mm: filemap_unaccount_folio() large skip mapcount fixup
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0
JK
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
e621900a
MWO
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
730633f0 36 * i_pages lock (widely used)
e809c3fe 37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
730633f0
JK
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 44 *
9608703e 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 46 * ->tasklist_lock
6a46079c 47 * pte map lock
c0d0381a
MK
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
1da177e4
LT
76
77#include <asm/tlbflush.h>
78
72b252ae
MG
79#include <trace/events/tlb.h>
80
b291f000
NP
81#include "internal.h"
82
fdd2e5f8 83static struct kmem_cache *anon_vma_cachep;
5beb4930 84static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
85
86static inline struct anon_vma *anon_vma_alloc(void)
87{
01d8b20d
PZ
88 struct anon_vma *anon_vma;
89
90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
91 if (anon_vma) {
92 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
93 anon_vma->degree = 1; /* Reference for first vma */
94 anon_vma->parent = anon_vma;
01d8b20d
PZ
95 /*
96 * Initialise the anon_vma root to point to itself. If called
97 * from fork, the root will be reset to the parents anon_vma.
98 */
99 anon_vma->root = anon_vma;
100 }
101
102 return anon_vma;
fdd2e5f8
AB
103}
104
01d8b20d 105static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 106{
01d8b20d 107 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
108
109 /*
2f031c6f 110 * Synchronize against folio_lock_anon_vma_read() such that
88c22088
PZ
111 * we can safely hold the lock without the anon_vma getting
112 * freed.
113 *
114 * Relies on the full mb implied by the atomic_dec_and_test() from
115 * put_anon_vma() against the acquire barrier implied by
2f031c6f 116 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
88c22088 117 *
2f031c6f 118 * folio_lock_anon_vma_read() VS put_anon_vma()
4fc3f1d6 119 * down_read_trylock() atomic_dec_and_test()
88c22088 120 * LOCK MB
4fc3f1d6 121 * atomic_read() rwsem_is_locked()
88c22088
PZ
122 *
123 * LOCK should suffice since the actual taking of the lock must
124 * happen _before_ what follows.
125 */
7f39dda9 126 might_sleep();
5a505085 127 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 128 anon_vma_lock_write(anon_vma);
08b52706 129 anon_vma_unlock_write(anon_vma);
88c22088
PZ
130 }
131
fdd2e5f8
AB
132 kmem_cache_free(anon_vma_cachep, anon_vma);
133}
1da177e4 134
dd34739c 135static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 136{
dd34739c 137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
138}
139
e574b5fd 140static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
141{
142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
143}
144
6583a843
KC
145static void anon_vma_chain_link(struct vm_area_struct *vma,
146 struct anon_vma_chain *avc,
147 struct anon_vma *anon_vma)
148{
149 avc->vma = vma;
150 avc->anon_vma = anon_vma;
151 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
153}
154
d9d332e0 155/**
d5a187da 156 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
157 * @vma: the memory region in question
158 *
159 * This makes sure the memory mapping described by 'vma' has
160 * an 'anon_vma' attached to it, so that we can associate the
161 * anonymous pages mapped into it with that anon_vma.
162 *
d5a187da
VB
163 * The common case will be that we already have one, which
164 * is handled inline by anon_vma_prepare(). But if
23a0790a 165 * not we either need to find an adjacent mapping that we
d9d332e0
LT
166 * can re-use the anon_vma from (very common when the only
167 * reason for splitting a vma has been mprotect()), or we
168 * allocate a new one.
169 *
170 * Anon-vma allocations are very subtle, because we may have
2f031c6f 171 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
aaf1f990 172 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
173 * allocated vma (it depends on RCU to make sure that the
174 * anon_vma isn't actually destroyed).
175 *
176 * As a result, we need to do proper anon_vma locking even
177 * for the new allocation. At the same time, we do not want
178 * to do any locking for the common case of already having
179 * an anon_vma.
180 *
c1e8d7c6 181 * This must be called with the mmap_lock held for reading.
d9d332e0 182 */
d5a187da 183int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 184{
d5a187da
VB
185 struct mm_struct *mm = vma->vm_mm;
186 struct anon_vma *anon_vma, *allocated;
5beb4930 187 struct anon_vma_chain *avc;
1da177e4
LT
188
189 might_sleep();
1da177e4 190
d5a187da
VB
191 avc = anon_vma_chain_alloc(GFP_KERNEL);
192 if (!avc)
193 goto out_enomem;
194
195 anon_vma = find_mergeable_anon_vma(vma);
196 allocated = NULL;
197 if (!anon_vma) {
198 anon_vma = anon_vma_alloc();
199 if (unlikely(!anon_vma))
200 goto out_enomem_free_avc;
201 allocated = anon_vma;
202 }
5beb4930 203
d5a187da
VB
204 anon_vma_lock_write(anon_vma);
205 /* page_table_lock to protect against threads */
206 spin_lock(&mm->page_table_lock);
207 if (likely(!vma->anon_vma)) {
208 vma->anon_vma = anon_vma;
209 anon_vma_chain_link(vma, avc, anon_vma);
210 /* vma reference or self-parent link for new root */
211 anon_vma->degree++;
d9d332e0 212 allocated = NULL;
d5a187da
VB
213 avc = NULL;
214 }
215 spin_unlock(&mm->page_table_lock);
216 anon_vma_unlock_write(anon_vma);
1da177e4 217
d5a187da
VB
218 if (unlikely(allocated))
219 put_anon_vma(allocated);
220 if (unlikely(avc))
221 anon_vma_chain_free(avc);
31f2b0eb 222
1da177e4 223 return 0;
5beb4930
RR
224
225 out_enomem_free_avc:
226 anon_vma_chain_free(avc);
227 out_enomem:
228 return -ENOMEM;
1da177e4
LT
229}
230
bb4aa396
LT
231/*
232 * This is a useful helper function for locking the anon_vma root as
233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
234 * have the same vma.
235 *
236 * Such anon_vma's should have the same root, so you'd expect to see
237 * just a single mutex_lock for the whole traversal.
238 */
239static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
240{
241 struct anon_vma *new_root = anon_vma->root;
242 if (new_root != root) {
243 if (WARN_ON_ONCE(root))
5a505085 244 up_write(&root->rwsem);
bb4aa396 245 root = new_root;
5a505085 246 down_write(&root->rwsem);
bb4aa396
LT
247 }
248 return root;
249}
250
251static inline void unlock_anon_vma_root(struct anon_vma *root)
252{
253 if (root)
5a505085 254 up_write(&root->rwsem);
bb4aa396
LT
255}
256
5beb4930
RR
257/*
258 * Attach the anon_vmas from src to dst.
259 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 260 *
cb152a1a 261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
262 * anon_vma_fork(). The first three want an exact copy of src, while the last
263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
266 *
267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
268 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
269 * This prevents degradation of anon_vma hierarchy to endless linear chain in
270 * case of constantly forking task. On the other hand, an anon_vma with more
271 * than one child isn't reused even if there was no alive vma, thus rmap
272 * walker has a good chance of avoiding scanning the whole hierarchy when it
273 * searches where page is mapped.
5beb4930
RR
274 */
275int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 276{
5beb4930 277 struct anon_vma_chain *avc, *pavc;
bb4aa396 278 struct anon_vma *root = NULL;
5beb4930 279
646d87b4 280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
281 struct anon_vma *anon_vma;
282
dd34739c
LT
283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
284 if (unlikely(!avc)) {
285 unlock_anon_vma_root(root);
286 root = NULL;
287 avc = anon_vma_chain_alloc(GFP_KERNEL);
288 if (!avc)
289 goto enomem_failure;
290 }
bb4aa396
LT
291 anon_vma = pavc->anon_vma;
292 root = lock_anon_vma_root(root, anon_vma);
293 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
294
295 /*
296 * Reuse existing anon_vma if its degree lower than two,
297 * that means it has no vma and only one anon_vma child.
298 *
299 * Do not chose parent anon_vma, otherwise first child
300 * will always reuse it. Root anon_vma is never reused:
301 * it has self-parent reference and at least one child.
302 */
47b390d2
WY
303 if (!dst->anon_vma && src->anon_vma &&
304 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 305 dst->anon_vma = anon_vma;
5beb4930 306 }
7a3ef208
KK
307 if (dst->anon_vma)
308 dst->anon_vma->degree++;
bb4aa396 309 unlock_anon_vma_root(root);
5beb4930 310 return 0;
1da177e4 311
5beb4930 312 enomem_failure:
3fe89b3e
LY
313 /*
314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
315 * decremented in unlink_anon_vmas().
316 * We can safely do this because callers of anon_vma_clone() don't care
317 * about dst->anon_vma if anon_vma_clone() failed.
318 */
319 dst->anon_vma = NULL;
5beb4930
RR
320 unlink_anon_vmas(dst);
321 return -ENOMEM;
1da177e4
LT
322}
323
5beb4930
RR
324/*
325 * Attach vma to its own anon_vma, as well as to the anon_vmas that
326 * the corresponding VMA in the parent process is attached to.
327 * Returns 0 on success, non-zero on failure.
328 */
329int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 330{
5beb4930
RR
331 struct anon_vma_chain *avc;
332 struct anon_vma *anon_vma;
c4ea95d7 333 int error;
1da177e4 334
5beb4930
RR
335 /* Don't bother if the parent process has no anon_vma here. */
336 if (!pvma->anon_vma)
337 return 0;
338
7a3ef208
KK
339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
340 vma->anon_vma = NULL;
341
5beb4930
RR
342 /*
343 * First, attach the new VMA to the parent VMA's anon_vmas,
344 * so rmap can find non-COWed pages in child processes.
345 */
c4ea95d7
DF
346 error = anon_vma_clone(vma, pvma);
347 if (error)
348 return error;
5beb4930 349
7a3ef208
KK
350 /* An existing anon_vma has been reused, all done then. */
351 if (vma->anon_vma)
352 return 0;
353
5beb4930
RR
354 /* Then add our own anon_vma. */
355 anon_vma = anon_vma_alloc();
356 if (!anon_vma)
357 goto out_error;
dd34739c 358 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
359 if (!avc)
360 goto out_error_free_anon_vma;
5c341ee1
RR
361
362 /*
aaf1f990 363 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
364 * lock any of the anon_vmas in this anon_vma tree.
