mm/rmap: split try_to_munlock from try_to_unmap
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
c0d0381a 25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
c0d0381a 28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
88f306b6
KS
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
15b44736 34 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
b93b0163 35 * i_pages lock (widely used)
15b44736 36 * lruvec->lru_lock (in lock_page_lruvec_irq)
88f306b6
KS
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
b93b0163 40 * i_pages lock (widely used, in set_page_dirty,
88f306b6
KS
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 43 *
5a505085 44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 45 * ->tasklist_lock
6a46079c 46 * pte map lock
c0d0381a
MK
47 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
1da177e4
LT
52 */
53
54#include <linux/mm.h>
6e84f315 55#include <linux/sched/mm.h>
29930025 56#include <linux/sched/task.h>
1da177e4
LT
57#include <linux/pagemap.h>
58#include <linux/swap.h>
59#include <linux/swapops.h>
60#include <linux/slab.h>
61#include <linux/init.h>
5ad64688 62#include <linux/ksm.h>
1da177e4
LT
63#include <linux/rmap.h>
64#include <linux/rcupdate.h>
b95f1b31 65#include <linux/export.h>
8a9f3ccd 66#include <linux/memcontrol.h>
cddb8a5c 67#include <linux/mmu_notifier.h>
64cdd548 68#include <linux/migrate.h>
0fe6e20b 69#include <linux/hugetlb.h>
444f84fd 70#include <linux/huge_mm.h>
ef5d437f 71#include <linux/backing-dev.h>
33c3fc71 72#include <linux/page_idle.h>
a5430dda 73#include <linux/memremap.h>
bce73e48 74#include <linux/userfaultfd_k.h>
1da177e4
LT
75
76#include <asm/tlbflush.h>
77
72b252ae
MG
78#include <trace/events/tlb.h>
79
b291f000
NP
80#include "internal.h"
81
fdd2e5f8 82static struct kmem_cache *anon_vma_cachep;
5beb4930 83static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
84
85static inline struct anon_vma *anon_vma_alloc(void)
86{
01d8b20d
PZ
87 struct anon_vma *anon_vma;
88
89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 if (anon_vma) {
91 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
92 anon_vma->degree = 1; /* Reference for first vma */
93 anon_vma->parent = anon_vma;
01d8b20d
PZ
94 /*
95 * Initialise the anon_vma root to point to itself. If called
96 * from fork, the root will be reset to the parents anon_vma.
97 */
98 anon_vma->root = anon_vma;
99 }
100
101 return anon_vma;
fdd2e5f8
AB
102}
103
01d8b20d 104static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 105{
01d8b20d 106 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
107
108 /*
4fc3f1d6 109 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
110 * we can safely hold the lock without the anon_vma getting
111 * freed.
112 *
113 * Relies on the full mb implied by the atomic_dec_and_test() from
114 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 115 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 116 *
4fc3f1d6
IM
117 * page_lock_anon_vma_read() VS put_anon_vma()
118 * down_read_trylock() atomic_dec_and_test()
88c22088 119 * LOCK MB
4fc3f1d6 120 * atomic_read() rwsem_is_locked()
88c22088
PZ
121 *
122 * LOCK should suffice since the actual taking of the lock must
123 * happen _before_ what follows.
124 */
7f39dda9 125 might_sleep();
5a505085 126 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 127 anon_vma_lock_write(anon_vma);
08b52706 128 anon_vma_unlock_write(anon_vma);
88c22088
PZ
129 }
130
fdd2e5f8
AB
131 kmem_cache_free(anon_vma_cachep, anon_vma);
132}
1da177e4 133
dd34739c 134static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 135{
dd34739c 136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
137}
138
e574b5fd 139static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
140{
141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142}
143
6583a843
KC
144static void anon_vma_chain_link(struct vm_area_struct *vma,
145 struct anon_vma_chain *avc,
146 struct anon_vma *anon_vma)
147{
148 avc->vma = vma;
149 avc->anon_vma = anon_vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
152}
153
d9d332e0 154/**
d5a187da 155 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
156 * @vma: the memory region in question
157 *
158 * This makes sure the memory mapping described by 'vma' has
159 * an 'anon_vma' attached to it, so that we can associate the
160 * anonymous pages mapped into it with that anon_vma.
161 *
d5a187da
VB
162 * The common case will be that we already have one, which
163 * is handled inline by anon_vma_prepare(). But if
23a0790a 164 * not we either need to find an adjacent mapping that we
d9d332e0
LT
165 * can re-use the anon_vma from (very common when the only
166 * reason for splitting a vma has been mprotect()), or we
167 * allocate a new one.
168 *
169 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
aaf1f990 171 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
172 * allocated vma (it depends on RCU to make sure that the
173 * anon_vma isn't actually destroyed).
174 *
175 * As a result, we need to do proper anon_vma locking even
176 * for the new allocation. At the same time, we do not want
177 * to do any locking for the common case of already having
178 * an anon_vma.
179 *
c1e8d7c6 180 * This must be called with the mmap_lock held for reading.
d9d332e0 181 */
d5a187da 182int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 183{
d5a187da
VB
184 struct mm_struct *mm = vma->vm_mm;
185 struct anon_vma *anon_vma, *allocated;
5beb4930 186 struct anon_vma_chain *avc;
1da177e4
LT
187
188 might_sleep();
1da177e4 189
d5a187da
VB
190 avc = anon_vma_chain_alloc(GFP_KERNEL);
191 if (!avc)
192 goto out_enomem;
193
194 anon_vma = find_mergeable_anon_vma(vma);
195 allocated = NULL;
196 if (!anon_vma) {
197 anon_vma = anon_vma_alloc();
198 if (unlikely(!anon_vma))
199 goto out_enomem_free_avc;
200 allocated = anon_vma;
201 }
5beb4930 202
d5a187da
VB
203 anon_vma_lock_write(anon_vma);
204 /* page_table_lock to protect against threads */
205 spin_lock(&mm->page_table_lock);
206 if (likely(!vma->anon_vma)) {
207 vma->anon_vma = anon_vma;
208 anon_vma_chain_link(vma, avc, anon_vma);
209 /* vma reference or self-parent link for new root */
210 anon_vma->degree++;
d9d332e0 211 allocated = NULL;
d5a187da
VB
212 avc = NULL;
213 }
214 spin_unlock(&mm->page_table_lock);
215 anon_vma_unlock_write(anon_vma);
1da177e4 216
d5a187da
VB
217 if (unlikely(allocated))
218 put_anon_vma(allocated);
219 if (unlikely(avc))
220 anon_vma_chain_free(avc);
31f2b0eb 221
1da177e4 222 return 0;
5beb4930
RR
223
224 out_enomem_free_avc:
225 anon_vma_chain_free(avc);
226 out_enomem:
227 return -ENOMEM;
1da177e4
LT
228}
229
bb4aa396
LT
230/*
231 * This is a useful helper function for locking the anon_vma root as
232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233 * have the same vma.
234 *
235 * Such anon_vma's should have the same root, so you'd expect to see
236 * just a single mutex_lock for the whole traversal.
237 */
238static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239{
240 struct anon_vma *new_root = anon_vma->root;
241 if (new_root != root) {
242 if (WARN_ON_ONCE(root))
5a505085 243 up_write(&root->rwsem);
bb4aa396 244 root = new_root;
5a505085 245 down_write(&root->rwsem);
bb4aa396
LT
246 }
247 return root;
248}
249
250static inline void unlock_anon_vma_root(struct anon_vma *root)
251{
252 if (root)
5a505085 253 up_write(&root->rwsem);
bb4aa396
LT
254}
255
5beb4930
RR
256/*
257 * Attach the anon_vmas from src to dst.
258 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 259 *
cb152a1a 260 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
261 * anon_vma_fork(). The first three want an exact copy of src, while the last
262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265 *
266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
269 * case of constantly forking task. On the other hand, an anon_vma with more
270 * than one child isn't reused even if there was no alive vma, thus rmap
271 * walker has a good chance of avoiding scanning the whole hierarchy when it
272 * searches where page is mapped.
