mm: send one IPI per CPU to TLB flush all entries after unmapping pages
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
c4843a75
GT
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
250df6ed 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 40 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 41 *
5a505085 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 43 * ->tasklist_lock
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
b95f1b31 56#include <linux/export.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
ef5d437f 61#include <linux/backing-dev.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
64
72b252ae
MG
65#include <trace/events/tlb.h>
66
b291f000
NP
67#include "internal.h"
68
fdd2e5f8 69static struct kmem_cache *anon_vma_cachep;
5beb4930 70static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
71
72static inline struct anon_vma *anon_vma_alloc(void)
73{
01d8b20d
PZ
74 struct anon_vma *anon_vma;
75
76 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
77 if (anon_vma) {
78 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
79 anon_vma->degree = 1; /* Reference for first vma */
80 anon_vma->parent = anon_vma;
01d8b20d
PZ
81 /*
82 * Initialise the anon_vma root to point to itself. If called
83 * from fork, the root will be reset to the parents anon_vma.
84 */
85 anon_vma->root = anon_vma;
86 }
87
88 return anon_vma;
fdd2e5f8
AB
89}
90
01d8b20d 91static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 92{
01d8b20d 93 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
94
95 /*
4fc3f1d6 96 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
97 * we can safely hold the lock without the anon_vma getting
98 * freed.
99 *
100 * Relies on the full mb implied by the atomic_dec_and_test() from
101 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 102 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 103 *
4fc3f1d6
IM
104 * page_lock_anon_vma_read() VS put_anon_vma()
105 * down_read_trylock() atomic_dec_and_test()
88c22088 106 * LOCK MB
4fc3f1d6 107 * atomic_read() rwsem_is_locked()
88c22088
PZ
108 *
109 * LOCK should suffice since the actual taking of the lock must
110 * happen _before_ what follows.
111 */
7f39dda9 112 might_sleep();
5a505085 113 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 114 anon_vma_lock_write(anon_vma);
08b52706 115 anon_vma_unlock_write(anon_vma);
88c22088
PZ
116 }
117
fdd2e5f8
AB
118 kmem_cache_free(anon_vma_cachep, anon_vma);
119}
1da177e4 120
dd34739c 121static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 122{
dd34739c 123 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
124}
125
e574b5fd 126static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
127{
128 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
129}
130
6583a843
KC
131static void anon_vma_chain_link(struct vm_area_struct *vma,
132 struct anon_vma_chain *avc,
133 struct anon_vma *anon_vma)
134{
135 avc->vma = vma;
136 avc->anon_vma = anon_vma;
137 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 138 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
139}
140
d9d332e0
LT
141/**
142 * anon_vma_prepare - attach an anon_vma to a memory region
143 * @vma: the memory region in question
144 *
145 * This makes sure the memory mapping described by 'vma' has
146 * an 'anon_vma' attached to it, so that we can associate the
147 * anonymous pages mapped into it with that anon_vma.
148 *
149 * The common case will be that we already have one, but if
23a0790a 150 * not we either need to find an adjacent mapping that we
d9d332e0
LT
151 * can re-use the anon_vma from (very common when the only
152 * reason for splitting a vma has been mprotect()), or we
153 * allocate a new one.
154 *
155 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 156 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
157 * and that may actually touch the spinlock even in the newly
158 * allocated vma (it depends on RCU to make sure that the
159 * anon_vma isn't actually destroyed).
160 *
161 * As a result, we need to do proper anon_vma locking even
162 * for the new allocation. At the same time, we do not want
163 * to do any locking for the common case of already having
164 * an anon_vma.
165 *
166 * This must be called with the mmap_sem held for reading.
167 */
1da177e4
LT
168int anon_vma_prepare(struct vm_area_struct *vma)
169{
170 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 171 struct anon_vma_chain *avc;
1da177e4
LT
172
173 might_sleep();
174 if (unlikely(!anon_vma)) {
175 struct mm_struct *mm = vma->vm_mm;
d9d332e0 176 struct anon_vma *allocated;
1da177e4 177
dd34739c 178 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
179 if (!avc)
180 goto out_enomem;
181
1da177e4 182 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
183 allocated = NULL;
184 if (!anon_vma) {
1da177e4
LT
185 anon_vma = anon_vma_alloc();
186 if (unlikely(!anon_vma))
5beb4930 187 goto out_enomem_free_avc;
1da177e4 188 allocated = anon_vma;
1da177e4
LT
189 }
190
4fc3f1d6 191 anon_vma_lock_write(anon_vma);
1da177e4
LT
192 /* page_table_lock to protect against threads */
193 spin_lock(&mm->page_table_lock);
194 if (likely(!vma->anon_vma)) {
195 vma->anon_vma = anon_vma;
6583a843 196 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
197 /* vma reference or self-parent link for new root */
198 anon_vma->degree++;
1da177e4 199 allocated = NULL;
31f2b0eb 200 avc = NULL;
1da177e4
LT
201 }
202 spin_unlock(&mm->page_table_lock);
08b52706 203 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
204
205 if (unlikely(allocated))
01d8b20d 206 put_anon_vma(allocated);
31f2b0eb 207 if (unlikely(avc))
5beb4930 208 anon_vma_chain_free(avc);
1da177e4
LT
209 }
210 return 0;
5beb4930
RR
211
212 out_enomem_free_avc:
213 anon_vma_chain_free(avc);
214 out_enomem:
215 return -ENOMEM;
1da177e4
LT
216}
217
bb4aa396
LT
218/*
219 * This is a useful helper function for locking the anon_vma root as
220 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
221 * have the same vma.
222 *
223 * Such anon_vma's should have the same root, so you'd expect to see
224 * just a single mutex_lock for the whole traversal.
225 */
226static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
227{
228 struct anon_vma *new_root = anon_vma->root;
229 if (new_root != root) {
230 if (WARN_ON_ONCE(root))
5a505085 231 up_write(&root->rwsem);
bb4aa396 232 root = new_root;
5a505085 233 down_write(&root->rwsem);
bb4aa396
LT
234 }
235 return root;
236}
237
238static inline void unlock_anon_vma_root(struct anon_vma *root)
239{
240 if (root)
5a505085 241 up_write(&root->rwsem);
bb4aa396
LT
242}
243
5beb4930
RR
244/*
245 * Attach the anon_vmas from src to dst.
246 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
247 *
248 * If dst->anon_vma is NULL this function tries to find and reuse existing
249 * anon_vma which has no vmas and only one child anon_vma. This prevents
250 * degradation of anon_vma hierarchy to endless linear chain in case of
251 * constantly forking task. On the other hand, an anon_vma with more than one
252 * child isn't reused even if there was no alive vma, thus rmap walker has a
253 * good chance of avoiding scanning the whole hierarchy when it searches where
254 * page is mapped.