365 */
366 anon_vma->root = pvma->anon_vma->root;
7a3ef208 367 anon_vma->parent = pvma->anon_vma;
76545066 368 /*
01d8b20d
PZ
369 * With refcounts, an anon_vma can stay around longer than the
370 * process it belongs to. The root anon_vma needs to be pinned until
371 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
372 */
373 get_anon_vma(anon_vma->root);
5beb4930
RR
374 /* Mark this anon_vma as the one where our new (COWed) pages go. */
375 vma->anon_vma = anon_vma;
4fc3f1d6 376 anon_vma_lock_write(anon_vma);
5c341ee1 377 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 378 anon_vma->parent->degree++;
08b52706 379 anon_vma_unlock_write(anon_vma);
5beb4930
RR
380
381 return 0;
382
383 out_error_free_anon_vma:
01d8b20d 384 put_anon_vma(anon_vma);
5beb4930 385 out_error:
4946d54c 386 unlink_anon_vmas(vma);
5beb4930 387 return -ENOMEM;
1da177e4
LT
388}
389
5beb4930
RR
390void unlink_anon_vmas(struct vm_area_struct *vma)
391{
392 struct anon_vma_chain *avc, *next;
eee2acba 393 struct anon_vma *root = NULL;
5beb4930 394
5c341ee1
RR
395 /*
396 * Unlink each anon_vma chained to the VMA. This list is ordered
397 * from newest to oldest, ensuring the root anon_vma gets freed last.
398 */
5beb4930 399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
400 struct anon_vma *anon_vma = avc->anon_vma;
401
402 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
404
405 /*
406 * Leave empty anon_vmas on the list - we'll need
407 * to free them outside the lock.
408 */
f808c13f 409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 410 anon_vma->parent->degree--;
eee2acba 411 continue;
7a3ef208 412 }
eee2acba
PZ
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
ee8ab190 417 if (vma->anon_vma) {
7a3ef208 418 vma->anon_vma->degree--;
ee8ab190
LX
419
420 /*
421 * vma would still be needed after unlink, and anon_vma will be prepared
422 * when handle fault.
423 */
424 vma->anon_vma = NULL;
425 }
eee2acba
PZ
426 unlock_anon_vma_root(root);
427
428 /*
429 * Iterate the list once more, it now only contains empty and unlinked
430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 431 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
432 */
433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
434 struct anon_vma *anon_vma = avc->anon_vma;
435
e4c5800a 436 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
437 put_anon_vma(anon_vma);
438
5beb4930
RR
439 list_del(&avc->same_vma);
440 anon_vma_chain_free(avc);
441 }
442}
443
51cc5068 444static void anon_vma_ctor(void *data)
1da177e4 445{
a35afb83 446 struct anon_vma *anon_vma = data;
1da177e4 447
5a505085 448 init_rwsem(&anon_vma->rwsem);
83813267 449 atomic_set(&anon_vma->refcount, 0);
f808c13f 450 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
451}
452
453void __init anon_vma_init(void)
454{
455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
457 anon_vma_ctor);
458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
459 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
460}
461
462/*
6111e4ca
PZ
463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
464 *
465 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
466 * the best this function can do is return a refcount increased anon_vma
467 * that might have been relevant to this page.
6111e4ca
PZ
468 *
469 * The page might have been remapped to a different anon_vma or the anon_vma
470 * returned may already be freed (and even reused).
471 *
bc658c96
PZ
472 * In case it was remapped to a different anon_vma, the new anon_vma will be a
473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
474 * ensure that any anon_vma obtained from the page will still be valid for as
475 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
476 *
6111e4ca
PZ
477 * All users of this function must be very careful when walking the anon_vma
478 * chain and verify that the page in question is indeed mapped in it
479 * [ something equivalent to page_mapped_in_vma() ].
480 *
091e4299
MC
481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
483 * if there is a mapcount, we can dereference the anon_vma after observing
484 * those.
1da177e4 485 */
746b18d4 486struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 487{
746b18d4 488 struct anon_vma *anon_vma = NULL;
1da177e4
LT
489 unsigned long anon_mapping;
490
491 rcu_read_lock();
4db0c3c2 492 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
494 goto out;
495 if (!page_mapped(page))
496 goto out;
497
498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
499 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
500 anon_vma = NULL;
501 goto out;
502 }
f1819427
HD
503
504 /*
505 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
506 * freed. But if it has been unmapped, we have no security against the
507 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 509 * above cannot corrupt).
f1819427 510 */
746b18d4 511 if (!page_mapped(page)) {
7f39dda9 512 rcu_read_unlock();
746b18d4 513 put_anon_vma(anon_vma);
7f39dda9 514 return NULL;
746b18d4 515 }
1da177e4
LT
516out:
517 rcu_read_unlock();
746b18d4
PZ
518
519 return anon_vma;
520}
521
88c22088
PZ
522/*
523 * Similar to page_get_anon_vma() except it locks the anon_vma.
524 *
525 * Its a little more complex as it tries to keep the fast path to a single
526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
527 * reference like with page_get_anon_vma() and then block on the mutex.
528 */
9595d769 529struct anon_vma *folio_lock_anon_vma_read(struct folio *folio)
746b18d4 530{
88c22088 531 struct anon_vma *anon_vma = NULL;
eee0f252 532 struct anon_vma *root_anon_vma;
88c22088 533 unsigned long anon_mapping;
746b18d4 534
88c22088 535 rcu_read_lock();
9595d769 536 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
88c22088
PZ
537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
538 goto out;
9595d769 539 if (!folio_mapped(folio))
88c22088
PZ
540 goto out;
541
542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 543 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 544 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 545 /*
9595d769 546 * If the folio is still mapped, then this anon_vma is still
eee0f252 547 * its anon_vma, and holding the mutex ensures that it will
bc658c96 548 * not go away, see anon_vma_free().
88c22088 549 */
9595d769 550 if (!folio_mapped(folio)) {
4fc3f1d6 551 up_read(&root_anon_vma->rwsem);
88c22088
PZ
552 anon_vma = NULL;
553 }
554 goto out;
555 }
746b18d4 556
88c22088
PZ
557 /* trylock failed, we got to sleep */
558 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
559 anon_vma = NULL;
560 goto out;
561 }
562
9595d769 563 if (!folio_mapped(folio)) {
7f39dda9 564 rcu_read_unlock();
88c22088 565 put_anon_vma(anon_vma);
7f39dda9 566 return NULL;
88c22088
PZ
567 }
568
569 /* we pinned the anon_vma, its safe to sleep */
570 rcu_read_unlock();
4fc3f1d6 571 anon_vma_lock_read(anon_vma);
88c22088
PZ
572
573 if (atomic_dec_and_test(&anon_vma->refcount)) {
574 /*
575 * Oops, we held the last refcount, release the lock
576 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 577 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 578 */
4fc3f1d6 579 anon_vma_unlock_read(anon_vma);
88c22088
PZ
580 __put_anon_vma(anon_vma);
581 anon_vma = NULL;
582 }
583
584 return anon_vma;
585
586out:
587 rcu_read_unlock();
746b18d4 588 return anon_vma;
34bbd704
ON
589}
590
4fc3f1d6 591void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 592{
4fc3f1d6 593 anon_vma_unlock_read(anon_vma);
1da177e4
LT
594}
595
72b252ae 596#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
597/*
598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
599 * important if a PTE was dirty when it was unmapped that it's flushed
600 * before any IO is initiated on the page to prevent lost writes. Similarly,
601 * it must be flushed before freeing to prevent data leakage.
602 */
603void try_to_unmap_flush(void)
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
606
607 if (!tlb_ubc->flush_required)
608 return;
609
e73ad5ff 610 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 611 tlb_ubc->flush_required = false;
d950c947 612 tlb_ubc->writable = false;
72b252ae
MG
613}
614
d950c947
MG
615/* Flush iff there are potentially writable TLB entries that can race with IO */
616void try_to_unmap_flush_dirty(void)
617{
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
622}
623
5ee2fa2f
HY
624/*
625 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
626 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
627 */
628#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
629#define TLB_FLUSH_BATCH_PENDING_MASK \
630 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
631#define TLB_FLUSH_BATCH_PENDING_LARGE \
632 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
633
c7ab0d2f 634static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
635{
636 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
5ee2fa2f 637 int batch, nbatch;
72b252ae 638
e73ad5ff 639 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 640 tlb_ubc->flush_required = true;
d950c947 641
3ea27719
MG
642 /*
643 * Ensure compiler does not re-order the setting of tlb_flush_batched
644 * before the PTE is cleared.
645 */
646 barrier();
5ee2fa2f
HY
647 batch = atomic_read(&mm->tlb_flush_batched);
648retry:
649 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
650 /*
651 * Prevent `pending' from catching up with `flushed' because of
652 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
653 * `pending' becomes large.
654 */
655 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
656 if (nbatch != batch) {
657 batch = nbatch;
658 goto retry;
659 }
660 } else {
661 atomic_inc(&mm->tlb_flush_batched);
662 }
3ea27719 663
d950c947
MG
664 /*
665 * If the PTE was dirty then it's best to assume it's writable. The
666 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
667 * before the page is queued for IO.
668 */
669 if (writable)
670 tlb_ubc->writable = true;
72b252ae
MG
671}
672
673/*
674 * Returns true if the TLB flush should be deferred to the end of a batch of
675 * unmap operations to reduce IPIs.
676 */
677static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678{
679 bool should_defer = false;
680
681 if (!(flags & TTU_BATCH_FLUSH))
682 return false;
683
684 /* If remote CPUs need to be flushed then defer batch the flush */
685 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
686 should_defer = true;
687 put_cpu();
688
689 return should_defer;
690}
3ea27719
MG
691
692/*
693 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
694 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
695 * operation such as mprotect or munmap to race between reclaim unmapping
696 * the page and flushing the page. If this race occurs, it potentially allows
697 * access to data via a stale TLB entry. Tracking all mm's that have TLB
698 * batching in flight would be expensive during reclaim so instead track
699 * whether TLB batching occurred in the past and if so then do a flush here
700 * if required. This will cost one additional flush per reclaim cycle paid
701 * by the first operation at risk such as mprotect and mumap.
