mm: convert total_compound_mapcount() to folio_total_mapcount()
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0 25 * mapping->invalidate_lock (in filemap_fault)
3a47c54f 26 * page->flags PG_locked (lock_page)
8d9bfb26 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
730633f0 28 * mapping->i_mmap_rwsem
730633f0
JK
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
e621900a
MWO
33 * mapping->private_lock (in block_dirty_folio)
34 * folio_lock_memcg move_lock (in block_dirty_folio)
730633f0 35 * i_pages lock (widely used)
e809c3fe 36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
730633f0
JK
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 43 *
9608703e 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 45 * ->tasklist_lock
6a46079c 46 * pte map lock
c0d0381a 47 *
8d9bfb26
MK
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
999dad82 76#include <linux/mm_inline.h>
1da177e4
LT
77
78#include <asm/tlbflush.h>
79
4cc79b33 80#define CREATE_TRACE_POINTS
72b252ae 81#include <trace/events/tlb.h>
4cc79b33 82#include <trace/events/migrate.h>
72b252ae 83
b291f000
NP
84#include "internal.h"
85
fdd2e5f8 86static struct kmem_cache *anon_vma_cachep;
5beb4930 87static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
88
89static inline struct anon_vma *anon_vma_alloc(void)
90{
01d8b20d
PZ
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
2555283e
JH
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
7a3ef208 98 anon_vma->parent = anon_vma;
01d8b20d
PZ
99 /*
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
102 */
103 anon_vma->root = anon_vma;
104 }
105
106 return anon_vma;
fdd2e5f8
AB
107}
108
01d8b20d 109static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 110{
01d8b20d 111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
112
113 /*
2f031c6f 114 * Synchronize against folio_lock_anon_vma_read() such that
88c22088
PZ
115 * we can safely hold the lock without the anon_vma getting
116 * freed.
117 *
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
2f031c6f 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
88c22088 121 *
2f031c6f 122 * folio_lock_anon_vma_read() VS put_anon_vma()
4fc3f1d6 123 * down_read_trylock() atomic_dec_and_test()
88c22088 124 * LOCK MB
4fc3f1d6 125 * atomic_read() rwsem_is_locked()
88c22088
PZ
126 *
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
129 */
7f39dda9 130 might_sleep();
5a505085 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 132 anon_vma_lock_write(anon_vma);
08b52706 133 anon_vma_unlock_write(anon_vma);
88c22088
PZ
134 }
135
fdd2e5f8
AB
136 kmem_cache_free(anon_vma_cachep, anon_vma);
137}
1da177e4 138
dd34739c 139static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 140{
dd34739c 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
142}
143
e574b5fd 144static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
145{
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147}
148
6583a843
KC
149static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
152{
153 avc->vma = vma;
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
157}
158
d9d332e0 159/**
d5a187da 160 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
161 * @vma: the memory region in question
162 *
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
166 *
d5a187da
VB
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
23a0790a 169 * not we either need to find an adjacent mapping that we
d9d332e0
LT
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
173 *
174 * Anon-vma allocations are very subtle, because we may have
2f031c6f 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
aaf1f990 176 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
179 *
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
183 * an anon_vma.
184 *
c1e8d7c6 185 * This must be called with the mmap_lock held for reading.
d9d332e0 186 */
d5a187da 187int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 188{
d5a187da
VB
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
5beb4930 191 struct anon_vma_chain *avc;
1da177e4
LT
192
193 might_sleep();
1da177e4 194
d5a187da
VB
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
2555283e 205 anon_vma->num_children++; /* self-parent link for new root */
d5a187da
VB
206 allocated = anon_vma;
207 }
5beb4930 208
d5a187da
VB
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
2555283e 215 anon_vma->num_active_vmas++;
d9d332e0 216 allocated = NULL;
d5a187da
VB
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
1da177e4 221
d5a187da
VB
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
31f2b0eb 226
1da177e4 227 return 0;
5beb4930
RR
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
1da177e4
LT
233}
234
bb4aa396
LT
235/*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
243static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244{
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
5a505085 248 up_write(&root->rwsem);
bb4aa396 249 root = new_root;
5a505085 250 down_write(&root->rwsem);
bb4aa396
LT
251 }
252 return root;
253}
254
255static inline void unlock_anon_vma_root(struct anon_vma *root)
256{
257 if (root)
5a505085 258 up_write(&root->rwsem);
bb4aa396
LT
259}
260
5beb4930
RR
261/*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 264 *
cb152a1a 265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
266 * anon_vma_fork(). The first three want an exact copy of src, while the last
267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270 *
271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273 * This prevents degradation of anon_vma hierarchy to endless linear chain in
274 * case of constantly forking task. On the other hand, an anon_vma with more
275 * than one child isn't reused even if there was no alive vma, thus rmap
276 * walker has a good chance of avoiding scanning the whole hierarchy when it
277 * searches where page is mapped.
5beb4930
RR
278 */
279int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 280{
5beb4930 281 struct anon_vma_chain *avc, *pavc;
bb4aa396 282 struct anon_vma *root = NULL;
5beb4930 283
646d87b4 284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
285 struct anon_vma *anon_vma;
286
dd34739c
LT
287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288 if (unlikely(!avc)) {
289 unlock_anon_vma_root(root);
290 root = NULL;
291 avc = anon_vma_chain_alloc(GFP_KERNEL);
292 if (!avc)
293 goto enomem_failure;
294 }
bb4aa396
LT
295 anon_vma = pavc->anon_vma;
296 root = lock_anon_vma_root(root, anon_vma);
297 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
298
299 /*
2555283e
JH
300 * Reuse existing anon_vma if it has no vma and only one
301 * anon_vma child.
7a3ef208 302 *
2555283e 303 * Root anon_vma is never reused:
7a3ef208
KK
304 * it has self-parent reference and at least one child.
305 */
47b390d2 306 if (!dst->anon_vma && src->anon_vma &&
2555283e
JH
307 anon_vma->num_children < 2 &&
308 anon_vma->num_active_vmas == 0)
7a3ef208 309 dst->anon_vma = anon_vma;
5beb4930 310 }
7a3ef208 311 if (dst->anon_vma)
2555283e 312 dst->anon_vma->num_active_vmas++;
bb4aa396 313 unlock_anon_vma_root(root);
5beb4930 314 return 0;
1da177e4 315
5beb4930 316 enomem_failure:
3fe89b3e 317 /*
d8e454eb
MW
318 * dst->anon_vma is dropped here otherwise its num_active_vmas can
319 * be incorrectly decremented in unlink_anon_vmas().
3fe89b3e
LY
320 * We can safely do this because callers of anon_vma_clone() don't care
321 * about dst->anon_vma if anon_vma_clone() failed.
322 */
323 dst->anon_vma = NULL;
5beb4930
RR
324 unlink_anon_vmas(dst);
325 return -ENOMEM;
1da177e4
LT
326}
327
5beb4930
RR
328/*
329 * Attach vma to its own anon_vma, as well as to the anon_vmas that
330 * the corresponding VMA in the parent process is attached to.
331 * Returns 0 on success, non-zero on failure.
332 */
333int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 334{
5beb4930
RR
335 struct anon_vma_chain *avc;
336 struct anon_vma *anon_vma;
c4ea95d7 337 int error;
1da177e4 338
5beb4930
RR
339 /* Don't bother if the parent process has no anon_vma here. */
340 if (!pvma->anon_vma)
341 return 0;
342
7a3ef208
KK
343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 vma->anon_vma = NULL;
345
5beb4930
RR
346 /*
347 * First, attach the new VMA to the parent VMA's anon_vmas,
348 * so rmap can find non-COWed pages in child processes.
349 */
c4ea95d7
DF
350 error = anon_vma_clone(vma, pvma);
351 if (error)
352 return error;
5beb4930 353
7a3ef208
KK
354 /* An existing anon_vma has been reused, all done then. */
355 if (vma->anon_vma)
356 return 0;
357
5beb4930
RR
358 /* Then add our own anon_vma. */
359 anon_vma = anon_vma_alloc();
360 if (!anon_vma)
361 goto out_error;
2555283e 362 anon_vma->num_active_vmas++;
dd34739c 363 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
364 if (!avc)
365 goto out_error_free_anon_vma;
5c341ee1
RR
366
367 /*
aaf1f990 368 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
369 * lock any of the anon_vmas in this anon_vma tree.
370 */
371 anon_vma->root = pvma->anon_vma->root;
7a3ef208 372 anon_vma->parent = pvma->anon_vma;
76545066 373 /*
01d8b20d
PZ
374 * With refcounts, an anon_vma can stay around longer than the
375 * process it belongs to. The root anon_vma needs to be pinned until
376 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
377 */
378 get_anon_vma(anon_vma->root);
5beb4930
RR
379 /* Mark this anon_vma as the one where our new (COWed) pages go. */
380 vma->anon_vma = anon_vma;
4fc3f1d6 381 anon_vma_lock_write(anon_vma);
5c341ee1 382 anon_vma_chain_link(vma, avc, anon_vma);
2555283e 383 anon_vma->parent->num_children++;
08b52706 384 anon_vma_unlock_write(anon_vma);
5beb4930
RR
385
386 return 0;
387
388 out_error_free_anon_vma:
01d8b20d 389 put_anon_vma(anon_vma);
5beb4930 390 out_error:
4946d54c 391 unlink_anon_vmas(vma);
5beb4930 392 return -ENOMEM;
1da177e4
LT
393}
394
5beb4930
RR
395void unlink_anon_vmas(struct vm_area_struct *vma)
396{
397 struct anon_vma_chain *avc, *next;
eee2acba 398 struct anon_vma *root = NULL;
5beb4930 399
5c341ee1
RR
400 /*
401 * Unlink each anon_vma chained to the VMA. This list is ordered
402 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 */
5beb4930 404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
405 struct anon_vma *anon_vma = avc->anon_vma;
406
407 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
409
410 /*
411 * Leave empty anon_vmas on the list - we'll need
412 * to free them outside the lock.
413 */
f808c13f 414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
2555283e 415 anon_vma->parent->num_children--;
eee2acba 416 continue;
7a3ef208 417 }
eee2acba
PZ
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
ee8ab190 422 if (vma->anon_vma) {
2555283e 423 vma->anon_vma->num_active_vmas--;
ee8ab190
LX
424
425 /*
426 * vma would still be needed after unlink, and anon_vma will be prepared
427 * when handle fault.
428 */
429 vma->anon_vma = NULL;
430 }
eee2acba
PZ
431 unlock_anon_vma_root(root);
432
433 /*
434 * Iterate the list once more, it now only contains empty and unlinked
435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 436 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
437 */
438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 struct anon_vma *anon_vma = avc->anon_vma;
440
2555283e
JH
441 VM_WARN_ON(anon_vma->num_children);
442 VM_WARN_ON(anon_vma->num_active_vmas);
eee2acba
PZ
443 put_anon_vma(anon_vma);
444
5beb4930
RR
445 list_del(&avc->same_vma);
446 anon_vma_chain_free(avc);
447 }
448}
449
51cc5068 450static void anon_vma_ctor(void *data)
1da177e4 451{
a35afb83 452 struct anon_vma *anon_vma = data;
1da177e4 453
5a505085 454 init_rwsem(&anon_vma->rwsem);
83813267 455 atomic_set(&anon_vma->refcount, 0);
f808c13f 456 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
457}
458
459void __init anon_vma_init(void)
460{
461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
463 anon_vma_ctor);
464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
466}
467
468/*
6111e4ca
PZ
469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470 *
471 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
472 * the best this function can do is return a refcount increased anon_vma
473 * that might have been relevant to this page.
