zswap: memcg accounting
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0
JK
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
e621900a
MWO
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
730633f0 36 * i_pages lock (widely used)
e809c3fe 37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
730633f0
JK
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 44 *
9608703e 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 46 * ->tasklist_lock
6a46079c 47 * pte map lock
c0d0381a
MK
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
999dad82 76#include <linux/mm_inline.h>
1da177e4
LT
77
78#include <asm/tlbflush.h>
79
4cc79b33 80#define CREATE_TRACE_POINTS
72b252ae 81#include <trace/events/tlb.h>
4cc79b33 82#include <trace/events/migrate.h>
72b252ae 83
b291f000
NP
84#include "internal.h"
85
fdd2e5f8 86static struct kmem_cache *anon_vma_cachep;
5beb4930 87static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
88
89static inline struct anon_vma *anon_vma_alloc(void)
90{
01d8b20d
PZ
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
96 anon_vma->degree = 1; /* Reference for first vma */
97 anon_vma->parent = anon_vma;
01d8b20d
PZ
98 /*
99 * Initialise the anon_vma root to point to itself. If called
100 * from fork, the root will be reset to the parents anon_vma.
101 */
102 anon_vma->root = anon_vma;
103 }
104
105 return anon_vma;
fdd2e5f8
AB
106}
107
01d8b20d 108static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 109{
01d8b20d 110 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
111
112 /*
2f031c6f 113 * Synchronize against folio_lock_anon_vma_read() such that
88c22088
PZ
114 * we can safely hold the lock without the anon_vma getting
115 * freed.
116 *
117 * Relies on the full mb implied by the atomic_dec_and_test() from
118 * put_anon_vma() against the acquire barrier implied by
2f031c6f 119 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
88c22088 120 *
2f031c6f 121 * folio_lock_anon_vma_read() VS put_anon_vma()
4fc3f1d6 122 * down_read_trylock() atomic_dec_and_test()
88c22088 123 * LOCK MB
4fc3f1d6 124 * atomic_read() rwsem_is_locked()
88c22088
PZ
125 *
126 * LOCK should suffice since the actual taking of the lock must
127 * happen _before_ what follows.
128 */
7f39dda9 129 might_sleep();
5a505085 130 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 131 anon_vma_lock_write(anon_vma);
08b52706 132 anon_vma_unlock_write(anon_vma);
88c22088
PZ
133 }
134
fdd2e5f8
AB
135 kmem_cache_free(anon_vma_cachep, anon_vma);
136}
1da177e4 137
dd34739c 138static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 139{
dd34739c 140 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
141}
142
e574b5fd 143static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
144{
145 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
146}
147
6583a843
KC
148static void anon_vma_chain_link(struct vm_area_struct *vma,
149 struct anon_vma_chain *avc,
150 struct anon_vma *anon_vma)
151{
152 avc->vma = vma;
153 avc->anon_vma = anon_vma;
154 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 155 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
156}
157
d9d332e0 158/**
d5a187da 159 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
160 * @vma: the memory region in question
161 *
162 * This makes sure the memory mapping described by 'vma' has
163 * an 'anon_vma' attached to it, so that we can associate the
164 * anonymous pages mapped into it with that anon_vma.
165 *
d5a187da
VB
166 * The common case will be that we already have one, which
167 * is handled inline by anon_vma_prepare(). But if
23a0790a 168 * not we either need to find an adjacent mapping that we
d9d332e0
LT
169 * can re-use the anon_vma from (very common when the only
170 * reason for splitting a vma has been mprotect()), or we
171 * allocate a new one.
172 *
173 * Anon-vma allocations are very subtle, because we may have
2f031c6f 174 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
aaf1f990 175 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
176 * allocated vma (it depends on RCU to make sure that the
177 * anon_vma isn't actually destroyed).
178 *
179 * As a result, we need to do proper anon_vma locking even
180 * for the new allocation. At the same time, we do not want
181 * to do any locking for the common case of already having
182 * an anon_vma.
183 *
c1e8d7c6 184 * This must be called with the mmap_lock held for reading.
d9d332e0 185 */
d5a187da 186int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 187{
d5a187da
VB
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
5beb4930 190 struct anon_vma_chain *avc;
1da177e4
LT
191
192 might_sleep();
1da177e4 193
d5a187da
VB
194 avc = anon_vma_chain_alloc(GFP_KERNEL);
195 if (!avc)
196 goto out_enomem;
197
198 anon_vma = find_mergeable_anon_vma(vma);
199 allocated = NULL;
200 if (!anon_vma) {
201 anon_vma = anon_vma_alloc();
202 if (unlikely(!anon_vma))
203 goto out_enomem_free_avc;
204 allocated = anon_vma;
205 }
5beb4930 206
d5a187da
VB
207 anon_vma_lock_write(anon_vma);
208 /* page_table_lock to protect against threads */
209 spin_lock(&mm->page_table_lock);
210 if (likely(!vma->anon_vma)) {
211 vma->anon_vma = anon_vma;
212 anon_vma_chain_link(vma, avc, anon_vma);
213 /* vma reference or self-parent link for new root */
214 anon_vma->degree++;
d9d332e0 215 allocated = NULL;
d5a187da
VB
216 avc = NULL;
217 }
218 spin_unlock(&mm->page_table_lock);
219 anon_vma_unlock_write(anon_vma);
1da177e4 220
d5a187da
VB
221 if (unlikely(allocated))
222 put_anon_vma(allocated);
223 if (unlikely(avc))
224 anon_vma_chain_free(avc);
31f2b0eb 225
1da177e4 226 return 0;
5beb4930
RR
227
228 out_enomem_free_avc:
229 anon_vma_chain_free(avc);
230 out_enomem:
231 return -ENOMEM;
1da177e4
LT
232}
233
bb4aa396
LT
234/*
235 * This is a useful helper function for locking the anon_vma root as
236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
237 * have the same vma.
238 *
239 * Such anon_vma's should have the same root, so you'd expect to see
240 * just a single mutex_lock for the whole traversal.
241 */
242static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243{
244 struct anon_vma *new_root = anon_vma->root;
245 if (new_root != root) {
246 if (WARN_ON_ONCE(root))
5a505085 247 up_write(&root->rwsem);
bb4aa396 248 root = new_root;
5a505085 249 down_write(&root->rwsem);
bb4aa396
LT
250 }
251 return root;
252}
253
254static inline void unlock_anon_vma_root(struct anon_vma *root)
255{
256 if (root)
5a505085 257 up_write(&root->rwsem);
bb4aa396
LT
258}
259
5beb4930
RR
260/*
261 * Attach the anon_vmas from src to dst.
262 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 263 *
cb152a1a 264 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
265 * anon_vma_fork(). The first three want an exact copy of src, while the last
266 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
267 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
268 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
269 *
270 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
271 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
272 * This prevents degradation of anon_vma hierarchy to endless linear chain in
273 * case of constantly forking task. On the other hand, an anon_vma with more
274 * than one child isn't reused even if there was no alive vma, thus rmap
275 * walker has a good chance of avoiding scanning the whole hierarchy when it
276 * searches where page is mapped.
5beb4930
RR
277 */
278int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 279{
5beb4930 280 struct anon_vma_chain *avc, *pavc;
bb4aa396 281 struct anon_vma *root = NULL;
5beb4930 282
646d87b4 283 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
284 struct anon_vma *anon_vma;
285
dd34739c
LT
286 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
287 if (unlikely(!avc)) {
288 unlock_anon_vma_root(root);
289 root = NULL;
290 avc = anon_vma_chain_alloc(GFP_KERNEL);
291 if (!avc)
292 goto enomem_failure;
293 }
bb4aa396
LT
294 anon_vma = pavc->anon_vma;
295 root = lock_anon_vma_root(root, anon_vma);
296 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
297
298 /*
299 * Reuse existing anon_vma if its degree lower than two,
300 * that means it has no vma and only one anon_vma child.
301 *
dd062302 302 * Do not choose parent anon_vma, otherwise first child
7a3ef208
KK
303 * will always reuse it. Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
47b390d2
WY
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 308 dst->anon_vma = anon_vma;
5beb4930 309 }
7a3ef208
KK
310 if (dst->anon_vma)
311 dst->anon_vma->degree++;
bb4aa396 312 unlock_anon_vma_root(root);
5beb4930 313 return 0;
1da177e4 314
5beb4930 315 enomem_failure:
3fe89b3e
LY
316 /*
317 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
318 * decremented in unlink_anon_vmas().
319 * We can safely do this because callers of anon_vma_clone() don't care
320 * about dst->anon_vma if anon_vma_clone() failed.
321 */
322 dst->anon_vma = NULL;
5beb4930
RR
323 unlink_anon_vmas(dst);
324 return -ENOMEM;
1da177e4
LT
325}
326
5beb4930
RR
327/*
328 * Attach vma to its own anon_vma, as well as to the anon_vmas that
329 * the corresponding VMA in the parent process is attached to.
330 * Returns 0 on success, non-zero on failure.
331 */
332int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 333{
5beb4930
RR
334 struct anon_vma_chain *avc;
335 struct anon_vma *anon_vma;
c4ea95d7 336 int error;
1da177e4 337
5beb4930
RR
338 /* Don't bother if the parent process has no anon_vma here. */
339 if (!pvma->anon_vma)
340 return 0;
341
7a3ef208
KK
342 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
343 vma->anon_vma = NULL;
344
5beb4930
RR
345 /*
346 * First, attach the new VMA to the parent VMA's anon_vmas,
347 * so rmap can find non-COWed pages in child processes.
348 */
c4ea95d7
DF
349 error = anon_vma_clone(vma, pvma);
350 if (error)
351 return error;
5beb4930 352
7a3ef208
KK
353 /* An existing anon_vma has been reused, all done then. */
354 if (vma->anon_vma)
355 return 0;
356
5beb4930
RR
357 /* Then add our own anon_vma. */
358 anon_vma = anon_vma_alloc();
359 if (!anon_vma)
360 goto out_error;
dd34739c 361 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
362 if (!avc)
363 goto out_error_free_anon_vma;
5c341ee1
RR
364
365 /*
aaf1f990 366 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
367 * lock any of the anon_vmas in this anon_vma tree.
368 */
369 anon_vma->root = pvma->anon_vma->root;
7a3ef208 370 anon_vma->parent = pvma->anon_vma;
76545066 371 /*
01d8b20d
PZ
372 * With refcounts, an anon_vma can stay around longer than the
373 * process it belongs to. The root anon_vma needs to be pinned until
374 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
375 */
376 get_anon_vma(anon_vma->root);
5beb4930
RR
377 /* Mark this anon_vma as the one where our new (COWed) pages go. */
378 vma->anon_vma = anon_vma;
4fc3f1d6 379 anon_vma_lock_write(anon_vma);
5c341ee1 380 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 381 anon_vma->parent->degree++;
08b52706 382 anon_vma_unlock_write(anon_vma);
5beb4930
RR
383
384 return 0;
385
386 out_error_free_anon_vma:
01d8b20d 387 put_anon_vma(anon_vma);
5beb4930 388 out_error:
4946d54c 389 unlink_anon_vmas(vma);
5beb4930 390 return -ENOMEM;
1da177e4
LT
391}
392
5beb4930
RR
393void unlink_anon_vmas(struct vm_area_struct *vma)
394{
395 struct anon_vma_chain *avc, *next;
eee2acba 396 struct anon_vma *root = NULL;
5beb4930 397
5c341ee1
RR
398 /*
399 * Unlink each anon_vma chained to the VMA. This list is ordered
400 * from newest to oldest, ensuring the root anon_vma gets freed last.
