dax: fix cache flush on PMD-mapped pages
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0
JK
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
e621900a
MWO
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
730633f0 36 * i_pages lock (widely used)
e809c3fe 37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
730633f0
JK
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 44 *
9608703e 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 46 * ->tasklist_lock
6a46079c 47 * pte map lock
c0d0381a
MK
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
1da177e4
LT
76
77#include <asm/tlbflush.h>
78
4cc79b33 79#define CREATE_TRACE_POINTS
72b252ae 80#include <trace/events/tlb.h>
4cc79b33 81#include <trace/events/migrate.h>
72b252ae 82
b291f000
NP
83#include "internal.h"
84
fdd2e5f8 85static struct kmem_cache *anon_vma_cachep;
5beb4930 86static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
87
88static inline struct anon_vma *anon_vma_alloc(void)
89{
01d8b20d
PZ
90 struct anon_vma *anon_vma;
91
92 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
93 if (anon_vma) {
94 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
95 anon_vma->degree = 1; /* Reference for first vma */
96 anon_vma->parent = anon_vma;
01d8b20d
PZ
97 /*
98 * Initialise the anon_vma root to point to itself. If called
99 * from fork, the root will be reset to the parents anon_vma.
100 */
101 anon_vma->root = anon_vma;
102 }
103
104 return anon_vma;
fdd2e5f8
AB
105}
106
01d8b20d 107static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 108{
01d8b20d 109 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
110
111 /*
2f031c6f 112 * Synchronize against folio_lock_anon_vma_read() such that
88c22088
PZ
113 * we can safely hold the lock without the anon_vma getting
114 * freed.
115 *
116 * Relies on the full mb implied by the atomic_dec_and_test() from
117 * put_anon_vma() against the acquire barrier implied by
2f031c6f 118 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
88c22088 119 *
2f031c6f 120 * folio_lock_anon_vma_read() VS put_anon_vma()
4fc3f1d6 121 * down_read_trylock() atomic_dec_and_test()
88c22088 122 * LOCK MB
4fc3f1d6 123 * atomic_read() rwsem_is_locked()
88c22088
PZ
124 *
125 * LOCK should suffice since the actual taking of the lock must
126 * happen _before_ what follows.
127 */
7f39dda9 128 might_sleep();
5a505085 129 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 130 anon_vma_lock_write(anon_vma);
08b52706 131 anon_vma_unlock_write(anon_vma);
88c22088
PZ
132 }
133
fdd2e5f8
AB
134 kmem_cache_free(anon_vma_cachep, anon_vma);
135}
1da177e4 136
dd34739c 137static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 138{
dd34739c 139 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
140}
141
e574b5fd 142static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
143{
144 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
145}
146
6583a843
KC
147static void anon_vma_chain_link(struct vm_area_struct *vma,
148 struct anon_vma_chain *avc,
149 struct anon_vma *anon_vma)
150{
151 avc->vma = vma;
152 avc->anon_vma = anon_vma;
153 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 154 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
155}
156
d9d332e0 157/**
d5a187da 158 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
159 * @vma: the memory region in question
160 *
161 * This makes sure the memory mapping described by 'vma' has
162 * an 'anon_vma' attached to it, so that we can associate the
163 * anonymous pages mapped into it with that anon_vma.
164 *
d5a187da
VB
165 * The common case will be that we already have one, which
166 * is handled inline by anon_vma_prepare(). But if
23a0790a 167 * not we either need to find an adjacent mapping that we
d9d332e0
LT
168 * can re-use the anon_vma from (very common when the only
169 * reason for splitting a vma has been mprotect()), or we
170 * allocate a new one.
171 *
172 * Anon-vma allocations are very subtle, because we may have
2f031c6f 173 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
aaf1f990 174 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
175 * allocated vma (it depends on RCU to make sure that the
176 * anon_vma isn't actually destroyed).
177 *
178 * As a result, we need to do proper anon_vma locking even
179 * for the new allocation. At the same time, we do not want
180 * to do any locking for the common case of already having
181 * an anon_vma.
182 *
c1e8d7c6 183 * This must be called with the mmap_lock held for reading.
d9d332e0 184 */
d5a187da 185int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 186{
d5a187da
VB
187 struct mm_struct *mm = vma->vm_mm;
188 struct anon_vma *anon_vma, *allocated;
5beb4930 189 struct anon_vma_chain *avc;
1da177e4
LT
190
191 might_sleep();
1da177e4 192
d5a187da
VB
193 avc = anon_vma_chain_alloc(GFP_KERNEL);
194 if (!avc)
195 goto out_enomem;
196
197 anon_vma = find_mergeable_anon_vma(vma);
198 allocated = NULL;
199 if (!anon_vma) {
200 anon_vma = anon_vma_alloc();
201 if (unlikely(!anon_vma))
202 goto out_enomem_free_avc;
203 allocated = anon_vma;
204 }
5beb4930 205
d5a187da
VB
206 anon_vma_lock_write(anon_vma);
207 /* page_table_lock to protect against threads */
208 spin_lock(&mm->page_table_lock);
209 if (likely(!vma->anon_vma)) {
210 vma->anon_vma = anon_vma;
211 anon_vma_chain_link(vma, avc, anon_vma);
212 /* vma reference or self-parent link for new root */
213 anon_vma->degree++;
d9d332e0 214 allocated = NULL;
d5a187da
VB
215 avc = NULL;
216 }
217 spin_unlock(&mm->page_table_lock);
218 anon_vma_unlock_write(anon_vma);
1da177e4 219
d5a187da
VB
220 if (unlikely(allocated))
221 put_anon_vma(allocated);
222 if (unlikely(avc))
223 anon_vma_chain_free(avc);
31f2b0eb 224
1da177e4 225 return 0;
5beb4930
RR
226
227 out_enomem_free_avc:
228 anon_vma_chain_free(avc);
229 out_enomem:
230 return -ENOMEM;
1da177e4
LT
231}
232
bb4aa396
LT
233/*
234 * This is a useful helper function for locking the anon_vma root as
235 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
236 * have the same vma.
237 *
238 * Such anon_vma's should have the same root, so you'd expect to see
239 * just a single mutex_lock for the whole traversal.
240 */
241static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
242{
243 struct anon_vma *new_root = anon_vma->root;
244 if (new_root != root) {
245 if (WARN_ON_ONCE(root))
5a505085 246 up_write(&root->rwsem);
bb4aa396 247 root = new_root;
5a505085 248 down_write(&root->rwsem);
bb4aa396
LT
249 }
250 return root;
251}
252
253static inline void unlock_anon_vma_root(struct anon_vma *root)
254{
255 if (root)
5a505085 256 up_write(&root->rwsem);
bb4aa396
LT
257}
258
5beb4930
RR
259/*
260 * Attach the anon_vmas from src to dst.
261 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 262 *
cb152a1a 263 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
264 * anon_vma_fork(). The first three want an exact copy of src, while the last
265 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
266 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
267 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
268 *
269 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
270 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
271 * This prevents degradation of anon_vma hierarchy to endless linear chain in
272 * case of constantly forking task. On the other hand, an anon_vma with more
273 * than one child isn't reused even if there was no alive vma, thus rmap
274 * walker has a good chance of avoiding scanning the whole hierarchy when it
275 * searches where page is mapped.
5beb4930
RR
276 */
277int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 278{
5beb4930 279 struct anon_vma_chain *avc, *pavc;
bb4aa396 280 struct anon_vma *root = NULL;
5beb4930 281
646d87b4 282 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
283 struct anon_vma *anon_vma;
284
dd34739c
LT
285 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
286 if (unlikely(!avc)) {
287 unlock_anon_vma_root(root);
288 root = NULL;
289 avc = anon_vma_chain_alloc(GFP_KERNEL);
290 if (!avc)
291 goto enomem_failure;
292 }
bb4aa396
LT
293 anon_vma = pavc->anon_vma;
294 root = lock_anon_vma_root(root, anon_vma);
295 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
296
297 /*
298 * Reuse existing anon_vma if its degree lower than two,
299 * that means it has no vma and only one anon_vma child.
300 *
301 * Do not chose parent anon_vma, otherwise first child
302 * will always reuse it. Root anon_vma is never reused:
303 * it has self-parent reference and at least one child.
304 */
47b390d2
WY
305 if (!dst->anon_vma && src->anon_vma &&
306 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 307 dst->anon_vma = anon_vma;
5beb4930 308 }
7a3ef208
KK
309 if (dst->anon_vma)
310 dst->anon_vma->degree++;
bb4aa396 311 unlock_anon_vma_root(root);
5beb4930 312 return 0;
1da177e4 313
5beb4930 314 enomem_failure:
3fe89b3e
LY
315 /*
316 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
317 * decremented in unlink_anon_vmas().
318 * We can safely do this because callers of anon_vma_clone() don't care
319 * about dst->anon_vma if anon_vma_clone() failed.
320 */
321 dst->anon_vma = NULL;
5beb4930
RR
322 unlink_anon_vmas(dst);
323 return -ENOMEM;
1da177e4
LT
324}
325
5beb4930
RR
326/*
327 * Attach vma to its own anon_vma, as well as to the anon_vmas that
328 * the corresponding VMA in the parent process is attached to.
329 * Returns 0 on success, non-zero on failure.
330 */
331int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 332{
5beb4930
RR
333 struct anon_vma_chain *avc;
334 struct anon_vma *anon_vma;
c4ea95d7 335 int error;
1da177e4 336
5beb4930
RR
337 /* Don't bother if the parent process has no anon_vma here. */
338 if (!pvma->anon_vma)
339 return 0;
340
7a3ef208
KK
341 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
342 vma->anon_vma = NULL;
343
5beb4930
RR
344 /*
345 * First, attach the new VMA to the parent VMA's anon_vmas,
346 * so rmap can find non-COWed pages in child processes.
347 */
c4ea95d7
DF
348 error = anon_vma_clone(vma, pvma);
349 if (error)
350 return error;
5beb4930 351
7a3ef208
KK
352 /* An existing anon_vma has been reused, all done then. */
353 if (vma->anon_vma)
354 return 0;
355
5beb4930
RR
356 /* Then add our own anon_vma. */
357 anon_vma = anon_vma_alloc();
358 if (!anon_vma)
359 goto out_error;
dd34739c 360 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
361 if (!avc)
362 goto out_error_free_anon_vma;
5c341ee1
RR
363
364 /*
aaf1f990 365 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
366 * lock any of the anon_vmas in this anon_vma tree.