6111e4ca
PZ
474 *
475 * The page might have been remapped to a different anon_vma or the anon_vma
476 * returned may already be freed (and even reused).
477 *
bc658c96
PZ
478 * In case it was remapped to a different anon_vma, the new anon_vma will be a
479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480 * ensure that any anon_vma obtained from the page will still be valid for as
481 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482 *
6111e4ca
PZ
483 * All users of this function must be very careful when walking the anon_vma
484 * chain and verify that the page in question is indeed mapped in it
485 * [ something equivalent to page_mapped_in_vma() ].
486 *
091e4299
MC
487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
489 * if there is a mapcount, we can dereference the anon_vma after observing
490 * those.
1da177e4 491 */
29eea9b5 492struct anon_vma *folio_get_anon_vma(struct folio *folio)
1da177e4 493{
746b18d4 494 struct anon_vma *anon_vma = NULL;
1da177e4
LT
495 unsigned long anon_mapping;
496
497 rcu_read_lock();
29eea9b5 498 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
3ca7b3c5 499 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4 500 goto out;
29eea9b5 501 if (!folio_mapped(folio))
1da177e4
LT
502 goto out;
503
504 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
505 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
506 anon_vma = NULL;
507 goto out;
508 }
f1819427
HD
509
510 /*
29eea9b5 511 * If this folio is still mapped, then its anon_vma cannot have been
746b18d4
PZ
512 * freed. But if it has been unmapped, we have no security against the
513 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 514 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 515 * above cannot corrupt).
f1819427 516 */
29eea9b5 517 if (!folio_mapped(folio)) {
7f39dda9 518 rcu_read_unlock();
746b18d4 519 put_anon_vma(anon_vma);
7f39dda9 520 return NULL;
746b18d4 521 }
1da177e4
LT
522out:
523 rcu_read_unlock();
746b18d4
PZ
524
525 return anon_vma;
526}
527
88c22088 528/*
29eea9b5 529 * Similar to folio_get_anon_vma() except it locks the anon_vma.
88c22088
PZ
530 *
531 * Its a little more complex as it tries to keep the fast path to a single
532 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
29eea9b5 533 * reference like with folio_get_anon_vma() and then block on the mutex
6d4675e6 534 * on !rwc->try_lock case.
88c22088 535 */
6d4675e6
MK
536struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
537 struct rmap_walk_control *rwc)
746b18d4 538{
88c22088 539 struct anon_vma *anon_vma = NULL;
eee0f252 540 struct anon_vma *root_anon_vma;
88c22088 541 unsigned long anon_mapping;
746b18d4 542
88c22088 543 rcu_read_lock();
9595d769 544 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
88c22088
PZ
545 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
546 goto out;
9595d769 547 if (!folio_mapped(folio))
88c22088
PZ
548 goto out;
549
550 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 551 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 552 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 553 /*
9595d769 554 * If the folio is still mapped, then this anon_vma is still
eee0f252 555 * its anon_vma, and holding the mutex ensures that it will
bc658c96 556 * not go away, see anon_vma_free().
88c22088 557 */
9595d769 558 if (!folio_mapped(folio)) {
4fc3f1d6 559 up_read(&root_anon_vma->rwsem);
88c22088
PZ
560 anon_vma = NULL;
561 }
562 goto out;
563 }
746b18d4 564
6d4675e6
MK
565 if (rwc && rwc->try_lock) {
566 anon_vma = NULL;
567 rwc->contended = true;
568 goto out;
569 }
570
88c22088
PZ
571 /* trylock failed, we got to sleep */
572 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
573 anon_vma = NULL;
574 goto out;
575 }
576
9595d769 577 if (!folio_mapped(folio)) {
7f39dda9 578 rcu_read_unlock();
88c22088 579 put_anon_vma(anon_vma);
7f39dda9 580 return NULL;
88c22088
PZ
581 }
582
583 /* we pinned the anon_vma, its safe to sleep */
584 rcu_read_unlock();
4fc3f1d6 585 anon_vma_lock_read(anon_vma);
88c22088
PZ
586
587 if (atomic_dec_and_test(&anon_vma->refcount)) {
588 /*
589 * Oops, we held the last refcount, release the lock
590 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 591 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 592 */
4fc3f1d6 593 anon_vma_unlock_read(anon_vma);
88c22088
PZ
594 __put_anon_vma(anon_vma);
595 anon_vma = NULL;
596 }
597
598 return anon_vma;
599
600out:
601 rcu_read_unlock();
746b18d4 602 return anon_vma;
34bbd704
ON
603}
604
72b252ae 605#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
606/*
607 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
608 * important if a PTE was dirty when it was unmapped that it's flushed
609 * before any IO is initiated on the page to prevent lost writes. Similarly,
610 * it must be flushed before freeing to prevent data leakage.
611 */
612void try_to_unmap_flush(void)
613{
614 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
615
616 if (!tlb_ubc->flush_required)
617 return;
618
e73ad5ff 619 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 620 tlb_ubc->flush_required = false;
d950c947 621 tlb_ubc->writable = false;
72b252ae
MG
622}
623
d950c947
MG
624/* Flush iff there are potentially writable TLB entries that can race with IO */
625void try_to_unmap_flush_dirty(void)
626{
627 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
628
629 if (tlb_ubc->writable)
630 try_to_unmap_flush();
631}
632
5ee2fa2f
HY
633/*
634 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
635 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
636 */
637#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
638#define TLB_FLUSH_BATCH_PENDING_MASK \
639 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
640#define TLB_FLUSH_BATCH_PENDING_LARGE \
641 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
642
c7ab0d2f 643static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
644{
645 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
5ee2fa2f 646 int batch, nbatch;
72b252ae 647
e73ad5ff 648 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 649 tlb_ubc->flush_required = true;
d950c947 650
3ea27719
MG
651 /*
652 * Ensure compiler does not re-order the setting of tlb_flush_batched
653 * before the PTE is cleared.
654 */
655 barrier();
5ee2fa2f
HY
656 batch = atomic_read(&mm->tlb_flush_batched);
657retry:
658 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
659 /*
660 * Prevent `pending' from catching up with `flushed' because of
661 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
662 * `pending' becomes large.
663 */
664 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
665 if (nbatch != batch) {
666 batch = nbatch;
667 goto retry;
668 }
669 } else {
670 atomic_inc(&mm->tlb_flush_batched);
671 }
3ea27719 672
d950c947
MG
673 /*
674 * If the PTE was dirty then it's best to assume it's writable. The
675 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
676 * before the page is queued for IO.
677 */
678 if (writable)
679 tlb_ubc->writable = true;
72b252ae
MG
680}
681
682/*
683 * Returns true if the TLB flush should be deferred to the end of a batch of
684 * unmap operations to reduce IPIs.
685 */
686static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
687{
688 bool should_defer = false;
689
690 if (!(flags & TTU_BATCH_FLUSH))
691 return false;
692
693 /* If remote CPUs need to be flushed then defer batch the flush */
694 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
695 should_defer = true;
696 put_cpu();
697
698 return should_defer;
699}
3ea27719
MG
700
701/*
702 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
703 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
704 * operation such as mprotect or munmap to race between reclaim unmapping
705 * the page and flushing the page. If this race occurs, it potentially allows
706 * access to data via a stale TLB entry. Tracking all mm's that have TLB
707 * batching in flight would be expensive during reclaim so instead track
708 * whether TLB batching occurred in the past and if so then do a flush here
709 * if required. This will cost one additional flush per reclaim cycle paid
710 * by the first operation at risk such as mprotect and mumap.
711 *
712 * This must be called under the PTL so that an access to tlb_flush_batched
713 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
714 * via the PTL.
715 */
716void flush_tlb_batched_pending(struct mm_struct *mm)
717{
5ee2fa2f
HY
718 int batch = atomic_read(&mm->tlb_flush_batched);
719 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
720 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
3ea27719 721
5ee2fa2f
HY
722 if (pending != flushed) {
723 flush_tlb_mm(mm);
3ea27719 724 /*
5ee2fa2f
HY
725 * If the new TLB flushing is pending during flushing, leave
726 * mm->tlb_flush_batched as is, to avoid losing flushing.
3ea27719 727 */
5ee2fa2f
HY
728 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
729 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
3ea27719
MG
730 }
731}
72b252ae 732#else
c7ab0d2f 733static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
734{
735}
736
737static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
738{
739 return false;
740}
741#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
742
1da177e4 743/*
bf89c8c8 744 * At what user virtual address is page expected in vma?
ab941e0f 745 * Caller should check the page is actually part of the vma.
1da177e4
LT
746 */
747unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
748{
e05b3453
MWO
749 struct folio *folio = page_folio(page);
750 if (folio_test_anon(folio)) {
751 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
4829b906
HD
752 /*
753 * Note: swapoff's unuse_vma() is more efficient with this
754 * check, and needs it to match anon_vma when KSM is active.
755 */
756 if (!vma->anon_vma || !page__anon_vma ||
757 vma->anon_vma->root != page__anon_vma->root)
21d0d443 758 return -EFAULT;
31657170
JW
759 } else if (!vma->vm_file) {
760 return -EFAULT;
e05b3453 761 } else if (vma->vm_file->f_mapping != folio->mapping) {
1da177e4 762 return -EFAULT;
31657170 763 }
494334e4
HD
764
765 return vma_address(page, vma);
1da177e4
LT
766}
767
50722804
ZK
768/*
769 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
770 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
771 * represents.
