);
779750d2
KS
571 goto next;
572 }
573
574 /* Check if there's anything to gain */
575 if (round_up(inode->i_size, PAGE_SIZE) ==
576 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 577 list_move(&info->shrinklist, &to_remove);
779750d2
KS
578 goto next;
579 }
580
581 list_move(&info->shrinklist, &list);
582next:
62c9827c 583 sbinfo->shrinklist_len--;
779750d2
KS
584 if (!--batch)
585 break;
586 }
587 spin_unlock(&sbinfo->shrinklist_lock);
588
253fd0f0
KS
589 list_for_each_safe(pos, next, &to_remove) {
590 info = list_entry(pos, struct shmem_inode_info, shrinklist);
591 inode = &info->vfs_inode;
592 list_del_init(&info->shrinklist);
593 iput(inode);
594 }
595
779750d2
KS
596 list_for_each_safe(pos, next, &list) {
597 int ret;
598
599 info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 inode = &info->vfs_inode;
601
b3cd54b2 602 if (nr_to_split && split >= nr_to_split)
62c9827c 603 goto move_back;
779750d2 604
b3cd54b2 605 page = find_get_page(inode->i_mapping,
779750d2
KS
606 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
607 if (!page)
608 goto drop;
609
b3cd54b2 610 /* No huge page at the end of the file: nothing to split */
779750d2 611 if (!PageTransHuge(page)) {
779750d2
KS
612 put_page(page);
613 goto drop;
614 }
615
b3cd54b2 616 /*
62c9827c
GL
617 * Move the inode on the list back to shrinklist if we failed
618 * to lock the page at this time.
b3cd54b2
KS
619 *
620 * Waiting for the lock may lead to deadlock in the
621 * reclaim path.
622 */
623 if (!trylock_page(page)) {
624 put_page(page);
62c9827c 625 goto move_back;
b3cd54b2
KS
626 }
627
779750d2
KS
628 ret = split_huge_page(page);
629 unlock_page(page);
630 put_page(page);
631
62c9827c 632 /* If split failed move the inode on the list back to shrinklist */
b3cd54b2 633 if (ret)
62c9827c 634 goto move_back;
779750d2
KS
635
636 split++;
637drop:
638 list_del_init(&info->shrinklist);
62c9827c
GL
639 goto put;
640move_back:
641 /*
642 * Make sure the inode is either on the global list or deleted
643 * from any local list before iput() since it could be deleted
644 * in another thread once we put the inode (then the local list
645 * is corrupted).
646 */
647 spin_lock(&sbinfo->shrinklist_lock);
648 list_move(&info->shrinklist, &sbinfo->shrinklist);
649 sbinfo->shrinklist_len++;
650 spin_unlock(&sbinfo->shrinklist_lock);
651put:
779750d2
KS
652 iput(inode);
653 }
654
779750d2
KS
655 return split;
656}
657
658static long shmem_unused_huge_scan(struct super_block *sb,
659 struct shrink_control *sc)
660{
661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
662
663 if (!READ_ONCE(sbinfo->shrinklist_len))
664 return SHRINK_STOP;
665
666 return shmem_unused_huge_shrink(sbinfo, sc, 0);
667}
668
669static long shmem_unused_huge_count(struct super_block *sb,
670 struct shrink_control *sc)
671{
672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 return READ_ONCE(sbinfo->shrinklist_len);
674}
396bcc52 675#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
676
677#define shmem_huge SHMEM_HUGE_DENY
678
5e6e5a12
HD
679bool shmem_is_huge(struct vm_area_struct *vma,
680 struct inode *inode, pgoff_t index)
681{
682 return false;
683}
684
779750d2
KS
685static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 struct shrink_control *sc, unsigned long nr_to_split)
687{
688 return 0;
689}
396bcc52 690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 691
46f65ec1
HD
692/*
693 * Like add_to_page_cache_locked, but error if expected item has gone.
694 */
695static int shmem_add_to_page_cache(struct page *page,
696 struct address_space *mapping,
3fea5a49
JW
697 pgoff_t index, void *expected, gfp_t gfp,
698 struct mm_struct *charge_mm)
46f65ec1 699{
552446a4 700 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
d8c6546b 701 unsigned long nr = compound_nr(page);
3fea5a49 702 int error;
46f65ec1 703
800d8c63
KS
704 VM_BUG_ON_PAGE(PageTail(page), page);
705 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
706 VM_BUG_ON_PAGE(!PageLocked(page), page);
707 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 708 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 709
800d8c63 710 page_ref_add(page, nr);
b065b432
HD
711 page->mapping = mapping;
712 page->index = index;
713
4c6355b2 714 if (!PageSwapCache(page)) {
8f425e4e 715 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
4c6355b2
JW
716 if (error) {
717 if (PageTransHuge(page)) {
718 count_vm_event(THP_FILE_FALLBACK);
719 count_vm_event(THP_FILE_FALLBACK_CHARGE);
720 }
721 goto error;
3fea5a49 722 }
3fea5a49
JW
723 }
724 cgroup_throttle_swaprate(page, gfp);
725
552446a4 726 do {
552446a4 727 xas_lock_irq(&xas);
6b24ca4a
MWO
728 if (expected != xas_find_conflict(&xas)) {
729 xas_set_err(&xas, -EEXIST);
730 goto unlock;
731 }
732 if (expected && xas_find_conflict(&xas)) {
552446a4 733 xas_set_err(&xas, -EEXIST);
552446a4 734 goto unlock;
800d8c63 735 }
6b24ca4a
MWO
736 xas_store(&xas, page);
737 if (xas_error(&xas))
738 goto unlock;
552446a4 739 if (PageTransHuge(page)) {
800d8c63 740 count_vm_event(THP_FILE_ALLOC);
57b2847d 741 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 742 }
800d8c63 743 mapping->nrpages += nr;
0d1c2072
JW
744 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
745 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
746unlock:
747 xas_unlock_irq(&xas);
748 } while (xas_nomem(&xas, gfp));
749
750 if (xas_error(&xas)) {
3fea5a49
JW
751 error = xas_error(&xas);
752 goto error;
46f65ec1 753 }
552446a4
MW
754
755 return 0;
3fea5a49
JW
756error:
757 page->mapping = NULL;
758 page_ref_sub(page, nr);
759 return error;
46f65ec1
HD
760}
761
6922c0c7
HD
762/*
763 * Like delete_from_page_cache, but substitutes swap for page.
764 */
765static void shmem_delete_from_page_cache(struct page *page, void *radswap)
766{
767 struct address_space *mapping = page->mapping;
768 int error;
769
800d8c63
KS
770 VM_BUG_ON_PAGE(PageCompound(page), page);
771
b93b0163 772 xa_lock_irq(&mapping->i_pages);
62f945b6 773 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
774 page->mapping = NULL;
775 mapping->nrpages--;
0d1c2072
JW
776 __dec_lruvec_page_state(page, NR_FILE_PAGES);
777 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 778 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 779 put_page(page);
6922c0c7
HD
780 BUG_ON(error);
781}
782
7a5d0fbb 783/*
c121d3bb 784 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
785 */
786static int shmem_free_swap(struct address_space *mapping,
787 pgoff_t index, void *radswap)
788{
6dbaf22c 789 void *old;
7a5d0fbb 790
55f3f7ea 791 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
792 if (old != radswap)
793 return -ENOENT;
794 free_swap_and_cache(radix_to_swp_entry(radswap));
795 return 0;
7a5d0fbb
HD
796}
797
6a15a370
VB
798/*
799 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 800 * given offsets are swapped out.
6a15a370 801 *
9608703e 802 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
803 * as long as the inode doesn't go away and racy results are not a problem.
804 */
48131e03
VB
805unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806 pgoff_t start, pgoff_t end)
6a15a370 807{
7ae3424f 808 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 809 struct page *page;
48131e03 810 unsigned long swapped = 0;
6a15a370
VB
811
812 rcu_read_lock();
7ae3424f
MW
813 xas_for_each(&xas, page, end - 1) {
814 if (xas_retry(&xas, page))
2cf938aa 815 continue;
3159f943 816 if (xa_is_value(page))
6a15a370
VB
817 swapped++;
818
819 if (need_resched()) {
7ae3424f 820 xas_pause(&xas);
6a15a370 821 cond_resched_rcu();
6a15a370
VB
822 }
823 }
824
825 rcu_read_unlock();
826
827 return swapped << PAGE_SHIFT;
828}
829
48131e03
VB
830/*
831 * Determine (in bytes) how many of the shmem object's pages mapped by the
832 * given vma is swapped out.
833 *
9608703e 834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
835 * as long as the inode doesn't go away and racy results are not a problem.
836 */
837unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838{
839 struct inode *inode = file_inode(vma->vm_file);
840 struct shmem_inode_info *info = SHMEM_I(inode);
841 struct address_space *mapping = inode->i_mapping;
842 unsigned long swapped;
843
844 /* Be careful as we don't hold info->lock */
845 swapped = READ_ONCE(info->swapped);
846
847 /*
848 * The easier cases are when the shmem object has nothing in swap, or
849 * the vma maps it whole. Then we can simply use the stats that we
850 * already track.
851 */
852 if (!swapped)
853 return 0;
854
855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856 return swapped << PAGE_SHIFT;
857
858 /* Here comes the more involved part */
02399c88
PX
859 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
860 vma->vm_pgoff + vma_pages(vma));
48131e03
VB
861}
862
24513264
HD
863/*
864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865 */
866void shmem_unlock_mapping(struct address_space *mapping)
867{
868 struct pagevec pvec;
24513264
HD
869 pgoff_t index = 0;
870
86679820 871 pagevec_init(&pvec);
24513264
HD
872 /*
873 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 */
875 while (!mapping_unevictable(mapping)) {
96888e0a 876 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 877 break;
64e3d12f 878 check_move_unevictable_pages(&pvec);
24513264
HD
879 pagevec_release(&pvec);
880 cond_resched();
881 }
7a5d0fbb
HD
882}
883
b9a8a419 884static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
71725ed1 885{
b9a8a419
MWO
886 struct folio *folio;
887 struct page *page;
71725ed1 888
b9a8a419
MWO
889 /*
890 * At first avoid shmem_getpage(,,,SGP_READ): that fails
891 * beyond i_size, and reports fallocated pages as holes.
892 */
893 folio = __filemap_get_folio(inode->i_mapping, index,
894 FGP_ENTRY | FGP_LOCK, 0);
895 if (!xa_is_value(folio))
896 return folio;
897 /*
898 * But read a page back from swap if any of it is within i_size
899 * (although in some cases this is just a waste of time).
900 */
901 page = NULL;
902 shmem_getpage(inode, index, &page, SGP_READ);
903 return page ? page_folio(page) : NULL;
71725ed1
HD
904}
905
7a5d0fbb 906/*
7f4446ee 907 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 908 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 909 */
1635f6a7
HD
910static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
911 bool unfalloc)
1da177e4 912{
285b2c4f 913 struct address_space *mapping = inode->i_mapping;
1da177e4 914 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
915 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
916 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
0e499ed3 917 struct folio_batch fbatch;
7a5d0fbb 918 pgoff_t indices[PAGEVEC_SIZE];
b9a8a419
MWO
919 struct folio *folio;
920 bool same_folio;
7a5d0fbb 921 long nr_swaps_freed = 0;
285b2c4f 922 pgoff_t index;
bda97eab
HD
923 int i;
924
83e4fa9c
HD
925 if (lend == -1)
926 end = -1; /* unsigned, so actually very big */
bda97eab 927
d144bf62
HD
928 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
929 info->fallocend = start;
930
51dcbdac 931 folio_batch_init(&fbatch);
bda97eab 932 index = start;
5c211ba2 933 while (index < end && find_lock_entries(mapping, index, end - 1,
51dcbdac
MWO
934 &fbatch, indices)) {
935 for (i = 0; i < folio_batch_count(&fbatch); i++) {
b9a8a419 936 folio = fbatch.folios[i];
bda97eab 937
7a5d0fbb 938 index = indices[i];
bda97eab 939
7b774aab 940 if (xa_is_value(folio)) {
1635f6a7
HD
941 if (unfalloc)
942 continue;
7a5d0fbb 943 nr_swaps_freed += !shmem_free_swap(mapping,
7b774aab 944 index, folio);
bda97eab 945 continue;
7a5d0fbb 946 }
7b774aab 947 index += folio_nr_pages(folio) - 1;
7a5d0fbb 948
7b774aab 949 if (!unfalloc || !folio_test_uptodate(folio))
1e84a3d9 950 truncate_inode_folio(mapping, folio);
7b774aab 951 folio_unlock(folio);
bda97eab 952 }
51dcbdac
MWO
953 folio_batch_remove_exceptionals(&fbatch);
954 folio_batch_release(&fbatch);
bda97eab
HD
955 cond_resched();
956 index++;
957 }
1da177e4 958
b9a8a419
MWO
959 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
960 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
961 if (folio) {
962 same_folio = lend < folio_pos(folio) + folio_size(folio);
963 folio_mark_dirty(folio);
964 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
965 start = folio->index + folio_nr_pages(folio);
966 if (same_folio)
967 end = folio->index;
83e4fa9c 968 }
b9a8a419
MWO
969 folio_unlock(folio);
970 folio_put(folio);
971 folio = NULL;
83e4fa9c 972 }
b9a8a419
MWO
973
974 if (!same_folio)
975 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
976 if (folio) {
977 folio_mark_dirty(folio);
978 if (!truncate_inode_partial_folio(folio, lstart, lend))
979 end = folio->index;
980 folio_unlock(folio);
981 folio_put(folio);
bda97eab
HD
982 }
983
984 index = start;
b1a36650 985 while (index < end) {
bda97eab 986 cond_resched();
0cd6144a 987
0e499ed3 988 if (!find_get_entries(mapping, index, end - 1, &fbatch,
cf2039af 989 indices)) {
b1a36650
HD
990 /* If all gone or hole-punch or unfalloc, we're done */
991 if (index == start || end != -1)
bda97eab 992 break;
b1a36650 993 /* But if truncating, restart to make sure all gone */
bda97eab
HD
994 index = start;
995 continue;
996 }
0e499ed3 997 for (i = 0; i < folio_batch_count(&fbatch); i++) {
b9a8a419 998 folio = fbatch.folios[i];
bda97eab 999
7a5d0fbb 1000 index = indices[i];
0e499ed3 1001 if (xa_is_value(folio)) {
1635f6a7
HD
1002 if (unfalloc)
1003 continue;
0e499ed3 1004 if (shmem_free_swap(mapping, index, folio)) {
b1a36650
HD
1005 /* Swap was replaced by page: retry */
1006 index--;
1007 break;
1008 }
1009 nr_swaps_freed++;
7a5d0fbb
HD
1010 continue;
1011 }
1012
0e499ed3 1013 folio_lock(folio);
800d8c63 1014
0e499ed3 1015 if (!unfalloc || !folio_test_uptodate(folio)) {
0e499ed3 1016 if (folio_mapping(folio) != mapping) {
b1a36650 1017 /* Page was replaced by swap: retry */
0e499ed3 1018 folio_unlock(folio);
b1a36650
HD
1019 index--;
1020 break;
1635f6a7 1021 }
0e499ed3
MWO
1022 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1023 folio);
b9a8a419 1024 truncate_inode_folio(mapping, folio);
7a5d0fbb 1025 }
b9a8a419 1026 index = folio->index + folio_nr_pages(folio) - 1;
0e499ed3 1027 folio_unlock(folio);
bda97eab 1028 }
0e499ed3
MWO
1029 folio_batch_remove_exceptionals(&fbatch);
1030 folio_batch_release(&fbatch);
bda97eab
HD
1031 index++;
1032 }
94c1e62d 1033
4595ef88 1034 spin_lock_irq(&info->lock);
7a5d0fbb 1035 info->swapped -= nr_swaps_freed;
1da177e4 1036 shmem_recalc_inode(inode);
4595ef88 1037 spin_unlock_irq(&info->lock);
1635f6a7 1038}
1da177e4 1039
1635f6a7
HD
1040void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041{
1042 shmem_undo_range(inode, lstart, lend, false);
078cd827 1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1044}
94c1e62d 1045EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1046
549c7297
CB
1047static int shmem_getattr(struct user_namespace *mnt_userns,
1048 const struct path *path, struct kstat *stat,