367 */
368 anon_vma->root = pvma->anon_vma->root;
7a3ef208 369 anon_vma->parent = pvma->anon_vma;
76545066 370 /*
01d8b20d
PZ
371 * With refcounts, an anon_vma can stay around longer than the
372 * process it belongs to. The root anon_vma needs to be pinned until
373 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
374 */
375 get_anon_vma(anon_vma->root);
5beb4930
RR
376 /* Mark this anon_vma as the one where our new (COWed) pages go. */
377 vma->anon_vma = anon_vma;
4fc3f1d6 378 anon_vma_lock_write(anon_vma);
5c341ee1 379 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 380 anon_vma->parent->degree++;
08b52706 381 anon_vma_unlock_write(anon_vma);
5beb4930
RR
382
383 return 0;
384
385 out_error_free_anon_vma:
01d8b20d 386 put_anon_vma(anon_vma);
5beb4930 387 out_error:
4946d54c 388 unlink_anon_vmas(vma);
5beb4930 389 return -ENOMEM;
1da177e4
LT
390}
391
5beb4930
RR
392void unlink_anon_vmas(struct vm_area_struct *vma)
393{
394 struct anon_vma_chain *avc, *next;
eee2acba 395 struct anon_vma *root = NULL;
5beb4930 396
5c341ee1
RR
397 /*
398 * Unlink each anon_vma chained to the VMA. This list is ordered
399 * from newest to oldest, ensuring the root anon_vma gets freed last.
400 */
5beb4930 401 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
402 struct anon_vma *anon_vma = avc->anon_vma;
403
404 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 405 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
406
407 /*
408 * Leave empty anon_vmas on the list - we'll need
409 * to free them outside the lock.
410 */
f808c13f 411 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 412 anon_vma->parent->degree--;
eee2acba 413 continue;
7a3ef208 414 }
eee2acba
PZ
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
ee8ab190 419 if (vma->anon_vma) {
7a3ef208 420 vma->anon_vma->degree--;
ee8ab190
LX
421
422 /*
423 * vma would still be needed after unlink, and anon_vma will be prepared
424 * when handle fault.
425 */
426 vma->anon_vma = NULL;
427 }
eee2acba
PZ
428 unlock_anon_vma_root(root);
429
430 /*
431 * Iterate the list once more, it now only contains empty and unlinked
432 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 433 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
434 */
435 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
436 struct anon_vma *anon_vma = avc->anon_vma;
437
e4c5800a 438 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
439 put_anon_vma(anon_vma);
440
5beb4930
RR
441 list_del(&avc->same_vma);
442 anon_vma_chain_free(avc);
443 }
444}
445
51cc5068 446static void anon_vma_ctor(void *data)
1da177e4 447{
a35afb83 448 struct anon_vma *anon_vma = data;
1da177e4 449
5a505085 450 init_rwsem(&anon_vma->rwsem);
83813267 451 atomic_set(&anon_vma->refcount, 0);
f808c13f 452 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
453}
454
455void __init anon_vma_init(void)
456{
457 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 458 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
459 anon_vma_ctor);
460 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
461 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
462}
463
464/*
6111e4ca
PZ
465 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
466 *
467 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
468 * the best this function can do is return a refcount increased anon_vma
469 * that might have been relevant to this page.
6111e4ca
PZ
470 *
471 * The page might have been remapped to a different anon_vma or the anon_vma
472 * returned may already be freed (and even reused).
473 *
bc658c96
PZ
474 * In case it was remapped to a different anon_vma, the new anon_vma will be a
475 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
476 * ensure that any anon_vma obtained from the page will still be valid for as
477 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
478 *
6111e4ca
PZ
479 * All users of this function must be very careful when walking the anon_vma
480 * chain and verify that the page in question is indeed mapped in it
481 * [ something equivalent to page_mapped_in_vma() ].
482 *
091e4299
MC
483 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
484 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
485 * if there is a mapcount, we can dereference the anon_vma after observing
486 * those.
1da177e4 487 */
746b18d4 488struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 489{
746b18d4 490 struct anon_vma *anon_vma = NULL;
1da177e4
LT
491 unsigned long anon_mapping;
492
493 rcu_read_lock();
4db0c3c2 494 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 495 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
496 goto out;
497 if (!page_mapped(page))
498 goto out;
499
500 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
501 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
502 anon_vma = NULL;
503 goto out;
504 }
f1819427
HD
505
506 /*
507 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
508 * freed. But if it has been unmapped, we have no security against the
509 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 510 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 511 * above cannot corrupt).
f1819427 512 */
746b18d4 513 if (!page_mapped(page)) {
7f39dda9 514 rcu_read_unlock();
746b18d4 515 put_anon_vma(anon_vma);
7f39dda9 516 return NULL;
746b18d4 517 }
1da177e4
LT
518out:
519 rcu_read_unlock();
746b18d4
PZ
520
521 return anon_vma;
522}
523
88c22088
PZ
524/*
525 * Similar to page_get_anon_vma() except it locks the anon_vma.
526 *
527 * Its a little more complex as it tries to keep the fast path to a single
528 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
529 * reference like with page_get_anon_vma() and then block on the mutex.
530 */
9595d769 531struct anon_vma *folio_lock_anon_vma_read(struct folio *folio)
746b18d4 532{
88c22088 533 struct anon_vma *anon_vma = NULL;
eee0f252 534 struct anon_vma *root_anon_vma;
88c22088 535 unsigned long anon_mapping;
746b18d4 536
88c22088 537 rcu_read_lock();
9595d769 538 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
88c22088
PZ
539 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
540 goto out;
9595d769 541 if (!folio_mapped(folio))
88c22088
PZ
542 goto out;
543
544 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 545 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 546 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 547 /*
9595d769 548 * If the folio is still mapped, then this anon_vma is still
eee0f252 549 * its anon_vma, and holding the mutex ensures that it will
bc658c96 550 * not go away, see anon_vma_free().
88c22088 551 */
9595d769 552 if (!folio_mapped(folio)) {
4fc3f1d6 553 up_read(&root_anon_vma->rwsem);
88c22088
PZ
554 anon_vma = NULL;
555 }
556 goto out;
557 }
746b18d4 558
88c22088
PZ
559 /* trylock failed, we got to sleep */
560 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
561 anon_vma = NULL;
562 goto out;
563 }
564
9595d769 565 if (!folio_mapped(folio)) {
7f39dda9 566 rcu_read_unlock();
88c22088 567 put_anon_vma(anon_vma);
7f39dda9 568 return NULL;
88c22088
PZ
569 }
570
571 /* we pinned the anon_vma, its safe to sleep */
572 rcu_read_unlock();
4fc3f1d6 573 anon_vma_lock_read(anon_vma);
88c22088
PZ
574
575 if (atomic_dec_and_test(&anon_vma->refcount)) {
576 /*
577 * Oops, we held the last refcount, release the lock
578 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 579 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 580 */
4fc3f1d6 581 anon_vma_unlock_read(anon_vma);
88c22088
PZ
582 __put_anon_vma(anon_vma);
583 anon_vma = NULL;
584 }
585
586 return anon_vma;
587
588out:
589 rcu_read_unlock();
746b18d4 590 return anon_vma;
34bbd704
ON
591}
592
4fc3f1d6 593void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 594{
4fc3f1d6 595 anon_vma_unlock_read(anon_vma);
1da177e4
LT
596}
597
72b252ae 598#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
599/*
600 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
601 * important if a PTE was dirty when it was unmapped that it's flushed
602 * before any IO is initiated on the page to prevent lost writes. Similarly,
603 * it must be flushed before freeing to prevent data leakage.
604 */
605void try_to_unmap_flush(void)
606{
607 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
608
609 if (!tlb_ubc->flush_required)
610 return;
611
e73ad5ff 612 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 613 tlb_ubc->flush_required = false;
d950c947 614 tlb_ubc->writable = false;
72b252ae
MG
615}
616
d950c947
MG
617/* Flush iff there are potentially writable TLB entries that can race with IO */
618void try_to_unmap_flush_dirty(void)
619{
620 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
621
622 if (tlb_ubc->writable)
623 try_to_unmap_flush();
624}
625
5ee2fa2f
HY
626/*
627 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
628 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
629 */
630#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
631#define TLB_FLUSH_BATCH_PENDING_MASK \
632 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
633#define TLB_FLUSH_BATCH_PENDING_LARGE \
634 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
635
c7ab0d2f 636static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
637{
638 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
5ee2fa2f 639 int batch, nbatch;
72b252ae 640
e73ad5ff 641 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 642 tlb_ubc->flush_required = true;
d950c947 643
3ea27719
MG
644 /*
645 * Ensure compiler does not re-order the setting of tlb_flush_batched
646 * before the PTE is cleared.
647 */
648 barrier();
5ee2fa2f
HY
649 batch = atomic_read(&mm->tlb_flush_batched);
650retry:
651 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
652 /*
653 * Prevent `pending' from catching up with `flushed' because of
654 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
655 * `pending' becomes large.
656 */
657 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
658 if (nbatch != batch) {
659 batch = nbatch;
660 goto retry;
661 }
662 } else {
663 atomic_inc(&mm->tlb_flush_batched);
664 }
3ea27719 665
d950c947
MG
666 /*
667 * If the PTE was dirty then it's best to assume it's writable. The
668 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
669 * before the page is queued for IO.
670 */
671 if (writable)
672 tlb_ubc->writable = true;
72b252ae
MG
673}
674
675/*
676 * Returns true if the TLB flush should be deferred to the end of a batch of
677 * unmap operations to reduce IPIs.
678 */
679static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
680{
681 bool should_defer = false;
682
683 if (!(flags & TTU_BATCH_FLUSH))
684 return false;
685
686 /* If remote CPUs need to be flushed then defer batch the flush */
687 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
688 should_defer = true;
689 put_cpu();
690
691 return should_defer;
692}
3ea27719
MG
693
694/*
695 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
696 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
697 * operation such as mprotect or munmap to race between reclaim unmapping
698 * the page and flushing the page. If this race occurs, it potentially allows
699 * access to data via a stale TLB entry. Tracking all mm's that have TLB
700 * batching in flight would be expensive during reclaim so instead track
701 * whether TLB batching occurred in the past and if so then do a flush here
702 * if required. This will cost one additional flush per reclaim cycle paid
703 * by the first operation at risk such as mprotect and mumap.