5beb4930
RR
273 */
274int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 275{
5beb4930 276 struct anon_vma_chain *avc, *pavc;
bb4aa396 277 struct anon_vma *root = NULL;
5beb4930 278
646d87b4 279 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
280 struct anon_vma *anon_vma;
281
dd34739c
LT
282 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 if (unlikely(!avc)) {
284 unlock_anon_vma_root(root);
285 root = NULL;
286 avc = anon_vma_chain_alloc(GFP_KERNEL);
287 if (!avc)
288 goto enomem_failure;
289 }
bb4aa396
LT
290 anon_vma = pavc->anon_vma;
291 root = lock_anon_vma_root(root, anon_vma);
292 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
293
294 /*
295 * Reuse existing anon_vma if its degree lower than two,
296 * that means it has no vma and only one anon_vma child.
297 *
298 * Do not chose parent anon_vma, otherwise first child
299 * will always reuse it. Root anon_vma is never reused:
300 * it has self-parent reference and at least one child.
301 */
47b390d2
WY
302 if (!dst->anon_vma && src->anon_vma &&
303 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 304 dst->anon_vma = anon_vma;
5beb4930 305 }
7a3ef208
KK
306 if (dst->anon_vma)
307 dst->anon_vma->degree++;
bb4aa396 308 unlock_anon_vma_root(root);
5beb4930 309 return 0;
1da177e4 310
5beb4930 311 enomem_failure:
3fe89b3e
LY
312 /*
313 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 * decremented in unlink_anon_vmas().
315 * We can safely do this because callers of anon_vma_clone() don't care
316 * about dst->anon_vma if anon_vma_clone() failed.
317 */
318 dst->anon_vma = NULL;
5beb4930
RR
319 unlink_anon_vmas(dst);
320 return -ENOMEM;
1da177e4
LT
321}
322
5beb4930
RR
323/*
324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
325 * the corresponding VMA in the parent process is attached to.
326 * Returns 0 on success, non-zero on failure.
327 */
328int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 329{
5beb4930
RR
330 struct anon_vma_chain *avc;
331 struct anon_vma *anon_vma;
c4ea95d7 332 int error;
1da177e4 333
5beb4930
RR
334 /* Don't bother if the parent process has no anon_vma here. */
335 if (!pvma->anon_vma)
336 return 0;
337
7a3ef208
KK
338 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 vma->anon_vma = NULL;
340
5beb4930
RR
341 /*
342 * First, attach the new VMA to the parent VMA's anon_vmas,
343 * so rmap can find non-COWed pages in child processes.
344 */
c4ea95d7
DF
345 error = anon_vma_clone(vma, pvma);
346 if (error)
347 return error;
5beb4930 348
7a3ef208
KK
349 /* An existing anon_vma has been reused, all done then. */
350 if (vma->anon_vma)
351 return 0;
352
5beb4930
RR
353 /* Then add our own anon_vma. */
354 anon_vma = anon_vma_alloc();
355 if (!anon_vma)
356 goto out_error;
dd34739c 357 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
358 if (!avc)
359 goto out_error_free_anon_vma;
5c341ee1
RR
360
361 /*
aaf1f990 362 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
363 * lock any of the anon_vmas in this anon_vma tree.
364 */
365 anon_vma->root = pvma->anon_vma->root;
7a3ef208 366 anon_vma->parent = pvma->anon_vma;
76545066 367 /*
01d8b20d
PZ
368 * With refcounts, an anon_vma can stay around longer than the
369 * process it belongs to. The root anon_vma needs to be pinned until
370 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
371 */
372 get_anon_vma(anon_vma->root);
5beb4930
RR
373 /* Mark this anon_vma as the one where our new (COWed) pages go. */
374 vma->anon_vma = anon_vma;
4fc3f1d6 375 anon_vma_lock_write(anon_vma);
5c341ee1 376 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 377 anon_vma->parent->degree++;
08b52706 378 anon_vma_unlock_write(anon_vma);
5beb4930
RR
379
380 return 0;
381
382 out_error_free_anon_vma:
01d8b20d 383 put_anon_vma(anon_vma);
5beb4930 384 out_error:
4946d54c 385 unlink_anon_vmas(vma);
5beb4930 386 return -ENOMEM;
1da177e4
LT
387}
388
5beb4930
RR
389void unlink_anon_vmas(struct vm_area_struct *vma)
390{
391 struct anon_vma_chain *avc, *next;
eee2acba 392 struct anon_vma *root = NULL;
5beb4930 393
5c341ee1
RR
394 /*
395 * Unlink each anon_vma chained to the VMA. This list is ordered
396 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 */
5beb4930 398 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
399 struct anon_vma *anon_vma = avc->anon_vma;
400
401 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 402 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
403
404 /*
405 * Leave empty anon_vmas on the list - we'll need
406 * to free them outside the lock.
407 */
f808c13f 408 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 409 anon_vma->parent->degree--;
eee2acba 410 continue;
7a3ef208 411 }
eee2acba
PZ
412
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
ee8ab190 416 if (vma->anon_vma) {
7a3ef208 417 vma->anon_vma->degree--;
ee8ab190
LX
418
419 /*
420 * vma would still be needed after unlink, and anon_vma will be prepared
421 * when handle fault.
422 */
423 vma->anon_vma = NULL;
424 }
eee2acba
PZ
425 unlock_anon_vma_root(root);
426
427 /*
428 * Iterate the list once more, it now only contains empty and unlinked
429 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 430 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
431 */
432 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 struct anon_vma *anon_vma = avc->anon_vma;
434
e4c5800a 435 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
436 put_anon_vma(anon_vma);
437
5beb4930
RR
438 list_del(&avc->same_vma);
439 anon_vma_chain_free(avc);
440 }
441}
442
51cc5068 443static void anon_vma_ctor(void *data)
1da177e4 444{
a35afb83 445 struct anon_vma *anon_vma = data;
1da177e4 446
5a505085 447 init_rwsem(&anon_vma->rwsem);
83813267 448 atomic_set(&anon_vma->refcount, 0);
f808c13f 449 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
450}
451
452void __init anon_vma_init(void)
453{
454 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 455 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
456 anon_vma_ctor);
457 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
459}
460
461/*
6111e4ca
PZ
462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463 *
464 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
465 * the best this function can do is return a refcount increased anon_vma
466 * that might have been relevant to this page.
6111e4ca
PZ
467 *
468 * The page might have been remapped to a different anon_vma or the anon_vma
469 * returned may already be freed (and even reused).
470 *
bc658c96
PZ
471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473 * ensure that any anon_vma obtained from the page will still be valid for as
474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475 *
6111e4ca
PZ
476 * All users of this function must be very careful when walking the anon_vma
477 * chain and verify that the page in question is indeed mapped in it
478 * [ something equivalent to page_mapped_in_vma() ].
479 *
091e4299
MC
480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482 * if there is a mapcount, we can dereference the anon_vma after observing
483 * those.
1da177e4 484 */
746b18d4 485struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 486{
746b18d4 487 struct anon_vma *anon_vma = NULL;
1da177e4
LT
488 unsigned long anon_mapping;
489
490 rcu_read_lock();
4db0c3c2 491 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 492 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
493 goto out;
494 if (!page_mapped(page))
495 goto out;
496
497 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
498 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 anon_vma = NULL;
500 goto out;
501 }
f1819427
HD
502
503 /*
504 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
505 * freed. But if it has been unmapped, we have no security against the
506 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 507 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 508 * above cannot corrupt).
f1819427 509 */
746b18d4 510 if (!page_mapped(page)) {
7f39dda9 511 rcu_read_unlock();
746b18d4 512 put_anon_vma(anon_vma);
7f39dda9 513 return NULL;
746b18d4 514 }
1da177e4
LT
515out:
516 rcu_read_unlock();
746b18d4
PZ
517
518 return anon_vma;
519}
520
88c22088
PZ
521/*
522 * Similar to page_get_anon_vma() except it locks the anon_vma.
523 *
524 * Its a little more complex as it tries to keep the fast path to a single
525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526 * reference like with page_get_anon_vma() and then block on the mutex.
527 */
4fc3f1d6 528struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 529{
88c22088 530 struct anon_vma *anon_vma = NULL;
eee0f252 531 struct anon_vma *root_anon_vma;
88c22088 532 unsigned long anon_mapping;
746b18d4 533
88c22088 534 rcu_read_lock();
4db0c3c2 535 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
536 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 goto out;
538 if (!page_mapped(page))
539 goto out;
540
541 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 542 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 543 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 544 /*
eee0f252
HD
545 * If the page is still mapped, then this anon_vma is still
546 * its anon_vma, and holding the mutex ensures that it will
bc658c96 547 * not go away, see anon_vma_free().