772 */
6219049a
BL
773pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
774{
775 pgd_t *pgd;
c2febafc 776 p4d_t *p4d;
6219049a
BL
777 pud_t *pud;
778 pmd_t *pmd = NULL;
779
780 pgd = pgd_offset(mm, address);
781 if (!pgd_present(*pgd))
782 goto out;
783
c2febafc
KS
784 p4d = p4d_offset(pgd, address);
785 if (!p4d_present(*p4d))
786 goto out;
787
788 pud = pud_offset(p4d, address);
6219049a
BL
789 if (!pud_present(*pud))
790 goto out;
791
792 pmd = pmd_offset(pud, address);
6219049a
BL
793out:
794 return pmd;
795}
796
b3ac0413 797struct folio_referenced_arg {
8749cfea
VD
798 int mapcount;
799 int referenced;
800 unsigned long vm_flags;
801 struct mem_cgroup *memcg;
802};
803/*
b3ac0413 804 * arg: folio_referenced_arg will be passed
8749cfea 805 */
2f031c6f
MWO
806static bool folio_referenced_one(struct folio *folio,
807 struct vm_area_struct *vma, unsigned long address, void *arg)
8749cfea 808{
b3ac0413
MWO
809 struct folio_referenced_arg *pra = arg;
810 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
8749cfea
VD
811 int referenced = 0;
812
8eaedede
KS
813 while (page_vma_mapped_walk(&pvmw)) {
814 address = pvmw.address;
b20ce5e0 815
47d4f3ee 816 if ((vma->vm_flags & VM_LOCKED) &&
b3ac0413 817 (!folio_test_large(folio) || !pvmw.pte)) {
47d4f3ee 818 /* Restore the mlock which got missed */
b3ac0413 819 mlock_vma_folio(folio, vma, !pvmw.pte);
8eaedede
KS
820 page_vma_mapped_walk_done(&pvmw);
821 pra->vm_flags |= VM_LOCKED;
e4b82222 822 return false; /* To break the loop */
8eaedede 823 }
71e3aac0 824
8eaedede 825 if (pvmw.pte) {
8788f678 826 if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
018ee47f
YZ
827 lru_gen_look_around(&pvmw);
828 referenced++;
829 }
830
8eaedede 831 if (ptep_clear_flush_young_notify(vma, address,
8788f678
YZ
832 pvmw.pte))
833 referenced++;
8eaedede
KS
834 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
835 if (pmdp_clear_flush_young_notify(vma, address,
836 pvmw.pmd))
8749cfea 837 referenced++;
8eaedede 838 } else {
b3ac0413 839 /* unexpected pmd-mapped folio? */
8eaedede 840 WARN_ON_ONCE(1);
8749cfea 841 }
8eaedede
KS
842
843 pra->mapcount--;
b20ce5e0 844 }
b20ce5e0 845
33c3fc71 846 if (referenced)
b3ac0413
MWO
847 folio_clear_idle(folio);
848 if (folio_test_clear_young(folio))
33c3fc71
VD
849 referenced++;
850
9f32624b
JK
851 if (referenced) {
852 pra->referenced++;
47d4f3ee 853 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
1da177e4 854 }
34bbd704 855
9f32624b 856 if (!pra->mapcount)
e4b82222 857 return false; /* To break the loop */
9f32624b 858
e4b82222 859 return true;
1da177e4
LT
860}
861
b3ac0413 862static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 863{
b3ac0413 864 struct folio_referenced_arg *pra = arg;
9f32624b 865 struct mem_cgroup *memcg = pra->memcg;
1da177e4 866
8788f678
YZ
867 /*
868 * Ignore references from this mapping if it has no recency. If the
869 * folio has been used in another mapping, we will catch it; if this
870 * other mapping is already gone, the unmap path will have set the
871 * referenced flag or activated the folio in zap_pte_range().
872 */
873 if (!vma_has_recency(vma))
874 return true;
875
876 /*
877 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
878 * of references from different cgroups.
879 */
880 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
9f32624b 881 return true;
1da177e4 882
9f32624b 883 return false;
1da177e4
LT
884}
885
886/**
b3ac0413
MWO
887 * folio_referenced() - Test if the folio was referenced.
888 * @folio: The folio to test.
889 * @is_locked: Caller holds lock on the folio.
72835c86 890 * @memcg: target memory cgroup
b3ac0413 891 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
1da177e4 892 *
b3ac0413
MWO
893 * Quick test_and_clear_referenced for all mappings of a folio,
894 *
6d4675e6
MK
895 * Return: The number of mappings which referenced the folio. Return -1 if
896 * the function bailed out due to rmap lock contention.
1da177e4 897 */
b3ac0413
MWO
898int folio_referenced(struct folio *folio, int is_locked,
899 struct mem_cgroup *memcg, unsigned long *vm_flags)
1da177e4 900{
5ad64688 901 int we_locked = 0;
b3ac0413
MWO
902 struct folio_referenced_arg pra = {
903 .mapcount = folio_mapcount(folio),
9f32624b
JK
904 .memcg = memcg,
905 };
906 struct rmap_walk_control rwc = {
b3ac0413 907 .rmap_one = folio_referenced_one,
9f32624b 908 .arg = (void *)&pra,
2f031c6f 909 .anon_lock = folio_lock_anon_vma_read,
6d4675e6 910 .try_lock = true,
8788f678 911 .invalid_vma = invalid_folio_referenced_vma,
9f32624b 912 };
1da177e4 913
6fe6b7e3 914 *vm_flags = 0;
059d8442 915 if (!pra.mapcount)
9f32624b
JK
916 return 0;
917
b3ac0413 918 if (!folio_raw_mapping(folio))
9f32624b
JK
919 return 0;
920
b3ac0413
MWO
921 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
922 we_locked = folio_trylock(folio);
9f32624b
JK
923 if (!we_locked)
924 return 1;
1da177e4 925 }
9f32624b 926
2f031c6f 927 rmap_walk(folio, &rwc);
9f32624b
JK
928 *vm_flags = pra.vm_flags;
929
930 if (we_locked)
b3ac0413 931 folio_unlock(folio);
9f32624b 932
6d4675e6 933 return rwc.contended ? -1 : pra.referenced;
1da177e4
LT
934}
935
6a8e0596 936static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
d08b3851 937{
6a8e0596
MS
938 int cleaned = 0;
939 struct vm_area_struct *vma = pvmw->vma;
ac46d4f3 940 struct mmu_notifier_range range;
6a8e0596 941 unsigned long address = pvmw->address;
d08b3851 942
369ea824
JG
943 /*
944 * We have to assume the worse case ie pmd for invalidation. Note that
e83c09a2 945 * the folio can not be freed from this function.
369ea824 946 */
7d4a8be0
AP
947 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
948 vma->vm_mm, address, vma_address_end(pvmw));
ac46d4f3 949 mmu_notifier_invalidate_range_start(&range);
369ea824 950
6a8e0596 951 while (page_vma_mapped_walk(pvmw)) {
f27176cf 952 int ret = 0;
369ea824 953
6a8e0596
MS
954 address = pvmw->address;
955 if (pvmw->pte) {
f27176cf 956 pte_t entry;
6a8e0596 957 pte_t *pte = pvmw->pte;
f27176cf
KS
958
959 if (!pte_dirty(*pte) && !pte_write(*pte))
960 continue;
961
785373b4
LT
962 flush_cache_page(vma, address, pte_pfn(*pte));
963 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
964 entry = pte_wrprotect(entry);
965 entry = pte_mkclean(entry);
785373b4 966 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
967 ret = 1;
968 } else {
396bcc52 969#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6a8e0596 970 pmd_t *pmd = pvmw->pmd;
f27176cf
KS
971 pmd_t entry;
972
973 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
974 continue;
975
7f9c9b60
MS
976 flush_cache_range(vma, address,
977 address + HPAGE_PMD_SIZE);
024eee0e 978 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
979 entry = pmd_wrprotect(entry);
980 entry = pmd_mkclean(entry);
785373b4 981 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
982 ret = 1;
983#else
e83c09a2 984 /* unexpected pmd-mapped folio? */
f27176cf
KS
985 WARN_ON_ONCE(1);
986#endif
987 }
d08b3851 988
0f10851e
JG
989 /*
990 * No need to call mmu_notifier_invalidate_range() as we are
991 * downgrading page table protection not changing it to point
992 * to a new page.
993 *
ee65728e 994 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
995 */
996 if (ret)
6a8e0596 997 cleaned++;
c2fda5fe 998 }
d08b3851 999
ac46d4f3 1000 mmu_notifier_invalidate_range_end(&range);
369ea824 1001
6a8e0596
MS
1002 return cleaned;
1003}
1004
1005static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1006 unsigned long address, void *arg)
1007{
1008 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1009 int *cleaned = arg;
1010
1011 *cleaned += page_vma_mkclean_one(&pvmw);
1012
e4b82222 1013 return true;
d08b3851
PZ
1014}
1015
9853a407 1016static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1017{
9853a407 1018 if (vma->vm_flags & VM_SHARED)
871beb8c 1019 return false;
d08b3851 1020
871beb8c 1021 return true;
d08b3851
PZ
1022}
1023
d9c08e22 1024int folio_mkclean(struct folio *folio)
d08b3851 1025{
9853a407
JK
1026 int cleaned = 0;
1027 struct address_space *mapping;
1028 struct rmap_walk_control rwc = {
1029 .arg = (void *)&cleaned,
1030 .rmap_one = page_mkclean_one,
1031 .invalid_vma = invalid_mkclean_vma,
1032 };
d08b3851 1033
d9c08e22 1034 BUG_ON(!folio_test_locked(folio));
d08b3851 1035
d9c08e22 1036 if (!folio_mapped(folio))
9853a407
JK
1037 return 0;
1038
d9c08e22 1039 mapping = folio_mapping(folio);
9853a407
JK
1040 if (!mapping)
1041 return 0;
1042
2f031c6f 1043 rmap_walk(folio, &rwc);
d08b3851 1044
9853a407 1045 return cleaned;
d08b3851 1046}
d9c08e22 1047EXPORT_SYMBOL_GPL(folio_mkclean);
d08b3851 1048
6a8e0596
MS
1049/**
1050 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1051 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1052 * within the @vma of shared mappings. And since clean PTEs
1053 * should also be readonly, write protects them too.
1054 * @pfn: start pfn.
1055 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1056 * @pgoff: page offset that the @pfn mapped with.
1057 * @vma: vma that @pfn mapped within.
1058 *
1059 * Returns the number of cleaned PTEs (including PMDs).
1060 */
1061int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1062 struct vm_area_struct *vma)
1063{
1064 struct page_vma_mapped_walk pvmw = {
1065 .pfn = pfn,
1066 .nr_pages = nr_pages,
1067 .pgoff = pgoff,
1068 .vma = vma,
1069 .flags = PVMW_SYNC,
1070 };
1071
1072 if (invalid_mkclean_vma(vma, NULL))
1073 return 0;
1074
1075 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1076 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1077
1078 return page_vma_mkclean_one(&pvmw);
1079}
1080
b14224fb 1081int folio_total_mapcount(struct folio *folio)
cb67f428 1082{
b14224fb
MWO
1083 int mapcount = folio_entire_mapcount(folio);
1084 int nr_pages;
cb67f428
HD
1085 int i;
1086
b14224fb 1087 /* In the common case, avoid the loop when no pages mapped by PTE */
eec20426 1088 if (folio_nr_pages_mapped(folio) == 0)
be5ef2d9
HD
1089 return mapcount;
1090 /*
b14224fb
MWO
1091 * Add all the PTE mappings of those pages mapped by PTE.
1092 * Limit the loop to folio_nr_pages_mapped()?
be5ef2d9
HD
1093 * Perhaps: given all the raciness, that may be a good or a bad idea.
1094 */
b14224fb
MWO
1095 nr_pages = folio_nr_pages(folio);
1096 for (i = 0; i < nr_pages; i++)
1097 mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
be5ef2d9
HD
1098
1099 /* But each of those _mapcounts was based on -1 */
b14224fb 1100 mapcount += nr_pages;
be5ef2d9 1101 return mapcount;
cb67f428
HD
1102}
1103
c44b6743
RR
1104/**
1105 * page_move_anon_rmap - move a page to our anon_vma
1106 * @page: the page to move to our anon_vma
1107 * @vma: the vma the page belongs to
c44b6743
RR
1108 *
1109 * When a page belongs exclusively to one process after a COW event,
1110 * that page can be moved into the anon_vma that belongs to just that
1111 * process, so the rmap code will not search the parent or sibling
1112 * processes.
1113 */
5a49973d 1114void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743 1115{
595af4c9
MWO
1116 void *anon_vma = vma->anon_vma;
1117 struct folio *folio = page_folio(page);
5a49973d 1118
595af4c9 1119 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
81d1b09c 1120 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743 1121
595af4c9 1122 anon_vma += PAGE_MAPPING_ANON;
414e2fb8
VD
1123 /*
1124 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
b3ac0413
MWO
1125 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1126 * folio_test_anon()) will not see one without the other.