704 *
705 * This must be called under the PTL so that an access to tlb_flush_batched
706 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
707 * via the PTL.
708 */
709void flush_tlb_batched_pending(struct mm_struct *mm)
710{
5ee2fa2f
HY
711 int batch = atomic_read(&mm->tlb_flush_batched);
712 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
713 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
3ea27719 714
5ee2fa2f
HY
715 if (pending != flushed) {
716 flush_tlb_mm(mm);
3ea27719 717 /*
5ee2fa2f
HY
718 * If the new TLB flushing is pending during flushing, leave
719 * mm->tlb_flush_batched as is, to avoid losing flushing.
3ea27719 720 */
5ee2fa2f
HY
721 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
722 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
3ea27719
MG
723 }
724}
72b252ae 725#else
c7ab0d2f 726static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
727{
728}
729
730static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
731{
732 return false;
733}
734#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
735
1da177e4 736/*
bf89c8c8 737 * At what user virtual address is page expected in vma?
ab941e0f 738 * Caller should check the page is actually part of the vma.
1da177e4
LT
739 */
740unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
741{
e05b3453
MWO
742 struct folio *folio = page_folio(page);
743 if (folio_test_anon(folio)) {
744 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
4829b906
HD
745 /*
746 * Note: swapoff's unuse_vma() is more efficient with this
747 * check, and needs it to match anon_vma when KSM is active.
748 */
749 if (!vma->anon_vma || !page__anon_vma ||
750 vma->anon_vma->root != page__anon_vma->root)
21d0d443 751 return -EFAULT;
31657170
JW
752 } else if (!vma->vm_file) {
753 return -EFAULT;
e05b3453 754 } else if (vma->vm_file->f_mapping != folio->mapping) {
1da177e4 755 return -EFAULT;
31657170 756 }
494334e4
HD
757
758 return vma_address(page, vma);
1da177e4
LT
759}
760
6219049a
BL
761pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
762{
763 pgd_t *pgd;
c2febafc 764 p4d_t *p4d;
6219049a
BL
765 pud_t *pud;
766 pmd_t *pmd = NULL;
f72e7dcd 767 pmd_t pmde;
6219049a
BL
768
769 pgd = pgd_offset(mm, address);
770 if (!pgd_present(*pgd))
771 goto out;
772
c2febafc
KS
773 p4d = p4d_offset(pgd, address);
774 if (!p4d_present(*p4d))
775 goto out;
776
777 pud = pud_offset(p4d, address);
6219049a
BL
778 if (!pud_present(*pud))
779 goto out;
780
781 pmd = pmd_offset(pud, address);
f72e7dcd 782 /*
8809aa2d 783 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
784 * without holding anon_vma lock for write. So when looking for a
785 * genuine pmde (in which to find pte), test present and !THP together.
786 */
e37c6982
CB
787 pmde = *pmd;
788 barrier();
f72e7dcd 789 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
790 pmd = NULL;
791out:
792 return pmd;
793}
794
b3ac0413 795struct folio_referenced_arg {
8749cfea
VD
796 int mapcount;
797 int referenced;
798 unsigned long vm_flags;
799 struct mem_cgroup *memcg;
800};
801/*
b3ac0413 802 * arg: folio_referenced_arg will be passed
8749cfea 803 */
2f031c6f
MWO
804static bool folio_referenced_one(struct folio *folio,
805 struct vm_area_struct *vma, unsigned long address, void *arg)
8749cfea 806{
b3ac0413
MWO
807 struct folio_referenced_arg *pra = arg;
808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
8749cfea
VD
809 int referenced = 0;
810
8eaedede
KS
811 while (page_vma_mapped_walk(&pvmw)) {
812 address = pvmw.address;
b20ce5e0 813
47d4f3ee 814 if ((vma->vm_flags & VM_LOCKED) &&
b3ac0413 815 (!folio_test_large(folio) || !pvmw.pte)) {
47d4f3ee 816 /* Restore the mlock which got missed */
b3ac0413 817 mlock_vma_folio(folio, vma, !pvmw.pte);
8eaedede
KS
818 page_vma_mapped_walk_done(&pvmw);
819 pra->vm_flags |= VM_LOCKED;
e4b82222 820 return false; /* To break the loop */
8eaedede 821 }
71e3aac0 822
8eaedede
KS
823 if (pvmw.pte) {
824 if (ptep_clear_flush_young_notify(vma, address,
825 pvmw.pte)) {
826 /*
827 * Don't treat a reference through
828 * a sequentially read mapping as such.
b3ac0413 829 * If the folio has been used in another mapping,
8eaedede
KS
830 * we will catch it; if this other mapping is
831 * already gone, the unmap path will have set
b3ac0413 832 * the referenced flag or activated the folio.
8eaedede
KS
833 */
834 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
835 referenced++;
836 }
837 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
838 if (pmdp_clear_flush_young_notify(vma, address,
839 pvmw.pmd))
8749cfea 840 referenced++;
8eaedede 841 } else {
b3ac0413 842 /* unexpected pmd-mapped folio? */
8eaedede 843 WARN_ON_ONCE(1);
8749cfea 844 }
8eaedede
KS
845
846 pra->mapcount--;
b20ce5e0 847 }
b20ce5e0 848
33c3fc71 849 if (referenced)
b3ac0413
MWO
850 folio_clear_idle(folio);
851 if (folio_test_clear_young(folio))
33c3fc71
VD
852 referenced++;
853
9f32624b
JK
854 if (referenced) {
855 pra->referenced++;
47d4f3ee 856 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
1da177e4 857 }
34bbd704 858
9f32624b 859 if (!pra->mapcount)
e4b82222 860 return false; /* To break the loop */
9f32624b 861
e4b82222 862 return true;
1da177e4
LT
863}
864
b3ac0413 865static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 866{
b3ac0413 867 struct folio_referenced_arg *pra = arg;
9f32624b 868 struct mem_cgroup *memcg = pra->memcg;
1da177e4 869
9f32624b
JK
870 if (!mm_match_cgroup(vma->vm_mm, memcg))
871 return true;
1da177e4 872
9f32624b 873 return false;
1da177e4
LT
874}
875
876/**
b3ac0413
MWO
877 * folio_referenced() - Test if the folio was referenced.
878 * @folio: The folio to test.
879 * @is_locked: Caller holds lock on the folio.
72835c86 880 * @memcg: target memory cgroup
b3ac0413 881 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
1da177e4 882 *
b3ac0413
MWO
883 * Quick test_and_clear_referenced for all mappings of a folio,
884 *
885 * Return: The number of mappings which referenced the folio.
1da177e4 886 */
b3ac0413
MWO
887int folio_referenced(struct folio *folio, int is_locked,
888 struct mem_cgroup *memcg, unsigned long *vm_flags)
1da177e4 889{
5ad64688 890 int we_locked = 0;
b3ac0413
MWO
891 struct folio_referenced_arg pra = {
892 .mapcount = folio_mapcount(folio),
9f32624b
JK
893 .memcg = memcg,
894 };
895 struct rmap_walk_control rwc = {
b3ac0413 896 .rmap_one = folio_referenced_one,
9f32624b 897 .arg = (void *)&pra,
2f031c6f 898 .anon_lock = folio_lock_anon_vma_read,
9f32624b 899 };
1da177e4 900
6fe6b7e3 901 *vm_flags = 0;
059d8442 902 if (!pra.mapcount)
9f32624b
JK
903 return 0;
904
b3ac0413 905 if (!folio_raw_mapping(folio))
9f32624b
JK
906 return 0;
907
b3ac0413
MWO
908 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
909 we_locked = folio_trylock(folio);
9f32624b
JK
910 if (!we_locked)
911 return 1;
1da177e4 912 }
9f32624b
JK
913
914 /*
915 * If we are reclaiming on behalf of a cgroup, skip
916 * counting on behalf of references from different
917 * cgroups
918 */
919 if (memcg) {
b3ac0413 920 rwc.invalid_vma = invalid_folio_referenced_vma;
9f32624b
JK
921 }
922
2f031c6f 923 rmap_walk(folio, &rwc);
9f32624b
JK
924 *vm_flags = pra.vm_flags;
925
926 if (we_locked)
b3ac0413 927 folio_unlock(folio);
9f32624b
JK
928
929 return pra.referenced;
1da177e4
LT
930}
931
2f031c6f 932static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
9853a407 933 unsigned long address, void *arg)
d08b3851 934{
e83c09a2 935 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
ac46d4f3 936 struct mmu_notifier_range range;
9853a407 937 int *cleaned = arg;
d08b3851 938
369ea824
JG
939 /*
940 * We have to assume the worse case ie pmd for invalidation. Note that
e83c09a2 941 * the folio can not be freed from this function.
369ea824 942 */
7269f999
JG
943 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
944 0, vma, vma->vm_mm, address,
2aff7a47 945 vma_address_end(&pvmw));
ac46d4f3 946 mmu_notifier_invalidate_range_start(&range);
369ea824 947
f27176cf
KS
948 while (page_vma_mapped_walk(&pvmw)) {
949 int ret = 0;
369ea824 950
1f18b296 951 address = pvmw.address;
f27176cf
KS
952 if (pvmw.pte) {
953 pte_t entry;
954 pte_t *pte = pvmw.pte;
955
956 if (!pte_dirty(*pte) && !pte_write(*pte))
957 continue;
958
785373b4
LT
959 flush_cache_page(vma, address, pte_pfn(*pte));
960 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
961 entry = pte_wrprotect(entry);
962 entry = pte_mkclean(entry);
785373b4 963 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
964 ret = 1;
965 } else {
396bcc52 966#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f27176cf
KS
967 pmd_t *pmd = pvmw.pmd;
968 pmd_t entry;
969
970 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
971 continue;
972
7f9c9b60
MS
973 flush_cache_range(vma, address,
974 address + HPAGE_PMD_SIZE);
024eee0e 975 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
976 entry = pmd_wrprotect(entry);
977 entry = pmd_mkclean(entry);
785373b4 978 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
979 ret = 1;
980#else
e83c09a2 981 /* unexpected pmd-mapped folio? */
f27176cf
KS
982 WARN_ON_ONCE(1);
983#endif
984 }
d08b3851 985
0f10851e
JG
986 /*
987 * No need to call mmu_notifier_invalidate_range() as we are
988 * downgrading page table protection not changing it to point
989 * to a new page.