a528d35e 1049 u32 request_mask, unsigned int query_flags)
44a30220 1050{
a528d35e 1051 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1052 struct shmem_inode_info *info = SHMEM_I(inode);
1053
d0424c42 1054 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1055 spin_lock_irq(&info->lock);
d0424c42 1056 shmem_recalc_inode(inode);
4595ef88 1057 spin_unlock_irq(&info->lock);
d0424c42 1058 }
0d56a451 1059 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1060
a7fddc36 1061 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1062 stat->blksize = HPAGE_PMD_SIZE;
1063
44a30220
YZ
1064 return 0;
1065}
1066
549c7297
CB
1067static int shmem_setattr(struct user_namespace *mnt_userns,
1068 struct dentry *dentry, struct iattr *attr)
1da177e4 1069{
75c3cfa8 1070 struct inode *inode = d_inode(dentry);
40e041a2 1071 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1072 int error;
1073
2f221d6f 1074 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1075 if (error)
1076 return error;
1077
94c1e62d
HD
1078 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1079 loff_t oldsize = inode->i_size;
1080 loff_t newsize = attr->ia_size;
3889e6e7 1081
9608703e 1082 /* protected by i_rwsem */
40e041a2
DH
1083 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1084 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1085 return -EPERM;
1086
94c1e62d 1087 if (newsize != oldsize) {
77142517
KK
1088 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1089 oldsize, newsize);
1090 if (error)
1091 return error;
94c1e62d 1092 i_size_write(inode, newsize);
078cd827 1093 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1094 }
afa2db2f 1095 if (newsize <= oldsize) {
94c1e62d 1096 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1097 if (oldsize > holebegin)
1098 unmap_mapping_range(inode->i_mapping,
1099 holebegin, 0, 1);
1100 if (info->alloced)
1101 shmem_truncate_range(inode,
1102 newsize, (loff_t)-1);
94c1e62d 1103 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1104 if (oldsize > holebegin)
1105 unmap_mapping_range(inode->i_mapping,
1106 holebegin, 0, 1);
94c1e62d 1107 }
1da177e4
LT
1108 }
1109
2f221d6f 1110 setattr_copy(&init_user_ns, inode, attr);
db78b877 1111 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1112 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1113 return error;
1114}
1115
1f895f75 1116static void shmem_evict_inode(struct inode *inode)
1da177e4 1117{
1da177e4 1118 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1119 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1120
30e6a51d 1121 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1122 shmem_unacct_size(info->flags, inode->i_size);
1123 inode->i_size = 0;
3889e6e7 1124 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1125 if (!list_empty(&info->shrinklist)) {
1126 spin_lock(&sbinfo->shrinklist_lock);
1127 if (!list_empty(&info->shrinklist)) {
1128 list_del_init(&info->shrinklist);
1129 sbinfo->shrinklist_len--;
1130 }
1131 spin_unlock(&sbinfo->shrinklist_lock);
1132 }
af53d3e9
HD
1133 while (!list_empty(&info->swaplist)) {
1134 /* Wait while shmem_unuse() is scanning this inode... */
1135 wait_var_event(&info->stop_eviction,
1136 !atomic_read(&info->stop_eviction));
cb5f7b9a 1137 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1138 /* ...but beware of the race if we peeked too early */
1139 if (!atomic_read(&info->stop_eviction))
1140 list_del_init(&info->swaplist);
cb5f7b9a 1141 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1142 }
3ed47db3 1143 }
b09e0fa4 1144
38f38657 1145 simple_xattrs_free(&info->xattrs);
0f3c42f5 1146 WARN_ON(inode->i_blocks);
5b04c689 1147 shmem_free_inode(inode->i_sb);
dbd5768f 1148 clear_inode(inode);
1da177e4
LT
1149}
1150
b56a2d8a
VRP
1151static int shmem_find_swap_entries(struct address_space *mapping,
1152 pgoff_t start, unsigned int nr_entries,
1153 struct page **entries, pgoff_t *indices,
10a9c496 1154 unsigned int type)
478922e2 1155{
b56a2d8a
VRP
1156 XA_STATE(xas, &mapping->i_pages, start);
1157 struct page *page;
87039546 1158 swp_entry_t entry;
b56a2d8a
VRP
1159 unsigned int ret = 0;
1160
1161 if (!nr_entries)
1162 return 0;
478922e2
MW
1163
1164 rcu_read_lock();
b56a2d8a
VRP
1165 xas_for_each(&xas, page, ULONG_MAX) {
1166 if (xas_retry(&xas, page))
5b9c98f3 1167 continue;
b56a2d8a
VRP
1168
1169 if (!xa_is_value(page))
478922e2 1170 continue;
b56a2d8a 1171
87039546
HD
1172 entry = radix_to_swp_entry(page);
1173 if (swp_type(entry) != type)
1174 continue;
b56a2d8a
VRP
1175
1176 indices[ret] = xas.xa_index;
1177 entries[ret] = page;
1178
1179 if (need_resched()) {
1180 xas_pause(&xas);
1181 cond_resched_rcu();
1182 }
1183 if (++ret == nr_entries)
1184 break;
478922e2 1185 }
478922e2 1186 rcu_read_unlock();
e21a2955 1187
b56a2d8a 1188 return ret;
478922e2
MW
1189}
1190
46f65ec1 1191/*
b56a2d8a
VRP
1192 * Move the swapped pages for an inode to page cache. Returns the count
1193 * of pages swapped in, or the error in case of failure.
46f65ec1 1194 */
b56a2d8a
VRP
1195static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1196 pgoff_t *indices)
1da177e4 1197{
b56a2d8a
VRP
1198 int i = 0;
1199 int ret = 0;
bde05d1c 1200 int error = 0;
b56a2d8a 1201 struct address_space *mapping = inode->i_mapping;
1da177e4 1202
b56a2d8a
VRP
1203 for (i = 0; i < pvec.nr; i++) {
1204 struct page *page = pvec.pages[i];
2e0e26c7 1205
b56a2d8a
VRP
1206 if (!xa_is_value(page))
1207 continue;
1208 error = shmem_swapin_page(inode, indices[i],
1209 &page, SGP_CACHE,
1210 mapping_gfp_mask(mapping),
1211 NULL, NULL);
1212 if (error == 0) {
1213 unlock_page(page);
1214 put_page(page);
1215 ret++;
1216 }
1217 if (error == -ENOMEM)
1218 break;
1219 error = 0;
bde05d1c 1220 }
b56a2d8a
VRP
1221 return error ? error : ret;
1222}
bde05d1c 1223
b56a2d8a
VRP
1224/*
1225 * If swap found in inode, free it and move page from swapcache to filecache.
1226 */
10a9c496 1227static int shmem_unuse_inode(struct inode *inode, unsigned int type)
b56a2d8a
VRP
1228{
1229 struct address_space *mapping = inode->i_mapping;
1230 pgoff_t start = 0;
1231 struct pagevec pvec;
1232 pgoff_t indices[PAGEVEC_SIZE];
b56a2d8a
VRP
1233 int ret = 0;
1234
1235 pagevec_init(&pvec);
1236 do {
1237 unsigned int nr_entries = PAGEVEC_SIZE;
1238
b56a2d8a 1239 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
10a9c496 1240 pvec.pages, indices, type);
b56a2d8a
VRP
1241 if (pvec.nr == 0) {
1242 ret = 0;
1243 break;
46f65ec1 1244 }
b56a2d8a
VRP
1245
1246 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1247 if (ret < 0)
1248 break;
1249
b56a2d8a
VRP
1250 start = indices[pvec.nr - 1];
1251 } while (true);
1252
1253 return ret;
1da177e4
LT
1254}
1255
1256/*
b56a2d8a
VRP
1257 * Read all the shared memory data that resides in the swap
1258 * device 'type' back into memory, so the swap device can be
1259 * unused.
1da177e4 1260 */
10a9c496 1261int shmem_unuse(unsigned int type)
1da177e4 1262{
b56a2d8a 1263 struct shmem_inode_info *info, *next;
bde05d1c
HD
1264 int error = 0;
1265
b56a2d8a
VRP
1266 if (list_empty(&shmem_swaplist))
1267 return 0;
1268
1269 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1270 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1271 if (!info->swapped) {
6922c0c7 1272 list_del_init(&info->swaplist);
b56a2d8a
VRP
1273 continue;
1274 }
af53d3e9
HD
1275 /*
1276 * Drop the swaplist mutex while searching the inode for swap;
1277 * but before doing so, make sure shmem_evict_inode() will not
1278 * remove placeholder inode from swaplist, nor let it be freed
1279 * (igrab() would protect from unlink, but not from unmount).
1280 */
1281 atomic_inc(&info->stop_eviction);
b56a2d8a 1282 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1283
10a9c496 1284 error = shmem_unuse_inode(&info->vfs_inode, type);
cb5f7b9a 1285 cond_resched();
b56a2d8a
VRP
1286
1287 mutex_lock(&shmem_swaplist_mutex);
1288 next = list_next_entry(info, swaplist);
1289 if (!info->swapped)
1290 list_del_init(&info->swaplist);
af53d3e9
HD
1291 if (atomic_dec_and_test(&info->stop_eviction))
1292 wake_up_var(&info->stop_eviction);
b56a2d8a 1293 if (error)
778dd893 1294 break;
1da177e4 1295 }
cb5f7b9a 1296 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1297
778dd893 1298 return error;
1da177e4
LT
1299}
1300
1301/*
1302 * Move the page from the page cache to the swap cache.
1303 */
1304static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1305{
1306 struct shmem_inode_info *info;
1da177e4 1307 struct address_space *mapping;
1da177e4 1308 struct inode *inode;
6922c0c7
HD
1309 swp_entry_t swap;
1310 pgoff_t index;
1da177e4 1311
1e6decf3
HD
1312 /*
1313 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1314 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1315 * and its shmem_writeback() needs them to be split when swapping.
1316 */
1317 if (PageTransCompound(page)) {
1318 /* Ensure the subpages are still dirty */
1319 SetPageDirty(page);
1320 if (split_huge_page(page) < 0)
1321 goto redirty;
1322 ClearPageDirty(page);
1323 }
1324
1da177e4 1325 BUG_ON(!PageLocked(page));
1da177e4
LT
1326 mapping = page->mapping;
1327 index = page->index;
1328 inode = mapping->host;
1329 info = SHMEM_I(inode);
1330 if (info->flags & VM_LOCKED)
1331 goto redirty;
d9fe526a 1332 if (!total_swap_pages)
1da177e4
LT
1333 goto redirty;
1334
d9fe526a 1335 /*
97b713ba
CH
1336 * Our capabilities prevent regular writeback or sync from ever calling
1337 * shmem_writepage; but a stacking filesystem might use ->writepage of
1338 * its underlying filesystem, in which case tmpfs should write out to
1339 * swap only in response to memory pressure, and not for the writeback
1340 * threads or sync.
d9fe526a 1341 */
48f170fb
HD
1342 if (!wbc->for_reclaim) {
1343 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1344 goto redirty;
1345 }
1635f6a7
HD
1346
1347 /*
1348 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1349 * value into swapfile.c, the only way we can correctly account for a
1350 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1351 *
1352 * That's okay for a page already fallocated earlier, but if we have
1353 * not yet completed the fallocation, then (a) we want to keep track
1354 * of this page in case we have to undo it, and (b) it may not be a
1355 * good idea to continue anyway, once we're pushing into swap. So
1356 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1357 */
1358 if (!PageUptodate(page)) {
1aac1400
HD
1359 if (inode->i_private) {
1360 struct shmem_falloc *shmem_falloc;
1361 spin_lock(&inode->i_lock);
1362 shmem_falloc = inode->i_private;
1363 if (shmem_falloc &&
8e205f77 1364 !shmem_falloc->waitq &&
1aac1400
HD
1365 index >= shmem_falloc->start &&
1366 index < shmem_falloc->next)
1367 shmem_falloc->nr_unswapped++;
1368 else
1369 shmem_falloc = NULL;
1370 spin_unlock(&inode->i_lock);
1371 if (shmem_falloc)
1372 goto redirty;
1373 }
1635f6a7
HD
1374 clear_highpage(page);
1375 flush_dcache_page(page);
1376 SetPageUptodate(page);
1377 }
1378
38d8b4e6 1379 swap = get_swap_page(page);
48f170fb
HD
1380 if (!swap.val)
1381 goto redirty;
d9fe526a 1382
b1dea800
HD
1383 /*
1384 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1385 * if it's not already there. Do it now before the page is
1386 * moved to swap cache, when its pagelock no longer protects
b1dea800 1387 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1388 * we've incremented swapped, because shmem_unuse_inode() will
1389 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1390 */
48f170fb
HD
1391 mutex_lock(&shmem_swaplist_mutex);
1392 if (list_empty(&info->swaplist))
b56a2d8a 1393 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1394
4afab1cd 1395 if (add_to_swap_cache(page, swap,
3852f676
JK
1396 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1397 NULL) == 0) {
4595ef88 1398 spin_lock_irq(&info->lock);
6922c0c7 1399 shmem_recalc_inode(inode);
267a4c76 1400 info->swapped++;
4595ef88 1401 spin_unlock_irq(&info->lock);
6922c0c7 1402
267a4c76
HD
1403 swap_shmem_alloc(swap);
1404 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1405
6922c0c7 1406 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1407 BUG_ON(page_mapped(page));
9fab5619 1408 swap_writepage(page, wbc);
1da177e4
LT
1409 return 0;
1410 }
1411
6922c0c7 1412 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1413 put_swap_page(page, swap);
1da177e4
LT
1414redirty:
1415 set_page_dirty(page);
d9fe526a
HD
1416 if (wbc->for_reclaim)
1417 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1418 unlock_page(page);
1419 return 0;
1da177e4
LT
1420}
1421
75edd345 1422#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1423static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1424{
095f1fc4 1425 char buffer[64];
680d794b 1426
71fe804b 1427 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1428 return; /* show nothing */
680d794b 1429
a7a88b23 1430 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1431
1432 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1433}
71fe804b
LS
1434
1435static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1436{
1437 struct mempolicy *mpol = NULL;
1438 if (sbinfo->mpol) {
bf11b9a8 1439 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1440 mpol = sbinfo->mpol;
1441 mpol_get(mpol);
bf11b9a8 1442 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1443 }
1444 return mpol;
1445}
75edd345
HD
1446#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1447static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1448{
1449}
1450static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1451{
1452 return NULL;
1453}
1454#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1455#ifndef CONFIG_NUMA
1456#define vm_policy vm_private_data
1457#endif
680d794b 1458
800d8c63
KS
1459static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1460 struct shmem_inode_info *info, pgoff_t index)
1461{
1462 /* Create a pseudo vma that just contains the policy */
2c4541e2 1463 vma_init(vma, NULL);
800d8c63
KS
1464 /* Bias interleave by inode number to distribute better across nodes */
1465 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1466 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1467}
1468
1469static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1470{
1471 /* Drop reference taken by mpol_shared_policy_lookup() */
1472 mpol_cond_put(vma->vm_policy);
1473}
1474
41ffe5d5
HD
1475static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1476 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1477{
1da177e4 1478 struct vm_area_struct pvma;
18a2f371 1479 struct page *page;
8c63ca5b
WD
1480 struct vm_fault vmf = {
1481 .vma = &pvma,
1482 };
52cd3b07 1483
800d8c63 1484 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1485 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1486 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1487
800d8c63
KS
1488 return page;
1489}
1490
78cc8cdc
RR
1491/*
1492 * Make sure huge_gfp is always more limited than limit_gfp.