702 *
703 * This must be called under the PTL so that an access to tlb_flush_batched
704 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
705 * via the PTL.
706 */
707void flush_tlb_batched_pending(struct mm_struct *mm)
708{
5ee2fa2f
HY
709 int batch = atomic_read(&mm->tlb_flush_batched);
710 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
711 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
3ea27719 712
5ee2fa2f
HY
713 if (pending != flushed) {
714 flush_tlb_mm(mm);
3ea27719 715 /*
5ee2fa2f
HY
716 * If the new TLB flushing is pending during flushing, leave
717 * mm->tlb_flush_batched as is, to avoid losing flushing.
3ea27719 718 */
5ee2fa2f
HY
719 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
720 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
3ea27719
MG
721 }
722}
72b252ae 723#else
c7ab0d2f 724static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
725{
726}
727
728static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
729{
730 return false;
731}
732#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
733
1da177e4 734/*
bf89c8c8 735 * At what user virtual address is page expected in vma?
ab941e0f 736 * Caller should check the page is actually part of the vma.
1da177e4
LT
737 */
738unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
739{
e05b3453
MWO
740 struct folio *folio = page_folio(page);
741 if (folio_test_anon(folio)) {
742 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
4829b906
HD
743 /*
744 * Note: swapoff's unuse_vma() is more efficient with this
745 * check, and needs it to match anon_vma when KSM is active.
746 */
747 if (!vma->anon_vma || !page__anon_vma ||
748 vma->anon_vma->root != page__anon_vma->root)
21d0d443 749 return -EFAULT;
31657170
JW
750 } else if (!vma->vm_file) {
751 return -EFAULT;
e05b3453 752 } else if (vma->vm_file->f_mapping != folio->mapping) {
1da177e4 753 return -EFAULT;
31657170 754 }
494334e4
HD
755
756 return vma_address(page, vma);
1da177e4
LT
757}
758
6219049a
BL
759pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
760{
761 pgd_t *pgd;
c2febafc 762 p4d_t *p4d;
6219049a
BL
763 pud_t *pud;
764 pmd_t *pmd = NULL;
f72e7dcd 765 pmd_t pmde;
6219049a
BL
766
767 pgd = pgd_offset(mm, address);
768 if (!pgd_present(*pgd))
769 goto out;
770
c2febafc
KS
771 p4d = p4d_offset(pgd, address);
772 if (!p4d_present(*p4d))
773 goto out;
774
775 pud = pud_offset(p4d, address);
6219049a
BL
776 if (!pud_present(*pud))
777 goto out;
778
779 pmd = pmd_offset(pud, address);
f72e7dcd 780 /*
8809aa2d 781 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
782 * without holding anon_vma lock for write. So when looking for a
783 * genuine pmde (in which to find pte), test present and !THP together.
784 */
e37c6982
CB
785 pmde = *pmd;
786 barrier();
f72e7dcd 787 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
788 pmd = NULL;
789out:
790 return pmd;
791}
792
b3ac0413 793struct folio_referenced_arg {
8749cfea
VD
794 int mapcount;
795 int referenced;
796 unsigned long vm_flags;
797 struct mem_cgroup *memcg;
798};
799/*
b3ac0413 800 * arg: folio_referenced_arg will be passed
8749cfea 801 */
2f031c6f
MWO
802static bool folio_referenced_one(struct folio *folio,
803 struct vm_area_struct *vma, unsigned long address, void *arg)
8749cfea 804{
b3ac0413
MWO
805 struct folio_referenced_arg *pra = arg;
806 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
8749cfea
VD
807 int referenced = 0;
808
8eaedede
KS
809 while (page_vma_mapped_walk(&pvmw)) {
810 address = pvmw.address;
b20ce5e0 811
47d4f3ee 812 if ((vma->vm_flags & VM_LOCKED) &&
b3ac0413 813 (!folio_test_large(folio) || !pvmw.pte)) {
47d4f3ee 814 /* Restore the mlock which got missed */
b3ac0413 815 mlock_vma_folio(folio, vma, !pvmw.pte);
8eaedede
KS
816 page_vma_mapped_walk_done(&pvmw);
817 pra->vm_flags |= VM_LOCKED;
e4b82222 818 return false; /* To break the loop */
8eaedede 819 }
71e3aac0 820
8eaedede
KS
821 if (pvmw.pte) {
822 if (ptep_clear_flush_young_notify(vma, address,
823 pvmw.pte)) {
824 /*
825 * Don't treat a reference through
826 * a sequentially read mapping as such.
b3ac0413 827 * If the folio has been used in another mapping,
8eaedede
KS
828 * we will catch it; if this other mapping is
829 * already gone, the unmap path will have set
b3ac0413 830 * the referenced flag or activated the folio.
8eaedede
KS
831 */
832 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
833 referenced++;
834 }
835 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
836 if (pmdp_clear_flush_young_notify(vma, address,
837 pvmw.pmd))
8749cfea 838 referenced++;
8eaedede 839 } else {
b3ac0413 840 /* unexpected pmd-mapped folio? */
8eaedede 841 WARN_ON_ONCE(1);
8749cfea 842 }
8eaedede
KS
843
844 pra->mapcount--;
b20ce5e0 845 }
b20ce5e0 846
33c3fc71 847 if (referenced)
b3ac0413
MWO
848 folio_clear_idle(folio);
849 if (folio_test_clear_young(folio))
33c3fc71
VD
850 referenced++;
851
9f32624b
JK
852 if (referenced) {
853 pra->referenced++;
47d4f3ee 854 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
1da177e4 855 }
34bbd704 856
9f32624b 857 if (!pra->mapcount)
e4b82222 858 return false; /* To break the loop */
9f32624b 859
e4b82222 860 return true;
1da177e4
LT
861}
862
b3ac0413 863static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 864{
b3ac0413 865 struct folio_referenced_arg *pra = arg;
9f32624b 866 struct mem_cgroup *memcg = pra->memcg;
1da177e4 867
9f32624b
JK
868 if (!mm_match_cgroup(vma->vm_mm, memcg))
869 return true;
1da177e4 870
9f32624b 871 return false;
1da177e4
LT
872}
873
874/**
b3ac0413
MWO
875 * folio_referenced() - Test if the folio was referenced.
876 * @folio: The folio to test.
877 * @is_locked: Caller holds lock on the folio.
72835c86 878 * @memcg: target memory cgroup
b3ac0413 879 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
1da177e4 880 *
b3ac0413
MWO
881 * Quick test_and_clear_referenced for all mappings of a folio,
882 *
883 * Return: The number of mappings which referenced the folio.
1da177e4 884 */
b3ac0413
MWO
885int folio_referenced(struct folio *folio, int is_locked,
886 struct mem_cgroup *memcg, unsigned long *vm_flags)
1da177e4 887{
5ad64688 888 int we_locked = 0;
b3ac0413
MWO
889 struct folio_referenced_arg pra = {
890 .mapcount = folio_mapcount(folio),
9f32624b
JK
891 .memcg = memcg,
892 };
893 struct rmap_walk_control rwc = {
b3ac0413 894 .rmap_one = folio_referenced_one,
9f32624b 895 .arg = (void *)&pra,
2f031c6f 896 .anon_lock = folio_lock_anon_vma_read,
9f32624b 897 };
1da177e4 898
6fe6b7e3 899 *vm_flags = 0;
059d8442 900 if (!pra.mapcount)
9f32624b
JK
901 return 0;
902
b3ac0413 903 if (!folio_raw_mapping(folio))
9f32624b
JK
904 return 0;
905
b3ac0413
MWO
906 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
907 we_locked = folio_trylock(folio);
9f32624b
JK
908 if (!we_locked)
909 return 1;
1da177e4 910 }
9f32624b
JK
911
912 /*
913 * If we are reclaiming on behalf of a cgroup, skip
914 * counting on behalf of references from different
915 * cgroups
916 */
917 if (memcg) {
b3ac0413 918 rwc.invalid_vma = invalid_folio_referenced_vma;
9f32624b
JK
919 }
920
2f031c6f 921 rmap_walk(folio, &rwc);
9f32624b
JK
922 *vm_flags = pra.vm_flags;
923
924 if (we_locked)
b3ac0413 925 folio_unlock(folio);
9f32624b
JK
926
927 return pra.referenced;
1da177e4
LT
928}
929
2f031c6f 930static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
9853a407 931 unsigned long address, void *arg)
d08b3851 932{
e83c09a2 933 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
ac46d4f3 934 struct mmu_notifier_range range;
9853a407 935 int *cleaned = arg;
d08b3851 936
369ea824
JG
937 /*
938 * We have to assume the worse case ie pmd for invalidation. Note that
e83c09a2 939 * the folio can not be freed from this function.
369ea824 940 */
7269f999
JG
941 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
942 0, vma, vma->vm_mm, address,
2aff7a47 943 vma_address_end(&pvmw));
ac46d4f3 944 mmu_notifier_invalidate_range_start(&range);
369ea824 945
f27176cf
KS
946 while (page_vma_mapped_walk(&pvmw)) {
947 int ret = 0;
369ea824 948
1f18b296 949 address = pvmw.address;
f27176cf
KS
950 if (pvmw.pte) {
951 pte_t entry;
952 pte_t *pte = pvmw.pte;
953
954 if (!pte_dirty(*pte) && !pte_write(*pte))
955 continue;
956
785373b4
LT
957 flush_cache_page(vma, address, pte_pfn(*pte));
958 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
959 entry = pte_wrprotect(entry);
960 entry = pte_mkclean(entry);
785373b4 961 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
962 ret = 1;
963 } else {
396bcc52 964#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f27176cf
KS
965 pmd_t *pmd = pvmw.pmd;
966 pmd_t entry;
967
968 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
969 continue;
970
e83c09a2 971 flush_cache_page(vma, address, folio_pfn(folio));
024eee0e 972 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
973 entry = pmd_wrprotect(entry);
974 entry = pmd_mkclean(entry);
785373b4 975 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
976 ret = 1;
977#else
e83c09a2 978 /* unexpected pmd-mapped folio? */
f27176cf
KS
979 WARN_ON_ONCE(1);
980#endif
981 }
d08b3851 982
0f10851e
JG
983 /*
984 * No need to call mmu_notifier_invalidate_range() as we are
985 * downgrading page table protection not changing it to point
986 * to a new page.