990 *
ad56b738 991 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
992 */
993 if (ret)
f27176cf 994 (*cleaned)++;
c2fda5fe 995 }
d08b3851 996
ac46d4f3 997 mmu_notifier_invalidate_range_end(&range);
369ea824 998
e4b82222 999 return true;
d08b3851
PZ
1000}
1001
9853a407 1002static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1003{
9853a407 1004 if (vma->vm_flags & VM_SHARED)
871beb8c 1005 return false;
d08b3851 1006
871beb8c 1007 return true;
d08b3851
PZ
1008}
1009
d9c08e22 1010int folio_mkclean(struct folio *folio)
d08b3851 1011{
9853a407
JK
1012 int cleaned = 0;
1013 struct address_space *mapping;
1014 struct rmap_walk_control rwc = {
1015 .arg = (void *)&cleaned,
1016 .rmap_one = page_mkclean_one,
1017 .invalid_vma = invalid_mkclean_vma,
1018 };
d08b3851 1019
d9c08e22 1020 BUG_ON(!folio_test_locked(folio));
d08b3851 1021
d9c08e22 1022 if (!folio_mapped(folio))
9853a407
JK
1023 return 0;
1024
d9c08e22 1025 mapping = folio_mapping(folio);
9853a407
JK
1026 if (!mapping)
1027 return 0;
1028
2f031c6f 1029 rmap_walk(folio, &rwc);
d08b3851 1030
9853a407 1031 return cleaned;
d08b3851 1032}
d9c08e22 1033EXPORT_SYMBOL_GPL(folio_mkclean);
d08b3851 1034
c44b6743
RR
1035/**
1036 * page_move_anon_rmap - move a page to our anon_vma
1037 * @page: the page to move to our anon_vma
1038 * @vma: the vma the page belongs to
c44b6743
RR
1039 *
1040 * When a page belongs exclusively to one process after a COW event,
1041 * that page can be moved into the anon_vma that belongs to just that
1042 * process, so the rmap code will not search the parent or sibling
1043 * processes.
1044 */
5a49973d 1045void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1046{
1047 struct anon_vma *anon_vma = vma->anon_vma;
1048
5a49973d
HD
1049 page = compound_head(page);
1050
309381fe 1051 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1052 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1053
1054 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1055 /*
1056 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
b3ac0413
MWO
1057 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1058 * folio_test_anon()) will not see one without the other.
414e2fb8
VD
1059 */
1060 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1061}
1062
9617d95e 1063/**
4e1c1975 1064 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1065 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1066 * @vma: VM area to add page to.
1067 * @address: User virtual address of the mapping
e8a03feb 1068 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1069 */
1070static void __page_set_anon_rmap(struct page *page,
e8a03feb 1071 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1072{
e8a03feb 1073 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1074
e8a03feb 1075 BUG_ON(!anon_vma);
ea90002b 1076
4e1c1975
AK
1077 if (PageAnon(page))
1078 return;
1079
ea90002b 1080 /*
e8a03feb
RR
1081 * If the page isn't exclusively mapped into this vma,
1082 * we must use the _oldest_ possible anon_vma for the
1083 * page mapping!
ea90002b 1084 */
4e1c1975 1085 if (!exclusive)
288468c3 1086 anon_vma = anon_vma->root;
9617d95e 1087
16f5e707
AS
1088 /*
1089 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1090 * Make sure the compiler doesn't split the stores of anon_vma and
1091 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1092 * could mistake the mapping for a struct address_space and crash.
1093 */
9617d95e 1094 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1095 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1096 page->index = linear_page_index(vma, address);
9617d95e
NP
1097}
1098
c97a9e10 1099/**
43d8eac4 1100 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1101 * @page: the page to add the mapping to
1102 * @vma: the vm area in which the mapping is added
1103 * @address: the user virtual address mapped
1104 */
1105static void __page_check_anon_rmap(struct page *page,
1106 struct vm_area_struct *vma, unsigned long address)
1107{
e05b3453 1108 struct folio *folio = page_folio(page);
c97a9e10
NP
1109 /*
1110 * The page's anon-rmap details (mapping and index) are guaranteed to
1111 * be set up correctly at this point.
1112 *
1113 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1114 * always holds the page locked.
c97a9e10
NP
1115 *
1116 * We have exclusion against page_add_new_anon_rmap because those pages
1117 * are initially only visible via the pagetables, and the pte is locked
1118 * over the call to page_add_new_anon_rmap.
1119 */
e05b3453
MWO
1120 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1121 folio);
30c46382
YS
1122 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1123 page);
c97a9e10
NP
1124}
1125
1da177e4
LT
1126/**
1127 * page_add_anon_rmap - add pte mapping to an anonymous page
1128 * @page: the page to add the mapping to
1129 * @vma: the vm area in which the mapping is added
1130 * @address: the user virtual address mapped
d281ee61 1131 * @compound: charge the page as compound or small page
1da177e4 1132 *
5ad64688 1133 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1134 * the anon_vma case: to serialize mapping,index checking after setting,
1135 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1136 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1137 */
1138void page_add_anon_rmap(struct page *page,
d281ee61 1139 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1140{
d281ee61 1141 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1142}
1143
1144/*
1145 * Special version of the above for do_swap_page, which often runs
1146 * into pages that are exclusively owned by the current process.
1147 * Everybody else should continue to use page_add_anon_rmap above.
1148 */
1149void do_page_add_anon_rmap(struct page *page,
d281ee61 1150 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1151{
53f9263b
KS
1152 bool compound = flags & RMAP_COMPOUND;
1153 bool first;
1154
be5d0a74
JW
1155 if (unlikely(PageKsm(page)))
1156 lock_page_memcg(page);
1157 else
1158 VM_BUG_ON_PAGE(!PageLocked(page), page);
1159
e9b61f19
KS
1160 if (compound) {
1161 atomic_t *mapcount;
53f9263b 1162 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1163 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1164 mapcount = compound_mapcount_ptr(page);
1165 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1166 } else {
1167 first = atomic_inc_and_test(&page->_mapcount);
1168 }
1169
79134171 1170 if (first) {
6c357848 1171 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1172 /*
1173 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1174 * these counters are not modified in interrupt context, and
1175 * pte lock(a spinlock) is held, which implies preemption
1176 * disabled.
1177 */
65c45377 1178 if (compound)
69473e5d 1179 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1180 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1181 }
5ad64688 1182
cea86fe2 1183 if (unlikely(PageKsm(page)))
be5d0a74 1184 unlock_page_memcg(page);
53f9263b 1185
5dbe0af4 1186 /* address might be in next vma when migration races vma_adjust */
cea86fe2 1187 else if (first)
d281ee61
KS
1188 __page_set_anon_rmap(page, vma, address,
1189 flags & RMAP_EXCLUSIVE);
69029cd5 1190 else
c97a9e10 1191 __page_check_anon_rmap(page, vma, address);
cea86fe2
HD
1192
1193 mlock_vma_page(page, vma, compound);
1da177e4
LT
1194}
1195
43d8eac4 1196/**
9617d95e
NP
1197 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1198 * @page: the page to add the mapping to
1199 * @vma: the vm area in which the mapping is added
1200 * @address: the user virtual address mapped
d281ee61 1201 * @compound: charge the page as compound or small page
9617d95e
NP
1202 *
1203 * Same as page_add_anon_rmap but must only be called on *new* pages.
1204 * This means the inc-and-test can be bypassed.
c97a9e10 1205 * Page does not have to be locked.
9617d95e
NP
1206 */
1207void page_add_new_anon_rmap(struct page *page,
d281ee61 1208 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1209{
6c357848 1210 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1211
81d1b09c 1212 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1213 __SetPageSwapBacked(page);
d281ee61
KS
1214 if (compound) {
1215 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1216 /* increment count (starts at -1) */
1217 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 1218 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1219
69473e5d 1220 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b
KS
1221 } else {
1222 /* Anon THP always mapped first with PMD */
1223 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1224 /* increment count (starts at -1) */
1225 atomic_set(&page->_mapcount, 0);
d281ee61 1226 }
be5d0a74 1227 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1228 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1229}
1230
1da177e4
LT
1231/**
1232 * page_add_file_rmap - add pte mapping to a file page
cea86fe2
HD
1233 * @page: the page to add the mapping to
1234 * @vma: the vm area in which the mapping is added
1235 * @compound: charge the page as compound or small page
1da177e4 1236 *
b8072f09 1237 * The caller needs to hold the pte lock.
1da177e4 1238 */
cea86fe2
HD
1239void page_add_file_rmap(struct page *page,
1240 struct vm_area_struct *vma, bool compound)
1da177e4 1241{
5d543f13 1242 int i, nr = 0;
dd78fedd
KS
1243
1244 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1245 lock_page_memcg(page);
dd78fedd 1246 if (compound && PageTransHuge(page)) {
a1528e21
MS
1247 int nr_pages = thp_nr_pages(page);
1248
5d543f13 1249 for (i = 0; i < nr_pages; i++) {
dd78fedd
KS
1250 if (atomic_inc_and_test(&page[i]._mapcount))
1251 nr++;
1252 }
1253 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1254 goto out;
bd55b0c2
HD
1255
1256 /*
1257 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1258 * but page lock is held by all page_add_file_rmap() compound
1259 * callers, and SetPageDoubleMap below warns if !PageLocked:
1260 * so here is a place that DoubleMap can be safely cleared.
