mm: move page zone helpers from mm.h to mmzone.h
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0
JK
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
e621900a
MWO
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
730633f0 36 * i_pages lock (widely used)
e809c3fe 37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
730633f0
JK
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 44 *
9608703e 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 46 * ->tasklist_lock
6a46079c 47 * pte map lock
c0d0381a
MK
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
999dad82 76#include <linux/mm_inline.h>
1da177e4
LT
77
78#include <asm/tlbflush.h>
79
4cc79b33 80#define CREATE_TRACE_POINTS
72b252ae 81#include <trace/events/tlb.h>
4cc79b33 82#include <trace/events/migrate.h>
72b252ae 83
b291f000
NP
84#include "internal.h"
85
fdd2e5f8 86static struct kmem_cache *anon_vma_cachep;
5beb4930 87static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
88
89static inline struct anon_vma *anon_vma_alloc(void)
90{
01d8b20d
PZ
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
96 anon_vma->degree = 1; /* Reference for first vma */
97 anon_vma->parent = anon_vma;
01d8b20d
PZ
98 /*
99 * Initialise the anon_vma root to point to itself. If called
100 * from fork, the root will be reset to the parents anon_vma.
101 */
102 anon_vma->root = anon_vma;
103 }
104
105 return anon_vma;
fdd2e5f8
AB
106}
107
01d8b20d 108static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 109{
01d8b20d 110 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
111
112 /*
2f031c6f 113 * Synchronize against folio_lock_anon_vma_read() such that
88c22088
PZ
114 * we can safely hold the lock without the anon_vma getting
115 * freed.
116 *
117 * Relies on the full mb implied by the atomic_dec_and_test() from
118 * put_anon_vma() against the acquire barrier implied by
2f031c6f 119 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
88c22088 120 *
2f031c6f 121 * folio_lock_anon_vma_read() VS put_anon_vma()
4fc3f1d6 122 * down_read_trylock() atomic_dec_and_test()
88c22088 123 * LOCK MB
4fc3f1d6 124 * atomic_read() rwsem_is_locked()
88c22088
PZ
125 *
126 * LOCK should suffice since the actual taking of the lock must
127 * happen _before_ what follows.
128 */
7f39dda9 129 might_sleep();
5a505085 130 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 131 anon_vma_lock_write(anon_vma);
08b52706 132 anon_vma_unlock_write(anon_vma);
88c22088
PZ
133 }
134
fdd2e5f8
AB
135 kmem_cache_free(anon_vma_cachep, anon_vma);
136}
1da177e4 137
dd34739c 138static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 139{
dd34739c 140 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
141}
142
e574b5fd 143static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
144{
145 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
146}
147
6583a843
KC
148static void anon_vma_chain_link(struct vm_area_struct *vma,
149 struct anon_vma_chain *avc,
150 struct anon_vma *anon_vma)
151{
152 avc->vma = vma;
153 avc->anon_vma = anon_vma;
154 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 155 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
156}
157
d9d332e0 158/**
d5a187da 159 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
160 * @vma: the memory region in question
161 *
162 * This makes sure the memory mapping described by 'vma' has
163 * an 'anon_vma' attached to it, so that we can associate the
164 * anonymous pages mapped into it with that anon_vma.
165 *
d5a187da
VB
166 * The common case will be that we already have one, which
167 * is handled inline by anon_vma_prepare(). But if
23a0790a 168 * not we either need to find an adjacent mapping that we
d9d332e0
LT
169 * can re-use the anon_vma from (very common when the only
170 * reason for splitting a vma has been mprotect()), or we
171 * allocate a new one.
172 *
173 * Anon-vma allocations are very subtle, because we may have
2f031c6f 174 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
aaf1f990 175 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
176 * allocated vma (it depends on RCU to make sure that the
177 * anon_vma isn't actually destroyed).
178 *
179 * As a result, we need to do proper anon_vma locking even
180 * for the new allocation. At the same time, we do not want
181 * to do any locking for the common case of already having
182 * an anon_vma.
183 *
c1e8d7c6 184 * This must be called with the mmap_lock held for reading.