88c22088 548 */
eee0f252 549 if (!page_mapped(page)) {
4fc3f1d6 550 up_read(&root_anon_vma->rwsem);
88c22088
PZ
551 anon_vma = NULL;
552 }
553 goto out;
554 }
746b18d4 555
88c22088
PZ
556 /* trylock failed, we got to sleep */
557 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 anon_vma = NULL;
559 goto out;
560 }
561
562 if (!page_mapped(page)) {
7f39dda9 563 rcu_read_unlock();
88c22088 564 put_anon_vma(anon_vma);
7f39dda9 565 return NULL;
88c22088
PZ
566 }
567
568 /* we pinned the anon_vma, its safe to sleep */
569 rcu_read_unlock();
4fc3f1d6 570 anon_vma_lock_read(anon_vma);
88c22088
PZ
571
572 if (atomic_dec_and_test(&anon_vma->refcount)) {
573 /*
574 * Oops, we held the last refcount, release the lock
575 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 576 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 577 */
4fc3f1d6 578 anon_vma_unlock_read(anon_vma);
88c22088
PZ
579 __put_anon_vma(anon_vma);
580 anon_vma = NULL;
581 }
582
583 return anon_vma;
584
585out:
586 rcu_read_unlock();
746b18d4 587 return anon_vma;
34bbd704
ON
588}
589
4fc3f1d6 590void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 591{
4fc3f1d6 592 anon_vma_unlock_read(anon_vma);
1da177e4
LT
593}
594
72b252ae 595#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
596/*
597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598 * important if a PTE was dirty when it was unmapped that it's flushed
599 * before any IO is initiated on the page to prevent lost writes. Similarly,
600 * it must be flushed before freeing to prevent data leakage.
601 */
602void try_to_unmap_flush(void)
603{
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
605
606 if (!tlb_ubc->flush_required)
607 return;
608
e73ad5ff 609 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 610 tlb_ubc->flush_required = false;
d950c947 611 tlb_ubc->writable = false;
72b252ae
MG
612}
613
d950c947
MG
614/* Flush iff there are potentially writable TLB entries that can race with IO */
615void try_to_unmap_flush_dirty(void)
616{
617 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618
619 if (tlb_ubc->writable)
620 try_to_unmap_flush();
621}
622
c7ab0d2f 623static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
624{
625 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626
e73ad5ff 627 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 628 tlb_ubc->flush_required = true;
d950c947 629
3ea27719
MG
630 /*
631 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 * before the PTE is cleared.
633 */
634 barrier();
635 mm->tlb_flush_batched = true;
636
d950c947
MG
637 /*
638 * If the PTE was dirty then it's best to assume it's writable. The
639 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 * before the page is queued for IO.
641 */
642 if (writable)
643 tlb_ubc->writable = true;
72b252ae
MG
644}
645
646/*
647 * Returns true if the TLB flush should be deferred to the end of a batch of
648 * unmap operations to reduce IPIs.
649 */
650static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651{
652 bool should_defer = false;
653
654 if (!(flags & TTU_BATCH_FLUSH))
655 return false;
656
657 /* If remote CPUs need to be flushed then defer batch the flush */
658 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 should_defer = true;
660 put_cpu();
661
662 return should_defer;
663}
3ea27719
MG
664
665/*
666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668 * operation such as mprotect or munmap to race between reclaim unmapping
669 * the page and flushing the page. If this race occurs, it potentially allows
670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
671 * batching in flight would be expensive during reclaim so instead track
672 * whether TLB batching occurred in the past and if so then do a flush here
673 * if required. This will cost one additional flush per reclaim cycle paid
674 * by the first operation at risk such as mprotect and mumap.
675 *
676 * This must be called under the PTL so that an access to tlb_flush_batched
677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678 * via the PTL.
679 */
680void flush_tlb_batched_pending(struct mm_struct *mm)
681{
9c1177b6 682 if (data_race(mm->tlb_flush_batched)) {
3ea27719
MG
683 flush_tlb_mm(mm);
684
685 /*
686 * Do not allow the compiler to re-order the clearing of
687 * tlb_flush_batched before the tlb is flushed.
688 */
689 barrier();
690 mm->tlb_flush_batched = false;
691 }
692}
72b252ae 693#else
c7ab0d2f 694static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
695{
696}
697
698static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699{
700 return false;
701}
702#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703
1da177e4 704/*
bf89c8c8 705 * At what user virtual address is page expected in vma?
ab941e0f 706 * Caller should check the page is actually part of the vma.
1da177e4
LT
707 */
708unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709{
21d0d443 710 if (PageAnon(page)) {
4829b906
HD
711 struct anon_vma *page__anon_vma = page_anon_vma(page);
712 /*
713 * Note: swapoff's unuse_vma() is more efficient with this
714 * check, and needs it to match anon_vma when KSM is active.
715 */
716 if (!vma->anon_vma || !page__anon_vma ||
717 vma->anon_vma->root != page__anon_vma->root)
21d0d443 718 return -EFAULT;
31657170
JW
719 } else if (!vma->vm_file) {
720 return -EFAULT;
721 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
1da177e4 722 return -EFAULT;
31657170 723 }
494334e4
HD
724
725 return vma_address(page, vma);
1da177e4
LT
726}
727
6219049a
BL
728pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
729{
730 pgd_t *pgd;
c2febafc 731 p4d_t *p4d;
6219049a
BL
732 pud_t *pud;
733 pmd_t *pmd = NULL;
f72e7dcd 734 pmd_t pmde;
6219049a
BL
735
736 pgd = pgd_offset(mm, address);
737 if (!pgd_present(*pgd))
738 goto out;
739
c2febafc
KS
740 p4d = p4d_offset(pgd, address);
741 if (!p4d_present(*p4d))
742 goto out;
743
744 pud = pud_offset(p4d, address);
6219049a
BL
745 if (!pud_present(*pud))
746 goto out;
747
748 pmd = pmd_offset(pud, address);
f72e7dcd 749 /*
8809aa2d 750 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
751 * without holding anon_vma lock for write. So when looking for a
752 * genuine pmde (in which to find pte), test present and !THP together.
753 */
e37c6982
CB
754 pmde = *pmd;
755 barrier();
f72e7dcd 756 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
757 pmd = NULL;
758out:
759 return pmd;
760}
761
8749cfea
VD
762struct page_referenced_arg {
763 int mapcount;
764 int referenced;
765 unsigned long vm_flags;
766 struct mem_cgroup *memcg;
767};
768/*
769 * arg: page_referenced_arg will be passed
770 */
e4b82222 771static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
772 unsigned long address, void *arg)
773{
8749cfea 774 struct page_referenced_arg *pra = arg;
8eaedede
KS
775 struct page_vma_mapped_walk pvmw = {
776 .page = page,
777 .vma = vma,
778 .address = address,
779 };
8749cfea
VD
780 int referenced = 0;
781
8eaedede
KS
782 while (page_vma_mapped_walk(&pvmw)) {
783 address = pvmw.address;
b20ce5e0 784
8eaedede
KS
785 if (vma->vm_flags & VM_LOCKED) {
786 page_vma_mapped_walk_done(&pvmw);
787 pra->vm_flags |= VM_LOCKED;
e4b82222 788 return false; /* To break the loop */
8eaedede 789 }
71e3aac0 790
8eaedede
KS
791 if (pvmw.pte) {
792 if (ptep_clear_flush_young_notify(vma, address,
793 pvmw.pte)) {
794 /*
795 * Don't treat a reference through
796 * a sequentially read mapping as such.
797 * If the page has been used in another mapping,
798 * we will catch it; if this other mapping is
799 * already gone, the unmap path will have set
800 * PG_referenced or activated the page.
801 */
802 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
803 referenced++;
804 }
805 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
806 if (pmdp_clear_flush_young_notify(vma, address,
807 pvmw.pmd))
8749cfea 808 referenced++;
8eaedede
KS
809 } else {
810 /* unexpected pmd-mapped page? */
811 WARN_ON_ONCE(1);
8749cfea 812 }
8eaedede
KS
813
814 pra->mapcount--;
b20ce5e0 815 }
b20ce5e0 816
33c3fc71
VD
817 if (referenced)
818 clear_page_idle(page);
819 if (test_and_clear_page_young(page))
820 referenced++;
821
9f32624b
JK
822 if (referenced) {
823 pra->referenced++;
824 pra->vm_flags |= vma->vm_flags;
1da177e4 825 }
34bbd704 826
9f32624b 827 if (!pra->mapcount)
e4b82222 828 return false; /* To break the loop */
9f32624b 829
e4b82222 830 return true;
1da177e4
LT
831}
832
9f32624b 833static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 834{
9f32624b
JK
835 struct page_referenced_arg *pra = arg;
836 struct mem_cgroup *memcg = pra->memcg;
1da177e4 837
9f32624b
JK
838 if (!mm_match_cgroup(vma->vm_mm, memcg))
839 return true;
1da177e4 840
9f32624b 841 return false;
1da177e4
LT
842}
843
844/**
845 * page_referenced - test if the page was referenced
846 * @page: the page to test
847 * @is_locked: caller holds lock on the page
72835c86 848 * @memcg: target memory cgroup
6fe6b7e3 849 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
850 *
851 * Quick test_and_clear_referenced for all mappings to a page,
852 * returns the number of ptes which referenced the page.