987 *
ad56b738 988 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
989 */
990 if (ret)
f27176cf 991 (*cleaned)++;
c2fda5fe 992 }
d08b3851 993
ac46d4f3 994 mmu_notifier_invalidate_range_end(&range);
369ea824 995
e4b82222 996 return true;
d08b3851
PZ
997}
998
9853a407 999static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1000{
9853a407 1001 if (vma->vm_flags & VM_SHARED)
871beb8c 1002 return false;
d08b3851 1003
871beb8c 1004 return true;
d08b3851
PZ
1005}
1006
d9c08e22 1007int folio_mkclean(struct folio *folio)
d08b3851 1008{
9853a407
JK
1009 int cleaned = 0;
1010 struct address_space *mapping;
1011 struct rmap_walk_control rwc = {
1012 .arg = (void *)&cleaned,
1013 .rmap_one = page_mkclean_one,
1014 .invalid_vma = invalid_mkclean_vma,
1015 };
d08b3851 1016
d9c08e22 1017 BUG_ON(!folio_test_locked(folio));
d08b3851 1018
d9c08e22 1019 if (!folio_mapped(folio))
9853a407
JK
1020 return 0;
1021
d9c08e22 1022 mapping = folio_mapping(folio);
9853a407
JK
1023 if (!mapping)
1024 return 0;
1025
2f031c6f 1026 rmap_walk(folio, &rwc);
d08b3851 1027
9853a407 1028 return cleaned;
d08b3851 1029}
d9c08e22 1030EXPORT_SYMBOL_GPL(folio_mkclean);
d08b3851 1031
c44b6743
RR
1032/**
1033 * page_move_anon_rmap - move a page to our anon_vma
1034 * @page: the page to move to our anon_vma
1035 * @vma: the vma the page belongs to
c44b6743
RR
1036 *
1037 * When a page belongs exclusively to one process after a COW event,
1038 * that page can be moved into the anon_vma that belongs to just that
1039 * process, so the rmap code will not search the parent or sibling
1040 * processes.
1041 */
5a49973d 1042void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1043{
1044 struct anon_vma *anon_vma = vma->anon_vma;
1045
5a49973d
HD
1046 page = compound_head(page);
1047
309381fe 1048 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1049 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1050
1051 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1052 /*
1053 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
b3ac0413
MWO
1054 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1055 * folio_test_anon()) will not see one without the other.
414e2fb8
VD
1056 */
1057 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1058}
1059
9617d95e 1060/**
4e1c1975 1061 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1062 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1063 * @vma: VM area to add page to.
1064 * @address: User virtual address of the mapping
e8a03feb 1065 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1066 */
1067static void __page_set_anon_rmap(struct page *page,
e8a03feb 1068 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1069{
e8a03feb 1070 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1071
e8a03feb 1072 BUG_ON(!anon_vma);
ea90002b 1073
4e1c1975
AK
1074 if (PageAnon(page))
1075 return;
1076
ea90002b 1077 /*
e8a03feb
RR
1078 * If the page isn't exclusively mapped into this vma,
1079 * we must use the _oldest_ possible anon_vma for the
1080 * page mapping!
ea90002b 1081 */
4e1c1975 1082 if (!exclusive)
288468c3 1083 anon_vma = anon_vma->root;
9617d95e 1084
16f5e707
AS
1085 /*
1086 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1087 * Make sure the compiler doesn't split the stores of anon_vma and
1088 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1089 * could mistake the mapping for a struct address_space and crash.
1090 */
9617d95e 1091 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1092 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1093 page->index = linear_page_index(vma, address);
9617d95e
NP
1094}
1095
c97a9e10 1096/**
43d8eac4 1097 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1098 * @page: the page to add the mapping to
1099 * @vma: the vm area in which the mapping is added
1100 * @address: the user virtual address mapped
1101 */
1102static void __page_check_anon_rmap(struct page *page,
1103 struct vm_area_struct *vma, unsigned long address)
1104{
e05b3453 1105 struct folio *folio = page_folio(page);
c97a9e10
NP
1106 /*
1107 * The page's anon-rmap details (mapping and index) are guaranteed to
1108 * be set up correctly at this point.
1109 *
1110 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1111 * always holds the page locked.
c97a9e10
NP
1112 *
1113 * We have exclusion against page_add_new_anon_rmap because those pages
1114 * are initially only visible via the pagetables, and the pte is locked
1115 * over the call to page_add_new_anon_rmap.
1116 */
e05b3453
MWO
1117 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1118 folio);
30c46382
YS
1119 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1120 page);
c97a9e10
NP
1121}
1122
1da177e4
LT
1123/**
1124 * page_add_anon_rmap - add pte mapping to an anonymous page
1125 * @page: the page to add the mapping to
1126 * @vma: the vm area in which the mapping is added
1127 * @address: the user virtual address mapped
d281ee61 1128 * @compound: charge the page as compound or small page
1da177e4 1129 *
5ad64688 1130 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1131 * the anon_vma case: to serialize mapping,index checking after setting,
1132 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1133 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1134 */
1135void page_add_anon_rmap(struct page *page,
d281ee61 1136 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1137{
d281ee61 1138 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1139}
1140
1141/*
1142 * Special version of the above for do_swap_page, which often runs
1143 * into pages that are exclusively owned by the current process.
1144 * Everybody else should continue to use page_add_anon_rmap above.
1145 */
1146void do_page_add_anon_rmap(struct page *page,
d281ee61 1147 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1148{
53f9263b
KS
1149 bool compound = flags & RMAP_COMPOUND;
1150 bool first;
1151
be5d0a74
JW
1152 if (unlikely(PageKsm(page)))
1153 lock_page_memcg(page);
1154 else
1155 VM_BUG_ON_PAGE(!PageLocked(page), page);
1156
e9b61f19
KS
1157 if (compound) {
1158 atomic_t *mapcount;
53f9263b 1159 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1160 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1161 mapcount = compound_mapcount_ptr(page);
1162 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1163 } else {
1164 first = atomic_inc_and_test(&page->_mapcount);
1165 }
1166
79134171 1167 if (first) {
6c357848 1168 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1169 /*
1170 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1171 * these counters are not modified in interrupt context, and
1172 * pte lock(a spinlock) is held, which implies preemption
1173 * disabled.
1174 */
65c45377 1175 if (compound)
69473e5d 1176 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1177 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1178 }
5ad64688 1179
cea86fe2 1180 if (unlikely(PageKsm(page)))
be5d0a74 1181 unlock_page_memcg(page);
53f9263b 1182
5dbe0af4 1183 /* address might be in next vma when migration races vma_adjust */
cea86fe2 1184 else if (first)
d281ee61
KS
1185 __page_set_anon_rmap(page, vma, address,
1186 flags & RMAP_EXCLUSIVE);
69029cd5 1187 else
c97a9e10 1188 __page_check_anon_rmap(page, vma, address);
cea86fe2
HD
1189
1190 mlock_vma_page(page, vma, compound);
1da177e4
LT
1191}
1192
43d8eac4 1193/**
9617d95e
NP
1194 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1195 * @page: the page to add the mapping to
1196 * @vma: the vm area in which the mapping is added
1197 * @address: the user virtual address mapped
d281ee61 1198 * @compound: charge the page as compound or small page
9617d95e
NP
1199 *
1200 * Same as page_add_anon_rmap but must only be called on *new* pages.
1201 * This means the inc-and-test can be bypassed.
c97a9e10 1202 * Page does not have to be locked.
9617d95e
NP
1203 */
1204void page_add_new_anon_rmap(struct page *page,
d281ee61 1205 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1206{
6c357848 1207 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1208
81d1b09c 1209 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1210 __SetPageSwapBacked(page);
d281ee61
KS
1211 if (compound) {
1212 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1213 /* increment count (starts at -1) */
1214 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 1215 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1216
69473e5d 1217 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b
KS
1218 } else {
1219 /* Anon THP always mapped first with PMD */
1220 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1221 /* increment count (starts at -1) */
1222 atomic_set(&page->_mapcount, 0);
d281ee61 1223 }
be5d0a74 1224 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1225 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1226}
1227
1da177e4
LT
1228/**
1229 * page_add_file_rmap - add pte mapping to a file page
cea86fe2
HD
1230 * @page: the page to add the mapping to
1231 * @vma: the vm area in which the mapping is added
1232 * @compound: charge the page as compound or small page
1da177e4 1233 *
b8072f09 1234 * The caller needs to hold the pte lock.
1da177e4 1235 */
cea86fe2
HD
1236void page_add_file_rmap(struct page *page,
1237 struct vm_area_struct *vma, bool compound)
1da177e4 1238{
dd78fedd
KS
1239 int i, nr = 1;
1240
1241 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1242 lock_page_memcg(page);
dd78fedd 1243 if (compound && PageTransHuge(page)) {
a1528e21
MS
1244 int nr_pages = thp_nr_pages(page);
1245
1246 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1247 if (atomic_inc_and_test(&page[i]._mapcount))
1248 nr++;
1249 }
1250 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1251 goto out;
bd55b0c2
HD
1252
1253 /*
1254 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1255 * but page lock is held by all page_add_file_rmap() compound
1256 * callers, and SetPageDoubleMap below warns if !PageLocked:
1257 * so here is a place that DoubleMap can be safely cleared.