401 */
5beb4930 402 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
403 struct anon_vma *anon_vma = avc->anon_vma;
404
405 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 406 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
407
408 /*
409 * Leave empty anon_vmas on the list - we'll need
410 * to free them outside the lock.
411 */
f808c13f 412 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 413 anon_vma->parent->degree--;
eee2acba 414 continue;
7a3ef208 415 }
eee2acba
PZ
416
417 list_del(&avc->same_vma);
418 anon_vma_chain_free(avc);
419 }
ee8ab190 420 if (vma->anon_vma) {
7a3ef208 421 vma->anon_vma->degree--;
ee8ab190
LX
422
423 /*
424 * vma would still be needed after unlink, and anon_vma will be prepared
425 * when handle fault.
426 */
427 vma->anon_vma = NULL;
428 }
eee2acba
PZ
429 unlock_anon_vma_root(root);
430
431 /*
432 * Iterate the list once more, it now only contains empty and unlinked
433 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 434 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
435 */
436 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
437 struct anon_vma *anon_vma = avc->anon_vma;
438
e4c5800a 439 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
440 put_anon_vma(anon_vma);
441
5beb4930
RR
442 list_del(&avc->same_vma);
443 anon_vma_chain_free(avc);
444 }
445}
446
51cc5068 447static void anon_vma_ctor(void *data)
1da177e4 448{
a35afb83 449 struct anon_vma *anon_vma = data;
1da177e4 450
5a505085 451 init_rwsem(&anon_vma->rwsem);
83813267 452 atomic_set(&anon_vma->refcount, 0);
f808c13f 453 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
454}
455
456void __init anon_vma_init(void)
457{
458 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 459 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
460 anon_vma_ctor);
461 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
462 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
463}
464
465/*
6111e4ca
PZ
466 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
467 *
468 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
469 * the best this function can do is return a refcount increased anon_vma
470 * that might have been relevant to this page.
6111e4ca
PZ
471 *
472 * The page might have been remapped to a different anon_vma or the anon_vma
473 * returned may already be freed (and even reused).
474 *
bc658c96
PZ
475 * In case it was remapped to a different anon_vma, the new anon_vma will be a
476 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
477 * ensure that any anon_vma obtained from the page will still be valid for as
478 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
479 *
6111e4ca
PZ
480 * All users of this function must be very careful when walking the anon_vma
481 * chain and verify that the page in question is indeed mapped in it
482 * [ something equivalent to page_mapped_in_vma() ].
483 *
091e4299
MC
484 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
485 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
486 * if there is a mapcount, we can dereference the anon_vma after observing
487 * those.
1da177e4 488 */
746b18d4 489struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 490{
746b18d4 491 struct anon_vma *anon_vma = NULL;
1da177e4
LT
492 unsigned long anon_mapping;
493
494 rcu_read_lock();
4db0c3c2 495 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 496 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
497 goto out;
498 if (!page_mapped(page))
499 goto out;
500
501 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
502 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
503 anon_vma = NULL;
504 goto out;
505 }
f1819427
HD
506
507 /*
508 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
509 * freed. But if it has been unmapped, we have no security against the
510 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 511 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 512 * above cannot corrupt).
f1819427 513 */
746b18d4 514 if (!page_mapped(page)) {
7f39dda9 515 rcu_read_unlock();
746b18d4 516 put_anon_vma(anon_vma);
7f39dda9 517 return NULL;
746b18d4 518 }
1da177e4
LT
519out:
520 rcu_read_unlock();
746b18d4
PZ
521
522 return anon_vma;
523}
524
88c22088
PZ
525/*
526 * Similar to page_get_anon_vma() except it locks the anon_vma.
527 *
528 * Its a little more complex as it tries to keep the fast path to a single
529 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
530 * reference like with page_get_anon_vma() and then block on the mutex.
531 */
9595d769 532struct anon_vma *folio_lock_anon_vma_read(struct folio *folio)
746b18d4 533{
88c22088 534 struct anon_vma *anon_vma = NULL;
eee0f252 535 struct anon_vma *root_anon_vma;
88c22088 536 unsigned long anon_mapping;
746b18d4 537
88c22088 538 rcu_read_lock();
9595d769 539 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
88c22088
PZ
540 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
541 goto out;
9595d769 542 if (!folio_mapped(folio))
88c22088
PZ
543 goto out;
544
545 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 546 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 547 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 548 /*
9595d769 549 * If the folio is still mapped, then this anon_vma is still
eee0f252 550 * its anon_vma, and holding the mutex ensures that it will
bc658c96 551 * not go away, see anon_vma_free().
88c22088 552 */
9595d769 553 if (!folio_mapped(folio)) {
4fc3f1d6 554 up_read(&root_anon_vma->rwsem);
88c22088
PZ
555 anon_vma = NULL;
556 }
557 goto out;
558 }
746b18d4 559
88c22088
PZ
560 /* trylock failed, we got to sleep */
561 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
562 anon_vma = NULL;
563 goto out;
564 }
565
9595d769 566 if (!folio_mapped(folio)) {
7f39dda9 567 rcu_read_unlock();
88c22088 568 put_anon_vma(anon_vma);
7f39dda9 569 return NULL;
88c22088
PZ
570 }
571
572 /* we pinned the anon_vma, its safe to sleep */
573 rcu_read_unlock();
4fc3f1d6 574 anon_vma_lock_read(anon_vma);
88c22088
PZ
575
576 if (atomic_dec_and_test(&anon_vma->refcount)) {
577 /*
578 * Oops, we held the last refcount, release the lock
579 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 580 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 581 */
4fc3f1d6 582 anon_vma_unlock_read(anon_vma);
88c22088
PZ
583 __put_anon_vma(anon_vma);
584 anon_vma = NULL;
585 }
586
587 return anon_vma;
588
589out:
590 rcu_read_unlock();
746b18d4 591 return anon_vma;
34bbd704
ON
592}
593
4fc3f1d6 594void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 595{
4fc3f1d6 596 anon_vma_unlock_read(anon_vma);
1da177e4
LT
597}
598
72b252ae 599#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
600/*
601 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
602 * important if a PTE was dirty when it was unmapped that it's flushed
603 * before any IO is initiated on the page to prevent lost writes. Similarly,
604 * it must be flushed before freeing to prevent data leakage.
605 */
606void try_to_unmap_flush(void)
607{
608 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
609
610 if (!tlb_ubc->flush_required)
611 return;
612
e73ad5ff 613 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 614 tlb_ubc->flush_required = false;
d950c947 615 tlb_ubc->writable = false;
72b252ae
MG
616}
617
d950c947
MG
618/* Flush iff there are potentially writable TLB entries that can race with IO */
619void try_to_unmap_flush_dirty(void)
620{
621 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
622
623 if (tlb_ubc->writable)
624 try_to_unmap_flush();
625}
626
5ee2fa2f
HY
627/*
628 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
629 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
630 */
631#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
632#define TLB_FLUSH_BATCH_PENDING_MASK \
633 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
634#define TLB_FLUSH_BATCH_PENDING_LARGE \
635 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
636
c7ab0d2f 637static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
638{
639 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
5ee2fa2f 640 int batch, nbatch;
72b252ae 641
e73ad5ff 642 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 643 tlb_ubc->flush_required = true;
d950c947 644
3ea27719
MG
645 /*
646 * Ensure compiler does not re-order the setting of tlb_flush_batched
647 * before the PTE is cleared.
648 */
649 barrier();
5ee2fa2f
HY
650 batch = atomic_read(&mm->tlb_flush_batched);
651retry:
652 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
653 /*
654 * Prevent `pending' from catching up with `flushed' because of
655 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
656 * `pending' becomes large.
657 */
658 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
659 if (nbatch != batch) {
660 batch = nbatch;
661 goto retry;
662 }
663 } else {
664 atomic_inc(&mm->tlb_flush_batched);
665 }
3ea27719 666
d950c947
MG
667 /*
668 * If the PTE was dirty then it's best to assume it's writable. The
669 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
670 * before the page is queued for IO.
671 */
672 if (writable)
673 tlb_ubc->writable = true;
72b252ae
MG
674}
675
676/*
677 * Returns true if the TLB flush should be deferred to the end of a batch of
678 * unmap operations to reduce IPIs.
679 */
680static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
681{
682 bool should_defer = false;
683
684 if (!(flags & TTU_BATCH_FLUSH))
685 return false;
686
687 /* If remote CPUs need to be flushed then defer batch the flush */
688 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
689 should_defer = true;
690 put_cpu();
691
692 return should_defer;
693}
3ea27719
MG
694
695/*
696 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
697 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
698 * operation such as mprotect or munmap to race between reclaim unmapping
699 * the page and flushing the page. If this race occurs, it potentially allows
700 * access to data via a stale TLB entry. Tracking all mm's that have TLB
701 * batching in flight would be expensive during reclaim so instead track
702 * whether TLB batching occurred in the past and if so then do a flush here
703 * if required. This will cost one additional flush per reclaim cycle paid
704 * by the first operation at risk such as mprotect and mumap.
705 *
706 * This must be called under the PTL so that an access to tlb_flush_batched
707 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
708 * via the PTL.
709 */
710void flush_tlb_batched_pending(struct mm_struct *mm)
711{
5ee2fa2f
HY
712 int batch = atomic_read(&mm->tlb_flush_batched);
713 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
714 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
3ea27719 715
5ee2fa2f
HY
716 if (pending != flushed) {
717 flush_tlb_mm(mm);
3ea27719 718 /*
5ee2fa2f
HY
719 * If the new TLB flushing is pending during flushing, leave
720 * mm->tlb_flush_batched as is, to avoid losing flushing.
3ea27719 721 */
5ee2fa2f
HY
722 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
723 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
3ea27719
MG
724 }
725}
72b252ae 726#else
c7ab0d2f 727static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
728{
729}
730
731static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
732{
733 return false;
734}
735#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
736
1da177e4 737/*
bf89c8c8 738 * At what user virtual address is page expected in vma?
ab941e0f 739 * Caller should check the page is actually part of the vma.
1da177e4
LT
740 */
741unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
742{
e05b3453
MWO
743 struct folio *folio = page_folio(page);
744 if (folio_test_anon(folio)) {
745 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
4829b906
HD
746 /*
747 * Note: swapoff's unuse_vma() is more efficient with this
748 * check, and needs it to match anon_vma when KSM is active.