d9d332e0 185 */
d5a187da 186int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 187{
d5a187da
VB
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
5beb4930 190 struct anon_vma_chain *avc;
1da177e4
LT
191
192 might_sleep();
1da177e4 193
d5a187da
VB
194 avc = anon_vma_chain_alloc(GFP_KERNEL);
195 if (!avc)
196 goto out_enomem;
197
198 anon_vma = find_mergeable_anon_vma(vma);
199 allocated = NULL;
200 if (!anon_vma) {
201 anon_vma = anon_vma_alloc();
202 if (unlikely(!anon_vma))
203 goto out_enomem_free_avc;
204 allocated = anon_vma;
205 }
5beb4930 206
d5a187da
VB
207 anon_vma_lock_write(anon_vma);
208 /* page_table_lock to protect against threads */
209 spin_lock(&mm->page_table_lock);
210 if (likely(!vma->anon_vma)) {
211 vma->anon_vma = anon_vma;
212 anon_vma_chain_link(vma, avc, anon_vma);
213 /* vma reference or self-parent link for new root */
214 anon_vma->degree++;
d9d332e0 215 allocated = NULL;
d5a187da
VB
216 avc = NULL;
217 }
218 spin_unlock(&mm->page_table_lock);
219 anon_vma_unlock_write(anon_vma);
1da177e4 220
d5a187da
VB
221 if (unlikely(allocated))
222 put_anon_vma(allocated);
223 if (unlikely(avc))
224 anon_vma_chain_free(avc);
31f2b0eb 225
1da177e4 226 return 0;
5beb4930
RR
227
228 out_enomem_free_avc:
229 anon_vma_chain_free(avc);
230 out_enomem:
231 return -ENOMEM;
1da177e4
LT
232}
233
bb4aa396
LT
234/*
235 * This is a useful helper function for locking the anon_vma root as
236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
237 * have the same vma.
238 *
239 * Such anon_vma's should have the same root, so you'd expect to see
240 * just a single mutex_lock for the whole traversal.
241 */
242static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
243{
244 struct anon_vma *new_root = anon_vma->root;
245 if (new_root != root) {
246 if (WARN_ON_ONCE(root))
5a505085 247 up_write(&root->rwsem);
bb4aa396 248 root = new_root;
5a505085 249 down_write(&root->rwsem);
bb4aa396
LT
250 }
251 return root;
252}
253
254static inline void unlock_anon_vma_root(struct anon_vma *root)
255{
256 if (root)
5a505085 257 up_write(&root->rwsem);
bb4aa396
LT
258}
259
5beb4930
RR
260/*
261 * Attach the anon_vmas from src to dst.
262 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 263 *
cb152a1a 264 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
265 * anon_vma_fork(). The first three want an exact copy of src, while the last
266 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
267 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
268 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
269 *
270 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
271 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
272 * This prevents degradation of anon_vma hierarchy to endless linear chain in
273 * case of constantly forking task. On the other hand, an anon_vma with more
274 * than one child isn't reused even if there was no alive vma, thus rmap
275 * walker has a good chance of avoiding scanning the whole hierarchy when it
276 * searches where page is mapped.
5beb4930
RR
277 */
278int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 279{
5beb4930 280 struct anon_vma_chain *avc, *pavc;
bb4aa396 281 struct anon_vma *root = NULL;
5beb4930 282
646d87b4 283 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
284 struct anon_vma *anon_vma;
285
dd34739c
LT
286 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
287 if (unlikely(!avc)) {
288 unlock_anon_vma_root(root);
289 root = NULL;
290 avc = anon_vma_chain_alloc(GFP_KERNEL);
291 if (!avc)
292 goto enomem_failure;
293 }
bb4aa396
LT
294 anon_vma = pavc->anon_vma;
295 root = lock_anon_vma_root(root, anon_vma);
296 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
297
298 /*
299 * Reuse existing anon_vma if its degree lower than two,
300 * that means it has no vma and only one anon_vma child.
301 *
dd062302 302 * Do not choose parent anon_vma, otherwise first child
7a3ef208
KK
303 * will always reuse it. Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
47b390d2
WY
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 308 dst->anon_vma = anon_vma;
5beb4930 309 }
7a3ef208
KK
310 if (dst->anon_vma)
311 dst->anon_vma->degree++;
bb4aa396 312 unlock_anon_vma_root(root);
5beb4930 313 return 0;
1da177e4 314
5beb4930 315 enomem_failure:
3fe89b3e
LY
316 /*
317 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
318 * decremented in unlink_anon_vmas().
319 * We can safely do this because callers of anon_vma_clone() don't care
320 * about dst->anon_vma if anon_vma_clone() failed.
321 */
322 dst->anon_vma = NULL;
5beb4930
RR
323 unlink_anon_vmas(dst);
324 return -ENOMEM;
1da177e4
LT
325}
326
5beb4930
RR
327/*
328 * Attach vma to its own anon_vma, as well as to the anon_vmas that
329 * the corresponding VMA in the parent process is attached to.
330 * Returns 0 on success, non-zero on failure.
331 */
332int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 333{
5beb4930
RR
334 struct anon_vma_chain *avc;
335 struct anon_vma *anon_vma;
c4ea95d7 336 int error;
1da177e4 337
5beb4930
RR
338 /* Don't bother if the parent process has no anon_vma here. */
339 if (!pvma->anon_vma)
340 return 0;
341
7a3ef208
KK
342 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
343 vma->anon_vma = NULL;
344
5beb4930
RR
345 /*
346 * First, attach the new VMA to the parent VMA's anon_vmas,
347 * so rmap can find non-COWed pages in child processes.