5beb4930
RR
255 */
256int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 257{
5beb4930 258 struct anon_vma_chain *avc, *pavc;
bb4aa396 259 struct anon_vma *root = NULL;
5beb4930 260
646d87b4 261 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
262 struct anon_vma *anon_vma;
263
dd34739c
LT
264 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
265 if (unlikely(!avc)) {
266 unlock_anon_vma_root(root);
267 root = NULL;
268 avc = anon_vma_chain_alloc(GFP_KERNEL);
269 if (!avc)
270 goto enomem_failure;
271 }
bb4aa396
LT
272 anon_vma = pavc->anon_vma;
273 root = lock_anon_vma_root(root, anon_vma);
274 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
275
276 /*
277 * Reuse existing anon_vma if its degree lower than two,
278 * that means it has no vma and only one anon_vma child.
279 *
280 * Do not chose parent anon_vma, otherwise first child
281 * will always reuse it. Root anon_vma is never reused:
282 * it has self-parent reference and at least one child.
283 */
284 if (!dst->anon_vma && anon_vma != src->anon_vma &&
285 anon_vma->degree < 2)
286 dst->anon_vma = anon_vma;
5beb4930 287 }
7a3ef208
KK
288 if (dst->anon_vma)
289 dst->anon_vma->degree++;
bb4aa396 290 unlock_anon_vma_root(root);
5beb4930 291 return 0;
1da177e4 292
5beb4930 293 enomem_failure:
3fe89b3e
LY
294 /*
295 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
296 * decremented in unlink_anon_vmas().
297 * We can safely do this because callers of anon_vma_clone() don't care
298 * about dst->anon_vma if anon_vma_clone() failed.
299 */
300 dst->anon_vma = NULL;
5beb4930
RR
301 unlink_anon_vmas(dst);
302 return -ENOMEM;
1da177e4
LT
303}
304
5beb4930
RR
305/*
306 * Attach vma to its own anon_vma, as well as to the anon_vmas that
307 * the corresponding VMA in the parent process is attached to.
308 * Returns 0 on success, non-zero on failure.
309 */
310int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 311{
5beb4930
RR
312 struct anon_vma_chain *avc;
313 struct anon_vma *anon_vma;
c4ea95d7 314 int error;
1da177e4 315
5beb4930
RR
316 /* Don't bother if the parent process has no anon_vma here. */
317 if (!pvma->anon_vma)
318 return 0;
319
7a3ef208
KK
320 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
321 vma->anon_vma = NULL;
322
5beb4930
RR
323 /*
324 * First, attach the new VMA to the parent VMA's anon_vmas,
325 * so rmap can find non-COWed pages in child processes.
326 */
c4ea95d7
DF
327 error = anon_vma_clone(vma, pvma);
328 if (error)
329 return error;
5beb4930 330
7a3ef208
KK
331 /* An existing anon_vma has been reused, all done then. */
332 if (vma->anon_vma)
333 return 0;
334
5beb4930
RR
335 /* Then add our own anon_vma. */
336 anon_vma = anon_vma_alloc();
337 if (!anon_vma)
338 goto out_error;
dd34739c 339 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
340 if (!avc)
341 goto out_error_free_anon_vma;
5c341ee1
RR
342
343 /*
344 * The root anon_vma's spinlock is the lock actually used when we
345 * lock any of the anon_vmas in this anon_vma tree.
346 */
347 anon_vma->root = pvma->anon_vma->root;
7a3ef208 348 anon_vma->parent = pvma->anon_vma;
76545066 349 /*
01d8b20d
PZ
350 * With refcounts, an anon_vma can stay around longer than the
351 * process it belongs to. The root anon_vma needs to be pinned until
352 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
353 */
354 get_anon_vma(anon_vma->root);
5beb4930
RR
355 /* Mark this anon_vma as the one where our new (COWed) pages go. */
356 vma->anon_vma = anon_vma;
4fc3f1d6 357 anon_vma_lock_write(anon_vma);
5c341ee1 358 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 359 anon_vma->parent->degree++;
08b52706 360 anon_vma_unlock_write(anon_vma);
5beb4930
RR
361
362 return 0;
363
364 out_error_free_anon_vma:
01d8b20d 365 put_anon_vma(anon_vma);
5beb4930 366 out_error:
4946d54c 367 unlink_anon_vmas(vma);
5beb4930 368 return -ENOMEM;
1da177e4
LT
369}
370
5beb4930
RR
371void unlink_anon_vmas(struct vm_area_struct *vma)
372{
373 struct anon_vma_chain *avc, *next;
eee2acba 374 struct anon_vma *root = NULL;
5beb4930 375
5c341ee1
RR
376 /*
377 * Unlink each anon_vma chained to the VMA. This list is ordered
378 * from newest to oldest, ensuring the root anon_vma gets freed last.
379 */
5beb4930 380 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
381 struct anon_vma *anon_vma = avc->anon_vma;
382
383 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 384 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
385
386 /*
387 * Leave empty anon_vmas on the list - we'll need
388 * to free them outside the lock.
389 */
7a3ef208
KK
390 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
391 anon_vma->parent->degree--;
eee2acba 392 continue;
7a3ef208 393 }
eee2acba
PZ
394
395 list_del(&avc->same_vma);
396 anon_vma_chain_free(avc);
397 }
7a3ef208
KK
398 if (vma->anon_vma)
399 vma->anon_vma->degree--;
eee2acba
PZ
400 unlock_anon_vma_root(root);
401
402 /*
403 * Iterate the list once more, it now only contains empty and unlinked
404 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 405 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
406 */
407 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
408 struct anon_vma *anon_vma = avc->anon_vma;
409
7a3ef208 410 BUG_ON(anon_vma->degree);
eee2acba
PZ
411 put_anon_vma(anon_vma);
412
5beb4930
RR
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
416}
417
51cc5068 418static void anon_vma_ctor(void *data)
1da177e4 419{
a35afb83 420 struct anon_vma *anon_vma = data;
1da177e4 421
5a505085 422 init_rwsem(&anon_vma->rwsem);
83813267 423 atomic_set(&anon_vma->refcount, 0);
bf181b9f 424 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
425}
426
427void __init anon_vma_init(void)
428{
429 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 430 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 431 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
432}
433
434/*
6111e4ca
PZ
435 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
436 *
437 * Since there is no serialization what so ever against page_remove_rmap()
438 * the best this function can do is return a locked anon_vma that might
439 * have been relevant to this page.
440 *
441 * The page might have been remapped to a different anon_vma or the anon_vma
442 * returned may already be freed (and even reused).
443 *
bc658c96
PZ
444 * In case it was remapped to a different anon_vma, the new anon_vma will be a
445 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
446 * ensure that any anon_vma obtained from the page will still be valid for as
447 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
448 *
6111e4ca
PZ
449 * All users of this function must be very careful when walking the anon_vma
450 * chain and verify that the page in question is indeed mapped in it
451 * [ something equivalent to page_mapped_in_vma() ].