749 */
750 if (!vma->anon_vma || !page__anon_vma ||
751 vma->anon_vma->root != page__anon_vma->root)
21d0d443 752 return -EFAULT;
31657170
JW
753 } else if (!vma->vm_file) {
754 return -EFAULT;
e05b3453 755 } else if (vma->vm_file->f_mapping != folio->mapping) {
1da177e4 756 return -EFAULT;
31657170 757 }
494334e4
HD
758
759 return vma_address(page, vma);
1da177e4
LT
760}
761
6219049a
BL
762pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
763{
764 pgd_t *pgd;
c2febafc 765 p4d_t *p4d;
6219049a
BL
766 pud_t *pud;
767 pmd_t *pmd = NULL;
f72e7dcd 768 pmd_t pmde;
6219049a
BL
769
770 pgd = pgd_offset(mm, address);
771 if (!pgd_present(*pgd))
772 goto out;
773
c2febafc
KS
774 p4d = p4d_offset(pgd, address);
775 if (!p4d_present(*p4d))
776 goto out;
777
778 pud = pud_offset(p4d, address);
6219049a
BL
779 if (!pud_present(*pud))
780 goto out;
781
782 pmd = pmd_offset(pud, address);
f72e7dcd 783 /*
8809aa2d 784 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
785 * without holding anon_vma lock for write. So when looking for a
786 * genuine pmde (in which to find pte), test present and !THP together.
787 */
e37c6982
CB
788 pmde = *pmd;
789 barrier();
f72e7dcd 790 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
791 pmd = NULL;
792out:
793 return pmd;
794}
795
b3ac0413 796struct folio_referenced_arg {
8749cfea
VD
797 int mapcount;
798 int referenced;
799 unsigned long vm_flags;
800 struct mem_cgroup *memcg;
801};
802/*
b3ac0413 803 * arg: folio_referenced_arg will be passed
8749cfea 804 */
2f031c6f
MWO
805static bool folio_referenced_one(struct folio *folio,
806 struct vm_area_struct *vma, unsigned long address, void *arg)
8749cfea 807{
b3ac0413
MWO
808 struct folio_referenced_arg *pra = arg;
809 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
8749cfea
VD
810 int referenced = 0;
811
8eaedede
KS
812 while (page_vma_mapped_walk(&pvmw)) {
813 address = pvmw.address;
b20ce5e0 814
47d4f3ee 815 if ((vma->vm_flags & VM_LOCKED) &&
b3ac0413 816 (!folio_test_large(folio) || !pvmw.pte)) {
47d4f3ee 817 /* Restore the mlock which got missed */
b3ac0413 818 mlock_vma_folio(folio, vma, !pvmw.pte);
8eaedede
KS
819 page_vma_mapped_walk_done(&pvmw);
820 pra->vm_flags |= VM_LOCKED;
e4b82222 821 return false; /* To break the loop */
8eaedede 822 }
71e3aac0 823
8eaedede
KS
824 if (pvmw.pte) {
825 if (ptep_clear_flush_young_notify(vma, address,
826 pvmw.pte)) {
827 /*
828 * Don't treat a reference through
829 * a sequentially read mapping as such.
b3ac0413 830 * If the folio has been used in another mapping,
8eaedede
KS
831 * we will catch it; if this other mapping is
832 * already gone, the unmap path will have set
b3ac0413 833 * the referenced flag or activated the folio.
8eaedede
KS
834 */
835 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
836 referenced++;
837 }
838 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
839 if (pmdp_clear_flush_young_notify(vma, address,
840 pvmw.pmd))
8749cfea 841 referenced++;
8eaedede 842 } else {
b3ac0413 843 /* unexpected pmd-mapped folio? */
8eaedede 844 WARN_ON_ONCE(1);
8749cfea 845 }
8eaedede
KS
846
847 pra->mapcount--;
b20ce5e0 848 }
b20ce5e0 849
33c3fc71 850 if (referenced)
b3ac0413
MWO
851 folio_clear_idle(folio);
852 if (folio_test_clear_young(folio))
33c3fc71
VD
853 referenced++;
854
9f32624b
JK
855 if (referenced) {
856 pra->referenced++;
47d4f3ee 857 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
1da177e4 858 }
34bbd704 859
9f32624b 860 if (!pra->mapcount)
e4b82222 861 return false; /* To break the loop */
9f32624b 862
e4b82222 863 return true;
1da177e4
LT
864}
865
b3ac0413 866static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 867{
b3ac0413 868 struct folio_referenced_arg *pra = arg;
9f32624b 869 struct mem_cgroup *memcg = pra->memcg;
1da177e4 870
9f32624b
JK
871 if (!mm_match_cgroup(vma->vm_mm, memcg))
872 return true;
1da177e4 873
9f32624b 874 return false;
1da177e4
LT
875}
876
877/**
b3ac0413
MWO
878 * folio_referenced() - Test if the folio was referenced.
879 * @folio: The folio to test.
880 * @is_locked: Caller holds lock on the folio.
72835c86 881 * @memcg: target memory cgroup
b3ac0413 882 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
1da177e4 883 *
b3ac0413
MWO
884 * Quick test_and_clear_referenced for all mappings of a folio,
885 *
886 * Return: The number of mappings which referenced the folio.
1da177e4 887 */
b3ac0413
MWO
888int folio_referenced(struct folio *folio, int is_locked,
889 struct mem_cgroup *memcg, unsigned long *vm_flags)
1da177e4 890{
5ad64688 891 int we_locked = 0;
b3ac0413
MWO
892 struct folio_referenced_arg pra = {
893 .mapcount = folio_mapcount(folio),
9f32624b
JK
894 .memcg = memcg,
895 };
896 struct rmap_walk_control rwc = {
b3ac0413 897 .rmap_one = folio_referenced_one,
9f32624b 898 .arg = (void *)&pra,
2f031c6f 899 .anon_lock = folio_lock_anon_vma_read,
9f32624b 900 };
1da177e4 901
6fe6b7e3 902 *vm_flags = 0;
059d8442 903 if (!pra.mapcount)
9f32624b
JK
904 return 0;
905
b3ac0413 906 if (!folio_raw_mapping(folio))
9f32624b
JK
907 return 0;
908
b3ac0413
MWO
909 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
910 we_locked = folio_trylock(folio);
9f32624b
JK
911 if (!we_locked)
912 return 1;
1da177e4 913 }
9f32624b
JK
914
915 /*
916 * If we are reclaiming on behalf of a cgroup, skip
917 * counting on behalf of references from different
918 * cgroups
919 */
920 if (memcg) {
b3ac0413 921 rwc.invalid_vma = invalid_folio_referenced_vma;
9f32624b
JK
922 }
923
2f031c6f 924 rmap_walk(folio, &rwc);
9f32624b
JK
925 *vm_flags = pra.vm_flags;
926
927 if (we_locked)
b3ac0413 928 folio_unlock(folio);
9f32624b
JK
929
930 return pra.referenced;
1da177e4
LT
931}
932
6a8e0596 933static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
d08b3851 934{
6a8e0596
MS
935 int cleaned = 0;
936 struct vm_area_struct *vma = pvmw->vma;
ac46d4f3 937 struct mmu_notifier_range range;
6a8e0596 938 unsigned long address = pvmw->address;
d08b3851 939
369ea824
JG
940 /*
941 * We have to assume the worse case ie pmd for invalidation. Note that
e83c09a2 942 * the folio can not be freed from this function.
369ea824 943 */
7269f999
JG
944 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
945 0, vma, vma->vm_mm, address,
6a8e0596 946 vma_address_end(pvmw));
ac46d4f3 947 mmu_notifier_invalidate_range_start(&range);
369ea824 948
6a8e0596 949 while (page_vma_mapped_walk(pvmw)) {
f27176cf 950 int ret = 0;
369ea824 951
6a8e0596
MS
952 address = pvmw->address;
953 if (pvmw->pte) {
f27176cf 954 pte_t entry;
6a8e0596 955 pte_t *pte = pvmw->pte;
f27176cf
KS
956
957 if (!pte_dirty(*pte) && !pte_write(*pte))
958 continue;
959
785373b4
LT
960 flush_cache_page(vma, address, pte_pfn(*pte));
961 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
962 entry = pte_wrprotect(entry);
963 entry = pte_mkclean(entry);
785373b4 964 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
965 ret = 1;
966 } else {
396bcc52 967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6a8e0596 968 pmd_t *pmd = pvmw->pmd;
f27176cf
KS
969 pmd_t entry;
970
971 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
972 continue;
973
7f9c9b60
MS
974 flush_cache_range(vma, address,
975 address + HPAGE_PMD_SIZE);
024eee0e 976 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
977 entry = pmd_wrprotect(entry);
978 entry = pmd_mkclean(entry);
785373b4 979 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
980 ret = 1;
981#else
e83c09a2 982 /* unexpected pmd-mapped folio? */
f27176cf
KS
983 WARN_ON_ONCE(1);
984#endif
985 }
d08b3851 986
0f10851e
JG
987 /*
988 * No need to call mmu_notifier_invalidate_range() as we are
989 * downgrading page table protection not changing it to point
990 * to a new page.
991 *
ad56b738 992 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
993 */
994 if (ret)
6a8e0596 995 cleaned++;
c2fda5fe 996 }
d08b3851 997
ac46d4f3 998 mmu_notifier_invalidate_range_end(&range);
369ea824 999
6a8e0596
MS
1000 return cleaned;
1001}
1002
1003static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1004 unsigned long address, void *arg)
1005{
1006 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1007 int *cleaned = arg;
1008
1009 *cleaned += page_vma_mkclean_one(&pvmw);
1010
e4b82222 1011 return true;
d08b3851
PZ
1012}
1013
9853a407 1014static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1015{
9853a407 1016 if (vma->vm_flags & VM_SHARED)
871beb8c 1017 return false;
d08b3851 1018
871beb8c 1019 return true;
d08b3851
PZ
1020}
1021
d9c08e22 1022int folio_mkclean(struct folio *folio)
d08b3851 1023{
9853a407
JK
1024 int cleaned = 0;
1025 struct address_space *mapping;
1026 struct rmap_walk_control rwc = {
1027 .arg = (void *)&cleaned,
1028 .rmap_one = page_mkclean_one,
1029 .invalid_vma = invalid_mkclean_vma,
1030 };
d08b3851 1031
d9c08e22 1032 BUG_ON(!folio_test_locked(folio));
d08b3851 1033
d9c08e22 1034 if (!folio_mapped(folio))
9853a407
JK
1035 return 0;
1036
d9c08e22 1037 mapping = folio_mapping(folio);
9853a407
JK
1038 if (!mapping)
1039 return 0;
1040
2f031c6f 1041 rmap_walk(folio, &rwc);
d08b3851 1042
9853a407 1043 return cleaned;
d08b3851 1044}
d9c08e22 1045EXPORT_SYMBOL_GPL(folio_mkclean);
d08b3851 1046
6a8e0596
MS
1047/**
1048 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1049 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1050 * within the @vma of shared mappings. And since clean PTEs
1051 * should also be readonly, write protects them too.
1052 * @pfn: start pfn.
1053 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1054 * @pgoff: page offset that the @pfn mapped with.
1055 * @vma: vma that @pfn mapped within.
1056 *
1057 * Returns the number of cleaned PTEs (including PMDs).