348 */
c4ea95d7
DF
349 error = anon_vma_clone(vma, pvma);
350 if (error)
351 return error;
5beb4930 352
7a3ef208
KK
353 /* An existing anon_vma has been reused, all done then. */
354 if (vma->anon_vma)
355 return 0;
356
5beb4930
RR
357 /* Then add our own anon_vma. */
358 anon_vma = anon_vma_alloc();
359 if (!anon_vma)
360 goto out_error;
dd34739c 361 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
362 if (!avc)
363 goto out_error_free_anon_vma;
5c341ee1
RR
364
365 /*
aaf1f990 366 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
367 * lock any of the anon_vmas in this anon_vma tree.
368 */
369 anon_vma->root = pvma->anon_vma->root;
7a3ef208 370 anon_vma->parent = pvma->anon_vma;
76545066 371 /*
01d8b20d
PZ
372 * With refcounts, an anon_vma can stay around longer than the
373 * process it belongs to. The root anon_vma needs to be pinned until
374 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
375 */
376 get_anon_vma(anon_vma->root);
5beb4930
RR
377 /* Mark this anon_vma as the one where our new (COWed) pages go. */
378 vma->anon_vma = anon_vma;
4fc3f1d6 379 anon_vma_lock_write(anon_vma);
5c341ee1 380 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 381 anon_vma->parent->degree++;
08b52706 382 anon_vma_unlock_write(anon_vma);
5beb4930
RR
383
384 return 0;
385
386 out_error_free_anon_vma:
01d8b20d 387 put_anon_vma(anon_vma);
5beb4930 388 out_error:
4946d54c 389 unlink_anon_vmas(vma);
5beb4930 390 return -ENOMEM;
1da177e4
LT
391}
392
5beb4930
RR
393void unlink_anon_vmas(struct vm_area_struct *vma)
394{
395 struct anon_vma_chain *avc, *next;
eee2acba 396 struct anon_vma *root = NULL;
5beb4930 397
5c341ee1
RR
398 /*
399 * Unlink each anon_vma chained to the VMA. This list is ordered
400 * from newest to oldest, ensuring the root anon_vma gets freed last.
401 */
5beb4930 402 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
403 struct anon_vma *anon_vma = avc->anon_vma;
404
405 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 406 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
407
408 /*
409 * Leave empty anon_vmas on the list - we'll need
410 * to free them outside the lock.
411 */
f808c13f 412 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 413 anon_vma->parent->degree--;
eee2acba 414 continue;
7a3ef208 415 }
eee2acba
PZ
416
417 list_del(&avc->same_vma);
418 anon_vma_chain_free(avc);
419 }
ee8ab190 420 if (vma->anon_vma) {
7a3ef208 421 vma->anon_vma->degree--;
ee8ab190
LX
422
423 /*
424 * vma would still be needed after unlink, and anon_vma will be prepared
425 * when handle fault.
426 */
427 vma->anon_vma = NULL;
428 }
eee2acba
PZ
429 unlock_anon_vma_root(root);
430
431 /*
432 * Iterate the list once more, it now only contains empty and unlinked
433 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 434 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
435 */
436 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
437 struct anon_vma *anon_vma = avc->anon_vma;
438
e4c5800a 439 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
440 put_anon_vma(anon_vma);
441
5beb4930
RR
442 list_del(&avc->same_vma);
443 anon_vma_chain_free(avc);
444 }
445}
446
51cc5068 447static void anon_vma_ctor(void *data)
1da177e4 448{
a35afb83 449 struct anon_vma *anon_vma = data;
1da177e4 450
5a505085 451 init_rwsem(&anon_vma->rwsem);
83813267 452 atomic_set(&anon_vma->refcount, 0);
f808c13f 453 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
454}
455
456void __init anon_vma_init(void)
457{
458 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 459 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
460 anon_vma_ctor);
461 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
462 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
463}
464
465/*
6111e4ca
PZ
466 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
467 *
468 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
469 * the best this function can do is return a refcount increased anon_vma
470 * that might have been relevant to this page.
6111e4ca
PZ
471 *
472 * The page might have been remapped to a different anon_vma or the anon_vma
473 * returned may already be freed (and even reused).
474 *
bc658c96
PZ
475 * In case it was remapped to a different anon_vma, the new anon_vma will be a
476 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
477 * ensure that any anon_vma obtained from the page will still be valid for as
478 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
479 *
6111e4ca
PZ
480 * All users of this function must be very careful when walking the anon_vma
481 * chain and verify that the page in question is indeed mapped in it
482 * [ something equivalent to page_mapped_in_vma() ].
483 *
091e4299
MC
484 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
485 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
486 * if there is a mapcount, we can dereference the anon_vma after observing
487 * those.