1258 */
1259 VM_WARN_ON_ONCE(!PageLocked(page));
1260 if (nr == nr_pages && PageDoubleMap(page))
1261 ClearPageDoubleMap(page);
1262
99cb0dbd 1263 if (PageSwapBacked(page))
a1528e21
MS
1264 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1265 nr_pages);
99cb0dbd 1266 else
380780e7
MS
1267 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1268 nr_pages);
dd78fedd 1269 } else {
c8efc390
KS
1270 if (PageTransCompound(page) && page_mapping(page)) {
1271 VM_WARN_ON_ONCE(!PageLocked(page));
cea86fe2 1272 SetPageDoubleMap(compound_head(page));
9a73f61b 1273 }
dd78fedd
KS
1274 if (!atomic_inc_and_test(&page->_mapcount))
1275 goto out;
d69b042f 1276 }
00f3ca2c 1277 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1278out:
62cccb8c 1279 unlock_page_memcg(page);
cea86fe2
HD
1280
1281 mlock_vma_page(page, vma, compound);
1da177e4
LT
1282}
1283
dd78fedd 1284static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1285{
dd78fedd
KS
1286 int i, nr = 1;
1287
57dea93a 1288 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1289
53f9263b
KS
1290 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1291 if (unlikely(PageHuge(page))) {
1292 /* hugetlb pages are always mapped with pmds */
1293 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1294 return;
53f9263b 1295 }
8186eb6a 1296
53f9263b 1297 /* page still mapped by someone else? */
dd78fedd 1298 if (compound && PageTransHuge(page)) {
a1528e21
MS
1299 int nr_pages = thp_nr_pages(page);
1300
1301 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1302 if (atomic_add_negative(-1, &page[i]._mapcount))
1303 nr++;
1304 }
1305 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
be5d0a74 1306 return;
99cb0dbd 1307 if (PageSwapBacked(page))
a1528e21
MS
1308 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1309 -nr_pages);
99cb0dbd 1310 else
380780e7
MS
1311 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1312 -nr_pages);
dd78fedd
KS
1313 } else {
1314 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1315 return;
dd78fedd 1316 }
8186eb6a
JW
1317
1318 /*
00f3ca2c 1319 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1320 * these counters are not modified in interrupt context, and
1321 * pte lock(a spinlock) is held, which implies preemption disabled.
1322 */
00f3ca2c 1323 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1324}
1325
53f9263b
KS
1326static void page_remove_anon_compound_rmap(struct page *page)
1327{
1328 int i, nr;
1329
1330 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1331 return;
1332
1333 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1334 if (unlikely(PageHuge(page)))
1335 return;
1336
1337 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1338 return;
1339
69473e5d 1340 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1341
1342 if (TestClearPageDoubleMap(page)) {
1343 /*
1344 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1345 * them are still mapped.
53f9263b 1346 */
5eaf35ab 1347 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1348 if (atomic_add_negative(-1, &page[i]._mapcount))
1349 nr++;
1350 }
f1fe80d4
KS
1351
1352 /*
1353 * Queue the page for deferred split if at least one small
1354 * page of the compound page is unmapped, but at least one
1355 * small page is still mapped.
1356 */
5eaf35ab 1357 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1358 deferred_split_huge_page(page);
53f9263b 1359 } else {
5eaf35ab 1360 nr = thp_nr_pages(page);
53f9263b
KS
1361 }
1362
f1fe80d4 1363 if (nr)
be5d0a74 1364 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1365}
1366
1da177e4
LT
1367/**
1368 * page_remove_rmap - take down pte mapping from a page
d281ee61 1369 * @page: page to remove mapping from
cea86fe2 1370 * @vma: the vm area from which the mapping is removed
d281ee61 1371 * @compound: uncharge the page as compound or small page
1da177e4 1372 *
b8072f09 1373 * The caller needs to hold the pte lock.
1da177e4 1374 */
cea86fe2
HD
1375void page_remove_rmap(struct page *page,
1376 struct vm_area_struct *vma, bool compound)
1da177e4 1377{
be5d0a74 1378 lock_page_memcg(page);
89c06bd5 1379
be5d0a74
JW
1380 if (!PageAnon(page)) {
1381 page_remove_file_rmap(page, compound);
1382 goto out;
1383 }
1384
1385 if (compound) {
1386 page_remove_anon_compound_rmap(page);
1387 goto out;
1388 }
53f9263b 1389
b904dcfe
KM
1390 /* page still mapped by someone else? */
1391 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1392 goto out;
8186eb6a 1393
0fe6e20b 1394 /*
bea04b07
JZ
1395 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1396 * these counters are not modified in interrupt context, and
bea04b07 1397 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1398 */
be5d0a74 1399 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1400
9a982250
KS
1401 if (PageTransCompound(page))
1402 deferred_split_huge_page(compound_head(page));
1403
b904dcfe
KM
1404 /*
1405 * It would be tidy to reset the PageAnon mapping here,
1406 * but that might overwrite a racing page_add_anon_rmap
1407 * which increments mapcount after us but sets mapping
2d4894b5 1408 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1409 * and remember that it's only reliable while mapped.
1410 * Leaving it set also helps swapoff to reinstate ptes
1411 * faster for those pages still in swapcache.
1412 */
be5d0a74
JW
1413out:
1414 unlock_page_memcg(page);
cea86fe2
HD
1415
1416 munlock_vma_page(page, vma, compound);
1da177e4
LT
1417}
1418
1419/*
52629506 1420 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1421 */
2f031c6f 1422static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
52629506 1423 unsigned long address, void *arg)
1da177e4
LT
1424{
1425 struct mm_struct *mm = vma->vm_mm;
869f7ee6 1426 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1da177e4 1427 pte_t pteval;
c7ab0d2f 1428 struct page *subpage;
785373b4 1429 bool ret = true;
ac46d4f3 1430 struct mmu_notifier_range range;
4708f318 1431 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1432
732ed558
HD
1433 /*
1434 * When racing against e.g. zap_pte_range() on another cpu,
1435 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1436 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1437 * if page table locking is skipped: use TTU_SYNC to wait for that.
1438 */
1439 if (flags & TTU_SYNC)
1440 pvmw.flags = PVMW_SYNC;
1441
a98a2f0c 1442 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1443 split_huge_pmd_address(vma, address, false, folio);
fec89c10 1444
369ea824 1445 /*
017b1660
MK
1446 * For THP, we have to assume the worse case ie pmd for invalidation.
1447 * For hugetlb, it could be much worse if we need to do pud
1448 * invalidation in the case of pmd sharing.
1449 *
869f7ee6
MWO
1450 * Note that the folio can not be freed in this function as call of
1451 * try_to_unmap() must hold a reference on the folio.
369ea824 1452 */
2aff7a47 1453 range.end = vma_address_end(&pvmw);
7269f999 1454 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1455 address, range.end);
869f7ee6 1456 if (folio_test_hugetlb(folio)) {
017b1660
MK
1457 /*
1458 * If sharing is possible, start and end will be adjusted
1459 * accordingly.
1460 */
ac46d4f3
JG
1461 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1462 &range.end);
017b1660 1463 }
ac46d4f3 1464 mmu_notifier_invalidate_range_start(&range);
369ea824 1465
c7ab0d2f 1466 while (page_vma_mapped_walk(&pvmw)) {
cea86fe2 1467 /* Unexpected PMD-mapped THP? */
869f7ee6 1468 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
cea86fe2 1469
c7ab0d2f 1470 /*
869f7ee6 1471 * If the folio is in an mlock()d vma, we must not swap it out.
c7ab0d2f 1472 */
efdb6720
HD
1473 if (!(flags & TTU_IGNORE_MLOCK) &&
1474 (vma->vm_flags & VM_LOCKED)) {
cea86fe2 1475 /* Restore the mlock which got missed */
869f7ee6 1476 mlock_vma_folio(folio, vma, false);
efdb6720
HD
1477 page_vma_mapped_walk_done(&pvmw);
1478 ret = false;
1479 break;
b87537d9 1480 }
c7ab0d2f 1481
869f7ee6
MWO
1482 subpage = folio_page(folio,
1483 pte_pfn(*pvmw.pte) - folio_pfn(folio));
785373b4
LT
1484 address = pvmw.address;
1485
869f7ee6 1486 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
c0d0381a
MK
1487 /*
1488 * To call huge_pmd_unshare, i_mmap_rwsem must be
1489 * held in write mode. Caller needs to explicitly
1490 * do this outside rmap routines.
1491 */
1492 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
34ae204f 1493 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
017b1660
MK
1494 /*
1495 * huge_pmd_unshare unmapped an entire PMD
1496 * page. There is no way of knowing exactly
1497 * which PMDs may be cached for this mm, so
1498 * we must flush them all. start/end were
1499 * already adjusted above to cover this range.
1500 */
ac46d4f3
JG
1501 flush_cache_range(vma, range.start, range.end);
1502 flush_tlb_range(vma, range.start, range.end);
1503 mmu_notifier_invalidate_range(mm, range.start,
1504 range.end);
017b1660
MK
1505
1506 /*
1507 * The ref count of the PMD page was dropped
1508 * which is part of the way map counting
1509 * is done for shared PMDs. Return 'true'
1510 * here. When there is no other sharing,
1511 * huge_pmd_unshare returns false and we will
1512 * unmap the actual page and drop map count
1513 * to zero.
1514 */
1515 page_vma_mapped_walk_done(&pvmw);
1516 break;
1517 }
1518 }
8346242a 1519
c7ab0d2f 1520 /* Nuke the page table entry. */
785373b4 1521 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1522 if (should_defer_flush(mm, flags)) {
1523 /*
1524 * We clear the PTE but do not flush so potentially
869f7ee6 1525 * a remote CPU could still be writing to the folio.
c7ab0d2f
KS
1526 * If the entry was previously clean then the
1527 * architecture must guarantee that a clear->dirty
1528 * transition on a cached TLB entry is written through
1529 * and traps if the PTE is unmapped.