1493 * Some of the flags set permissions, while others set limitations.
1494 */
1495static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1496{
1497 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1498 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1499 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1500 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1501
1502 /* Allow allocations only from the originally specified zones. */
1503 result |= zoneflags;
78cc8cdc
RR
1504
1505 /*
1506 * Minimize the result gfp by taking the union with the deny flags,
1507 * and the intersection of the allow flags.
1508 */
1509 result |= (limit_gfp & denyflags);
1510 result |= (huge_gfp & limit_gfp) & allowflags;
1511
1512 return result;
1513}
1514
800d8c63
KS
1515static struct page *shmem_alloc_hugepage(gfp_t gfp,
1516 struct shmem_inode_info *info, pgoff_t index)
1517{
1518 struct vm_area_struct pvma;
7b8d046f
MW
1519 struct address_space *mapping = info->vfs_inode.i_mapping;
1520 pgoff_t hindex;
800d8c63
KS
1521 struct page *page;
1522
4620a06e 1523 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1524 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1525 XA_PRESENT))
800d8c63 1526 return NULL;
18a2f371 1527
800d8c63 1528 shmem_pseudo_vma_init(&pvma, info, hindex);
be1a13eb 1529 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
800d8c63
KS
1530 shmem_pseudo_vma_destroy(&pvma);
1531 if (page)
1532 prep_transhuge_page(page);
dcdf11ee
DR
1533 else
1534 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1535 return page;
1da177e4
LT
1536}
1537
02098fea 1538static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1539 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1540{
1541 struct vm_area_struct pvma;
18a2f371 1542 struct page *page;
1da177e4 1543
800d8c63
KS
1544 shmem_pseudo_vma_init(&pvma, info, index);
1545 page = alloc_page_vma(gfp, &pvma, 0);
1546 shmem_pseudo_vma_destroy(&pvma);
1547
1548 return page;
1549}
1550
1551static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1552 struct inode *inode,
800d8c63
KS
1553 pgoff_t index, bool huge)
1554{
0f079694 1555 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1556 struct page *page;
1557 int nr;
1558 int err = -ENOSPC;
52cd3b07 1559
396bcc52 1560 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1561 huge = false;
1562 nr = huge ? HPAGE_PMD_NR : 1;
1563
0f079694 1564 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1565 goto failed;
800d8c63
KS
1566
1567 if (huge)
1568 page = shmem_alloc_hugepage(gfp, info, index);
1569 else
1570 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1571 if (page) {
1572 __SetPageLocked(page);
1573 __SetPageSwapBacked(page);
800d8c63 1574 return page;
75edd345 1575 }
18a2f371 1576
800d8c63 1577 err = -ENOMEM;
0f079694 1578 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1579failed:
1580 return ERR_PTR(err);
1da177e4 1581}
71fe804b 1582
bde05d1c
HD
1583/*
1584 * When a page is moved from swapcache to shmem filecache (either by the
1585 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1586 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1587 * ignorance of the mapping it belongs to. If that mapping has special
1588 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1589 * we may need to copy to a suitable page before moving to filecache.
1590 *
1591 * In a future release, this may well be extended to respect cpuset and
1592 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1593 * but for now it is a simple matter of zone.
1594 */
1595static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1596{
1597 return page_zonenum(page) > gfp_zone(gfp);
1598}
1599
1600static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1601 struct shmem_inode_info *info, pgoff_t index)
1602{
1603 struct page *oldpage, *newpage;
d21bba2b 1604 struct folio *old, *new;
bde05d1c 1605 struct address_space *swap_mapping;
c1cb20d4 1606 swp_entry_t entry;
bde05d1c
HD
1607 pgoff_t swap_index;
1608 int error;
1609
1610 oldpage = *pagep;
c1cb20d4
YZ
1611 entry.val = page_private(oldpage);
1612 swap_index = swp_offset(entry);
bde05d1c
HD
1613 swap_mapping = page_mapping(oldpage);
1614
1615 /*
1616 * We have arrived here because our zones are constrained, so don't
1617 * limit chance of success by further cpuset and node constraints.
1618 */
1619 gfp &= ~GFP_CONSTRAINT_MASK;
1620 newpage = shmem_alloc_page(gfp, info, index);
1621 if (!newpage)
1622 return -ENOMEM;
bde05d1c 1623
09cbfeaf 1624 get_page(newpage);
bde05d1c 1625 copy_highpage(newpage, oldpage);
0142ef6c 1626 flush_dcache_page(newpage);
bde05d1c 1627
9956edf3
HD
1628 __SetPageLocked(newpage);
1629 __SetPageSwapBacked(newpage);
bde05d1c 1630 SetPageUptodate(newpage);
c1cb20d4 1631 set_page_private(newpage, entry.val);
bde05d1c
HD
1632 SetPageSwapCache(newpage);
1633
1634 /*
1635 * Our caller will very soon move newpage out of swapcache, but it's
1636 * a nice clean interface for us to replace oldpage by newpage there.
1637 */
b93b0163 1638 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1639 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1640 if (!error) {
d21bba2b
MWO
1641 old = page_folio(oldpage);
1642 new = page_folio(newpage);
1643 mem_cgroup_migrate(old, new);
0d1c2072
JW
1644 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1645 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1646 }
b93b0163 1647 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1648
0142ef6c
HD
1649 if (unlikely(error)) {
1650 /*
1651 * Is this possible? I think not, now that our callers check
1652 * both PageSwapCache and page_private after getting page lock;
1653 * but be defensive. Reverse old to newpage for clear and free.
1654 */
1655 oldpage = newpage;
1656 } else {
6058eaec 1657 lru_cache_add(newpage);
0142ef6c
HD
1658 *pagep = newpage;
1659 }
bde05d1c
HD
1660
1661 ClearPageSwapCache(oldpage);
1662 set_page_private(oldpage, 0);
1663
1664 unlock_page(oldpage);
09cbfeaf
KS
1665 put_page(oldpage);
1666 put_page(oldpage);
0142ef6c 1667 return error;
bde05d1c
HD
1668}
1669
c5bf121e
VRP
1670/*
1671 * Swap in the page pointed to by *pagep.
1672 * Caller has to make sure that *pagep contains a valid swapped page.
1673 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1674 * error code and NULL in *pagep.
c5bf121e
VRP
1675 */
1676static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1677 struct page **pagep, enum sgp_type sgp,
1678 gfp_t gfp, struct vm_area_struct *vma,
1679 vm_fault_t *fault_type)
1680{
1681 struct address_space *mapping = inode->i_mapping;
1682 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1683 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1684 struct page *page;
c5bf121e
VRP
1685 swp_entry_t swap;
1686 int error;
1687
1688 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1689 swap = radix_to_swp_entry(*pagep);
1690 *pagep = NULL;
1691
1692 /* Look it up and read it in.. */
1693 page = lookup_swap_cache(swap, NULL, 0);
1694 if (!page) {
1695 /* Or update major stats only when swapin succeeds?? */
1696 if (fault_type) {
1697 *fault_type |= VM_FAULT_MAJOR;
1698 count_vm_event(PGMAJFAULT);
1699 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1700 }
1701 /* Here we actually start the io */
1702 page = shmem_swapin(swap, gfp, info, index);
1703 if (!page) {
1704 error = -ENOMEM;
1705 goto failed;
1706 }
1707 }
1708
1709 /* We have to do this with page locked to prevent races */
1710 lock_page(page);
1711 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1712 !shmem_confirm_swap(mapping, index, swap)) {
1713 error = -EEXIST;
1714 goto unlock;
1715 }
1716 if (!PageUptodate(page)) {
1717 error = -EIO;
1718 goto failed;
1719 }
1720 wait_on_page_writeback(page);
1721
8a84802e
SP
1722 /*
1723 * Some architectures may have to restore extra metadata to the
1724 * physical page after reading from swap.
1725 */
1726 arch_swap_restore(swap, page);
1727
c5bf121e
VRP
1728 if (shmem_should_replace_page(page, gfp)) {
1729 error = shmem_replace_page(&page, gfp, info, index);
1730 if (error)
1731 goto failed;
1732 }
1733
14235ab3 1734 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1735 swp_to_radix_entry(swap), gfp,
1736 charge_mm);
1737 if (error)
14235ab3 1738 goto failed;
c5bf121e
VRP
1739
1740 spin_lock_irq(&info->lock);
1741 info->swapped--;
1742 shmem_recalc_inode(inode);
1743 spin_unlock_irq(&info->lock);
1744
1745 if (sgp == SGP_WRITE)
1746 mark_page_accessed(page);
1747
1748 delete_from_swap_cache(page);
1749 set_page_dirty(page);
1750 swap_free(swap);
1751
1752 *pagep = page;
1753 return 0;
1754failed:
1755 if (!shmem_confirm_swap(mapping, index, swap))
1756 error = -EEXIST;
1757unlock:
1758 if (page) {
1759 unlock_page(page);
1760 put_page(page);
1761 }
1762
1763 return error;
1764}
1765
1da177e4 1766/*
68da9f05 1767 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1768 *
1769 * If we allocate a new one we do not mark it dirty. That's up to the
1770 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1771 * entry since a page cannot live in both the swap and page cache.
1772 *
c949b097 1773 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1774 * otherwise they are NULL.
1da177e4 1775 */
41ffe5d5 1776static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1777 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1778 struct vm_area_struct *vma, struct vm_fault *vmf,
1779 vm_fault_t *fault_type)
1da177e4
LT
1780{
1781 struct address_space *mapping = inode->i_mapping;
23f919d4 1782 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1783 struct shmem_sb_info *sbinfo;
9e18eb29 1784 struct mm_struct *charge_mm;
27ab7006 1785 struct page *page;
800d8c63 1786 pgoff_t hindex = index;
164cc4fe 1787 gfp_t huge_gfp;
1da177e4 1788 int error;
54af6042 1789 int once = 0;
1635f6a7 1790 int alloced = 0;
1da177e4 1791
09cbfeaf 1792 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1793 return -EFBIG;
1da177e4 1794repeat:
c5bf121e
VRP
1795 if (sgp <= SGP_CACHE &&
1796 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1797 return -EINVAL;
1798 }
1799
1800 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1801 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1802
44835d20
MWO
1803 page = pagecache_get_page(mapping, index,
1804 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1805
1806 if (page && vma && userfaultfd_minor(vma)) {
1807 if (!xa_is_value(page)) {
1808 unlock_page(page);
1809 put_page(page);
1810 }
1811 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1812 return 0;
1813 }
1814
3159f943 1815 if (xa_is_value(page)) {
c5bf121e
VRP
1816 error = shmem_swapin_page(inode, index, &page,
1817 sgp, gfp, vma, fault_type);
1818 if (error == -EEXIST)
1819 goto repeat;
54af6042 1820
c5bf121e
VRP
1821 *pagep = page;
1822 return error;
54af6042
HD
1823 }
1824
acdd9f8e 1825 if (page) {
63ec1973 1826 hindex = page->index;
acdd9f8e
HD
1827 if (sgp == SGP_WRITE)
1828 mark_page_accessed(page);
1829 if (PageUptodate(page))
1830 goto out;
1831 /* fallocated page */
1635f6a7
HD
1832 if (sgp != SGP_READ)
1833 goto clear;
1834 unlock_page(page);
09cbfeaf 1835 put_page(page);
1635f6a7 1836 }
27ab7006
HD
1837
1838 /*
acdd9f8e
HD
1839 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1840 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1841 */
1842 *pagep = NULL;
1843 if (sgp == SGP_READ)
1844 return 0;
1845 if (sgp == SGP_NOALLOC)
1846 return -ENOENT;
1847
1848 /*
1849 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1850 */
54af6042 1851
c5bf121e
VRP
1852 if (vma && userfaultfd_missing(vma)) {
1853 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1854 return 0;
1855 }
cfda0526 1856
5e6e5a12
HD
1857 /* Never use a huge page for shmem_symlink() */
1858 if (S_ISLNK(inode->i_mode))
c5bf121e 1859 goto alloc_nohuge;
5e6e5a12 1860 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1861 goto alloc_nohuge;
1da177e4 1862
164cc4fe 1863 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1864 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1865 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1866 if (IS_ERR(page)) {
1867alloc_nohuge:
1868 page = shmem_alloc_and_acct_page(gfp, inode,
1869 index, false);
1870 }
1871 if (IS_ERR(page)) {
1872 int retry = 5;
800d8c63 1873
c5bf121e
VRP
1874 error = PTR_ERR(page);
1875 page = NULL;
1876 if (error != -ENOSPC)
1877 goto unlock;
1878 /*
1879 * Try to reclaim some space by splitting a huge page
1880 * beyond i_size on the filesystem.
1881 */
1882 while (retry--) {
1883 int ret;
66d2f4d2 1884
c5bf121e
VRP
1885 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1886 if (ret == SHRINK_STOP)
1887 break;
1888 if (ret)
1889 goto alloc_nohuge;
b065b432 1890 }
c5bf121e
VRP
1891 goto unlock;
1892 }
54af6042 1893
c5bf121e
VRP
1894 if (PageTransHuge(page))
1895 hindex = round_down(index, HPAGE_PMD_NR);
1896 else
1897 hindex = index;
54af6042 1898
c5bf121e
VRP
1899 if (sgp == SGP_WRITE)
1900 __SetPageReferenced(page);
1901
c5bf121e 1902 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1903 NULL, gfp & GFP_RECLAIM_MASK,
1904 charge_mm);
1905 if (error)
c5bf121e 1906 goto unacct;
6058eaec 1907 lru_cache_add(page);
779750d2 1908
c5bf121e 1909 spin_lock_irq(&info->lock);
d8c6546b 1910 info->alloced += compound_nr(page);
c5bf121e
VRP
1911 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1912 shmem_recalc_inode(inode);
1913 spin_unlock_irq(&info->lock);
1914 alloced = true;
1915
1916 if (PageTransHuge(page) &&
1917 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1918 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1919 /*
c5bf121e
VRP
1920 * Part of the huge page is beyond i_size: subject
1921 * to shrink under memory pressure.