853 */
6fe6b7e3
WF
854int page_referenced(struct page *page,
855 int is_locked,
72835c86 856 struct mem_cgroup *memcg,
6fe6b7e3 857 unsigned long *vm_flags)
1da177e4 858{
5ad64688 859 int we_locked = 0;
9f32624b 860 struct page_referenced_arg pra = {
b20ce5e0 861 .mapcount = total_mapcount(page),
9f32624b
JK
862 .memcg = memcg,
863 };
864 struct rmap_walk_control rwc = {
865 .rmap_one = page_referenced_one,
866 .arg = (void *)&pra,
867 .anon_lock = page_lock_anon_vma_read,
868 };
1da177e4 869
6fe6b7e3 870 *vm_flags = 0;
059d8442 871 if (!pra.mapcount)
9f32624b
JK
872 return 0;
873
874 if (!page_rmapping(page))
875 return 0;
876
877 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
878 we_locked = trylock_page(page);
879 if (!we_locked)
880 return 1;
1da177e4 881 }
9f32624b
JK
882
883 /*
884 * If we are reclaiming on behalf of a cgroup, skip
885 * counting on behalf of references from different
886 * cgroups
887 */
888 if (memcg) {
889 rwc.invalid_vma = invalid_page_referenced_vma;
890 }
891
c24f386c 892 rmap_walk(page, &rwc);
9f32624b
JK
893 *vm_flags = pra.vm_flags;
894
895 if (we_locked)
896 unlock_page(page);
897
898 return pra.referenced;
1da177e4
LT
899}
900
e4b82222 901static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 902 unsigned long address, void *arg)
d08b3851 903{
f27176cf
KS
904 struct page_vma_mapped_walk pvmw = {
905 .page = page,
906 .vma = vma,
907 .address = address,
908 .flags = PVMW_SYNC,
909 };
ac46d4f3 910 struct mmu_notifier_range range;
9853a407 911 int *cleaned = arg;
d08b3851 912
369ea824
JG
913 /*
914 * We have to assume the worse case ie pmd for invalidation. Note that
915 * the page can not be free from this function.
916 */
7269f999
JG
917 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
918 0, vma, vma->vm_mm, address,
494334e4 919 vma_address_end(page, vma));
ac46d4f3 920 mmu_notifier_invalidate_range_start(&range);
369ea824 921
f27176cf
KS
922 while (page_vma_mapped_walk(&pvmw)) {
923 int ret = 0;
369ea824 924
1f18b296 925 address = pvmw.address;
f27176cf
KS
926 if (pvmw.pte) {
927 pte_t entry;
928 pte_t *pte = pvmw.pte;
929
930 if (!pte_dirty(*pte) && !pte_write(*pte))
931 continue;
932
785373b4
LT
933 flush_cache_page(vma, address, pte_pfn(*pte));
934 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
935 entry = pte_wrprotect(entry);
936 entry = pte_mkclean(entry);
785373b4 937 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
938 ret = 1;
939 } else {
396bcc52 940#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f27176cf
KS
941 pmd_t *pmd = pvmw.pmd;
942 pmd_t entry;
943
944 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
945 continue;
946
785373b4 947 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 948 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
949 entry = pmd_wrprotect(entry);
950 entry = pmd_mkclean(entry);
785373b4 951 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
952 ret = 1;
953#else
954 /* unexpected pmd-mapped page? */
955 WARN_ON_ONCE(1);
956#endif
957 }
d08b3851 958
0f10851e
JG
959 /*
960 * No need to call mmu_notifier_invalidate_range() as we are
961 * downgrading page table protection not changing it to point
962 * to a new page.
963 *
ad56b738 964 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
965 */
966 if (ret)
f27176cf 967 (*cleaned)++;
c2fda5fe 968 }
d08b3851 969
ac46d4f3 970 mmu_notifier_invalidate_range_end(&range);
369ea824 971
e4b82222 972 return true;
d08b3851
PZ
973}
974
9853a407 975static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 976{
9853a407 977 if (vma->vm_flags & VM_SHARED)
871beb8c 978 return false;
d08b3851 979
871beb8c 980 return true;
d08b3851
PZ
981}
982
983int page_mkclean(struct page *page)
984{
9853a407
JK
985 int cleaned = 0;
986 struct address_space *mapping;
987 struct rmap_walk_control rwc = {
988 .arg = (void *)&cleaned,
989 .rmap_one = page_mkclean_one,
990 .invalid_vma = invalid_mkclean_vma,
991 };
d08b3851
PZ
992
993 BUG_ON(!PageLocked(page));
994
9853a407
JK
995 if (!page_mapped(page))
996 return 0;
997
998 mapping = page_mapping(page);
999 if (!mapping)
1000 return 0;
1001
1002 rmap_walk(page, &rwc);
d08b3851 1003
9853a407 1004 return cleaned;
d08b3851 1005}
60b59bea 1006EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1007
c44b6743
RR
1008/**
1009 * page_move_anon_rmap - move a page to our anon_vma
1010 * @page: the page to move to our anon_vma
1011 * @vma: the vma the page belongs to
c44b6743
RR
1012 *
1013 * When a page belongs exclusively to one process after a COW event,
1014 * that page can be moved into the anon_vma that belongs to just that
1015 * process, so the rmap code will not search the parent or sibling
1016 * processes.
1017 */
5a49973d 1018void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1019{
1020 struct anon_vma *anon_vma = vma->anon_vma;
1021
5a49973d
HD
1022 page = compound_head(page);
1023
309381fe 1024 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1025 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1026
1027 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1028 /*
1029 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1030 * simultaneously, so a concurrent reader (eg page_referenced()'s
1031 * PageAnon()) will not see one without the other.
1032 */
1033 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1034}
1035
9617d95e 1036/**
4e1c1975 1037 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1038 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1039 * @vma: VM area to add page to.
1040 * @address: User virtual address of the mapping
e8a03feb 1041 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1042 */
1043static void __page_set_anon_rmap(struct page *page,
e8a03feb 1044 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1045{
e8a03feb 1046 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1047
e8a03feb 1048 BUG_ON(!anon_vma);
ea90002b 1049
4e1c1975
AK
1050 if (PageAnon(page))
1051 return;
1052
ea90002b 1053 /*
e8a03feb
RR
1054 * If the page isn't exclusively mapped into this vma,
1055 * we must use the _oldest_ possible anon_vma for the
1056 * page mapping!
ea90002b 1057 */
4e1c1975 1058 if (!exclusive)
288468c3 1059 anon_vma = anon_vma->root;
9617d95e 1060
16f5e707
AS
1061 /*
1062 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1063 * Make sure the compiler doesn't split the stores of anon_vma and
1064 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1065 * could mistake the mapping for a struct address_space and crash.
1066 */
9617d95e 1067 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1068 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1069 page->index = linear_page_index(vma, address);
9617d95e
NP
1070}
1071
c97a9e10 1072/**
43d8eac4 1073 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1077 */
1078static void __page_check_anon_rmap(struct page *page,
1079 struct vm_area_struct *vma, unsigned long address)
1080{
c97a9e10
NP
1081 /*
1082 * The page's anon-rmap details (mapping and index) are guaranteed to
1083 * be set up correctly at this point.
1084 *
1085 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1086 * always holds the page locked.
c97a9e10
NP
1087 *
1088 * We have exclusion against page_add_new_anon_rmap because those pages
1089 * are initially only visible via the pagetables, and the pte is locked
1090 * over the call to page_add_new_anon_rmap.