414e2fb8 1127 */
595af4c9
MWO
1128 WRITE_ONCE(folio->mapping, anon_vma);
1129 SetPageAnonExclusive(page);
c44b6743
RR
1130}
1131
9617d95e 1132/**
4e1c1975 1133 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1134 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1135 * @vma: VM area to add page to.
1136 * @address: User virtual address of the mapping
e8a03feb 1137 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1138 */
1139static void __page_set_anon_rmap(struct page *page,
e8a03feb 1140 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1141{
e8a03feb 1142 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1143
e8a03feb 1144 BUG_ON(!anon_vma);
ea90002b 1145
4e1c1975 1146 if (PageAnon(page))
6c287605 1147 goto out;
4e1c1975 1148
ea90002b 1149 /*
e8a03feb
RR
1150 * If the page isn't exclusively mapped into this vma,
1151 * we must use the _oldest_ possible anon_vma for the
1152 * page mapping!
ea90002b 1153 */
4e1c1975 1154 if (!exclusive)
288468c3 1155 anon_vma = anon_vma->root;
9617d95e 1156
16f5e707
AS
1157 /*
1158 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1159 * Make sure the compiler doesn't split the stores of anon_vma and
1160 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1161 * could mistake the mapping for a struct address_space and crash.
1162 */
9617d95e 1163 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1164 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1165 page->index = linear_page_index(vma, address);
6c287605
DH
1166out:
1167 if (exclusive)
1168 SetPageAnonExclusive(page);
9617d95e
NP
1169}
1170
c97a9e10 1171/**
43d8eac4 1172 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1173 * @page: the page to add the mapping to
1174 * @vma: the vm area in which the mapping is added
1175 * @address: the user virtual address mapped
1176 */
1177static void __page_check_anon_rmap(struct page *page,
1178 struct vm_area_struct *vma, unsigned long address)
1179{
e05b3453 1180 struct folio *folio = page_folio(page);
c97a9e10
NP
1181 /*
1182 * The page's anon-rmap details (mapping and index) are guaranteed to
1183 * be set up correctly at this point.
1184 *
1185 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1186 * always holds the page locked.
c97a9e10
NP
1187 *
1188 * We have exclusion against page_add_new_anon_rmap because those pages
1189 * are initially only visible via the pagetables, and the pte is locked
1190 * over the call to page_add_new_anon_rmap.
1191 */
e05b3453
MWO
1192 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1193 folio);
30c46382
YS
1194 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1195 page);
c97a9e10
NP
1196}
1197
1da177e4
LT
1198/**
1199 * page_add_anon_rmap - add pte mapping to an anonymous page
1200 * @page: the page to add the mapping to
1201 * @vma: the vm area in which the mapping is added
1202 * @address: the user virtual address mapped
f1e2db12 1203 * @flags: the rmap flags
1da177e4 1204 *
5ad64688 1205 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1206 * the anon_vma case: to serialize mapping,index checking after setting,
1207 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1208 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1209 */
1210void page_add_anon_rmap(struct page *page,
14f9135d 1211 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1da177e4 1212{
4b51634c 1213 atomic_t *mapped;
9bd3155e 1214 int nr = 0, nr_pmdmapped = 0;
53f9263b 1215 bool compound = flags & RMAP_COMPOUND;
be5ef2d9 1216 bool first = true;
53f9263b 1217
be5ef2d9
HD
1218 /* Is page being mapped by PTE? Is this its first map to be added? */
1219 if (likely(!compound)) {
d8dd5e97
HD
1220 first = atomic_inc_and_test(&page->_mapcount);
1221 nr = first;
be5ef2d9 1222 if (first && PageCompound(page)) {
4b51634c
HD
1223 mapped = subpages_mapcount_ptr(compound_head(page));
1224 nr = atomic_inc_return_relaxed(mapped);
6287b7da 1225 nr = (nr < COMPOUND_MAPPED);
be5ef2d9
HD
1226 }
1227 } else if (PageTransHuge(page)) {
1228 /* That test is redundant: it's for safety or to optimize out */
d8dd5e97 1229
4b51634c 1230 first = atomic_inc_and_test(compound_mapcount_ptr(page));
9bd3155e 1231 if (first) {
4b51634c
HD
1232 mapped = subpages_mapcount_ptr(page);
1233 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
6287b7da
HD
1234 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1235 nr_pmdmapped = thp_nr_pages(page);
eec20426 1236 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
6287b7da
HD
1237 /* Raced ahead of a remove and another add? */
1238 if (unlikely(nr < 0))
1239 nr = 0;
1240 } else {
1241 /* Raced ahead of a remove of COMPOUND_MAPPED */
1242 nr = 0;
1243 }
9bd3155e 1244 }
53f9263b 1245 }
cb67f428 1246
6c287605
DH
1247 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1248 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
53f9263b 1249
9bd3155e
HD
1250 if (nr_pmdmapped)
1251 __mod_lruvec_page_state(page, NR_ANON_THPS, nr_pmdmapped);
1252 if (nr)
be5d0a74 1253 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
5ad64688 1254
c7c3dec1
JW
1255 if (likely(!PageKsm(page))) {
1256 /* address might be in next vma when migration races vma_adjust */
1257 if (first)
1258 __page_set_anon_rmap(page, vma, address,
1259 !!(flags & RMAP_EXCLUSIVE));
1260 else
1261 __page_check_anon_rmap(page, vma, address);
1262 }
cea86fe2
HD
1263
1264 mlock_vma_page(page, vma, compound);
1da177e4
LT
1265}
1266
43d8eac4 1267/**
40f2bbf7 1268 * page_add_new_anon_rmap - add mapping to a new anonymous page
9617d95e
NP
1269 * @page: the page to add the mapping to
1270 * @vma: the vm area in which the mapping is added
1271 * @address: the user virtual address mapped
40f2bbf7
DH
1272 *
1273 * If it's a compound page, it is accounted as a compound page. As the page
1274 * is new, it's assume to get mapped exclusively by a single process.
9617d95e
NP
1275 *
1276 * Same as page_add_anon_rmap but must only be called on *new* pages.
1277 * This means the inc-and-test can be bypassed.
c97a9e10 1278 * Page does not have to be locked.
9617d95e
NP
1279 */
1280void page_add_new_anon_rmap(struct page *page,
40f2bbf7 1281 struct vm_area_struct *vma, unsigned long address)
9617d95e 1282{
d8dd5e97 1283 int nr;
d281ee61 1284
81d1b09c 1285 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1286 __SetPageSwapBacked(page);
d8dd5e97
HD
1287
1288 if (likely(!PageCompound(page))) {
1289 /* increment count (starts at -1) */
1290 atomic_set(&page->_mapcount, 0);
1291 nr = 1;
1292 } else {
d281ee61 1293 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1294 /* increment count (starts at -1) */
1295 atomic_set(compound_mapcount_ptr(page), 0);
4b51634c 1296 atomic_set(subpages_mapcount_ptr(page), COMPOUND_MAPPED);
d8dd5e97 1297 nr = thp_nr_pages(page);
69473e5d 1298 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
d281ee61 1299 }
d8dd5e97 1300
be5d0a74 1301 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1302 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1303}
1304
1da177e4
LT
1305/**
1306 * page_add_file_rmap - add pte mapping to a file page
cea86fe2
HD
1307 * @page: the page to add the mapping to
1308 * @vma: the vm area in which the mapping is added
1309 * @compound: charge the page as compound or small page
1da177e4 1310 *
b8072f09 1311 * The caller needs to hold the pte lock.
1da177e4 1312 */
cea86fe2
HD
1313void page_add_file_rmap(struct page *page,
1314 struct vm_area_struct *vma, bool compound)
1da177e4 1315{
4b51634c 1316 atomic_t *mapped;
9bd3155e
HD
1317 int nr = 0, nr_pmdmapped = 0;
1318 bool first;
dd78fedd
KS
1319
1320 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
9bd3155e 1321
be5ef2d9
HD
1322 /* Is page being mapped by PTE? Is this its first map to be added? */
1323 if (likely(!compound)) {
d8dd5e97
HD
1324 first = atomic_inc_and_test(&page->_mapcount);
1325 nr = first;
be5ef2d9 1326 if (first && PageCompound(page)) {
4b51634c
HD
1327 mapped = subpages_mapcount_ptr(compound_head(page));
1328 nr = atomic_inc_return_relaxed(mapped);
6287b7da 1329 nr = (nr < COMPOUND_MAPPED);
be5ef2d9
HD
1330 }
1331 } else if (PageTransHuge(page)) {
1332 /* That test is redundant: it's for safety or to optimize out */
d8dd5e97 1333
4b51634c 1334 first = atomic_inc_and_test(compound_mapcount_ptr(page));
9bd3155e 1335 if (first) {
4b51634c
HD
1336 mapped = subpages_mapcount_ptr(page);
1337 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
6287b7da
HD
1338 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1339 nr_pmdmapped = thp_nr_pages(page);
eec20426 1340 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
6287b7da
HD
1341 /* Raced ahead of a remove and another add? */
1342 if (unlikely(nr < 0))
1343 nr = 0;
1344 } else {
1345 /* Raced ahead of a remove of COMPOUND_MAPPED */
1346 nr = 0;
1347 }
9bd3155e 1348 }
d69b042f 1349 }
9bd3155e
HD
1350
1351 if (nr_pmdmapped)
1352 __mod_lruvec_page_state(page, PageSwapBacked(page) ?
1353 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
5d543f13
HD
1354 if (nr)
1355 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
cea86fe2
HD
1356
1357 mlock_vma_page(page, vma, compound);
1da177e4
LT
1358}
1359
9bd3155e
HD
1360/**
1361 * page_remove_rmap - take down pte mapping from a page
1362 * @page: page to remove mapping from
1363 * @vma: the vm area from which the mapping is removed
1364 * @compound: uncharge the page as compound or small page
1365 *
1366 * The caller needs to hold the pte lock.
1367 */
1368void page_remove_rmap(struct page *page,
1369 struct vm_area_struct *vma, bool compound)
8186eb6a 1370{
4b51634c 1371 atomic_t *mapped;
9bd3155e
HD
1372 int nr = 0, nr_pmdmapped = 0;
1373 bool last;
dd78fedd 1374
57dea93a 1375 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1376
9bd3155e 1377 /* Hugetlb pages are not counted in NR_*MAPPED */
53f9263b
KS
1378 if (unlikely(PageHuge(page))) {
1379 /* hugetlb pages are always mapped with pmds */
1380 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1381 return;
53f9263b 1382 }
8186eb6a 1383
be5ef2d9
HD
1384 /* Is page being unmapped by PTE? Is this its last map to be removed? */
1385 if (likely(!compound)) {
d8dd5e97
HD
1386 last = atomic_add_negative(-1, &page->_mapcount);
1387 nr = last;
be5ef2d9 1388 if (last && PageCompound(page)) {
4b51634c
HD
1389 mapped = subpages_mapcount_ptr(compound_head(page));
1390 nr = atomic_dec_return_relaxed(mapped);
6287b7da 1391 nr = (nr < COMPOUND_MAPPED);
be5ef2d9
HD
1392 }
1393 } else if (PageTransHuge(page)) {
1394 /* That test is redundant: it's for safety or to optimize out */
d8dd5e97 1395
4b51634c 1396 last = atomic_add_negative(-1, compound_mapcount_ptr(page));
9bd3155e 1397 if (last) {
4b51634c
HD
1398 mapped = subpages_mapcount_ptr(page);
1399 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
6287b7da
HD
1400 if (likely(nr < COMPOUND_MAPPED)) {
1401 nr_pmdmapped = thp_nr_pages(page);
eec20426 1402 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
6287b7da
HD
1403 /* Raced ahead of another remove and an add? */
1404 if (unlikely(nr < 0))
1405 nr = 0;
1406 } else {
1407 /* An add of COMPOUND_MAPPED raced ahead */
1408 nr = 0;
1409 }
9bd3155e 1410 }
dd78fedd 1411 }
cb67f428 1412
9bd3155e
HD
1413 if (nr_pmdmapped) {
1414 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_THPS :
1415 (PageSwapBacked(page) ? NR_SHMEM_PMDMAPPED :
1416 NR_FILE_PMDMAPPED), -nr_pmdmapped);
1417 }
1418 if (nr) {
1419 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_MAPPED :
1420 NR_FILE_MAPPED, -nr);
f1fe80d4 1421 /*
9bd3155e 1422 * Queue anon THP for deferred split if at least one small
f1fe80d4
KS
1423 * page of the compound page is unmapped, but at least one
1424 * small page is still mapped.