1058 */
1059int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1060 struct vm_area_struct *vma)
1061{
1062 struct page_vma_mapped_walk pvmw = {
1063 .pfn = pfn,
1064 .nr_pages = nr_pages,
1065 .pgoff = pgoff,
1066 .vma = vma,
1067 .flags = PVMW_SYNC,
1068 };
1069
1070 if (invalid_mkclean_vma(vma, NULL))
1071 return 0;
1072
1073 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1074 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1075
1076 return page_vma_mkclean_one(&pvmw);
1077}
1078
c44b6743
RR
1079/**
1080 * page_move_anon_rmap - move a page to our anon_vma
1081 * @page: the page to move to our anon_vma
1082 * @vma: the vma the page belongs to
c44b6743
RR
1083 *
1084 * When a page belongs exclusively to one process after a COW event,
1085 * that page can be moved into the anon_vma that belongs to just that
1086 * process, so the rmap code will not search the parent or sibling
1087 * processes.
1088 */
5a49973d 1089void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1090{
1091 struct anon_vma *anon_vma = vma->anon_vma;
6c287605 1092 struct page *subpage = page;
c44b6743 1093
5a49973d
HD
1094 page = compound_head(page);
1095
309381fe 1096 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1097 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1098
1099 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1100 /*
1101 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
b3ac0413
MWO
1102 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1103 * folio_test_anon()) will not see one without the other.
414e2fb8
VD
1104 */
1105 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
6c287605 1106 SetPageAnonExclusive(subpage);
c44b6743
RR
1107}
1108
9617d95e 1109/**
4e1c1975 1110 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1111 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1112 * @vma: VM area to add page to.
1113 * @address: User virtual address of the mapping
e8a03feb 1114 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1115 */
1116static void __page_set_anon_rmap(struct page *page,
e8a03feb 1117 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1118{
e8a03feb 1119 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1120
e8a03feb 1121 BUG_ON(!anon_vma);
ea90002b 1122
4e1c1975 1123 if (PageAnon(page))
6c287605 1124 goto out;
4e1c1975 1125
ea90002b 1126 /*
e8a03feb
RR
1127 * If the page isn't exclusively mapped into this vma,
1128 * we must use the _oldest_ possible anon_vma for the
1129 * page mapping!
ea90002b 1130 */
4e1c1975 1131 if (!exclusive)
288468c3 1132 anon_vma = anon_vma->root;
9617d95e 1133
16f5e707
AS
1134 /*
1135 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1136 * Make sure the compiler doesn't split the stores of anon_vma and
1137 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1138 * could mistake the mapping for a struct address_space and crash.
1139 */
9617d95e 1140 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1141 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1142 page->index = linear_page_index(vma, address);
6c287605
DH
1143out:
1144 if (exclusive)
1145 SetPageAnonExclusive(page);
9617d95e
NP
1146}
1147
c97a9e10 1148/**
43d8eac4 1149 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1150 * @page: the page to add the mapping to
1151 * @vma: the vm area in which the mapping is added
1152 * @address: the user virtual address mapped
1153 */
1154static void __page_check_anon_rmap(struct page *page,
1155 struct vm_area_struct *vma, unsigned long address)
1156{
e05b3453 1157 struct folio *folio = page_folio(page);
c97a9e10
NP
1158 /*
1159 * The page's anon-rmap details (mapping and index) are guaranteed to
1160 * be set up correctly at this point.
1161 *
1162 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1163 * always holds the page locked.
c97a9e10
NP
1164 *
1165 * We have exclusion against page_add_new_anon_rmap because those pages
1166 * are initially only visible via the pagetables, and the pte is locked
1167 * over the call to page_add_new_anon_rmap.
1168 */
e05b3453
MWO
1169 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1170 folio);
30c46382
YS
1171 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1172 page);
c97a9e10
NP
1173}
1174
1da177e4
LT
1175/**
1176 * page_add_anon_rmap - add pte mapping to an anonymous page
1177 * @page: the page to add the mapping to
1178 * @vma: the vm area in which the mapping is added
1179 * @address: the user virtual address mapped
f1e2db12 1180 * @flags: the rmap flags
1da177e4 1181 *
5ad64688 1182 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1183 * the anon_vma case: to serialize mapping,index checking after setting,
1184 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1185 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1186 */
1187void page_add_anon_rmap(struct page *page,
14f9135d 1188 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1da177e4 1189{
53f9263b
KS
1190 bool compound = flags & RMAP_COMPOUND;
1191 bool first;
1192
be5d0a74
JW
1193 if (unlikely(PageKsm(page)))
1194 lock_page_memcg(page);
1195 else
1196 VM_BUG_ON_PAGE(!PageLocked(page), page);
1197
e9b61f19
KS
1198 if (compound) {
1199 atomic_t *mapcount;
53f9263b 1200 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1201 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1202 mapcount = compound_mapcount_ptr(page);
1203 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1204 } else {
1205 first = atomic_inc_and_test(&page->_mapcount);
1206 }
6c287605
DH
1207 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1208 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
53f9263b 1209
79134171 1210 if (first) {
6c357848 1211 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1212 /*
1213 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1214 * these counters are not modified in interrupt context, and
1215 * pte lock(a spinlock) is held, which implies preemption
1216 * disabled.
1217 */
65c45377 1218 if (compound)
69473e5d 1219 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1220 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1221 }
5ad64688 1222
cea86fe2 1223 if (unlikely(PageKsm(page)))
be5d0a74 1224 unlock_page_memcg(page);
53f9263b 1225
5dbe0af4 1226 /* address might be in next vma when migration races vma_adjust */
cea86fe2 1227 else if (first)
d281ee61 1228 __page_set_anon_rmap(page, vma, address,
14f9135d 1229 !!(flags & RMAP_EXCLUSIVE));
69029cd5 1230 else
c97a9e10 1231 __page_check_anon_rmap(page, vma, address);
cea86fe2
HD
1232
1233 mlock_vma_page(page, vma, compound);
1da177e4
LT
1234}
1235
43d8eac4 1236/**
40f2bbf7 1237 * page_add_new_anon_rmap - add mapping to a new anonymous page
9617d95e
NP
1238 * @page: the page to add the mapping to
1239 * @vma: the vm area in which the mapping is added
1240 * @address: the user virtual address mapped
40f2bbf7
DH
1241 *
1242 * If it's a compound page, it is accounted as a compound page. As the page
1243 * is new, it's assume to get mapped exclusively by a single process.
9617d95e
NP
1244 *
1245 * Same as page_add_anon_rmap but must only be called on *new* pages.
1246 * This means the inc-and-test can be bypassed.
c97a9e10 1247 * Page does not have to be locked.
9617d95e
NP
1248 */
1249void page_add_new_anon_rmap(struct page *page,
40f2bbf7 1250 struct vm_area_struct *vma, unsigned long address)
9617d95e 1251{
40f2bbf7 1252 const bool compound = PageCompound(page);
6c357848 1253 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1254
81d1b09c 1255 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1256 __SetPageSwapBacked(page);
d281ee61
KS
1257 if (compound) {
1258 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1259 /* increment count (starts at -1) */
1260 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 1261 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1262
69473e5d 1263 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b 1264 } else {
53f9263b
KS
1265 /* increment count (starts at -1) */
1266 atomic_set(&page->_mapcount, 0);
d281ee61 1267 }
be5d0a74 1268 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1269 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1270}
1271
1da177e4
LT
1272/**
1273 * page_add_file_rmap - add pte mapping to a file page
cea86fe2
HD
1274 * @page: the page to add the mapping to
1275 * @vma: the vm area in which the mapping is added
1276 * @compound: charge the page as compound or small page
1da177e4 1277 *
b8072f09 1278 * The caller needs to hold the pte lock.
1da177e4 1279 */
cea86fe2
HD
1280void page_add_file_rmap(struct page *page,
1281 struct vm_area_struct *vma, bool compound)
1da177e4 1282{
5d543f13 1283 int i, nr = 0;
dd78fedd
KS
1284
1285 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1286 lock_page_memcg(page);
dd78fedd 1287 if (compound && PageTransHuge(page)) {
a1528e21
MS
1288 int nr_pages = thp_nr_pages(page);
1289
5d543f13 1290 for (i = 0; i < nr_pages; i++) {
dd78fedd
KS
1291 if (atomic_inc_and_test(&page[i]._mapcount))
1292 nr++;
1293 }
1294 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1295 goto out;
bd55b0c2
HD
1296
1297 /*
1298 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1299 * but page lock is held by all page_add_file_rmap() compound
1300 * callers, and SetPageDoubleMap below warns if !PageLocked:
1301 * so here is a place that DoubleMap can be safely cleared.
1302 */
1303 VM_WARN_ON_ONCE(!PageLocked(page));
1304 if (nr == nr_pages && PageDoubleMap(page))
1305 ClearPageDoubleMap(page);
1306
99cb0dbd 1307 if (PageSwapBacked(page))
a1528e21
MS
1308 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1309 nr_pages);
99cb0dbd 1310 else
380780e7
MS
1311 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1312 nr_pages);
dd78fedd 1313 } else {
c8efc390
KS
1314 if (PageTransCompound(page) && page_mapping(page)) {
1315 VM_WARN_ON_ONCE(!PageLocked(page));
cea86fe2 1316 SetPageDoubleMap(compound_head(page));
9a73f61b 1317 }
5d543f13
HD
1318 if (atomic_inc_and_test(&page->_mapcount))
1319 nr++;
d69b042f 1320 }
dd78fedd 1321out:
5d543f13
HD
1322 if (nr)
1323 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
62cccb8c 1324 unlock_page_memcg(page);
cea86fe2
HD
1325
1326 mlock_vma_page(page, vma, compound);
1da177e4
LT
1327}
1328
dd78fedd 1329static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1330{
5d543f13 1331 int i, nr = 0;
dd78fedd 1332
57dea93a 1333 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1334
53f9263b
KS
1335 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1336 if (unlikely(PageHuge(page))) {
1337 /* hugetlb pages are always mapped with pmds */
1338 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1339 return;
53f9263b 1340 }
8186eb6a 1341
53f9263b 1342 /* page still mapped by someone else? */
dd78fedd 1343 if (compound && PageTransHuge(page)) {
a1528e21
MS
1344 int nr_pages = thp_nr_pages(page);
1345
5d543f13 1346 for (i = 0; i < nr_pages; i++) {
dd78fedd
KS
1347 if (atomic_add_negative(-1, &page[i]._mapcount))
1348 nr++;
1349 }
1350 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
5d543f13 1351 goto out;
99cb0dbd 1352 if (PageSwapBacked(page))
a1528e21
MS
1353 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1354 -nr_pages);
99cb0dbd 1355 else
380780e7
MS
1356 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1357 -nr_pages);
dd78fedd 1358 } else {
5d543f13
HD
1359 if (atomic_add_negative(-1, &page->_mapcount))
1360 nr++;
dd78fedd 1361 }
5d543f13
HD
1362out:
1363 if (nr)
1364 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1365}
1366
53f9263b
KS
1367static void page_remove_anon_compound_rmap(struct page *page)
1368{
1369 int i, nr;
1370
1371 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1372 return;
1373
1374 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1375 if (unlikely(PageHuge(page)))
1376 return;
1377
1378 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1379 return;
1380
69473e5d 1381 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1382
1383 if (TestClearPageDoubleMap(page)) {
1384 /*
1385 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1386 * them are still mapped.