452 *
453 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
454 * that the anon_vma pointer from page->mapping is valid if there is a
455 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 456 */
746b18d4 457struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 458{
746b18d4 459 struct anon_vma *anon_vma = NULL;
1da177e4
LT
460 unsigned long anon_mapping;
461
462 rcu_read_lock();
4db0c3c2 463 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 464 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
465 goto out;
466 if (!page_mapped(page))
467 goto out;
468
469 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
470 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
471 anon_vma = NULL;
472 goto out;
473 }
f1819427
HD
474
475 /*
476 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
477 * freed. But if it has been unmapped, we have no security against the
478 * anon_vma structure being freed and reused (for another anon_vma:
479 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
480 * above cannot corrupt).
f1819427 481 */
746b18d4 482 if (!page_mapped(page)) {
7f39dda9 483 rcu_read_unlock();
746b18d4 484 put_anon_vma(anon_vma);
7f39dda9 485 return NULL;
746b18d4 486 }
1da177e4
LT
487out:
488 rcu_read_unlock();
746b18d4
PZ
489
490 return anon_vma;
491}
492
88c22088
PZ
493/*
494 * Similar to page_get_anon_vma() except it locks the anon_vma.
495 *
496 * Its a little more complex as it tries to keep the fast path to a single
497 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
498 * reference like with page_get_anon_vma() and then block on the mutex.
499 */
4fc3f1d6 500struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 501{
88c22088 502 struct anon_vma *anon_vma = NULL;
eee0f252 503 struct anon_vma *root_anon_vma;
88c22088 504 unsigned long anon_mapping;
746b18d4 505
88c22088 506 rcu_read_lock();
4db0c3c2 507 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
508 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
509 goto out;
510 if (!page_mapped(page))
511 goto out;
512
513 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 514 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 515 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 516 /*
eee0f252
HD
517 * If the page is still mapped, then this anon_vma is still
518 * its anon_vma, and holding the mutex ensures that it will
bc658c96 519 * not go away, see anon_vma_free().
88c22088 520 */
eee0f252 521 if (!page_mapped(page)) {
4fc3f1d6 522 up_read(&root_anon_vma->rwsem);
88c22088
PZ
523 anon_vma = NULL;
524 }
525 goto out;
526 }
746b18d4 527
88c22088
PZ
528 /* trylock failed, we got to sleep */
529 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
530 anon_vma = NULL;
531 goto out;
532 }
533
534 if (!page_mapped(page)) {
7f39dda9 535 rcu_read_unlock();
88c22088 536 put_anon_vma(anon_vma);
7f39dda9 537 return NULL;
88c22088
PZ
538 }
539
540 /* we pinned the anon_vma, its safe to sleep */
541 rcu_read_unlock();
4fc3f1d6 542 anon_vma_lock_read(anon_vma);
88c22088
PZ
543
544 if (atomic_dec_and_test(&anon_vma->refcount)) {
545 /*
546 * Oops, we held the last refcount, release the lock
547 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 548 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 549 */
4fc3f1d6 550 anon_vma_unlock_read(anon_vma);
88c22088
PZ
551 __put_anon_vma(anon_vma);
552 anon_vma = NULL;
553 }
554
555 return anon_vma;
556
557out:
558 rcu_read_unlock();
746b18d4 559 return anon_vma;
34bbd704
ON
560}
561
4fc3f1d6 562void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 563{
4fc3f1d6 564 anon_vma_unlock_read(anon_vma);
1da177e4
LT
565}
566
567/*
3ad33b24 568 * At what user virtual address is page expected in @vma?
1da177e4 569 */
86c2ad19
ML
570static inline unsigned long
571__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 572{
a0f7a756 573 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
574 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
575}
576
577inline unsigned long
578vma_address(struct page *page, struct vm_area_struct *vma)
579{
580 unsigned long address = __vma_address(page, vma);
581
582 /* page should be within @vma mapping range */
81d1b09c 583 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 584
1da177e4
LT
585 return address;
586}
587
72b252ae
MG
588#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
589static void percpu_flush_tlb_batch_pages(void *data)
590{
591 /*
592 * All TLB entries are flushed on the assumption that it is
593 * cheaper to flush all TLBs and let them be refilled than
594 * flushing individual PFNs. Note that we do not track mm's
595 * to flush as that might simply be multiple full TLB flushes
596 * for no gain.
597 */
598 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
599 flush_tlb_local();
600}
601
602/*
603 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
604 * important if a PTE was dirty when it was unmapped that it's flushed
605 * before any IO is initiated on the page to prevent lost writes. Similarly,
606 * it must be flushed before freeing to prevent data leakage.
607 */
608void try_to_unmap_flush(void)
609{
610 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
611 int cpu;
612
613 if (!tlb_ubc->flush_required)
614 return;
615
616 cpu = get_cpu();
617
618 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
619
620 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
621 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
622
623 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
624 smp_call_function_many(&tlb_ubc->cpumask,
625 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
626 }
627 cpumask_clear(&tlb_ubc->cpumask);
628 tlb_ubc->flush_required = false;
629 put_cpu();
630}
631
632static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
633 struct page *page)
634{
635 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
636
637 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
638 tlb_ubc->flush_required = true;
639}
640
641/*
642 * Returns true if the TLB flush should be deferred to the end of a batch of
643 * unmap operations to reduce IPIs.
644 */
645static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
646{
647 bool should_defer = false;
648
649 if (!(flags & TTU_BATCH_FLUSH))
650 return false;
651
652 /* If remote CPUs need to be flushed then defer batch the flush */
653 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
654 should_defer = true;
655 put_cpu();
656
657 return should_defer;
658}
659#else
660static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
661 struct page *page)
662{
663}
664
665static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
666{
667 return false;
668}
669#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
670
1da177e4 671/*
bf89c8c8 672 * At what user virtual address is page expected in vma?
ab941e0f 673 * Caller should check the page is actually part of the vma.
1da177e4
LT
674 */
675unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
676{
86c2ad19 677 unsigned long address;
21d0d443 678 if (PageAnon(page)) {
4829b906
HD
679 struct anon_vma *page__anon_vma = page_anon_vma(page);
680 /*
681 * Note: swapoff's unuse_vma() is more efficient with this
682 * check, and needs it to match anon_vma when KSM is active.