1635f6a7 1922 */
c5bf121e 1923 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1924 /*
c5bf121e
VRP
1925 * _careful to defend against unlocked access to
1926 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1927 */
c5bf121e
VRP
1928 if (list_empty_careful(&info->shrinklist)) {
1929 list_add_tail(&info->shrinklist,
1930 &sbinfo->shrinklist);
1931 sbinfo->shrinklist_len++;
1932 }
1933 spin_unlock(&sbinfo->shrinklist_lock);
1934 }
800d8c63 1935
c5bf121e
VRP
1936 /*
1937 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1938 */
1939 if (sgp == SGP_FALLOC)
1940 sgp = SGP_WRITE;
1941clear:
1942 /*
1943 * Let SGP_WRITE caller clear ends if write does not fill page;
1944 * but SGP_FALLOC on a page fallocated earlier must initialize
1945 * it now, lest undo on failure cancel our earlier guarantee.
1946 */
1947 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1948 int i;
1949
63ec1973
MWO
1950 for (i = 0; i < compound_nr(page); i++) {
1951 clear_highpage(page + i);
1952 flush_dcache_page(page + i);
ec9516fb 1953 }
63ec1973 1954 SetPageUptodate(page);
1da177e4 1955 }
bde05d1c 1956
54af6042 1957 /* Perhaps the file has been truncated since we checked */
75edd345 1958 if (sgp <= SGP_CACHE &&
09cbfeaf 1959 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1960 if (alloced) {
1961 ClearPageDirty(page);
1962 delete_from_page_cache(page);
4595ef88 1963 spin_lock_irq(&info->lock);
267a4c76 1964 shmem_recalc_inode(inode);
4595ef88 1965 spin_unlock_irq(&info->lock);
267a4c76 1966 }
54af6042 1967 error = -EINVAL;
267a4c76 1968 goto unlock;
e83c32e8 1969 }
63ec1973 1970out:
800d8c63 1971 *pagep = page + index - hindex;
54af6042 1972 return 0;
1da177e4 1973
59a16ead 1974 /*
54af6042 1975 * Error recovery.
59a16ead 1976 */
54af6042 1977unacct:
d8c6546b 1978 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1979
1980 if (PageTransHuge(page)) {
1981 unlock_page(page);
1982 put_page(page);
1983 goto alloc_nohuge;
1984 }
d1899228 1985unlock:
27ab7006 1986 if (page) {
54af6042 1987 unlock_page(page);
09cbfeaf 1988 put_page(page);
54af6042
HD
1989 }
1990 if (error == -ENOSPC && !once++) {
4595ef88 1991 spin_lock_irq(&info->lock);
54af6042 1992 shmem_recalc_inode(inode);
4595ef88 1993 spin_unlock_irq(&info->lock);
27ab7006 1994 goto repeat;
ff36b801 1995 }
7f4446ee 1996 if (error == -EEXIST)
54af6042
HD
1997 goto repeat;
1998 return error;
1da177e4
LT
1999}
2000
10d20bd2
LT
2001/*
2002 * This is like autoremove_wake_function, but it removes the wait queue
2003 * entry unconditionally - even if something else had already woken the
2004 * target.
2005 */
ac6424b9 2006static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2007{
2008 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2009 list_del_init(&wait->entry);
10d20bd2
LT
2010 return ret;
2011}
2012
20acce67 2013static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2014{
11bac800 2015 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2016 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2017 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2018 int err;
2019 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2020
f00cdc6d
HD
2021 /*
2022 * Trinity finds that probing a hole which tmpfs is punching can
2023 * prevent the hole-punch from ever completing: which in turn
9608703e 2024 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2025 * faulting pages into the hole while it's being punched. Although
2026 * shmem_undo_range() does remove the additions, it may be unable to
2027 * keep up, as each new page needs its own unmap_mapping_range() call,
2028 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2029 *
2030 * It does not matter if we sometimes reach this check just before the
2031 * hole-punch begins, so that one fault then races with the punch:
2032 * we just need to make racing faults a rare case.
2033 *
2034 * The implementation below would be much simpler if we just used a
9608703e 2035 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2036 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2037 */
2038 if (unlikely(inode->i_private)) {
2039 struct shmem_falloc *shmem_falloc;
2040
2041 spin_lock(&inode->i_lock);
2042 shmem_falloc = inode->i_private;
8e205f77
HD
2043 if (shmem_falloc &&
2044 shmem_falloc->waitq &&
2045 vmf->pgoff >= shmem_falloc->start &&
2046 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2047 struct file *fpin;
8e205f77 2048 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2049 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2050
2051 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2052 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2053 if (fpin)
8e205f77 2054 ret = VM_FAULT_RETRY;
8e205f77
HD
2055
2056 shmem_falloc_waitq = shmem_falloc->waitq;
2057 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2058 TASK_UNINTERRUPTIBLE);
2059 spin_unlock(&inode->i_lock);
2060 schedule();
2061
2062 /*
2063 * shmem_falloc_waitq points into the shmem_fallocate()
2064 * stack of the hole-punching task: shmem_falloc_waitq
2065 * is usually invalid by the time we reach here, but
2066 * finish_wait() does not dereference it in that case;
2067 * though i_lock needed lest racing with wake_up_all().
2068 */
2069 spin_lock(&inode->i_lock);
2070 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2071 spin_unlock(&inode->i_lock);
8897c1b1
KS
2072
2073 if (fpin)
2074 fput(fpin);
8e205f77 2075 return ret;
f00cdc6d 2076 }
8e205f77 2077 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2078 }
2079
5e6e5a12 2080 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2081 gfp, vma, vmf, &ret);
20acce67
SJ
2082 if (err)
2083 return vmf_error(err);
68da9f05 2084 return ret;
1da177e4
LT
2085}
2086
c01d5b30
HD
2087unsigned long shmem_get_unmapped_area(struct file *file,
2088 unsigned long uaddr, unsigned long len,
2089 unsigned long pgoff, unsigned long flags)
2090{
2091 unsigned long (*get_area)(struct file *,
2092 unsigned long, unsigned long, unsigned long, unsigned long);
2093 unsigned long addr;
2094 unsigned long offset;
2095 unsigned long inflated_len;
2096 unsigned long inflated_addr;
2097 unsigned long inflated_offset;
2098
2099 if (len > TASK_SIZE)
2100 return -ENOMEM;
2101
2102 get_area = current->mm->get_unmapped_area;
2103 addr = get_area(file, uaddr, len, pgoff, flags);
2104
396bcc52 2105 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2106 return addr;
2107 if (IS_ERR_VALUE(addr))
2108 return addr;
2109 if (addr & ~PAGE_MASK)
2110 return addr;
2111 if (addr > TASK_SIZE - len)
2112 return addr;
2113
2114 if (shmem_huge == SHMEM_HUGE_DENY)
2115 return addr;
2116 if (len < HPAGE_PMD_SIZE)
2117 return addr;
2118 if (flags & MAP_FIXED)
2119 return addr;
2120 /*
2121 * Our priority is to support MAP_SHARED mapped hugely;
2122 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2123 * But if caller specified an address hint and we allocated area there
2124 * successfully, respect that as before.
c01d5b30 2125 */
99158997 2126 if (uaddr == addr)
c01d5b30
HD
2127 return addr;
2128
2129 if (shmem_huge != SHMEM_HUGE_FORCE) {
2130 struct super_block *sb;
2131
2132 if (file) {
2133 VM_BUG_ON(file->f_op != &shmem_file_operations);
2134 sb = file_inode(file)->i_sb;
2135 } else {
2136 /*
2137 * Called directly from mm/mmap.c, or drivers/char/mem.c
2138 * for "/dev/zero", to create a shared anonymous object.
2139 */
2140 if (IS_ERR(shm_mnt))
2141 return addr;
2142 sb = shm_mnt->mnt_sb;
2143 }
3089bf61 2144 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2145 return addr;
2146 }
2147
2148 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2149 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2150 return addr;
2151 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2152 return addr;
2153
2154 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2155 if (inflated_len > TASK_SIZE)
2156 return addr;
2157 if (inflated_len < len)
2158 return addr;
2159
99158997 2160 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2161 if (IS_ERR_VALUE(inflated_addr))
2162 return addr;
2163 if (inflated_addr & ~PAGE_MASK)
2164 return addr;
2165
2166 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2167 inflated_addr += offset - inflated_offset;
2168 if (inflated_offset > offset)
2169 inflated_addr += HPAGE_PMD_SIZE;
2170
2171 if (inflated_addr > TASK_SIZE - len)
2172 return addr;
2173 return inflated_addr;
2174}
2175
1da177e4 2176#ifdef CONFIG_NUMA
41ffe5d5 2177static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2178{
496ad9aa 2179 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2180 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2181}
2182
d8dc74f2
AB
2183static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2184 unsigned long addr)
1da177e4 2185{
496ad9aa 2186 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2187 pgoff_t index;
1da177e4 2188
41ffe5d5
HD
2189 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2190 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2191}
2192#endif
2193
d7c9e99a 2194int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2195{
496ad9aa 2196 struct inode *inode = file_inode(file);
1da177e4
LT
2197 struct shmem_inode_info *info = SHMEM_I(inode);
2198 int retval = -ENOMEM;
2199
ea0dfeb4
HD
2200 /*
2201 * What serializes the accesses to info->flags?
2202 * ipc_lock_object() when called from shmctl_do_lock(),
2203 * no serialization needed when called from shm_destroy().
2204 */
1da177e4 2205 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2206 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2207 goto out_nomem;
2208 info->flags |= VM_LOCKED;
89e004ea 2209 mapping_set_unevictable(file->f_mapping);
1da177e4 2210 }
d7c9e99a
AG
2211 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2212 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2213 info->flags &= ~VM_LOCKED;
89e004ea 2214 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2215 }
2216 retval = 0;
89e004ea 2217
1da177e4 2218out_nomem:
1da177e4
LT
2219 return retval;
2220}
2221
9b83a6a8 2222static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2223{
ab3948f5 2224 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2225 int ret;
ab3948f5 2226
22247efd
PX
2227 ret = seal_check_future_write(info->seals, vma);
2228 if (ret)
2229 return ret;
ab3948f5 2230
51b0bff2
CM
2231 /* arm64 - allow memory tagging on RAM-based files */
2232 vma->vm_flags |= VM_MTE_ALLOWED;
2233
1da177e4
LT
2234 file_accessed(file);
2235 vma->vm_ops = &shmem_vm_ops;
396bcc52 2236 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2237 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2238 (vma->vm_end & HPAGE_PMD_MASK)) {
2239 khugepaged_enter(vma, vma->vm_flags);
2240 }
1da177e4
LT
2241 return 0;
2242}
2243
454abafe 2244static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2245 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2246{
2247 struct inode *inode;
2248 struct shmem_inode_info *info;
2249 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2250 ino_t ino;
1da177e4 2251
e809d5f0 2252 if (shmem_reserve_inode(sb, &ino))
5b04c689 2253 return NULL;
1da177e4
LT
2254
2255 inode = new_inode(sb);
2256 if (inode) {
e809d5f0 2257 inode->i_ino = ino;
21cb47be 2258 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2259 inode->i_blocks = 0;
078cd827 2260 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2261 inode->i_generation = prandom_u32();
1da177e4
LT
2262 info = SHMEM_I(inode);
2263 memset(info, 0, (char *)inode - (char *)info);
2264 spin_lock_init(&info->lock);
af53d3e9 2265 atomic_set(&info->stop_eviction, 0);
40e041a2 2266 info->seals = F_SEAL_SEAL;
0b0a0806 2267 info->flags = flags & VM_NORESERVE;
779750d2 2268 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2269 INIT_LIST_HEAD(&info->swaplist);
38f38657 2270 simple_xattrs_init(&info->xattrs);
72c04902 2271 cache_no_acl(inode);
ff36da69 2272 mapping_set_large_folios(inode->i_mapping);
1da177e4
LT
2273
2274 switch (mode & S_IFMT) {
2275 default:
39f0247d 2276 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2277 init_special_inode(inode, mode, dev);
2278 break;
2279 case S_IFREG:
14fcc23f 2280 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2281 inode->i_op = &shmem_inode_operations;
2282 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2283 mpol_shared_policy_init(&info->policy,
2284 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2285 break;
2286 case S_IFDIR:
d8c76e6f 2287 inc_nlink(inode);
1da177e4
LT
2288 /* Some things misbehave if size == 0 on a directory */
2289 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2290 inode->i_op = &shmem_dir_inode_operations;
2291 inode->i_fop = &simple_dir_operations;
2292 break;
2293 case S_IFLNK:
2294 /*
2295 * Must not load anything in the rbtree,
2296 * mpol_free_shared_policy will not be called.
2297 */
71fe804b 2298 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2299 break;
2300 }
b45d71fb
JFG
2301
2302 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2303 } else
2304 shmem_free_inode(sb);
1da177e4
LT
2305 return inode;
2306}
2307
3460f6e5
AR
2308#ifdef CONFIG_USERFAULTFD
2309int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2310 pmd_t *dst_pmd,
2311 struct vm_area_struct *dst_vma,
2312 unsigned long dst_addr,
2313 unsigned long src_addr,
2314 bool zeropage,
2315 struct page **pagep)
4c27fe4c
MR
2316{
2317 struct inode *inode = file_inode(dst_vma->vm_file);
2318 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2319 struct address_space *mapping = inode->i_mapping;
2320 gfp_t gfp = mapping_gfp_mask(mapping);
2321 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2322 void *page_kaddr;
2323 struct page *page;
4c27fe4c 2324 int ret;
3460f6e5 2325 pgoff_t max_off;
4c27fe4c 2326
7ed9d238
AR
2327 if (!shmem_inode_acct_block(inode, 1)) {
2328 /*
2329 * We may have got a page, returned -ENOENT triggering a retry,
2330 * and now we find ourselves with -ENOMEM. Release the page, to
2331 * avoid a BUG_ON in our caller.