1261 */
1262 VM_WARN_ON_ONCE(!PageLocked(page));
1263 if (nr == nr_pages && PageDoubleMap(page))
1264 ClearPageDoubleMap(page);
1265
99cb0dbd 1266 if (PageSwapBacked(page))
a1528e21
MS
1267 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1268 nr_pages);
99cb0dbd 1269 else
380780e7
MS
1270 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1271 nr_pages);
dd78fedd 1272 } else {
c8efc390
KS
1273 if (PageTransCompound(page) && page_mapping(page)) {
1274 VM_WARN_ON_ONCE(!PageLocked(page));
cea86fe2 1275 SetPageDoubleMap(compound_head(page));
9a73f61b 1276 }
5d543f13
HD
1277 if (atomic_inc_and_test(&page->_mapcount))
1278 nr++;
d69b042f 1279 }
dd78fedd 1280out:
5d543f13
HD
1281 if (nr)
1282 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
62cccb8c 1283 unlock_page_memcg(page);
cea86fe2
HD
1284
1285 mlock_vma_page(page, vma, compound);
1da177e4
LT
1286}
1287
dd78fedd 1288static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1289{
5d543f13 1290 int i, nr = 0;
dd78fedd 1291
57dea93a 1292 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1293
53f9263b
KS
1294 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1295 if (unlikely(PageHuge(page))) {
1296 /* hugetlb pages are always mapped with pmds */
1297 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1298 return;
53f9263b 1299 }
8186eb6a 1300
53f9263b 1301 /* page still mapped by someone else? */
dd78fedd 1302 if (compound && PageTransHuge(page)) {
a1528e21
MS
1303 int nr_pages = thp_nr_pages(page);
1304
5d543f13 1305 for (i = 0; i < nr_pages; i++) {
dd78fedd
KS
1306 if (atomic_add_negative(-1, &page[i]._mapcount))
1307 nr++;
1308 }
1309 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
5d543f13 1310 goto out;
99cb0dbd 1311 if (PageSwapBacked(page))
a1528e21
MS
1312 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1313 -nr_pages);
99cb0dbd 1314 else
380780e7
MS
1315 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1316 -nr_pages);
dd78fedd 1317 } else {
5d543f13
HD
1318 if (atomic_add_negative(-1, &page->_mapcount))
1319 nr++;
dd78fedd 1320 }
5d543f13
HD
1321out:
1322 if (nr)
1323 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1324}
1325
53f9263b
KS
1326static void page_remove_anon_compound_rmap(struct page *page)
1327{
1328 int i, nr;
1329
1330 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1331 return;
1332
1333 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1334 if (unlikely(PageHuge(page)))
1335 return;
1336
1337 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1338 return;
1339
69473e5d 1340 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1341
1342 if (TestClearPageDoubleMap(page)) {
1343 /*
1344 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1345 * them are still mapped.
53f9263b 1346 */
5eaf35ab 1347 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1348 if (atomic_add_negative(-1, &page[i]._mapcount))
1349 nr++;
1350 }
f1fe80d4
KS
1351
1352 /*
1353 * Queue the page for deferred split if at least one small
1354 * page of the compound page is unmapped, but at least one
1355 * small page is still mapped.
1356 */
5eaf35ab 1357 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1358 deferred_split_huge_page(page);
53f9263b 1359 } else {
5eaf35ab 1360 nr = thp_nr_pages(page);
53f9263b
KS
1361 }
1362
f1fe80d4 1363 if (nr)
be5d0a74 1364 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1365}
1366
1da177e4
LT
1367/**
1368 * page_remove_rmap - take down pte mapping from a page
d281ee61 1369 * @page: page to remove mapping from
cea86fe2 1370 * @vma: the vm area from which the mapping is removed
d281ee61 1371 * @compound: uncharge the page as compound or small page
1da177e4 1372 *
b8072f09 1373 * The caller needs to hold the pte lock.
1da177e4 1374 */
cea86fe2
HD
1375void page_remove_rmap(struct page *page,
1376 struct vm_area_struct *vma, bool compound)
1da177e4 1377{
be5d0a74 1378 lock_page_memcg(page);
89c06bd5 1379
be5d0a74
JW
1380 if (!PageAnon(page)) {
1381 page_remove_file_rmap(page, compound);
1382 goto out;
1383 }
1384
1385 if (compound) {
1386 page_remove_anon_compound_rmap(page);
1387 goto out;
1388 }
53f9263b 1389
b904dcfe
KM
1390 /* page still mapped by someone else? */
1391 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1392 goto out;
8186eb6a 1393
0fe6e20b 1394 /*
bea04b07
JZ
1395 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1396 * these counters are not modified in interrupt context, and
bea04b07 1397 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1398 */
be5d0a74 1399 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1400
9a982250
KS
1401 if (PageTransCompound(page))
1402 deferred_split_huge_page(compound_head(page));
1403
b904dcfe
KM
1404 /*
1405 * It would be tidy to reset the PageAnon mapping here,
1406 * but that might overwrite a racing page_add_anon_rmap
1407 * which increments mapcount after us but sets mapping
2d4894b5 1408 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1409 * and remember that it's only reliable while mapped.
1410 * Leaving it set also helps swapoff to reinstate ptes
1411 * faster for those pages still in swapcache.
1412 */
be5d0a74
JW
1413out:
1414 unlock_page_memcg(page);
cea86fe2
HD
1415
1416 munlock_vma_page(page, vma, compound);
1da177e4
LT
1417}
1418
1419/*
52629506 1420 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1421 */
2f031c6f 1422static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
52629506 1423 unsigned long address, void *arg)
1da177e4
LT
1424{
1425 struct mm_struct *mm = vma->vm_mm;
869f7ee6 1426 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1da177e4 1427 pte_t pteval;
c7ab0d2f 1428 struct page *subpage;
785373b4 1429 bool ret = true;
ac46d4f3 1430 struct mmu_notifier_range range;
4708f318 1431 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1432
732ed558
HD
1433 /*
1434 * When racing against e.g. zap_pte_range() on another cpu,
1435 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1436 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1437 * if page table locking is skipped: use TTU_SYNC to wait for that.
1438 */
1439 if (flags & TTU_SYNC)
1440 pvmw.flags = PVMW_SYNC;
1441
a98a2f0c 1442 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1443 split_huge_pmd_address(vma, address, false, folio);
fec89c10 1444
369ea824 1445 /*
017b1660
MK
1446 * For THP, we have to assume the worse case ie pmd for invalidation.
1447 * For hugetlb, it could be much worse if we need to do pud
1448 * invalidation in the case of pmd sharing.
1449 *
869f7ee6
MWO
1450 * Note that the folio can not be freed in this function as call of
1451 * try_to_unmap() must hold a reference on the folio.
369ea824 1452 */
2aff7a47 1453 range.end = vma_address_end(&pvmw);
7269f999 1454 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1455 address, range.end);
869f7ee6 1456 if (folio_test_hugetlb(folio)) {
017b1660
MK
1457 /*
1458 * If sharing is possible, start and end will be adjusted
1459 * accordingly.
1460 */
ac46d4f3
JG
1461 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1462 &range.end);
017b1660 1463 }
ac46d4f3 1464 mmu_notifier_invalidate_range_start(&range);
369ea824 1465
c7ab0d2f 1466 while (page_vma_mapped_walk(&pvmw)) {
cea86fe2 1467 /* Unexpected PMD-mapped THP? */
869f7ee6 1468 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
cea86fe2 1469
c7ab0d2f 1470 /*
869f7ee6 1471 * If the folio is in an mlock()d vma, we must not swap it out.
c7ab0d2f 1472 */
efdb6720
HD
1473 if (!(flags & TTU_IGNORE_MLOCK) &&
1474 (vma->vm_flags & VM_LOCKED)) {
cea86fe2 1475 /* Restore the mlock which got missed */
869f7ee6 1476 mlock_vma_folio(folio, vma, false);
efdb6720
HD
1477 page_vma_mapped_walk_done(&pvmw);
1478 ret = false;
1479 break;
b87537d9 1480 }
c7ab0d2f 1481
869f7ee6
MWO
1482 subpage = folio_page(folio,
1483 pte_pfn(*pvmw.pte) - folio_pfn(folio));
785373b4
LT
1484 address = pvmw.address;
1485
869f7ee6 1486 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
c0d0381a
MK
1487 /*
1488 * To call huge_pmd_unshare, i_mmap_rwsem must be
1489 * held in write mode. Caller needs to explicitly
1490 * do this outside rmap routines.
1491 */
1492 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
34ae204f 1493 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
017b1660
MK
1494 /*
1495 * huge_pmd_unshare unmapped an entire PMD
1496 * page. There is no way of knowing exactly
1497 * which PMDs may be cached for this mm, so
1498 * we must flush them all. start/end were
1499 * already adjusted above to cover this range.
1500 */
ac46d4f3
JG
1501 flush_cache_range(vma, range.start, range.end);
1502 flush_tlb_range(vma, range.start, range.end);
1503 mmu_notifier_invalidate_range(mm, range.start,
1504 range.end);
017b1660
MK
1505
1506 /*
1507 * The ref count of the PMD page was dropped
1508 * which is part of the way map counting
1509 * is done for shared PMDs. Return 'true'
1510 * here. When there is no other sharing,
1511 * huge_pmd_unshare returns false and we will
1512 * unmap the actual page and drop map count
1513 * to zero.
1514 */
1515 page_vma_mapped_walk_done(&pvmw);
1516 break;
1517 }
1518 }
8346242a 1519
c7ab0d2f 1520 /* Nuke the page table entry. */
785373b4 1521 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1522 if (should_defer_flush(mm, flags)) {
1523 /*
1524 * We clear the PTE but do not flush so potentially
869f7ee6 1525 * a remote CPU could still be writing to the folio.
c7ab0d2f
KS
1526 * If the entry was previously clean then the
1527 * architecture must guarantee that a clear->dirty
1528 * transition on a cached TLB entry is written through
1529 * and traps if the PTE is unmapped.
1530 */
785373b4 1531 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1532
1533 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1534 } else {
785373b4 1535 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1536 }
72b252ae 1537
869f7ee6 1538 /* Set the dirty flag on the folio now the pte is gone. */
c7ab0d2f 1539 if (pte_dirty(pteval))
869f7ee6 1540 folio_mark_dirty(folio);
1da177e4 1541
c7ab0d2f
KS
1542 /* Update high watermark before we lower rss */
1543 update_hiwater_rss(mm);
1da177e4 1544
da358d5c 1545 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1546 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
869f7ee6
MWO
1547 if (folio_test_hugetlb(folio)) {
1548 hugetlb_count_sub(folio_nr_pages(folio), mm);
785373b4 1549 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1550 pvmw.pte, pteval,
1551 vma_mmu_pagesize(vma));
c7ab0d2f 1552 } else {
869f7ee6 1553 dec_mm_counter(mm, mm_counter(&folio->page));
785373b4 1554 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1555 }
365e9c87 1556
bce73e48 1557 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1558 /*
1559 * The guest indicated that the page content is of no
1560 * interest anymore. Simply discard the pte, vmscan
1561 * will take care of the rest.
bce73e48
CB
1562 * A future reference will then fault in a new zero
1563 * page. When userfaultfd is active, we must not drop
1564 * this page though, as its main user (postcopy
1565 * migration) will not expect userfaults on already
1566 * copied pages.
c7ab0d2f 1567 */
869f7ee6 1568 dec_mm_counter(mm, mm_counter(&folio->page));
0f10851e
JG
1569 /* We have to invalidate as we cleared the pte */
1570 mmu_notifier_invalidate_range(mm, address,
1571 address + PAGE_SIZE);
869f7ee6 1572 } else if (folio_test_anon(folio)) {
c7ab0d2f
KS
1573 swp_entry_t entry = { .val = page_private(subpage) };
1574 pte_t swp_pte;
1575 /*
1576 * Store the swap location in the pte.