53f9263b 1387 */
5eaf35ab 1388 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1389 if (atomic_add_negative(-1, &page[i]._mapcount))
1390 nr++;
1391 }
f1fe80d4
KS
1392
1393 /*
1394 * Queue the page for deferred split if at least one small
1395 * page of the compound page is unmapped, but at least one
1396 * small page is still mapped.
1397 */
5eaf35ab 1398 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1399 deferred_split_huge_page(page);
53f9263b 1400 } else {
5eaf35ab 1401 nr = thp_nr_pages(page);
53f9263b
KS
1402 }
1403
f1fe80d4 1404 if (nr)
be5d0a74 1405 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1406}
1407
1da177e4
LT
1408/**
1409 * page_remove_rmap - take down pte mapping from a page
d281ee61 1410 * @page: page to remove mapping from
cea86fe2 1411 * @vma: the vm area from which the mapping is removed
d281ee61 1412 * @compound: uncharge the page as compound or small page
1da177e4 1413 *
b8072f09 1414 * The caller needs to hold the pte lock.
1da177e4 1415 */
cea86fe2
HD
1416void page_remove_rmap(struct page *page,
1417 struct vm_area_struct *vma, bool compound)
1da177e4 1418{
be5d0a74 1419 lock_page_memcg(page);
89c06bd5 1420
be5d0a74
JW
1421 if (!PageAnon(page)) {
1422 page_remove_file_rmap(page, compound);
1423 goto out;
1424 }
1425
1426 if (compound) {
1427 page_remove_anon_compound_rmap(page);
1428 goto out;
1429 }
53f9263b 1430
b904dcfe
KM
1431 /* page still mapped by someone else? */
1432 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1433 goto out;
8186eb6a 1434
0fe6e20b 1435 /*
bea04b07
JZ
1436 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1437 * these counters are not modified in interrupt context, and
bea04b07 1438 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1439 */
be5d0a74 1440 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1441
9a982250
KS
1442 if (PageTransCompound(page))
1443 deferred_split_huge_page(compound_head(page));
1444
b904dcfe
KM
1445 /*
1446 * It would be tidy to reset the PageAnon mapping here,
1447 * but that might overwrite a racing page_add_anon_rmap
1448 * which increments mapcount after us but sets mapping
2d4894b5 1449 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1450 * and remember that it's only reliable while mapped.
1451 * Leaving it set also helps swapoff to reinstate ptes
1452 * faster for those pages still in swapcache.
1453 */
be5d0a74
JW
1454out:
1455 unlock_page_memcg(page);
cea86fe2
HD
1456
1457 munlock_vma_page(page, vma, compound);
1da177e4
LT
1458}
1459
1460/*
52629506 1461 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1462 */
2f031c6f 1463static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
52629506 1464 unsigned long address, void *arg)
1da177e4
LT
1465{
1466 struct mm_struct *mm = vma->vm_mm;
869f7ee6 1467 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1da177e4 1468 pte_t pteval;
c7ab0d2f 1469 struct page *subpage;
6c287605 1470 bool anon_exclusive, ret = true;
ac46d4f3 1471 struct mmu_notifier_range range;
4708f318 1472 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1473
732ed558
HD
1474 /*
1475 * When racing against e.g. zap_pte_range() on another cpu,
1476 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1477 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1478 * if page table locking is skipped: use TTU_SYNC to wait for that.
1479 */
1480 if (flags & TTU_SYNC)
1481 pvmw.flags = PVMW_SYNC;
1482
a98a2f0c 1483 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1484 split_huge_pmd_address(vma, address, false, folio);
fec89c10 1485
369ea824 1486 /*
017b1660
MK
1487 * For THP, we have to assume the worse case ie pmd for invalidation.
1488 * For hugetlb, it could be much worse if we need to do pud
1489 * invalidation in the case of pmd sharing.
1490 *
869f7ee6
MWO
1491 * Note that the folio can not be freed in this function as call of
1492 * try_to_unmap() must hold a reference on the folio.
369ea824 1493 */
2aff7a47 1494 range.end = vma_address_end(&pvmw);
7269f999 1495 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1496 address, range.end);
869f7ee6 1497 if (folio_test_hugetlb(folio)) {
017b1660
MK
1498 /*
1499 * If sharing is possible, start and end will be adjusted
1500 * accordingly.
1501 */
ac46d4f3
JG
1502 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1503 &range.end);
017b1660 1504 }
ac46d4f3 1505 mmu_notifier_invalidate_range_start(&range);
369ea824 1506
c7ab0d2f 1507 while (page_vma_mapped_walk(&pvmw)) {
cea86fe2 1508 /* Unexpected PMD-mapped THP? */
869f7ee6 1509 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
cea86fe2 1510
c7ab0d2f 1511 /*
869f7ee6 1512 * If the folio is in an mlock()d vma, we must not swap it out.
c7ab0d2f 1513 */
efdb6720
HD
1514 if (!(flags & TTU_IGNORE_MLOCK) &&
1515 (vma->vm_flags & VM_LOCKED)) {
cea86fe2 1516 /* Restore the mlock which got missed */
869f7ee6 1517 mlock_vma_folio(folio, vma, false);
efdb6720
HD
1518 page_vma_mapped_walk_done(&pvmw);
1519 ret = false;
1520 break;
b87537d9 1521 }
c7ab0d2f 1522
869f7ee6
MWO
1523 subpage = folio_page(folio,
1524 pte_pfn(*pvmw.pte) - folio_pfn(folio));
785373b4 1525 address = pvmw.address;
6c287605
DH
1526 anon_exclusive = folio_test_anon(folio) &&
1527 PageAnonExclusive(subpage);
785373b4 1528
dfc7ab57 1529 if (folio_test_hugetlb(folio)) {
a00a8759
BW
1530 /*
1531 * The try_to_unmap() is only passed a hugetlb page
1532 * in the case where the hugetlb page is poisoned.
1533 */
1534 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
54205e9c
BW
1535 /*
1536 * huge_pmd_unshare may unmap an entire PMD page.
1537 * There is no way of knowing exactly which PMDs may
1538 * be cached for this mm, so we must flush them all.
1539 * start/end were already adjusted above to cover this
1540 * range.
1541 */
1542 flush_cache_range(vma, range.start, range.end);
1543
dfc7ab57 1544 if (!folio_test_anon(folio)) {
017b1660 1545 /*
dfc7ab57
BW
1546 * To call huge_pmd_unshare, i_mmap_rwsem must be
1547 * held in write mode. Caller needs to explicitly
1548 * do this outside rmap routines.
017b1660 1549 */
dfc7ab57
BW
1550 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1551
1552 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1553 flush_tlb_range(vma, range.start, range.end);
1554 mmu_notifier_invalidate_range(mm, range.start,
1555 range.end);
1556
1557 /*
1558 * The ref count of the PMD page was dropped
1559 * which is part of the way map counting
1560 * is done for shared PMDs. Return 'true'
1561 * here. When there is no other sharing,
1562 * huge_pmd_unshare returns false and we will
1563 * unmap the actual page and drop map count
1564 * to zero.
1565 */
1566 page_vma_mapped_walk_done(&pvmw);
1567 break;
1568 }
017b1660 1569 }
a00a8759 1570 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
54205e9c
BW
1571 } else {
1572 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f 1573 /*
a00a8759
BW
1574 * Nuke the page table entry. When having to clear
1575 * PageAnonExclusive(), we always have to flush.
c7ab0d2f 1576 */
a00a8759
BW
1577 if (should_defer_flush(mm, flags) && !anon_exclusive) {
1578 /*
1579 * We clear the PTE but do not flush so potentially
1580 * a remote CPU could still be writing to the folio.
1581 * If the entry was previously clean then the
1582 * architecture must guarantee that a clear->dirty
1583 * transition on a cached TLB entry is written through
1584 * and traps if the PTE is unmapped.
1585 */
1586 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f 1587
a00a8759
BW
1588 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1589 } else {
1590 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1591 }
c7ab0d2f 1592 }
72b252ae 1593
999dad82
PX
1594 /*
1595 * Now the pte is cleared. If this pte was uffd-wp armed,
1596 * we may want to replace a none pte with a marker pte if
1597 * it's file-backed, so we don't lose the tracking info.
1598 */
1599 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1600
869f7ee6 1601 /* Set the dirty flag on the folio now the pte is gone. */
c7ab0d2f 1602 if (pte_dirty(pteval))
869f7ee6 1603 folio_mark_dirty(folio);
1da177e4 1604
c7ab0d2f
KS
1605 /* Update high watermark before we lower rss */
1606 update_hiwater_rss(mm);
1da177e4 1607
da358d5c 1608 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1609 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
869f7ee6
MWO
1610 if (folio_test_hugetlb(folio)) {
1611 hugetlb_count_sub(folio_nr_pages(folio), mm);
785373b4 1612 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1613 pvmw.pte, pteval,
1614 vma_mmu_pagesize(vma));
c7ab0d2f 1615 } else {
869f7ee6 1616 dec_mm_counter(mm, mm_counter(&folio->page));
785373b4 1617 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1618 }
365e9c87 1619
bce73e48 1620 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1621 /*
1622 * The guest indicated that the page content is of no
1623 * interest anymore. Simply discard the pte, vmscan
1624 * will take care of the rest.
bce73e48
CB
1625 * A future reference will then fault in a new zero
1626 * page. When userfaultfd is active, we must not drop
1627 * this page though, as its main user (postcopy
1628 * migration) will not expect userfaults on already
1629 * copied pages.
c7ab0d2f 1630 */
869f7ee6 1631 dec_mm_counter(mm, mm_counter(&folio->page));
0f10851e
JG
1632 /* We have to invalidate as we cleared the pte */
1633 mmu_notifier_invalidate_range(mm, address,
1634 address + PAGE_SIZE);
869f7ee6 1635 } else if (folio_test_anon(folio)) {
c7ab0d2f
KS
1636 swp_entry_t entry = { .val = page_private(subpage) };
1637 pte_t swp_pte;
1638 /*
1639 * Store the swap location in the pte.
1640 * See handle_pte_fault() ...
1641 */
869f7ee6
MWO
1642 if (unlikely(folio_test_swapbacked(folio) !=
1643 folio_test_swapcache(folio))) {
eb94a878 1644 WARN_ON_ONCE(1);
83612a94 1645 ret = false;
369ea824 1646 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1647 mmu_notifier_invalidate_range(mm, address,
1648 address + PAGE_SIZE);
eb94a878
MK
1649 page_vma_mapped_walk_done(&pvmw);
1650 break;
1651 }
c7ab0d2f 1652
802a3a92 1653 /* MADV_FREE page check */
869f7ee6 1654 if (!folio_test_swapbacked(folio)) {
6c8e2a25
MFO
1655 int ref_count, map_count;
1656
1657 /*
1658 * Synchronize with gup_pte_range():
1659 * - clear PTE; barrier; read refcount
1660 * - inc refcount; barrier; read PTE
1661 */
1662 smp_mb();
1663
1664 ref_count = folio_ref_count(folio);
1665 map_count = folio_mapcount(folio);
1666
1667 /*
1668 * Order reads for page refcount and dirty flag
1669 * (see comments in __remove_mapping()).