1530 */
785373b4 1531 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1532
1533 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1534 } else {
785373b4 1535 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1536 }
72b252ae 1537
869f7ee6 1538 /* Set the dirty flag on the folio now the pte is gone. */
c7ab0d2f 1539 if (pte_dirty(pteval))
869f7ee6 1540 folio_mark_dirty(folio);
1da177e4 1541
c7ab0d2f
KS
1542 /* Update high watermark before we lower rss */
1543 update_hiwater_rss(mm);
1da177e4 1544
da358d5c 1545 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1546 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
869f7ee6
MWO
1547 if (folio_test_hugetlb(folio)) {
1548 hugetlb_count_sub(folio_nr_pages(folio), mm);
785373b4 1549 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1550 pvmw.pte, pteval,
1551 vma_mmu_pagesize(vma));
c7ab0d2f 1552 } else {
869f7ee6 1553 dec_mm_counter(mm, mm_counter(&folio->page));
785373b4 1554 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1555 }
365e9c87 1556
bce73e48 1557 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1558 /*
1559 * The guest indicated that the page content is of no
1560 * interest anymore. Simply discard the pte, vmscan
1561 * will take care of the rest.
bce73e48
CB
1562 * A future reference will then fault in a new zero
1563 * page. When userfaultfd is active, we must not drop
1564 * this page though, as its main user (postcopy
1565 * migration) will not expect userfaults on already
1566 * copied pages.
c7ab0d2f 1567 */
869f7ee6 1568 dec_mm_counter(mm, mm_counter(&folio->page));
0f10851e
JG
1569 /* We have to invalidate as we cleared the pte */
1570 mmu_notifier_invalidate_range(mm, address,
1571 address + PAGE_SIZE);
869f7ee6 1572 } else if (folio_test_anon(folio)) {
c7ab0d2f
KS
1573 swp_entry_t entry = { .val = page_private(subpage) };
1574 pte_t swp_pte;
1575 /*
1576 * Store the swap location in the pte.
1577 * See handle_pte_fault() ...
1578 */
869f7ee6
MWO
1579 if (unlikely(folio_test_swapbacked(folio) !=
1580 folio_test_swapcache(folio))) {
eb94a878 1581 WARN_ON_ONCE(1);
83612a94 1582 ret = false;
369ea824 1583 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1584 mmu_notifier_invalidate_range(mm, address,
1585 address + PAGE_SIZE);
eb94a878
MK
1586 page_vma_mapped_walk_done(&pvmw);
1587 break;
1588 }
c7ab0d2f 1589
802a3a92 1590 /* MADV_FREE page check */
869f7ee6
MWO
1591 if (!folio_test_swapbacked(folio)) {
1592 if (!folio_test_dirty(folio)) {
0f10851e
JG
1593 /* Invalidate as we cleared the pte */
1594 mmu_notifier_invalidate_range(mm,
1595 address, address + PAGE_SIZE);
802a3a92
SL
1596 dec_mm_counter(mm, MM_ANONPAGES);
1597 goto discard;
1598 }
1599
1600 /*
869f7ee6 1601 * If the folio was redirtied, it cannot be
802a3a92
SL
1602 * discarded. Remap the page to page table.
1603 */
785373b4 1604 set_pte_at(mm, address, pvmw.pte, pteval);
869f7ee6 1605 folio_set_swapbacked(folio);
e4b82222 1606 ret = false;
802a3a92
SL
1607 page_vma_mapped_walk_done(&pvmw);
1608 break;
c7ab0d2f 1609 }
854e9ed0 1610
c7ab0d2f 1611 if (swap_duplicate(entry) < 0) {
785373b4 1612 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1613 ret = false;
c7ab0d2f
KS
1614 page_vma_mapped_walk_done(&pvmw);
1615 break;
1616 }
ca827d55
KA
1617 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1618 set_pte_at(mm, address, pvmw.pte, pteval);
1619 ret = false;
1620 page_vma_mapped_walk_done(&pvmw);
1621 break;
1622 }
c7ab0d2f
KS
1623 if (list_empty(&mm->mmlist)) {
1624 spin_lock(&mmlist_lock);
1625 if (list_empty(&mm->mmlist))
1626 list_add(&mm->mmlist, &init_mm.mmlist);
1627 spin_unlock(&mmlist_lock);
1628 }
854e9ed0 1629 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1630 inc_mm_counter(mm, MM_SWAPENTS);
1631 swp_pte = swp_entry_to_pte(entry);
1632 if (pte_soft_dirty(pteval))
1633 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1634 if (pte_uffd_wp(pteval))
1635 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1636 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1637 /* Invalidate as we cleared the pte */
1638 mmu_notifier_invalidate_range(mm, address,
1639 address + PAGE_SIZE);
1640 } else {
1641 /*
869f7ee6
MWO
1642 * This is a locked file-backed folio,
1643 * so it cannot be removed from the page
1644 * cache and replaced by a new folio before
1645 * mmu_notifier_invalidate_range_end, so no
1646 * concurrent thread might update its page table
1647 * to point at a new folio while a device is
1648 * still using this folio.
0f10851e 1649 *
ad56b738 1650 * See Documentation/vm/mmu_notifier.rst
0f10851e 1651 */
869f7ee6 1652 dec_mm_counter(mm, mm_counter_file(&folio->page));
0f10851e 1653 }
854e9ed0 1654discard:
0f10851e
JG
1655 /*
1656 * No need to call mmu_notifier_invalidate_range() it has be
1657 * done above for all cases requiring it to happen under page
1658 * table lock before mmu_notifier_invalidate_range_end()
1659 *
ad56b738 1660 * See Documentation/vm/mmu_notifier.rst
0f10851e 1661 */
869f7ee6 1662 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507
HD
1663 if (vma->vm_flags & VM_LOCKED)
1664 mlock_page_drain(smp_processor_id());
869f7ee6 1665 folio_put(folio);
c7ab0d2f 1666 }
369ea824 1667
ac46d4f3 1668 mmu_notifier_invalidate_range_end(&range);
369ea824 1669
caed0f48 1670 return ret;
1da177e4
LT
1671}
1672
52629506
JK
1673static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1674{
222100ee 1675 return vma_is_temporary_stack(vma);
52629506
JK
1676}
1677
2f031c6f 1678static int page_not_mapped(struct folio *folio)
52629506 1679{
2f031c6f 1680 return !folio_mapped(folio);
2a52bcbc 1681}
52629506 1682
1da177e4 1683/**
869f7ee6
MWO
1684 * try_to_unmap - Try to remove all page table mappings to a folio.
1685 * @folio: The folio to unmap.
14fa31b8 1686 * @flags: action and flags
1da177e4
LT
1687 *
1688 * Tries to remove all the page table entries which are mapping this
869f7ee6
MWO
1689 * folio. It is the caller's responsibility to check if the folio is
1690 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1da177e4 1691 *
869f7ee6 1692 * Context: Caller must hold the folio lock.
1da177e4 1693 */
869f7ee6 1694void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1da177e4 1695{
52629506
JK
1696 struct rmap_walk_control rwc = {
1697 .rmap_one = try_to_unmap_one,
802a3a92 1698 .arg = (void *)flags,
b7e188ec 1699 .done = page_not_mapped,
2f031c6f 1700 .anon_lock = folio_lock_anon_vma_read,
52629506 1701 };
1da177e4 1702
a98a2f0c 1703 if (flags & TTU_RMAP_LOCKED)
2f031c6f 1704 rmap_walk_locked(folio, &rwc);
a98a2f0c 1705 else
2f031c6f 1706 rmap_walk(folio, &rwc);
a98a2f0c
AP
1707}
1708
1709/*
1710 * @arg: enum ttu_flags will be passed to this argument.
1711 *
1712 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1713 * containing migration entries.
a98a2f0c 1714 */
2f031c6f 1715static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
a98a2f0c
AP
1716 unsigned long address, void *arg)
1717{
1718 struct mm_struct *mm = vma->vm_mm;
4b8554c5 1719 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
a98a2f0c
AP
1720 pte_t pteval;
1721 struct page *subpage;
1722 bool ret = true;
1723 struct mmu_notifier_range range;
1724 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1725
a98a2f0c
AP
1726 /*
1727 * When racing against e.g. zap_pte_range() on another cpu,
1728 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1729 * try_to_migrate() may return before page_mapped() has become false,
1730 * if page table locking is skipped: use TTU_SYNC to wait for that.
1731 */
1732 if (flags & TTU_SYNC)
1733 pvmw.flags = PVMW_SYNC;
1734
1735 /*
1736 * unmap_page() in mm/huge_memory.c is the only user of migration with
1737 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1738 */
1739 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1740 split_huge_pmd_address(vma, address, true, folio);
a98a2f0c
AP
1741
1742 /*
1743 * For THP, we have to assume the worse case ie pmd for invalidation.
1744 * For hugetlb, it could be much worse if we need to do pud
1745 * invalidation in the case of pmd sharing.
1746 *
1747 * Note that the page can not be free in this function as call of
1748 * try_to_unmap() must hold a reference on the page.
1749 */
2aff7a47 1750 range.end = vma_address_end(&pvmw);
a98a2f0c
AP
1751 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1752 address, range.end);
4b8554c5 1753 if (folio_test_hugetlb(folio)) {
a98a2f0c
AP
1754 /*
1755 * If sharing is possible, start and end will be adjusted
1756 * accordingly.
1757 */
1758 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1759 &range.end);
1760 }
1761 mmu_notifier_invalidate_range_start(&range);
1762
1763 while (page_vma_mapped_walk(&pvmw)) {
1764#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1765 /* PMD-mapped THP migration entry */
1766 if (!pvmw.pte) {
4b8554c5
MWO
1767 subpage = folio_page(folio,
1768 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1769 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1770 !folio_test_pmd_mappable(folio), folio);
a98a2f0c 1771
4b8554c5 1772 set_pmd_migration_entry(&pvmw, subpage);
a98a2f0c
AP
1773 continue;
1774 }
1775#endif
1776
1777 /* Unexpected PMD-mapped THP? */
4b8554c5 1778 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
a98a2f0c 1779
4b8554c5
MWO
1780 subpage = folio_page(folio,
1781 pte_pfn(*pvmw.pte) - folio_pfn(folio));
a98a2f0c
AP
1782 address = pvmw.address;
1783
4b8554c5 1784 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
a98a2f0c
AP
1785 /*
1786 * To call huge_pmd_unshare, i_mmap_rwsem must be
1787 * held in write mode. Caller needs to explicitly
1788 * do this outside rmap routines.
1789 */
1790 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1791 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1792 /*
1793 * huge_pmd_unshare unmapped an entire PMD
1794 * page. There is no way of knowing exactly
1795 * which PMDs may be cached for this mm, so
1796 * we must flush them all. start/end were
1797 * already adjusted above to cover this range.
1798 */
1799 flush_cache_range(vma, range.start, range.end);
1800 flush_tlb_range(vma, range.start, range.end);
1801 mmu_notifier_invalidate_range(mm, range.start,
1802 range.end);
1803
1804 /*
1805 * The ref count of the PMD page was dropped
1806 * which is part of the way map counting
1807 * is done for shared PMDs. Return 'true'
1808 * here. When there is no other sharing,
1809 * huge_pmd_unshare returns false and we will
1810 * unmap the actual page and drop map count
1811 * to zero.