1577 * See handle_pte_fault() ...
1578 */
869f7ee6
MWO
1579 if (unlikely(folio_test_swapbacked(folio) !=
1580 folio_test_swapcache(folio))) {
eb94a878 1581 WARN_ON_ONCE(1);
83612a94 1582 ret = false;
369ea824 1583 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1584 mmu_notifier_invalidate_range(mm, address,
1585 address + PAGE_SIZE);
eb94a878
MK
1586 page_vma_mapped_walk_done(&pvmw);
1587 break;
1588 }
c7ab0d2f 1589
802a3a92 1590 /* MADV_FREE page check */
869f7ee6 1591 if (!folio_test_swapbacked(folio)) {
6c8e2a25
MFO
1592 int ref_count, map_count;
1593
1594 /*
1595 * Synchronize with gup_pte_range():
1596 * - clear PTE; barrier; read refcount
1597 * - inc refcount; barrier; read PTE
1598 */
1599 smp_mb();
1600
1601 ref_count = folio_ref_count(folio);
1602 map_count = folio_mapcount(folio);
1603
1604 /*
1605 * Order reads for page refcount and dirty flag
1606 * (see comments in __remove_mapping()).
1607 */
1608 smp_rmb();
1609
1610 /*
1611 * The only page refs must be one from isolation
1612 * plus the rmap(s) (dropped by discard:).
1613 */
1614 if (ref_count == 1 + map_count &&
1615 !folio_test_dirty(folio)) {
0f10851e
JG
1616 /* Invalidate as we cleared the pte */
1617 mmu_notifier_invalidate_range(mm,
1618 address, address + PAGE_SIZE);
802a3a92
SL
1619 dec_mm_counter(mm, MM_ANONPAGES);
1620 goto discard;
1621 }
1622
1623 /*
869f7ee6 1624 * If the folio was redirtied, it cannot be
802a3a92
SL
1625 * discarded. Remap the page to page table.
1626 */
785373b4 1627 set_pte_at(mm, address, pvmw.pte, pteval);
869f7ee6 1628 folio_set_swapbacked(folio);
e4b82222 1629 ret = false;
802a3a92
SL
1630 page_vma_mapped_walk_done(&pvmw);
1631 break;
c7ab0d2f 1632 }
854e9ed0 1633
c7ab0d2f 1634 if (swap_duplicate(entry) < 0) {
785373b4 1635 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1636 ret = false;
c7ab0d2f
KS
1637 page_vma_mapped_walk_done(&pvmw);
1638 break;
1639 }
ca827d55
KA
1640 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1641 set_pte_at(mm, address, pvmw.pte, pteval);
1642 ret = false;
1643 page_vma_mapped_walk_done(&pvmw);
1644 break;
1645 }
c7ab0d2f
KS
1646 if (list_empty(&mm->mmlist)) {
1647 spin_lock(&mmlist_lock);
1648 if (list_empty(&mm->mmlist))
1649 list_add(&mm->mmlist, &init_mm.mmlist);
1650 spin_unlock(&mmlist_lock);
1651 }
854e9ed0 1652 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1653 inc_mm_counter(mm, MM_SWAPENTS);
1654 swp_pte = swp_entry_to_pte(entry);
1655 if (pte_soft_dirty(pteval))
1656 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1657 if (pte_uffd_wp(pteval))
1658 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1659 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1660 /* Invalidate as we cleared the pte */
1661 mmu_notifier_invalidate_range(mm, address,
1662 address + PAGE_SIZE);
1663 } else {
1664 /*
869f7ee6
MWO
1665 * This is a locked file-backed folio,
1666 * so it cannot be removed from the page
1667 * cache and replaced by a new folio before
1668 * mmu_notifier_invalidate_range_end, so no
1669 * concurrent thread might update its page table
1670 * to point at a new folio while a device is
1671 * still using this folio.
0f10851e 1672 *
ad56b738 1673 * See Documentation/vm/mmu_notifier.rst
0f10851e 1674 */
869f7ee6 1675 dec_mm_counter(mm, mm_counter_file(&folio->page));
0f10851e 1676 }
854e9ed0 1677discard:
0f10851e
JG
1678 /*
1679 * No need to call mmu_notifier_invalidate_range() it has be
1680 * done above for all cases requiring it to happen under page
1681 * table lock before mmu_notifier_invalidate_range_end()
1682 *
ad56b738 1683 * See Documentation/vm/mmu_notifier.rst
0f10851e 1684 */
869f7ee6 1685 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 1686 if (vma->vm_flags & VM_LOCKED)
adb11e78 1687 mlock_page_drain_local();
869f7ee6 1688 folio_put(folio);
c7ab0d2f 1689 }
369ea824 1690
ac46d4f3 1691 mmu_notifier_invalidate_range_end(&range);
369ea824 1692
caed0f48 1693 return ret;
1da177e4
LT
1694}
1695
52629506
JK
1696static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1697{
222100ee 1698 return vma_is_temporary_stack(vma);
52629506
JK
1699}
1700
2f031c6f 1701static int page_not_mapped(struct folio *folio)
52629506 1702{
2f031c6f 1703 return !folio_mapped(folio);
2a52bcbc 1704}
52629506 1705
1da177e4 1706/**
869f7ee6
MWO
1707 * try_to_unmap - Try to remove all page table mappings to a folio.
1708 * @folio: The folio to unmap.
14fa31b8 1709 * @flags: action and flags
1da177e4
LT
1710 *
1711 * Tries to remove all the page table entries which are mapping this
869f7ee6
MWO
1712 * folio. It is the caller's responsibility to check if the folio is
1713 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1da177e4 1714 *
869f7ee6 1715 * Context: Caller must hold the folio lock.
1da177e4 1716 */
869f7ee6 1717void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1da177e4 1718{
52629506
JK
1719 struct rmap_walk_control rwc = {
1720 .rmap_one = try_to_unmap_one,
802a3a92 1721 .arg = (void *)flags,
b7e188ec 1722 .done = page_not_mapped,
2f031c6f 1723 .anon_lock = folio_lock_anon_vma_read,
52629506 1724 };
1da177e4 1725
a98a2f0c 1726 if (flags & TTU_RMAP_LOCKED)
2f031c6f 1727 rmap_walk_locked(folio, &rwc);
a98a2f0c 1728 else
2f031c6f 1729 rmap_walk(folio, &rwc);
a98a2f0c
AP
1730}
1731
1732/*
1733 * @arg: enum ttu_flags will be passed to this argument.
1734 *
1735 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1736 * containing migration entries.
a98a2f0c 1737 */
2f031c6f 1738static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
a98a2f0c
AP
1739 unsigned long address, void *arg)
1740{
1741 struct mm_struct *mm = vma->vm_mm;
4b8554c5 1742 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
a98a2f0c
AP
1743 pte_t pteval;
1744 struct page *subpage;
1745 bool ret = true;
1746 struct mmu_notifier_range range;
1747 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1748
a98a2f0c
AP
1749 /*
1750 * When racing against e.g. zap_pte_range() on another cpu,
1751 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1752 * try_to_migrate() may return before page_mapped() has become false,
1753 * if page table locking is skipped: use TTU_SYNC to wait for that.
1754 */
1755 if (flags & TTU_SYNC)
1756 pvmw.flags = PVMW_SYNC;
1757
1758 /*
1759 * unmap_page() in mm/huge_memory.c is the only user of migration with
1760 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1761 */
1762 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1763 split_huge_pmd_address(vma, address, true, folio);
a98a2f0c
AP
1764
1765 /*
1766 * For THP, we have to assume the worse case ie pmd for invalidation.
1767 * For hugetlb, it could be much worse if we need to do pud
1768 * invalidation in the case of pmd sharing.
1769 *
1770 * Note that the page can not be free in this function as call of
1771 * try_to_unmap() must hold a reference on the page.
1772 */
2aff7a47 1773 range.end = vma_address_end(&pvmw);
a98a2f0c
AP
1774 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1775 address, range.end);
4b8554c5 1776 if (folio_test_hugetlb(folio)) {
a98a2f0c
AP
1777 /*
1778 * If sharing is possible, start and end will be adjusted
1779 * accordingly.
1780 */
1781 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1782 &range.end);
1783 }
1784 mmu_notifier_invalidate_range_start(&range);
1785
1786 while (page_vma_mapped_walk(&pvmw)) {
1787#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1788 /* PMD-mapped THP migration entry */
1789 if (!pvmw.pte) {
4b8554c5
MWO
1790 subpage = folio_page(folio,
1791 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1792 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1793 !folio_test_pmd_mappable(folio), folio);
a98a2f0c 1794
4b8554c5 1795 set_pmd_migration_entry(&pvmw, subpage);
a98a2f0c
AP
1796 continue;
1797 }
1798#endif
1799
1800 /* Unexpected PMD-mapped THP? */
4b8554c5 1801 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
a98a2f0c 1802
4b8554c5
MWO
1803 subpage = folio_page(folio,
1804 pte_pfn(*pvmw.pte) - folio_pfn(folio));
a98a2f0c
AP
1805 address = pvmw.address;
1806
4b8554c5 1807 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
a98a2f0c
AP
1808 /*
1809 * To call huge_pmd_unshare, i_mmap_rwsem must be
1810 * held in write mode. Caller needs to explicitly
1811 * do this outside rmap routines.
1812 */
1813 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1814 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1815 /*
1816 * huge_pmd_unshare unmapped an entire PMD
1817 * page. There is no way of knowing exactly
1818 * which PMDs may be cached for this mm, so
1819 * we must flush them all. start/end were
1820 * already adjusted above to cover this range.