1670 */
1671 smp_rmb();
1672
1673 /*
1674 * The only page refs must be one from isolation
1675 * plus the rmap(s) (dropped by discard:).
1676 */
1677 if (ref_count == 1 + map_count &&
1678 !folio_test_dirty(folio)) {
0f10851e
JG
1679 /* Invalidate as we cleared the pte */
1680 mmu_notifier_invalidate_range(mm,
1681 address, address + PAGE_SIZE);
802a3a92
SL
1682 dec_mm_counter(mm, MM_ANONPAGES);
1683 goto discard;
1684 }
1685
1686 /*
869f7ee6 1687 * If the folio was redirtied, it cannot be
802a3a92
SL
1688 * discarded. Remap the page to page table.
1689 */
785373b4 1690 set_pte_at(mm, address, pvmw.pte, pteval);
869f7ee6 1691 folio_set_swapbacked(folio);
e4b82222 1692 ret = false;
802a3a92
SL
1693 page_vma_mapped_walk_done(&pvmw);
1694 break;
c7ab0d2f 1695 }
854e9ed0 1696
c7ab0d2f 1697 if (swap_duplicate(entry) < 0) {
785373b4 1698 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1699 ret = false;
c7ab0d2f
KS
1700 page_vma_mapped_walk_done(&pvmw);
1701 break;
1702 }
ca827d55 1703 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
322842ea 1704 swap_free(entry);
ca827d55
KA
1705 set_pte_at(mm, address, pvmw.pte, pteval);
1706 ret = false;
1707 page_vma_mapped_walk_done(&pvmw);
1708 break;
1709 }
6c287605
DH
1710 if (anon_exclusive &&
1711 page_try_share_anon_rmap(subpage)) {
1712 swap_free(entry);
1713 set_pte_at(mm, address, pvmw.pte, pteval);
1714 ret = false;
1715 page_vma_mapped_walk_done(&pvmw);
1716 break;
1717 }
1718 /*
1493a191
DH
1719 * Note: We *don't* remember if the page was mapped
1720 * exclusively in the swap pte if the architecture
1721 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1722 * that case, swapin code has to re-determine that
1723 * manually and might detect the page as possibly
1724 * shared, for example, if there are other references on
1725 * the page or if the page is under writeback. We made
1726 * sure that there are no GUP pins on the page that
1727 * would rely on it, so for GUP pins this is fine.
6c287605 1728 */
c7ab0d2f
KS
1729 if (list_empty(&mm->mmlist)) {
1730 spin_lock(&mmlist_lock);
1731 if (list_empty(&mm->mmlist))
1732 list_add(&mm->mmlist, &init_mm.mmlist);
1733 spin_unlock(&mmlist_lock);
1734 }
854e9ed0 1735 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1736 inc_mm_counter(mm, MM_SWAPENTS);
1737 swp_pte = swp_entry_to_pte(entry);
1493a191
DH
1738 if (anon_exclusive)
1739 swp_pte = pte_swp_mkexclusive(swp_pte);
c7ab0d2f
KS
1740 if (pte_soft_dirty(pteval))
1741 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1742 if (pte_uffd_wp(pteval))
1743 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1744 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1745 /* Invalidate as we cleared the pte */
1746 mmu_notifier_invalidate_range(mm, address,
1747 address + PAGE_SIZE);
1748 } else {
1749 /*
869f7ee6
MWO
1750 * This is a locked file-backed folio,
1751 * so it cannot be removed from the page
1752 * cache and replaced by a new folio before
1753 * mmu_notifier_invalidate_range_end, so no
1754 * concurrent thread might update its page table
1755 * to point at a new folio while a device is
1756 * still using this folio.
0f10851e 1757 *
ad56b738 1758 * See Documentation/vm/mmu_notifier.rst
0f10851e 1759 */
869f7ee6 1760 dec_mm_counter(mm, mm_counter_file(&folio->page));
0f10851e 1761 }
854e9ed0 1762discard:
0f10851e
JG
1763 /*
1764 * No need to call mmu_notifier_invalidate_range() it has be
1765 * done above for all cases requiring it to happen under page
1766 * table lock before mmu_notifier_invalidate_range_end()
1767 *
ad56b738 1768 * See Documentation/vm/mmu_notifier.rst
0f10851e 1769 */
869f7ee6 1770 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 1771 if (vma->vm_flags & VM_LOCKED)
adb11e78 1772 mlock_page_drain_local();
869f7ee6 1773 folio_put(folio);
c7ab0d2f 1774 }
369ea824 1775
ac46d4f3 1776 mmu_notifier_invalidate_range_end(&range);
369ea824 1777
caed0f48 1778 return ret;
1da177e4
LT
1779}
1780
52629506
JK
1781static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1782{
222100ee 1783 return vma_is_temporary_stack(vma);
52629506
JK
1784}
1785
2f031c6f 1786static int page_not_mapped(struct folio *folio)
52629506 1787{
2f031c6f 1788 return !folio_mapped(folio);
2a52bcbc 1789}
52629506 1790
1da177e4 1791/**
869f7ee6
MWO
1792 * try_to_unmap - Try to remove all page table mappings to a folio.
1793 * @folio: The folio to unmap.
14fa31b8 1794 * @flags: action and flags
1da177e4
LT
1795 *
1796 * Tries to remove all the page table entries which are mapping this
869f7ee6
MWO
1797 * folio. It is the caller's responsibility to check if the folio is
1798 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1da177e4 1799 *
869f7ee6 1800 * Context: Caller must hold the folio lock.
1da177e4 1801 */
869f7ee6 1802void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1da177e4 1803{
52629506
JK
1804 struct rmap_walk_control rwc = {
1805 .rmap_one = try_to_unmap_one,
802a3a92 1806 .arg = (void *)flags,
b7e188ec 1807 .done = page_not_mapped,
2f031c6f 1808 .anon_lock = folio_lock_anon_vma_read,
52629506 1809 };
1da177e4 1810
a98a2f0c 1811 if (flags & TTU_RMAP_LOCKED)
2f031c6f 1812 rmap_walk_locked(folio, &rwc);
a98a2f0c 1813 else
2f031c6f 1814 rmap_walk(folio, &rwc);
a98a2f0c
AP
1815}
1816
1817/*
1818 * @arg: enum ttu_flags will be passed to this argument.
1819 *
1820 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1821 * containing migration entries.
a98a2f0c 1822 */
2f031c6f 1823static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
a98a2f0c
AP
1824 unsigned long address, void *arg)
1825{
1826 struct mm_struct *mm = vma->vm_mm;
4b8554c5 1827 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
a98a2f0c
AP
1828 pte_t pteval;
1829 struct page *subpage;
6c287605 1830 bool anon_exclusive, ret = true;
a98a2f0c
AP
1831 struct mmu_notifier_range range;
1832 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1833
a98a2f0c
AP
1834 /*
1835 * When racing against e.g. zap_pte_range() on another cpu,
1836 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1837 * try_to_migrate() may return before page_mapped() has become false,
1838 * if page table locking is skipped: use TTU_SYNC to wait for that.
1839 */
1840 if (flags & TTU_SYNC)
1841 pvmw.flags = PVMW_SYNC;
1842
1843 /*
1844 * unmap_page() in mm/huge_memory.c is the only user of migration with
1845 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1846 */
1847 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1848 split_huge_pmd_address(vma, address, true, folio);
a98a2f0c
AP
1849
1850 /*
1851 * For THP, we have to assume the worse case ie pmd for invalidation.
1852 * For hugetlb, it could be much worse if we need to do pud
1853 * invalidation in the case of pmd sharing.
1854 *
1855 * Note that the page can not be free in this function as call of
1856 * try_to_unmap() must hold a reference on the page.
1857 */
2aff7a47 1858 range.end = vma_address_end(&pvmw);
a98a2f0c
AP
1859 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1860 address, range.end);
4b8554c5 1861 if (folio_test_hugetlb(folio)) {
a98a2f0c
AP
1862 /*
1863 * If sharing is possible, start and end will be adjusted
1864 * accordingly.
1865 */
1866 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1867 &range.end);
1868 }
1869 mmu_notifier_invalidate_range_start(&range);
1870
1871 while (page_vma_mapped_walk(&pvmw)) {
1872#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1873 /* PMD-mapped THP migration entry */
1874 if (!pvmw.pte) {
4b8554c5
MWO
1875 subpage = folio_page(folio,
1876 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1877 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1878 !folio_test_pmd_mappable(folio), folio);
a98a2f0c 1879
7f5abe60
DH
1880 if (set_pmd_migration_entry(&pvmw, subpage)) {
1881 ret = false;
1882 page_vma_mapped_walk_done(&pvmw);
1883 break;
1884 }
a98a2f0c
AP
1885 continue;
1886 }
1887#endif
1888
1889 /* Unexpected PMD-mapped THP? */
4b8554c5 1890 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
a98a2f0c 1891
4b8554c5
MWO
1892 subpage = folio_page(folio,
1893 pte_pfn(*pvmw.pte) - folio_pfn(folio));
a98a2f0c 1894 address = pvmw.address;
6c287605
DH
1895 anon_exclusive = folio_test_anon(folio) &&
1896 PageAnonExclusive(subpage);
a98a2f0c 1897
dfc7ab57 1898 if (folio_test_hugetlb(folio)) {
54205e9c
BW
1899 /*
1900 * huge_pmd_unshare may unmap an entire PMD page.
1901 * There is no way of knowing exactly which PMDs may
1902 * be cached for this mm, so we must flush them all.
1903 * start/end were already adjusted above to cover this
1904 * range.
1905 */
1906 flush_cache_range(vma, range.start, range.end);
1907
dfc7ab57 1908 if (!folio_test_anon(folio)) {
a98a2f0c 1909 /*
dfc7ab57
BW
1910 * To call huge_pmd_unshare, i_mmap_rwsem must be
1911 * held in write mode. Caller needs to explicitly
1912 * do this outside rmap routines.
a98a2f0c 1913 */
dfc7ab57
BW
1914 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1915
1916 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1917 flush_tlb_range(vma, range.start, range.end);
1918 mmu_notifier_invalidate_range(mm, range.start,
1919 range.end);
1920
1921 /*
1922 * The ref count of the PMD page was dropped
1923 * which is part of the way map counting
1924 * is done for shared PMDs. Return 'true'
1925 * here. When there is no other sharing,
1926 * huge_pmd_unshare returns false and we will
1927 * unmap the actual page and drop map count
1928 * to zero.