1da177e4 488 */
746b18d4 489struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 490{
746b18d4 491 struct anon_vma *anon_vma = NULL;
1da177e4
LT
492 unsigned long anon_mapping;
493
494 rcu_read_lock();
4db0c3c2 495 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 496 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
497 goto out;
498 if (!page_mapped(page))
499 goto out;
500
501 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
502 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
503 anon_vma = NULL;
504 goto out;
505 }
f1819427
HD
506
507 /*
508 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
509 * freed. But if it has been unmapped, we have no security against the
510 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 511 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 512 * above cannot corrupt).
f1819427 513 */
746b18d4 514 if (!page_mapped(page)) {
7f39dda9 515 rcu_read_unlock();
746b18d4 516 put_anon_vma(anon_vma);
7f39dda9 517 return NULL;
746b18d4 518 }
1da177e4
LT
519out:
520 rcu_read_unlock();
746b18d4
PZ
521
522 return anon_vma;
523}
524
88c22088
PZ
525/*
526 * Similar to page_get_anon_vma() except it locks the anon_vma.
527 *
528 * Its a little more complex as it tries to keep the fast path to a single
529 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
6d4675e6
MK
530 * reference like with page_get_anon_vma() and then block on the mutex
531 * on !rwc->try_lock case.
88c22088 532 */
6d4675e6
MK
533struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
534 struct rmap_walk_control *rwc)
746b18d4 535{
88c22088 536 struct anon_vma *anon_vma = NULL;
eee0f252 537 struct anon_vma *root_anon_vma;
88c22088 538 unsigned long anon_mapping;
746b18d4 539
88c22088 540 rcu_read_lock();
9595d769 541 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
88c22088
PZ
542 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
543 goto out;
9595d769 544 if (!folio_mapped(folio))
88c22088
PZ
545 goto out;
546
547 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 548 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 549 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 550 /*
9595d769 551 * If the folio is still mapped, then this anon_vma is still
eee0f252 552 * its anon_vma, and holding the mutex ensures that it will
bc658c96 553 * not go away, see anon_vma_free().
88c22088 554 */
9595d769 555 if (!folio_mapped(folio)) {
4fc3f1d6 556 up_read(&root_anon_vma->rwsem);
88c22088
PZ
557 anon_vma = NULL;
558 }
559 goto out;
560 }
746b18d4 561
6d4675e6
MK
562 if (rwc && rwc->try_lock) {
563 anon_vma = NULL;
564 rwc->contended = true;
565 goto out;
566 }
567
88c22088
PZ
568 /* trylock failed, we got to sleep */
569 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
570 anon_vma = NULL;
571 goto out;
572 }
573
9595d769 574 if (!folio_mapped(folio)) {
7f39dda9 575 rcu_read_unlock();
88c22088 576 put_anon_vma(anon_vma);
7f39dda9 577 return NULL;
88c22088
PZ
578 }
579
580 /* we pinned the anon_vma, its safe to sleep */
581 rcu_read_unlock();
4fc3f1d6 582 anon_vma_lock_read(anon_vma);
88c22088
PZ
583
584 if (atomic_dec_and_test(&anon_vma->refcount)) {
585 /*
586 * Oops, we held the last refcount, release the lock
587 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 588 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 589 */
4fc3f1d6 590 anon_vma_unlock_read(anon_vma);
88c22088
PZ
591 __put_anon_vma(anon_vma);
592 anon_vma = NULL;
593 }
594
595 return anon_vma;
596
597out:
598 rcu_read_unlock();
746b18d4 599 return anon_vma;
34bbd704
ON
600}
601
4fc3f1d6 602void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 603{
4fc3f1d6 604 anon_vma_unlock_read(anon_vma);
1da177e4
LT
605}
606
72b252ae 607#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
608/*
609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610 * important if a PTE was dirty when it was unmapped that it's flushed
611 * before any IO is initiated on the page to prevent lost writes. Similarly,
612 * it must be flushed before freeing to prevent data leakage.
613 */
614void try_to_unmap_flush(void)
615{
616 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
617
618 if (!tlb_ubc->flush_required)
619 return;
620
e73ad5ff 621 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 622 tlb_ubc->flush_required = false;
d950c947 623 tlb_ubc->writable = false;
72b252ae
MG
624}
625
d950c947
MG
626/* Flush iff there are potentially writable TLB entries that can race with IO */
627void try_to_unmap_flush_dirty(void)
628{
629 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630
631 if (tlb_ubc->writable)
632 try_to_unmap_flush();
633}
634
5ee2fa2f
HY
635/*
636 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638 */
639#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
640#define TLB_FLUSH_BATCH_PENDING_MASK \
641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642#define TLB_FLUSH_BATCH_PENDING_LARGE \
643 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
644
c7ab0d2f 645static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
646{
647 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
5ee2fa2f 648 int batch, nbatch;
72b252ae 649
e73ad5ff 650 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 651 tlb_ubc->flush_required = true;
d950c947 652
3ea27719
MG
653 /*
654 * Ensure compiler does not re-order the setting of tlb_flush_batched
655 * before the PTE is cleared.
