Merge tag 'cxl+nvdimm-for-5.18-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
626c3920 39#include <linux/fs_parser.h>
86a2f3f2 40#include <linux/swapfile.h>
95cc09d6 41
853ac43a
MM
42static struct vfsmount *shm_mnt;
43
44#ifdef CONFIG_SHMEM
1da177e4
LT
45/*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
39f0247d 51#include <linux/xattr.h>
a5694255 52#include <linux/exportfs.h>
1c7c474c 53#include <linux/posix_acl.h>
feda821e 54#include <linux/posix_acl_xattr.h>
1da177e4 55#include <linux/mman.h>
1da177e4
LT
56#include <linux/string.h>
57#include <linux/slab.h>
58#include <linux/backing-dev.h>
59#include <linux/shmem_fs.h>
1da177e4 60#include <linux/writeback.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4 82
dd56b046
MG
83#include "internal.h"
84
09cbfeaf
KS
85#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 87
1da177e4
LT
88/* Pretend that each entry is of this size in directory's i_size */
89#define BOGO_DIRENT_SIZE 20
90
69f07ec9
HD
91/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92#define SHORT_SYMLINK_LEN 128
93
1aac1400 94/*
f00cdc6d 95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
9608703e 96 * inode->i_private (with i_rwsem making sure that it has only one user at
f00cdc6d 97 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
98 */
99struct shmem_falloc {
8e205f77 100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105};
106
0b5071dd
AV
107struct shmem_options {
108 unsigned long long blocks;
109 unsigned long long inodes;
110 struct mempolicy *mpol;
111 kuid_t uid;
112 kgid_t gid;
113 umode_t mode;
ea3271f7 114 bool full_inums;
0b5071dd
AV
115 int huge;
116 int seen;
117#define SHMEM_SEEN_BLOCKS 1
118#define SHMEM_SEEN_INODES 2
119#define SHMEM_SEEN_HUGE 4
ea3271f7 120#define SHMEM_SEEN_INUMS 8
0b5071dd
AV
121};
122
b76db735 123#ifdef CONFIG_TMPFS
680d794b 124static unsigned long shmem_default_max_blocks(void)
125{
ca79b0c2 126 return totalram_pages() / 2;
680d794b 127}
128
129static unsigned long shmem_default_max_inodes(void)
130{
ca79b0c2
AK
131 unsigned long nr_pages = totalram_pages();
132
133 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 134}
b76db735 135#endif
680d794b 136
c5bf121e
VRP
137static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138 struct page **pagep, enum sgp_type sgp,
139 gfp_t gfp, struct vm_area_struct *vma,
140 vm_fault_t *fault_type);
68da9f05 141static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 142 struct page **pagep, enum sgp_type sgp,
cfda0526 143 gfp_t gfp, struct vm_area_struct *vma,
2b740303 144 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 145
f3f0e1d2 146int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 147 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
148{
149 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 151}
1da177e4 152
1da177e4
LT
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155 return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
0b0a0806 166 return (flags & VM_NORESERVE) ?
191c5424 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
0b0a0806 172 if (!(flags & VM_NORESERVE))
1da177e4
LT
173 vm_unacct_memory(VM_ACCT(size));
174}
175
77142517
KK
176static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178{
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187}
188
1da177e4
LT
189/*
190 * ... whereas tmpfs objects are accounted incrementally as
75edd345 191 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
800d8c63 195static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 196{
800d8c63
KS
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
202}
203
204static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205{
0b0a0806 206 if (flags & VM_NORESERVE)
09cbfeaf 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
208}
209
0f079694
MR
210static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211{
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214
215 if (shmem_acct_block(info->flags, pages))
216 return false;
217
218 if (sbinfo->max_blocks) {
219 if (percpu_counter_compare(&sbinfo->used_blocks,
220 sbinfo->max_blocks - pages) > 0)
221 goto unacct;
222 percpu_counter_add(&sbinfo->used_blocks, pages);
223 }
224
225 return true;
226
227unacct:
228 shmem_unacct_blocks(info->flags, pages);
229 return false;
230}
231
232static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233{
234 struct shmem_inode_info *info = SHMEM_I(inode);
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236
237 if (sbinfo->max_blocks)
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 shmem_unacct_blocks(info->flags, pages);
240}
241
759b9775 242static const struct super_operations shmem_ops;
30e6a51d 243const struct address_space_operations shmem_aops;
15ad7cdc 244static const struct file_operations shmem_file_operations;
92e1d5be
AV
245static const struct inode_operations shmem_inode_operations;
246static const struct inode_operations shmem_dir_inode_operations;
247static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 248static const struct vm_operations_struct shmem_vm_ops;
779750d2 249static struct file_system_type shmem_fs_type;
1da177e4 250
b0506e48
MR
251bool vma_is_shmem(struct vm_area_struct *vma)
252{
253 return vma->vm_ops == &shmem_vm_ops;
254}
255
1da177e4 256static LIST_HEAD(shmem_swaplist);
cb5f7b9a 257static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 258
e809d5f0
CD
259/*
260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261 * produces a novel ino for the newly allocated inode.
262 *
263 * It may also be called when making a hard link to permit the space needed by
264 * each dentry. However, in that case, no new inode number is needed since that
265 * internally draws from another pool of inode numbers (currently global
266 * get_next_ino()). This case is indicated by passing NULL as inop.
267 */
268#define SHMEM_INO_BATCH 1024
269static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
5b04c689
PE
270{
271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0
CD
272 ino_t ino;
273
274 if (!(sb->s_flags & SB_KERNMOUNT)) {
bf11b9a8 275 raw_spin_lock(&sbinfo->stat_lock);
bb3e96d6
BS
276 if (sbinfo->max_inodes) {
277 if (!sbinfo->free_inodes) {
bf11b9a8 278 raw_spin_unlock(&sbinfo->stat_lock);
bb3e96d6
BS
279 return -ENOSPC;
280 }
281 sbinfo->free_inodes--;
5b04c689 282 }
e809d5f0
CD
283 if (inop) {
284 ino = sbinfo->next_ino++;
285 if (unlikely(is_zero_ino(ino)))
286 ino = sbinfo->next_ino++;
ea3271f7
CD
287 if (unlikely(!sbinfo->full_inums &&
288 ino > UINT_MAX)) {
e809d5f0
CD
289 /*
290 * Emulate get_next_ino uint wraparound for
291 * compatibility
292 */
ea3271f7
CD
293 if (IS_ENABLED(CONFIG_64BIT))
294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 __func__, MINOR(sb->s_dev));
296 sbinfo->next_ino = 1;
297 ino = sbinfo->next_ino++;
e809d5f0
CD
298 }
299 *inop = ino;
300 }
bf11b9a8 301 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
302 } else if (inop) {
303 /*
304 * __shmem_file_setup, one of our callers, is lock-free: it
305 * doesn't hold stat_lock in shmem_reserve_inode since
306 * max_inodes is always 0, and is called from potentially
307 * unknown contexts. As such, use a per-cpu batched allocator
308 * which doesn't require the per-sb stat_lock unless we are at
309 * the batch boundary.
ea3271f7
CD
310 *
311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 * shmem mounts are not exposed to userspace, so we don't need
313 * to worry about things like glibc compatibility.
e809d5f0
CD
314 */
315 ino_t *next_ino;
bf11b9a8 316
e809d5f0
CD
317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 ino = *next_ino;
319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
bf11b9a8 320 raw_spin_lock(&sbinfo->stat_lock);
e809d5f0
CD
321 ino = sbinfo->next_ino;
322 sbinfo->next_ino += SHMEM_INO_BATCH;
bf11b9a8 323 raw_spin_unlock(&sbinfo->stat_lock);
e809d5f0
CD
324 if (unlikely(is_zero_ino(ino)))
325 ino++;
326 }
327 *inop = ino;
328 *next_ino = ++ino;
329 put_cpu();
5b04c689 330 }
e809d5f0 331
5b04c689
PE
332 return 0;
333}
334
335static void shmem_free_inode(struct super_block *sb)
336{
337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 if (sbinfo->max_inodes) {
bf11b9a8 339 raw_spin_lock(&sbinfo->stat_lock);
5b04c689 340 sbinfo->free_inodes++;
bf11b9a8 341 raw_spin_unlock(&sbinfo->stat_lock);
5b04c689
PE
342 }
343}
344
46711810 345/**
41ffe5d5 346 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
347 * @inode: inode to recalc
348 *
349 * We have to calculate the free blocks since the mm can drop
350 * undirtied hole pages behind our back.
351 *
352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354 *
355 * It has to be called with the spinlock held.
356 */
357static void shmem_recalc_inode(struct inode *inode)
358{
359 struct shmem_inode_info *info = SHMEM_I(inode);
360 long freed;
361
362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 if (freed > 0) {
364 info->alloced -= freed;
54af6042 365 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 366 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
367 }
368}
369
800d8c63
KS
370bool shmem_charge(struct inode *inode, long pages)
371{
372 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 373 unsigned long flags;
800d8c63 374
0f079694 375 if (!shmem_inode_acct_block(inode, pages))
800d8c63 376 return false;
b1cc94ab 377
aaa52e34
HD
378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 inode->i_mapping->nrpages += pages;
380
4595ef88 381 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
382 info->alloced += pages;
383 inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 shmem_recalc_inode(inode);
4595ef88 385 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 386
800d8c63
KS
387 return true;
388}
389
390void shmem_uncharge(struct inode *inode, long pages)
391{
392 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 393 unsigned long flags;
800d8c63 394
aaa52e34
HD
395 /* nrpages adjustment done by __delete_from_page_cache() or caller */
396
4595ef88 397 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
398 info->alloced -= pages;
399 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 shmem_recalc_inode(inode);
4595ef88 401 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 402
0f079694 403 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
404}
405
7a5d0fbb 406/*
62f945b6 407 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 408 */
62f945b6 409static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
410 pgoff_t index, void *expected, void *replacement)
411{
62f945b6 412 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 413 void *item;
7a5d0fbb
HD
414
415 VM_BUG_ON(!expected);
6dbaf22c 416 VM_BUG_ON(!replacement);
62f945b6 417 item = xas_load(&xas);
7a5d0fbb
HD
418 if (item != expected)
419 return -ENOENT;
62f945b6 420 xas_store(&xas, replacement);
7a5d0fbb
HD
421 return 0;
422}
423
d1899228
HD
424/*
425 * Sometimes, before we decide whether to proceed or to fail, we must check
426 * that an entry was not already brought back from swap by a racing thread.
427 *
428 * Checking page is not enough: by the time a SwapCache page is locked, it
429 * might be reused, and again be SwapCache, using the same swap as before.
430 */
431static bool shmem_confirm_swap(struct address_space *mapping,
432 pgoff_t index, swp_entry_t swap)
433{
a12831bf 434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
435}
436
5a6e75f8
KS
437/*
438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439 *
440 * SHMEM_HUGE_NEVER:
441 * disables huge pages for the mount;
442 * SHMEM_HUGE_ALWAYS:
443 * enables huge pages for the mount;
444 * SHMEM_HUGE_WITHIN_SIZE:
445 * only allocate huge pages if the page will be fully within i_size,
446 * also respect fadvise()/madvise() hints;
447 * SHMEM_HUGE_ADVISE:
448 * only allocate huge pages if requested with fadvise()/madvise();
449 */
450
451#define SHMEM_HUGE_NEVER 0
452#define SHMEM_HUGE_ALWAYS 1
453#define SHMEM_HUGE_WITHIN_SIZE 2
454#define SHMEM_HUGE_ADVISE 3
455
456/*
457 * Special values.
458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459 *
460 * SHMEM_HUGE_DENY:
461 * disables huge on shm_mnt and all mounts, for emergency use;
462 * SHMEM_HUGE_FORCE:
463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464 *
465 */
466#define SHMEM_HUGE_DENY (-1)
467#define SHMEM_HUGE_FORCE (-2)
468
396bcc52 469#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
470/* ifdef here to avoid bloating shmem.o when not necessary */
471
5e6e5a12 472static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
5a6e75f8 473
5e6e5a12
HD
474bool shmem_is_huge(struct vm_area_struct *vma,
475 struct inode *inode, pgoff_t index)
c852023e 476{
c852023e 477 loff_t i_size;
c852023e 478
f7cd16a5
XR
479 if (!S_ISREG(inode->i_mode))
480 return false;
c852023e
HD
481 if (shmem_huge == SHMEM_HUGE_DENY)
482 return false;
5e6e5a12
HD
483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
c852023e 485 return false;
5e6e5a12
HD
486 if (shmem_huge == SHMEM_HUGE_FORCE)
487 return true;
488
489 switch (SHMEM_SB(inode->i_sb)->huge) {
c852023e
HD
490 case SHMEM_HUGE_ALWAYS:
491 return true;
492 case SHMEM_HUGE_WITHIN_SIZE:
de6ee659 493 index = round_up(index + 1, HPAGE_PMD_NR);
c852023e 494 i_size = round_up(i_size_read(inode), PAGE_SIZE);
de6ee659 495 if (i_size >> PAGE_SHIFT >= index)
c852023e
HD
496 return true;
497 fallthrough;
498 case SHMEM_HUGE_ADVISE:
5e6e5a12
HD
499 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 return true;
501 fallthrough;
c852023e 502 default:
c852023e
HD
503 return false;
504 }
505}
5a6e75f8 506
e5f2249a 507#if defined(CONFIG_SYSFS)
5a6e75f8
KS
508static int shmem_parse_huge(const char *str)
509{
510 if (!strcmp(str, "never"))
511 return SHMEM_HUGE_NEVER;
512 if (!strcmp(str, "always"))
513 return SHMEM_HUGE_ALWAYS;
514 if (!strcmp(str, "within_size"))
515 return SHMEM_HUGE_WITHIN_SIZE;
516 if (!strcmp(str, "advise"))
517 return SHMEM_HUGE_ADVISE;
518 if (!strcmp(str, "deny"))
519 return SHMEM_HUGE_DENY;
520 if (!strcmp(str, "force"))
521 return SHMEM_HUGE_FORCE;
522 return -EINVAL;
523}
e5f2249a 524#endif
5a6e75f8 525
e5f2249a 526#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
527static const char *shmem_format_huge(int huge)
528{
529 switch (huge) {
530 case SHMEM_HUGE_NEVER:
531 return "never";
532 case SHMEM_HUGE_ALWAYS:
533 return "always";
534 case SHMEM_HUGE_WITHIN_SIZE:
535 return "within_size";
536 case SHMEM_HUGE_ADVISE:
537 return "advise";
538 case SHMEM_HUGE_DENY:
539 return "deny";
540 case SHMEM_HUGE_FORCE:
541 return "force";
542 default:
543 VM_BUG_ON(1);
544 return "bad_val";
545 }
546}
f1f5929c 547#endif
5a6e75f8 548
779750d2
KS
549static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 struct shrink_control *sc, unsigned long nr_to_split)
551{
552 LIST_HEAD(list), *pos, *next;
253fd0f0 553 LIST_HEAD(to_remove);
779750d2
KS
554 struct inode *inode;
555 struct shmem_inode_info *info;
556 struct page *page;
557 unsigned long batch = sc ? sc->nr_to_scan : 128;
62c9827c 558 int split = 0;
779750d2
KS
559
560 if (list_empty(&sbinfo->shrinklist))
561 return SHRINK_STOP;
562
563 spin_lock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567 /* pin the inode */
568 inode = igrab(&info->vfs_inode);
569
570 /* inode is about to be evicted */
571 if (!inode) {
572 list_del_init(&info->shrinklist);
779750d2
KS
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 579 list_move(&info->shrinklist, &to_remove);
779750d2
KS
580 goto next;
581 }
582
583 list_move(&info->shrinklist, &list);
584next:
62c9827c 585 sbinfo->shrinklist_len--;
779750d2
KS
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
253fd0f0
KS
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
779750d2
KS
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
b3cd54b2 604 if (nr_to_split && split >= nr_to_split)
62c9827c 605 goto move_back;
779750d2 606
b3cd54b2 607 page = find_get_page(inode->i_mapping,
779750d2
KS
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
b3cd54b2 612 /* No huge page at the end of the file: nothing to split */
779750d2 613 if (!PageTransHuge(page)) {
779750d2
KS
614 put_page(page);
615 goto drop;
616 }
617
b3cd54b2 618 /*
62c9827c
GL
619 * Move the inode on the list back to shrinklist if we failed
620 * to lock the page at this time.
b3cd54b2
KS
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
62c9827c 627 goto move_back;
b3cd54b2
KS
628 }
629
779750d2
KS
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
62c9827c 634 /* If split failed move the inode on the list back to shrinklist */
b3cd54b2 635 if (ret)
62c9827c 636 goto move_back;
779750d2
KS
637
638 split++;
639drop:
640 list_del_init(&info->shrinklist);
62c9827c
GL
641 goto put;
642move_back:
643 /*
644 * Make sure the inode is either on the global list or deleted
645 * from any local list before iput() since it could be deleted
646 * in another thread once we put the inode (then the local list
647 * is corrupted).
648 */
649 spin_lock(&sbinfo->shrinklist_lock);
650 list_move(&info->shrinklist, &sbinfo->shrinklist);
651 sbinfo->shrinklist_len++;
652 spin_unlock(&sbinfo->shrinklist_lock);
653put:
779750d2
KS
654 iput(inode);
655 }
656
779750d2
KS
657 return split;
658}
659
660static long shmem_unused_huge_scan(struct super_block *sb,
661 struct shrink_control *sc)
662{
663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664
665 if (!READ_ONCE(sbinfo->shrinklist_len))
666 return SHRINK_STOP;
667
668 return shmem_unused_huge_shrink(sbinfo, sc, 0);
669}
670
671static long shmem_unused_huge_count(struct super_block *sb,
672 struct shrink_control *sc)
673{
674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 return READ_ONCE(sbinfo->shrinklist_len);
676}
396bcc52 677#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8
KS
678
679#define shmem_huge SHMEM_HUGE_DENY
680
5e6e5a12
HD
681bool shmem_is_huge(struct vm_area_struct *vma,
682 struct inode *inode, pgoff_t index)
683{
684 return false;
685}
686
779750d2
KS
687static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 struct shrink_control *sc, unsigned long nr_to_split)
689{
690 return 0;
691}
396bcc52 692#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5a6e75f8 693
46f65ec1
HD
694/*
695 * Like add_to_page_cache_locked, but error if expected item has gone.