1929 */
1930 page_vma_mapped_walk_done(&pvmw);
1931 break;
1932 }
a98a2f0c 1933 }
5d4af619
BW
1934
1935 /* Nuke the hugetlb page table entry */
1936 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
54205e9c
BW
1937 } else {
1938 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
5d4af619
BW
1939 /* Nuke the page table entry. */
1940 pteval = ptep_clear_flush(vma, address, pvmw.pte);
a98a2f0c
AP
1941 }
1942
4b8554c5 1943 /* Set the dirty flag on the folio now the pte is gone. */
a98a2f0c 1944 if (pte_dirty(pteval))
4b8554c5 1945 folio_mark_dirty(folio);
a98a2f0c
AP
1946
1947 /* Update high watermark before we lower rss */
1948 update_hiwater_rss(mm);
1949
4b8554c5
MWO
1950 if (folio_is_zone_device(folio)) {
1951 unsigned long pfn = folio_pfn(folio);
a98a2f0c
AP
1952 swp_entry_t entry;
1953 pte_t swp_pte;
1954
6c287605
DH
1955 if (anon_exclusive)
1956 BUG_ON(page_try_share_anon_rmap(subpage));
1957
a98a2f0c
AP
1958 /*
1959 * Store the pfn of the page in a special migration
1960 * pte. do_swap_page() will wait until the migration
1961 * pte is removed and then restart fault handling.
1962 */
3d88705c
AP
1963 entry = pte_to_swp_entry(pteval);
1964 if (is_writable_device_private_entry(entry))
1965 entry = make_writable_migration_entry(pfn);
6c287605
DH
1966 else if (anon_exclusive)
1967 entry = make_readable_exclusive_migration_entry(pfn);
3d88705c
AP
1968 else
1969 entry = make_readable_migration_entry(pfn);
a98a2f0c
AP
1970 swp_pte = swp_entry_to_pte(entry);
1971
1972 /*
1973 * pteval maps a zone device page and is therefore
1974 * a swap pte.
1975 */
1976 if (pte_swp_soft_dirty(pteval))
1977 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1978 if (pte_swp_uffd_wp(pteval))
1979 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1980 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
4cc79b33
AK
1981 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
1982 compound_order(&folio->page));
a98a2f0c
AP
1983 /*
1984 * No need to invalidate here it will synchronize on
1985 * against the special swap migration pte.
1986 *
1987 * The assignment to subpage above was computed from a
1988 * swap PTE which results in an invalid pointer.
1989 * Since only PAGE_SIZE pages can currently be
1990 * migrated, just set it to page. This will need to be
1991 * changed when hugepage migrations to device private
1992 * memory are supported.
1993 */
4b8554c5 1994 subpage = &folio->page;
da358d5c 1995 } else if (PageHWPoison(subpage)) {
a98a2f0c 1996 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
4b8554c5
MWO
1997 if (folio_test_hugetlb(folio)) {
1998 hugetlb_count_sub(folio_nr_pages(folio), mm);
a98a2f0c
AP
1999 set_huge_swap_pte_at(mm, address,
2000 pvmw.pte, pteval,
2001 vma_mmu_pagesize(vma));
2002 } else {
4b8554c5 2003 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
2004 set_pte_at(mm, address, pvmw.pte, pteval);
2005 }
2006
2007 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2008 /*
2009 * The guest indicated that the page content is of no
2010 * interest anymore. Simply discard the pte, vmscan
2011 * will take care of the rest.
2012 * A future reference will then fault in a new zero
2013 * page. When userfaultfd is active, we must not drop
2014 * this page though, as its main user (postcopy
2015 * migration) will not expect userfaults on already
2016 * copied pages.
2017 */
4b8554c5 2018 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
2019 /* We have to invalidate as we cleared the pte */
2020 mmu_notifier_invalidate_range(mm, address,
2021 address + PAGE_SIZE);
2022 } else {
2023 swp_entry_t entry;
2024 pte_t swp_pte;
2025
2026 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
5d4af619
BW
2027 if (folio_test_hugetlb(folio))
2028 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2029 else
2030 set_pte_at(mm, address, pvmw.pte, pteval);
a98a2f0c
AP
2031 ret = false;
2032 page_vma_mapped_walk_done(&pvmw);
2033 break;
2034 }
6c287605
DH
2035 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2036 !anon_exclusive, subpage);
2037 if (anon_exclusive &&
2038 page_try_share_anon_rmap(subpage)) {
5d4af619
BW
2039 if (folio_test_hugetlb(folio))
2040 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2041 else
2042 set_pte_at(mm, address, pvmw.pte, pteval);
6c287605
DH
2043 ret = false;
2044 page_vma_mapped_walk_done(&pvmw);
2045 break;
2046 }
a98a2f0c
AP
2047
2048 /*
2049 * Store the pfn of the page in a special migration
2050 * pte. do_swap_page() will wait until the migration
2051 * pte is removed and then restart fault handling.
2052 */
2053 if (pte_write(pteval))
2054 entry = make_writable_migration_entry(
2055 page_to_pfn(subpage));
6c287605
DH
2056 else if (anon_exclusive)
2057 entry = make_readable_exclusive_migration_entry(
2058 page_to_pfn(subpage));
a98a2f0c
AP
2059 else
2060 entry = make_readable_migration_entry(
2061 page_to_pfn(subpage));
2062
2063 swp_pte = swp_entry_to_pte(entry);
2064 if (pte_soft_dirty(pteval))
2065 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2066 if (pte_uffd_wp(pteval))
2067 swp_pte = pte_swp_mkuffd_wp(swp_pte);
5d4af619
BW
2068 if (folio_test_hugetlb(folio))
2069 set_huge_swap_pte_at(mm, address, pvmw.pte,
2070 swp_pte, vma_mmu_pagesize(vma));
2071 else
2072 set_pte_at(mm, address, pvmw.pte, swp_pte);
4cc79b33
AK
2073 trace_set_migration_pte(address, pte_val(swp_pte),
2074 compound_order(&folio->page));
a98a2f0c
AP
2075 /*
2076 * No need to invalidate here it will synchronize on
2077 * against the special swap migration pte.
2078 */
2079 }
2080
2081 /*
2082 * No need to call mmu_notifier_invalidate_range() it has be
2083 * done above for all cases requiring it to happen under page
2084 * table lock before mmu_notifier_invalidate_range_end()
2085 *
2086 * See Documentation/vm/mmu_notifier.rst
2087 */
4b8554c5 2088 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 2089 if (vma->vm_flags & VM_LOCKED)
adb11e78 2090 mlock_page_drain_local();
4b8554c5 2091 folio_put(folio);
a98a2f0c
AP
2092 }
2093
2094 mmu_notifier_invalidate_range_end(&range);
2095
2096 return ret;
2097}
2098
2099/**
2100 * try_to_migrate - try to replace all page table mappings with swap entries
4b8554c5 2101 * @folio: the folio to replace page table entries for
a98a2f0c
AP
2102 * @flags: action and flags
2103 *
4b8554c5
MWO
2104 * Tries to remove all the page table entries which are mapping this folio and
2105 * replace them with special swap entries. Caller must hold the folio lock.
a98a2f0c 2106 */
4b8554c5 2107void try_to_migrate(struct folio *folio, enum ttu_flags flags)
a98a2f0c
AP
2108{
2109 struct rmap_walk_control rwc = {
2110 .rmap_one = try_to_migrate_one,
2111 .arg = (void *)flags,
2112 .done = page_not_mapped,
2f031c6f 2113 .anon_lock = folio_lock_anon_vma_read,
a98a2f0c
AP
2114 };
2115
2116 /*
2117 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2118 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2119 */
2120 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2121 TTU_SYNC)))
2122 return;
2123
4b8554c5 2124 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
6c855fce
HD
2125 return;
2126
52629506
JK
2127 /*
2128 * During exec, a temporary VMA is setup and later moved.
2129 * The VMA is moved under the anon_vma lock but not the
2130 * page tables leading to a race where migration cannot
2131 * find the migration ptes. Rather than increasing the
2132 * locking requirements of exec(), migration skips
2133 * temporary VMAs until after exec() completes.
2134 */
4b8554c5 2135 if (!folio_test_ksm(folio) && folio_test_anon(folio))
52629506
JK
2136 rwc.invalid_vma = invalid_migration_vma;
2137
2a52bcbc 2138 if (flags & TTU_RMAP_LOCKED)
2f031c6f 2139 rmap_walk_locked(folio, &rwc);
2a52bcbc 2140 else
2f031c6f 2141 rmap_walk(folio, &rwc);
b291f000 2142}
e9995ef9 2143
b756a3b5
AP
2144#ifdef CONFIG_DEVICE_PRIVATE
2145struct make_exclusive_args {
2146 struct mm_struct *mm;
2147 unsigned long address;
2148 void *owner;
2149 bool valid;
2150};
2151
2f031c6f 2152static bool page_make_device_exclusive_one(struct folio *folio,
b756a3b5
AP
2153 struct vm_area_struct *vma, unsigned long address, void *priv)
2154{
2155 struct mm_struct *mm = vma->vm_mm;
0d251485 2156 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
b756a3b5
AP
2157 struct make_exclusive_args *args = priv;
2158 pte_t pteval;
2159 struct page *subpage;
2160 bool ret = true;
2161 struct mmu_notifier_range range;
2162 swp_entry_t entry;
2163 pte_t swp_pte;
2164
2165 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2166 vma->vm_mm, address, min(vma->vm_end,
0d251485
MWO
2167 address + folio_size(folio)),
2168 args->owner);
b756a3b5
AP
2169 mmu_notifier_invalidate_range_start(&range);
2170
2171 while (page_vma_mapped_walk(&pvmw)) {
2172 /* Unexpected PMD-mapped THP? */
0d251485 2173 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
b756a3b5
AP
2174
2175 if (!pte_present(*pvmw.pte)) {
2176 ret = false;
2177 page_vma_mapped_walk_done(&pvmw);
2178 break;
2179 }
2180
0d251485
MWO
2181 subpage = folio_page(folio,
2182 pte_pfn(*pvmw.pte) - folio_pfn(folio));
b756a3b5
AP
2183 address = pvmw.address;
2184
2185 /* Nuke the page table entry. */
2186 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2187 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2188
0d251485 2189 /* Set the dirty flag on the folio now the pte is gone. */
b756a3b5 2190 if (pte_dirty(pteval))
0d251485 2191 folio_mark_dirty(folio);
b756a3b5
AP
2192
2193 /*
2194 * Check that our target page is still mapped at the expected
2195 * address.
2196 */
2197 if (args->mm == mm && args->address == address &&
2198 pte_write(pteval))
2199 args->valid = true;
2200
2201 /*
2202 * Store the pfn of the page in a special migration
2203 * pte. do_swap_page() will wait until the migration
2204 * pte is removed and then restart fault handling.
2205 */
2206 if (pte_write(pteval))
2207 entry = make_writable_device_exclusive_entry(
2208 page_to_pfn(subpage));
2209 else
2210 entry = make_readable_device_exclusive_entry(
2211 page_to_pfn(subpage));
2212 swp_pte = swp_entry_to_pte(entry);
2213 if (pte_soft_dirty(pteval))
2214 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2215 if (pte_uffd_wp(pteval))
2216 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2217
2218 set_pte_at(mm, address, pvmw.pte, swp_pte);
2219
2220 /*
2221 * There is a reference on the page for the swap entry which has
2222 * been removed, so shouldn't take another.