656 */
657 barrier();
5ee2fa2f
HY
658 batch = atomic_read(&mm->tlb_flush_batched);
659retry:
660 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
661 /*
662 * Prevent `pending' from catching up with `flushed' because of
663 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
664 * `pending' becomes large.
665 */
666 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
667 if (nbatch != batch) {
668 batch = nbatch;
669 goto retry;
670 }
671 } else {
672 atomic_inc(&mm->tlb_flush_batched);
673 }
3ea27719 674
d950c947
MG
675 /*
676 * If the PTE was dirty then it's best to assume it's writable. The
677 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
678 * before the page is queued for IO.
679 */
680 if (writable)
681 tlb_ubc->writable = true;
72b252ae
MG
682}
683
684/*
685 * Returns true if the TLB flush should be deferred to the end of a batch of
686 * unmap operations to reduce IPIs.
687 */
688static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
689{
690 bool should_defer = false;
691
692 if (!(flags & TTU_BATCH_FLUSH))
693 return false;
694
695 /* If remote CPUs need to be flushed then defer batch the flush */
696 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
697 should_defer = true;
698 put_cpu();
699
700 return should_defer;
701}
3ea27719
MG
702
703/*
704 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
705 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
706 * operation such as mprotect or munmap to race between reclaim unmapping
707 * the page and flushing the page. If this race occurs, it potentially allows
708 * access to data via a stale TLB entry. Tracking all mm's that have TLB
709 * batching in flight would be expensive during reclaim so instead track
710 * whether TLB batching occurred in the past and if so then do a flush here
711 * if required. This will cost one additional flush per reclaim cycle paid
712 * by the first operation at risk such as mprotect and mumap.
713 *
714 * This must be called under the PTL so that an access to tlb_flush_batched
715 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
716 * via the PTL.
717 */
718void flush_tlb_batched_pending(struct mm_struct *mm)
719{
5ee2fa2f
HY
720 int batch = atomic_read(&mm->tlb_flush_batched);
721 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
722 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
3ea27719 723
5ee2fa2f
HY
724 if (pending != flushed) {
725 flush_tlb_mm(mm);
3ea27719 726 /*
5ee2fa2f
HY
727 * If the new TLB flushing is pending during flushing, leave
728 * mm->tlb_flush_batched as is, to avoid losing flushing.
3ea27719 729 */
5ee2fa2f
HY
730 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
731 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
3ea27719
MG
732 }
733}
72b252ae 734#else
c7ab0d2f 735static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
736{
737}
738
739static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
740{
741 return false;
742}
743#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
744
1da177e4 745/*
bf89c8c8 746 * At what user virtual address is page expected in vma?
ab941e0f 747 * Caller should check the page is actually part of the vma.
1da177e4
LT
748 */
749unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
750{
e05b3453
MWO
751 struct folio *folio = page_folio(page);
752 if (folio_test_anon(folio)) {
753 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
4829b906
HD
754 /*
755 * Note: swapoff's unuse_vma() is more efficient with this
756 * check, and needs it to match anon_vma when KSM is active.
757 */
758 if (!vma->anon_vma || !page__anon_vma ||
759 vma->anon_vma->root != page__anon_vma->root)
21d0d443 760 return -EFAULT;
31657170
JW
761 } else if (!vma->vm_file) {
762 return -EFAULT;
e05b3453 763 } else if (vma->vm_file->f_mapping != folio->mapping) {
1da177e4 764 return -EFAULT;
31657170 765 }
494334e4
HD
766
767 return vma_address(page, vma);
1da177e4
LT
768}
769
6219049a
BL
770pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
771{
772 pgd_t *pgd;
c2febafc 773 p4d_t *p4d;
6219049a
BL
774 pud_t *pud;
775 pmd_t *pmd = NULL;
f72e7dcd 776 pmd_t pmde;
6219049a
BL
777
778 pgd = pgd_offset(mm, address);
779 if (!pgd_present(*pgd))
780 goto out;
781
c2febafc
KS
782 p4d = p4d_offset(pgd, address);
783 if (!p4d_present(*p4d))
784 goto out;
785
786 pud = pud_offset(p4d, address);
6219049a
BL
787 if (!pud_present(*pud))
788 goto out;
789
790 pmd = pmd_offset(pud, address);
f72e7dcd 791 /*
8809aa2d 792 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
793 * without holding anon_vma lock for write. So when looking for a
794 * genuine pmde (in which to find pte), test present and !THP together.