683 */
684 if (!vma->anon_vma || !page__anon_vma ||
685 vma->anon_vma->root != page__anon_vma->root)
21d0d443 686 return -EFAULT;
27ba0644
KS
687 } else if (page->mapping) {
688 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
689 return -EFAULT;
690 } else
691 return -EFAULT;
86c2ad19
ML
692 address = __vma_address(page, vma);
693 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
694 return -EFAULT;
695 return address;
1da177e4
LT
696}
697
6219049a
BL
698pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
699{
700 pgd_t *pgd;
701 pud_t *pud;
702 pmd_t *pmd = NULL;
f72e7dcd 703 pmd_t pmde;
6219049a
BL
704
705 pgd = pgd_offset(mm, address);
706 if (!pgd_present(*pgd))
707 goto out;
708
709 pud = pud_offset(pgd, address);
710 if (!pud_present(*pud))
711 goto out;
712
713 pmd = pmd_offset(pud, address);
f72e7dcd 714 /*
8809aa2d 715 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
716 * without holding anon_vma lock for write. So when looking for a
717 * genuine pmde (in which to find pte), test present and !THP together.
718 */
e37c6982
CB
719 pmde = *pmd;
720 barrier();
f72e7dcd 721 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
722 pmd = NULL;
723out:
724 return pmd;
725}
726
81b4082d
ND
727/*
728 * Check that @page is mapped at @address into @mm.
729 *
479db0bf
NP
730 * If @sync is false, page_check_address may perform a racy check to avoid
731 * the page table lock when the pte is not present (helpful when reclaiming
732 * highly shared pages).
733 *
b8072f09 734 * On success returns with pte mapped and locked.
81b4082d 735 */
e9a81a82 736pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 737 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 738{
81b4082d
ND
739 pmd_t *pmd;
740 pte_t *pte;
c0718806 741 spinlock_t *ptl;
81b4082d 742
0fe6e20b 743 if (unlikely(PageHuge(page))) {
98398c32 744 /* when pud is not present, pte will be NULL */
0fe6e20b 745 pte = huge_pte_offset(mm, address);
98398c32
JW
746 if (!pte)
747 return NULL;
748
cb900f41 749 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
750 goto check;
751 }
752
6219049a
BL
753 pmd = mm_find_pmd(mm, address);
754 if (!pmd)
c0718806
HD
755 return NULL;
756
c0718806
HD
757 pte = pte_offset_map(pmd, address);
758 /* Make a quick check before getting the lock */
479db0bf 759 if (!sync && !pte_present(*pte)) {
c0718806
HD
760 pte_unmap(pte);
761 return NULL;
762 }
763
4c21e2f2 764 ptl = pte_lockptr(mm, pmd);
0fe6e20b 765check:
c0718806
HD
766 spin_lock(ptl);
767 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
768 *ptlp = ptl;
769 return pte;
81b4082d 770 }
c0718806
HD
771 pte_unmap_unlock(pte, ptl);
772 return NULL;
81b4082d
ND
773}
774
b291f000
NP
775/**
776 * page_mapped_in_vma - check whether a page is really mapped in a VMA
777 * @page: the page to test
778 * @vma: the VMA to test
779 *
780 * Returns 1 if the page is mapped into the page tables of the VMA, 0
781 * if the page is not mapped into the page tables of this VMA. Only
782 * valid for normal file or anonymous VMAs.
783 */
6a46079c 784int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
785{
786 unsigned long address;
787 pte_t *pte;
788 spinlock_t *ptl;
789
86c2ad19
ML
790 address = __vma_address(page, vma);
791 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
792 return 0;
793 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
794 if (!pte) /* the page is not in this mm */
795 return 0;
796 pte_unmap_unlock(pte, ptl);
797
798 return 1;
799}
800
9f32624b
JK
801struct page_referenced_arg {
802 int mapcount;
803 int referenced;
804 unsigned long vm_flags;
805 struct mem_cgroup *memcg;
806};
1da177e4 807/*
9f32624b 808 * arg: page_referenced_arg will be passed
1da177e4 809 */
ac769501 810static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 811 unsigned long address, void *arg)
1da177e4
LT
812{
813 struct mm_struct *mm = vma->vm_mm;
117b0791 814 spinlock_t *ptl;
1da177e4 815 int referenced = 0;
9f32624b 816 struct page_referenced_arg *pra = arg;
1da177e4 817
71e3aac0
AA
818 if (unlikely(PageTransHuge(page))) {
819 pmd_t *pmd;
820
2da28bfd
AA
821 /*
822 * rmap might return false positives; we must filter
823 * these out using page_check_address_pmd().
824 */
71e3aac0 825 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
826 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
827 if (!pmd)
9f32624b 828 return SWAP_AGAIN;
2da28bfd
AA
829
830 if (vma->vm_flags & VM_LOCKED) {
117b0791 831 spin_unlock(ptl);
9f32624b
JK
832 pra->vm_flags |= VM_LOCKED;
833 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
834 }
835
836 /* go ahead even if the pmd is pmd_trans_splitting() */
837 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 838 referenced++;
117b0791 839 spin_unlock(ptl);
71e3aac0
AA
840 } else {
841 pte_t *pte;
71e3aac0 842
2da28bfd
AA
843 /*
844 * rmap might return false positives; we must filter
845 * these out using page_check_address().
846 */
71e3aac0
AA
847 pte = page_check_address(page, mm, address, &ptl, 0);
848 if (!pte)
9f32624b 849 return SWAP_AGAIN;
71e3aac0 850
2da28bfd
AA
851 if (vma->vm_flags & VM_LOCKED) {
852 pte_unmap_unlock(pte, ptl);
9f32624b
JK
853 pra->vm_flags |= VM_LOCKED;
854 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
855 }
856
71e3aac0
AA
857 if (ptep_clear_flush_young_notify(vma, address, pte)) {
858 /*
859 * Don't treat a reference through a sequentially read
860 * mapping as such. If the page has been used in
861 * another mapping, we will catch it; if this other
862 * mapping is already gone, the unmap path will have
863 * set PG_referenced or activated the page.
864 */
64363aad 865 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
866 referenced++;
867 }
868 pte_unmap_unlock(pte, ptl);
869 }
870
9f32624b
JK
871 if (referenced) {
872 pra->referenced++;
873 pra->vm_flags |= vma->vm_flags;
1da177e4 874 }
34bbd704 875
9f32624b
JK
876 pra->mapcount--;
877 if (!pra->mapcount)
878 return SWAP_SUCCESS; /* To break the loop */
879
880 return SWAP_AGAIN;
1da177e4
LT
881}
882
9f32624b 883static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 884{
9f32624b
JK
885 struct page_referenced_arg *pra = arg;
886 struct mem_cgroup *memcg = pra->memcg;
1da177e4 887
9f32624b
JK
888 if (!mm_match_cgroup(vma->vm_mm, memcg))
889 return true;
1da177e4 890
9f32624b 891 return false;
1da177e4
LT
892}
893
894/**
895 * page_referenced - test if the page was referenced
896 * @page: the page to test
897 * @is_locked: caller holds lock on the page
72835c86 898 * @memcg: target memory cgroup
6fe6b7e3 899 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
900 *
901 * Quick test_and_clear_referenced for all mappings to a page,
902 * returns the number of ptes which referenced the page.