1091 */
30c46382
YS
1092 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1093 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1094 page);
c97a9e10
NP
1095}
1096
1da177e4
LT
1097/**
1098 * page_add_anon_rmap - add pte mapping to an anonymous page
1099 * @page: the page to add the mapping to
1100 * @vma: the vm area in which the mapping is added
1101 * @address: the user virtual address mapped
d281ee61 1102 * @compound: charge the page as compound or small page
1da177e4 1103 *
5ad64688 1104 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1105 * the anon_vma case: to serialize mapping,index checking after setting,
1106 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1107 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1108 */
1109void page_add_anon_rmap(struct page *page,
d281ee61 1110 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1111{
d281ee61 1112 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1113}
1114
1115/*
1116 * Special version of the above for do_swap_page, which often runs
1117 * into pages that are exclusively owned by the current process.
1118 * Everybody else should continue to use page_add_anon_rmap above.
1119 */
1120void do_page_add_anon_rmap(struct page *page,
d281ee61 1121 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1122{
53f9263b
KS
1123 bool compound = flags & RMAP_COMPOUND;
1124 bool first;
1125
be5d0a74
JW
1126 if (unlikely(PageKsm(page)))
1127 lock_page_memcg(page);
1128 else
1129 VM_BUG_ON_PAGE(!PageLocked(page), page);
1130
e9b61f19
KS
1131 if (compound) {
1132 atomic_t *mapcount;
53f9263b 1133 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1134 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1135 mapcount = compound_mapcount_ptr(page);
1136 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1137 } else {
1138 first = atomic_inc_and_test(&page->_mapcount);
1139 }
1140
79134171 1141 if (first) {
6c357848 1142 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1143 /*
1144 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1145 * these counters are not modified in interrupt context, and
1146 * pte lock(a spinlock) is held, which implies preemption
1147 * disabled.
1148 */
65c45377 1149 if (compound)
69473e5d 1150 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1151 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1152 }
5ad64688 1153
be5d0a74
JW
1154 if (unlikely(PageKsm(page))) {
1155 unlock_page_memcg(page);
1156 return;
1157 }
53f9263b 1158
5dbe0af4 1159 /* address might be in next vma when migration races vma_adjust */
5ad64688 1160 if (first)
d281ee61
KS
1161 __page_set_anon_rmap(page, vma, address,
1162 flags & RMAP_EXCLUSIVE);
69029cd5 1163 else
c97a9e10 1164 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1165}
1166
43d8eac4 1167/**
9617d95e
NP
1168 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1169 * @page: the page to add the mapping to
1170 * @vma: the vm area in which the mapping is added
1171 * @address: the user virtual address mapped
d281ee61 1172 * @compound: charge the page as compound or small page
9617d95e
NP
1173 *
1174 * Same as page_add_anon_rmap but must only be called on *new* pages.
1175 * This means the inc-and-test can be bypassed.
c97a9e10 1176 * Page does not have to be locked.
9617d95e
NP
1177 */
1178void page_add_new_anon_rmap(struct page *page,
d281ee61 1179 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1180{
6c357848 1181 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1182
81d1b09c 1183 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1184 __SetPageSwapBacked(page);
d281ee61
KS
1185 if (compound) {
1186 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1187 /* increment count (starts at -1) */
1188 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1189 if (hpage_pincount_available(page))
1190 atomic_set(compound_pincount_ptr(page), 0);
1191
69473e5d 1192 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b
KS
1193 } else {
1194 /* Anon THP always mapped first with PMD */
1195 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1196 /* increment count (starts at -1) */
1197 atomic_set(&page->_mapcount, 0);
d281ee61 1198 }
be5d0a74 1199 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1200 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1201}
1202
1da177e4
LT
1203/**
1204 * page_add_file_rmap - add pte mapping to a file page
1205 * @page: the page to add the mapping to
e8b098fc 1206 * @compound: charge the page as compound or small page
1da177e4 1207 *
b8072f09 1208 * The caller needs to hold the pte lock.
1da177e4 1209 */
dd78fedd 1210void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1211{
dd78fedd
KS
1212 int i, nr = 1;
1213
1214 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1215 lock_page_memcg(page);
dd78fedd 1216 if (compound && PageTransHuge(page)) {
a1528e21
MS
1217 int nr_pages = thp_nr_pages(page);
1218
1219 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1220 if (atomic_inc_and_test(&page[i]._mapcount))
1221 nr++;
1222 }
1223 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1224 goto out;
99cb0dbd 1225 if (PageSwapBacked(page))
a1528e21
MS
1226 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1227 nr_pages);
99cb0dbd 1228 else
380780e7
MS
1229 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1230 nr_pages);
dd78fedd 1231 } else {
c8efc390
KS
1232 if (PageTransCompound(page) && page_mapping(page)) {
1233 VM_WARN_ON_ONCE(!PageLocked(page));
1234
9a73f61b
KS
1235 SetPageDoubleMap(compound_head(page));
1236 if (PageMlocked(page))
1237 clear_page_mlock(compound_head(page));
1238 }
dd78fedd
KS
1239 if (!atomic_inc_and_test(&page->_mapcount))
1240 goto out;
d69b042f 1241 }
00f3ca2c 1242 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1243out:
62cccb8c 1244 unlock_page_memcg(page);
1da177e4
LT
1245}
1246
dd78fedd 1247static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1248{
dd78fedd
KS
1249 int i, nr = 1;
1250
57dea93a 1251 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1252
53f9263b
KS
1253 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1254 if (unlikely(PageHuge(page))) {
1255 /* hugetlb pages are always mapped with pmds */
1256 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1257 return;
53f9263b 1258 }
8186eb6a 1259
53f9263b 1260 /* page still mapped by someone else? */
dd78fedd 1261 if (compound && PageTransHuge(page)) {
a1528e21
MS
1262 int nr_pages = thp_nr_pages(page);
1263
1264 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1265 if (atomic_add_negative(-1, &page[i]._mapcount))
1266 nr++;
1267 }
1268 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
be5d0a74 1269 return;
99cb0dbd 1270 if (PageSwapBacked(page))
a1528e21
MS
1271 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1272 -nr_pages);
99cb0dbd 1273 else
380780e7
MS
1274 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1275 -nr_pages);
dd78fedd
KS
1276 } else {
1277 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1278 return;
dd78fedd 1279 }
8186eb6a
JW
1280
1281 /*
00f3ca2c 1282 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1283 * these counters are not modified in interrupt context, and
1284 * pte lock(a spinlock) is held, which implies preemption disabled.
1285 */
00f3ca2c 1286 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1287
1288 if (unlikely(PageMlocked(page)))
1289 clear_page_mlock(page);
8186eb6a
JW
1290}
1291
53f9263b
KS
1292static void page_remove_anon_compound_rmap(struct page *page)
1293{
1294 int i, nr;
1295
1296 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1297 return;
1298
1299 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1300 if (unlikely(PageHuge(page)))
1301 return;
1302
1303 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1304 return;
1305
69473e5d 1306 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1307
1308 if (TestClearPageDoubleMap(page)) {
1309 /*
1310 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1311 * them are still mapped.
53f9263b 1312 */
5eaf35ab 1313 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1314 if (atomic_add_negative(-1, &page[i]._mapcount))
1315 nr++;
1316 }
f1fe80d4
KS
1317
1318 /*
1319 * Queue the page for deferred split if at least one small
1320 * page of the compound page is unmapped, but at least one
1321 * small page is still mapped.
1322 */
5eaf35ab 1323 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1324 deferred_split_huge_page(page);
53f9263b 1325 } else {
5eaf35ab 1326 nr = thp_nr_pages(page);
53f9263b
KS
1327 }
1328
e90309c9
KS
1329 if (unlikely(PageMlocked(page)))
1330 clear_page_mlock(page);
1331
f1fe80d4 1332 if (nr)
be5d0a74 1333 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1334}
1335
1da177e4
LT
1336/**
1337 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1338 * @page: page to remove mapping from
1339 * @compound: uncharge the page as compound or small page
1da177e4 1340 *
b8072f09 1341 * The caller needs to hold the pte lock.