795 */
e37c6982
CB
796 pmde = *pmd;
797 barrier();
f72e7dcd 798 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
799 pmd = NULL;
800out:
801 return pmd;
802}
803
b3ac0413 804struct folio_referenced_arg {
8749cfea
VD
805 int mapcount;
806 int referenced;
807 unsigned long vm_flags;
808 struct mem_cgroup *memcg;
809};
810/*
b3ac0413 811 * arg: folio_referenced_arg will be passed
8749cfea 812 */
2f031c6f
MWO
813static bool folio_referenced_one(struct folio *folio,
814 struct vm_area_struct *vma, unsigned long address, void *arg)
8749cfea 815{
b3ac0413
MWO
816 struct folio_referenced_arg *pra = arg;
817 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
8749cfea
VD
818 int referenced = 0;
819
8eaedede
KS
820 while (page_vma_mapped_walk(&pvmw)) {
821 address = pvmw.address;
b20ce5e0 822
47d4f3ee 823 if ((vma->vm_flags & VM_LOCKED) &&
b3ac0413 824 (!folio_test_large(folio) || !pvmw.pte)) {
47d4f3ee 825 /* Restore the mlock which got missed */
b3ac0413 826 mlock_vma_folio(folio, vma, !pvmw.pte);
8eaedede
KS
827 page_vma_mapped_walk_done(&pvmw);
828 pra->vm_flags |= VM_LOCKED;
e4b82222 829 return false; /* To break the loop */
8eaedede 830 }
71e3aac0 831
8eaedede
KS
832 if (pvmw.pte) {
833 if (ptep_clear_flush_young_notify(vma, address,
834 pvmw.pte)) {
835 /*
836 * Don't treat a reference through
837 * a sequentially read mapping as such.
b3ac0413 838 * If the folio has been used in another mapping,
8eaedede
KS
839 * we will catch it; if this other mapping is
840 * already gone, the unmap path will have set
b3ac0413 841 * the referenced flag or activated the folio.
8eaedede
KS
842 */
843 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
844 referenced++;
845 }
846 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
847 if (pmdp_clear_flush_young_notify(vma, address,
848 pvmw.pmd))
8749cfea 849 referenced++;
8eaedede 850 } else {
b3ac0413 851 /* unexpected pmd-mapped folio? */
8eaedede 852 WARN_ON_ONCE(1);
8749cfea 853 }
8eaedede
KS
854
855 pra->mapcount--;
b20ce5e0 856 }
b20ce5e0 857
33c3fc71 858 if (referenced)
b3ac0413
MWO
859 folio_clear_idle(folio);
860 if (folio_test_clear_young(folio))
33c3fc71
VD
861 referenced++;
862
9f32624b
JK
863 if (referenced) {
864 pra->referenced++;
47d4f3ee 865 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
1da177e4 866 }
34bbd704 867
9f32624b 868 if (!pra->mapcount)
e4b82222 869 return false; /* To break the loop */
9f32624b 870
e4b82222 871 return true;
1da177e4
LT
872}
873
b3ac0413 874static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 875{
b3ac0413 876 struct folio_referenced_arg *pra = arg;
9f32624b 877 struct mem_cgroup *memcg = pra->memcg;
1da177e4 878
9f32624b
JK
879 if (!mm_match_cgroup(vma->vm_mm, memcg))
880 return true;
1da177e4 881
9f32624b 882 return false;
1da177e4
LT
883}
884
885/**
b3ac0413
MWO
886 * folio_referenced() - Test if the folio was referenced.
887 * @folio: The folio to test.
888 * @is_locked: Caller holds lock on the folio.
72835c86 889 * @memcg: target memory cgroup
b3ac0413 890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
1da177e4 891 *
b3ac0413
MWO
892 * Quick test_and_clear_referenced for all mappings of a folio,
893 *
6d4675e6
MK
894 * Return: The number of mappings which referenced the folio. Return -1 if
895 * the function bailed out due to rmap lock contention.
1da177e4 896 */
b3ac0413
MWO
897int folio_referenced(struct folio *folio, int is_locked,
898 struct mem_cgroup *memcg, unsigned long *vm_flags)
1da177e4 899{
5ad64688 900 int we_locked = 0;
b3ac0413
MWO
901 struct folio_referenced_arg pra = {
902 .mapcount = folio_mapcount(folio),
9f32624b
JK
903 .memcg = memcg,
904 };
905 struct rmap_walk_control rwc = {
b3ac0413 906 .rmap_one = folio_referenced_one,
9f32624b 907 .arg = (void *)&pra,
2f031c6f 908 .anon_lock = folio_lock_anon_vma_read,
6d4675e6 909 .try_lock = true,
9f32624b 910 };
1da177e4 911
6fe6b7e3 912 *vm_flags = 0;
059d8442 913 if (!pra.mapcount)
9f32624b
JK
914 return 0;
915
b3ac0413 916 if (!folio_raw_mapping(folio))
9f32624b
JK
917 return 0;
918
b3ac0413
MWO
919 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
920 we_locked = folio_trylock(folio);
9f32624b
JK
921 if (!we_locked)
922 return 1;
1da177e4 923 }
9f32624b
JK
924
925 /*
926 * If we are reclaiming on behalf of a cgroup, skip
927 * counting on behalf of references from different
928 * cgroups
929 */
930 if (memcg) {
b3ac0413 931 rwc.invalid_vma = invalid_folio_referenced_vma;
9f32624b
JK
932 }
933
2f031c6f 934 rmap_walk(folio, &rwc);
9f32624b
JK
935 *vm_flags = pra.vm_flags;
936
937 if (we_locked)
b3ac0413 938 folio_unlock(folio);
9f32624b 939
6d4675e6 940 return rwc.contended ? -1 : pra.referenced;
1da177e4
LT
941}
942
6a8e0596 943static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
d08b3851 944{
6a8e0596
MS
945 int cleaned = 0;
946 struct vm_area_struct *vma = pvmw->vma;
ac46d4f3 947 struct mmu_notifier_range range;
6a8e0596 948 unsigned long address = pvmw->address;
d08b3851 949
369ea824
JG
950 /*
951 * We have to assume the worse case ie pmd for invalidation. Note that
e83c09a2 952 * the folio can not be freed from this function.