696 */
697static int shmem_add_to_page_cache(struct page *page,
698 struct address_space *mapping,
3fea5a49
JW
699 pgoff_t index, void *expected, gfp_t gfp,
700 struct mm_struct *charge_mm)
46f65ec1 701{
552446a4 702 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
d8c6546b 703 unsigned long nr = compound_nr(page);
3fea5a49 704 int error;
46f65ec1 705
800d8c63
KS
706 VM_BUG_ON_PAGE(PageTail(page), page);
707 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
708 VM_BUG_ON_PAGE(!PageLocked(page), page);
709 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 710 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 711
800d8c63 712 page_ref_add(page, nr);
b065b432
HD
713 page->mapping = mapping;
714 page->index = index;
715
4c6355b2 716 if (!PageSwapCache(page)) {
8f425e4e 717 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
4c6355b2
JW
718 if (error) {
719 if (PageTransHuge(page)) {
720 count_vm_event(THP_FILE_FALLBACK);
721 count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 }
723 goto error;
3fea5a49 724 }
3fea5a49
JW
725 }
726 cgroup_throttle_swaprate(page, gfp);
727
552446a4 728 do {
552446a4 729 xas_lock_irq(&xas);
6b24ca4a
MWO
730 if (expected != xas_find_conflict(&xas)) {
731 xas_set_err(&xas, -EEXIST);
732 goto unlock;
733 }
734 if (expected && xas_find_conflict(&xas)) {
552446a4 735 xas_set_err(&xas, -EEXIST);
552446a4 736 goto unlock;
800d8c63 737 }
6b24ca4a
MWO
738 xas_store(&xas, page);
739 if (xas_error(&xas))
740 goto unlock;
552446a4 741 if (PageTransHuge(page)) {
800d8c63 742 count_vm_event(THP_FILE_ALLOC);
57b2847d 743 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
800d8c63 744 }
800d8c63 745 mapping->nrpages += nr;
0d1c2072
JW
746 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
747 __mod_lruvec_page_state(page, NR_SHMEM, nr);
552446a4
MW
748unlock:
749 xas_unlock_irq(&xas);
750 } while (xas_nomem(&xas, gfp));
751
752 if (xas_error(&xas)) {
3fea5a49
JW
753 error = xas_error(&xas);
754 goto error;
46f65ec1 755 }
552446a4
MW
756
757 return 0;
3fea5a49
JW
758error:
759 page->mapping = NULL;
760 page_ref_sub(page, nr);
761 return error;
46f65ec1
HD
762}
763
6922c0c7
HD
764/*
765 * Like delete_from_page_cache, but substitutes swap for page.
766 */
767static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768{
769 struct address_space *mapping = page->mapping;
770 int error;
771
800d8c63
KS
772 VM_BUG_ON_PAGE(PageCompound(page), page);
773
b93b0163 774 xa_lock_irq(&mapping->i_pages);
62f945b6 775 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
776 page->mapping = NULL;
777 mapping->nrpages--;
0d1c2072
JW
778 __dec_lruvec_page_state(page, NR_FILE_PAGES);
779 __dec_lruvec_page_state(page, NR_SHMEM);
b93b0163 780 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 781 put_page(page);
6922c0c7
HD
782 BUG_ON(error);
783}
784
7a5d0fbb 785/*
c121d3bb 786 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
787 */
788static int shmem_free_swap(struct address_space *mapping,
789 pgoff_t index, void *radswap)
790{
6dbaf22c 791 void *old;
7a5d0fbb 792
55f3f7ea 793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
794 if (old != radswap)
795 return -ENOENT;
796 free_swap_and_cache(radix_to_swp_entry(radswap));
797 return 0;
7a5d0fbb
HD
798}
799
6a15a370
VB
800/*
801 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 802 * given offsets are swapped out.
6a15a370 803 *
9608703e 804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
6a15a370
VB
805 * as long as the inode doesn't go away and racy results are not a problem.
806 */
48131e03
VB
807unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 pgoff_t start, pgoff_t end)
6a15a370 809{
7ae3424f 810 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 811 struct page *page;
48131e03 812 unsigned long swapped = 0;
6a15a370
VB
813
814 rcu_read_lock();
7ae3424f
MW
815 xas_for_each(&xas, page, end - 1) {
816 if (xas_retry(&xas, page))
2cf938aa 817 continue;
3159f943 818 if (xa_is_value(page))
6a15a370
VB
819 swapped++;
820
821 if (need_resched()) {
7ae3424f 822 xas_pause(&xas);
6a15a370 823 cond_resched_rcu();
6a15a370
VB
824 }
825 }
826
827 rcu_read_unlock();
828
829 return swapped << PAGE_SHIFT;
830}
831
48131e03
VB
832/*
833 * Determine (in bytes) how many of the shmem object's pages mapped by the
834 * given vma is swapped out.
835 *
9608703e 836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
48131e03
VB
837 * as long as the inode doesn't go away and racy results are not a problem.
838 */
839unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840{
841 struct inode *inode = file_inode(vma->vm_file);
842 struct shmem_inode_info *info = SHMEM_I(inode);
843 struct address_space *mapping = inode->i_mapping;
844 unsigned long swapped;
845
846 /* Be careful as we don't hold info->lock */
847 swapped = READ_ONCE(info->swapped);
848
849 /*
850 * The easier cases are when the shmem object has nothing in swap, or
851 * the vma maps it whole. Then we can simply use the stats that we
852 * already track.
853 */
854 if (!swapped)
855 return 0;
856
857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 return swapped << PAGE_SHIFT;
859
860 /* Here comes the more involved part */
02399c88
PX
861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 vma->vm_pgoff + vma_pages(vma));
48131e03
VB
863}
864
24513264
HD
865/*
866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867 */
868void shmem_unlock_mapping(struct address_space *mapping)
869{
870 struct pagevec pvec;
24513264
HD
871 pgoff_t index = 0;
872
86679820 873 pagevec_init(&pvec);
24513264
HD
874 /*
875 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 */
877 while (!mapping_unevictable(mapping)) {
96888e0a 878 if (!pagevec_lookup(&pvec, mapping, &index))
24513264 879 break;
64e3d12f 880 check_move_unevictable_pages(&pvec);
24513264
HD
881 pagevec_release(&pvec);
882 cond_resched();
883 }
7a5d0fbb
HD
884}
885
b9a8a419 886static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
71725ed1 887{
b9a8a419
MWO
888 struct folio *folio;
889 struct page *page;
71725ed1 890
b9a8a419
MWO
891 /*
892 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 * beyond i_size, and reports fallocated pages as holes.
894 */
895 folio = __filemap_get_folio(inode->i_mapping, index,
896 FGP_ENTRY | FGP_LOCK, 0);
897 if (!xa_is_value(folio))
898 return folio;
899 /*
900 * But read a page back from swap if any of it is within i_size
901 * (although in some cases this is just a waste of time).
902 */
903 page = NULL;
904 shmem_getpage(inode, index, &page, SGP_READ);
905 return page ? page_folio(page) : NULL;
71725ed1
HD
906}
907
7a5d0fbb 908/*
7f4446ee 909 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 911 */
1635f6a7
HD
912static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 bool unfalloc)
1da177e4 914{
285b2c4f 915 struct address_space *mapping = inode->i_mapping;
1da177e4 916 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
0e499ed3 919 struct folio_batch fbatch;
7a5d0fbb 920 pgoff_t indices[PAGEVEC_SIZE];
b9a8a419
MWO
921 struct folio *folio;
922 bool same_folio;
7a5d0fbb 923 long nr_swaps_freed = 0;
285b2c4f 924 pgoff_t index;
bda97eab
HD
925 int i;
926
83e4fa9c
HD
927 if (lend == -1)
928 end = -1; /* unsigned, so actually very big */
bda97eab 929
d144bf62
HD
930 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 info->fallocend = start;
932
51dcbdac 933 folio_batch_init(&fbatch);
bda97eab 934 index = start;
5c211ba2 935 while (index < end && find_lock_entries(mapping, index, end - 1,
51dcbdac
MWO
936 &fbatch, indices)) {
937 for (i = 0; i < folio_batch_count(&fbatch); i++) {
b9a8a419 938 folio = fbatch.folios[i];
bda97eab 939
7a5d0fbb 940 index = indices[i];
bda97eab 941
7b774aab 942 if (xa_is_value(folio)) {
1635f6a7
HD
943 if (unfalloc)
944 continue;
7a5d0fbb 945 nr_swaps_freed += !shmem_free_swap(mapping,
7b774aab 946 index, folio);
bda97eab 947 continue;
7a5d0fbb 948 }
7b774aab 949 index += folio_nr_pages(folio) - 1;
7a5d0fbb 950
7b774aab 951 if (!unfalloc || !folio_test_uptodate(folio))
1e84a3d9 952 truncate_inode_folio(mapping, folio);
7b774aab 953 folio_unlock(folio);
bda97eab 954 }
51dcbdac
MWO
955 folio_batch_remove_exceptionals(&fbatch);
956 folio_batch_release(&fbatch);
bda97eab
HD
957 cond_resched();
958 index++;
959 }
1da177e4 960
b9a8a419
MWO
961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 if (folio) {
964 same_folio = lend < folio_pos(folio) + folio_size(folio);
965 folio_mark_dirty(folio);
966 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 start = folio->index + folio_nr_pages(folio);
968 if (same_folio)
969 end = folio->index;
83e4fa9c 970 }
b9a8a419
MWO
971 folio_unlock(folio);
972 folio_put(folio);
973 folio = NULL;
83e4fa9c 974 }
b9a8a419
MWO
975
976 if (!same_folio)
977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 if (folio) {
979 folio_mark_dirty(folio);
980 if (!truncate_inode_partial_folio(folio, lstart, lend))
981 end = folio->index;
982 folio_unlock(folio);
983 folio_put(folio);
bda97eab
HD
984 }
985
986 index = start;
b1a36650 987 while (index < end) {
bda97eab 988 cond_resched();
0cd6144a 989
0e499ed3 990 if (!find_get_entries(mapping, index, end - 1, &fbatch,
cf2039af 991 indices)) {
b1a36650
HD
992 /* If all gone or hole-punch or unfalloc, we're done */
993 if (index == start || end != -1)
bda97eab 994 break;
b1a36650 995 /* But if truncating, restart to make sure all gone */
bda97eab
HD
996 index = start;
997 continue;
998 }
0e499ed3 999 for (i = 0; i < folio_batch_count(&fbatch); i++) {
b9a8a419 1000 folio = fbatch.folios[i];
bda97eab 1001
7a5d0fbb 1002 index = indices[i];
0e499ed3 1003 if (xa_is_value(folio)) {
1635f6a7
HD
1004 if (unfalloc)
1005 continue;
0e499ed3 1006 if (shmem_free_swap(mapping, index, folio)) {
b1a36650
HD
1007 /* Swap was replaced by page: retry */
1008 index--;
1009 break;
1010 }
1011 nr_swaps_freed++;
7a5d0fbb
HD
1012 continue;
1013 }
1014
0e499ed3 1015 folio_lock(folio);
800d8c63 1016
0e499ed3 1017 if (!unfalloc || !folio_test_uptodate(folio)) {
0e499ed3 1018 if (folio_mapping(folio) != mapping) {
b1a36650 1019 /* Page was replaced by swap: retry */
0e499ed3 1020 folio_unlock(folio);
b1a36650
HD
1021 index--;
1022 break;
1635f6a7 1023 }
0e499ed3
MWO
1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 folio);
b9a8a419 1026 truncate_inode_folio(mapping, folio);
7a5d0fbb 1027 }
b9a8a419 1028 index = folio->index + folio_nr_pages(folio) - 1;
0e499ed3 1029 folio_unlock(folio);
bda97eab 1030 }
0e499ed3
MWO
1031 folio_batch_remove_exceptionals(&fbatch);
1032 folio_batch_release(&fbatch);
bda97eab
HD
1033 index++;
1034 }
94c1e62d 1035
4595ef88 1036 spin_lock_irq(&info->lock);
7a5d0fbb 1037 info->swapped -= nr_swaps_freed;
1da177e4 1038 shmem_recalc_inode(inode);
4595ef88 1039 spin_unlock_irq(&info->lock);
1635f6a7 1040}
1da177e4 1041
1635f6a7
HD
1042void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043{
1044 shmem_undo_range(inode, lstart, lend, false);
078cd827 1045 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 1046}
94c1e62d 1047EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 1048
549c7297
CB
1049static int shmem_getattr(struct user_namespace *mnt_userns,
1050 const struct path *path, struct kstat *stat,
a528d35e 1051 u32 request_mask, unsigned int query_flags)
44a30220 1052{
a528d35e 1053 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
1054 struct shmem_inode_info *info = SHMEM_I(inode);
1055
d0424c42 1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1057 spin_lock_irq(&info->lock);
d0424c42 1058 shmem_recalc_inode(inode);
4595ef88 1059 spin_unlock_irq(&info->lock);
d0424c42 1060 }
0d56a451 1061 generic_fillattr(&init_user_ns, inode, stat);
89fdcd26 1062
a7fddc36 1063 if (shmem_is_huge(NULL, inode, 0))
89fdcd26
YS
1064 stat->blksize = HPAGE_PMD_SIZE;
1065
f7cd16a5
XR
1066 if (request_mask & STATX_BTIME) {
1067 stat->result_mask |= STATX_BTIME;
1068 stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 }
1071
44a30220
YZ
1072 return 0;
1073}
1074
549c7297
CB
1075static int shmem_setattr(struct user_namespace *mnt_userns,
1076 struct dentry *dentry, struct iattr *attr)
1da177e4 1077{
75c3cfa8 1078 struct inode *inode = d_inode(dentry);
40e041a2 1079 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
1080 int error;
1081
2f221d6f 1082 error = setattr_prepare(&init_user_ns, dentry, attr);
db78b877
CH
1083 if (error)
1084 return error;
1085
94c1e62d
HD
1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 loff_t oldsize = inode->i_size;
1088 loff_t newsize = attr->ia_size;
3889e6e7 1089
9608703e 1090 /* protected by i_rwsem */
40e041a2
DH
1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 return -EPERM;
1094
94c1e62d 1095 if (newsize != oldsize) {
77142517
KK
1096 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 oldsize, newsize);
1098 if (error)
1099 return error;
94c1e62d 1100 i_size_write(inode, newsize);
078cd827 1101 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1102 }
afa2db2f 1103 if (newsize <= oldsize) {
94c1e62d 1104 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1105 if (oldsize > holebegin)
1106 unmap_mapping_range(inode->i_mapping,
1107 holebegin, 0, 1);
1108 if (info->alloced)
1109 shmem_truncate_range(inode,
1110 newsize, (loff_t)-1);
94c1e62d 1111 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1112 if (oldsize > holebegin)
1113 unmap_mapping_range(inode->i_mapping,
1114 holebegin, 0, 1);
94c1e62d 1115 }
1da177e4
LT
1116 }
1117
2f221d6f 1118 setattr_copy(&init_user_ns, inode, attr);
db78b877 1119 if (attr->ia_valid & ATTR_MODE)
e65ce2a5 1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1da177e4
LT
1121 return error;
1122}
1123
1f895f75 1124static void shmem_evict_inode(struct inode *inode)
1da177e4 1125{
1da177e4 1126 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1128
30e6a51d 1129 if (shmem_mapping(inode->i_mapping)) {
1da177e4
LT
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
bc786390 1132 mapping_set_exiting(inode->i_mapping);
3889e6e7 1133 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1134 if (!list_empty(&info->shrinklist)) {
1135 spin_lock(&sbinfo->shrinklist_lock);
1136 if (!list_empty(&info->shrinklist)) {
1137 list_del_init(&info->shrinklist);
1138 sbinfo->shrinklist_len--;
1139 }
1140 spin_unlock(&sbinfo->shrinklist_lock);
1141 }
af53d3e9
HD
1142 while (!list_empty(&info->swaplist)) {
1143 /* Wait while shmem_unuse() is scanning this inode... */
1144 wait_var_event(&info->stop_eviction,
1145 !atomic_read(&info->stop_eviction));
cb5f7b9a 1146 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1147 /* ...but beware of the race if we peeked too early */
1148 if (!atomic_read(&info->stop_eviction))
1149 list_del_init(&info->swaplist);
cb5f7b9a 1150 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1151 }
3ed47db3 1152 }
b09e0fa4 1153
38f38657 1154 simple_xattrs_free(&info->xattrs);
0f3c42f5 1155 WARN_ON(inode->i_blocks);
5b04c689 1156 shmem_free_inode(inode->i_sb);
dbd5768f 1157 clear_inode(inode);
1da177e4
LT
1158}
1159
b56a2d8a
VRP
1160static int shmem_find_swap_entries(struct address_space *mapping,
1161 pgoff_t start, unsigned int nr_entries,
1162 struct page **entries, pgoff_t *indices,
10a9c496 1163 unsigned int type)
478922e2 1164{
b56a2d8a
VRP
1165 XA_STATE(xas, &mapping->i_pages, start);
1166 struct page *page;
87039546 1167 swp_entry_t entry;
b56a2d8a
VRP
1168 unsigned int ret = 0;
1169
1170 if (!nr_entries)
1171 return 0;
478922e2
MW
1172
1173 rcu_read_lock();
b56a2d8a
VRP
1174 xas_for_each(&xas, page, ULONG_MAX) {
1175 if (xas_retry(&xas, page))
5b9c98f3 1176 continue;
b56a2d8a
VRP
1177
1178 if (!xa_is_value(page))
478922e2 1179 continue;
b56a2d8a 1180
87039546
HD
1181 entry = radix_to_swp_entry(page);
1182 if (swp_type(entry) != type)
1183 continue;
b56a2d8a
VRP
1184
1185 indices[ret] = xas.xa_index;
1186 entries[ret] = page;
1187
1188 if (need_resched()) {
1189 xas_pause(&xas);
1190 cond_resched_rcu();
1191 }
1192 if (++ret == nr_entries)
1193 break;
478922e2 1194 }
478922e2 1195 rcu_read_unlock();
e21a2955 1196
b56a2d8a 1197 return ret;
478922e2
MW
1198}
1199
46f65ec1 1200/*
b56a2d8a
VRP
1201 * Move the swapped pages for an inode to page cache. Returns the count
1202 * of pages swapped in, or the error in case of failure.