1da177e4 1342 */
d281ee61 1343void page_remove_rmap(struct page *page, bool compound)
1da177e4 1344{
be5d0a74 1345 lock_page_memcg(page);
89c06bd5 1346
be5d0a74
JW
1347 if (!PageAnon(page)) {
1348 page_remove_file_rmap(page, compound);
1349 goto out;
1350 }
1351
1352 if (compound) {
1353 page_remove_anon_compound_rmap(page);
1354 goto out;
1355 }
53f9263b 1356
b904dcfe
KM
1357 /* page still mapped by someone else? */
1358 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1359 goto out;
8186eb6a 1360
0fe6e20b 1361 /*
bea04b07
JZ
1362 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1363 * these counters are not modified in interrupt context, and
bea04b07 1364 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1365 */
be5d0a74 1366 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1367
e6c509f8
HD
1368 if (unlikely(PageMlocked(page)))
1369 clear_page_mlock(page);
8186eb6a 1370
9a982250
KS
1371 if (PageTransCompound(page))
1372 deferred_split_huge_page(compound_head(page));
1373
b904dcfe
KM
1374 /*
1375 * It would be tidy to reset the PageAnon mapping here,
1376 * but that might overwrite a racing page_add_anon_rmap
1377 * which increments mapcount after us but sets mapping
2d4894b5 1378 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1379 * and remember that it's only reliable while mapped.
1380 * Leaving it set also helps swapoff to reinstate ptes
1381 * faster for those pages still in swapcache.
1382 */
be5d0a74
JW
1383out:
1384 unlock_page_memcg(page);
1da177e4
LT
1385}
1386
1387/*
52629506 1388 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1389 */
e4b82222 1390static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1391 unsigned long address, void *arg)
1da177e4
LT
1392{
1393 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1394 struct page_vma_mapped_walk pvmw = {
1395 .page = page,
1396 .vma = vma,
1397 .address = address,
1398 };
1da177e4 1399 pte_t pteval;
c7ab0d2f 1400 struct page *subpage;
785373b4 1401 bool ret = true;
ac46d4f3 1402 struct mmu_notifier_range range;
4708f318 1403 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1404
732ed558
HD
1405 /*
1406 * When racing against e.g. zap_pte_range() on another cpu,
1407 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1408 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1409 * if page table locking is skipped: use TTU_SYNC to wait for that.
1410 */
1411 if (flags & TTU_SYNC)
1412 pvmw.flags = PVMW_SYNC;
1413
a5430dda
JG
1414 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1415 is_zone_device_page(page) && !is_device_private_page(page))
1416 return true;
1417
fec89c10
KS
1418 if (flags & TTU_SPLIT_HUGE_PMD) {
1419 split_huge_pmd_address(vma, address,
b5ff8161 1420 flags & TTU_SPLIT_FREEZE, page);
fec89c10
KS
1421 }
1422
369ea824 1423 /*
017b1660
MK
1424 * For THP, we have to assume the worse case ie pmd for invalidation.
1425 * For hugetlb, it could be much worse if we need to do pud
1426 * invalidation in the case of pmd sharing.
1427 *
1428 * Note that the page can not be free in this function as call of
1429 * try_to_unmap() must hold a reference on the page.
369ea824 1430 */
494334e4
HD
1431 range.end = PageKsm(page) ?
1432 address + PAGE_SIZE : vma_address_end(page, vma);
7269f999 1433 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1434 address, range.end);
017b1660
MK
1435 if (PageHuge(page)) {
1436 /*
1437 * If sharing is possible, start and end will be adjusted
1438 * accordingly.
1439 */
ac46d4f3
JG
1440 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1441 &range.end);
017b1660 1442 }
ac46d4f3 1443 mmu_notifier_invalidate_range_start(&range);
369ea824 1444
c7ab0d2f 1445 while (page_vma_mapped_walk(&pvmw)) {
616b8371
ZY
1446#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1447 /* PMD-mapped THP migration entry */
1448 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1449 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1450
616b8371
ZY
1451 set_pmd_migration_entry(&pvmw, page);
1452 continue;
1453 }
1454#endif
1455
c7ab0d2f
KS
1456 /*
1457 * If the page is mlock()d, we cannot swap it out.
1458 * If it's recently referenced (perhaps page_referenced
1459 * skipped over this mm) then we should reactivate it.
1460 */
1461 if (!(flags & TTU_IGNORE_MLOCK)) {
1462 if (vma->vm_flags & VM_LOCKED) {
1463 /* PTE-mapped THP are never mlocked */
1464 if (!PageTransCompound(page)) {
1465 /*
1466 * Holding pte lock, we do *not* need
c1e8d7c6 1467 * mmap_lock here
c7ab0d2f
KS
1468 */
1469 mlock_vma_page(page);
1470 }
e4b82222 1471 ret = false;
c7ab0d2f
KS
1472 page_vma_mapped_walk_done(&pvmw);
1473 break;
9a73f61b 1474 }
b87537d9 1475 }
c7ab0d2f 1476
8346242a
KS
1477 /* Unexpected PMD-mapped THP? */
1478 VM_BUG_ON_PAGE(!pvmw.pte, page);
1479
1480 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1481 address = pvmw.address;
1482
336bf30e 1483 if (PageHuge(page) && !PageAnon(page)) {
c0d0381a
MK
1484 /*
1485 * To call huge_pmd_unshare, i_mmap_rwsem must be
1486 * held in write mode. Caller needs to explicitly
1487 * do this outside rmap routines.
1488 */
1489 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
34ae204f 1490 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
017b1660
MK
1491 /*
1492 * huge_pmd_unshare unmapped an entire PMD
1493 * page. There is no way of knowing exactly
1494 * which PMDs may be cached for this mm, so
1495 * we must flush them all. start/end were
1496 * already adjusted above to cover this range.
1497 */
ac46d4f3
JG
1498 flush_cache_range(vma, range.start, range.end);
1499 flush_tlb_range(vma, range.start, range.end);
1500 mmu_notifier_invalidate_range(mm, range.start,
1501 range.end);
017b1660
MK
1502
1503 /*
1504 * The ref count of the PMD page was dropped
1505 * which is part of the way map counting
1506 * is done for shared PMDs. Return 'true'
1507 * here. When there is no other sharing,
1508 * huge_pmd_unshare returns false and we will
1509 * unmap the actual page and drop map count
1510 * to zero.
1511 */
1512 page_vma_mapped_walk_done(&pvmw);
1513 break;
1514 }
1515 }
8346242a 1516
a5430dda
JG
1517 if (IS_ENABLED(CONFIG_MIGRATION) &&
1518 (flags & TTU_MIGRATION) &&
1519 is_zone_device_page(page)) {
1520 swp_entry_t entry;
1521 pte_t swp_pte;
1522
1523 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1524
1525 /*
1526 * Store the pfn of the page in a special migration
1527 * pte. do_swap_page() will wait until the migration
1528 * pte is removed and then restart fault handling.
1529 */
4dd845b5 1530 entry = make_readable_migration_entry(page_to_pfn(page));
a5430dda 1531 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
1532
1533 /*
1534 * pteval maps a zone device page and is therefore
1535 * a swap pte.
1536 */
1537 if (pte_swp_soft_dirty(pteval))
a5430dda 1538 swp_pte = pte_swp_mksoft_dirty(swp_pte);
ad7df764 1539 if (pte_swp_uffd_wp(pteval))
f45ec5ff 1540 swp_pte = pte_swp_mkuffd_wp(swp_pte);
a5430dda 1541 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
0f10851e
JG
1542 /*
1543 * No need to invalidate here it will synchronize on
1544 * against the special swap migration pte.
1de13ee5
RC
1545 *
1546 * The assignment to subpage above was computed from a
1547 * swap PTE which results in an invalid pointer.
1548 * Since only PAGE_SIZE pages can currently be
1549 * migrated, just set it to page. This will need to be
1550 * changed when hugepage migrations to device private
1551 * memory are supported.
0f10851e 1552 */
1de13ee5 1553 subpage = page;
a5430dda
JG
1554 goto discard;
1555 }
1556
c7ab0d2f 1557 /* Nuke the page table entry. */
785373b4 1558 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1559 if (should_defer_flush(mm, flags)) {
1560 /*
1561 * We clear the PTE but do not flush so potentially
1562 * a remote CPU could still be writing to the page.
1563 * If the entry was previously clean then the
1564 * architecture must guarantee that a clear->dirty
1565 * transition on a cached TLB entry is written through
1566 * and traps if the PTE is unmapped.