2332 */
2333 if (unlikely(*pagep)) {
2334 put_page(*pagep);
2335 *pagep = NULL;
2336 }
7d64ae3a 2337 return -ENOMEM;
7ed9d238 2338 }
4c27fe4c 2339
cb658a45 2340 if (!*pagep) {
7d64ae3a 2341 ret = -ENOMEM;
4c27fe4c
MR
2342 page = shmem_alloc_page(gfp, info, pgoff);
2343 if (!page)
0f079694 2344 goto out_unacct_blocks;
4c27fe4c 2345
3460f6e5 2346 if (!zeropage) { /* COPY */
8d103963
MR
2347 page_kaddr = kmap_atomic(page);
2348 ret = copy_from_user(page_kaddr,
2349 (const void __user *)src_addr,
2350 PAGE_SIZE);
2351 kunmap_atomic(page_kaddr);
2352
c1e8d7c6 2353 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2354 if (unlikely(ret)) {
2355 *pagep = page;
7d64ae3a 2356 ret = -ENOENT;
8d103963 2357 /* don't free the page */
7d64ae3a 2358 goto out_unacct_blocks;
8d103963 2359 }
3460f6e5 2360 } else { /* ZEROPAGE */
8d103963 2361 clear_highpage(page);
4c27fe4c
MR
2362 }
2363 } else {
2364 page = *pagep;
2365 *pagep = NULL;
2366 }
2367
3460f6e5
AR
2368 VM_BUG_ON(PageLocked(page));
2369 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2370 __SetPageLocked(page);
2371 __SetPageSwapBacked(page);
a425d358 2372 __SetPageUptodate(page);
9cc90c66 2373
e2a50c1f 2374 ret = -EFAULT;
e2a50c1f 2375 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2376 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2377 goto out_release;
2378
552446a4 2379 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2380 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2381 if (ret)
3fea5a49 2382 goto out_release;
4c27fe4c 2383
7d64ae3a
AR
2384 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2385 page, true, false);
2386 if (ret)
2387 goto out_delete_from_cache;
4c27fe4c 2388
94b7cc01 2389 spin_lock_irq(&info->lock);
4c27fe4c
MR
2390 info->alloced++;
2391 inode->i_blocks += BLOCKS_PER_PAGE;
2392 shmem_recalc_inode(inode);
94b7cc01 2393 spin_unlock_irq(&info->lock);
4c27fe4c 2394
e2a50c1f 2395 unlock_page(page);
7d64ae3a
AR
2396 return 0;
2397out_delete_from_cache:
e2a50c1f 2398 delete_from_page_cache(page);
4c27fe4c 2399out_release:
9cc90c66 2400 unlock_page(page);
4c27fe4c 2401 put_page(page);
4c27fe4c 2402out_unacct_blocks:
0f079694 2403 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2404 return ret;
8d103963 2405}
3460f6e5 2406#endif /* CONFIG_USERFAULTFD */
8d103963 2407
1da177e4 2408#ifdef CONFIG_TMPFS
92e1d5be 2409static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2410static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2411
6d9d88d0
JS
2412#ifdef CONFIG_TMPFS_XATTR
2413static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2414#else
2415#define shmem_initxattrs NULL
2416#endif
2417
1da177e4 2418static int
800d15a5
NP
2419shmem_write_begin(struct file *file, struct address_space *mapping,
2420 loff_t pos, unsigned len, unsigned flags,
2421 struct page **pagep, void **fsdata)
1da177e4 2422{
800d15a5 2423 struct inode *inode = mapping->host;
40e041a2 2424 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2425 pgoff_t index = pos >> PAGE_SHIFT;
a7605426 2426 int ret = 0;
40e041a2 2427
9608703e 2428 /* i_rwsem is held by caller */
ab3948f5
JFG
2429 if (unlikely(info->seals & (F_SEAL_GROW |
2430 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2431 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2432 return -EPERM;
2433 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2434 return -EPERM;
2435 }
2436
a7605426
YS
2437 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2438
2439 if (ret)
2440 return ret;
2441
2442 if (PageHWPoison(*pagep)) {
2443 unlock_page(*pagep);
2444 put_page(*pagep);
2445 *pagep = NULL;
2446 return -EIO;
2447 }
2448
2449 return 0;
800d15a5
NP
2450}
2451
2452static int
2453shmem_write_end(struct file *file, struct address_space *mapping,
2454 loff_t pos, unsigned len, unsigned copied,
2455 struct page *page, void *fsdata)
2456{
2457 struct inode *inode = mapping->host;
2458
d3602444
HD
2459 if (pos + copied > inode->i_size)
2460 i_size_write(inode, pos + copied);
2461
ec9516fb 2462 if (!PageUptodate(page)) {
800d8c63
KS
2463 struct page *head = compound_head(page);
2464 if (PageTransCompound(page)) {
2465 int i;
2466
2467 for (i = 0; i < HPAGE_PMD_NR; i++) {
2468 if (head + i == page)
2469 continue;
2470 clear_highpage(head + i);
2471 flush_dcache_page(head + i);
2472 }
2473 }
09cbfeaf
KS
2474 if (copied < PAGE_SIZE) {
2475 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2476 zero_user_segments(page, 0, from,
09cbfeaf 2477 from + copied, PAGE_SIZE);
ec9516fb 2478 }
800d8c63 2479 SetPageUptodate(head);
ec9516fb 2480 }
800d15a5 2481 set_page_dirty(page);
6746aff7 2482 unlock_page(page);
09cbfeaf 2483 put_page(page);
800d15a5 2484
800d15a5 2485 return copied;
1da177e4
LT
2486}
2487
2ba5bbed 2488static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2489{
6e58e79d
AV
2490 struct file *file = iocb->ki_filp;
2491 struct inode *inode = file_inode(file);
1da177e4 2492 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2493 pgoff_t index;
2494 unsigned long offset;
a0ee5ec5 2495 enum sgp_type sgp = SGP_READ;
f7c1d074 2496 int error = 0;
cb66a7a1 2497 ssize_t retval = 0;
6e58e79d 2498 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2499
2500 /*
2501 * Might this read be for a stacking filesystem? Then when reading
2502 * holes of a sparse file, we actually need to allocate those pages,
2503 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2504 */
777eda2c 2505 if (!iter_is_iovec(to))
75edd345 2506 sgp = SGP_CACHE;
1da177e4 2507
09cbfeaf
KS
2508 index = *ppos >> PAGE_SHIFT;
2509 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2510
2511 for (;;) {
2512 struct page *page = NULL;
41ffe5d5
HD
2513 pgoff_t end_index;
2514 unsigned long nr, ret;
1da177e4
LT
2515 loff_t i_size = i_size_read(inode);
2516
09cbfeaf 2517 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2518 if (index > end_index)
2519 break;
2520 if (index == end_index) {
09cbfeaf 2521 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2522 if (nr <= offset)
2523 break;
2524 }
2525
9e18eb29 2526 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2527 if (error) {
2528 if (error == -EINVAL)
2529 error = 0;
1da177e4
LT
2530 break;
2531 }
75edd345
HD
2532 if (page) {
2533 if (sgp == SGP_CACHE)
2534 set_page_dirty(page);
d3602444 2535 unlock_page(page);
a7605426
YS
2536
2537 if (PageHWPoison(page)) {
2538 put_page(page);
2539 error = -EIO;
2540 break;
2541 }
75edd345 2542 }
1da177e4
LT
2543
2544 /*
2545 * We must evaluate after, since reads (unlike writes)
9608703e 2546 * are called without i_rwsem protection against truncate
1da177e4 2547 */
09cbfeaf 2548 nr = PAGE_SIZE;
1da177e4 2549 i_size = i_size_read(inode);
09cbfeaf 2550 end_index = i_size >> PAGE_SHIFT;
1da177e4 2551 if (index == end_index) {
09cbfeaf 2552 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2553 if (nr <= offset) {
2554 if (page)
09cbfeaf 2555 put_page(page);
1da177e4
LT
2556 break;
2557 }
2558 }
2559 nr -= offset;
2560
2561 if (page) {
2562 /*
2563 * If users can be writing to this page using arbitrary
2564 * virtual addresses, take care about potential aliasing
2565 * before reading the page on the kernel side.
2566 */
2567 if (mapping_writably_mapped(mapping))
2568 flush_dcache_page(page);
2569 /*
2570 * Mark the page accessed if we read the beginning.
2571 */
2572 if (!offset)
2573 mark_page_accessed(page);
b5810039 2574 } else {
1da177e4 2575 page = ZERO_PAGE(0);
09cbfeaf 2576 get_page(page);
b5810039 2577 }
1da177e4
LT
2578
2579 /*
2580 * Ok, we have the page, and it's up-to-date, so
2581 * now we can copy it to user space...
1da177e4 2582 */
2ba5bbed 2583 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2584 retval += ret;
1da177e4 2585 offset += ret;
09cbfeaf
KS
2586 index += offset >> PAGE_SHIFT;
2587 offset &= ~PAGE_MASK;
1da177e4 2588
09cbfeaf 2589 put_page(page);
2ba5bbed 2590 if (!iov_iter_count(to))
1da177e4 2591 break;
6e58e79d
AV
2592 if (ret < nr) {
2593 error = -EFAULT;
2594 break;
2595 }
1da177e4
LT
2596 cond_resched();
2597 }
2598
09cbfeaf 2599 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2600 file_accessed(file);
2601 return retval ? retval : error;
1da177e4
LT
2602}
2603
965c8e59 2604static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2605{
2606 struct address_space *mapping = file->f_mapping;
2607 struct inode *inode = mapping->host;
220f2ac9 2608
965c8e59
AM
2609 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2610 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2611 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2612 if (offset < 0)
2613 return -ENXIO;
2614
5955102c 2615 inode_lock(inode);
9608703e 2616 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2617 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2618 if (offset >= 0)
2619 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2620 inode_unlock(inode);
220f2ac9
HD
2621 return offset;
2622}
2623
83e4fa9c
HD
2624static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2625 loff_t len)
2626{
496ad9aa 2627 struct inode *inode = file_inode(file);
e2d12e22 2628 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2629 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2630 struct shmem_falloc shmem_falloc;
d144bf62 2631 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2632 int error;
83e4fa9c 2633
13ace4d0
HD
2634 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2635 return -EOPNOTSUPP;
2636
5955102c 2637 inode_lock(inode);
83e4fa9c
HD
2638
2639 if (mode & FALLOC_FL_PUNCH_HOLE) {
2640 struct address_space *mapping = file->f_mapping;
2641 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2642 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2643 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2644
9608703e 2645 /* protected by i_rwsem */
ab3948f5 2646 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2647 error = -EPERM;
2648 goto out;
2649 }
2650
8e205f77 2651 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2652 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2653 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2654 spin_lock(&inode->i_lock);
2655 inode->i_private = &shmem_falloc;
2656 spin_unlock(&inode->i_lock);
2657
83e4fa9c
HD
2658 if ((u64)unmap_end > (u64)unmap_start)
2659 unmap_mapping_range(mapping, unmap_start,
2660 1 + unmap_end - unmap_start, 0);
2661 shmem_truncate_range(inode, offset, offset + len - 1);
2662 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2663
2664 spin_lock(&inode->i_lock);
2665 inode->i_private = NULL;
2666 wake_up_all(&shmem_falloc_waitq);
2055da97 2667 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2668 spin_unlock(&inode->i_lock);
83e4fa9c 2669 error = 0;
8e205f77 2670 goto out;
e2d12e22
HD
2671 }
2672
2673 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2674 error = inode_newsize_ok(inode, offset + len);
2675 if (error)
2676 goto out;
2677
40e041a2
DH
2678 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2679 error = -EPERM;
2680 goto out;
2681 }
2682
09cbfeaf
KS
2683 start = offset >> PAGE_SHIFT;
2684 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2685 /* Try to avoid a swapstorm if len is impossible to satisfy */
2686 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2687 error = -ENOSPC;
2688 goto out;
83e4fa9c
HD
2689 }
2690
8e205f77 2691 shmem_falloc.waitq = NULL;
1aac1400
HD
2692 shmem_falloc.start = start;
2693 shmem_falloc.next = start;
2694 shmem_falloc.nr_falloced = 0;
2695 shmem_falloc.nr_unswapped = 0;
2696 spin_lock(&inode->i_lock);
2697 inode->i_private = &shmem_falloc;
2698 spin_unlock(&inode->i_lock);
2699
d144bf62
HD
2700 /*
2701 * info->fallocend is only relevant when huge pages might be
2702 * involved: to prevent split_huge_page() freeing fallocated
2703 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2704 */
2705 undo_fallocend = info->fallocend;
2706 if (info->fallocend < end)
2707 info->fallocend = end;
2708
050dcb5c 2709 for (index = start; index < end; ) {
e2d12e22
HD
2710 struct page *page;
2711
2712 /*
2713 * Good, the fallocate(2) manpage permits EINTR: we may have
2714 * been interrupted because we are using up too much memory.
2715 */
2716 if (signal_pending(current))
2717 error = -EINTR;
1aac1400
HD
2718 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2719 error = -ENOMEM;
e2d12e22 2720 else
9e18eb29 2721 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2722 if (error) {
d144bf62 2723 info->fallocend = undo_fallocend;
1635f6a7 2724 /* Remove the !PageUptodate pages we added */
7f556567
HD
2725 if (index > start) {
2726 shmem_undo_range(inode,
2727 (loff_t)start << PAGE_SHIFT,
2728 ((loff_t)index << PAGE_SHIFT) - 1, true);
2729 }
1aac1400 2730 goto undone;
e2d12e22
HD
2731 }
2732
050dcb5c
HD
2733 index++;
2734 /*
2735 * Here is a more important optimization than it appears:
2736 * a second SGP_FALLOC on the same huge page will clear it,
2737 * making it PageUptodate and un-undoable if we fail later.
2738 */
2739 if (PageTransCompound(page)) {
2740 index = round_up(index, HPAGE_PMD_NR);
2741 /* Beware 32-bit wraparound */
2742 if (!index)
2743 index--;
2744 }
2745
1aac1400
HD
2746 /*
2747 * Inform shmem_writepage() how far we have reached.
2748 * No need for lock or barrier: we have the page lock.
2749 */
1aac1400 2750 if (!PageUptodate(page))
050dcb5c
HD
2751 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2752 shmem_falloc.next = index;
1aac1400 2753
e2d12e22 2754 /*
1635f6a7
HD
2755 * If !PageUptodate, leave it that way so that freeable pages
2756 * can be recognized if we need to rollback on error later.
2757 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2758 * than free the pages we are allocating (and SGP_CACHE pages
2759 * might still be clean: we now need to mark those dirty too).
2760 */
2761 set_page_dirty(page);
2762 unlock_page(page);
09cbfeaf 2763 put_page(page);
e2d12e22
HD
2764 cond_resched();
2765 }
2766
2767 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2768 i_size_write(inode, offset + len);
078cd827 2769 inode->i_ctime = current_time(inode);
1aac1400
HD
2770undone:
2771 spin_lock(&inode->i_lock);
2772 inode->i_private = NULL;
2773 spin_unlock(&inode->i_lock);
e2d12e22 2774out:
5955102c 2775 inode_unlock(inode);
83e4fa9c
HD
2776 return error;
2777}
2778
726c3342 2779static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2780{
726c3342 2781 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2782
2783 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2784 buf->f_bsize = PAGE_SIZE;
1da177e4 2785 buf->f_namelen = NAME_MAX;
0edd73b3 2786 if (sbinfo->max_blocks) {
1da177e4 2787 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2788 buf->f_bavail =
2789 buf->f_bfree = sbinfo->max_blocks -
2790 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2791 }
2792 if (sbinfo->max_inodes) {
1da177e4
LT
2793 buf->f_files = sbinfo->max_inodes;
2794 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2795 }
2796 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2797
2798 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2799
1da177e4
LT
2800 return 0;
2801}
2802
2803/*
2804 * File creation. Allocate an inode, and we're done..