46f65ec1 1203 */
b56a2d8a
VRP
1204static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1205 pgoff_t *indices)
1da177e4 1206{
b56a2d8a
VRP
1207 int i = 0;
1208 int ret = 0;
bde05d1c 1209 int error = 0;
b56a2d8a 1210 struct address_space *mapping = inode->i_mapping;
1da177e4 1211
b56a2d8a
VRP
1212 for (i = 0; i < pvec.nr; i++) {
1213 struct page *page = pvec.pages[i];
2e0e26c7 1214
b56a2d8a
VRP
1215 if (!xa_is_value(page))
1216 continue;
1217 error = shmem_swapin_page(inode, indices[i],
1218 &page, SGP_CACHE,
1219 mapping_gfp_mask(mapping),
1220 NULL, NULL);
1221 if (error == 0) {
1222 unlock_page(page);
1223 put_page(page);
1224 ret++;
1225 }
1226 if (error == -ENOMEM)
1227 break;
1228 error = 0;
bde05d1c 1229 }
b56a2d8a
VRP
1230 return error ? error : ret;
1231}
bde05d1c 1232
b56a2d8a
VRP
1233/*
1234 * If swap found in inode, free it and move page from swapcache to filecache.
1235 */
10a9c496 1236static int shmem_unuse_inode(struct inode *inode, unsigned int type)
b56a2d8a
VRP
1237{
1238 struct address_space *mapping = inode->i_mapping;
1239 pgoff_t start = 0;
1240 struct pagevec pvec;
1241 pgoff_t indices[PAGEVEC_SIZE];
b56a2d8a
VRP
1242 int ret = 0;
1243
1244 pagevec_init(&pvec);
1245 do {
1246 unsigned int nr_entries = PAGEVEC_SIZE;
1247
b56a2d8a 1248 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
10a9c496 1249 pvec.pages, indices, type);
b56a2d8a
VRP
1250 if (pvec.nr == 0) {
1251 ret = 0;
1252 break;
46f65ec1 1253 }
b56a2d8a
VRP
1254
1255 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1256 if (ret < 0)
1257 break;
1258
b56a2d8a
VRP
1259 start = indices[pvec.nr - 1];
1260 } while (true);
1261
1262 return ret;
1da177e4
LT
1263}
1264
1265/*
b56a2d8a
VRP
1266 * Read all the shared memory data that resides in the swap
1267 * device 'type' back into memory, so the swap device can be
1268 * unused.
1da177e4 1269 */
10a9c496 1270int shmem_unuse(unsigned int type)
1da177e4 1271{
b56a2d8a 1272 struct shmem_inode_info *info, *next;
bde05d1c
HD
1273 int error = 0;
1274
b56a2d8a
VRP
1275 if (list_empty(&shmem_swaplist))
1276 return 0;
1277
1278 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1279 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1280 if (!info->swapped) {
6922c0c7 1281 list_del_init(&info->swaplist);
b56a2d8a
VRP
1282 continue;
1283 }
af53d3e9
HD
1284 /*
1285 * Drop the swaplist mutex while searching the inode for swap;
1286 * but before doing so, make sure shmem_evict_inode() will not
1287 * remove placeholder inode from swaplist, nor let it be freed
1288 * (igrab() would protect from unlink, but not from unmount).
1289 */
1290 atomic_inc(&info->stop_eviction);
b56a2d8a 1291 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1292
10a9c496 1293 error = shmem_unuse_inode(&info->vfs_inode, type);
cb5f7b9a 1294 cond_resched();
b56a2d8a
VRP
1295
1296 mutex_lock(&shmem_swaplist_mutex);
1297 next = list_next_entry(info, swaplist);
1298 if (!info->swapped)
1299 list_del_init(&info->swaplist);
af53d3e9
HD
1300 if (atomic_dec_and_test(&info->stop_eviction))
1301 wake_up_var(&info->stop_eviction);
b56a2d8a 1302 if (error)
778dd893 1303 break;
1da177e4 1304 }
cb5f7b9a 1305 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1306
778dd893 1307 return error;
1da177e4
LT
1308}
1309
1310/*
1311 * Move the page from the page cache to the swap cache.
1312 */
1313static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1314{
1315 struct shmem_inode_info *info;
1da177e4 1316 struct address_space *mapping;
1da177e4 1317 struct inode *inode;
6922c0c7
HD
1318 swp_entry_t swap;
1319 pgoff_t index;
1da177e4 1320
1e6decf3
HD
1321 /*
1322 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1323 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1324 * and its shmem_writeback() needs them to be split when swapping.
1325 */
1326 if (PageTransCompound(page)) {
1327 /* Ensure the subpages are still dirty */
1328 SetPageDirty(page);
1329 if (split_huge_page(page) < 0)
1330 goto redirty;
1331 ClearPageDirty(page);
1332 }
1333
1da177e4 1334 BUG_ON(!PageLocked(page));
1da177e4
LT
1335 mapping = page->mapping;
1336 index = page->index;
1337 inode = mapping->host;
1338 info = SHMEM_I(inode);
1339 if (info->flags & VM_LOCKED)
1340 goto redirty;
d9fe526a 1341 if (!total_swap_pages)
1da177e4
LT
1342 goto redirty;
1343
d9fe526a 1344 /*
97b713ba
CH
1345 * Our capabilities prevent regular writeback or sync from ever calling
1346 * shmem_writepage; but a stacking filesystem might use ->writepage of
1347 * its underlying filesystem, in which case tmpfs should write out to
1348 * swap only in response to memory pressure, and not for the writeback
1349 * threads or sync.
d9fe526a 1350 */
48f170fb
HD
1351 if (!wbc->for_reclaim) {
1352 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1353 goto redirty;
1354 }
1635f6a7
HD
1355
1356 /*
1357 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1358 * value into swapfile.c, the only way we can correctly account for a
1359 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1360 *
1361 * That's okay for a page already fallocated earlier, but if we have
1362 * not yet completed the fallocation, then (a) we want to keep track
1363 * of this page in case we have to undo it, and (b) it may not be a
1364 * good idea to continue anyway, once we're pushing into swap. So
1365 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1366 */
1367 if (!PageUptodate(page)) {
1aac1400
HD
1368 if (inode->i_private) {
1369 struct shmem_falloc *shmem_falloc;
1370 spin_lock(&inode->i_lock);
1371 shmem_falloc = inode->i_private;
1372 if (shmem_falloc &&
8e205f77 1373 !shmem_falloc->waitq &&
1aac1400
HD
1374 index >= shmem_falloc->start &&
1375 index < shmem_falloc->next)
1376 shmem_falloc->nr_unswapped++;
1377 else
1378 shmem_falloc = NULL;
1379 spin_unlock(&inode->i_lock);
1380 if (shmem_falloc)
1381 goto redirty;
1382 }
1635f6a7
HD
1383 clear_highpage(page);
1384 flush_dcache_page(page);
1385 SetPageUptodate(page);
1386 }
1387
38d8b4e6 1388 swap = get_swap_page(page);
48f170fb
HD
1389 if (!swap.val)
1390 goto redirty;
d9fe526a 1391
b1dea800
HD
1392 /*
1393 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1394 * if it's not already there. Do it now before the page is
1395 * moved to swap cache, when its pagelock no longer protects
b1dea800 1396 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1397 * we've incremented swapped, because shmem_unuse_inode() will
1398 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1399 */
48f170fb
HD
1400 mutex_lock(&shmem_swaplist_mutex);
1401 if (list_empty(&info->swaplist))
b56a2d8a 1402 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1403
4afab1cd 1404 if (add_to_swap_cache(page, swap,
3852f676
JK
1405 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1406 NULL) == 0) {
4595ef88 1407 spin_lock_irq(&info->lock);
6922c0c7 1408 shmem_recalc_inode(inode);
267a4c76 1409 info->swapped++;
4595ef88 1410 spin_unlock_irq(&info->lock);
6922c0c7 1411
267a4c76
HD
1412 swap_shmem_alloc(swap);
1413 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1414
6922c0c7 1415 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1416 BUG_ON(page_mapped(page));
9fab5619 1417 swap_writepage(page, wbc);
1da177e4
LT
1418 return 0;
1419 }
1420
6922c0c7 1421 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1422 put_swap_page(page, swap);
1da177e4
LT
1423redirty:
1424 set_page_dirty(page);
d9fe526a
HD
1425 if (wbc->for_reclaim)
1426 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1427 unlock_page(page);
1428 return 0;
1da177e4
LT
1429}
1430
75edd345 1431#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1432static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1433{
095f1fc4 1434 char buffer[64];
680d794b 1435
71fe804b 1436 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1437 return; /* show nothing */
680d794b 1438
a7a88b23 1439 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1440
1441 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1442}
71fe804b
LS
1443
1444static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1445{
1446 struct mempolicy *mpol = NULL;
1447 if (sbinfo->mpol) {
bf11b9a8 1448 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
71fe804b
LS
1449 mpol = sbinfo->mpol;
1450 mpol_get(mpol);
bf11b9a8 1451 raw_spin_unlock(&sbinfo->stat_lock);
71fe804b
LS
1452 }
1453 return mpol;
1454}
75edd345
HD
1455#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1456static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457{
1458}
1459static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460{
1461 return NULL;
1462}
1463#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1464#ifndef CONFIG_NUMA
1465#define vm_policy vm_private_data
1466#endif
680d794b 1467
800d8c63
KS
1468static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1469 struct shmem_inode_info *info, pgoff_t index)
1470{
1471 /* Create a pseudo vma that just contains the policy */
2c4541e2 1472 vma_init(vma, NULL);
800d8c63
KS
1473 /* Bias interleave by inode number to distribute better across nodes */
1474 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1475 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1476}
1477
1478static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1479{
1480 /* Drop reference taken by mpol_shared_policy_lookup() */
1481 mpol_cond_put(vma->vm_policy);
1482}
1483
41ffe5d5
HD
1484static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1485 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1486{
1da177e4 1487 struct vm_area_struct pvma;
18a2f371 1488 struct page *page;
8c63ca5b
WD
1489 struct vm_fault vmf = {
1490 .vma = &pvma,
1491 };
52cd3b07 1492
800d8c63 1493 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec 1494 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1495 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1496
800d8c63
KS
1497 return page;
1498}
1499
78cc8cdc
RR
1500/*
1501 * Make sure huge_gfp is always more limited than limit_gfp.
1502 * Some of the flags set permissions, while others set limitations.
1503 */
1504static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1505{
1506 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1507 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
187df5dd
RR
1508 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1509 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1510
1511 /* Allow allocations only from the originally specified zones. */
1512 result |= zoneflags;
78cc8cdc
RR
1513
1514 /*
1515 * Minimize the result gfp by taking the union with the deny flags,
1516 * and the intersection of the allow flags.
1517 */
1518 result |= (limit_gfp & denyflags);
1519 result |= (huge_gfp & limit_gfp) & allowflags;
1520
1521 return result;
1522}
1523
800d8c63
KS
1524static struct page *shmem_alloc_hugepage(gfp_t gfp,
1525 struct shmem_inode_info *info, pgoff_t index)
1526{
1527 struct vm_area_struct pvma;
7b8d046f
MW
1528 struct address_space *mapping = info->vfs_inode.i_mapping;
1529 pgoff_t hindex;
800d8c63
KS
1530 struct page *page;
1531
4620a06e 1532 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1533 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1534 XA_PRESENT))
800d8c63 1535 return NULL;
18a2f371 1536
800d8c63 1537 shmem_pseudo_vma_init(&pvma, info, hindex);
be1a13eb 1538 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
800d8c63
KS
1539 shmem_pseudo_vma_destroy(&pvma);
1540 if (page)
1541 prep_transhuge_page(page);
dcdf11ee
DR
1542 else
1543 count_vm_event(THP_FILE_FALLBACK);
18a2f371 1544 return page;
1da177e4
LT
1545}
1546
02098fea 1547static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1548 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1549{
1550 struct vm_area_struct pvma;
18a2f371 1551 struct page *page;
1da177e4 1552
800d8c63
KS
1553 shmem_pseudo_vma_init(&pvma, info, index);
1554 page = alloc_page_vma(gfp, &pvma, 0);
1555 shmem_pseudo_vma_destroy(&pvma);
1556
1557 return page;
1558}
1559
1560static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1561 struct inode *inode,
800d8c63
KS
1562 pgoff_t index, bool huge)
1563{
0f079694 1564 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1565 struct page *page;
1566 int nr;
1567 int err = -ENOSPC;
52cd3b07 1568
396bcc52 1569 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
800d8c63
KS
1570 huge = false;
1571 nr = huge ? HPAGE_PMD_NR : 1;
1572
0f079694 1573 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1574 goto failed;
800d8c63
KS
1575
1576 if (huge)
1577 page = shmem_alloc_hugepage(gfp, info, index);
1578 else
1579 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1580 if (page) {
1581 __SetPageLocked(page);
1582 __SetPageSwapBacked(page);
800d8c63 1583 return page;
75edd345 1584 }
18a2f371 1585
800d8c63 1586 err = -ENOMEM;
0f079694 1587 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1588failed:
1589 return ERR_PTR(err);
1da177e4 1590}
71fe804b 1591
bde05d1c
HD
1592/*
1593 * When a page is moved from swapcache to shmem filecache (either by the
1594 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1595 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1596 * ignorance of the mapping it belongs to. If that mapping has special
1597 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1598 * we may need to copy to a suitable page before moving to filecache.
1599 *
1600 * In a future release, this may well be extended to respect cpuset and
1601 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1602 * but for now it is a simple matter of zone.
1603 */
1604static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1605{
1606 return page_zonenum(page) > gfp_zone(gfp);
1607}
1608
1609static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1610 struct shmem_inode_info *info, pgoff_t index)
1611{
1612 struct page *oldpage, *newpage;
d21bba2b 1613 struct folio *old, *new;
bde05d1c 1614 struct address_space *swap_mapping;
c1cb20d4 1615 swp_entry_t entry;
bde05d1c
HD
1616 pgoff_t swap_index;
1617 int error;
1618
1619 oldpage = *pagep;
c1cb20d4
YZ
1620 entry.val = page_private(oldpage);
1621 swap_index = swp_offset(entry);
bde05d1c
HD
1622 swap_mapping = page_mapping(oldpage);
1623
1624 /*
1625 * We have arrived here because our zones are constrained, so don't
1626 * limit chance of success by further cpuset and node constraints.
1627 */
1628 gfp &= ~GFP_CONSTRAINT_MASK;
1629 newpage = shmem_alloc_page(gfp, info, index);
1630 if (!newpage)
1631 return -ENOMEM;
bde05d1c 1632
09cbfeaf 1633 get_page(newpage);
bde05d1c 1634 copy_highpage(newpage, oldpage);
0142ef6c 1635 flush_dcache_page(newpage);
bde05d1c 1636
9956edf3
HD
1637 __SetPageLocked(newpage);
1638 __SetPageSwapBacked(newpage);
bde05d1c 1639 SetPageUptodate(newpage);
c1cb20d4 1640 set_page_private(newpage, entry.val);
bde05d1c
HD
1641 SetPageSwapCache(newpage);
1642
1643 /*
1644 * Our caller will very soon move newpage out of swapcache, but it's
1645 * a nice clean interface for us to replace oldpage by newpage there.
1646 */
b93b0163 1647 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1648 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1649 if (!error) {
d21bba2b
MWO
1650 old = page_folio(oldpage);
1651 new = page_folio(newpage);
1652 mem_cgroup_migrate(old, new);
0d1c2072
JW
1653 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1654 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1655 }
b93b0163 1656 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1657
0142ef6c
HD
1658 if (unlikely(error)) {
1659 /*
1660 * Is this possible? I think not, now that our callers check
1661 * both PageSwapCache and page_private after getting page lock;
1662 * but be defensive. Reverse old to newpage for clear and free.
1663 */
1664 oldpage = newpage;
1665 } else {
6058eaec 1666 lru_cache_add(newpage);
0142ef6c
HD
1667 *pagep = newpage;
1668 }
bde05d1c
HD
1669
1670 ClearPageSwapCache(oldpage);
1671 set_page_private(oldpage, 0);
1672
1673 unlock_page(oldpage);
09cbfeaf
KS
1674 put_page(oldpage);
1675 put_page(oldpage);
0142ef6c 1676 return error;
bde05d1c
HD
1677}
1678
c5bf121e
VRP
1679/*
1680 * Swap in the page pointed to by *pagep.
1681 * Caller has to make sure that *pagep contains a valid swapped page.