369ea824 953 */
7269f999
JG
954 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
955 0, vma, vma->vm_mm, address,
6a8e0596 956 vma_address_end(pvmw));
ac46d4f3 957 mmu_notifier_invalidate_range_start(&range);
369ea824 958
6a8e0596 959 while (page_vma_mapped_walk(pvmw)) {
f27176cf 960 int ret = 0;
369ea824 961
6a8e0596
MS
962 address = pvmw->address;
963 if (pvmw->pte) {
f27176cf 964 pte_t entry;
6a8e0596 965 pte_t *pte = pvmw->pte;
f27176cf
KS
966
967 if (!pte_dirty(*pte) && !pte_write(*pte))
968 continue;
969
785373b4
LT
970 flush_cache_page(vma, address, pte_pfn(*pte));
971 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
972 entry = pte_wrprotect(entry);
973 entry = pte_mkclean(entry);
785373b4 974 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
975 ret = 1;
976 } else {
396bcc52 977#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6a8e0596 978 pmd_t *pmd = pvmw->pmd;
f27176cf
KS
979 pmd_t entry;
980
981 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
982 continue;
983
7f9c9b60
MS
984 flush_cache_range(vma, address,
985 address + HPAGE_PMD_SIZE);
024eee0e 986 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
987 entry = pmd_wrprotect(entry);
988 entry = pmd_mkclean(entry);
785373b4 989 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
990 ret = 1;
991#else
e83c09a2 992 /* unexpected pmd-mapped folio? */
f27176cf
KS
993 WARN_ON_ONCE(1);
994#endif
995 }
d08b3851 996
0f10851e
JG
997 /*
998 * No need to call mmu_notifier_invalidate_range() as we are
999 * downgrading page table protection not changing it to point
1000 * to a new page.
1001 *
ee65728e 1002 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1003 */
1004 if (ret)
6a8e0596 1005 cleaned++;
c2fda5fe 1006 }
d08b3851 1007
ac46d4f3 1008 mmu_notifier_invalidate_range_end(&range);
369ea824 1009
6a8e0596
MS
1010 return cleaned;
1011}
1012
1013static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1014 unsigned long address, void *arg)
1015{
1016 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1017 int *cleaned = arg;
1018
1019 *cleaned += page_vma_mkclean_one(&pvmw);
1020
e4b82222 1021 return true;
d08b3851
PZ
1022}
1023
9853a407 1024static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1025{
9853a407 1026 if (vma->vm_flags & VM_SHARED)
871beb8c 1027 return false;
d08b3851 1028
871beb8c 1029 return true;
d08b3851
PZ
1030}
1031
d9c08e22 1032int folio_mkclean(struct folio *folio)
d08b3851 1033{
9853a407
JK
1034 int cleaned = 0;
1035 struct address_space *mapping;
1036 struct rmap_walk_control rwc = {
1037 .arg = (void *)&cleaned,
1038 .rmap_one = page_mkclean_one,
1039 .invalid_vma = invalid_mkclean_vma,
1040 };
d08b3851 1041
d9c08e22 1042 BUG_ON(!folio_test_locked(folio));
d08b3851 1043
d9c08e22 1044 if (!folio_mapped(folio))
9853a407
JK
1045 return 0;
1046
d9c08e22 1047 mapping = folio_mapping(folio);
9853a407
JK
1048 if (!mapping)
1049 return 0;
1050
2f031c6f 1051 rmap_walk(folio, &rwc);
d08b3851 1052
9853a407 1053 return cleaned;
d08b3851 1054}
d9c08e22 1055EXPORT_SYMBOL_GPL(folio_mkclean);
d08b3851 1056
6a8e0596
MS
1057/**
1058 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1059 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1060 * within the @vma of shared mappings. And since clean PTEs
1061 * should also be readonly, write protects them too.
1062 * @pfn: start pfn.
1063 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1064 * @pgoff: page offset that the @pfn mapped with.
1065 * @vma: vma that @pfn mapped within.
1066 *
1067 * Returns the number of cleaned PTEs (including PMDs).