1425 */
9bd3155e
HD
1426 if (PageTransCompound(page) && PageAnon(page))
1427 if (!compound || nr < nr_pmdmapped)
1428 deferred_split_huge_page(compound_head(page));
53f9263b
KS
1429 }
1430
b904dcfe 1431 /*
9bd3155e 1432 * It would be tidy to reset PageAnon mapping when fully unmapped,
b904dcfe
KM
1433 * but that might overwrite a racing page_add_anon_rmap
1434 * which increments mapcount after us but sets mapping
9bd3155e 1435 * before us: so leave the reset to free_pages_prepare,
b904dcfe 1436 * and remember that it's only reliable while mapped.
b904dcfe 1437 */
9bd3155e 1438
cea86fe2 1439 munlock_vma_page(page, vma, compound);
1da177e4
LT
1440}
1441
1442/*
52629506 1443 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1444 */
2f031c6f 1445static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
52629506 1446 unsigned long address, void *arg)
1da177e4
LT
1447{
1448 struct mm_struct *mm = vma->vm_mm;
869f7ee6 1449 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1da177e4 1450 pte_t pteval;
c7ab0d2f 1451 struct page *subpage;
6c287605 1452 bool anon_exclusive, ret = true;
ac46d4f3 1453 struct mmu_notifier_range range;
4708f318 1454 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1455
732ed558
HD
1456 /*
1457 * When racing against e.g. zap_pte_range() on another cpu,
1458 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1459 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1460 * if page table locking is skipped: use TTU_SYNC to wait for that.
1461 */
1462 if (flags & TTU_SYNC)
1463 pvmw.flags = PVMW_SYNC;
1464
a98a2f0c 1465 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1466 split_huge_pmd_address(vma, address, false, folio);
fec89c10 1467
369ea824 1468 /*
017b1660
MK
1469 * For THP, we have to assume the worse case ie pmd for invalidation.
1470 * For hugetlb, it could be much worse if we need to do pud
1471 * invalidation in the case of pmd sharing.
1472 *
869f7ee6
MWO
1473 * Note that the folio can not be freed in this function as call of
1474 * try_to_unmap() must hold a reference on the folio.
369ea824 1475 */
2aff7a47 1476 range.end = vma_address_end(&pvmw);
7d4a8be0 1477 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
494334e4 1478 address, range.end);
869f7ee6 1479 if (folio_test_hugetlb(folio)) {
017b1660
MK
1480 /*
1481 * If sharing is possible, start and end will be adjusted
1482 * accordingly.
1483 */
ac46d4f3
JG
1484 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1485 &range.end);
017b1660 1486 }
ac46d4f3 1487 mmu_notifier_invalidate_range_start(&range);
369ea824 1488
c7ab0d2f 1489 while (page_vma_mapped_walk(&pvmw)) {
cea86fe2 1490 /* Unexpected PMD-mapped THP? */
869f7ee6 1491 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
cea86fe2 1492
c7ab0d2f 1493 /*
869f7ee6 1494 * If the folio is in an mlock()d vma, we must not swap it out.
c7ab0d2f 1495 */
efdb6720
HD
1496 if (!(flags & TTU_IGNORE_MLOCK) &&
1497 (vma->vm_flags & VM_LOCKED)) {
cea86fe2 1498 /* Restore the mlock which got missed */
869f7ee6 1499 mlock_vma_folio(folio, vma, false);
efdb6720
HD
1500 page_vma_mapped_walk_done(&pvmw);
1501 ret = false;
1502 break;
b87537d9 1503 }
c7ab0d2f 1504
869f7ee6
MWO
1505 subpage = folio_page(folio,
1506 pte_pfn(*pvmw.pte) - folio_pfn(folio));
785373b4 1507 address = pvmw.address;
6c287605
DH
1508 anon_exclusive = folio_test_anon(folio) &&
1509 PageAnonExclusive(subpage);
785373b4 1510
dfc7ab57 1511 if (folio_test_hugetlb(folio)) {
0506c31d
BW
1512 bool anon = folio_test_anon(folio);
1513
a00a8759
BW
1514 /*
1515 * The try_to_unmap() is only passed a hugetlb page
1516 * in the case where the hugetlb page is poisoned.
1517 */
1518 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
54205e9c
BW
1519 /*
1520 * huge_pmd_unshare may unmap an entire PMD page.
1521 * There is no way of knowing exactly which PMDs may
1522 * be cached for this mm, so we must flush them all.
1523 * start/end were already adjusted above to cover this
1524 * range.
1525 */
1526 flush_cache_range(vma, range.start, range.end);
1527
0506c31d
BW
1528 /*
1529 * To call huge_pmd_unshare, i_mmap_rwsem must be
1530 * held in write mode. Caller needs to explicitly
1531 * do this outside rmap routines.
40549ba8
MK
1532 *
1533 * We also must hold hugetlb vma_lock in write mode.
1534 * Lock order dictates acquiring vma_lock BEFORE
1535 * i_mmap_rwsem. We can only try lock here and fail
1536 * if unsuccessful.
0506c31d 1537 */
40549ba8
MK
1538 if (!anon) {
1539 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1540 if (!hugetlb_vma_trylock_write(vma)) {
1541 page_vma_mapped_walk_done(&pvmw);
1542 ret = false;
1543 break;
1544 }
1545 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1546 hugetlb_vma_unlock_write(vma);
1547 flush_tlb_range(vma,
1548 range.start, range.end);
1549 mmu_notifier_invalidate_range(mm,
1550 range.start, range.end);
1551 /*
1552 * The ref count of the PMD page was
1553 * dropped which is part of the way map
1554 * counting is done for shared PMDs.
1555 * Return 'true' here. When there is
1556 * no other sharing, huge_pmd_unshare
1557 * returns false and we will unmap the
1558 * actual page and drop map count
1559 * to zero.
1560 */
1561 page_vma_mapped_walk_done(&pvmw);
1562 break;
1563 }
1564 hugetlb_vma_unlock_write(vma);
017b1660 1565 }
a00a8759 1566 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
54205e9c
BW
1567 } else {
1568 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
088b8aa5
DH
1569 /* Nuke the page table entry. */
1570 if (should_defer_flush(mm, flags)) {
a00a8759
BW
1571 /*
1572 * We clear the PTE but do not flush so potentially
1573 * a remote CPU could still be writing to the folio.
1574 * If the entry was previously clean then the
1575 * architecture must guarantee that a clear->dirty
1576 * transition on a cached TLB entry is written through
1577 * and traps if the PTE is unmapped.
1578 */
1579 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f 1580
a00a8759
BW
1581 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1582 } else {
1583 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1584 }
c7ab0d2f 1585 }
72b252ae 1586
999dad82
PX
1587 /*
1588 * Now the pte is cleared. If this pte was uffd-wp armed,
1589 * we may want to replace a none pte with a marker pte if
1590 * it's file-backed, so we don't lose the tracking info.
1591 */
1592 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1593
869f7ee6 1594 /* Set the dirty flag on the folio now the pte is gone. */
c7ab0d2f 1595 if (pte_dirty(pteval))
869f7ee6 1596 folio_mark_dirty(folio);
1da177e4 1597
c7ab0d2f
KS
1598 /* Update high watermark before we lower rss */
1599 update_hiwater_rss(mm);
1da177e4 1600
da358d5c 1601 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1602 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
869f7ee6
MWO
1603 if (folio_test_hugetlb(folio)) {
1604 hugetlb_count_sub(folio_nr_pages(folio), mm);
18f39629 1605 set_huge_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1606 } else {
869f7ee6 1607 dec_mm_counter(mm, mm_counter(&folio->page));
785373b4 1608 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1609 }
365e9c87 1610
bce73e48 1611 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1612 /*
1613 * The guest indicated that the page content is of no
1614 * interest anymore. Simply discard the pte, vmscan
1615 * will take care of the rest.
bce73e48
CB
1616 * A future reference will then fault in a new zero
1617 * page. When userfaultfd is active, we must not drop
1618 * this page though, as its main user (postcopy
1619 * migration) will not expect userfaults on already
1620 * copied pages.
c7ab0d2f 1621 */
869f7ee6 1622 dec_mm_counter(mm, mm_counter(&folio->page));
0f10851e
JG
1623 /* We have to invalidate as we cleared the pte */
1624 mmu_notifier_invalidate_range(mm, address,
1625 address + PAGE_SIZE);
869f7ee6 1626 } else if (folio_test_anon(folio)) {
c7ab0d2f
KS
1627 swp_entry_t entry = { .val = page_private(subpage) };
1628 pte_t swp_pte;
1629 /*
1630 * Store the swap location in the pte.
1631 * See handle_pte_fault() ...
1632 */
869f7ee6
MWO
1633 if (unlikely(folio_test_swapbacked(folio) !=
1634 folio_test_swapcache(folio))) {
eb94a878 1635 WARN_ON_ONCE(1);
83612a94 1636 ret = false;
369ea824 1637 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1638 mmu_notifier_invalidate_range(mm, address,
1639 address + PAGE_SIZE);
eb94a878
MK
1640 page_vma_mapped_walk_done(&pvmw);
1641 break;
1642 }
c7ab0d2f 1643
802a3a92 1644 /* MADV_FREE page check */
869f7ee6 1645 if (!folio_test_swapbacked(folio)) {
6c8e2a25
MFO
1646 int ref_count, map_count;
1647
1648 /*
1649 * Synchronize with gup_pte_range():
1650 * - clear PTE; barrier; read refcount
1651 * - inc refcount; barrier; read PTE
1652 */
1653 smp_mb();
1654
1655 ref_count = folio_ref_count(folio);
1656 map_count = folio_mapcount(folio);
1657
1658 /*
1659 * Order reads for page refcount and dirty flag
1660 * (see comments in __remove_mapping()).
1661 */
1662 smp_rmb();
1663
1664 /*
1665 * The only page refs must be one from isolation
1666 * plus the rmap(s) (dropped by discard:).
1667 */
1668 if (ref_count == 1 + map_count &&
1669 !folio_test_dirty(folio)) {
0f10851e
JG
1670 /* Invalidate as we cleared the pte */
1671 mmu_notifier_invalidate_range(mm,
1672 address, address + PAGE_SIZE);
802a3a92
SL
1673 dec_mm_counter(mm, MM_ANONPAGES);
1674 goto discard;
1675 }
1676
1677 /*
869f7ee6 1678 * If the folio was redirtied, it cannot be
802a3a92
SL
1679 * discarded. Remap the page to page table.