1682 * Returns 0 and the page in pagep if success. On failure, returns the
af44c12f 1683 * error code and NULL in *pagep.
c5bf121e
VRP
1684 */
1685static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1686 struct page **pagep, enum sgp_type sgp,
1687 gfp_t gfp, struct vm_area_struct *vma,
1688 vm_fault_t *fault_type)
1689{
1690 struct address_space *mapping = inode->i_mapping;
1691 struct shmem_inode_info *info = SHMEM_I(inode);
04f94e3f 1692 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
b1e1ef34 1693 struct page *page;
c5bf121e
VRP
1694 swp_entry_t swap;
1695 int error;
1696
1697 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1698 swap = radix_to_swp_entry(*pagep);
1699 *pagep = NULL;
1700
1701 /* Look it up and read it in.. */
1702 page = lookup_swap_cache(swap, NULL, 0);
1703 if (!page) {
1704 /* Or update major stats only when swapin succeeds?? */
1705 if (fault_type) {
1706 *fault_type |= VM_FAULT_MAJOR;
1707 count_vm_event(PGMAJFAULT);
1708 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1709 }
1710 /* Here we actually start the io */
1711 page = shmem_swapin(swap, gfp, info, index);
1712 if (!page) {
1713 error = -ENOMEM;
1714 goto failed;
1715 }
1716 }
1717
1718 /* We have to do this with page locked to prevent races */
1719 lock_page(page);
1720 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1721 !shmem_confirm_swap(mapping, index, swap)) {
1722 error = -EEXIST;
1723 goto unlock;
1724 }
1725 if (!PageUptodate(page)) {
1726 error = -EIO;
1727 goto failed;
1728 }
1729 wait_on_page_writeback(page);
1730
8a84802e
SP
1731 /*
1732 * Some architectures may have to restore extra metadata to the
1733 * physical page after reading from swap.
1734 */
1735 arch_swap_restore(swap, page);
1736
c5bf121e
VRP
1737 if (shmem_should_replace_page(page, gfp)) {
1738 error = shmem_replace_page(&page, gfp, info, index);
1739 if (error)
1740 goto failed;
1741 }
1742
14235ab3 1743 error = shmem_add_to_page_cache(page, mapping, index,
3fea5a49
JW
1744 swp_to_radix_entry(swap), gfp,
1745 charge_mm);
1746 if (error)
14235ab3 1747 goto failed;
c5bf121e
VRP
1748
1749 spin_lock_irq(&info->lock);
1750 info->swapped--;
1751 shmem_recalc_inode(inode);
1752 spin_unlock_irq(&info->lock);
1753
1754 if (sgp == SGP_WRITE)
1755 mark_page_accessed(page);
1756
1757 delete_from_swap_cache(page);
1758 set_page_dirty(page);
1759 swap_free(swap);
1760
1761 *pagep = page;
1762 return 0;
1763failed:
1764 if (!shmem_confirm_swap(mapping, index, swap))
1765 error = -EEXIST;
1766unlock:
1767 if (page) {
1768 unlock_page(page);
1769 put_page(page);
1770 }
1771
1772 return error;
1773}
1774
1da177e4 1775/*
68da9f05 1776 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1777 *
1778 * If we allocate a new one we do not mark it dirty. That's up to the
1779 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1780 * entry since a page cannot live in both the swap and page cache.
1781 *
c949b097 1782 * vma, vmf, and fault_type are only supplied by shmem_fault:
9e18eb29 1783 * otherwise they are NULL.
1da177e4 1784 */
41ffe5d5 1785static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1786 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1787 struct vm_area_struct *vma, struct vm_fault *vmf,
1788 vm_fault_t *fault_type)
1da177e4
LT
1789{
1790 struct address_space *mapping = inode->i_mapping;
23f919d4 1791 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1792 struct shmem_sb_info *sbinfo;
9e18eb29 1793 struct mm_struct *charge_mm;
27ab7006 1794 struct page *page;
800d8c63 1795 pgoff_t hindex = index;
164cc4fe 1796 gfp_t huge_gfp;
1da177e4 1797 int error;
54af6042 1798 int once = 0;
1635f6a7 1799 int alloced = 0;
1da177e4 1800
09cbfeaf 1801 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1802 return -EFBIG;
1da177e4 1803repeat:
c5bf121e
VRP
1804 if (sgp <= SGP_CACHE &&
1805 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1806 return -EINVAL;
1807 }
1808
1809 sbinfo = SHMEM_SB(inode->i_sb);
04f94e3f 1810 charge_mm = vma ? vma->vm_mm : NULL;
c5bf121e 1811
44835d20
MWO
1812 page = pagecache_get_page(mapping, index,
1813 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
c949b097
AR
1814
1815 if (page && vma && userfaultfd_minor(vma)) {
1816 if (!xa_is_value(page)) {
1817 unlock_page(page);
1818 put_page(page);
1819 }
1820 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1821 return 0;
1822 }
1823
3159f943 1824 if (xa_is_value(page)) {
c5bf121e
VRP
1825 error = shmem_swapin_page(inode, index, &page,
1826 sgp, gfp, vma, fault_type);
1827 if (error == -EEXIST)
1828 goto repeat;
54af6042 1829
c5bf121e
VRP
1830 *pagep = page;
1831 return error;
54af6042
HD
1832 }
1833
acdd9f8e 1834 if (page) {
63ec1973 1835 hindex = page->index;
acdd9f8e
HD
1836 if (sgp == SGP_WRITE)
1837 mark_page_accessed(page);
1838 if (PageUptodate(page))
1839 goto out;
1840 /* fallocated page */
1635f6a7
HD
1841 if (sgp != SGP_READ)
1842 goto clear;
1843 unlock_page(page);
09cbfeaf 1844 put_page(page);
1635f6a7 1845 }
27ab7006
HD
1846
1847 /*
acdd9f8e
HD
1848 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1849 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1850 */
1851 *pagep = NULL;
1852 if (sgp == SGP_READ)
1853 return 0;
1854 if (sgp == SGP_NOALLOC)
1855 return -ENOENT;
1856
1857 /*
1858 * Fast cache lookup and swap lookup did not find it: allocate.
27ab7006 1859 */
54af6042 1860
c5bf121e
VRP
1861 if (vma && userfaultfd_missing(vma)) {
1862 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1863 return 0;
1864 }
cfda0526 1865
5e6e5a12 1866 if (!shmem_is_huge(vma, inode, index))
c5bf121e 1867 goto alloc_nohuge;
1da177e4 1868
164cc4fe 1869 huge_gfp = vma_thp_gfp_mask(vma);
78cc8cdc 1870 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
164cc4fe 1871 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
c5bf121e
VRP
1872 if (IS_ERR(page)) {
1873alloc_nohuge:
1874 page = shmem_alloc_and_acct_page(gfp, inode,
1875 index, false);
1876 }
1877 if (IS_ERR(page)) {
1878 int retry = 5;
800d8c63 1879
c5bf121e
VRP
1880 error = PTR_ERR(page);
1881 page = NULL;
1882 if (error != -ENOSPC)
1883 goto unlock;
1884 /*
1885 * Try to reclaim some space by splitting a huge page
1886 * beyond i_size on the filesystem.
1887 */
1888 while (retry--) {
1889 int ret;
66d2f4d2 1890
c5bf121e
VRP
1891 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1892 if (ret == SHRINK_STOP)
1893 break;
1894 if (ret)
1895 goto alloc_nohuge;
b065b432 1896 }
c5bf121e
VRP
1897 goto unlock;
1898 }
54af6042 1899
c5bf121e
VRP
1900 if (PageTransHuge(page))
1901 hindex = round_down(index, HPAGE_PMD_NR);
1902 else
1903 hindex = index;
54af6042 1904
c5bf121e
VRP
1905 if (sgp == SGP_WRITE)
1906 __SetPageReferenced(page);
1907
c5bf121e 1908 error = shmem_add_to_page_cache(page, mapping, hindex,
3fea5a49
JW
1909 NULL, gfp & GFP_RECLAIM_MASK,
1910 charge_mm);
1911 if (error)
c5bf121e 1912 goto unacct;
6058eaec 1913 lru_cache_add(page);
779750d2 1914
c5bf121e 1915 spin_lock_irq(&info->lock);
d8c6546b 1916 info->alloced += compound_nr(page);
c5bf121e
VRP
1917 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1918 shmem_recalc_inode(inode);
1919 spin_unlock_irq(&info->lock);
1920 alloced = true;
1921
1922 if (PageTransHuge(page) &&
1923 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1924 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1925 /*
c5bf121e
VRP
1926 * Part of the huge page is beyond i_size: subject
1927 * to shrink under memory pressure.
1635f6a7 1928 */
c5bf121e 1929 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1930 /*
c5bf121e
VRP
1931 * _careful to defend against unlocked access to
1932 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1933 */
c5bf121e
VRP
1934 if (list_empty_careful(&info->shrinklist)) {
1935 list_add_tail(&info->shrinklist,
1936 &sbinfo->shrinklist);
1937 sbinfo->shrinklist_len++;
1938 }
1939 spin_unlock(&sbinfo->shrinklist_lock);
1940 }
800d8c63 1941
c5bf121e
VRP
1942 /*
1943 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1944 */
1945 if (sgp == SGP_FALLOC)
1946 sgp = SGP_WRITE;
1947clear:
1948 /*
1949 * Let SGP_WRITE caller clear ends if write does not fill page;
1950 * but SGP_FALLOC on a page fallocated earlier must initialize
1951 * it now, lest undo on failure cancel our earlier guarantee.
1952 */
1953 if (sgp != SGP_WRITE && !PageUptodate(page)) {
c5bf121e
VRP
1954 int i;
1955
63ec1973
MWO
1956 for (i = 0; i < compound_nr(page); i++) {
1957 clear_highpage(page + i);
1958 flush_dcache_page(page + i);
ec9516fb 1959 }
63ec1973 1960 SetPageUptodate(page);
1da177e4 1961 }
bde05d1c 1962
54af6042 1963 /* Perhaps the file has been truncated since we checked */
75edd345 1964 if (sgp <= SGP_CACHE &&
09cbfeaf 1965 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1966 if (alloced) {
1967 ClearPageDirty(page);
1968 delete_from_page_cache(page);
4595ef88 1969 spin_lock_irq(&info->lock);
267a4c76 1970 shmem_recalc_inode(inode);
4595ef88 1971 spin_unlock_irq(&info->lock);
267a4c76 1972 }
54af6042 1973 error = -EINVAL;
267a4c76 1974 goto unlock;
e83c32e8 1975 }
63ec1973 1976out:
800d8c63 1977 *pagep = page + index - hindex;
54af6042 1978 return 0;
1da177e4 1979
59a16ead 1980 /*
54af6042 1981 * Error recovery.
59a16ead 1982 */
54af6042 1983unacct:
d8c6546b 1984 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1985
1986 if (PageTransHuge(page)) {
1987 unlock_page(page);
1988 put_page(page);
1989 goto alloc_nohuge;
1990 }
d1899228 1991unlock:
27ab7006 1992 if (page) {
54af6042 1993 unlock_page(page);
09cbfeaf 1994 put_page(page);
54af6042
HD
1995 }
1996 if (error == -ENOSPC && !once++) {
4595ef88 1997 spin_lock_irq(&info->lock);
54af6042 1998 shmem_recalc_inode(inode);
4595ef88 1999 spin_unlock_irq(&info->lock);
27ab7006 2000 goto repeat;
ff36b801 2001 }
7f4446ee 2002 if (error == -EEXIST)
54af6042
HD
2003 goto repeat;
2004 return error;
1da177e4
LT
2005}
2006
10d20bd2
LT
2007/*
2008 * This is like autoremove_wake_function, but it removes the wait queue
2009 * entry unconditionally - even if something else had already woken the
2010 * target.
2011 */
ac6424b9 2012static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
2013{
2014 int ret = default_wake_function(wait, mode, sync, key);
2055da97 2015 list_del_init(&wait->entry);
10d20bd2
LT
2016 return ret;
2017}
2018
20acce67 2019static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 2020{
11bac800 2021 struct vm_area_struct *vma = vmf->vma;
496ad9aa 2022 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 2023 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
20acce67
SJ
2024 int err;
2025 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 2026
f00cdc6d
HD
2027 /*
2028 * Trinity finds that probing a hole which tmpfs is punching can
2029 * prevent the hole-punch from ever completing: which in turn
9608703e 2030 * locks writers out with its hold on i_rwsem. So refrain from
8e205f77
HD
2031 * faulting pages into the hole while it's being punched. Although
2032 * shmem_undo_range() does remove the additions, it may be unable to
2033 * keep up, as each new page needs its own unmap_mapping_range() call,
2034 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2035 *
2036 * It does not matter if we sometimes reach this check just before the
2037 * hole-punch begins, so that one fault then races with the punch:
2038 * we just need to make racing faults a rare case.
2039 *
2040 * The implementation below would be much simpler if we just used a
9608703e 2041 * standard mutex or completion: but we cannot take i_rwsem in fault,
8e205f77 2042 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2043 */
2044 if (unlikely(inode->i_private)) {
2045 struct shmem_falloc *shmem_falloc;
2046
2047 spin_lock(&inode->i_lock);
2048 shmem_falloc = inode->i_private;
8e205f77
HD
2049 if (shmem_falloc &&
2050 shmem_falloc->waitq &&
2051 vmf->pgoff >= shmem_falloc->start &&
2052 vmf->pgoff < shmem_falloc->next) {
8897c1b1 2053 struct file *fpin;
8e205f77 2054 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2055 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2056
2057 ret = VM_FAULT_NOPAGE;
8897c1b1
KS
2058 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2059 if (fpin)
8e205f77 2060 ret = VM_FAULT_RETRY;
8e205f77
HD
2061
2062 shmem_falloc_waitq = shmem_falloc->waitq;
2063 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2064 TASK_UNINTERRUPTIBLE);
2065 spin_unlock(&inode->i_lock);
2066 schedule();
2067
2068 /*
2069 * shmem_falloc_waitq points into the shmem_fallocate()
2070 * stack of the hole-punching task: shmem_falloc_waitq
2071 * is usually invalid by the time we reach here, but
2072 * finish_wait() does not dereference it in that case;
2073 * though i_lock needed lest racing with wake_up_all().
2074 */
2075 spin_lock(&inode->i_lock);
2076 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2077 spin_unlock(&inode->i_lock);
8897c1b1
KS
2078
2079 if (fpin)
2080 fput(fpin);
8e205f77 2081 return ret;
f00cdc6d 2082 }
8e205f77 2083 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2084 }
2085
5e6e5a12 2086 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
cfda0526 2087 gfp, vma, vmf, &ret);
20acce67
SJ
2088 if (err)
2089 return vmf_error(err);
68da9f05 2090 return ret;
1da177e4
LT
2091}
2092
c01d5b30
HD
2093unsigned long shmem_get_unmapped_area(struct file *file,
2094 unsigned long uaddr, unsigned long len,
2095 unsigned long pgoff, unsigned long flags)
2096{
2097 unsigned long (*get_area)(struct file *,
2098 unsigned long, unsigned long, unsigned long, unsigned long);
2099 unsigned long addr;
2100 unsigned long offset;
2101 unsigned long inflated_len;
2102 unsigned long inflated_addr;
2103 unsigned long inflated_offset;
2104
2105 if (len > TASK_SIZE)
2106 return -ENOMEM;
2107
2108 get_area = current->mm->get_unmapped_area;
2109 addr = get_area(file, uaddr, len, pgoff, flags);
2110
396bcc52 2111 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
c01d5b30
HD
2112 return addr;
2113 if (IS_ERR_VALUE(addr))
2114 return addr;
2115 if (addr & ~PAGE_MASK)
2116 return addr;
2117 if (addr > TASK_SIZE - len)
2118 return addr;
2119
2120 if (shmem_huge == SHMEM_HUGE_DENY)
2121 return addr;
2122 if (len < HPAGE_PMD_SIZE)
2123 return addr;
2124 if (flags & MAP_FIXED)
2125 return addr;
2126 /*
2127 * Our priority is to support MAP_SHARED mapped hugely;
2128 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
99158997
KS
2129 * But if caller specified an address hint and we allocated area there
2130 * successfully, respect that as before.
c01d5b30 2131 */
99158997 2132 if (uaddr == addr)
c01d5b30
HD
2133 return addr;
2134
2135 if (shmem_huge != SHMEM_HUGE_FORCE) {
2136 struct super_block *sb;
2137
2138 if (file) {
2139 VM_BUG_ON(file->f_op != &shmem_file_operations);
2140 sb = file_inode(file)->i_sb;
2141 } else {
2142 /*
2143 * Called directly from mm/mmap.c, or drivers/char/mem.c
2144 * for "/dev/zero", to create a shared anonymous object.
2145 */
2146 if (IS_ERR(shm_mnt))
2147 return addr;
2148 sb = shm_mnt->mnt_sb;
2149 }
3089bf61 2150 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2151 return addr;
2152 }
2153
2154 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2155 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2156 return addr;
2157 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2158 return addr;
2159
2160 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2161 if (inflated_len > TASK_SIZE)
2162 return addr;
2163 if (inflated_len < len)
2164 return addr;
2165
99158997 2166 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
c01d5b30
HD
2167 if (IS_ERR_VALUE(inflated_addr))
2168 return addr;
2169 if (inflated_addr & ~PAGE_MASK)
2170 return addr;
2171
2172 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2173 inflated_addr += offset - inflated_offset;
2174 if (inflated_offset > offset)
2175 inflated_addr += HPAGE_PMD_SIZE;
2176
2177 if (inflated_addr > TASK_SIZE - len)
2178 return addr;
2179 return inflated_addr;
2180}
2181
1da177e4 2182#ifdef CONFIG_NUMA
41ffe5d5 2183static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2184{
496ad9aa 2185 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2186 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2187}
2188
d8dc74f2
AB
2189static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2190 unsigned long addr)
1da177e4 2191{
496ad9aa 2192 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2193 pgoff_t index;
1da177e4 2194
41ffe5d5
HD
2195 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2196 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2197}
2198#endif
2199
d7c9e99a 2200int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
1da177e4 2201{
496ad9aa 2202 struct inode *inode = file_inode(file);
1da177e4
LT
2203 struct shmem_inode_info *info = SHMEM_I(inode);
2204 int retval = -ENOMEM;
2205
ea0dfeb4
HD
2206 /*
2207 * What serializes the accesses to info->flags?