1812 */
1813 page_vma_mapped_walk_done(&pvmw);
1814 break;
1815 }
1816 }
1817
1818 /* Nuke the page table entry. */
1819 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1820 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1821
4b8554c5 1822 /* Set the dirty flag on the folio now the pte is gone. */
a98a2f0c 1823 if (pte_dirty(pteval))
4b8554c5 1824 folio_mark_dirty(folio);
a98a2f0c
AP
1825
1826 /* Update high watermark before we lower rss */
1827 update_hiwater_rss(mm);
1828
4b8554c5
MWO
1829 if (folio_is_zone_device(folio)) {
1830 unsigned long pfn = folio_pfn(folio);
a98a2f0c
AP
1831 swp_entry_t entry;
1832 pte_t swp_pte;
1833
1834 /*
1835 * Store the pfn of the page in a special migration
1836 * pte. do_swap_page() will wait until the migration
1837 * pte is removed and then restart fault handling.
1838 */
3d88705c
AP
1839 entry = pte_to_swp_entry(pteval);
1840 if (is_writable_device_private_entry(entry))
1841 entry = make_writable_migration_entry(pfn);
1842 else
1843 entry = make_readable_migration_entry(pfn);
a98a2f0c
AP
1844 swp_pte = swp_entry_to_pte(entry);
1845
1846 /*
1847 * pteval maps a zone device page and is therefore
1848 * a swap pte.
1849 */
1850 if (pte_swp_soft_dirty(pteval))
1851 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1852 if (pte_swp_uffd_wp(pteval))
1853 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1854 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1855 /*
1856 * No need to invalidate here it will synchronize on
1857 * against the special swap migration pte.
1858 *
1859 * The assignment to subpage above was computed from a
1860 * swap PTE which results in an invalid pointer.
1861 * Since only PAGE_SIZE pages can currently be
1862 * migrated, just set it to page. This will need to be
1863 * changed when hugepage migrations to device private
1864 * memory are supported.
1865 */
4b8554c5 1866 subpage = &folio->page;
da358d5c 1867 } else if (PageHWPoison(subpage)) {
a98a2f0c 1868 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
4b8554c5
MWO
1869 if (folio_test_hugetlb(folio)) {
1870 hugetlb_count_sub(folio_nr_pages(folio), mm);
a98a2f0c
AP
1871 set_huge_swap_pte_at(mm, address,
1872 pvmw.pte, pteval,
1873 vma_mmu_pagesize(vma));
1874 } else {
4b8554c5 1875 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
1876 set_pte_at(mm, address, pvmw.pte, pteval);
1877 }
1878
1879 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1880 /*
1881 * The guest indicated that the page content is of no
1882 * interest anymore. Simply discard the pte, vmscan
1883 * will take care of the rest.
1884 * A future reference will then fault in a new zero
1885 * page. When userfaultfd is active, we must not drop
1886 * this page though, as its main user (postcopy
1887 * migration) will not expect userfaults on already
1888 * copied pages.
1889 */
4b8554c5 1890 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
1891 /* We have to invalidate as we cleared the pte */
1892 mmu_notifier_invalidate_range(mm, address,
1893 address + PAGE_SIZE);
1894 } else {
1895 swp_entry_t entry;
1896 pte_t swp_pte;
1897
1898 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1899 set_pte_at(mm, address, pvmw.pte, pteval);
1900 ret = false;
1901 page_vma_mapped_walk_done(&pvmw);
1902 break;
1903 }
1904
1905 /*
1906 * Store the pfn of the page in a special migration
1907 * pte. do_swap_page() will wait until the migration
1908 * pte is removed and then restart fault handling.
1909 */
1910 if (pte_write(pteval))
1911 entry = make_writable_migration_entry(
1912 page_to_pfn(subpage));
1913 else
1914 entry = make_readable_migration_entry(
1915 page_to_pfn(subpage));
1916
1917 swp_pte = swp_entry_to_pte(entry);
1918 if (pte_soft_dirty(pteval))
1919 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1920 if (pte_uffd_wp(pteval))
1921 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1922 set_pte_at(mm, address, pvmw.pte, swp_pte);
1923 /*
1924 * No need to invalidate here it will synchronize on
1925 * against the special swap migration pte.
1926 */
1927 }
1928
1929 /*
1930 * No need to call mmu_notifier_invalidate_range() it has be
1931 * done above for all cases requiring it to happen under page
1932 * table lock before mmu_notifier_invalidate_range_end()
1933 *
1934 * See Documentation/vm/mmu_notifier.rst
1935 */
4b8554c5 1936 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507
HD
1937 if (vma->vm_flags & VM_LOCKED)
1938 mlock_page_drain(smp_processor_id());
4b8554c5 1939 folio_put(folio);
a98a2f0c
AP
1940 }
1941
1942 mmu_notifier_invalidate_range_end(&range);
1943
1944 return ret;
1945}
1946
1947/**
1948 * try_to_migrate - try to replace all page table mappings with swap entries
4b8554c5 1949 * @folio: the folio to replace page table entries for
a98a2f0c
AP
1950 * @flags: action and flags
1951 *
4b8554c5
MWO
1952 * Tries to remove all the page table entries which are mapping this folio and
1953 * replace them with special swap entries. Caller must hold the folio lock.
a98a2f0c 1954 */
4b8554c5 1955void try_to_migrate(struct folio *folio, enum ttu_flags flags)
a98a2f0c
AP
1956{
1957 struct rmap_walk_control rwc = {
1958 .rmap_one = try_to_migrate_one,
1959 .arg = (void *)flags,
1960 .done = page_not_mapped,
2f031c6f 1961 .anon_lock = folio_lock_anon_vma_read,
a98a2f0c
AP
1962 };
1963
1964 /*
1965 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1966 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1967 */
1968 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1969 TTU_SYNC)))
1970 return;
1971
4b8554c5 1972 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
6c855fce
HD
1973 return;
1974
52629506
JK
1975 /*
1976 * During exec, a temporary VMA is setup and later moved.
1977 * The VMA is moved under the anon_vma lock but not the
1978 * page tables leading to a race where migration cannot
1979 * find the migration ptes. Rather than increasing the
1980 * locking requirements of exec(), migration skips
1981 * temporary VMAs until after exec() completes.
1982 */
4b8554c5 1983 if (!folio_test_ksm(folio) && folio_test_anon(folio))
52629506
JK
1984 rwc.invalid_vma = invalid_migration_vma;
1985
2a52bcbc 1986 if (flags & TTU_RMAP_LOCKED)
2f031c6f 1987 rmap_walk_locked(folio, &rwc);
2a52bcbc 1988 else
2f031c6f 1989 rmap_walk(folio, &rwc);
b291f000 1990}
e9995ef9 1991
b756a3b5
AP
1992#ifdef CONFIG_DEVICE_PRIVATE
1993struct make_exclusive_args {
1994 struct mm_struct *mm;
1995 unsigned long address;
1996 void *owner;
1997 bool valid;
1998};
1999
2f031c6f 2000static bool page_make_device_exclusive_one(struct folio *folio,
b756a3b5
AP
2001 struct vm_area_struct *vma, unsigned long address, void *priv)
2002{
2003 struct mm_struct *mm = vma->vm_mm;
0d251485 2004 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
b756a3b5
AP
2005 struct make_exclusive_args *args = priv;
2006 pte_t pteval;
2007 struct page *subpage;
2008 bool ret = true;
2009 struct mmu_notifier_range range;
2010 swp_entry_t entry;
2011 pte_t swp_pte;
2012
2013 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2014 vma->vm_mm, address, min(vma->vm_end,
0d251485
MWO
2015 address + folio_size(folio)),
2016 args->owner);
b756a3b5
AP
2017 mmu_notifier_invalidate_range_start(&range);
2018
2019 while (page_vma_mapped_walk(&pvmw)) {
2020 /* Unexpected PMD-mapped THP? */
0d251485 2021 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
b756a3b5
AP
2022
2023 if (!pte_present(*pvmw.pte)) {
2024 ret = false;
2025 page_vma_mapped_walk_done(&pvmw);
2026 break;
2027 }
2028
0d251485
MWO
2029 subpage = folio_page(folio,
2030 pte_pfn(*pvmw.pte) - folio_pfn(folio));
b756a3b5
AP
2031 address = pvmw.address;
2032
2033 /* Nuke the page table entry. */
2034 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2035 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2036
0d251485 2037 /* Set the dirty flag on the folio now the pte is gone. */
b756a3b5 2038 if (pte_dirty(pteval))
0d251485 2039 folio_mark_dirty(folio);
b756a3b5
AP
2040
2041 /*
2042 * Check that our target page is still mapped at the expected
2043 * address.
2044 */
2045 if (args->mm == mm && args->address == address &&
2046 pte_write(pteval))
2047 args->valid = true;
2048
2049 /*
2050 * Store the pfn of the page in a special migration
2051 * pte. do_swap_page() will wait until the migration
2052 * pte is removed and then restart fault handling.
2053 */
2054 if (pte_write(pteval))
2055 entry = make_writable_device_exclusive_entry(
2056 page_to_pfn(subpage));
2057 else
2058 entry = make_readable_device_exclusive_entry(
2059 page_to_pfn(subpage));
2060 swp_pte = swp_entry_to_pte(entry);
2061 if (pte_soft_dirty(pteval))
2062 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2063 if (pte_uffd_wp(pteval))
2064 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2065
2066 set_pte_at(mm, address, pvmw.pte, swp_pte);
2067
2068 /*
2069 * There is a reference on the page for the swap entry which has
2070 * been removed, so shouldn't take another.
2071 */
cea86fe2 2072 page_remove_rmap(subpage, vma, false);
b756a3b5
AP
2073 }
2074
2075 mmu_notifier_invalidate_range_end(&range);
2076
2077 return ret;
2078}
2079
2080/**
0d251485
MWO
2081 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2082 * @folio: The folio to replace page table entries for.
2083 * @mm: The mm_struct where the folio is expected to be mapped.