1821 */
1822 flush_cache_range(vma, range.start, range.end);
1823 flush_tlb_range(vma, range.start, range.end);
1824 mmu_notifier_invalidate_range(mm, range.start,
1825 range.end);
1826
1827 /*
1828 * The ref count of the PMD page was dropped
1829 * which is part of the way map counting
1830 * is done for shared PMDs. Return 'true'
1831 * here. When there is no other sharing,
1832 * huge_pmd_unshare returns false and we will
1833 * unmap the actual page and drop map count
1834 * to zero.
1835 */
1836 page_vma_mapped_walk_done(&pvmw);
1837 break;
1838 }
1839 }
1840
1841 /* Nuke the page table entry. */
1842 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1843 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1844
4b8554c5 1845 /* Set the dirty flag on the folio now the pte is gone. */
a98a2f0c 1846 if (pte_dirty(pteval))
4b8554c5 1847 folio_mark_dirty(folio);
a98a2f0c
AP
1848
1849 /* Update high watermark before we lower rss */
1850 update_hiwater_rss(mm);
1851
4b8554c5
MWO
1852 if (folio_is_zone_device(folio)) {
1853 unsigned long pfn = folio_pfn(folio);
a98a2f0c
AP
1854 swp_entry_t entry;
1855 pte_t swp_pte;
1856
1857 /*
1858 * Store the pfn of the page in a special migration
1859 * pte. do_swap_page() will wait until the migration
1860 * pte is removed and then restart fault handling.
1861 */
3d88705c
AP
1862 entry = pte_to_swp_entry(pteval);
1863 if (is_writable_device_private_entry(entry))
1864 entry = make_writable_migration_entry(pfn);
1865 else
1866 entry = make_readable_migration_entry(pfn);
a98a2f0c
AP
1867 swp_pte = swp_entry_to_pte(entry);
1868
1869 /*
1870 * pteval maps a zone device page and is therefore
1871 * a swap pte.
1872 */
1873 if (pte_swp_soft_dirty(pteval))
1874 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1875 if (pte_swp_uffd_wp(pteval))
1876 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1877 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
4cc79b33
AK
1878 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
1879 compound_order(&folio->page));
a98a2f0c
AP
1880 /*
1881 * No need to invalidate here it will synchronize on
1882 * against the special swap migration pte.
1883 *
1884 * The assignment to subpage above was computed from a
1885 * swap PTE which results in an invalid pointer.
1886 * Since only PAGE_SIZE pages can currently be
1887 * migrated, just set it to page. This will need to be
1888 * changed when hugepage migrations to device private
1889 * memory are supported.
1890 */
4b8554c5 1891 subpage = &folio->page;
da358d5c 1892 } else if (PageHWPoison(subpage)) {
a98a2f0c 1893 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
4b8554c5
MWO
1894 if (folio_test_hugetlb(folio)) {
1895 hugetlb_count_sub(folio_nr_pages(folio), mm);
a98a2f0c
AP
1896 set_huge_swap_pte_at(mm, address,
1897 pvmw.pte, pteval,
1898 vma_mmu_pagesize(vma));
1899 } else {
4b8554c5 1900 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
1901 set_pte_at(mm, address, pvmw.pte, pteval);
1902 }
1903
1904 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1905 /*
1906 * The guest indicated that the page content is of no
1907 * interest anymore. Simply discard the pte, vmscan
1908 * will take care of the rest.
1909 * A future reference will then fault in a new zero
1910 * page. When userfaultfd is active, we must not drop
1911 * this page though, as its main user (postcopy
1912 * migration) will not expect userfaults on already
1913 * copied pages.
1914 */
4b8554c5 1915 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
1916 /* We have to invalidate as we cleared the pte */
1917 mmu_notifier_invalidate_range(mm, address,
1918 address + PAGE_SIZE);
1919 } else {
1920 swp_entry_t entry;
1921 pte_t swp_pte;
1922
1923 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1924 set_pte_at(mm, address, pvmw.pte, pteval);
1925 ret = false;
1926 page_vma_mapped_walk_done(&pvmw);
1927 break;
1928 }
1929
1930 /*
1931 * Store the pfn of the page in a special migration
1932 * pte. do_swap_page() will wait until the migration
1933 * pte is removed and then restart fault handling.
1934 */
1935 if (pte_write(pteval))
1936 entry = make_writable_migration_entry(
1937 page_to_pfn(subpage));
1938 else
1939 entry = make_readable_migration_entry(
1940 page_to_pfn(subpage));
1941
1942 swp_pte = swp_entry_to_pte(entry);
1943 if (pte_soft_dirty(pteval))
1944 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1945 if (pte_uffd_wp(pteval))
1946 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1947 set_pte_at(mm, address, pvmw.pte, swp_pte);
4cc79b33
AK
1948 trace_set_migration_pte(address, pte_val(swp_pte),
1949 compound_order(&folio->page));
a98a2f0c
AP
1950 /*
1951 * No need to invalidate here it will synchronize on
1952 * against the special swap migration pte.
1953 */
1954 }
1955
1956 /*
1957 * No need to call mmu_notifier_invalidate_range() it has be
1958 * done above for all cases requiring it to happen under page
1959 * table lock before mmu_notifier_invalidate_range_end()
1960 *
1961 * See Documentation/vm/mmu_notifier.rst
1962 */
4b8554c5 1963 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 1964 if (vma->vm_flags & VM_LOCKED)
adb11e78 1965 mlock_page_drain_local();
4b8554c5 1966 folio_put(folio);
a98a2f0c
AP
1967 }
1968
1969 mmu_notifier_invalidate_range_end(&range);
1970
1971 return ret;
1972}
1973
1974/**
1975 * try_to_migrate - try to replace all page table mappings with swap entries
4b8554c5 1976 * @folio: the folio to replace page table entries for
a98a2f0c
AP
1977 * @flags: action and flags
1978 *
4b8554c5
MWO
1979 * Tries to remove all the page table entries which are mapping this folio and
1980 * replace them with special swap entries. Caller must hold the folio lock.
a98a2f0c 1981 */
4b8554c5 1982void try_to_migrate(struct folio *folio, enum ttu_flags flags)
a98a2f0c
AP
1983{
1984 struct rmap_walk_control rwc = {
1985 .rmap_one = try_to_migrate_one,
1986 .arg = (void *)flags,
1987 .done = page_not_mapped,
2f031c6f 1988 .anon_lock = folio_lock_anon_vma_read,
a98a2f0c
AP
1989 };
1990
1991 /*
1992 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1993 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1994 */
1995 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1996 TTU_SYNC)))
1997 return;
1998
4b8554c5 1999 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
6c855fce
HD
2000 return;
2001
52629506
JK
2002 /*
2003 * During exec, a temporary VMA is setup and later moved.
2004 * The VMA is moved under the anon_vma lock but not the
2005 * page tables leading to a race where migration cannot
2006 * find the migration ptes. Rather than increasing the
2007 * locking requirements of exec(), migration skips
2008 * temporary VMAs until after exec() completes.
2009 */
4b8554c5 2010 if (!folio_test_ksm(folio) && folio_test_anon(folio))
52629506
JK
2011 rwc.invalid_vma = invalid_migration_vma;
2012
2a52bcbc 2013 if (flags & TTU_RMAP_LOCKED)
2f031c6f 2014 rmap_walk_locked(folio, &rwc);
2a52bcbc 2015 else
2f031c6f 2016 rmap_walk(folio, &rwc);
b291f000 2017}
e9995ef9 2018
b756a3b5
AP
2019#ifdef CONFIG_DEVICE_PRIVATE
2020struct make_exclusive_args {
2021 struct mm_struct *mm;
2022 unsigned long address;
2023 void *owner;
2024 bool valid;
2025};
2026
2f031c6f 2027static bool page_make_device_exclusive_one(struct folio *folio,
b756a3b5
AP
2028 struct vm_area_struct *vma, unsigned long address, void *priv)
2029{
2030 struct mm_struct *mm = vma->vm_mm;
0d251485 2031 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
b756a3b5
AP
2032 struct make_exclusive_args *args = priv;
2033 pte_t pteval;
2034 struct page *subpage;
2035 bool ret = true;
2036 struct mmu_notifier_range range;
2037 swp_entry_t entry;
2038 pte_t swp_pte;
2039
2040 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2041 vma->vm_mm, address, min(vma->vm_end,
0d251485
MWO
2042 address + folio_size(folio)),
2043 args->owner);
b756a3b5
AP
2044 mmu_notifier_invalidate_range_start(&range);
2045
2046 while (page_vma_mapped_walk(&pvmw)) {
2047 /* Unexpected PMD-mapped THP? */
0d251485 2048 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
b756a3b5
AP
2049
2050 if (!pte_present(*pvmw.pte)) {
2051 ret = false;
2052 page_vma_mapped_walk_done(&pvmw);
2053 break;
2054 }
2055
0d251485
MWO
2056 subpage = folio_page(folio,
2057 pte_pfn(*pvmw.pte) - folio_pfn(folio));
b756a3b5
AP
2058 address = pvmw.address;
2059
2060 /* Nuke the page table entry. */
2061 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2062 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2063
0d251485 2064 /* Set the dirty flag on the folio now the pte is gone. */
b756a3b5 2065 if (pte_dirty(pteval))
0d251485 2066 folio_mark_dirty(folio);
b756a3b5
AP
2067
2068 /*
2069 * Check that our target page is still mapped at the expected
2070 * address.
2071 */
2072 if (args->mm == mm && args->address == address &&
2073 pte_write(pteval))
2074 args->valid = true;
2075
2076 /*
2077 * Store the pfn of the page in a special migration
2078 * pte. do_swap_page() will wait until the migration
2079 * pte is removed and then restart fault handling.
2080 */
2081 if (pte_write(pteval))
2082 entry = make_writable_device_exclusive_entry(
2083 page_to_pfn(subpage));
2084 else
2085 entry = make_readable_device_exclusive_entry(
2086 page_to_pfn(subpage));
2087 swp_pte = swp_entry_to_pte(entry);
2088 if (pte_soft_dirty(pteval))
2089 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2090 if (pte_uffd_wp(pteval))
2091 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2092
2093 set_pte_at(mm, address, pvmw.pte, swp_pte);
2094
2095 /*
2096 * There is a reference on the page for the swap entry which has
2097 * been removed, so shouldn't take another.
2098 */
cea86fe2 2099 page_remove_rmap(subpage, vma, false);
b756a3b5
AP
2100 }
2101
2102 mmu_notifier_invalidate_range_end(&range);
2103
2104 return ret;
2105}
2106
2107/**
0d251485
MWO
2108 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2109 * @folio: The folio to replace page table entries for.