2208 * ipc_lock_object() when called from shmctl_do_lock(),
2209 * no serialization needed when called from shm_destroy().
2210 */
1da177e4 2211 if (lock && !(info->flags & VM_LOCKED)) {
d7c9e99a 2212 if (!user_shm_lock(inode->i_size, ucounts))
1da177e4
LT
2213 goto out_nomem;
2214 info->flags |= VM_LOCKED;
89e004ea 2215 mapping_set_unevictable(file->f_mapping);
1da177e4 2216 }
d7c9e99a
AG
2217 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2218 user_shm_unlock(inode->i_size, ucounts);
1da177e4 2219 info->flags &= ~VM_LOCKED;
89e004ea 2220 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2221 }
2222 retval = 0;
89e004ea 2223
1da177e4 2224out_nomem:
1da177e4
LT
2225 return retval;
2226}
2227
9b83a6a8 2228static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2229{
ab3948f5 2230 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
22247efd 2231 int ret;
ab3948f5 2232
22247efd
PX
2233 ret = seal_check_future_write(info->seals, vma);
2234 if (ret)
2235 return ret;
ab3948f5 2236
51b0bff2
CM
2237 /* arm64 - allow memory tagging on RAM-based files */
2238 vma->vm_flags |= VM_MTE_ALLOWED;
2239
1da177e4
LT
2240 file_accessed(file);
2241 vma->vm_ops = &shmem_vm_ops;
396bcc52 2242 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
2243 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2244 (vma->vm_end & HPAGE_PMD_MASK)) {
2245 khugepaged_enter(vma, vma->vm_flags);
2246 }
1da177e4
LT
2247 return 0;
2248}
2249
454abafe 2250static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2251 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2252{
2253 struct inode *inode;
2254 struct shmem_inode_info *info;
2255 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
e809d5f0 2256 ino_t ino;
1da177e4 2257
e809d5f0 2258 if (shmem_reserve_inode(sb, &ino))
5b04c689 2259 return NULL;
1da177e4
LT
2260
2261 inode = new_inode(sb);
2262 if (inode) {
e809d5f0 2263 inode->i_ino = ino;
21cb47be 2264 inode_init_owner(&init_user_ns, inode, dir, mode);
1da177e4 2265 inode->i_blocks = 0;
078cd827 2266 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2267 inode->i_generation = prandom_u32();
1da177e4
LT
2268 info = SHMEM_I(inode);
2269 memset(info, 0, (char *)inode - (char *)info);
2270 spin_lock_init(&info->lock);
af53d3e9 2271 atomic_set(&info->stop_eviction, 0);
40e041a2 2272 info->seals = F_SEAL_SEAL;
0b0a0806 2273 info->flags = flags & VM_NORESERVE;
f7cd16a5 2274 info->i_crtime = inode->i_mtime;
779750d2 2275 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2276 INIT_LIST_HEAD(&info->swaplist);
38f38657 2277 simple_xattrs_init(&info->xattrs);
72c04902 2278 cache_no_acl(inode);
ff36da69 2279 mapping_set_large_folios(inode->i_mapping);
1da177e4
LT
2280
2281 switch (mode & S_IFMT) {
2282 default:
39f0247d 2283 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2284 init_special_inode(inode, mode, dev);
2285 break;
2286 case S_IFREG:
14fcc23f 2287 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2288 inode->i_op = &shmem_inode_operations;
2289 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2290 mpol_shared_policy_init(&info->policy,
2291 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2292 break;
2293 case S_IFDIR:
d8c76e6f 2294 inc_nlink(inode);
1da177e4
LT
2295 /* Some things misbehave if size == 0 on a directory */
2296 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2297 inode->i_op = &shmem_dir_inode_operations;
2298 inode->i_fop = &simple_dir_operations;
2299 break;
2300 case S_IFLNK:
2301 /*
2302 * Must not load anything in the rbtree,
2303 * mpol_free_shared_policy will not be called.
2304 */
71fe804b 2305 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2306 break;
2307 }
b45d71fb
JFG
2308
2309 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2310 } else
2311 shmem_free_inode(sb);
1da177e4
LT
2312 return inode;
2313}
2314
3460f6e5
AR
2315#ifdef CONFIG_USERFAULTFD
2316int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2317 pmd_t *dst_pmd,
2318 struct vm_area_struct *dst_vma,
2319 unsigned long dst_addr,
2320 unsigned long src_addr,
2321 bool zeropage,
2322 struct page **pagep)
4c27fe4c
MR
2323{
2324 struct inode *inode = file_inode(dst_vma->vm_file);
2325 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2326 struct address_space *mapping = inode->i_mapping;
2327 gfp_t gfp = mapping_gfp_mask(mapping);
2328 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
4c27fe4c
MR
2329 void *page_kaddr;
2330 struct page *page;
4c27fe4c 2331 int ret;
3460f6e5 2332 pgoff_t max_off;
4c27fe4c 2333
7ed9d238
AR
2334 if (!shmem_inode_acct_block(inode, 1)) {
2335 /*
2336 * We may have got a page, returned -ENOENT triggering a retry,
2337 * and now we find ourselves with -ENOMEM. Release the page, to
2338 * avoid a BUG_ON in our caller.
2339 */
2340 if (unlikely(*pagep)) {
2341 put_page(*pagep);
2342 *pagep = NULL;
2343 }
7d64ae3a 2344 return -ENOMEM;
7ed9d238 2345 }
4c27fe4c 2346
cb658a45 2347 if (!*pagep) {
7d64ae3a 2348 ret = -ENOMEM;
4c27fe4c
MR
2349 page = shmem_alloc_page(gfp, info, pgoff);
2350 if (!page)
0f079694 2351 goto out_unacct_blocks;
4c27fe4c 2352
3460f6e5 2353 if (!zeropage) { /* COPY */
8d103963
MR
2354 page_kaddr = kmap_atomic(page);
2355 ret = copy_from_user(page_kaddr,
2356 (const void __user *)src_addr,
2357 PAGE_SIZE);
2358 kunmap_atomic(page_kaddr);
2359
c1e8d7c6 2360 /* fallback to copy_from_user outside mmap_lock */
8d103963
MR
2361 if (unlikely(ret)) {
2362 *pagep = page;
7d64ae3a 2363 ret = -ENOENT;
8d103963 2364 /* don't free the page */
7d64ae3a 2365 goto out_unacct_blocks;
8d103963 2366 }
19b482c2
MS
2367
2368 flush_dcache_page(page);
3460f6e5 2369 } else { /* ZEROPAGE */
19b482c2 2370 clear_user_highpage(page, dst_addr);
4c27fe4c
MR
2371 }
2372 } else {
2373 page = *pagep;
2374 *pagep = NULL;
2375 }
2376
3460f6e5
AR
2377 VM_BUG_ON(PageLocked(page));
2378 VM_BUG_ON(PageSwapBacked(page));
9cc90c66
AA
2379 __SetPageLocked(page);
2380 __SetPageSwapBacked(page);
a425d358 2381 __SetPageUptodate(page);
9cc90c66 2382
e2a50c1f 2383 ret = -EFAULT;
e2a50c1f 2384 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3460f6e5 2385 if (unlikely(pgoff >= max_off))
e2a50c1f
AA
2386 goto out_release;
2387
552446a4 2388 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
3fea5a49 2389 gfp & GFP_RECLAIM_MASK, dst_mm);
4c27fe4c 2390 if (ret)
3fea5a49 2391 goto out_release;
4c27fe4c 2392
7d64ae3a
AR
2393 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2394 page, true, false);
2395 if (ret)
2396 goto out_delete_from_cache;
4c27fe4c 2397
94b7cc01 2398 spin_lock_irq(&info->lock);
4c27fe4c
MR
2399 info->alloced++;
2400 inode->i_blocks += BLOCKS_PER_PAGE;
2401 shmem_recalc_inode(inode);
94b7cc01 2402 spin_unlock_irq(&info->lock);
4c27fe4c 2403
e2a50c1f 2404 unlock_page(page);
7d64ae3a
AR
2405 return 0;
2406out_delete_from_cache:
e2a50c1f 2407 delete_from_page_cache(page);
4c27fe4c 2408out_release:
9cc90c66 2409 unlock_page(page);
4c27fe4c 2410 put_page(page);
4c27fe4c 2411out_unacct_blocks:
0f079694 2412 shmem_inode_unacct_blocks(inode, 1);
7d64ae3a 2413 return ret;
8d103963 2414}
3460f6e5 2415#endif /* CONFIG_USERFAULTFD */
8d103963 2416
1da177e4 2417#ifdef CONFIG_TMPFS
92e1d5be 2418static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2419static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2420
6d9d88d0
JS
2421#ifdef CONFIG_TMPFS_XATTR
2422static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2423#else
2424#define shmem_initxattrs NULL
2425#endif
2426
1da177e4 2427static int
800d15a5
NP
2428shmem_write_begin(struct file *file, struct address_space *mapping,
2429 loff_t pos, unsigned len, unsigned flags,
2430 struct page **pagep, void **fsdata)
1da177e4 2431{
800d15a5 2432 struct inode *inode = mapping->host;
40e041a2 2433 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2434 pgoff_t index = pos >> PAGE_SHIFT;
a7605426 2435 int ret = 0;
40e041a2 2436
9608703e 2437 /* i_rwsem is held by caller */
ab3948f5
JFG
2438 if (unlikely(info->seals & (F_SEAL_GROW |
2439 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2440 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2441 return -EPERM;
2442 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2443 return -EPERM;
2444 }
2445
a7605426
YS
2446 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2447
2448 if (ret)
2449 return ret;
2450
2451 if (PageHWPoison(*pagep)) {
2452 unlock_page(*pagep);
2453 put_page(*pagep);
2454 *pagep = NULL;
2455 return -EIO;
2456 }
2457
2458 return 0;
800d15a5
NP
2459}
2460
2461static int
2462shmem_write_end(struct file *file, struct address_space *mapping,
2463 loff_t pos, unsigned len, unsigned copied,
2464 struct page *page, void *fsdata)
2465{
2466 struct inode *inode = mapping->host;
2467
d3602444
HD
2468 if (pos + copied > inode->i_size)
2469 i_size_write(inode, pos + copied);
2470
ec9516fb 2471 if (!PageUptodate(page)) {
800d8c63
KS
2472 struct page *head = compound_head(page);
2473 if (PageTransCompound(page)) {
2474 int i;
2475
2476 for (i = 0; i < HPAGE_PMD_NR; i++) {
2477 if (head + i == page)
2478 continue;
2479 clear_highpage(head + i);
2480 flush_dcache_page(head + i);
2481 }
2482 }
09cbfeaf
KS
2483 if (copied < PAGE_SIZE) {
2484 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2485 zero_user_segments(page, 0, from,
09cbfeaf 2486 from + copied, PAGE_SIZE);
ec9516fb 2487 }
800d8c63 2488 SetPageUptodate(head);
ec9516fb 2489 }
800d15a5 2490 set_page_dirty(page);
6746aff7 2491 unlock_page(page);
09cbfeaf 2492 put_page(page);
800d15a5 2493
800d15a5 2494 return copied;
1da177e4
LT
2495}
2496
2ba5bbed 2497static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2498{
6e58e79d
AV
2499 struct file *file = iocb->ki_filp;
2500 struct inode *inode = file_inode(file);
1da177e4 2501 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2502 pgoff_t index;
2503 unsigned long offset;
f7c1d074 2504 int error = 0;
cb66a7a1 2505 ssize_t retval = 0;
6e58e79d 2506 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5 2507
09cbfeaf
KS
2508 index = *ppos >> PAGE_SHIFT;
2509 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2510
2511 for (;;) {
2512 struct page *page = NULL;
41ffe5d5
HD
2513 pgoff_t end_index;
2514 unsigned long nr, ret;
1da177e4 2515 loff_t i_size = i_size_read(inode);
56a8c8eb 2516 bool got_page;
1da177e4 2517
09cbfeaf 2518 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2519 if (index > end_index)
2520 break;
2521 if (index == end_index) {
09cbfeaf 2522 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2523 if (nr <= offset)
2524 break;
2525 }
2526
56a8c8eb 2527 error = shmem_getpage(inode, index, &page, SGP_READ);
6e58e79d
AV
2528 if (error) {
2529 if (error == -EINVAL)
2530 error = 0;
1da177e4
LT
2531 break;
2532 }
75edd345 2533 if (page) {
d3602444 2534 unlock_page(page);
a7605426
YS
2535
2536 if (PageHWPoison(page)) {
2537 put_page(page);
2538 error = -EIO;
2539 break;
2540 }
75edd345 2541 }
1da177e4
LT
2542
2543 /*
2544 * We must evaluate after, since reads (unlike writes)
9608703e 2545 * are called without i_rwsem protection against truncate
1da177e4 2546 */
09cbfeaf 2547 nr = PAGE_SIZE;
1da177e4 2548 i_size = i_size_read(inode);
09cbfeaf 2549 end_index = i_size >> PAGE_SHIFT;
1da177e4 2550 if (index == end_index) {
09cbfeaf 2551 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2552 if (nr <= offset) {
2553 if (page)
09cbfeaf 2554 put_page(page);
1da177e4
LT
2555 break;
2556 }
2557 }
2558 nr -= offset;
2559
2560 if (page) {
2561 /*
2562 * If users can be writing to this page using arbitrary
2563 * virtual addresses, take care about potential aliasing
2564 * before reading the page on the kernel side.
2565 */
2566 if (mapping_writably_mapped(mapping))
2567 flush_dcache_page(page);
2568 /*
2569 * Mark the page accessed if we read the beginning.
2570 */
2571 if (!offset)
2572 mark_page_accessed(page);
56a8c8eb 2573 got_page = true;
b5810039 2574 } else {
1da177e4 2575 page = ZERO_PAGE(0);
56a8c8eb 2576 got_page = false;
b5810039 2577 }
1da177e4
LT
2578
2579 /*
2580 * Ok, we have the page, and it's up-to-date, so
2581 * now we can copy it to user space...
1da177e4 2582 */
2ba5bbed 2583 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2584 retval += ret;
1da177e4 2585 offset += ret;
09cbfeaf
KS
2586 index += offset >> PAGE_SHIFT;
2587 offset &= ~PAGE_MASK;
1da177e4 2588
56a8c8eb
HD
2589 if (got_page)
2590 put_page(page);
2ba5bbed 2591 if (!iov_iter_count(to))
1da177e4 2592 break;
6e58e79d
AV
2593 if (ret < nr) {
2594 error = -EFAULT;
2595 break;
2596 }
1da177e4
LT
2597 cond_resched();
2598 }
2599
09cbfeaf 2600 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2601 file_accessed(file);
2602 return retval ? retval : error;
1da177e4
LT
2603}
2604
965c8e59 2605static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2606{
2607 struct address_space *mapping = file->f_mapping;
2608 struct inode *inode = mapping->host;
220f2ac9 2609
965c8e59
AM
2610 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2611 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2612 MAX_LFS_FILESIZE, i_size_read(inode));
41139aa4
MWO
2613 if (offset < 0)
2614 return -ENXIO;
2615
5955102c 2616 inode_lock(inode);
9608703e 2617 /* We're holding i_rwsem so we can access i_size directly */
41139aa4 2618 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
387aae6f
HD
2619 if (offset >= 0)
2620 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2621 inode_unlock(inode);
220f2ac9
HD
2622 return offset;
2623}
2624
83e4fa9c
HD
2625static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2626 loff_t len)
2627{
496ad9aa 2628 struct inode *inode = file_inode(file);
e2d12e22 2629 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2630 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2631 struct shmem_falloc shmem_falloc;
d144bf62 2632 pgoff_t start, index, end, undo_fallocend;
e2d12e22 2633 int error;
83e4fa9c 2634
13ace4d0
HD
2635 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2636 return -EOPNOTSUPP;
2637
5955102c 2638 inode_lock(inode);
83e4fa9c
HD
2639
2640 if (mode & FALLOC_FL_PUNCH_HOLE) {
2641 struct address_space *mapping = file->f_mapping;
2642 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2643 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2644 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2645
9608703e 2646 /* protected by i_rwsem */
ab3948f5 2647 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2648 error = -EPERM;
2649 goto out;
2650 }
2651
8e205f77 2652 shmem_falloc.waitq = &shmem_falloc_waitq;
aa71ecd8 2653 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
f00cdc6d
HD
2654 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2655 spin_lock(&inode->i_lock);
2656 inode->i_private = &shmem_falloc;
2657 spin_unlock(&inode->i_lock);
2658
83e4fa9c
HD
2659 if ((u64)unmap_end > (u64)unmap_start)
2660 unmap_mapping_range(mapping, unmap_start,
2661 1 + unmap_end - unmap_start, 0);
2662 shmem_truncate_range(inode, offset, offset + len - 1);
2663 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2664
2665 spin_lock(&inode->i_lock);
2666 inode->i_private = NULL;
2667 wake_up_all(&shmem_falloc_waitq);
2055da97 2668 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2669 spin_unlock(&inode->i_lock);
83e4fa9c 2670 error = 0;
8e205f77 2671 goto out;
e2d12e22
HD
2672 }
2673
2674 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2675 error = inode_newsize_ok(inode, offset + len);
2676 if (error)
2677 goto out;
2678
40e041a2
DH
2679 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2680 error = -EPERM;
2681 goto out;
2682 }
2683
09cbfeaf
KS
2684 start = offset >> PAGE_SHIFT;
2685 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2686 /* Try to avoid a swapstorm if len is impossible to satisfy */
2687 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2688 error = -ENOSPC;
2689 goto out;
83e4fa9c
HD
2690 }
2691
8e205f77 2692 shmem_falloc.waitq = NULL;
1aac1400
HD
2693 shmem_falloc.start = start;
2694 shmem_falloc.next = start;
2695 shmem_falloc.nr_falloced = 0;
2696 shmem_falloc.nr_unswapped = 0;
2697 spin_lock(&inode->i_lock);
2698 inode->i_private = &shmem_falloc;
2699 spin_unlock(&inode->i_lock);
2700
d144bf62
HD
2701 /*
2702 * info->fallocend is only relevant when huge pages might be
2703 * involved: to prevent split_huge_page() freeing fallocated
2704 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2705 */
2706 undo_fallocend = info->fallocend;
2707 if (info->fallocend < end)
2708 info->fallocend = end;
2709
050dcb5c 2710 for (index = start; index < end; ) {
e2d12e22
HD
2711 struct page *page;
2712
2713 /*
2714 * Good, the fallocate(2) manpage permits EINTR: we may have
2715 * been interrupted because we are using up too much memory.