2805 */
2806static int
549c7297
CB
2807shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2808 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2809{
0b0a0806 2810 struct inode *inode;
1da177e4
LT
2811 int error = -ENOSPC;
2812
454abafe 2813 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2814 if (inode) {
feda821e
CH
2815 error = simple_acl_create(dir, inode);
2816 if (error)
2817 goto out_iput;
2a7dba39 2818 error = security_inode_init_security(inode, dir,
9d8f13ba 2819 &dentry->d_name,
6d9d88d0 2820 shmem_initxattrs, NULL);
feda821e
CH
2821 if (error && error != -EOPNOTSUPP)
2822 goto out_iput;
37ec43cd 2823
718deb6b 2824 error = 0;
1da177e4 2825 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2826 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2827 d_instantiate(dentry, inode);
2828 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2829 }
2830 return error;
feda821e
CH
2831out_iput:
2832 iput(inode);
2833 return error;
1da177e4
LT
2834}
2835
60545d0d 2836static int
549c7297
CB
2837shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2838 struct dentry *dentry, umode_t mode)
60545d0d
AV
2839{
2840 struct inode *inode;
2841 int error = -ENOSPC;
2842
2843 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2844 if (inode) {
2845 error = security_inode_init_security(inode, dir,
2846 NULL,
2847 shmem_initxattrs, NULL);
feda821e
CH
2848 if (error && error != -EOPNOTSUPP)
2849 goto out_iput;
2850 error = simple_acl_create(dir, inode);
2851 if (error)
2852 goto out_iput;
60545d0d
AV
2853 d_tmpfile(dentry, inode);
2854 }
2855 return error;
feda821e
CH
2856out_iput:
2857 iput(inode);
2858 return error;
60545d0d
AV
2859}
2860
549c7297
CB
2861static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2862 struct dentry *dentry, umode_t mode)
1da177e4
LT
2863{
2864 int error;
2865
549c7297
CB
2866 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2867 mode | S_IFDIR, 0)))
1da177e4 2868 return error;
d8c76e6f 2869 inc_nlink(dir);
1da177e4
LT
2870 return 0;
2871}
2872
549c7297
CB
2873static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2874 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2875{
549c7297 2876 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2877}
2878
2879/*
2880 * Link a file..
2881 */
2882static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2883{
75c3cfa8 2884 struct inode *inode = d_inode(old_dentry);
29b00e60 2885 int ret = 0;
1da177e4
LT
2886
2887 /*
2888 * No ordinary (disk based) filesystem counts links as inodes;
2889 * but each new link needs a new dentry, pinning lowmem, and
2890 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2891 * But if an O_TMPFILE file is linked into the tmpfs, the
2892 * first link must skip that, to get the accounting right.
1da177e4 2893 */
1062af92 2894 if (inode->i_nlink) {
e809d5f0 2895 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2896 if (ret)
2897 goto out;
2898 }
1da177e4
LT
2899
2900 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2901 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2902 inc_nlink(inode);
7de9c6ee 2903 ihold(inode); /* New dentry reference */
1da177e4
LT
2904 dget(dentry); /* Extra pinning count for the created dentry */
2905 d_instantiate(dentry, inode);
5b04c689
PE
2906out:
2907 return ret;
1da177e4
LT
2908}
2909
2910static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2911{
75c3cfa8 2912 struct inode *inode = d_inode(dentry);
1da177e4 2913
5b04c689
PE
2914 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2915 shmem_free_inode(inode->i_sb);
1da177e4
LT
2916
2917 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2918 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2919 drop_nlink(inode);
1da177e4
LT
2920 dput(dentry); /* Undo the count from "create" - this does all the work */
2921 return 0;
2922}
2923
2924static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2925{
2926 if (!simple_empty(dentry))
2927 return -ENOTEMPTY;
2928
75c3cfa8 2929 drop_nlink(d_inode(dentry));
9a53c3a7 2930 drop_nlink(dir);
1da177e4
LT
2931 return shmem_unlink(dir, dentry);
2932}
2933
549c7297
CB
2934static int shmem_whiteout(struct user_namespace *mnt_userns,
2935 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2936{
2937 struct dentry *whiteout;
2938 int error;
2939
2940 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2941 if (!whiteout)
2942 return -ENOMEM;
2943
549c7297 2944 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2945 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2946 dput(whiteout);
2947 if (error)
2948 return error;
2949
2950 /*
2951 * Cheat and hash the whiteout while the old dentry is still in
2952 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2953 *
2954 * d_lookup() will consistently find one of them at this point,
2955 * not sure which one, but that isn't even important.
2956 */
2957 d_rehash(whiteout);
2958 return 0;
2959}
2960
1da177e4
LT
2961/*
2962 * The VFS layer already does all the dentry stuff for rename,
2963 * we just have to decrement the usage count for the target if
2964 * it exists so that the VFS layer correctly free's it when it
2965 * gets overwritten.
2966 */
549c7297
CB
2967static int shmem_rename2(struct user_namespace *mnt_userns,
2968 struct inode *old_dir, struct dentry *old_dentry,
2969 struct inode *new_dir, struct dentry *new_dentry,
2970 unsigned int flags)
1da177e4 2971{
75c3cfa8 2972 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2973 int they_are_dirs = S_ISDIR(inode->i_mode);
2974
46fdb794 2975 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2976 return -EINVAL;
2977
37456771 2978 if (flags & RENAME_EXCHANGE)
6429e463 2979 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
37456771 2980
1da177e4
LT
2981 if (!simple_empty(new_dentry))
2982 return -ENOTEMPTY;
2983
46fdb794
MS
2984 if (flags & RENAME_WHITEOUT) {
2985 int error;
2986
549c7297 2987 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
2988 if (error)
2989 return error;
2990 }
2991
75c3cfa8 2992 if (d_really_is_positive(new_dentry)) {
1da177e4 2993 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2994 if (they_are_dirs) {
75c3cfa8 2995 drop_nlink(d_inode(new_dentry));
9a53c3a7 2996 drop_nlink(old_dir);
b928095b 2997 }
1da177e4 2998 } else if (they_are_dirs) {
9a53c3a7 2999 drop_nlink(old_dir);
d8c76e6f 3000 inc_nlink(new_dir);
1da177e4
LT
3001 }
3002
3003 old_dir->i_size -= BOGO_DIRENT_SIZE;
3004 new_dir->i_size += BOGO_DIRENT_SIZE;
3005 old_dir->i_ctime = old_dir->i_mtime =
3006 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3007 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3008 return 0;
3009}
3010
549c7297
CB
3011static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3012 struct dentry *dentry, const char *symname)
1da177e4
LT
3013{
3014 int error;
3015 int len;
3016 struct inode *inode;
9276aad6 3017 struct page *page;
1da177e4
LT
3018
3019 len = strlen(symname) + 1;
09cbfeaf 3020 if (len > PAGE_SIZE)
1da177e4
LT
3021 return -ENAMETOOLONG;
3022
0825a6f9
JP
3023 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3024 VM_NORESERVE);
1da177e4
LT
3025 if (!inode)
3026 return -ENOSPC;
3027
9d8f13ba 3028 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3029 shmem_initxattrs, NULL);
343c3d7f
MN
3030 if (error && error != -EOPNOTSUPP) {
3031 iput(inode);
3032 return error;
570bc1c2
SS
3033 }
3034
1da177e4 3035 inode->i_size = len-1;
69f07ec9 3036 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3037 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3038 if (!inode->i_link) {
69f07ec9
HD
3039 iput(inode);
3040 return -ENOMEM;
3041 }
3042 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3043 } else {
e8ecde25 3044 inode_nohighmem(inode);
9e18eb29 3045 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3046 if (error) {
3047 iput(inode);
3048 return error;
3049 }
14fcc23f 3050 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3051 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3052 memcpy(page_address(page), symname, len);
ec9516fb 3053 SetPageUptodate(page);
1da177e4 3054 set_page_dirty(page);
6746aff7 3055 unlock_page(page);
09cbfeaf 3056 put_page(page);
1da177e4 3057 }
1da177e4 3058 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3059 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3060 d_instantiate(dentry, inode);
3061 dget(dentry);
3062 return 0;
3063}
3064
fceef393 3065static void shmem_put_link(void *arg)
1da177e4 3066{
fceef393
AV
3067 mark_page_accessed(arg);
3068 put_page(arg);
1da177e4
LT
3069}
3070
6b255391 3071static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3072 struct inode *inode,
3073 struct delayed_call *done)
1da177e4 3074{
1da177e4 3075 struct page *page = NULL;
6b255391 3076 int error;
6a6c9904
AV
3077 if (!dentry) {
3078 page = find_get_page(inode->i_mapping, 0);
3079 if (!page)
3080 return ERR_PTR(-ECHILD);
a7605426
YS
3081 if (PageHWPoison(page) ||
3082 !PageUptodate(page)) {
6a6c9904
AV
3083 put_page(page);
3084 return ERR_PTR(-ECHILD);
3085 }
3086 } else {
9e18eb29 3087 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3088 if (error)
3089 return ERR_PTR(error);
a7605426
YS
3090 if (!page)
3091 return ERR_PTR(-ECHILD);
3092 if (PageHWPoison(page)) {
3093 unlock_page(page);
3094 put_page(page);
3095 return ERR_PTR(-ECHILD);
3096 }
6a6c9904
AV
3097 unlock_page(page);
3098 }
fceef393 3099 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3100 return page_address(page);
1da177e4
LT
3101}
3102
b09e0fa4 3103#ifdef CONFIG_TMPFS_XATTR
46711810 3104/*
b09e0fa4
EP
3105 * Superblocks without xattr inode operations may get some security.* xattr
3106 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3107 * like ACLs, we also need to implement the security.* handlers at
3108 * filesystem level, though.
3109 */
3110
6d9d88d0
JS
3111/*
3112 * Callback for security_inode_init_security() for acquiring xattrs.
3113 */
3114static int shmem_initxattrs(struct inode *inode,
3115 const struct xattr *xattr_array,
3116 void *fs_info)
3117{
3118 struct shmem_inode_info *info = SHMEM_I(inode);
3119 const struct xattr *xattr;
38f38657 3120 struct simple_xattr *new_xattr;
6d9d88d0
JS
3121 size_t len;
3122
3123 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3124 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3125 if (!new_xattr)
3126 return -ENOMEM;
3127
3128 len = strlen(xattr->name) + 1;
3129 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3130 GFP_KERNEL);
3131 if (!new_xattr->name) {
3bef735a 3132 kvfree(new_xattr);
6d9d88d0
JS
3133 return -ENOMEM;
3134 }
3135
3136 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3137 XATTR_SECURITY_PREFIX_LEN);
3138 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3139 xattr->name, len);
3140
38f38657 3141 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3142 }
3143
3144 return 0;
3145}
3146
aa7c5241 3147static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3148 struct dentry *unused, struct inode *inode,
3149 const char *name, void *buffer, size_t size)
b09e0fa4 3150{
b296821a 3151 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3152
aa7c5241 3153 name = xattr_full_name(handler, name);
38f38657 3154 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3155}
3156
aa7c5241 3157static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3158 struct user_namespace *mnt_userns,
59301226
AV
3159 struct dentry *unused, struct inode *inode,
3160 const char *name, const void *value,
3161 size_t size, int flags)
b09e0fa4 3162{
59301226 3163 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3164
aa7c5241 3165 name = xattr_full_name(handler, name);
a46a2295 3166 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3167}
3168
aa7c5241
AG
3169static const struct xattr_handler shmem_security_xattr_handler = {
3170 .prefix = XATTR_SECURITY_PREFIX,
3171 .get = shmem_xattr_handler_get,
3172 .set = shmem_xattr_handler_set,
3173};
b09e0fa4 3174
aa7c5241
AG
3175static const struct xattr_handler shmem_trusted_xattr_handler = {
3176 .prefix = XATTR_TRUSTED_PREFIX,
3177 .get = shmem_xattr_handler_get,
3178 .set = shmem_xattr_handler_set,
3179};
b09e0fa4 3180
aa7c5241
AG
3181static const struct xattr_handler *shmem_xattr_handlers[] = {
3182#ifdef CONFIG_TMPFS_POSIX_ACL
3183 &posix_acl_access_xattr_handler,
3184 &posix_acl_default_xattr_handler,
3185#endif
3186 &shmem_security_xattr_handler,
3187 &shmem_trusted_xattr_handler,
3188 NULL
3189};
b09e0fa4
EP
3190
3191static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3192{
75c3cfa8 3193 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3194 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3195}
3196#endif /* CONFIG_TMPFS_XATTR */
3197
69f07ec9 3198static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3199 .get_link = simple_get_link,
b09e0fa4 3200#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3201 .listxattr = shmem_listxattr,
b09e0fa4
EP
3202#endif
3203};
3204
3205static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3206 .get_link = shmem_get_link,
b09e0fa4 3207#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3208 .listxattr = shmem_listxattr,
39f0247d 3209#endif
b09e0fa4 3210};