903 */
6fe6b7e3
WF
904int page_referenced(struct page *page,
905 int is_locked,
72835c86 906 struct mem_cgroup *memcg,
6fe6b7e3 907 unsigned long *vm_flags)
1da177e4 908{
9f32624b 909 int ret;
5ad64688 910 int we_locked = 0;
9f32624b
JK
911 struct page_referenced_arg pra = {
912 .mapcount = page_mapcount(page),
913 .memcg = memcg,
914 };
915 struct rmap_walk_control rwc = {
916 .rmap_one = page_referenced_one,
917 .arg = (void *)&pra,
918 .anon_lock = page_lock_anon_vma_read,
919 };
1da177e4 920
6fe6b7e3 921 *vm_flags = 0;
9f32624b
JK
922 if (!page_mapped(page))
923 return 0;
924
925 if (!page_rmapping(page))
926 return 0;
927
928 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
929 we_locked = trylock_page(page);
930 if (!we_locked)
931 return 1;
1da177e4 932 }
9f32624b
JK
933
934 /*
935 * If we are reclaiming on behalf of a cgroup, skip
936 * counting on behalf of references from different
937 * cgroups
938 */
939 if (memcg) {
940 rwc.invalid_vma = invalid_page_referenced_vma;
941 }
942
943 ret = rmap_walk(page, &rwc);
944 *vm_flags = pra.vm_flags;
945
946 if (we_locked)
947 unlock_page(page);
948
949 return pra.referenced;
1da177e4
LT
950}
951
1cb1729b 952static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 953 unsigned long address, void *arg)
d08b3851
PZ
954{
955 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 956 pte_t *pte;
d08b3851
PZ
957 spinlock_t *ptl;
958 int ret = 0;
9853a407 959 int *cleaned = arg;
d08b3851 960
479db0bf 961 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
962 if (!pte)
963 goto out;
964
c2fda5fe
PZ
965 if (pte_dirty(*pte) || pte_write(*pte)) {
966 pte_t entry;
d08b3851 967
c2fda5fe 968 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 969 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
970 entry = pte_wrprotect(entry);
971 entry = pte_mkclean(entry);
d6e88e67 972 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
973 ret = 1;
974 }
d08b3851 975
d08b3851 976 pte_unmap_unlock(pte, ptl);
2ec74c3e 977
9853a407 978 if (ret) {
2ec74c3e 979 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
980 (*cleaned)++;
981 }
d08b3851 982out:
9853a407 983 return SWAP_AGAIN;
d08b3851
PZ
984}
985
9853a407 986static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 987{
9853a407 988 if (vma->vm_flags & VM_SHARED)
871beb8c 989 return false;
d08b3851 990
871beb8c 991 return true;
d08b3851
PZ
992}
993
994int page_mkclean(struct page *page)
995{
9853a407
JK
996 int cleaned = 0;
997 struct address_space *mapping;
998 struct rmap_walk_control rwc = {
999 .arg = (void *)&cleaned,
1000 .rmap_one = page_mkclean_one,
1001 .invalid_vma = invalid_mkclean_vma,
1002 };
d08b3851
PZ
1003
1004 BUG_ON(!PageLocked(page));
1005
9853a407
JK
1006 if (!page_mapped(page))
1007 return 0;
1008
1009 mapping = page_mapping(page);
1010 if (!mapping)
1011 return 0;
1012
1013 rmap_walk(page, &rwc);
d08b3851 1014
9853a407 1015 return cleaned;
d08b3851 1016}
60b59bea 1017EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1018
c44b6743
RR
1019/**
1020 * page_move_anon_rmap - move a page to our anon_vma
1021 * @page: the page to move to our anon_vma
1022 * @vma: the vma the page belongs to
1023 * @address: the user virtual address mapped
1024 *
1025 * When a page belongs exclusively to one process after a COW event,
1026 * that page can be moved into the anon_vma that belongs to just that
1027 * process, so the rmap code will not search the parent or sibling
1028 * processes.
1029 */
1030void page_move_anon_rmap(struct page *page,
1031 struct vm_area_struct *vma, unsigned long address)
1032{
1033 struct anon_vma *anon_vma = vma->anon_vma;
1034
309381fe 1035 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1036 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 1037 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
1038
1039 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1040 /*
1041 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1042 * simultaneously, so a concurrent reader (eg page_referenced()'s
1043 * PageAnon()) will not see one without the other.
1044 */
1045 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1046}
1047
9617d95e 1048/**
4e1c1975
AK
1049 * __page_set_anon_rmap - set up new anonymous rmap
1050 * @page: Page to add to rmap
1051 * @vma: VM area to add page to.
1052 * @address: User virtual address of the mapping
e8a03feb 1053 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1054 */
1055static void __page_set_anon_rmap(struct page *page,
e8a03feb 1056 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1057{
e8a03feb 1058 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1059
e8a03feb 1060 BUG_ON(!anon_vma);
ea90002b 1061
4e1c1975
AK
1062 if (PageAnon(page))
1063 return;
1064
ea90002b 1065 /*
e8a03feb
RR
1066 * If the page isn't exclusively mapped into this vma,
1067 * we must use the _oldest_ possible anon_vma for the
1068 * page mapping!
ea90002b 1069 */
4e1c1975 1070 if (!exclusive)
288468c3 1071 anon_vma = anon_vma->root;
9617d95e 1072
9617d95e
NP
1073 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1074 page->mapping = (struct address_space *) anon_vma;
9617d95e 1075 page->index = linear_page_index(vma, address);
9617d95e
NP
1076}
1077
c97a9e10 1078/**
43d8eac4 1079 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1080 * @page: the page to add the mapping to
1081 * @vma: the vm area in which the mapping is added
1082 * @address: the user virtual address mapped
1083 */
1084static void __page_check_anon_rmap(struct page *page,
1085 struct vm_area_struct *vma, unsigned long address)
1086{
1087#ifdef CONFIG_DEBUG_VM
1088 /*
1089 * The page's anon-rmap details (mapping and index) are guaranteed to
1090 * be set up correctly at this point.
1091 *
1092 * We have exclusion against page_add_anon_rmap because the caller
1093 * always holds the page locked, except if called from page_dup_rmap,
1094 * in which case the page is already known to be setup.
1095 *
1096 * We have exclusion against page_add_new_anon_rmap because those pages
1097 * are initially only visible via the pagetables, and the pte is locked
1098 * over the call to page_add_new_anon_rmap.