2716 */
2717 if (signal_pending(current))
2718 error = -EINTR;
1aac1400
HD
2719 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2720 error = -ENOMEM;
e2d12e22 2721 else
9e18eb29 2722 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2723 if (error) {
d144bf62 2724 info->fallocend = undo_fallocend;
1635f6a7 2725 /* Remove the !PageUptodate pages we added */
7f556567
HD
2726 if (index > start) {
2727 shmem_undo_range(inode,
2728 (loff_t)start << PAGE_SHIFT,
2729 ((loff_t)index << PAGE_SHIFT) - 1, true);
2730 }
1aac1400 2731 goto undone;
e2d12e22
HD
2732 }
2733
050dcb5c
HD
2734 index++;
2735 /*
2736 * Here is a more important optimization than it appears:
2737 * a second SGP_FALLOC on the same huge page will clear it,
2738 * making it PageUptodate and un-undoable if we fail later.
2739 */
2740 if (PageTransCompound(page)) {
2741 index = round_up(index, HPAGE_PMD_NR);
2742 /* Beware 32-bit wraparound */
2743 if (!index)
2744 index--;
2745 }
2746
1aac1400
HD
2747 /*
2748 * Inform shmem_writepage() how far we have reached.
2749 * No need for lock or barrier: we have the page lock.
2750 */
1aac1400 2751 if (!PageUptodate(page))
050dcb5c
HD
2752 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2753 shmem_falloc.next = index;
1aac1400 2754
e2d12e22 2755 /*
1635f6a7
HD
2756 * If !PageUptodate, leave it that way so that freeable pages
2757 * can be recognized if we need to rollback on error later.
2758 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2759 * than free the pages we are allocating (and SGP_CACHE pages
2760 * might still be clean: we now need to mark those dirty too).
2761 */
2762 set_page_dirty(page);
2763 unlock_page(page);
09cbfeaf 2764 put_page(page);
e2d12e22
HD
2765 cond_resched();
2766 }
2767
2768 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2769 i_size_write(inode, offset + len);
078cd827 2770 inode->i_ctime = current_time(inode);
1aac1400
HD
2771undone:
2772 spin_lock(&inode->i_lock);
2773 inode->i_private = NULL;
2774 spin_unlock(&inode->i_lock);
e2d12e22 2775out:
5955102c 2776 inode_unlock(inode);
83e4fa9c
HD
2777 return error;
2778}
2779
726c3342 2780static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2781{
726c3342 2782 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2783
2784 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2785 buf->f_bsize = PAGE_SIZE;
1da177e4 2786 buf->f_namelen = NAME_MAX;
0edd73b3 2787 if (sbinfo->max_blocks) {
1da177e4 2788 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2789 buf->f_bavail =
2790 buf->f_bfree = sbinfo->max_blocks -
2791 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2792 }
2793 if (sbinfo->max_inodes) {
1da177e4
LT
2794 buf->f_files = sbinfo->max_inodes;
2795 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2796 }
2797 /* else leave those fields 0 like simple_statfs */
59cda49e
AG
2798
2799 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2800
1da177e4
LT
2801 return 0;
2802}
2803
2804/*
2805 * File creation. Allocate an inode, and we're done..
2806 */
2807static int
549c7297
CB
2808shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2809 struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2810{
0b0a0806 2811 struct inode *inode;
1da177e4
LT
2812 int error = -ENOSPC;
2813
454abafe 2814 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2815 if (inode) {
feda821e
CH
2816 error = simple_acl_create(dir, inode);
2817 if (error)
2818 goto out_iput;
2a7dba39 2819 error = security_inode_init_security(inode, dir,
9d8f13ba 2820 &dentry->d_name,
6d9d88d0 2821 shmem_initxattrs, NULL);
feda821e
CH
2822 if (error && error != -EOPNOTSUPP)
2823 goto out_iput;
37ec43cd 2824
718deb6b 2825 error = 0;
1da177e4 2826 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2827 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2828 d_instantiate(dentry, inode);
2829 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2830 }
2831 return error;
feda821e
CH
2832out_iput:
2833 iput(inode);
2834 return error;
1da177e4
LT
2835}
2836
60545d0d 2837static int
549c7297
CB
2838shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2839 struct dentry *dentry, umode_t mode)
60545d0d
AV
2840{
2841 struct inode *inode;
2842 int error = -ENOSPC;
2843
2844 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2845 if (inode) {
2846 error = security_inode_init_security(inode, dir,
2847 NULL,
2848 shmem_initxattrs, NULL);
feda821e
CH
2849 if (error && error != -EOPNOTSUPP)
2850 goto out_iput;
2851 error = simple_acl_create(dir, inode);
2852 if (error)
2853 goto out_iput;
60545d0d
AV
2854 d_tmpfile(dentry, inode);
2855 }
2856 return error;
feda821e
CH
2857out_iput:
2858 iput(inode);
2859 return error;
60545d0d
AV
2860}
2861
549c7297
CB
2862static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2863 struct dentry *dentry, umode_t mode)
1da177e4
LT
2864{
2865 int error;
2866
549c7297
CB
2867 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2868 mode | S_IFDIR, 0)))
1da177e4 2869 return error;
d8c76e6f 2870 inc_nlink(dir);
1da177e4
LT
2871 return 0;
2872}
2873
549c7297
CB
2874static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2875 struct dentry *dentry, umode_t mode, bool excl)
1da177e4 2876{
549c7297 2877 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1da177e4
LT
2878}
2879
2880/*
2881 * Link a file..
2882 */
2883static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2884{
75c3cfa8 2885 struct inode *inode = d_inode(old_dentry);
29b00e60 2886 int ret = 0;
1da177e4
LT
2887
2888 /*
2889 * No ordinary (disk based) filesystem counts links as inodes;
2890 * but each new link needs a new dentry, pinning lowmem, and
2891 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2892 * But if an O_TMPFILE file is linked into the tmpfs, the
2893 * first link must skip that, to get the accounting right.
1da177e4 2894 */
1062af92 2895 if (inode->i_nlink) {
e809d5f0 2896 ret = shmem_reserve_inode(inode->i_sb, NULL);
1062af92
DW
2897 if (ret)
2898 goto out;
2899 }
1da177e4
LT
2900
2901 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2902 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2903 inc_nlink(inode);
7de9c6ee 2904 ihold(inode); /* New dentry reference */
1da177e4
LT
2905 dget(dentry); /* Extra pinning count for the created dentry */
2906 d_instantiate(dentry, inode);
5b04c689
PE
2907out:
2908 return ret;
1da177e4
LT
2909}
2910
2911static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2912{
75c3cfa8 2913 struct inode *inode = d_inode(dentry);
1da177e4 2914
5b04c689
PE
2915 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2916 shmem_free_inode(inode->i_sb);
1da177e4
LT
2917
2918 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2919 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2920 drop_nlink(inode);
1da177e4
LT
2921 dput(dentry); /* Undo the count from "create" - this does all the work */
2922 return 0;
2923}
2924
2925static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2926{
2927 if (!simple_empty(dentry))
2928 return -ENOTEMPTY;
2929
75c3cfa8 2930 drop_nlink(d_inode(dentry));
9a53c3a7 2931 drop_nlink(dir);
1da177e4
LT
2932 return shmem_unlink(dir, dentry);
2933}
2934
549c7297
CB
2935static int shmem_whiteout(struct user_namespace *mnt_userns,
2936 struct inode *old_dir, struct dentry *old_dentry)
46fdb794
MS
2937{
2938 struct dentry *whiteout;
2939 int error;
2940
2941 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2942 if (!whiteout)
2943 return -ENOMEM;
2944
549c7297 2945 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
46fdb794
MS
2946 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2947 dput(whiteout);
2948 if (error)
2949 return error;
2950
2951 /*
2952 * Cheat and hash the whiteout while the old dentry is still in
2953 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2954 *
2955 * d_lookup() will consistently find one of them at this point,
2956 * not sure which one, but that isn't even important.
2957 */
2958 d_rehash(whiteout);
2959 return 0;
2960}
2961
1da177e4
LT
2962/*
2963 * The VFS layer already does all the dentry stuff for rename,
2964 * we just have to decrement the usage count for the target if
2965 * it exists so that the VFS layer correctly free's it when it
2966 * gets overwritten.
2967 */
549c7297
CB
2968static int shmem_rename2(struct user_namespace *mnt_userns,
2969 struct inode *old_dir, struct dentry *old_dentry,
2970 struct inode *new_dir, struct dentry *new_dentry,
2971 unsigned int flags)
1da177e4 2972{
75c3cfa8 2973 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2974 int they_are_dirs = S_ISDIR(inode->i_mode);
2975
46fdb794 2976 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2977 return -EINVAL;
2978
37456771 2979 if (flags & RENAME_EXCHANGE)
6429e463 2980 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
37456771 2981
1da177e4
LT
2982 if (!simple_empty(new_dentry))
2983 return -ENOTEMPTY;
2984
46fdb794
MS
2985 if (flags & RENAME_WHITEOUT) {
2986 int error;
2987
549c7297 2988 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
46fdb794
MS
2989 if (error)
2990 return error;
2991 }
2992
75c3cfa8 2993 if (d_really_is_positive(new_dentry)) {
1da177e4 2994 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2995 if (they_are_dirs) {
75c3cfa8 2996 drop_nlink(d_inode(new_dentry));
9a53c3a7 2997 drop_nlink(old_dir);
b928095b 2998 }
1da177e4 2999 } else if (they_are_dirs) {
9a53c3a7 3000 drop_nlink(old_dir);
d8c76e6f 3001 inc_nlink(new_dir);
1da177e4
LT
3002 }
3003
3004 old_dir->i_size -= BOGO_DIRENT_SIZE;
3005 new_dir->i_size += BOGO_DIRENT_SIZE;
3006 old_dir->i_ctime = old_dir->i_mtime =
3007 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3008 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3009 return 0;
3010}
3011
549c7297
CB
3012static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3013 struct dentry *dentry, const char *symname)
1da177e4
LT
3014{
3015 int error;
3016 int len;
3017 struct inode *inode;
9276aad6 3018 struct page *page;
1da177e4
LT
3019
3020 len = strlen(symname) + 1;
09cbfeaf 3021 if (len > PAGE_SIZE)
1da177e4
LT
3022 return -ENAMETOOLONG;
3023
0825a6f9
JP
3024 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3025 VM_NORESERVE);
1da177e4
LT
3026 if (!inode)
3027 return -ENOSPC;
3028
9d8f13ba 3029 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3030 shmem_initxattrs, NULL);
343c3d7f
MN
3031 if (error && error != -EOPNOTSUPP) {
3032 iput(inode);
3033 return error;
570bc1c2
SS
3034 }
3035
1da177e4 3036 inode->i_size = len-1;
69f07ec9 3037 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3038 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3039 if (!inode->i_link) {
69f07ec9
HD
3040 iput(inode);
3041 return -ENOMEM;
3042 }
3043 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3044 } else {
e8ecde25 3045 inode_nohighmem(inode);
9e18eb29 3046 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3047 if (error) {
3048 iput(inode);
3049 return error;
3050 }
14fcc23f 3051 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3052 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3053 memcpy(page_address(page), symname, len);
ec9516fb 3054 SetPageUptodate(page);
1da177e4 3055 set_page_dirty(page);
6746aff7 3056 unlock_page(page);
09cbfeaf 3057 put_page(page);
1da177e4 3058 }
1da177e4 3059 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3060 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3061 d_instantiate(dentry, inode);
3062 dget(dentry);
3063 return 0;
3064}
3065
fceef393 3066static void shmem_put_link(void *arg)
1da177e4 3067{
fceef393
AV
3068 mark_page_accessed(arg);
3069 put_page(arg);
1da177e4
LT
3070}
3071
6b255391 3072static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3073 struct inode *inode,
3074 struct delayed_call *done)
1da177e4 3075{
1da177e4 3076 struct page *page = NULL;
6b255391 3077 int error;
6a6c9904
AV
3078 if (!dentry) {
3079 page = find_get_page(inode->i_mapping, 0);
3080 if (!page)
3081 return ERR_PTR(-ECHILD);
a7605426
YS
3082 if (PageHWPoison(page) ||
3083 !PageUptodate(page)) {
6a6c9904
AV
3084 put_page(page);
3085 return ERR_PTR(-ECHILD);
3086 }
3087 } else {
9e18eb29 3088 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3089 if (error)
3090 return ERR_PTR(error);
a7605426
YS
3091 if (!page)
3092 return ERR_PTR(-ECHILD);
3093 if (PageHWPoison(page)) {
3094 unlock_page(page);
3095 put_page(page);
3096 return ERR_PTR(-ECHILD);
3097 }
6a6c9904
AV
3098 unlock_page(page);
3099 }
fceef393 3100 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3101 return page_address(page);
1da177e4
LT
3102}
3103
b09e0fa4 3104#ifdef CONFIG_TMPFS_XATTR
46711810 3105/*
b09e0fa4
EP
3106 * Superblocks without xattr inode operations may get some security.* xattr
3107 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3108 * like ACLs, we also need to implement the security.* handlers at
3109 * filesystem level, though.
3110 */
3111
6d9d88d0
JS
3112/*
3113 * Callback for security_inode_init_security() for acquiring xattrs.