2084 * @address: Address where the folio is expected to be mapped.
b756a3b5
AP
2085 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2086 *
0d251485
MWO
2087 * Tries to remove all the page table entries which are mapping this
2088 * folio and replace them with special device exclusive swap entries to
2089 * grant a device exclusive access to the folio.
b756a3b5 2090 *
0d251485
MWO
2091 * Context: Caller must hold the folio lock.
2092 * Return: false if the page is still mapped, or if it could not be unmapped
b756a3b5
AP
2093 * from the expected address. Otherwise returns true (success).
2094 */
0d251485
MWO
2095static bool folio_make_device_exclusive(struct folio *folio,
2096 struct mm_struct *mm, unsigned long address, void *owner)
b756a3b5
AP
2097{
2098 struct make_exclusive_args args = {
2099 .mm = mm,
2100 .address = address,
2101 .owner = owner,
2102 .valid = false,
2103 };
2104 struct rmap_walk_control rwc = {
2105 .rmap_one = page_make_device_exclusive_one,
2106 .done = page_not_mapped,
2f031c6f 2107 .anon_lock = folio_lock_anon_vma_read,
b756a3b5
AP
2108 .arg = &args,
2109 };
2110
2111 /*
0d251485
MWO
2112 * Restrict to anonymous folios for now to avoid potential writeback
2113 * issues.
b756a3b5 2114 */
0d251485 2115 if (!folio_test_anon(folio))
b756a3b5
AP
2116 return false;
2117
2f031c6f 2118 rmap_walk(folio, &rwc);
b756a3b5 2119
0d251485 2120 return args.valid && !folio_mapcount(folio);
b756a3b5
AP
2121}
2122
2123/**
2124 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2125 * @mm: mm_struct of assoicated target process
2126 * @start: start of the region to mark for exclusive device access
2127 * @end: end address of region
2128 * @pages: returns the pages which were successfully marked for exclusive access
2129 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2130 *
2131 * Returns: number of pages found in the range by GUP. A page is marked for
2132 * exclusive access only if the page pointer is non-NULL.
2133 *
2134 * This function finds ptes mapping page(s) to the given address range, locks
2135 * them and replaces mappings with special swap entries preventing userspace CPU
2136 * access. On fault these entries are replaced with the original mapping after
2137 * calling MMU notifiers.
2138 *
2139 * A driver using this to program access from a device must use a mmu notifier
2140 * critical section to hold a device specific lock during programming. Once
2141 * programming is complete it should drop the page lock and reference after
2142 * which point CPU access to the page will revoke the exclusive access.
2143 */
2144int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2145 unsigned long end, struct page **pages,
2146 void *owner)
2147{
2148 long npages = (end - start) >> PAGE_SHIFT;
2149 long i;
2150
2151 npages = get_user_pages_remote(mm, start, npages,
2152 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2153 pages, NULL, NULL);
2154 if (npages < 0)
2155 return npages;
2156
2157 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
0d251485
MWO
2158 struct folio *folio = page_folio(pages[i]);
2159 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2160 folio_put(folio);
b756a3b5
AP
2161 pages[i] = NULL;
2162 continue;
2163 }
2164
0d251485
MWO
2165 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2166 folio_unlock(folio);
2167 folio_put(folio);
b756a3b5
AP
2168 pages[i] = NULL;
2169 }
2170 }
2171
2172 return npages;
2173}
2174EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2175#endif
2176
01d8b20d 2177void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2178{
01d8b20d 2179 struct anon_vma *root = anon_vma->root;
76545066 2180
624483f3 2181 anon_vma_free(anon_vma);
01d8b20d
PZ
2182 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2183 anon_vma_free(root);
76545066 2184}
76545066 2185
2f031c6f 2186static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
84fbbe21 2187 const struct rmap_walk_control *rwc)
faecd8dd
JK
2188{
2189 struct anon_vma *anon_vma;
2190
0dd1c7bb 2191 if (rwc->anon_lock)
2f031c6f 2192 return rwc->anon_lock(folio);
0dd1c7bb 2193
faecd8dd 2194 /*
2f031c6f 2195 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
faecd8dd 2196 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2197 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2198 * take a reference count to prevent the anon_vma disappearing
2199 */
e05b3453 2200 anon_vma = folio_anon_vma(folio);
faecd8dd
JK
2201 if (!anon_vma)
2202 return NULL;
2203
2204 anon_vma_lock_read(anon_vma);
2205 return anon_vma;
2206}
2207
e9995ef9 2208/*
e8351ac9
JK
2209 * rmap_walk_anon - do something to anonymous page using the object-based
2210 * rmap method
2211 * @page: the page to be handled
2212 * @rwc: control variable according to each walk type
2213 *
2214 * Find all the mappings of a page using the mapping pointer and the vma chains
2215 * contained in the anon_vma struct it points to.
e9995ef9 2216 */
84fbbe21
MWO
2217static void rmap_walk_anon(struct folio *folio,
2218 const struct rmap_walk_control *rwc, bool locked)
e9995ef9
HD
2219{
2220 struct anon_vma *anon_vma;
a8fa41ad 2221 pgoff_t pgoff_start, pgoff_end;
5beb4930 2222 struct anon_vma_chain *avc;
e9995ef9 2223
b9773199 2224 if (locked) {
e05b3453 2225 anon_vma = folio_anon_vma(folio);
b9773199 2226 /* anon_vma disappear under us? */
e05b3453 2227 VM_BUG_ON_FOLIO(!anon_vma, folio);
b9773199 2228 } else {
2f031c6f 2229 anon_vma = rmap_walk_anon_lock(folio, rwc);
b9773199 2230 }
e9995ef9 2231 if (!anon_vma)
1df631ae 2232 return;
faecd8dd 2233
2f031c6f
MWO
2234 pgoff_start = folio_pgoff(folio);
2235 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
a8fa41ad
KS
2236 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2237 pgoff_start, pgoff_end) {
5beb4930 2238 struct vm_area_struct *vma = avc->vma;
2f031c6f 2239 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2240
494334e4 2241 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2242 cond_resched();
2243
0dd1c7bb
JK
2244 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2245 continue;
2246
2f031c6f 2247 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
e9995ef9 2248 break;
2f031c6f 2249 if (rwc->done && rwc->done(folio))
0dd1c7bb 2250 break;
e9995ef9 2251 }
b9773199
KS
2252
2253 if (!locked)
2254 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2255}
2256
e8351ac9
JK
2257/*
2258 * rmap_walk_file - do something to file page using the object-based rmap method
2259 * @page: the page to be handled
2260 * @rwc: control variable according to each walk type
2261 *
2262 * Find all the mappings of a page using the mapping pointer and the vma chains
2263 * contained in the address_space struct it points to.
e8351ac9 2264 */
84fbbe21
MWO
2265static void rmap_walk_file(struct folio *folio,
2266 const struct rmap_walk_control *rwc, bool locked)
e9995ef9 2267{
2f031c6f 2268 struct address_space *mapping = folio_mapping(folio);
a8fa41ad 2269 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2270 struct vm_area_struct *vma;
e9995ef9 2271
9f32624b
JK
2272 /*
2273 * The page lock not only makes sure that page->mapping cannot
2274 * suddenly be NULLified by truncation, it makes sure that the
2275 * structure at mapping cannot be freed and reused yet,
c8c06efa 2276 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2277 */
2f031c6f 2278 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
9f32624b 2279
e9995ef9 2280 if (!mapping)
1df631ae 2281 return;
3dec0ba0 2282
2f031c6f
MWO
2283 pgoff_start = folio_pgoff(folio);
2284 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
b9773199
KS
2285 if (!locked)
2286 i_mmap_lock_read(mapping);
a8fa41ad
KS
2287 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2288 pgoff_start, pgoff_end) {
2f031c6f 2289 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2290
494334e4 2291 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2292 cond_resched();
2293
0dd1c7bb
JK
2294 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2295 continue;
2296
2f031c6f 2297 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
0dd1c7bb 2298 goto done;
2f031c6f 2299 if (rwc->done && rwc->done(folio))
0dd1c7bb 2300 goto done;
e9995ef9 2301 }
0dd1c7bb 2302
0dd1c7bb 2303done:
b9773199
KS
2304 if (!locked)
2305 i_mmap_unlock_read(mapping);
e9995ef9
HD
2306}
2307
84fbbe21 2308void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc)
e9995ef9 2309{
2f031c6f
MWO
2310 if (unlikely(folio_test_ksm(folio)))
2311 rmap_walk_ksm(folio, rwc);
2312 else if (folio_test_anon(folio))
2313 rmap_walk_anon(folio, rwc, false);
b9773199 2314 else
2f031c6f 2315 rmap_walk_file(folio, rwc, false);
b9773199
KS
2316}
2317
2318/* Like rmap_walk, but caller holds relevant rmap lock */
84fbbe21 2319void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc)
b9773199
KS
2320{
2321 /* no ksm support for now */
2f031c6f
MWO
2322 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2323 if (folio_test_anon(folio))
2324 rmap_walk_anon(folio, rwc, true);
e9995ef9 2325 else
2f031c6f 2326 rmap_walk_file(folio, rwc, true);
e9995ef9 2327}
0fe6e20b 2328
e3390f67 2329#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2330/*
451b9514 2331 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2332 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2333 * and no lru code, because we handle hugepages differently from common pages.
2334 */
0fe6e20b
NH
2335void hugepage_add_anon_rmap(struct page *page,
2336 struct vm_area_struct *vma, unsigned long address)
2337{
2338 struct anon_vma *anon_vma = vma->anon_vma;
2339 int first;
a850ea30
NH
2340
2341 BUG_ON(!PageLocked(page));
0fe6e20b 2342 BUG_ON(!anon_vma);
5dbe0af4 2343 /* address might be in next vma when migration races vma_adjust */
53f9263b 2344 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 2345 if (first)
451b9514 2346 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
2347}
2348
2349void hugepage_add_new_anon_rmap(struct page *page,
2350 struct vm_area_struct *vma, unsigned long address)
2351{
2352 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2353 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 2354 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 2355
451b9514 2356 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2357}
e3390f67 2358#endif /* CONFIG_HUGETLB_PAGE */