1680 */
785373b4 1681 set_pte_at(mm, address, pvmw.pte, pteval);
869f7ee6 1682 folio_set_swapbacked(folio);
e4b82222 1683 ret = false;
802a3a92
SL
1684 page_vma_mapped_walk_done(&pvmw);
1685 break;
c7ab0d2f 1686 }
854e9ed0 1687
c7ab0d2f 1688 if (swap_duplicate(entry) < 0) {
785373b4 1689 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1690 ret = false;
c7ab0d2f
KS
1691 page_vma_mapped_walk_done(&pvmw);
1692 break;
1693 }
ca827d55 1694 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
322842ea 1695 swap_free(entry);
ca827d55
KA
1696 set_pte_at(mm, address, pvmw.pte, pteval);
1697 ret = false;
1698 page_vma_mapped_walk_done(&pvmw);
1699 break;
1700 }
088b8aa5
DH
1701
1702 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1703 if (anon_exclusive &&
1704 page_try_share_anon_rmap(subpage)) {
1705 swap_free(entry);
1706 set_pte_at(mm, address, pvmw.pte, pteval);
1707 ret = false;
1708 page_vma_mapped_walk_done(&pvmw);
1709 break;
1710 }
1711 /*
1493a191
DH
1712 * Note: We *don't* remember if the page was mapped
1713 * exclusively in the swap pte if the architecture
1714 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1715 * that case, swapin code has to re-determine that
1716 * manually and might detect the page as possibly
1717 * shared, for example, if there are other references on
1718 * the page or if the page is under writeback. We made
1719 * sure that there are no GUP pins on the page that
1720 * would rely on it, so for GUP pins this is fine.
6c287605 1721 */
c7ab0d2f
KS
1722 if (list_empty(&mm->mmlist)) {
1723 spin_lock(&mmlist_lock);
1724 if (list_empty(&mm->mmlist))
1725 list_add(&mm->mmlist, &init_mm.mmlist);
1726 spin_unlock(&mmlist_lock);
1727 }
854e9ed0 1728 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1729 inc_mm_counter(mm, MM_SWAPENTS);
1730 swp_pte = swp_entry_to_pte(entry);
1493a191
DH
1731 if (anon_exclusive)
1732 swp_pte = pte_swp_mkexclusive(swp_pte);
c7ab0d2f
KS
1733 if (pte_soft_dirty(pteval))
1734 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1735 if (pte_uffd_wp(pteval))
1736 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1737 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1738 /* Invalidate as we cleared the pte */
1739 mmu_notifier_invalidate_range(mm, address,
1740 address + PAGE_SIZE);
1741 } else {
1742 /*
869f7ee6
MWO
1743 * This is a locked file-backed folio,
1744 * so it cannot be removed from the page
1745 * cache and replaced by a new folio before
1746 * mmu_notifier_invalidate_range_end, so no
1747 * concurrent thread might update its page table
1748 * to point at a new folio while a device is
1749 * still using this folio.
0f10851e 1750 *
ee65728e 1751 * See Documentation/mm/mmu_notifier.rst
0f10851e 1752 */
869f7ee6 1753 dec_mm_counter(mm, mm_counter_file(&folio->page));
0f10851e 1754 }
854e9ed0 1755discard:
0f10851e
JG
1756 /*
1757 * No need to call mmu_notifier_invalidate_range() it has be
1758 * done above for all cases requiring it to happen under page
1759 * table lock before mmu_notifier_invalidate_range_end()
1760 *
ee65728e 1761 * See Documentation/mm/mmu_notifier.rst
0f10851e 1762 */
869f7ee6 1763 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 1764 if (vma->vm_flags & VM_LOCKED)
adb11e78 1765 mlock_page_drain_local();
869f7ee6 1766 folio_put(folio);
c7ab0d2f 1767 }
369ea824 1768
ac46d4f3 1769 mmu_notifier_invalidate_range_end(&range);
369ea824 1770
caed0f48 1771 return ret;
1da177e4
LT
1772}
1773
52629506
JK
1774static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1775{
222100ee 1776 return vma_is_temporary_stack(vma);
52629506
JK
1777}
1778
f3ad032c 1779static int folio_not_mapped(struct folio *folio)
52629506 1780{
2f031c6f 1781 return !folio_mapped(folio);
2a52bcbc 1782}
52629506 1783
1da177e4 1784/**
869f7ee6
MWO
1785 * try_to_unmap - Try to remove all page table mappings to a folio.
1786 * @folio: The folio to unmap.
14fa31b8 1787 * @flags: action and flags
1da177e4
LT
1788 *
1789 * Tries to remove all the page table entries which are mapping this
869f7ee6
MWO
1790 * folio. It is the caller's responsibility to check if the folio is
1791 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1da177e4 1792 *
869f7ee6 1793 * Context: Caller must hold the folio lock.
1da177e4 1794 */
869f7ee6 1795void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1da177e4 1796{
52629506
JK
1797 struct rmap_walk_control rwc = {
1798 .rmap_one = try_to_unmap_one,
802a3a92 1799 .arg = (void *)flags,
f3ad032c 1800 .done = folio_not_mapped,
2f031c6f 1801 .anon_lock = folio_lock_anon_vma_read,
52629506 1802 };
1da177e4 1803
a98a2f0c 1804 if (flags & TTU_RMAP_LOCKED)
2f031c6f 1805 rmap_walk_locked(folio, &rwc);
a98a2f0c 1806 else
2f031c6f 1807 rmap_walk(folio, &rwc);
a98a2f0c
AP
1808}
1809
1810/*
1811 * @arg: enum ttu_flags will be passed to this argument.
1812 *
1813 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1814 * containing migration entries.
a98a2f0c 1815 */
2f031c6f 1816static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
a98a2f0c
AP
1817 unsigned long address, void *arg)
1818{
1819 struct mm_struct *mm = vma->vm_mm;
4b8554c5 1820 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
a98a2f0c
AP
1821 pte_t pteval;
1822 struct page *subpage;
6c287605 1823 bool anon_exclusive, ret = true;
a98a2f0c
AP
1824 struct mmu_notifier_range range;
1825 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1826
a98a2f0c
AP
1827 /*
1828 * When racing against e.g. zap_pte_range() on another cpu,
1829 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1830 * try_to_migrate() may return before page_mapped() has become false,
1831 * if page table locking is skipped: use TTU_SYNC to wait for that.
1832 */
1833 if (flags & TTU_SYNC)
1834 pvmw.flags = PVMW_SYNC;
1835
1836 /*
1837 * unmap_page() in mm/huge_memory.c is the only user of migration with
1838 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1839 */
1840 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1841 split_huge_pmd_address(vma, address, true, folio);
a98a2f0c
AP
1842
1843 /*
1844 * For THP, we have to assume the worse case ie pmd for invalidation.
1845 * For hugetlb, it could be much worse if we need to do pud
1846 * invalidation in the case of pmd sharing.
1847 *
1848 * Note that the page can not be free in this function as call of
1849 * try_to_unmap() must hold a reference on the page.
1850 */
2aff7a47 1851 range.end = vma_address_end(&pvmw);
7d4a8be0 1852 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
a98a2f0c 1853 address, range.end);
4b8554c5 1854 if (folio_test_hugetlb(folio)) {
a98a2f0c
AP
1855 /*
1856 * If sharing is possible, start and end will be adjusted
1857 * accordingly.
1858 */
1859 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1860 &range.end);
1861 }
1862 mmu_notifier_invalidate_range_start(&range);
1863
1864 while (page_vma_mapped_walk(&pvmw)) {
1865#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1866 /* PMD-mapped THP migration entry */
1867 if (!pvmw.pte) {
4b8554c5
MWO
1868 subpage = folio_page(folio,
1869 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1870 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1871 !folio_test_pmd_mappable(folio), folio);
a98a2f0c 1872
7f5abe60
DH
1873 if (set_pmd_migration_entry(&pvmw, subpage)) {
1874 ret = false;
1875 page_vma_mapped_walk_done(&pvmw);
1876 break;
1877 }
a98a2f0c
AP
1878 continue;
1879 }
1880#endif
1881
1882 /* Unexpected PMD-mapped THP? */
4b8554c5 1883 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
a98a2f0c 1884
1118234e
DH
1885 if (folio_is_zone_device(folio)) {
1886 /*
1887 * Our PTE is a non-present device exclusive entry and
1888 * calculating the subpage as for the common case would
1889 * result in an invalid pointer.
1890 *
1891 * Since only PAGE_SIZE pages can currently be
1892 * migrated, just set it to page. This will need to be
1893 * changed when hugepage migrations to device private
1894 * memory are supported.
1895 */
1896 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1897 subpage = &folio->page;
1898 } else {
1899 subpage = folio_page(folio,
1900 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1901 }
a98a2f0c 1902 address = pvmw.address;
6c287605
DH
1903 anon_exclusive = folio_test_anon(folio) &&
1904 PageAnonExclusive(subpage);
a98a2f0c 1905
dfc7ab57 1906 if (folio_test_hugetlb(folio)) {
0506c31d
BW
1907 bool anon = folio_test_anon(folio);
1908
54205e9c
BW
1909 /*
1910 * huge_pmd_unshare may unmap an entire PMD page.
1911 * There is no way of knowing exactly which PMDs may
1912 * be cached for this mm, so we must flush them all.
1913 * start/end were already adjusted above to cover this
1914 * range.
1915 */
1916 flush_cache_range(vma, range.start, range.end);
1917
0506c31d
BW
1918 /*
1919 * To call huge_pmd_unshare, i_mmap_rwsem must be
1920 * held in write mode. Caller needs to explicitly
1921 * do this outside rmap routines.
40549ba8
MK
1922 *
1923 * We also must hold hugetlb vma_lock in write mode.
1924 * Lock order dictates acquiring vma_lock BEFORE
1925 * i_mmap_rwsem. We can only try lock here and
1926 * fail if unsuccessful.
0506c31d 1927 */
40549ba8
MK
1928 if (!anon) {
1929 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1930 if (!hugetlb_vma_trylock_write(vma)) {
1931 page_vma_mapped_walk_done(&pvmw);
1932 ret = false;
1933 break;
1934 }
1935 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1936 hugetlb_vma_unlock_write(vma);
1937 flush_tlb_range(vma,
1938 range.start, range.end);
1939 mmu_notifier_invalidate_range(mm,
1940 range.start, range.end);
1941
1942 /*
1943 * The ref count of the PMD page was
1944 * dropped which is part of the way map
1945 * counting is done for shared PMDs.
1946 * Return 'true' here. When there is
1947 * no other sharing, huge_pmd_unshare
1948 * returns false and we will unmap the
1949 * actual page and drop map count
1950 * to zero.