3114 */
3115static int shmem_initxattrs(struct inode *inode,
3116 const struct xattr *xattr_array,
3117 void *fs_info)
3118{
3119 struct shmem_inode_info *info = SHMEM_I(inode);
3120 const struct xattr *xattr;
38f38657 3121 struct simple_xattr *new_xattr;
6d9d88d0
JS
3122 size_t len;
3123
3124 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3125 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3126 if (!new_xattr)
3127 return -ENOMEM;
3128
3129 len = strlen(xattr->name) + 1;
3130 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3131 GFP_KERNEL);
3132 if (!new_xattr->name) {
3bef735a 3133 kvfree(new_xattr);
6d9d88d0
JS
3134 return -ENOMEM;
3135 }
3136
3137 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3138 XATTR_SECURITY_PREFIX_LEN);
3139 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3140 xattr->name, len);
3141
38f38657 3142 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3143 }
3144
3145 return 0;
3146}
3147
aa7c5241 3148static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3149 struct dentry *unused, struct inode *inode,
3150 const char *name, void *buffer, size_t size)
b09e0fa4 3151{
b296821a 3152 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3153
aa7c5241 3154 name = xattr_full_name(handler, name);
38f38657 3155 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3156}
3157
aa7c5241 3158static int shmem_xattr_handler_set(const struct xattr_handler *handler,
e65ce2a5 3159 struct user_namespace *mnt_userns,
59301226
AV
3160 struct dentry *unused, struct inode *inode,
3161 const char *name, const void *value,
3162 size_t size, int flags)
b09e0fa4 3163{
59301226 3164 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3165
aa7c5241 3166 name = xattr_full_name(handler, name);
a46a2295 3167 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
b09e0fa4
EP
3168}
3169
aa7c5241
AG
3170static const struct xattr_handler shmem_security_xattr_handler = {
3171 .prefix = XATTR_SECURITY_PREFIX,
3172 .get = shmem_xattr_handler_get,
3173 .set = shmem_xattr_handler_set,
3174};
b09e0fa4 3175
aa7c5241
AG
3176static const struct xattr_handler shmem_trusted_xattr_handler = {
3177 .prefix = XATTR_TRUSTED_PREFIX,
3178 .get = shmem_xattr_handler_get,
3179 .set = shmem_xattr_handler_set,
3180};
b09e0fa4 3181
aa7c5241
AG
3182static const struct xattr_handler *shmem_xattr_handlers[] = {
3183#ifdef CONFIG_TMPFS_POSIX_ACL
3184 &posix_acl_access_xattr_handler,
3185 &posix_acl_default_xattr_handler,
3186#endif
3187 &shmem_security_xattr_handler,
3188 &shmem_trusted_xattr_handler,
3189 NULL
3190};
b09e0fa4
EP
3191
3192static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3193{
75c3cfa8 3194 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3195 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3196}
3197#endif /* CONFIG_TMPFS_XATTR */
3198
69f07ec9 3199static const struct inode_operations shmem_short_symlink_operations = {
f7cd16a5 3200 .getattr = shmem_getattr,
6b255391 3201 .get_link = simple_get_link,
b09e0fa4 3202#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3203 .listxattr = shmem_listxattr,
b09e0fa4
EP
3204#endif
3205};
3206
3207static const struct inode_operations shmem_symlink_inode_operations = {
f7cd16a5 3208 .getattr = shmem_getattr,
6b255391 3209 .get_link = shmem_get_link,
b09e0fa4 3210#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3211 .listxattr = shmem_listxattr,
39f0247d 3212#endif
b09e0fa4 3213};
39f0247d 3214
91828a40
DG
3215static struct dentry *shmem_get_parent(struct dentry *child)
3216{
3217 return ERR_PTR(-ESTALE);
3218}
3219
3220static int shmem_match(struct inode *ino, void *vfh)
3221{
3222 __u32 *fh = vfh;
3223 __u64 inum = fh[2];
3224 inum = (inum << 32) | fh[1];
3225 return ino->i_ino == inum && fh[0] == ino->i_generation;
3226}
3227
12ba780d
AG
3228/* Find any alias of inode, but prefer a hashed alias */
3229static struct dentry *shmem_find_alias(struct inode *inode)
3230{
3231 struct dentry *alias = d_find_alias(inode);
3232
3233 return alias ?: d_find_any_alias(inode);
3234}
3235
3236
480b116c
CH
3237static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3238 struct fid *fid, int fh_len, int fh_type)
91828a40 3239{
91828a40 3240 struct inode *inode;
480b116c 3241 struct dentry *dentry = NULL;
35c2a7f4 3242 u64 inum;
480b116c
CH
3243
3244 if (fh_len < 3)
3245 return NULL;
91828a40 3246
35c2a7f4
HD
3247 inum = fid->raw[2];
3248 inum = (inum << 32) | fid->raw[1];
3249
480b116c
CH
3250 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3251 shmem_match, fid->raw);
91828a40 3252 if (inode) {
12ba780d 3253 dentry = shmem_find_alias(inode);
91828a40
DG
3254 iput(inode);
3255 }
3256
480b116c 3257 return dentry;
91828a40
DG
3258}
3259
b0b0382b
AV
3260static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3261 struct inode *parent)
91828a40 3262{
5fe0c237
AK
3263 if (*len < 3) {
3264 *len = 3;
94e07a75 3265 return FILEID_INVALID;
5fe0c237 3266 }
91828a40 3267
1d3382cb 3268 if (inode_unhashed(inode)) {
91828a40
DG
3269 /* Unfortunately insert_inode_hash is not idempotent,
3270 * so as we hash inodes here rather than at creation
3271 * time, we need a lock to ensure we only try
3272 * to do it once
3273 */
3274 static DEFINE_SPINLOCK(lock);
3275 spin_lock(&lock);
1d3382cb 3276 if (inode_unhashed(inode))
91828a40
DG
3277 __insert_inode_hash(inode,
3278 inode->i_ino + inode->i_generation);
3279 spin_unlock(&lock);
3280 }
3281
3282 fh[0] = inode->i_generation;
3283 fh[1] = inode->i_ino;
3284 fh[2] = ((__u64)inode->i_ino) >> 32;
3285
3286 *len = 3;
3287 return 1;
3288}
3289
39655164 3290static const struct export_operations shmem_export_ops = {
91828a40 3291 .get_parent = shmem_get_parent,
91828a40 3292 .encode_fh = shmem_encode_fh,
480b116c 3293 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3294};
3295
626c3920
AV
3296enum shmem_param {
3297 Opt_gid,
3298 Opt_huge,
3299 Opt_mode,
3300 Opt_mpol,
3301 Opt_nr_blocks,
3302 Opt_nr_inodes,
3303 Opt_size,
3304 Opt_uid,
ea3271f7
CD
3305 Opt_inode32,
3306 Opt_inode64,
626c3920
AV
3307};
3308
5eede625 3309static const struct constant_table shmem_param_enums_huge[] = {
2710c957
AV
3310 {"never", SHMEM_HUGE_NEVER },
3311 {"always", SHMEM_HUGE_ALWAYS },
3312 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3313 {"advise", SHMEM_HUGE_ADVISE },
2710c957
AV
3314 {}
3315};
3316
d7167b14 3317const struct fs_parameter_spec shmem_fs_parameters[] = {
626c3920 3318 fsparam_u32 ("gid", Opt_gid),
2710c957 3319 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
626c3920
AV
3320 fsparam_u32oct("mode", Opt_mode),
3321 fsparam_string("mpol", Opt_mpol),
3322 fsparam_string("nr_blocks", Opt_nr_blocks),
3323 fsparam_string("nr_inodes", Opt_nr_inodes),
3324 fsparam_string("size", Opt_size),
3325 fsparam_u32 ("uid", Opt_uid),
ea3271f7
CD
3326 fsparam_flag ("inode32", Opt_inode32),
3327 fsparam_flag ("inode64", Opt_inode64),
626c3920
AV
3328 {}
3329};
3330
f3235626 3331static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3332{
f3235626 3333 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3334 struct fs_parse_result result;
3335 unsigned long long size;
e04dc423 3336 char *rest;
626c3920
AV
3337 int opt;
3338
d7167b14 3339 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
f3235626 3340 if (opt < 0)
626c3920 3341 return opt;
1da177e4 3342
626c3920
AV
3343 switch (opt) {
3344 case Opt_size:
3345 size = memparse(param->string, &rest);
e04dc423
AV
3346 if (*rest == '%') {
3347 size <<= PAGE_SHIFT;
3348 size *= totalram_pages();
3349 do_div(size, 100);
3350 rest++;
3351 }
3352 if (*rest)
626c3920 3353 goto bad_value;
e04dc423
AV
3354 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3355 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3356 break;
3357 case Opt_nr_blocks:
3358 ctx->blocks = memparse(param->string, &rest);
e04dc423 3359 if (*rest)
626c3920 3360 goto bad_value;
e04dc423 3361 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3362 break;
3363 case Opt_nr_inodes:
3364 ctx->inodes = memparse(param->string, &rest);
e04dc423 3365 if (*rest)
626c3920 3366 goto bad_value;
e04dc423 3367 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3368 break;
3369 case Opt_mode:
3370 ctx->mode = result.uint_32 & 07777;
3371 break;
3372 case Opt_uid:
3373 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3374 if (!uid_valid(ctx->uid))
626c3920
AV
3375 goto bad_value;
3376 break;
3377 case Opt_gid:
3378 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3379 if (!gid_valid(ctx->gid))
626c3920
AV
3380 goto bad_value;
3381 break;
3382 case Opt_huge:
3383 ctx->huge = result.uint_32;
3384 if (ctx->huge != SHMEM_HUGE_NEVER &&
396bcc52 3385 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
626c3920
AV
3386 has_transparent_hugepage()))
3387 goto unsupported_parameter;
e04dc423 3388 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3389 break;
3390 case Opt_mpol:
3391 if (IS_ENABLED(CONFIG_NUMA)) {
3392 mpol_put(ctx->mpol);
3393 ctx->mpol = NULL;
3394 if (mpol_parse_str(param->string, &ctx->mpol))
3395 goto bad_value;
3396 break;
3397 }
3398 goto unsupported_parameter;
ea3271f7
CD
3399 case Opt_inode32:
3400 ctx->full_inums = false;
3401 ctx->seen |= SHMEM_SEEN_INUMS;
3402 break;
3403 case Opt_inode64:
3404 if (sizeof(ino_t) < 8) {
3405 return invalfc(fc,
3406 "Cannot use inode64 with <64bit inums in kernel\n");
3407 }
3408 ctx->full_inums = true;
3409 ctx->seen |= SHMEM_SEEN_INUMS;
3410 break;
e04dc423
AV
3411 }
3412 return 0;
3413
626c3920 3414unsupported_parameter:
f35aa2bc 3415 return invalfc(fc, "Unsupported parameter '%s'", param->key);
626c3920 3416bad_value:
f35aa2bc 3417 return invalfc(fc, "Bad value for '%s'", param->key);
e04dc423
AV
3418}
3419
f3235626 3420static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3421{
f3235626
DH
3422 char *options = data;
3423
33f37c64
AV
3424 if (options) {
3425 int err = security_sb_eat_lsm_opts(options, &fc->security);
3426 if (err)
3427 return err;
3428 }
3429
b00dc3ad 3430 while (options != NULL) {
626c3920 3431 char *this_char = options;
b00dc3ad
HD
3432 for (;;) {
3433 /*
3434 * NUL-terminate this option: unfortunately,
3435 * mount options form a comma-separated list,
3436 * but mpol's nodelist may also contain commas.
3437 */
3438 options = strchr(options, ',');
3439 if (options == NULL)
3440 break;
3441 options++;
3442 if (!isdigit(*options)) {
3443 options[-1] = '\0';
3444 break;
3445 }
3446 }
626c3920 3447 if (*this_char) {
68d68ff6 3448 char *value = strchr(this_char, '=');
f3235626 3449 size_t len = 0;
626c3920
AV
3450 int err;
3451
3452 if (value) {
3453 *value++ = '\0';
f3235626 3454 len = strlen(value);
626c3920 3455 }
f3235626
DH
3456 err = vfs_parse_fs_string(fc, this_char, value, len);
3457 if (err < 0)
3458 return err;
1da177e4 3459 }
1da177e4
LT
3460 }
3461 return 0;
1da177e4
LT
3462}
3463
f3235626
DH
3464/*
3465 * Reconfigure a shmem filesystem.
3466 *
3467 * Note that we disallow change from limited->unlimited blocks/inodes while any
3468 * are in use; but we must separately disallow unlimited->limited, because in
3469 * that case we have no record of how much is already in use.
3470 */
3471static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3472{
f3235626
DH
3473 struct shmem_options *ctx = fc->fs_private;
3474 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3475 unsigned long inodes;
bf11b9a8 3476 struct mempolicy *mpol = NULL;
f3235626 3477 const char *err;
1da177e4 3478
bf11b9a8 3479 raw_spin_lock(&sbinfo->stat_lock);
0edd73b3 3480 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3481 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3482 if (!sbinfo->max_blocks) {
3483 err = "Cannot retroactively limit size";
0b5071dd 3484 goto out;
f3235626 3485 }
0b5071dd 3486 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3487 ctx->blocks) > 0) {
3488 err = "Too small a size for current use";
0b5071dd 3489 goto out;
f3235626 3490 }
0b5071dd 3491 }
f3235626
DH
3492 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3493 if (!sbinfo->max_inodes) {
3494 err = "Cannot retroactively limit inodes";
0b5071dd 3495 goto out;
f3235626
DH
3496 }
3497 if (ctx->inodes < inodes) {
3498 err = "Too few inodes for current use";
0b5071dd 3499 goto out;
f3235626 3500 }
0b5071dd 3501 }
0edd73b3 3502
ea3271f7
CD
3503 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3504 sbinfo->next_ino > UINT_MAX) {
3505 err = "Current inum too high to switch to 32-bit inums";
3506 goto out;
3507 }
3508
f3235626
DH
3509 if (ctx->seen & SHMEM_SEEN_HUGE)
3510 sbinfo->huge = ctx->huge;
ea3271f7
CD
3511 if (ctx->seen & SHMEM_SEEN_INUMS)
3512 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3513 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3514 sbinfo->max_blocks = ctx->blocks;
3515 if (ctx->seen & SHMEM_SEEN_INODES) {
3516 sbinfo->max_inodes = ctx->inodes;
3517 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3518 }
71fe804b 3519
5f00110f
GT
3520 /*
3521 * Preserve previous mempolicy unless mpol remount option was specified.
3522 */
f3235626 3523 if (ctx->mpol) {
bf11b9a8 3524 mpol = sbinfo->mpol;
f3235626
DH
3525 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3526 ctx->mpol = NULL;
5f00110f 3527 }
bf11b9a8
SAS
3528 raw_spin_unlock(&sbinfo->stat_lock);
3529 mpol_put(mpol);
f3235626 3530 return 0;
0edd73b3 3531out:
bf11b9a8 3532 raw_spin_unlock(&sbinfo->stat_lock);
f35aa2bc 3533 return invalfc(fc, "%s", err);
1da177e4 3534}
680d794b 3535
34c80b1d 3536static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3537{
34c80b1d 3538 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3539
3540 if (sbinfo->max_blocks != shmem_default_max_blocks())
3541 seq_printf(seq, ",size=%luk",
09cbfeaf 3542 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3543 if (sbinfo->max_inodes != shmem_default_max_inodes())
3544 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3545 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3546 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3547 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3548 seq_printf(seq, ",uid=%u",
3549 from_kuid_munged(&init_user_ns, sbinfo->uid));
3550 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3551 seq_printf(seq, ",gid=%u",
3552 from_kgid_munged(&init_user_ns, sbinfo->gid));
ea3271f7
CD
3553
3554 /*
3555 * Showing inode{64,32} might be useful even if it's the system default,
3556 * since then people don't have to resort to checking both here and
3557 * /proc/config.gz to confirm 64-bit inums were successfully applied
3558 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3559 *
3560 * We hide it when inode64 isn't the default and we are using 32-bit
3561 * inodes, since that probably just means the feature isn't even under
3562 * consideration.
3563 *
3564 * As such:
3565 *
3566 * +-----------------+-----------------+
3567 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3568 * +------------------+-----------------+-----------------+
3569 * | full_inums=true | show | show |
3570 * | full_inums=false | show | hide |
3571 * +------------------+-----------------+-----------------+
3572 *
3573 */
3574 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3575 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
396bcc52 3576#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5a6e75f8
KS
3577 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3578 if (sbinfo->huge)
3579 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3580#endif
71fe804b 3581 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3582 return 0;
3583}
9183df25 3584
680d794b 3585#endif /* CONFIG_TMPFS */
1da177e4
LT
3586
3587static void shmem_put_super(struct super_block *sb)
3588{
602586a8
HD
3589 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3590
e809d5f0 3591 free_percpu(sbinfo->ino_batch);
602586a8 3592 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3593 mpol_put(sbinfo->mpol);
602586a8 3594 kfree(sbinfo);
1da177e4
LT
3595 sb->s_fs_info = NULL;
3596}
3597
f3235626 3598static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3599{
f3235626 3600 struct shmem_options *ctx = fc->fs_private;
1da177e4 3601 struct inode *inode;
0edd73b3 3602 struct shmem_sb_info *sbinfo;
680d794b 3603
3604 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3605 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3606 L1_CACHE_BYTES), GFP_KERNEL);
3607 if (!sbinfo)
3608 return -ENOMEM;
3609
680d794b 3610 sb->s_fs_info = sbinfo;
1da177e4 3611
0edd73b3 3612#ifdef CONFIG_TMPFS
1da177e4
LT
3613 /*
3614 * Per default we only allow half of the physical ram per
3615 * tmpfs instance, limiting inodes to one per page of lowmem;
3616 * but the internal instance is left unlimited.