1099 */
44ab57a0 1100 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1101 BUG_ON(page->index != linear_page_index(vma, address));
1102#endif
1103}
1104
1da177e4
LT
1105/**
1106 * page_add_anon_rmap - add pte mapping to an anonymous page
1107 * @page: the page to add the mapping to
1108 * @vma: the vm area in which the mapping is added
1109 * @address: the user virtual address mapped
1110 *
5ad64688 1111 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1112 * the anon_vma case: to serialize mapping,index checking after setting,
1113 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1114 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1115 */
1116void page_add_anon_rmap(struct page *page,
1117 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1118{
1119 do_page_add_anon_rmap(page, vma, address, 0);
1120}
1121
1122/*
1123 * Special version of the above for do_swap_page, which often runs
1124 * into pages that are exclusively owned by the current process.
1125 * Everybody else should continue to use page_add_anon_rmap above.
1126 */
1127void do_page_add_anon_rmap(struct page *page,
1128 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1129{
5ad64688 1130 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1131 if (first) {
bea04b07
JZ
1132 /*
1133 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1134 * these counters are not modified in interrupt context, and
1135 * pte lock(a spinlock) is held, which implies preemption
1136 * disabled.
1137 */
3cd14fcd 1138 if (PageTransHuge(page))
79134171
AA
1139 __inc_zone_page_state(page,
1140 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1141 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1142 hpage_nr_pages(page));
79134171 1143 }
5ad64688
HD
1144 if (unlikely(PageKsm(page)))
1145 return;
1146
309381fe 1147 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1148 /* address might be in next vma when migration races vma_adjust */
5ad64688 1149 if (first)
ad8c2ee8 1150 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1151 else
c97a9e10 1152 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1153}
1154
43d8eac4 1155/**
9617d95e
NP
1156 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1157 * @page: the page to add the mapping to
1158 * @vma: the vm area in which the mapping is added
1159 * @address: the user virtual address mapped
1160 *
1161 * Same as page_add_anon_rmap but must only be called on *new* pages.
1162 * This means the inc-and-test can be bypassed.
c97a9e10 1163 * Page does not have to be locked.
9617d95e
NP
1164 */
1165void page_add_new_anon_rmap(struct page *page,
1166 struct vm_area_struct *vma, unsigned long address)
1167{
81d1b09c 1168 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1169 SetPageSwapBacked(page);
1170 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1171 if (PageTransHuge(page))
79134171 1172 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1173 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1174 hpage_nr_pages(page));
e8a03feb 1175 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1176}
1177
1da177e4
LT
1178/**
1179 * page_add_file_rmap - add pte mapping to a file page
1180 * @page: the page to add the mapping to
1181 *
b8072f09 1182 * The caller needs to hold the pte lock.
1da177e4
LT
1183 */
1184void page_add_file_rmap(struct page *page)
1185{
d7365e78 1186 struct mem_cgroup *memcg;
89c06bd5 1187
6de22619 1188 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1189 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1190 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1191 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1192 }
6de22619 1193 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1194}
1195
8186eb6a
JW
1196static void page_remove_file_rmap(struct page *page)
1197{
1198 struct mem_cgroup *memcg;
8186eb6a 1199
6de22619 1200 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a
JW
1201
1202 /* page still mapped by someone else? */
1203 if (!atomic_add_negative(-1, &page->_mapcount))
1204 goto out;
1205
1206 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1207 if (unlikely(PageHuge(page)))
1208 goto out;
1209
1210 /*
1211 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1212 * these counters are not modified in interrupt context, and
1213 * pte lock(a spinlock) is held, which implies preemption disabled.
1214 */
1215 __dec_zone_page_state(page, NR_FILE_MAPPED);
1216 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1217
1218 if (unlikely(PageMlocked(page)))
1219 clear_page_mlock(page);
1220out:
6de22619 1221 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1222}
1223
1da177e4
LT
1224/**
1225 * page_remove_rmap - take down pte mapping from a page
1226 * @page: page to remove mapping from
1227 *
b8072f09 1228 * The caller needs to hold the pte lock.
1da177e4 1229 */
edc315fd 1230void page_remove_rmap(struct page *page)
1da177e4 1231{
8186eb6a
JW
1232 if (!PageAnon(page)) {
1233 page_remove_file_rmap(page);
1234 return;
1235 }
89c06bd5 1236
b904dcfe
KM
1237 /* page still mapped by someone else? */
1238 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1239 return;
1240
1241 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1242 if (unlikely(PageHuge(page)))
1243 return;
b904dcfe 1244
0fe6e20b 1245 /*
bea04b07
JZ
1246 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1247 * these counters are not modified in interrupt context, and
bea04b07 1248 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1249 */
8186eb6a
JW
1250 if (PageTransHuge(page))
1251 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1252
1253 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1254 -hpage_nr_pages(page));
1255
e6c509f8
HD
1256 if (unlikely(PageMlocked(page)))
1257 clear_page_mlock(page);
8186eb6a 1258
b904dcfe
KM
1259 /*
1260 * It would be tidy to reset the PageAnon mapping here,
1261 * but that might overwrite a racing page_add_anon_rmap
1262 * which increments mapcount after us but sets mapping
1263 * before us: so leave the reset to free_hot_cold_page,
1264 * and remember that it's only reliable while mapped.
1265 * Leaving it set also helps swapoff to reinstate ptes
1266 * faster for those pages still in swapcache.
1267 */
1da177e4
LT
1268}
1269
1270/*
52629506 1271 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1272 */
ac769501 1273static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1274 unsigned long address, void *arg)
1da177e4
LT
1275{
1276 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1277 pte_t *pte;
1278 pte_t pteval;
c0718806 1279 spinlock_t *ptl;
1da177e4 1280 int ret = SWAP_AGAIN;
52629506 1281 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1282
479db0bf 1283 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1284 if (!pte)
81b4082d 1285 goto out;
1da177e4
LT
1286
1287 /*
1288 * If the page is mlock()d, we cannot swap it out.
1289 * If it's recently referenced (perhaps page_referenced
1290 * skipped over this mm) then we should reactivate it.
1291 */
14fa31b8 1292 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1293 if (vma->vm_flags & VM_LOCKED)
1294 goto out_mlock;
1295
daa5ba76 1296 if (flags & TTU_MUNLOCK)
53f79acb 1297 goto out_unmap;
14fa31b8
AK
1298 }
1299 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1300 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1301 ret = SWAP_FAIL;
1302 goto out_unmap;
1303 }
1304 }
1da177e4 1305
1da177e4
LT
1306 /* Nuke the page table entry. */
1307 flush_cache_page(vma, address, page_to_pfn(page));
72b252ae
MG
1308 if (should_defer_flush(mm, flags)) {
1309 /*
1310 * We clear the PTE but do not flush so potentially a remote
1311 * CPU could still be writing to the page. If the entry was
1312 * previously clean then the architecture must guarantee that
1313 * a clear->dirty transition on a cached TLB entry is written
1314 * through and traps if the PTE is unmapped.