1951 */
1952 page_vma_mapped_walk_done(&pvmw);
1953 break;
1954 }
1955 hugetlb_vma_unlock_write(vma);
a98a2f0c 1956 }
5d4af619
BW
1957 /* Nuke the hugetlb page table entry */
1958 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
54205e9c
BW
1959 } else {
1960 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
5d4af619
BW
1961 /* Nuke the page table entry. */
1962 pteval = ptep_clear_flush(vma, address, pvmw.pte);
a98a2f0c
AP
1963 }
1964
4b8554c5 1965 /* Set the dirty flag on the folio now the pte is gone. */
a98a2f0c 1966 if (pte_dirty(pteval))
4b8554c5 1967 folio_mark_dirty(folio);
a98a2f0c
AP
1968
1969 /* Update high watermark before we lower rss */
1970 update_hiwater_rss(mm);
1971
f25cbb7a 1972 if (folio_is_device_private(folio)) {
4b8554c5 1973 unsigned long pfn = folio_pfn(folio);
a98a2f0c
AP
1974 swp_entry_t entry;
1975 pte_t swp_pte;
1976
6c287605
DH
1977 if (anon_exclusive)
1978 BUG_ON(page_try_share_anon_rmap(subpage));
1979
a98a2f0c
AP
1980 /*
1981 * Store the pfn of the page in a special migration
1982 * pte. do_swap_page() will wait until the migration
1983 * pte is removed and then restart fault handling.
1984 */
3d88705c
AP
1985 entry = pte_to_swp_entry(pteval);
1986 if (is_writable_device_private_entry(entry))
1987 entry = make_writable_migration_entry(pfn);
6c287605
DH
1988 else if (anon_exclusive)
1989 entry = make_readable_exclusive_migration_entry(pfn);
3d88705c
AP
1990 else
1991 entry = make_readable_migration_entry(pfn);
a98a2f0c
AP
1992 swp_pte = swp_entry_to_pte(entry);
1993
1994 /*
1995 * pteval maps a zone device page and is therefore
1996 * a swap pte.
1997 */
1998 if (pte_swp_soft_dirty(pteval))
1999 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2000 if (pte_swp_uffd_wp(pteval))
2001 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2002 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
4cc79b33
AK
2003 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2004 compound_order(&folio->page));
a98a2f0c
AP
2005 /*
2006 * No need to invalidate here it will synchronize on
2007 * against the special swap migration pte.
a98a2f0c 2008 */
da358d5c 2009 } else if (PageHWPoison(subpage)) {
a98a2f0c 2010 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
4b8554c5
MWO
2011 if (folio_test_hugetlb(folio)) {
2012 hugetlb_count_sub(folio_nr_pages(folio), mm);
18f39629 2013 set_huge_pte_at(mm, address, pvmw.pte, pteval);
a98a2f0c 2014 } else {
4b8554c5 2015 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
2016 set_pte_at(mm, address, pvmw.pte, pteval);
2017 }
2018
2019 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2020 /*
2021 * The guest indicated that the page content is of no
2022 * interest anymore. Simply discard the pte, vmscan
2023 * will take care of the rest.
2024 * A future reference will then fault in a new zero
2025 * page. When userfaultfd is active, we must not drop
2026 * this page though, as its main user (postcopy
2027 * migration) will not expect userfaults on already
2028 * copied pages.
2029 */
4b8554c5 2030 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
2031 /* We have to invalidate as we cleared the pte */
2032 mmu_notifier_invalidate_range(mm, address,
2033 address + PAGE_SIZE);
2034 } else {
2035 swp_entry_t entry;
2036 pte_t swp_pte;
2037
2038 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
5d4af619
BW
2039 if (folio_test_hugetlb(folio))
2040 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2041 else
2042 set_pte_at(mm, address, pvmw.pte, pteval);
a98a2f0c
AP
2043 ret = false;
2044 page_vma_mapped_walk_done(&pvmw);
2045 break;
2046 }
6c287605
DH
2047 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2048 !anon_exclusive, subpage);
088b8aa5
DH
2049
2050 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
2051 if (anon_exclusive &&
2052 page_try_share_anon_rmap(subpage)) {
5d4af619
BW
2053 if (folio_test_hugetlb(folio))
2054 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2055 else
2056 set_pte_at(mm, address, pvmw.pte, pteval);
6c287605
DH
2057 ret = false;
2058 page_vma_mapped_walk_done(&pvmw);
2059 break;
2060 }
a98a2f0c
AP
2061
2062 /*
2063 * Store the pfn of the page in a special migration
2064 * pte. do_swap_page() will wait until the migration
2065 * pte is removed and then restart fault handling.
2066 */
2067 if (pte_write(pteval))
2068 entry = make_writable_migration_entry(
2069 page_to_pfn(subpage));
6c287605
DH
2070 else if (anon_exclusive)
2071 entry = make_readable_exclusive_migration_entry(
2072 page_to_pfn(subpage));
a98a2f0c
AP
2073 else
2074 entry = make_readable_migration_entry(
2075 page_to_pfn(subpage));
2e346877
PX
2076 if (pte_young(pteval))
2077 entry = make_migration_entry_young(entry);
2078 if (pte_dirty(pteval))
2079 entry = make_migration_entry_dirty(entry);
a98a2f0c
AP
2080 swp_pte = swp_entry_to_pte(entry);
2081 if (pte_soft_dirty(pteval))
2082 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2083 if (pte_uffd_wp(pteval))
2084 swp_pte = pte_swp_mkuffd_wp(swp_pte);
5d4af619 2085 if (folio_test_hugetlb(folio))
18f39629 2086 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
5d4af619
BW
2087 else
2088 set_pte_at(mm, address, pvmw.pte, swp_pte);
4cc79b33
AK
2089 trace_set_migration_pte(address, pte_val(swp_pte),
2090 compound_order(&folio->page));
a98a2f0c
AP
2091 /*
2092 * No need to invalidate here it will synchronize on
2093 * against the special swap migration pte.
2094 */
2095 }
2096
2097 /*
2098 * No need to call mmu_notifier_invalidate_range() it has be
2099 * done above for all cases requiring it to happen under page
2100 * table lock before mmu_notifier_invalidate_range_end()
2101 *
ee65728e 2102 * See Documentation/mm/mmu_notifier.rst
a98a2f0c 2103 */
4b8554c5 2104 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 2105 if (vma->vm_flags & VM_LOCKED)
adb11e78 2106 mlock_page_drain_local();
4b8554c5 2107 folio_put(folio);
a98a2f0c
AP
2108 }
2109
2110 mmu_notifier_invalidate_range_end(&range);
2111
2112 return ret;
2113}
2114
2115/**
2116 * try_to_migrate - try to replace all page table mappings with swap entries
4b8554c5 2117 * @folio: the folio to replace page table entries for
a98a2f0c
AP
2118 * @flags: action and flags
2119 *
4b8554c5
MWO
2120 * Tries to remove all the page table entries which are mapping this folio and
2121 * replace them with special swap entries. Caller must hold the folio lock.
a98a2f0c 2122 */
4b8554c5 2123void try_to_migrate(struct folio *folio, enum ttu_flags flags)
a98a2f0c
AP
2124{
2125 struct rmap_walk_control rwc = {
2126 .rmap_one = try_to_migrate_one,
2127 .arg = (void *)flags,
f3ad032c 2128 .done = folio_not_mapped,
2f031c6f 2129 .anon_lock = folio_lock_anon_vma_read,
a98a2f0c
AP
2130 };
2131
2132 /*
2133 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2134 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2135 */
2136 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2137 TTU_SYNC)))
2138 return;
2139
f25cbb7a
AS
2140 if (folio_is_zone_device(folio) &&
2141 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
6c855fce
HD
2142 return;
2143
52629506
JK
2144 /*
2145 * During exec, a temporary VMA is setup and later moved.
2146 * The VMA is moved under the anon_vma lock but not the
2147 * page tables leading to a race where migration cannot
2148 * find the migration ptes. Rather than increasing the
2149 * locking requirements of exec(), migration skips
2150 * temporary VMAs until after exec() completes.
2151 */
4b8554c5 2152 if (!folio_test_ksm(folio) && folio_test_anon(folio))
52629506
JK
2153 rwc.invalid_vma = invalid_migration_vma;
2154
2a52bcbc 2155 if (flags & TTU_RMAP_LOCKED)
2f031c6f 2156 rmap_walk_locked(folio, &rwc);
2a52bcbc 2157 else
2f031c6f 2158 rmap_walk(folio, &rwc);
b291f000 2159}
e9995ef9 2160
b756a3b5
AP
2161#ifdef CONFIG_DEVICE_PRIVATE
2162struct make_exclusive_args {
2163 struct mm_struct *mm;
2164 unsigned long address;
2165 void *owner;
2166 bool valid;
2167};
2168
2f031c6f 2169static bool page_make_device_exclusive_one(struct folio *folio,
b756a3b5
AP
2170 struct vm_area_struct *vma, unsigned long address, void *priv)
2171{
2172 struct mm_struct *mm = vma->vm_mm;
0d251485 2173 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
b756a3b5
AP
2174 struct make_exclusive_args *args = priv;
2175 pte_t pteval;
2176 struct page *subpage;
2177 bool ret = true;
2178 struct mmu_notifier_range range;
2179 swp_entry_t entry;
2180 pte_t swp_pte;
2181
7d4a8be0 2182 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5 2183 vma->vm_mm, address, min(vma->vm_end,
0d251485
MWO
2184 address + folio_size(folio)),
2185 args->owner);
b756a3b5
AP
2186 mmu_notifier_invalidate_range_start(&range);
2187
2188 while (page_vma_mapped_walk(&pvmw)) {
2189 /* Unexpected PMD-mapped THP? */
0d251485 2190 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
b756a3b5
AP
2191
2192 if (!pte_present(*pvmw.pte)) {
2193 ret = false;
2194 page_vma_mapped_walk_done(&pvmw);
2195 break;
2196 }
2197
0d251485
MWO
2198 subpage = folio_page(folio,
2199 pte_pfn(*pvmw.pte) - folio_pfn(folio));
b756a3b5
AP
2200 address = pvmw.address;
2201
2202 /* Nuke the page table entry. */
2203 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2204 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2205
0d251485 2206 /* Set the dirty flag on the folio now the pte is gone. */
b756a3b5 2207 if (pte_dirty(pteval))
0d251485 2208 folio_mark_dirty(folio);
b756a3b5
AP
2209
2210 /*
2211 * Check that our target page is still mapped at the expected
2212 * address.
2213 */
2214 if (args->mm == mm && args->address == address &&
2215 pte_write(pteval))
2216 args->valid = true;
2217
2218 /*
2219 * Store the pfn of the page in a special migration
2220 * pte. do_swap_page() will wait until the migration
2221 * pte is removed and then restart fault handling.
2222 */
2223 if (pte_write(pteval))
2224 entry = make_writable_device_exclusive_entry(
2225 page_to_pfn(subpage));
2226 else
2227 entry = make_readable_device_exclusive_entry(
2228 page_to_pfn(subpage));
2229 swp_pte = swp_entry_to_pte(entry);
2230 if (pte_soft_dirty(pteval))
2231 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2232 if (pte_uffd_wp(pteval))
2233 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2234
2235 set_pte_at(mm, address, pvmw.pte, swp_pte);
2236
2237 /*
2238 * There is a reference on the page for the swap entry which has
2239 * been removed, so shouldn't take another.
2240 */
cea86fe2 2241 page_remove_rmap(subpage, vma, false);
b756a3b5
AP
2242 }
2243
2244 mmu_notifier_invalidate_range_end(&range);
2245
2246 return ret;
2247}
2248
2249/**
0d251485
MWO
2250 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2251 * @folio: The folio to replace page table entries for.
2252 * @mm: The mm_struct where the folio is expected to be mapped.