39f0247d 3211
91828a40
DG
3212static struct dentry *shmem_get_parent(struct dentry *child)
3213{
3214 return ERR_PTR(-ESTALE);
3215}
3216
3217static int shmem_match(struct inode *ino, void *vfh)
3218{
3219 __u32 *fh = vfh;
3220 __u64 inum = fh[2];
3221 inum = (inum << 32) | fh[1];
3222 return ino->i_ino == inum && fh[0] == ino->i_generation;
3223}
3224
12ba780d
AG
3225/* Find any alias of inode, but prefer a hashed alias */
3226static struct dentry *shmem_find_alias(struct inode *inode)
3227{
3228 struct dentry *alias = d_find_alias(inode);
3229
3230 return alias ?: d_find_any_alias(inode);
3231}
3232
3233
480b116c
CH
3234static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3235 struct fid *fid, int fh_len, int fh_type)
91828a40 3236{
91828a40 3237 struct inode *inode;
480b116c 3238 struct dentry *dentry = NULL;
35c2a7f4 3239 u64 inum;
480b116c
CH
3240
3241 if (fh_len < 3)
3242 return NULL;
91828a40 3243
35c2a7f4
HD
3244 inum = fid->raw[2];
3245 inum = (inum << 32) | fid->raw[1];
3246
480b116c
CH
3247 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3248 shmem_match, fid->raw);
91828a40 3249 if (inode) {
12ba780d 3250 dentry = shmem_find_alias(inode);
91828a40
DG
3251 iput(inode);
3252 }
3253
480b116c 3254 return dentry;
91828a40
DG
3255}
3256
b0b0382b
AV
3257static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3258 struct inode *parent)
91828a40 3259{
5fe0c237
AK
3260 if (*len < 3) {
3261 *len = 3;
94e07a75 3262 return FILEID_INVALID;
5fe0c237 3263 }
91828a40 3264
1d3382cb 3265 if (inode_unhashed(inode)) {
91828a40
DG
3266 /* Unfortunately insert_inode_hash is not idempotent,
3267 * so as we hash inodes here rather than at creation
3268 * time, we need a lock to ensure we only try
3269 * to do it once
3270 */
3271 static DEFINE_SPINLOCK(lock);
3272 spin_lock(&lock);
1d3382cb 3273 if (inode_unhashed(inode))
91828a40
DG
3274 __insert_inode_hash(inode,
3275 inode->i_ino + inode->i_generation);
3276 spin_unlock(&lock);
3277 }
3278
3279 fh[0] = inode->i_generation;
3280 fh[1] = inode->i_ino;
3281 fh[2] = ((__u64)inode->i_ino) >> 32;
3282
3283 *len = 3;
3284 return 1;
3285}
3286
39655164 3287static const struct export_operations shmem_export_ops = {
91828a40 3288 .get_parent = shmem_get_parent,
91828a40 3289 .encode_fh = shmem_encode_fh,
480b116c 3290 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3291};
3292
626c3920
AV
3293enum shmem_param {
3294 Opt_gid,
3295 Opt_huge,
3296 Opt_mode,
3297 Opt_mpol,
3298 Opt_nr_blocks,
3299 Opt_nr_inodes,
3300 Opt_size,
3301 Opt_uid,
ea3271f7
CD
3302 Opt_inode32,
3303 Opt_inode64,
626c3920
AV
3304};
3305
5eede625 3306static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3307 {"never", SHMEM_HUGE_NEVER },
3308 {"always", SHMEM_HUGE_ALWAYS },
3309 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3310 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3311 {}
3312};
3313
d7167b14 3314const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3315 fsparam_u32 ("gid", Opt_gid),
2710c957 3316 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3317 fsparam_u32oct("mode", Opt_mode),
3318 fsparam_string("mpol", Opt_mpol),
3319 fsparam_string("nr_blocks", Opt_nr_blocks),
3320 fsparam_string("nr_inodes", Opt_nr_inodes),
3321 fsparam_string("size", Opt_size),
3322 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3323 fsparam_flag ("inode32", Opt_inode32),
3324 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3325 {}
3326};
3327
f3235626 3328static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3329{
f3235626 3330 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3331 struct fs_parse_result result;
3332 unsigned long long size;
e04dc423 3333 char *rest;
626c3920
AV
3334 int opt;
3335
d7167b14 3336 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3337 if (opt < 0)
626c3920 3338 return opt;
1da177e4 3339
626c3920
AV
3340 switch (opt) {
3341 case Opt_size:
3342 size = memparse(param->string, &rest);
e04dc423
AV
3343 if (*rest == '%') {
3344 size <<= PAGE_SHIFT;
3345 size *= totalram_pages();
3346 do_div(size, 100);
3347 rest++;
3348 }
3349 if (*rest)
626c3920 3350 goto bad_value;
e04dc423
AV
3351 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3352 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3353 break;
3354 case Opt_nr_blocks:
3355 ctx->blocks = memparse(param->string, &rest);
e04dc423 3356 if (*rest)
626c3920 3357 goto bad_value;
e04dc423 3358 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3359 break;
3360 case Opt_nr_inodes:
3361 ctx->inodes = memparse(param->string, &rest);
e04dc423 3362 if (*rest)
626c3920 3363 goto bad_value;
e04dc423 3364 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3365 break;
3366 case Opt_mode:
3367 ctx->mode = result.uint_32 & 07777;
3368 break;
3369 case Opt_uid:
3370 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3371 if (!uid_valid(ctx->uid))
626c3920
AV
3372 goto bad_value;
3373 break;
3374 case Opt_gid:
3375 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3376 if (!gid_valid(ctx->gid))
626c3920
AV
3377 goto bad_value;
3378 break;
3379 case Opt_huge:
3380 ctx->huge = result.uint_32;
3381 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3382 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3383 has_transparent_hugepage()))
3384 goto unsupported_parameter;
e04dc423 3385 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3386 break;
3387 case Opt_mpol:
3388 if (IS_ENABLED(CONFIG_NUMA)) {
3389 mpol_put(ctx->mpol);
3390 ctx->mpol = NULL;
3391 if (mpol_parse_str(param->string, &ctx->mpol))
3392 goto bad_value;
3393 break;
3394 }
3395 goto unsupported_parameter;
ea3271f7
CD
3396 case Opt_inode32:
3397 ctx->full_inums = false;
3398 ctx->seen |= SHMEM_SEEN_INUMS;
3399 break;
3400 case Opt_inode64:
3401 if (sizeof(ino_t) < 8) {
3402 return invalfc(fc,
3403 "Cannot use inode64 with <64bit inums in kernel\n");
3404 }
3405 ctx->full_inums = true;
3406 ctx->seen |= SHMEM_SEEN_INUMS;
3407 break;
e04dc423
AV
3408 }
3409 return 0;
3410
626c3920 3411unsupported_parameter:
f35aa2bc 3412 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3413bad_value:
f35aa2bc 3414 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3415}
3416
f3235626 3417static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3418{
f3235626
DH
3419 char *options = data;
3420
33f37c64
AV
3421 if (options) {
3422 int err = security_sb_eat_lsm_opts(options, &fc->security);
3423 if (err)
3424 return err;
3425 }
3426
b00dc3ad 3427 while (options != NULL) {
626c3920 3428 char *this_char = options;
b00dc3ad
HD
3429 for (;;) {
3430 /*
3431 * NUL-terminate this option: unfortunately,
3432 * mount options form a comma-separated list,
3433 * but mpol's nodelist may also contain commas.
3434 */
3435 options = strchr(options, ',');
3436 if (options == NULL)
3437 break;
3438 options++;
3439 if (!isdigit(*options)) {
3440 options[-1] = '\0';
3441 break;
3442 }
3443 }
626c3920 3444 if (*this_char) {
68d68ff6 3445 char *value = strchr(this_char, '=');
f3235626 3446 size_t len = 0;
626c3920
AV
3447 int err;
3448
3449 if (value) {
3450 *value++ = '\0';
f3235626 3451 len = strlen(value);
626c3920 3452 }
f3235626
DH
3453 err = vfs_parse_fs_string(fc, this_char, value, len);
3454 if (err < 0)
3455 return err;
1da177e4 3456 }
1da177e4
LT
3457 }
3458 return 0;
1da177e4
LT
3459}
3460
f3235626
DH
3461/*
3462 * Reconfigure a shmem filesystem.
3463 *
3464 * Note that we disallow change from limited->unlimited blocks/inodes while any
3465 * are in use; but we must separately disallow unlimited->limited, because in
3466 * that case we have no record of how much is already in use.
3467 */
3468static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3469{
f3235626
DH
3470 struct shmem_options *ctx = fc->fs_private;
3471 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3472 unsigned long inodes;
bf11b9a8 3473 struct mempolicy *mpol = NULL;
f3235626 3474 const char *err;
1da177e4 3475
bf11b9a8 3476 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3477 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3478 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3479 if (!sbinfo->max_blocks) {
3480 err = "Cannot retroactively limit size";
0b5071dd 3481 goto out;
f3235626 3482 }
0b5071dd 3483 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3484 ctx->blocks) > 0) {
3485 err = "Too small a size for current use";
0b5071dd 3486 goto out;
f3235626 3487 }
0b5071dd 3488 }
f3235626
DH
3489 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3490 if (!sbinfo->max_inodes) {
3491 err = "Cannot retroactively limit inodes";
0b5071dd 3492 goto out;
f3235626
DH
3493 }
3494 if (ctx->inodes < inodes) {
3495 err = "Too few inodes for current use";
0b5071dd 3496 goto out;
f3235626 3497 }
0b5071dd 3498 }
0edd73b3 3499
ea3271f7
CD
3500 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3501 sbinfo->next_ino > UINT_MAX) {
3502 err = "Current inum too high to switch to 32-bit inums";
3503 goto out;
3504 }
3505
f3235626
DH
3506 if (ctx->seen & SHMEM_SEEN_HUGE)
3507 sbinfo->huge = ctx->huge;
ea3271f7
CD
3508 if (ctx->seen & SHMEM_SEEN_INUMS)
3509 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3510 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3511 sbinfo->max_blocks = ctx->blocks;
3512 if (ctx->seen & SHMEM_SEEN_INODES) {
3513 sbinfo->max_inodes = ctx->inodes;
3514 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3515 }
71fe804b 3516
5f00110f
GT
3517 /*
3518 * Preserve previous mempolicy unless mpol remount option was specified.
3519 */
f3235626 3520 if (ctx->mpol) {
bf11b9a8 3521 mpol = sbinfo->mpol;
f3235626
DH
3522 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3523 ctx->mpol = NULL;
5f00110f 3524 }
bf11b9a8
SAS
3525 raw_spin_unlock(&sbinfo->stat_lock);
3526 mpol_put(mpol);
f3235626 3527 return 0;
0edd73b3 3528out:
bf11b9a8 3529 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3530 return invalfc(fc, "%s", err);
1da177e4 3531}
680d794b 3532
34c80b1d 3533static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3534{
34c80b1d 3535 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3536
3537 if (sbinfo->max_blocks != shmem_default_max_blocks())
3538 seq_printf(seq, ",size=%luk",
09cbfeaf 3539 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3540 if (sbinfo->max_inodes != shmem_default_max_inodes())
3541 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3542 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3543 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3544 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3545 seq_printf(seq, ",uid=%u",
3546 from_kuid_munged(&init_user_ns, sbinfo->uid));
3547 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3548 seq_printf(seq, ",gid=%u",
3549 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3550
3551 /*
3552 * Showing inode{64,32} might be useful even if it's the system default,
3553 * since then people don't have to resort to checking both here and
3554 * /proc/config.gz to confirm 64-bit inums were successfully applied
3555 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3556 *
3557 * We hide it when inode64 isn't the default and we are using 32-bit
3558 * inodes, since that probably just means the feature isn't even under
3559 * consideration.
3560 *
3561 * As such:
3562 *
3563 * +-----------------+-----------------+
3564 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3565 * +------------------+-----------------+-----------------+
3566 * | full_inums=true | show | show |
3567 * | full_inums=false | show | hide |
3568 * +------------------+-----------------+-----------------+
3569 *
3570 */
3571 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3572 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3573#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3574 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3575 if (sbinfo->huge)
3576 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3577#endif
71fe804b 3578 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3579 return 0;
3580}
9183df25 3581
680d794b 3582#endif /* CONFIG_TMPFS */
1da177e4
LT
3583
3584static void shmem_put_super(struct super_block *sb)
3585{
602586a8
HD
3586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3587
e809d5f0 3588 free_percpu(sbinfo->ino_batch);
602586a8 3589 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3590 mpol_put(sbinfo->mpol);
602586a8 3591 kfree(sbinfo);
1da177e4
LT
3592 sb->s_fs_info = NULL;
3593}
3594
f3235626 3595static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3596{
f3235626 3597 struct shmem_options *ctx = fc->fs_private;
1da177e4 3598 struct inode *inode;
0edd73b3 3599 struct shmem_sb_info *sbinfo;
680d794b 3600
3601 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3602 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3603 L1_CACHE_BYTES), GFP_KERNEL);
3604 if (!sbinfo)
3605 return -ENOMEM;
3606
680d794b 3607 sb->s_fs_info = sbinfo;
1da177e4 3608
0edd73b3 3609#ifdef CONFIG_TMPFS
1da177e4
LT
3610 /*
3611 * Per default we only allow half of the physical ram per
3612 * tmpfs instance, limiting inodes to one per page of lowmem;
3613 * but the internal instance is left unlimited.