2223 */
cea86fe2 2224 page_remove_rmap(subpage, vma, false);
b756a3b5
AP
2225 }
2226
2227 mmu_notifier_invalidate_range_end(&range);
2228
2229 return ret;
2230}
2231
2232/**
0d251485
MWO
2233 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2234 * @folio: The folio to replace page table entries for.
2235 * @mm: The mm_struct where the folio is expected to be mapped.
2236 * @address: Address where the folio is expected to be mapped.
b756a3b5
AP
2237 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2238 *
0d251485
MWO
2239 * Tries to remove all the page table entries which are mapping this
2240 * folio and replace them with special device exclusive swap entries to
2241 * grant a device exclusive access to the folio.
b756a3b5 2242 *
0d251485
MWO
2243 * Context: Caller must hold the folio lock.
2244 * Return: false if the page is still mapped, or if it could not be unmapped
b756a3b5
AP
2245 * from the expected address. Otherwise returns true (success).
2246 */
0d251485
MWO
2247static bool folio_make_device_exclusive(struct folio *folio,
2248 struct mm_struct *mm, unsigned long address, void *owner)
b756a3b5
AP
2249{
2250 struct make_exclusive_args args = {
2251 .mm = mm,
2252 .address = address,
2253 .owner = owner,
2254 .valid = false,
2255 };
2256 struct rmap_walk_control rwc = {
2257 .rmap_one = page_make_device_exclusive_one,
2258 .done = page_not_mapped,
2f031c6f 2259 .anon_lock = folio_lock_anon_vma_read,
b756a3b5
AP
2260 .arg = &args,
2261 };
2262
2263 /*
0d251485
MWO
2264 * Restrict to anonymous folios for now to avoid potential writeback
2265 * issues.
b756a3b5 2266 */
0d251485 2267 if (!folio_test_anon(folio))
b756a3b5
AP
2268 return false;
2269
2f031c6f 2270 rmap_walk(folio, &rwc);
b756a3b5 2271
0d251485 2272 return args.valid && !folio_mapcount(folio);
b756a3b5
AP
2273}
2274
2275/**
2276 * make_device_exclusive_range() - Mark a range for exclusive use by a device
dd062302 2277 * @mm: mm_struct of associated target process
b756a3b5
AP
2278 * @start: start of the region to mark for exclusive device access
2279 * @end: end address of region
2280 * @pages: returns the pages which were successfully marked for exclusive access
2281 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2282 *
2283 * Returns: number of pages found in the range by GUP. A page is marked for
2284 * exclusive access only if the page pointer is non-NULL.
2285 *
2286 * This function finds ptes mapping page(s) to the given address range, locks
2287 * them and replaces mappings with special swap entries preventing userspace CPU
2288 * access. On fault these entries are replaced with the original mapping after
2289 * calling MMU notifiers.
2290 *
2291 * A driver using this to program access from a device must use a mmu notifier
2292 * critical section to hold a device specific lock during programming. Once
2293 * programming is complete it should drop the page lock and reference after
2294 * which point CPU access to the page will revoke the exclusive access.
2295 */
2296int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2297 unsigned long end, struct page **pages,
2298 void *owner)
2299{
2300 long npages = (end - start) >> PAGE_SHIFT;
2301 long i;
2302
2303 npages = get_user_pages_remote(mm, start, npages,
2304 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2305 pages, NULL, NULL);
2306 if (npages < 0)
2307 return npages;
2308
2309 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
0d251485
MWO
2310 struct folio *folio = page_folio(pages[i]);
2311 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2312 folio_put(folio);
b756a3b5
AP
2313 pages[i] = NULL;
2314 continue;
2315 }
2316
0d251485
MWO
2317 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2318 folio_unlock(folio);
2319 folio_put(folio);
b756a3b5
AP
2320 pages[i] = NULL;
2321 }
2322 }
2323
2324 return npages;
2325}
2326EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2327#endif
2328
01d8b20d 2329void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2330{
01d8b20d 2331 struct anon_vma *root = anon_vma->root;
76545066 2332
624483f3 2333 anon_vma_free(anon_vma);
01d8b20d
PZ
2334 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2335 anon_vma_free(root);
76545066 2336}
76545066 2337
2f031c6f 2338static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
84fbbe21 2339 const struct rmap_walk_control *rwc)
faecd8dd
JK
2340{
2341 struct anon_vma *anon_vma;
2342
0dd1c7bb 2343 if (rwc->anon_lock)
2f031c6f 2344 return rwc->anon_lock(folio);
0dd1c7bb 2345
faecd8dd 2346 /*
2f031c6f 2347 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
faecd8dd 2348 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2349 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2350 * take a reference count to prevent the anon_vma disappearing
2351 */
e05b3453 2352 anon_vma = folio_anon_vma(folio);
faecd8dd
JK
2353 if (!anon_vma)
2354 return NULL;
2355
2356 anon_vma_lock_read(anon_vma);
2357 return anon_vma;
2358}
2359
e9995ef9 2360/*
e8351ac9
JK
2361 * rmap_walk_anon - do something to anonymous page using the object-based
2362 * rmap method
2363 * @page: the page to be handled
2364 * @rwc: control variable according to each walk type
2365 *
2366 * Find all the mappings of a page using the mapping pointer and the vma chains
2367 * contained in the anon_vma struct it points to.
e9995ef9 2368 */
84fbbe21
MWO
2369static void rmap_walk_anon(struct folio *folio,
2370 const struct rmap_walk_control *rwc, bool locked)
e9995ef9
HD
2371{
2372 struct anon_vma *anon_vma;
a8fa41ad 2373 pgoff_t pgoff_start, pgoff_end;
5beb4930 2374 struct anon_vma_chain *avc;
e9995ef9 2375
b9773199 2376 if (locked) {
e05b3453 2377 anon_vma = folio_anon_vma(folio);
b9773199 2378 /* anon_vma disappear under us? */
e05b3453 2379 VM_BUG_ON_FOLIO(!anon_vma, folio);
b9773199 2380 } else {
2f031c6f 2381 anon_vma = rmap_walk_anon_lock(folio, rwc);
b9773199 2382 }
e9995ef9 2383 if (!anon_vma)
1df631ae 2384 return;
faecd8dd 2385
2f031c6f
MWO
2386 pgoff_start = folio_pgoff(folio);
2387 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
a8fa41ad
KS
2388 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2389 pgoff_start, pgoff_end) {
5beb4930 2390 struct vm_area_struct *vma = avc->vma;
2f031c6f 2391 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2392
494334e4 2393 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2394 cond_resched();
2395
0dd1c7bb
JK
2396 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2397 continue;
2398
2f031c6f 2399 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
e9995ef9 2400 break;
2f031c6f 2401 if (rwc->done && rwc->done(folio))
0dd1c7bb 2402 break;
e9995ef9 2403 }
b9773199
KS
2404
2405 if (!locked)
2406 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2407}
2408
e8351ac9
JK
2409/*
2410 * rmap_walk_file - do something to file page using the object-based rmap method
2411 * @page: the page to be handled
2412 * @rwc: control variable according to each walk type
2413 *
2414 * Find all the mappings of a page using the mapping pointer and the vma chains
2415 * contained in the address_space struct it points to.
e8351ac9 2416 */
84fbbe21
MWO
2417static void rmap_walk_file(struct folio *folio,
2418 const struct rmap_walk_control *rwc, bool locked)
e9995ef9 2419{
2f031c6f 2420 struct address_space *mapping = folio_mapping(folio);
a8fa41ad 2421 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2422 struct vm_area_struct *vma;
e9995ef9 2423
9f32624b
JK
2424 /*
2425 * The page lock not only makes sure that page->mapping cannot
2426 * suddenly be NULLified by truncation, it makes sure that the
2427 * structure at mapping cannot be freed and reused yet,
c8c06efa 2428 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2429 */
2f031c6f 2430 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
9f32624b 2431
e9995ef9 2432 if (!mapping)
1df631ae 2433 return;
3dec0ba0 2434
2f031c6f
MWO
2435 pgoff_start = folio_pgoff(folio);
2436 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
b9773199
KS
2437 if (!locked)
2438 i_mmap_lock_read(mapping);
a8fa41ad
KS
2439 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2440 pgoff_start, pgoff_end) {
2f031c6f 2441 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2442
494334e4 2443 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2444 cond_resched();
2445
0dd1c7bb
JK
2446 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2447 continue;
2448
2f031c6f 2449 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
0dd1c7bb 2450 goto done;
2f031c6f 2451 if (rwc->done && rwc->done(folio))
0dd1c7bb 2452 goto done;
e9995ef9 2453 }
0dd1c7bb 2454
0dd1c7bb 2455done:
b9773199
KS
2456 if (!locked)
2457 i_mmap_unlock_read(mapping);
e9995ef9
HD
2458}
2459
84fbbe21 2460void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc)
e9995ef9 2461{
2f031c6f
MWO
2462 if (unlikely(folio_test_ksm(folio)))
2463 rmap_walk_ksm(folio, rwc);
2464 else if (folio_test_anon(folio))
2465 rmap_walk_anon(folio, rwc, false);
b9773199 2466 else
2f031c6f 2467 rmap_walk_file(folio, rwc, false);
b9773199
KS
2468}
2469
2470/* Like rmap_walk, but caller holds relevant rmap lock */
84fbbe21 2471void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc)
b9773199
KS
2472{
2473 /* no ksm support for now */
2f031c6f
MWO
2474 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2475 if (folio_test_anon(folio))
2476 rmap_walk_anon(folio, rwc, true);
e9995ef9 2477 else
2f031c6f 2478 rmap_walk_file(folio, rwc, true);
e9995ef9 2479}
0fe6e20b 2480
e3390f67 2481#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2482/*
451b9514 2483 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2484 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2485 * and no lru code, because we handle hugepages differently from common pages.
28c5209d
DH
2486 *
2487 * RMAP_COMPOUND is ignored.
0fe6e20b 2488 */
28c5209d
DH
2489void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2490 unsigned long address, rmap_t flags)
0fe6e20b
NH
2491{
2492 struct anon_vma *anon_vma = vma->anon_vma;
2493 int first;
a850ea30
NH
2494
2495 BUG_ON(!PageLocked(page));
0fe6e20b 2496 BUG_ON(!anon_vma);
5dbe0af4 2497 /* address might be in next vma when migration races vma_adjust */
53f9263b 2498 first = atomic_inc_and_test(compound_mapcount_ptr(page));
6c287605
DH
2499 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2500 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
0fe6e20b 2501 if (first)
28c5209d
DH
2502 __page_set_anon_rmap(page, vma, address,
2503 !!(flags & RMAP_EXCLUSIVE));
0fe6e20b
NH
2504}
2505
2506void hugepage_add_new_anon_rmap(struct page *page,
2507 struct vm_area_struct *vma, unsigned long address)
2508{
2509 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2510 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 2511 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 2512
451b9514 2513 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2514}
e3390f67 2515#endif /* CONFIG_HUGETLB_PAGE */