2253 * @address: Address where the folio is expected to be mapped.
b756a3b5
AP
2254 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2255 *
0d251485
MWO
2256 * Tries to remove all the page table entries which are mapping this
2257 * folio and replace them with special device exclusive swap entries to
2258 * grant a device exclusive access to the folio.
b756a3b5 2259 *
0d251485
MWO
2260 * Context: Caller must hold the folio lock.
2261 * Return: false if the page is still mapped, or if it could not be unmapped
b756a3b5
AP
2262 * from the expected address. Otherwise returns true (success).
2263 */
0d251485
MWO
2264static bool folio_make_device_exclusive(struct folio *folio,
2265 struct mm_struct *mm, unsigned long address, void *owner)
b756a3b5
AP
2266{
2267 struct make_exclusive_args args = {
2268 .mm = mm,
2269 .address = address,
2270 .owner = owner,
2271 .valid = false,
2272 };
2273 struct rmap_walk_control rwc = {
2274 .rmap_one = page_make_device_exclusive_one,
f3ad032c 2275 .done = folio_not_mapped,
2f031c6f 2276 .anon_lock = folio_lock_anon_vma_read,
b756a3b5
AP
2277 .arg = &args,
2278 };
2279
2280 /*
0d251485
MWO
2281 * Restrict to anonymous folios for now to avoid potential writeback
2282 * issues.
b756a3b5 2283 */
0d251485 2284 if (!folio_test_anon(folio))
b756a3b5
AP
2285 return false;
2286
2f031c6f 2287 rmap_walk(folio, &rwc);
b756a3b5 2288
0d251485 2289 return args.valid && !folio_mapcount(folio);
b756a3b5
AP
2290}
2291
2292/**
2293 * make_device_exclusive_range() - Mark a range for exclusive use by a device
dd062302 2294 * @mm: mm_struct of associated target process
b756a3b5
AP
2295 * @start: start of the region to mark for exclusive device access
2296 * @end: end address of region
2297 * @pages: returns the pages which were successfully marked for exclusive access
2298 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2299 *
2300 * Returns: number of pages found in the range by GUP. A page is marked for
2301 * exclusive access only if the page pointer is non-NULL.
2302 *
2303 * This function finds ptes mapping page(s) to the given address range, locks
2304 * them and replaces mappings with special swap entries preventing userspace CPU
2305 * access. On fault these entries are replaced with the original mapping after
2306 * calling MMU notifiers.
2307 *
2308 * A driver using this to program access from a device must use a mmu notifier
2309 * critical section to hold a device specific lock during programming. Once
2310 * programming is complete it should drop the page lock and reference after
2311 * which point CPU access to the page will revoke the exclusive access.
2312 */
2313int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2314 unsigned long end, struct page **pages,
2315 void *owner)
2316{
2317 long npages = (end - start) >> PAGE_SHIFT;
2318 long i;
2319
2320 npages = get_user_pages_remote(mm, start, npages,
2321 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2322 pages, NULL, NULL);
2323 if (npages < 0)
2324 return npages;
2325
2326 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
0d251485
MWO
2327 struct folio *folio = page_folio(pages[i]);
2328 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2329 folio_put(folio);
b756a3b5
AP
2330 pages[i] = NULL;
2331 continue;
2332 }
2333
0d251485
MWO
2334 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2335 folio_unlock(folio);
2336 folio_put(folio);
b756a3b5
AP
2337 pages[i] = NULL;
2338 }
2339 }
2340
2341 return npages;
2342}
2343EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2344#endif
2345
01d8b20d 2346void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2347{
01d8b20d 2348 struct anon_vma *root = anon_vma->root;
76545066 2349
624483f3 2350 anon_vma_free(anon_vma);
01d8b20d
PZ
2351 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2352 anon_vma_free(root);
76545066 2353}
76545066 2354
2f031c6f 2355static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
6d4675e6 2356 struct rmap_walk_control *rwc)
faecd8dd
JK
2357{
2358 struct anon_vma *anon_vma;
2359
0dd1c7bb 2360 if (rwc->anon_lock)
6d4675e6 2361 return rwc->anon_lock(folio, rwc);
0dd1c7bb 2362
faecd8dd 2363 /*
2f031c6f 2364 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
faecd8dd 2365 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2366 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2367 * take a reference count to prevent the anon_vma disappearing
2368 */
e05b3453 2369 anon_vma = folio_anon_vma(folio);
faecd8dd
JK
2370 if (!anon_vma)
2371 return NULL;
2372
6d4675e6
MK
2373 if (anon_vma_trylock_read(anon_vma))
2374 goto out;
2375
2376 if (rwc->try_lock) {
2377 anon_vma = NULL;
2378 rwc->contended = true;
2379 goto out;
2380 }
2381
faecd8dd 2382 anon_vma_lock_read(anon_vma);
6d4675e6 2383out:
faecd8dd
JK
2384 return anon_vma;
2385}
2386
e9995ef9 2387/*
e8351ac9
JK
2388 * rmap_walk_anon - do something to anonymous page using the object-based
2389 * rmap method
2390 * @page: the page to be handled
2391 * @rwc: control variable according to each walk type
2392 *
2393 * Find all the mappings of a page using the mapping pointer and the vma chains
2394 * contained in the anon_vma struct it points to.
e9995ef9 2395 */
84fbbe21 2396static void rmap_walk_anon(struct folio *folio,
6d4675e6 2397 struct rmap_walk_control *rwc, bool locked)
e9995ef9
HD
2398{
2399 struct anon_vma *anon_vma;
a8fa41ad 2400 pgoff_t pgoff_start, pgoff_end;
5beb4930 2401 struct anon_vma_chain *avc;
e9995ef9 2402
b9773199 2403 if (locked) {
e05b3453 2404 anon_vma = folio_anon_vma(folio);
b9773199 2405 /* anon_vma disappear under us? */
e05b3453 2406 VM_BUG_ON_FOLIO(!anon_vma, folio);
b9773199 2407 } else {
2f031c6f 2408 anon_vma = rmap_walk_anon_lock(folio, rwc);
b9773199 2409 }
e9995ef9 2410 if (!anon_vma)
1df631ae 2411 return;
faecd8dd 2412
2f031c6f
MWO
2413 pgoff_start = folio_pgoff(folio);
2414 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
a8fa41ad
KS
2415 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2416 pgoff_start, pgoff_end) {
5beb4930 2417 struct vm_area_struct *vma = avc->vma;
2f031c6f 2418 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2419
494334e4 2420 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2421 cond_resched();
2422
0dd1c7bb
JK
2423 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2424 continue;
2425
2f031c6f 2426 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
e9995ef9 2427 break;
2f031c6f 2428 if (rwc->done && rwc->done(folio))
0dd1c7bb 2429 break;
e9995ef9 2430 }
b9773199
KS
2431
2432 if (!locked)
2433 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2434}
2435
e8351ac9
JK
2436/*
2437 * rmap_walk_file - do something to file page using the object-based rmap method
2438 * @page: the page to be handled
2439 * @rwc: control variable according to each walk type
2440 *
2441 * Find all the mappings of a page using the mapping pointer and the vma chains
2442 * contained in the address_space struct it points to.
e8351ac9 2443 */
84fbbe21 2444static void rmap_walk_file(struct folio *folio,
6d4675e6 2445 struct rmap_walk_control *rwc, bool locked)
e9995ef9 2446{
2f031c6f 2447 struct address_space *mapping = folio_mapping(folio);
a8fa41ad 2448 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2449 struct vm_area_struct *vma;
e9995ef9 2450
9f32624b
JK
2451 /*
2452 * The page lock not only makes sure that page->mapping cannot
2453 * suddenly be NULLified by truncation, it makes sure that the
2454 * structure at mapping cannot be freed and reused yet,
c8c06efa 2455 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2456 */
2f031c6f 2457 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
9f32624b 2458
e9995ef9 2459 if (!mapping)
1df631ae 2460 return;
3dec0ba0 2461
2f031c6f
MWO
2462 pgoff_start = folio_pgoff(folio);
2463 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
6d4675e6
MK
2464 if (!locked) {
2465 if (i_mmap_trylock_read(mapping))
2466 goto lookup;
2467
2468 if (rwc->try_lock) {
2469 rwc->contended = true;
2470 return;
2471 }
2472
b9773199 2473 i_mmap_lock_read(mapping);
6d4675e6
MK
2474 }
2475lookup:
a8fa41ad
KS
2476 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2477 pgoff_start, pgoff_end) {
2f031c6f 2478 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2479
494334e4 2480 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2481 cond_resched();
2482
0dd1c7bb
JK
2483 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2484 continue;
2485
2f031c6f 2486 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
0dd1c7bb 2487 goto done;
2f031c6f 2488 if (rwc->done && rwc->done(folio))
0dd1c7bb 2489 goto done;
e9995ef9 2490 }
0dd1c7bb 2491
0dd1c7bb 2492done:
b9773199
KS
2493 if (!locked)
2494 i_mmap_unlock_read(mapping);
e9995ef9
HD
2495}
2496
6d4675e6 2497void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2498{
2f031c6f
MWO
2499 if (unlikely(folio_test_ksm(folio)))
2500 rmap_walk_ksm(folio, rwc);
2501 else if (folio_test_anon(folio))
2502 rmap_walk_anon(folio, rwc, false);
b9773199 2503 else
2f031c6f 2504 rmap_walk_file(folio, rwc, false);
b9773199
KS
2505}
2506
2507/* Like rmap_walk, but caller holds relevant rmap lock */
6d4675e6 2508void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
b9773199
KS
2509{
2510 /* no ksm support for now */
2f031c6f
MWO
2511 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2512 if (folio_test_anon(folio))
2513 rmap_walk_anon(folio, rwc, true);
e9995ef9 2514 else
2f031c6f 2515 rmap_walk_file(folio, rwc, true);
e9995ef9 2516}
0fe6e20b 2517
e3390f67 2518#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2519/*
451b9514 2520 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2521 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2522 * and no lru code, because we handle hugepages differently from common pages.
28c5209d
DH
2523 *
2524 * RMAP_COMPOUND is ignored.
0fe6e20b 2525 */
28c5209d
DH
2526void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2527 unsigned long address, rmap_t flags)
0fe6e20b
NH
2528{
2529 struct anon_vma *anon_vma = vma->anon_vma;
2530 int first;
a850ea30
NH
2531
2532 BUG_ON(!PageLocked(page));
0fe6e20b 2533 BUG_ON(!anon_vma);
5dbe0af4 2534 /* address might be in next vma when migration races vma_adjust */
53f9263b 2535 first = atomic_inc_and_test(compound_mapcount_ptr(page));
6c287605
DH
2536 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2537 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
0fe6e20b 2538 if (first)
28c5209d
DH
2539 __page_set_anon_rmap(page, vma, address,
2540 !!(flags & RMAP_EXCLUSIVE));
0fe6e20b
NH
2541}
2542
2543void hugepage_add_new_anon_rmap(struct page *page,
2544 struct vm_area_struct *vma, unsigned long address)
2545{
2546 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cb67f428 2547 /* increment count (starts at -1) */
53f9263b 2548 atomic_set(compound_mapcount_ptr(page), 0);
4781593d 2549 ClearHPageRestoreReserve(page);
451b9514 2550 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2551}
e3390f67 2552#endif /* CONFIG_HUGETLB_PAGE */