1567 */
785373b4 1568 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1569
1570 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1571 } else {
785373b4 1572 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1573 }
72b252ae 1574
c7ab0d2f
KS
1575 /* Move the dirty bit to the page. Now the pte is gone. */
1576 if (pte_dirty(pteval))
1577 set_page_dirty(page);
1da177e4 1578
c7ab0d2f
KS
1579 /* Update high watermark before we lower rss */
1580 update_hiwater_rss(mm);
1da177e4 1581
c7ab0d2f 1582 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1583 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1584 if (PageHuge(page)) {
d8c6546b 1585 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1586 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1587 pvmw.pte, pteval,
1588 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1589 } else {
1590 dec_mm_counter(mm, mm_counter(page));
785373b4 1591 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1592 }
365e9c87 1593
bce73e48 1594 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1595 /*
1596 * The guest indicated that the page content is of no
1597 * interest anymore. Simply discard the pte, vmscan
1598 * will take care of the rest.
bce73e48
CB
1599 * A future reference will then fault in a new zero
1600 * page. When userfaultfd is active, we must not drop
1601 * this page though, as its main user (postcopy
1602 * migration) will not expect userfaults on already
1603 * copied pages.
c7ab0d2f 1604 */
eca56ff9 1605 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1606 /* We have to invalidate as we cleared the pte */
1607 mmu_notifier_invalidate_range(mm, address,
1608 address + PAGE_SIZE);
c7ab0d2f 1609 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
b5ff8161 1610 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
c7ab0d2f
KS
1611 swp_entry_t entry;
1612 pte_t swp_pte;
ca827d55
KA
1613
1614 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1615 set_pte_at(mm, address, pvmw.pte, pteval);
1616 ret = false;
1617 page_vma_mapped_walk_done(&pvmw);
1618 break;
1619 }
1620
c7ab0d2f
KS
1621 /*
1622 * Store the pfn of the page in a special migration
1623 * pte. do_swap_page() will wait until the migration
1624 * pte is removed and then restart fault handling.
1625 */
4dd845b5
AP
1626 if (pte_write(pteval))
1627 entry = make_writable_migration_entry(
1628 page_to_pfn(subpage));
1629 else
1630 entry = make_readable_migration_entry(
1631 page_to_pfn(subpage));
c7ab0d2f
KS
1632 swp_pte = swp_entry_to_pte(entry);
1633 if (pte_soft_dirty(pteval))
1634 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1635 if (pte_uffd_wp(pteval))
1636 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1637 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1638 /*
1639 * No need to invalidate here it will synchronize on
1640 * against the special swap migration pte.
1641 */
c7ab0d2f
KS
1642 } else if (PageAnon(page)) {
1643 swp_entry_t entry = { .val = page_private(subpage) };
1644 pte_t swp_pte;
1645 /*
1646 * Store the swap location in the pte.
1647 * See handle_pte_fault() ...
1648 */
eb94a878
MK
1649 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1650 WARN_ON_ONCE(1);
83612a94 1651 ret = false;
369ea824 1652 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1653 mmu_notifier_invalidate_range(mm, address,
1654 address + PAGE_SIZE);
eb94a878
MK
1655 page_vma_mapped_walk_done(&pvmw);
1656 break;
1657 }
c7ab0d2f 1658
802a3a92
SL
1659 /* MADV_FREE page check */
1660 if (!PageSwapBacked(page)) {
1661 if (!PageDirty(page)) {
0f10851e
JG
1662 /* Invalidate as we cleared the pte */
1663 mmu_notifier_invalidate_range(mm,
1664 address, address + PAGE_SIZE);
802a3a92
SL
1665 dec_mm_counter(mm, MM_ANONPAGES);
1666 goto discard;
1667 }
1668
1669 /*
1670 * If the page was redirtied, it cannot be
1671 * discarded. Remap the page to page table.
1672 */
785373b4 1673 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1674 SetPageSwapBacked(page);
e4b82222 1675 ret = false;
802a3a92
SL
1676 page_vma_mapped_walk_done(&pvmw);
1677 break;
c7ab0d2f 1678 }
854e9ed0 1679
c7ab0d2f 1680 if (swap_duplicate(entry) < 0) {
785373b4 1681 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1682 ret = false;
c7ab0d2f
KS
1683 page_vma_mapped_walk_done(&pvmw);
1684 break;
1685 }
ca827d55
KA
1686 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1687 set_pte_at(mm, address, pvmw.pte, pteval);
1688 ret = false;
1689 page_vma_mapped_walk_done(&pvmw);
1690 break;
1691 }
c7ab0d2f
KS
1692 if (list_empty(&mm->mmlist)) {
1693 spin_lock(&mmlist_lock);
1694 if (list_empty(&mm->mmlist))
1695 list_add(&mm->mmlist, &init_mm.mmlist);
1696 spin_unlock(&mmlist_lock);
1697 }
854e9ed0 1698 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1699 inc_mm_counter(mm, MM_SWAPENTS);
1700 swp_pte = swp_entry_to_pte(entry);
1701 if (pte_soft_dirty(pteval))
1702 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1703 if (pte_uffd_wp(pteval))
1704 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1705 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1706 /* Invalidate as we cleared the pte */
1707 mmu_notifier_invalidate_range(mm, address,
1708 address + PAGE_SIZE);
1709 } else {
1710 /*
906f9cdf
HD
1711 * This is a locked file-backed page, thus it cannot
1712 * be removed from the page cache and replaced by a new
1713 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1714 * concurrent thread might update its page table to
1715 * point at new page while a device still is using this
1716 * page.
1717 *
ad56b738 1718 * See Documentation/vm/mmu_notifier.rst
0f10851e 1719 */
c7ab0d2f 1720 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1721 }
854e9ed0 1722discard:
0f10851e
JG
1723 /*
1724 * No need to call mmu_notifier_invalidate_range() it has be
1725 * done above for all cases requiring it to happen under page
1726 * table lock before mmu_notifier_invalidate_range_end()
1727 *
ad56b738 1728 * See Documentation/vm/mmu_notifier.rst
0f10851e 1729 */
c7ab0d2f
KS
1730 page_remove_rmap(subpage, PageHuge(page));
1731 put_page(page);
c7ab0d2f 1732 }
369ea824 1733
ac46d4f3 1734 mmu_notifier_invalidate_range_end(&range);
369ea824 1735
caed0f48 1736 return ret;
1da177e4
LT
1737}
1738
52629506
JK
1739static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1740{
222100ee 1741 return vma_is_temporary_stack(vma);
52629506
JK
1742}
1743
b7e188ec 1744static int page_not_mapped(struct page *page)
52629506 1745{
b7e188ec 1746 return !page_mapped(page);
2a52bcbc 1747}
52629506 1748
1da177e4
LT
1749/**
1750 * try_to_unmap - try to remove all page table mappings to a page
1751 * @page: the page to get unmapped
14fa31b8 1752 * @flags: action and flags
1da177e4
LT
1753 *
1754 * Tries to remove all the page table entries which are mapping this
1755 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1756 *
1fb08ac6
YS
1757 * It is the caller's responsibility to check if the page is still
1758 * mapped when needed (use TTU_SYNC to prevent accounting races).
1da177e4 1759 */
1fb08ac6 1760void try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1761{
52629506
JK
1762 struct rmap_walk_control rwc = {
1763 .rmap_one = try_to_unmap_one,
802a3a92 1764 .arg = (void *)flags,
b7e188ec 1765 .done = page_not_mapped,
52629506
JK
1766 .anon_lock = page_lock_anon_vma_read,
1767 };
1da177e4 1768
52629506
JK
1769 /*
1770 * During exec, a temporary VMA is setup and later moved.
1771 * The VMA is moved under the anon_vma lock but not the
1772 * page tables leading to a race where migration cannot
1773 * find the migration ptes. Rather than increasing the
1774 * locking requirements of exec(), migration skips
1775 * temporary VMAs until after exec() completes.
1776 */
b5ff8161
NH
1777 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1778 && !PageKsm(page) && PageAnon(page))
52629506
JK
1779 rwc.invalid_vma = invalid_migration_vma;
1780
2a52bcbc 1781 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1782 rmap_walk_locked(page, &rwc);
2a52bcbc 1783 else
33fc80e2 1784 rmap_walk(page, &rwc);
1da177e4 1785}
81b4082d 1786
cd62734c
AP
1787/*
1788 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1789 * found. Once one is found the page is locked and the scan can be terminated.
1790 */
1791static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1792 unsigned long address, void *unused)
1793{
1794 struct page_vma_mapped_walk pvmw = {
1795 .page = page,
1796 .vma = vma,
1797 .address = address,
1798 };
1799
1800 /* An un-locked vma doesn't have any pages to lock, continue the scan */
1801 if (!(vma->vm_flags & VM_LOCKED))
1802 return true;
1803
1804 while (page_vma_mapped_walk(&pvmw)) {
1805 /*
1806 * Need to recheck under the ptl to serialise with
1807 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
1808 * munlock_vma_pages_range().