1315 */
1316 pteval = ptep_get_and_clear(mm, address, pte);
1317
1318 /* Potentially writable TLBs must be flushed before IO */
1319 if (pte_dirty(pteval))
1320 flush_tlb_page(vma, address);
1321 else
1322 set_tlb_ubc_flush_pending(mm, page);
1323 } else {
1324 pteval = ptep_clear_flush(vma, address, pte);
1325 }
1da177e4
LT
1326
1327 /* Move the dirty bit to the physical page now the pte is gone. */
1328 if (pte_dirty(pteval))
1329 set_page_dirty(page);
1330
365e9c87
HD
1331 /* Update high watermark before we lower rss */
1332 update_hiwater_rss(mm);
1333
888b9f7c 1334 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1335 if (!PageHuge(page)) {
1336 if (PageAnon(page))
1337 dec_mm_counter(mm, MM_ANONPAGES);
1338 else
1339 dec_mm_counter(mm, MM_FILEPAGES);
1340 }
888b9f7c 1341 set_pte_at(mm, address, pte,
5f24ae58 1342 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1343 } else if (pte_unused(pteval)) {
1344 /*
1345 * The guest indicated that the page content is of no
1346 * interest anymore. Simply discard the pte, vmscan
1347 * will take care of the rest.
1348 */
1349 if (PageAnon(page))
1350 dec_mm_counter(mm, MM_ANONPAGES);
1351 else
1352 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1353 } else if (PageAnon(page)) {
4c21e2f2 1354 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1355 pte_t swp_pte;
0697212a
CL
1356
1357 if (PageSwapCache(page)) {
1358 /*
1359 * Store the swap location in the pte.
1360 * See handle_pte_fault() ...
1361 */
570a335b
HD
1362 if (swap_duplicate(entry) < 0) {
1363 set_pte_at(mm, address, pte, pteval);
1364 ret = SWAP_FAIL;
1365 goto out_unmap;
1366 }
0697212a
CL
1367 if (list_empty(&mm->mmlist)) {
1368 spin_lock(&mmlist_lock);
1369 if (list_empty(&mm->mmlist))
1370 list_add(&mm->mmlist, &init_mm.mmlist);
1371 spin_unlock(&mmlist_lock);
1372 }
d559db08 1373 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1374 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1375 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1376 /*
1377 * Store the pfn of the page in a special migration
1378 * pte. do_swap_page() will wait until the migration
1379 * pte is removed and then restart fault handling.
1380 */
daa5ba76 1381 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1382 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1383 }
179ef71c
CG
1384 swp_pte = swp_entry_to_pte(entry);
1385 if (pte_soft_dirty(pteval))
1386 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1387 set_pte_at(mm, address, pte, swp_pte);
ce1744f4 1388 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1389 (flags & TTU_MIGRATION)) {
04e62a29
CL
1390 /* Establish migration entry for a file page */
1391 swp_entry_t entry;
1392 entry = make_migration_entry(page, pte_write(pteval));
1393 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1394 } else
d559db08 1395 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1396
edc315fd 1397 page_remove_rmap(page);
1da177e4
LT
1398 page_cache_release(page);
1399
1400out_unmap:
c0718806 1401 pte_unmap_unlock(pte, ptl);
daa5ba76 1402 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1403 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1404out:
1405 return ret;
53f79acb 1406
caed0f48
KM
1407out_mlock:
1408 pte_unmap_unlock(pte, ptl);
1409
1410
1411 /*
1412 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1413 * unstable result and race. Plus, We can't wait here because
c8c06efa 1414 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
caed0f48
KM
1415 * if trylock failed, the page remain in evictable lru and later
1416 * vmscan could retry to move the page to unevictable lru if the
1417 * page is actually mlocked.
1418 */
1419 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1420 if (vma->vm_flags & VM_LOCKED) {
1421 mlock_vma_page(page);
1422 ret = SWAP_MLOCK;
53f79acb 1423 }
caed0f48 1424 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1425 }
1da177e4
LT
1426 return ret;
1427}
1428
71e3aac0 1429bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1430{
1431 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1432
1433 if (!maybe_stack)
1434 return false;
1435
1436 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1437 VM_STACK_INCOMPLETE_SETUP)
1438 return true;
1439
1440 return false;
1441}
1442
52629506
JK
1443static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1444{
1445 return is_vma_temporary_stack(vma);
1446}
1447
52629506
JK
1448static int page_not_mapped(struct page *page)
1449{
1450 return !page_mapped(page);
1451};
1452
1da177e4
LT
1453/**
1454 * try_to_unmap - try to remove all page table mappings to a page
1455 * @page: the page to get unmapped
14fa31b8 1456 * @flags: action and flags
1da177e4
LT
1457 *
1458 * Tries to remove all the page table entries which are mapping this
1459 * page, used in the pageout path. Caller must hold the page lock.
1460 * Return values are:
1461 *
1462 * SWAP_SUCCESS - we succeeded in removing all mappings
1463 * SWAP_AGAIN - we missed a mapping, try again later
1464 * SWAP_FAIL - the page is unswappable
b291f000 1465 * SWAP_MLOCK - page is mlocked.
1da177e4 1466 */
14fa31b8 1467int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1468{
1469 int ret;
52629506
JK
1470 struct rmap_walk_control rwc = {
1471 .rmap_one = try_to_unmap_one,
1472 .arg = (void *)flags,
1473 .done = page_not_mapped,
52629506
JK
1474 .anon_lock = page_lock_anon_vma_read,
1475 };
1da177e4 1476
309381fe 1477 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1478
52629506
JK
1479 /*
1480 * During exec, a temporary VMA is setup and later moved.
1481 * The VMA is moved under the anon_vma lock but not the
1482 * page tables leading to a race where migration cannot
1483 * find the migration ptes. Rather than increasing the
1484 * locking requirements of exec(), migration skips
1485 * temporary VMAs until after exec() completes.
1486 */
daa5ba76 1487 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1488 rwc.invalid_vma = invalid_migration_vma;
1489
1490 ret = rmap_walk(page, &rwc);
1491
b291f000 1492 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1493 ret = SWAP_SUCCESS;
1494 return ret;
1495}
81b4082d 1496
b291f000
NP
1497/**
1498 * try_to_munlock - try to munlock a page
1499 * @page: the page to be munlocked
1500 *
1501 * Called from munlock code. Checks all of the VMAs mapping the page
1502 * to make sure nobody else has this page mlocked. The page will be
1503 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1504 *
1505 * Return values are:
1506 *
53f79acb 1507 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1508 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1509 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1510 * SWAP_MLOCK - page is now mlocked.