3617 */
1751e8a6 3618 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3619 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3620 ctx->blocks = shmem_default_max_blocks();
3621 if (!(ctx->seen & SHMEM_SEEN_INODES))
3622 ctx->inodes = shmem_default_max_inodes();
ea3271f7
CD
3623 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3624 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
ca4e0519 3625 } else {
1751e8a6 3626 sb->s_flags |= SB_NOUSER;
1da177e4 3627 }
91828a40 3628 sb->s_export_op = &shmem_export_ops;
1751e8a6 3629 sb->s_flags |= SB_NOSEC;
1da177e4 3630#else
1751e8a6 3631 sb->s_flags |= SB_NOUSER;
1da177e4 3632#endif
f3235626
DH
3633 sbinfo->max_blocks = ctx->blocks;
3634 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
e809d5f0
CD
3635 if (sb->s_flags & SB_KERNMOUNT) {
3636 sbinfo->ino_batch = alloc_percpu(ino_t);
3637 if (!sbinfo->ino_batch)
3638 goto failed;
3639 }
f3235626
DH
3640 sbinfo->uid = ctx->uid;
3641 sbinfo->gid = ctx->gid;
ea3271f7 3642 sbinfo->full_inums = ctx->full_inums;
f3235626
DH
3643 sbinfo->mode = ctx->mode;
3644 sbinfo->huge = ctx->huge;
3645 sbinfo->mpol = ctx->mpol;
3646 ctx->mpol = NULL;
1da177e4 3647
bf11b9a8 3648 raw_spin_lock_init(&sbinfo->stat_lock);
908c7f19 3649 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3650 goto failed;
779750d2
KS
3651 spin_lock_init(&sbinfo->shrinklist_lock);
3652 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3653
285b2c4f 3654 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3655 sb->s_blocksize = PAGE_SIZE;
3656 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3657 sb->s_magic = TMPFS_MAGIC;
3658 sb->s_op = &shmem_ops;
cfd95a9c 3659 sb->s_time_gran = 1;
b09e0fa4 3660#ifdef CONFIG_TMPFS_XATTR
39f0247d 3661 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3662#endif
3663#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3664 sb->s_flags |= SB_POSIXACL;
39f0247d 3665#endif
2b4db796 3666 uuid_gen(&sb->s_uuid);
0edd73b3 3667
454abafe 3668 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3669 if (!inode)
3670 goto failed;
680d794b 3671 inode->i_uid = sbinfo->uid;
3672 inode->i_gid = sbinfo->gid;
318ceed0
AV
3673 sb->s_root = d_make_root(inode);
3674 if (!sb->s_root)
48fde701 3675 goto failed;
1da177e4
LT
3676 return 0;
3677
1da177e4
LT
3678failed:
3679 shmem_put_super(sb);
f2b346e4 3680 return -ENOMEM;
1da177e4
LT
3681}
3682
f3235626
DH
3683static int shmem_get_tree(struct fs_context *fc)
3684{
3685 return get_tree_nodev(fc, shmem_fill_super);
3686}
3687
3688static void shmem_free_fc(struct fs_context *fc)
3689{
3690 struct shmem_options *ctx = fc->fs_private;
3691
3692 if (ctx) {
3693 mpol_put(ctx->mpol);
3694 kfree(ctx);
3695 }
3696}
3697
3698static const struct fs_context_operations shmem_fs_context_ops = {
3699 .free = shmem_free_fc,
3700 .get_tree = shmem_get_tree,
3701#ifdef CONFIG_TMPFS
3702 .parse_monolithic = shmem_parse_options,
3703 .parse_param = shmem_parse_one,
3704 .reconfigure = shmem_reconfigure,
3705#endif
3706};
3707
fcc234f8 3708static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3709
3710static struct inode *shmem_alloc_inode(struct super_block *sb)
3711{
41ffe5d5 3712 struct shmem_inode_info *info;
fd60b288 3713 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
41ffe5d5 3714 if (!info)
1da177e4 3715 return NULL;
41ffe5d5 3716 return &info->vfs_inode;
1da177e4
LT
3717}
3718
74b1da56 3719static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3720{
84e710da
AV
3721 if (S_ISLNK(inode->i_mode))
3722 kfree(inode->i_link);
fa0d7e3d
NP
3723 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3724}
3725
1da177e4
LT
3726static void shmem_destroy_inode(struct inode *inode)
3727{
09208d15 3728 if (S_ISREG(inode->i_mode))
1da177e4 3729 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3730}
3731
41ffe5d5 3732static void shmem_init_inode(void *foo)
1da177e4 3733{
41ffe5d5
HD
3734 struct shmem_inode_info *info = foo;
3735 inode_init_once(&info->vfs_inode);
1da177e4
LT
3736}
3737
9a8ec03e 3738static void shmem_init_inodecache(void)
1da177e4
LT
3739{
3740 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3741 sizeof(struct shmem_inode_info),
5d097056 3742 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3743}
3744
41ffe5d5 3745static void shmem_destroy_inodecache(void)
1da177e4 3746{
1a1d92c1 3747 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3748}
3749
a7605426
YS
3750/* Keep the page in page cache instead of truncating it */
3751static int shmem_error_remove_page(struct address_space *mapping,
3752 struct page *page)
3753{
3754 return 0;
3755}
3756
30e6a51d 3757const struct address_space_operations shmem_aops = {
1da177e4 3758 .writepage = shmem_writepage,
46de8b97 3759 .dirty_folio = noop_dirty_folio,
1da177e4 3760#ifdef CONFIG_TMPFS
800d15a5
NP
3761 .write_begin = shmem_write_begin,
3762 .write_end = shmem_write_end,
1da177e4 3763#endif
1c93923c 3764#ifdef CONFIG_MIGRATION
304dbdb7 3765 .migratepage = migrate_page,
1c93923c 3766#endif
a7605426 3767 .error_remove_page = shmem_error_remove_page,
1da177e4 3768};
30e6a51d 3769EXPORT_SYMBOL(shmem_aops);
1da177e4 3770
15ad7cdc 3771static const struct file_operations shmem_file_operations = {
1da177e4 3772 .mmap = shmem_mmap,
c01d5b30 3773 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3774#ifdef CONFIG_TMPFS
220f2ac9 3775 .llseek = shmem_file_llseek,
2ba5bbed 3776 .read_iter = shmem_file_read_iter,
8174202b 3777 .write_iter = generic_file_write_iter,
1b061d92 3778 .fsync = noop_fsync,
82c156f8 3779 .splice_read = generic_file_splice_read,
f6cb85d0 3780 .splice_write = iter_file_splice_write,
83e4fa9c 3781 .fallocate = shmem_fallocate,
1da177e4
LT
3782#endif
3783};
3784
92e1d5be 3785static const struct inode_operations shmem_inode_operations = {
44a30220 3786 .getattr = shmem_getattr,
94c1e62d 3787 .setattr = shmem_setattr,
b09e0fa4 3788#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3789 .listxattr = shmem_listxattr,
feda821e 3790 .set_acl = simple_set_acl,
b09e0fa4 3791#endif
1da177e4
LT
3792};
3793
92e1d5be 3794static const struct inode_operations shmem_dir_inode_operations = {
1da177e4 3795#ifdef CONFIG_TMPFS
f7cd16a5 3796 .getattr = shmem_getattr,
1da177e4
LT
3797 .create = shmem_create,
3798 .lookup = simple_lookup,
3799 .link = shmem_link,
3800 .unlink = shmem_unlink,
3801 .symlink = shmem_symlink,
3802 .mkdir = shmem_mkdir,
3803 .rmdir = shmem_rmdir,
3804 .mknod = shmem_mknod,
2773bf00 3805 .rename = shmem_rename2,
60545d0d 3806 .tmpfile = shmem_tmpfile,
1da177e4 3807#endif
b09e0fa4 3808#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3809 .listxattr = shmem_listxattr,
b09e0fa4 3810#endif
39f0247d 3811#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3812 .setattr = shmem_setattr,
feda821e 3813 .set_acl = simple_set_acl,
39f0247d
AG
3814#endif
3815};
3816
92e1d5be 3817static const struct inode_operations shmem_special_inode_operations = {
f7cd16a5 3818 .getattr = shmem_getattr,
b09e0fa4 3819#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3820 .listxattr = shmem_listxattr,
b09e0fa4 3821#endif
39f0247d 3822#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3823 .setattr = shmem_setattr,
feda821e 3824 .set_acl = simple_set_acl,
39f0247d 3825#endif
1da177e4
LT
3826};
3827
759b9775 3828static const struct super_operations shmem_ops = {
1da177e4 3829 .alloc_inode = shmem_alloc_inode,
74b1da56 3830 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3831 .destroy_inode = shmem_destroy_inode,
3832#ifdef CONFIG_TMPFS
3833 .statfs = shmem_statfs,
680d794b 3834 .show_options = shmem_show_options,
1da177e4 3835#endif
1f895f75 3836 .evict_inode = shmem_evict_inode,
1da177e4
LT
3837 .drop_inode = generic_delete_inode,
3838 .put_super = shmem_put_super,
396bcc52 3839#ifdef CONFIG_TRANSPARENT_HUGEPAGE
779750d2
KS
3840 .nr_cached_objects = shmem_unused_huge_count,
3841 .free_cached_objects = shmem_unused_huge_scan,
3842#endif
1da177e4
LT
3843};
3844
f0f37e2f 3845static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3846 .fault = shmem_fault,
d7c17551 3847 .map_pages = filemap_map_pages,
1da177e4
LT
3848#ifdef CONFIG_NUMA
3849 .set_policy = shmem_set_policy,
3850 .get_policy = shmem_get_policy,
3851#endif
3852};
3853
f3235626 3854int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3855{
f3235626
DH
3856 struct shmem_options *ctx;
3857
3858 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3859 if (!ctx)
3860 return -ENOMEM;
3861
3862 ctx->mode = 0777 | S_ISVTX;
3863 ctx->uid = current_fsuid();
3864 ctx->gid = current_fsgid();
3865
3866 fc->fs_private = ctx;
3867 fc->ops = &shmem_fs_context_ops;
3868 return 0;
1da177e4
LT
3869}
3870
41ffe5d5 3871static struct file_system_type shmem_fs_type = {
1da177e4
LT
3872 .owner = THIS_MODULE,
3873 .name = "tmpfs",
f3235626
DH
3874 .init_fs_context = shmem_init_fs_context,
3875#ifdef CONFIG_TMPFS
d7167b14 3876 .parameters = shmem_fs_parameters,
f3235626 3877#endif
1da177e4 3878 .kill_sb = kill_litter_super,
ff36da69 3879 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3880};
1da177e4 3881
41ffe5d5 3882int __init shmem_init(void)
1da177e4
LT
3883{
3884 int error;
3885
9a8ec03e 3886 shmem_init_inodecache();
1da177e4 3887
41ffe5d5 3888 error = register_filesystem(&shmem_fs_type);
1da177e4 3889 if (error) {
1170532b 3890 pr_err("Could not register tmpfs\n");
1da177e4
LT
3891 goto out2;
3892 }
95dc112a 3893
ca4e0519 3894 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3895 if (IS_ERR(shm_mnt)) {
3896 error = PTR_ERR(shm_mnt);
1170532b 3897 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3898 goto out1;
3899 }
5a6e75f8 3900
396bcc52 3901#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435c0b87 3902 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3903 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3904 else
5e6e5a12 3905 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5a6e75f8 3906#endif
1da177e4
LT
3907 return 0;
3908
3909out1:
41ffe5d5 3910 unregister_filesystem(&shmem_fs_type);
1da177e4 3911out2:
41ffe5d5 3912 shmem_destroy_inodecache();
1da177e4
LT
3913 shm_mnt = ERR_PTR(error);
3914 return error;
3915}
853ac43a 3916
396bcc52 3917#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5a6e75f8 3918static ssize_t shmem_enabled_show(struct kobject *kobj,
79d4d38a 3919 struct kobj_attribute *attr, char *buf)
5a6e75f8 3920{
26083eb6 3921 static const int values[] = {
5a6e75f8
KS
3922 SHMEM_HUGE_ALWAYS,
3923 SHMEM_HUGE_WITHIN_SIZE,
3924 SHMEM_HUGE_ADVISE,
3925 SHMEM_HUGE_NEVER,
3926 SHMEM_HUGE_DENY,
3927 SHMEM_HUGE_FORCE,
3928 };
79d4d38a
JP
3929 int len = 0;
3930 int i;
5a6e75f8 3931
79d4d38a
JP
3932 for (i = 0; i < ARRAY_SIZE(values); i++) {
3933 len += sysfs_emit_at(buf, len,
3934 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3935 i ? " " : "",
3936 shmem_format_huge(values[i]));
5a6e75f8 3937 }
79d4d38a
JP
3938
3939 len += sysfs_emit_at(buf, len, "\n");
3940
3941 return len;
5a6e75f8
KS
3942}
3943
3944static ssize_t shmem_enabled_store(struct kobject *kobj,
3945 struct kobj_attribute *attr, const char *buf, size_t count)
3946{
3947 char tmp[16];
3948 int huge;
3949
3950 if (count + 1 > sizeof(tmp))
3951 return -EINVAL;
3952 memcpy(tmp, buf, count);
3953 tmp[count] = '\0';
3954 if (count && tmp[count - 1] == '\n')
3955 tmp[count - 1] = '\0';
3956
3957 huge = shmem_parse_huge(tmp);
3958 if (huge == -EINVAL)
3959 return -EINVAL;
3960 if (!has_transparent_hugepage() &&
3961 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3962 return -EINVAL;
3963
3964 shmem_huge = huge;
435c0b87 3965 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3966 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3967 return count;
3968}
3969
4bfa8ada 3970struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
396bcc52 3971#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
f3f0e1d2 3972
853ac43a
MM
3973#else /* !CONFIG_SHMEM */
3974
3975/*
3976 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3977 *
3978 * This is intended for small system where the benefits of the full
3979 * shmem code (swap-backed and resource-limited) are outweighed by
3980 * their complexity. On systems without swap this code should be
3981 * effectively equivalent, but much lighter weight.
3982 */
3983
41ffe5d5 3984static struct file_system_type shmem_fs_type = {
853ac43a 3985 .name = "tmpfs",
f3235626 3986 .init_fs_context = ramfs_init_fs_context,
d7167b14 3987 .parameters = ramfs_fs_parameters,
853ac43a 3988 .kill_sb = kill_litter_super,
2b8576cb 3989 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3990};
3991
41ffe5d5 3992int __init shmem_init(void)
853ac43a 3993{
41ffe5d5 3994 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3995
41ffe5d5 3996 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3997 BUG_ON(IS_ERR(shm_mnt));
3998
3999 return 0;
4000}
4001
10a9c496 4002int shmem_unuse(unsigned int type)
853ac43a
MM
4003{
4004 return 0;
4005}
4006
d7c9e99a 4007int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
3f96b79a
HD
4008{
4009 return 0;
4010}
4011
24513264
HD
4012void shmem_unlock_mapping(struct address_space *mapping)
4013{
4014}
4015
c01d5b30
HD
4016#ifdef CONFIG_MMU
4017unsigned long shmem_get_unmapped_area(struct file *file,
4018 unsigned long addr, unsigned long len,
4019 unsigned long pgoff, unsigned long flags)
4020{
4021 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4022}
4023#endif
4024
41ffe5d5 4025void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4026{
41ffe5d5 4027 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4028}
4029EXPORT_SYMBOL_GPL(shmem_truncate_range);
4030
0b0a0806
HD
4031#define shmem_vm_ops generic_file_vm_ops
4032#define shmem_file_operations ramfs_file_operations
454abafe 4033#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4034#define shmem_acct_size(flags, size) 0
4035#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4036
4037#endif /* CONFIG_SHMEM */
4038
4039/* common code */
1da177e4 4040
703321b6 4041static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4042 unsigned long flags, unsigned int i_flags)
1da177e4 4043{
1da177e4 4044 struct inode *inode;
93dec2da 4045 struct file *res;
1da177e4 4046
703321b6
MA
4047 if (IS_ERR(mnt))
4048 return ERR_CAST(mnt);
1da177e4 4049
285b2c4f 4050 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4051 return ERR_PTR(-EINVAL);
4052
4053 if (shmem_acct_size(flags, size))
4054 return ERR_PTR(-ENOMEM);
4055
93dec2da
AV
4056 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4057 flags);
dac2d1f6
AV
4058 if (unlikely(!inode)) {
4059 shmem_unacct_size(flags, size);
4060 return ERR_PTR(-ENOSPC);
4061 }
c7277090 4062 inode->i_flags |= i_flags;
1da177e4 4063 inode->i_size = size;
6d6b77f1 4064 clear_nlink(inode); /* It is unlinked */
26567cdb 4065 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4066 if (!IS_ERR(res))
4067 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4068 &shmem_file_operations);
26567cdb 4069 if (IS_ERR(res))
93dec2da 4070 iput(inode);
6b4d0b27 4071 return res;
1da177e4 4072}
c7277090
EP
4073
4074/**
4075 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4076 * kernel internal. There will be NO LSM permission checks against the
4077 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4078 * higher layer. The users are the big_key and shm implementations. LSM
4079 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4080 * @name: name for dentry (to be seen in /proc/<pid>/maps
4081 * @size: size to be set for the file
4082 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4083 */
4084struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4085{
703321b6 4086 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4087}
4088
4089/**
4090 * shmem_file_setup - get an unlinked file living in tmpfs
4091 * @name: name for dentry (to be seen in /proc/<pid>/maps
4092 * @size: size to be set for the file
4093 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4094 */
4095struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4096{
703321b6 4097 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4098}
395e0ddc 4099EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4100
703321b6
MA
4101/**
4102 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4103 * @mnt: the tmpfs mount where the file will be created
4104 * @name: name for dentry (to be seen in /proc/<pid>/maps
4105 * @size: size to be set for the file
4106 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4107 */
4108struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4109 loff_t size, unsigned long flags)
4110{
4111 return __shmem_file_setup(mnt, name, size, flags, 0);
4112}
4113EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4114
46711810 4115/**
1da177e4 4116 * shmem_zero_setup - setup a shared anonymous mapping
45e55300 4117 * @vma: the vma to be mmapped is prepared by do_mmap
1da177e4
LT
4118 */
4119int shmem_zero_setup(struct vm_area_struct *vma)
4120{
4121 struct file *file;
4122 loff_t size = vma->vm_end - vma->vm_start;
4123
66fc1303 4124 /*
c1e8d7c6 4125 * Cloning a new file under mmap_lock leads to a lock ordering conflict
66fc1303
HD
4126 * between XFS directory reading and selinux: since this file is only
4127 * accessible to the user through its mapping, use S_PRIVATE flag to
4128 * bypass file security, in the same way as shmem_kernel_file_setup().
4129 */
703321b6 4130 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4131 if (IS_ERR(file))
4132 return PTR_ERR(file);
4133
4134 if (vma->vm_file)
4135 fput(vma->vm_file);
4136 vma->vm_file = file;
4137 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4138
396bcc52 4139 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
f3f0e1d2
KS
4140 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4141 (vma->vm_end & HPAGE_PMD_MASK)) {
4142 khugepaged_enter(vma, vma->vm_flags);
4143 }
4144
1da177e4
LT
4145 return 0;
4146}
d9d90e5e
HD
4147
4148/**
4149 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4150 * @mapping: the page's address_space
4151 * @index: the page index
4152 * @gfp: the page allocator flags to use if allocating
4153 *
4154 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4155 * with any new page allocations done using the specified allocation flags.
4156 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4157 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4158 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4159 *
68da9f05
HD
4160 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4161 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4162 */
4163struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4164 pgoff_t index, gfp_t gfp)
4165{
68da9f05
HD
4166#ifdef CONFIG_SHMEM
4167 struct inode *inode = mapping->host;
9276aad6 4168 struct page *page;
68da9f05
HD
4169 int error;
4170
30e6a51d 4171 BUG_ON(!shmem_mapping(mapping));
9e18eb29 4172 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4173 gfp, NULL, NULL, NULL);
68da9f05 4174 if (error)
a7605426
YS
4175 return ERR_PTR(error);
4176
4177 unlock_page(page);
4178 if (PageHWPoison(page)) {
4179 put_page(page);
4180 return ERR_PTR(-EIO);
4181 }
4182
68da9f05
HD
4183 return page;
4184#else
4185 /*
4186 * The tiny !SHMEM case uses ramfs without swap
4187 */
d9d90e5e 4188 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4189#endif
d9d90e5e
HD
4190}
4191EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);