1809 */
1810 if (vma->vm_flags & VM_LOCKED) {
1811 /* PTE-mapped THP are never mlocked */
1812 if (!PageTransCompound(page))
1813 mlock_vma_page(page);
1814 page_vma_mapped_walk_done(&pvmw);
1815 }
1816
1817 /*
1818 * no need to continue scanning other vma's if the page has
1819 * been locked.
1820 */
1821 return false;
1822 }
1823
1824 return true;
1825}
1826
b291f000 1827/**
cd62734c
AP
1828 * page_mlock - try to mlock a page
1829 * @page: the page to be mlocked
b291f000 1830 *
cd62734c
AP
1831 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
1832 * the page if any are found. The page will be returned with PG_mlocked cleared
1833 * if it is not mapped by any locked vmas.
b291f000 1834 */
cd62734c 1835void page_mlock(struct page *page)
192d7232 1836{
e8351ac9 1837 struct rmap_walk_control rwc = {
cd62734c 1838 .rmap_one = page_mlock_one,
e8351ac9 1839 .done = page_not_mapped,
e8351ac9
JK
1840 .anon_lock = page_lock_anon_vma_read,
1841
1842 };
1843
309381fe 1844 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 1845 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 1846
192d7232 1847 rmap_walk(page, &rwc);
b291f000 1848}
e9995ef9 1849
01d8b20d 1850void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1851{
01d8b20d 1852 struct anon_vma *root = anon_vma->root;
76545066 1853
624483f3 1854 anon_vma_free(anon_vma);
01d8b20d
PZ
1855 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1856 anon_vma_free(root);
76545066 1857}
76545066 1858
0dd1c7bb
JK
1859static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1860 struct rmap_walk_control *rwc)
faecd8dd
JK
1861{
1862 struct anon_vma *anon_vma;
1863
0dd1c7bb
JK
1864 if (rwc->anon_lock)
1865 return rwc->anon_lock(page);
1866
faecd8dd
JK
1867 /*
1868 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1869 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 1870 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
1871 * take a reference count to prevent the anon_vma disappearing
1872 */
1873 anon_vma = page_anon_vma(page);
1874 if (!anon_vma)
1875 return NULL;
1876
1877 anon_vma_lock_read(anon_vma);
1878 return anon_vma;
1879}
1880
e9995ef9 1881/*
e8351ac9
JK
1882 * rmap_walk_anon - do something to anonymous page using the object-based
1883 * rmap method
1884 * @page: the page to be handled
1885 * @rwc: control variable according to each walk type
1886 *
1887 * Find all the mappings of a page using the mapping pointer and the vma chains
1888 * contained in the anon_vma struct it points to.
1889 *
cd62734c 1890 * When called from page_mlock(), the mmap_lock of the mm containing the vma
e8351ac9
JK
1891 * where the page was found will be held for write. So, we won't recheck
1892 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1893 * LOCKED.
e9995ef9 1894 */
1df631ae 1895static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 1896 bool locked)
e9995ef9
HD
1897{
1898 struct anon_vma *anon_vma;
a8fa41ad 1899 pgoff_t pgoff_start, pgoff_end;
5beb4930 1900 struct anon_vma_chain *avc;
e9995ef9 1901
b9773199
KS
1902 if (locked) {
1903 anon_vma = page_anon_vma(page);
1904 /* anon_vma disappear under us? */
1905 VM_BUG_ON_PAGE(!anon_vma, page);
1906 } else {
1907 anon_vma = rmap_walk_anon_lock(page, rwc);
1908 }
e9995ef9 1909 if (!anon_vma)
1df631ae 1910 return;
faecd8dd 1911
a8fa41ad 1912 pgoff_start = page_to_pgoff(page);
6c357848 1913 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
a8fa41ad
KS
1914 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1915 pgoff_start, pgoff_end) {
5beb4930 1916 struct vm_area_struct *vma = avc->vma;
e9995ef9 1917 unsigned long address = vma_address(page, vma);
0dd1c7bb 1918
494334e4 1919 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
1920 cond_resched();
1921
0dd1c7bb
JK
1922 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1923 continue;
1924
e4b82222 1925 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 1926 break;
0dd1c7bb
JK
1927 if (rwc->done && rwc->done(page))
1928 break;
e9995ef9 1929 }
b9773199
KS
1930
1931 if (!locked)
1932 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1933}
1934
e8351ac9
JK
1935/*
1936 * rmap_walk_file - do something to file page using the object-based rmap method
1937 * @page: the page to be handled
1938 * @rwc: control variable according to each walk type
1939 *
1940 * Find all the mappings of a page using the mapping pointer and the vma chains
1941 * contained in the address_space struct it points to.
1942 *
cd62734c 1943 * When called from page_mlock(), the mmap_lock of the mm containing the vma
e8351ac9
JK
1944 * where the page was found will be held for write. So, we won't recheck
1945 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1946 * LOCKED.
1947 */
1df631ae 1948static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 1949 bool locked)
e9995ef9 1950{
b9773199 1951 struct address_space *mapping = page_mapping(page);
a8fa41ad 1952 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1953 struct vm_area_struct *vma;
e9995ef9 1954
9f32624b
JK
1955 /*
1956 * The page lock not only makes sure that page->mapping cannot
1957 * suddenly be NULLified by truncation, it makes sure that the
1958 * structure at mapping cannot be freed and reused yet,
c8c06efa 1959 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1960 */
81d1b09c 1961 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1962
e9995ef9 1963 if (!mapping)
1df631ae 1964 return;
3dec0ba0 1965
a8fa41ad 1966 pgoff_start = page_to_pgoff(page);
6c357848 1967 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
b9773199
KS
1968 if (!locked)
1969 i_mmap_lock_read(mapping);
a8fa41ad
KS
1970 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1971 pgoff_start, pgoff_end) {
e9995ef9 1972 unsigned long address = vma_address(page, vma);
0dd1c7bb 1973
494334e4 1974 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
1975 cond_resched();
1976
0dd1c7bb
JK
1977 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1978 continue;
1979
e4b82222 1980 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
1981 goto done;
1982 if (rwc->done && rwc->done(page))
1983 goto done;
e9995ef9 1984 }
0dd1c7bb 1985
0dd1c7bb 1986done:
b9773199
KS
1987 if (!locked)
1988 i_mmap_unlock_read(mapping);
e9995ef9
HD
1989}
1990
1df631ae 1991void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1992{
e9995ef9 1993 if (unlikely(PageKsm(page)))
1df631ae 1994 rmap_walk_ksm(page, rwc);
e9995ef9 1995 else if (PageAnon(page))
1df631ae 1996 rmap_walk_anon(page, rwc, false);
b9773199 1997 else
1df631ae 1998 rmap_walk_file(page, rwc, false);
b9773199
KS
1999}
2000
2001/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 2002void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
2003{
2004 /* no ksm support for now */
2005 VM_BUG_ON_PAGE(PageKsm(page), page);
2006 if (PageAnon(page))
1df631ae 2007 rmap_walk_anon(page, rwc, true);
e9995ef9 2008 else
1df631ae 2009 rmap_walk_file(page, rwc, true);
e9995ef9 2010}
0fe6e20b 2011
e3390f67 2012#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2013/*
451b9514 2014 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2015 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2016 * and no lru code, because we handle hugepages differently from common pages.
2017 */
0fe6e20b
NH
2018void hugepage_add_anon_rmap(struct page *page,
2019 struct vm_area_struct *vma, unsigned long address)
2020{
2021 struct anon_vma *anon_vma = vma->anon_vma;
2022 int first;
a850ea30
NH
2023
2024 BUG_ON(!PageLocked(page));
0fe6e20b 2025 BUG_ON(!anon_vma);
5dbe0af4 2026 /* address might be in next vma when migration races vma_adjust */
53f9263b 2027 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 2028 if (first)
451b9514 2029 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
2030}
2031
2032void hugepage_add_new_anon_rmap(struct page *page,
2033 struct vm_area_struct *vma, unsigned long address)
2034{
2035 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2036 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
2037 if (hpage_pincount_available(page))
2038 atomic_set(compound_pincount_ptr(page), 0);
2039
451b9514 2040 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2041}
e3390f67 2042#endif /* CONFIG_HUGETLB_PAGE */