2110 * @mm: The mm_struct where the folio is expected to be mapped.
2111 * @address: Address where the folio is expected to be mapped.
b756a3b5
AP
2112 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2113 *
0d251485
MWO
2114 * Tries to remove all the page table entries which are mapping this
2115 * folio and replace them with special device exclusive swap entries to
2116 * grant a device exclusive access to the folio.
b756a3b5 2117 *
0d251485
MWO
2118 * Context: Caller must hold the folio lock.
2119 * Return: false if the page is still mapped, or if it could not be unmapped
b756a3b5
AP
2120 * from the expected address. Otherwise returns true (success).
2121 */
0d251485
MWO
2122static bool folio_make_device_exclusive(struct folio *folio,
2123 struct mm_struct *mm, unsigned long address, void *owner)
b756a3b5
AP
2124{
2125 struct make_exclusive_args args = {
2126 .mm = mm,
2127 .address = address,
2128 .owner = owner,
2129 .valid = false,
2130 };
2131 struct rmap_walk_control rwc = {
2132 .rmap_one = page_make_device_exclusive_one,
2133 .done = page_not_mapped,
2f031c6f 2134 .anon_lock = folio_lock_anon_vma_read,
b756a3b5
AP
2135 .arg = &args,
2136 };
2137
2138 /*
0d251485
MWO
2139 * Restrict to anonymous folios for now to avoid potential writeback
2140 * issues.
b756a3b5 2141 */
0d251485 2142 if (!folio_test_anon(folio))
b756a3b5
AP
2143 return false;
2144
2f031c6f 2145 rmap_walk(folio, &rwc);
b756a3b5 2146
0d251485 2147 return args.valid && !folio_mapcount(folio);
b756a3b5
AP
2148}
2149
2150/**
2151 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2152 * @mm: mm_struct of assoicated target process
2153 * @start: start of the region to mark for exclusive device access
2154 * @end: end address of region
2155 * @pages: returns the pages which were successfully marked for exclusive access
2156 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2157 *
2158 * Returns: number of pages found in the range by GUP. A page is marked for
2159 * exclusive access only if the page pointer is non-NULL.
2160 *
2161 * This function finds ptes mapping page(s) to the given address range, locks
2162 * them and replaces mappings with special swap entries preventing userspace CPU
2163 * access. On fault these entries are replaced with the original mapping after
2164 * calling MMU notifiers.
2165 *
2166 * A driver using this to program access from a device must use a mmu notifier
2167 * critical section to hold a device specific lock during programming. Once
2168 * programming is complete it should drop the page lock and reference after
2169 * which point CPU access to the page will revoke the exclusive access.
2170 */
2171int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2172 unsigned long end, struct page **pages,
2173 void *owner)
2174{
2175 long npages = (end - start) >> PAGE_SHIFT;
2176 long i;
2177
2178 npages = get_user_pages_remote(mm, start, npages,
2179 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2180 pages, NULL, NULL);
2181 if (npages < 0)
2182 return npages;
2183
2184 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
0d251485
MWO
2185 struct folio *folio = page_folio(pages[i]);
2186 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2187 folio_put(folio);
b756a3b5
AP
2188 pages[i] = NULL;
2189 continue;
2190 }
2191
0d251485
MWO
2192 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2193 folio_unlock(folio);
2194 folio_put(folio);
b756a3b5
AP
2195 pages[i] = NULL;
2196 }
2197 }
2198
2199 return npages;
2200}
2201EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2202#endif
2203
01d8b20d 2204void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2205{
01d8b20d 2206 struct anon_vma *root = anon_vma->root;
76545066 2207
624483f3 2208 anon_vma_free(anon_vma);
01d8b20d
PZ
2209 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2210 anon_vma_free(root);
76545066 2211}
76545066 2212
2f031c6f 2213static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
84fbbe21 2214 const struct rmap_walk_control *rwc)
faecd8dd
JK
2215{
2216 struct anon_vma *anon_vma;
2217
0dd1c7bb 2218 if (rwc->anon_lock)
2f031c6f 2219 return rwc->anon_lock(folio);
0dd1c7bb 2220
faecd8dd 2221 /*
2f031c6f 2222 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
faecd8dd 2223 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2224 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2225 * take a reference count to prevent the anon_vma disappearing
2226 */
e05b3453 2227 anon_vma = folio_anon_vma(folio);
faecd8dd
JK
2228 if (!anon_vma)
2229 return NULL;
2230
2231 anon_vma_lock_read(anon_vma);
2232 return anon_vma;
2233}
2234
e9995ef9 2235/*
e8351ac9
JK
2236 * rmap_walk_anon - do something to anonymous page using the object-based
2237 * rmap method
2238 * @page: the page to be handled
2239 * @rwc: control variable according to each walk type
2240 *
2241 * Find all the mappings of a page using the mapping pointer and the vma chains
2242 * contained in the anon_vma struct it points to.
e9995ef9 2243 */
84fbbe21
MWO
2244static void rmap_walk_anon(struct folio *folio,
2245 const struct rmap_walk_control *rwc, bool locked)
e9995ef9
HD
2246{
2247 struct anon_vma *anon_vma;
a8fa41ad 2248 pgoff_t pgoff_start, pgoff_end;
5beb4930 2249 struct anon_vma_chain *avc;
e9995ef9 2250
b9773199 2251 if (locked) {
e05b3453 2252 anon_vma = folio_anon_vma(folio);
b9773199 2253 /* anon_vma disappear under us? */
e05b3453 2254 VM_BUG_ON_FOLIO(!anon_vma, folio);
b9773199 2255 } else {
2f031c6f 2256 anon_vma = rmap_walk_anon_lock(folio, rwc);
b9773199 2257 }
e9995ef9 2258 if (!anon_vma)
1df631ae 2259 return;
faecd8dd 2260
2f031c6f
MWO
2261 pgoff_start = folio_pgoff(folio);
2262 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
a8fa41ad
KS
2263 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2264 pgoff_start, pgoff_end) {
5beb4930 2265 struct vm_area_struct *vma = avc->vma;
2f031c6f 2266 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2267
494334e4 2268 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2269 cond_resched();
2270
0dd1c7bb
JK
2271 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2272 continue;
2273
2f031c6f 2274 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
e9995ef9 2275 break;
2f031c6f 2276 if (rwc->done && rwc->done(folio))
0dd1c7bb 2277 break;
e9995ef9 2278 }
b9773199
KS
2279
2280 if (!locked)
2281 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2282}
2283
e8351ac9
JK
2284/*
2285 * rmap_walk_file - do something to file page using the object-based rmap method
2286 * @page: the page to be handled
2287 * @rwc: control variable according to each walk type
2288 *
2289 * Find all the mappings of a page using the mapping pointer and the vma chains
2290 * contained in the address_space struct it points to.
e8351ac9 2291 */
84fbbe21
MWO
2292static void rmap_walk_file(struct folio *folio,
2293 const struct rmap_walk_control *rwc, bool locked)
e9995ef9 2294{
2f031c6f 2295 struct address_space *mapping = folio_mapping(folio);
a8fa41ad 2296 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2297 struct vm_area_struct *vma;
e9995ef9 2298
9f32624b
JK
2299 /*
2300 * The page lock not only makes sure that page->mapping cannot
2301 * suddenly be NULLified by truncation, it makes sure that the
2302 * structure at mapping cannot be freed and reused yet,
c8c06efa 2303 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2304 */
2f031c6f 2305 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
9f32624b 2306
e9995ef9 2307 if (!mapping)
1df631ae 2308 return;
3dec0ba0 2309
2f031c6f
MWO
2310 pgoff_start = folio_pgoff(folio);
2311 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
b9773199
KS
2312 if (!locked)
2313 i_mmap_lock_read(mapping);
a8fa41ad
KS
2314 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2315 pgoff_start, pgoff_end) {
2f031c6f 2316 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2317
494334e4 2318 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2319 cond_resched();
2320
0dd1c7bb
JK
2321 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2322 continue;
2323
2f031c6f 2324 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
0dd1c7bb 2325 goto done;
2f031c6f 2326 if (rwc->done && rwc->done(folio))
0dd1c7bb 2327 goto done;
e9995ef9 2328 }
0dd1c7bb 2329
0dd1c7bb 2330done:
b9773199
KS
2331 if (!locked)
2332 i_mmap_unlock_read(mapping);
e9995ef9
HD
2333}
2334
84fbbe21 2335void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc)
e9995ef9 2336{
2f031c6f
MWO
2337 if (unlikely(folio_test_ksm(folio)))
2338 rmap_walk_ksm(folio, rwc);
2339 else if (folio_test_anon(folio))
2340 rmap_walk_anon(folio, rwc, false);
b9773199 2341 else
2f031c6f 2342 rmap_walk_file(folio, rwc, false);
b9773199
KS
2343}
2344
2345/* Like rmap_walk, but caller holds relevant rmap lock */
84fbbe21 2346void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc)
b9773199
KS
2347{
2348 /* no ksm support for now */
2f031c6f
MWO
2349 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2350 if (folio_test_anon(folio))
2351 rmap_walk_anon(folio, rwc, true);
e9995ef9 2352 else
2f031c6f 2353 rmap_walk_file(folio, rwc, true);
e9995ef9 2354}
0fe6e20b 2355
e3390f67 2356#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2357/*
451b9514 2358 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2359 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2360 * and no lru code, because we handle hugepages differently from common pages.
2361 */
0fe6e20b
NH
2362void hugepage_add_anon_rmap(struct page *page,
2363 struct vm_area_struct *vma, unsigned long address)
2364{
2365 struct anon_vma *anon_vma = vma->anon_vma;
2366 int first;
a850ea30
NH
2367
2368 BUG_ON(!PageLocked(page));
0fe6e20b 2369 BUG_ON(!anon_vma);
5dbe0af4 2370 /* address might be in next vma when migration races vma_adjust */
53f9263b 2371 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 2372 if (first)
451b9514 2373 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
2374}
2375
2376void hugepage_add_new_anon_rmap(struct page *page,
2377 struct vm_area_struct *vma, unsigned long address)
2378{
2379 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2380 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 2381 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 2382
451b9514 2383 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2384}
e3390f67 2385#endif /* CONFIG_HUGETLB_PAGE */