3614 */
1751e8a6 3615 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3616 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3617 ctx->blocks = shmem_default_max_blocks();
3618 if (!(ctx->seen & SHMEM_SEEN_INODES))
3619 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3620 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3621 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3622 } else {
1751e8a6 3623 sb->s_flags |= SB_NOUSER;
1da177e4 3624 }
91828a40 3625 sb->s_export_op = &shmem_export_ops;
1751e8a6 3626 sb->s_flags |= SB_NOSEC;
1da177e4 3627#else
1751e8a6 3628 sb->s_flags |= SB_NOUSER;
1da177e4 3629#endif
f3235626
DH
3630 sbinfo->max_blocks = ctx->blocks;
3631 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3632 if (sb->s_flags & SB_KERNMOUNT) {
3633 sbinfo->ino_batch = alloc_percpu(ino_t);
3634 if (!sbinfo->ino_batch)
3635 goto failed;
3636 }
f3235626
DH
3637 sbinfo->uid = ctx->uid;
3638 sbinfo->gid = ctx->gid;
ea3271f7 3639 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3640 sbinfo->mode = ctx->mode;
3641 sbinfo->huge = ctx->huge;
3642 sbinfo->mpol = ctx->mpol;
3643 ctx->mpol = NULL;
1da177e4 3644
bf11b9a8 3645 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3646 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3647 goto failed;
779750d2
KS
3648 spin_lock_init(&sbinfo->shrinklist_lock);
3649 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3650
285b2c4f 3651 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3652 sb->s_blocksize = PAGE_SIZE;
3653 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3654 sb->s_magic = TMPFS_MAGIC;
3655 sb->s_op = &shmem_ops;
cfd95a9c 3656 sb->s_time_gran = 1;
b09e0fa4 3657#ifdef CONFIG_TMPFS_XATTR
39f0247d 3658 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3659#endif
3660#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3661 sb->s_flags |= SB_POSIXACL;
39f0247d 3662#endif
2b4db796 3663 uuid_gen(&sb->s_uuid);
0edd73b3 3664
454abafe 3665 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3666 if (!inode)
3667 goto failed;
680d794b 3668 inode->i_uid = sbinfo->uid;
3669 inode->i_gid = sbinfo->gid;
318ceed0
AV
3670 sb->s_root = d_make_root(inode);
3671 if (!sb->s_root)
48fde701 3672 goto failed;
1da177e4
LT
3673 return 0;
3674
1da177e4
LT
3675failed:
3676 shmem_put_super(sb);
f2b346e4 3677 return -ENOMEM;
1da177e4
LT
3678}
3679
f3235626
DH
3680static int shmem_get_tree(struct fs_context *fc)
3681{
3682 return get_tree_nodev(fc, shmem_fill_super);
3683}
3684
3685static void shmem_free_fc(struct fs_context *fc)
3686{
3687 struct shmem_options *ctx = fc->fs_private;
3688
3689 if (ctx) {
3690 mpol_put(ctx->mpol);
3691 kfree(ctx);
3692 }
3693}
3694
3695static const struct fs_context_operations shmem_fs_context_ops = {
3696 .free = shmem_free_fc,
3697 .get_tree = shmem_get_tree,
3698#ifdef CONFIG_TMPFS
3699 .parse_monolithic = shmem_parse_options,
3700 .parse_param = shmem_parse_one,
3701 .reconfigure = shmem_reconfigure,
3702#endif
3703};
3704
fcc234f8 3705static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3706
3707static struct inode *shmem_alloc_inode(struct super_block *sb)
3708{
41ffe5d5
HD
3709 struct shmem_inode_info *info;
3710 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3711 if (!info)
1da177e4 3712 return NULL;
41ffe5d5 3713 return &info->vfs_inode;
1da177e4
LT
3714}
3715
74b1da56 3716static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3717{
84e710da
AV
3718 if (S_ISLNK(inode->i_mode))
3719 kfree(inode->i_link);
fa0d7e3d
NP
3720 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3721}
3722
1da177e4
LT
3723static void shmem_destroy_inode(struct inode *inode)
3724{
09208d15 3725 if (S_ISREG(inode->i_mode))
1da177e4 3726 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3727}
3728
41ffe5d5 3729static void shmem_init_inode(void *foo)
1da177e4 3730{
41ffe5d5
HD
3731 struct shmem_inode_info *info = foo;
3732 inode_init_once(&info->vfs_inode);
1da177e4
LT
3733}
3734
9a8ec03e 3735static void shmem_init_inodecache(void)
1da177e4
LT
3736{
3737 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3738 sizeof(struct shmem_inode_info),
5d097056 3739 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3740}
3741
41ffe5d5 3742static void shmem_destroy_inodecache(void)
1da177e4 3743{
1a1d92c1 3744 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3745}
3746
a7605426
YS
3747/* Keep the page in page cache instead of truncating it */
3748static int shmem_error_remove_page(struct address_space *mapping,
3749 struct page *page)
3750{
3751 return 0;
3752}
3753
30e6a51d 3754const struct address_space_operations shmem_aops = {
1da177e4 3755 .writepage = shmem_writepage,
76719325 3756 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3757#ifdef CONFIG_TMPFS
800d15a5
NP
3758 .write_begin = shmem_write_begin,
3759 .write_end = shmem_write_end,
1da177e4 3760#endif
1c93923c 3761#ifdef CONFIG_MIGRATION
304dbdb7 3762 .migratepage = migrate_page,
1c93923c 3763#endif
a7605426 3764 .error_remove_page = shmem_error_remove_page,
1da177e4 3765};
30e6a51d 3766EXPORT_SYMBOL(shmem_aops);
1da177e4 3767
15ad7cdc 3768static const struct file_operations shmem_file_operations = {
1da177e4 3769 .mmap = shmem_mmap,
c01d5b30 3770 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3771#ifdef CONFIG_TMPFS
220f2ac9 3772 .llseek = shmem_file_llseek,
2ba5bbed 3773 .read_iter = shmem_file_read_iter,
8174202b 3774 .write_iter = generic_file_write_iter,
1b061d92 3775 .fsync = noop_fsync,
82c156f8 3776 .splice_read = generic_file_splice_read,
f6cb85d0 3777 .splice_write = iter_file_splice_write,
83e4fa9c 3778 .fallocate = shmem_fallocate,
1da177e4
LT
3779#endif
3780};
3781
92e1d5be 3782static const struct inode_operations shmem_inode_operations = {
44a30220 3783 .getattr = shmem_getattr,
94c1e62d 3784 .setattr = shmem_setattr,
b09e0fa4 3785#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3786 .listxattr = shmem_listxattr,
feda821e 3787 .set_acl = simple_set_acl,
b09e0fa4 3788#endif
1da177e4
LT
3789};
3790
92e1d5be 3791static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3792#ifdef CONFIG_TMPFS
3793 .create = shmem_create,
3794 .lookup = simple_lookup,
3795 .link = shmem_link,
3796 .unlink = shmem_unlink,
3797 .symlink = shmem_symlink,
3798 .mkdir = shmem_mkdir,
3799 .rmdir = shmem_rmdir,
3800 .mknod = shmem_mknod,
2773bf00 3801 .rename = shmem_rename2,
60545d0d 3802 .tmpfile = shmem_tmpfile,
1da177e4 3803#endif
b09e0fa4 3804#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3805 .listxattr = shmem_listxattr,
b09e0fa4 3806#endif
39f0247d 3807#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3808 .setattr = shmem_setattr,
feda821e 3809 .set_acl = simple_set_acl,
39f0247d
AG
3810#endif
3811};
3812
92e1d5be 3813static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3814#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3815 .listxattr = shmem_listxattr,
b09e0fa4 3816#endif
39f0247d 3817#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3818 .setattr = shmem_setattr,
feda821e 3819 .set_acl = simple_set_acl,
39f0247d 3820#endif
1da177e4
LT
3821};
3822
759b9775 3823static const struct super_operations shmem_ops = {
1da177e4 3824 .alloc_inode = shmem_alloc_inode,
74b1da56 3825 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3826 .destroy_inode = shmem_destroy_inode,
3827#ifdef CONFIG_TMPFS
3828 .statfs = shmem_statfs,
680d794b 3829 .show_options = shmem_show_options,
1da177e4 3830#endif
1f895f75 3831 .evict_inode = shmem_evict_inode,
1da177e4
LT
3832 .drop_inode = generic_delete_inode,
3833 .put_super = shmem_put_super,
396bcc52 3834#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3835 .nr_cached_objects = shmem_unused_huge_count,
3836 .free_cached_objects = shmem_unused_huge_scan,
3837#endif
1da177e4
LT
3838};
3839
f0f37e2f 3840static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3841 .fault = shmem_fault,
d7c17551 3842 .map_pages = filemap_map_pages,
1da177e4
LT
3843#ifdef CONFIG_NUMA
3844 .set_policy = shmem_set_policy,
3845 .get_policy = shmem_get_policy,
3846#endif
3847};
3848
f3235626 3849int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3850{
f3235626
DH
3851 struct shmem_options *ctx;
3852
3853 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3854 if (!ctx)
3855 return -ENOMEM;
3856
3857 ctx->mode = 0777 | S_ISVTX;
3858 ctx->uid = current_fsuid();
3859 ctx->gid = current_fsgid();
3860
3861 fc->fs_private = ctx;
3862 fc->ops = &shmem_fs_context_ops;
3863 return 0;
1da177e4
LT
3864}
3865
41ffe5d5 3866static struct file_system_type shmem_fs_type = {
1da177e4
LT
3867 .owner = THIS_MODULE,
3868 .name = "tmpfs",
f3235626
DH
3869 .init_fs_context = shmem_init_fs_context,
3870#ifdef CONFIG_TMPFS
d7167b14 3871 .parameters = shmem_fs_parameters,
f3235626 3872#endif
1da177e4 3873 .kill_sb = kill_litter_super,
ff36da69 3874 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3875};
1da177e4 3876
41ffe5d5 3877int __init shmem_init(void)
1da177e4
LT
3878{
3879 int error;
3880
9a8ec03e 3881 shmem_init_inodecache();
1da177e4 3882
41ffe5d5 3883 error = register_filesystem(&shmem_fs_type);
1da177e4 3884 if (error) {
1170532b 3885 pr_err("Could not register tmpfs\n");
1da177e4
LT
3886 goto out2;
3887 }
95dc112a 3888
ca4e0519 3889 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3890 if (IS_ERR(shm_mnt)) {
3891 error = PTR_ERR(shm_mnt);
1170532b 3892 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3893 goto out1;
3894 }
5a6e75f8 3895
396bcc52 3896#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3897 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3898 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3899 else
5e6e5a12 3900 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3901#endif
1da177e4
LT
3902 return 0;
3903
3904out1:
41ffe5d5 3905 unregister_filesystem(&shmem_fs_type);
1da177e4 3906out2:
41ffe5d5 3907 shmem_destroy_inodecache();
1da177e4
LT
3908 shm_mnt = ERR_PTR(error);
3909 return error;
3910}
853ac43a 3911
396bcc52 3912#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3913static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3914 struct kobj_attribute *attr, char *buf)
5a6e75f8 3915{
26083eb6 3916 static const int values[] = {
5a6e75f8
KS
3917 SHMEM_HUGE_ALWAYS,
3918 SHMEM_HUGE_WITHIN_SIZE,
3919 SHMEM_HUGE_ADVISE,
3920 SHMEM_HUGE_NEVER,
3921 SHMEM_HUGE_DENY,
3922 SHMEM_HUGE_FORCE,
3923 };
79d4d38a
JP
3924 int len = 0;
3925 int i;
5a6e75f8 3926
79d4d38a
JP
3927 for (i = 0; i < ARRAY_SIZE(values); i++) {
3928 len += sysfs_emit_at(buf, len,
3929 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3930 i ? " " : "",
3931 shmem_format_huge(values[i]));
5a6e75f8 3932 }
79d4d38a
JP
3933
3934 len += sysfs_emit_at(buf, len, "\n");
3935
3936 return len;
5a6e75f8
KS
3937}
3938
3939static ssize_t shmem_enabled_store(struct kobject *kobj,
3940 struct kobj_attribute *attr, const char *buf, size_t count)
3941{
3942 char tmp[16];
3943 int huge;
3944
3945 if (count + 1 > sizeof(tmp))
3946 return -EINVAL;
3947 memcpy(tmp, buf, count);
3948 tmp[count] = '\0';
3949 if (count && tmp[count - 1] == '\n')
3950 tmp[count - 1] = '\0';
3951
3952 huge = shmem_parse_huge(tmp);
3953 if (huge == -EINVAL)
3954 return -EINVAL;
3955 if (!has_transparent_hugepage() &&
3956 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3957 return -EINVAL;
3958
3959 shmem_huge = huge;
435c0b87 3960 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3961 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3962 return count;
3963}
3964
3965struct kobj_attribute shmem_enabled_attr =
3966 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
396bcc52 3967#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3968
853ac43a
MM
3969#else /* !CONFIG_SHMEM */
3970
3971/*
3972 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3973 *
3974 * This is intended for small system where the benefits of the full
3975 * shmem code (swap-backed and resource-limited) are outweighed by
3976 * their complexity. On systems without swap this code should be
3977 * effectively equivalent, but much lighter weight.
3978 */
3979
41ffe5d5 3980static struct file_system_type shmem_fs_type = {
853ac43a 3981 .name = "tmpfs",
f3235626 3982 .init_fs_context = ramfs_init_fs_context,
d7167b14 3983 .parameters = ramfs_fs_parameters,
853ac43a 3984 .kill_sb = kill_litter_super,
2b8576cb 3985 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3986};
3987
41ffe5d5 3988int __init shmem_init(void)
853ac43a 3989{
41ffe5d5 3990 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3991
41ffe5d5 3992 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3993 BUG_ON(IS_ERR(shm_mnt));
3994
3995 return 0;
3996}
3997
10a9c496 3998int shmem_unuse(unsigned int type)
853ac43a
MM
3999{
4000 return 0;
4001}
4002
d7c9e99a 4003int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4004{
4005 return 0;
4006}
4007
24513264
HD
4008void shmem_unlock_mapping(struct address_space *mapping)
4009{
4010}
4011
c01d5b30
HD
4012#ifdef CONFIG_MMU
4013unsigned long shmem_get_unmapped_area(struct file *file,
4014 unsigned long addr, unsigned long len,
4015 unsigned long pgoff, unsigned long flags)
4016{
4017 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4018}
4019#endif
4020
41ffe5d5 4021void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4022{
41ffe5d5 4023 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4024}
4025EXPORT_SYMBOL_GPL(shmem_truncate_range);
4026
0b0a0806
HD
4027#define shmem_vm_ops generic_file_vm_ops
4028#define shmem_file_operations ramfs_file_operations
454abafe 4029#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4030#define shmem_acct_size(flags, size) 0
4031#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4032
4033#endif /* CONFIG_SHMEM */
4034
4035/* common code */
1da177e4 4036
703321b6 4037static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4038 unsigned long flags, unsigned int i_flags)
1da177e4 4039{
1da177e4 4040 struct inode *inode;
93dec2da 4041 struct file *res;
1da177e4 4042
703321b6
MA
4043 if (IS_ERR(mnt))
4044 return ERR_CAST(mnt);
1da177e4 4045
285b2c4f 4046 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4047 return ERR_PTR(-EINVAL);
4048
4049 if (shmem_acct_size(flags, size))
4050 return ERR_PTR(-ENOMEM);
4051
93dec2da
AV
4052 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4053 flags);
dac2d1f6
AV
4054 if (unlikely(!inode)) {
4055 shmem_unacct_size(flags, size);
4056 return ERR_PTR(-ENOSPC);
4057 }
c7277090 4058 inode->i_flags |= i_flags;
1da177e4 4059 inode->i_size = size;
6d6b77f1 4060 clear_nlink(inode); /* It is unlinked */
26567cdb 4061 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4062 if (!IS_ERR(res))
4063 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4064 &shmem_file_operations);
26567cdb 4065 if (IS_ERR(res))
93dec2da 4066 iput(inode);
6b4d0b27 4067 return res;
1da177e4 4068}
c7277090
EP
4069
4070/**
4071 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4072 * kernel internal. There will be NO LSM permission checks against the
4073 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4074 * higher layer. The users are the big_key and shm implementations. LSM
4075 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4076 * @name: name for dentry (to be seen in /proc/<pid>/maps
4077 * @size: size to be set for the file
4078 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4079 */
4080struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4081{
703321b6 4082 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4083}
4084
4085/**
4086 * shmem_file_setup - get an unlinked file living in tmpfs
4087 * @name: name for dentry (to be seen in /proc/<pid>/maps
4088 * @size: size to be set for the file
4089 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4090 */
4091struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4092{
703321b6 4093 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4094}
395e0ddc 4095EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4096
703321b6
MA
4097/**
4098 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4099 * @mnt: the tmpfs mount where the file will be created
4100 * @name: name for dentry (to be seen in /proc/<pid>/maps
4101 * @size: size to be set for the file
4102 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4103 */
4104struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4105 loff_t size, unsigned long flags)
4106{
4107 return __shmem_file_setup(mnt, name, size, flags, 0);
4108}
4109EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4110
46711810 4111/**
1da177e4 4112 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4113 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4114 */
4115int shmem_zero_setup(struct vm_area_struct *vma)
4116{
4117 struct file *file;
4118 loff_t size = vma->vm_end - vma->vm_start;
4119
66fc1303 4120 /*
c1e8d7c6 4121 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4122 * between XFS directory reading and selinux: since this file is only
4123 * accessible to the user through its mapping, use S_PRIVATE flag to
4124 * bypass file security, in the same way as shmem_kernel_file_setup().
4125 */
703321b6 4126 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4127 if (IS_ERR(file))
4128 return PTR_ERR(file);
4129
4130 if (vma->vm_file)
4131 fput(vma->vm_file);
4132 vma->vm_file = file;
4133 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4134
396bcc52 4135 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4136 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4137 (vma->vm_end & HPAGE_PMD_MASK)) {
4138 khugepaged_enter(vma, vma->vm_flags);
4139 }
4140
1da177e4
LT
4141 return 0;
4142}
d9d90e5e
HD
4143
4144/**
4145 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4146 * @mapping: the page's address_space
4147 * @index: the page index
4148 * @gfp: the page allocator flags to use if allocating
4149 *
4150 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4151 * with any new page allocations done using the specified allocation flags.
4152 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4153 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4154 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4155 *
68da9f05
HD
4156 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4157 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4158 */
4159struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4160 pgoff_t index, gfp_t gfp)
4161{
68da9f05
HD
4162#ifdef CONFIG_SHMEM
4163 struct inode *inode = mapping->host;
9276aad6 4164 struct page *page;
68da9f05
HD
4165 int error;
4166
30e6a51d 4167 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4168 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4169 gfp, NULL, NULL, NULL);
68da9f05 4170 if (error)
a7605426
YS
4171 return ERR_PTR(error);
4172
4173 unlock_page(page);
4174 if (PageHWPoison(page)) {
4175 put_page(page);
4176 return ERR_PTR(-EIO);
4177 }
4178
68da9f05
HD
4179 return page;
4180#else
4181 /*
4182 * The tiny !SHMEM case uses ramfs without swap
4183 */
d9d90e5e 4184 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4185#endif
d9d90e5e
HD
4186}
4187EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);