1511 */
1512int try_to_munlock(struct page *page)
1513{
e8351ac9
JK
1514 int ret;
1515 struct rmap_walk_control rwc = {
1516 .rmap_one = try_to_unmap_one,
1517 .arg = (void *)TTU_MUNLOCK,
1518 .done = page_not_mapped,
e8351ac9
JK
1519 .anon_lock = page_lock_anon_vma_read,
1520
1521 };
1522
309381fe 1523 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1524
e8351ac9
JK
1525 ret = rmap_walk(page, &rwc);
1526 return ret;
b291f000 1527}
e9995ef9 1528
01d8b20d 1529void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1530{
01d8b20d 1531 struct anon_vma *root = anon_vma->root;
76545066 1532
624483f3 1533 anon_vma_free(anon_vma);
01d8b20d
PZ
1534 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1535 anon_vma_free(root);
76545066 1536}
76545066 1537
0dd1c7bb
JK
1538static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1539 struct rmap_walk_control *rwc)
faecd8dd
JK
1540{
1541 struct anon_vma *anon_vma;
1542
0dd1c7bb
JK
1543 if (rwc->anon_lock)
1544 return rwc->anon_lock(page);
1545
faecd8dd
JK
1546 /*
1547 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1548 * because that depends on page_mapped(); but not all its usages
1549 * are holding mmap_sem. Users without mmap_sem are required to
1550 * take a reference count to prevent the anon_vma disappearing
1551 */
1552 anon_vma = page_anon_vma(page);
1553 if (!anon_vma)
1554 return NULL;
1555
1556 anon_vma_lock_read(anon_vma);
1557 return anon_vma;
1558}
1559
e9995ef9 1560/*
e8351ac9
JK
1561 * rmap_walk_anon - do something to anonymous page using the object-based
1562 * rmap method
1563 * @page: the page to be handled
1564 * @rwc: control variable according to each walk type
1565 *
1566 * Find all the mappings of a page using the mapping pointer and the vma chains
1567 * contained in the anon_vma struct it points to.
1568 *
1569 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1570 * where the page was found will be held for write. So, we won't recheck
1571 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1572 * LOCKED.
e9995ef9 1573 */
051ac83a 1574static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1575{
1576 struct anon_vma *anon_vma;
b258d860 1577 pgoff_t pgoff;
5beb4930 1578 struct anon_vma_chain *avc;
e9995ef9
HD
1579 int ret = SWAP_AGAIN;
1580
0dd1c7bb 1581 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1582 if (!anon_vma)
1583 return ret;
faecd8dd 1584
b258d860 1585 pgoff = page_to_pgoff(page);
bf181b9f 1586 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1587 struct vm_area_struct *vma = avc->vma;
e9995ef9 1588 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1589
1590 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1591 continue;
1592
051ac83a 1593 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1594 if (ret != SWAP_AGAIN)
1595 break;
0dd1c7bb
JK
1596 if (rwc->done && rwc->done(page))
1597 break;
e9995ef9 1598 }
4fc3f1d6 1599 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1600 return ret;
1601}
1602
e8351ac9
JK
1603/*
1604 * rmap_walk_file - do something to file page using the object-based rmap method
1605 * @page: the page to be handled
1606 * @rwc: control variable according to each walk type
1607 *
1608 * Find all the mappings of a page using the mapping pointer and the vma chains
1609 * contained in the address_space struct it points to.
1610 *
1611 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1612 * where the page was found will be held for write. So, we won't recheck
1613 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1614 * LOCKED.
1615 */
051ac83a 1616static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1617{
1618 struct address_space *mapping = page->mapping;
b258d860 1619 pgoff_t pgoff;
e9995ef9 1620 struct vm_area_struct *vma;
e9995ef9
HD
1621 int ret = SWAP_AGAIN;
1622
9f32624b
JK
1623 /*
1624 * The page lock not only makes sure that page->mapping cannot
1625 * suddenly be NULLified by truncation, it makes sure that the
1626 * structure at mapping cannot be freed and reused yet,
c8c06efa 1627 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1628 */
81d1b09c 1629 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1630
e9995ef9
HD
1631 if (!mapping)
1632 return ret;
3dec0ba0 1633
b258d860 1634 pgoff = page_to_pgoff(page);
3dec0ba0 1635 i_mmap_lock_read(mapping);
6b2dbba8 1636 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1637 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1638
1639 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1640 continue;
1641
051ac83a 1642 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1643 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1644 goto done;
1645 if (rwc->done && rwc->done(page))
1646 goto done;
e9995ef9 1647 }
0dd1c7bb 1648
0dd1c7bb 1649done:
3dec0ba0 1650 i_mmap_unlock_read(mapping);
e9995ef9
HD
1651 return ret;
1652}
1653
051ac83a 1654int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1655{
e9995ef9 1656 if (unlikely(PageKsm(page)))
051ac83a 1657 return rmap_walk_ksm(page, rwc);
e9995ef9 1658 else if (PageAnon(page))
051ac83a 1659 return rmap_walk_anon(page, rwc);
e9995ef9 1660 else
051ac83a 1661 return rmap_walk_file(page, rwc);
e9995ef9 1662}
0fe6e20b 1663
e3390f67 1664#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1665/*
1666 * The following three functions are for anonymous (private mapped) hugepages.
1667 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1668 * and no lru code, because we handle hugepages differently from common pages.
1669 */
1670static void __hugepage_set_anon_rmap(struct page *page,
1671 struct vm_area_struct *vma, unsigned long address, int exclusive)
1672{
1673 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1674
0fe6e20b 1675 BUG_ON(!anon_vma);
433abed6
NH
1676
1677 if (PageAnon(page))
1678 return;
1679 if (!exclusive)
1680 anon_vma = anon_vma->root;
1681
0fe6e20b
NH
1682 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1683 page->mapping = (struct address_space *) anon_vma;
1684 page->index = linear_page_index(vma, address);
1685}
1686
1687void hugepage_add_anon_rmap(struct page *page,
1688 struct vm_area_struct *vma, unsigned long address)
1689{
1690 struct anon_vma *anon_vma = vma->anon_vma;
1691 int first;
a850ea30
NH
1692
1693 BUG_ON(!PageLocked(page));
0fe6e20b 1694 BUG_ON(!anon_vma);
5dbe0af4 1695 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1696 first = atomic_inc_and_test(&page->_mapcount);
1697 if (first)
1698 __hugepage_set_anon_rmap(page, vma, address, 0);
1699}
1700
1701void hugepage_add_new_anon_rmap(struct page *page,
1702 struct vm_area_struct *vma, unsigned long address)
1703{
1704 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1705 atomic_set(&page->_mapcount, 0);
1706 __hugepage_set_anon_rmap(page, vma, address, 1);
1707}
e3390f67 1708#endif /* CONFIG_HUGETLB_PAGE */