1068 */
1069int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1070 struct vm_area_struct *vma)
1071{
1072 struct page_vma_mapped_walk pvmw = {
1073 .pfn = pfn,
1074 .nr_pages = nr_pages,
1075 .pgoff = pgoff,
1076 .vma = vma,
1077 .flags = PVMW_SYNC,
1078 };
1079
1080 if (invalid_mkclean_vma(vma, NULL))
1081 return 0;
1082
1083 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1084 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1085
1086 return page_vma_mkclean_one(&pvmw);
1087}
1088
c44b6743
RR
1089/**
1090 * page_move_anon_rmap - move a page to our anon_vma
1091 * @page: the page to move to our anon_vma
1092 * @vma: the vma the page belongs to
c44b6743
RR
1093 *
1094 * When a page belongs exclusively to one process after a COW event,
1095 * that page can be moved into the anon_vma that belongs to just that
1096 * process, so the rmap code will not search the parent or sibling
1097 * processes.
1098 */
5a49973d 1099void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1100{
1101 struct anon_vma *anon_vma = vma->anon_vma;
6c287605 1102 struct page *subpage = page;
c44b6743 1103
5a49973d
HD
1104 page = compound_head(page);
1105
309381fe 1106 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1107 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1108
1109 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1110 /*
1111 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
b3ac0413
MWO
1112 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1113 * folio_test_anon()) will not see one without the other.
414e2fb8
VD
1114 */
1115 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
6c287605 1116 SetPageAnonExclusive(subpage);
c44b6743
RR
1117}
1118
9617d95e 1119/**
4e1c1975 1120 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1121 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1122 * @vma: VM area to add page to.
1123 * @address: User virtual address of the mapping
e8a03feb 1124 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1125 */
1126static void __page_set_anon_rmap(struct page *page,
e8a03feb 1127 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1128{
e8a03feb 1129 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1130
e8a03feb 1131 BUG_ON(!anon_vma);
ea90002b 1132
4e1c1975 1133 if (PageAnon(page))
6c287605 1134 goto out;
4e1c1975 1135
ea90002b 1136 /*
e8a03feb
RR
1137 * If the page isn't exclusively mapped into this vma,
1138 * we must use the _oldest_ possible anon_vma for the
1139 * page mapping!
ea90002b 1140 */
4e1c1975 1141 if (!exclusive)
288468c3 1142 anon_vma = anon_vma->root;
9617d95e 1143
16f5e707
AS
1144 /*
1145 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1146 * Make sure the compiler doesn't split the stores of anon_vma and
1147 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1148 * could mistake the mapping for a struct address_space and crash.
1149 */
9617d95e 1150 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1151 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1152 page->index = linear_page_index(vma, address);
6c287605
DH
1153out:
1154 if (exclusive)
1155 SetPageAnonExclusive(page);
9617d95e
NP
1156}
1157
c97a9e10 1158/**
43d8eac4 1159 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1160 * @page: the page to add the mapping to
1161 * @vma: the vm area in which the mapping is added
1162 * @address: the user virtual address mapped
1163 */
1164static void __page_check_anon_rmap(struct page *page,
1165 struct vm_area_struct *vma, unsigned long address)
1166{
e05b3453 1167 struct folio *folio = page_folio(page);
c97a9e10
NP
1168 /*
1169 * The page's anon-rmap details (mapping and index) are guaranteed to
1170 * be set up correctly at this point.
1171 *
1172 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1173 * always holds the page locked.
c97a9e10
NP
1174 *
1175 * We have exclusion against page_add_new_anon_rmap because those pages
1176 * are initially only visible via the pagetables, and the pte is locked
1177 * over the call to page_add_new_anon_rmap.
1178 */
e05b3453
MWO
1179 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1180 folio);
30c46382
YS
1181 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1182 page);
c97a9e10
NP
1183}
1184
1da177e4
LT
1185/**
1186 * page_add_anon_rmap - add pte mapping to an anonymous page
1187 * @page: the page to add the mapping to
1188 * @vma: the vm area in which the mapping is added
1189 * @address: the user virtual address mapped
f1e2db12 1190 * @flags: the rmap flags
1da177e4 1191 *
5ad64688 1192 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1193 * the anon_vma case: to serialize mapping,index checking after setting,
1194 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1195 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1196 */
1197void page_add_anon_rmap(struct page *page,
14f9135d 1198 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1da177e4 1199{
53f9263b
KS
1200 bool compound = flags & RMAP_COMPOUND;
1201 bool first;
1202
be5d0a74
JW
1203 if (unlikely(PageKsm(page)))
1204 lock_page_memcg(page);
1205 else
1206 VM_BUG_ON_PAGE(!PageLocked(page), page);
1207
e9b61f19
KS
1208 if (compound) {
1209 atomic_t *mapcount;
53f9263b 1210 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1211 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1212 mapcount = compound_mapcount_ptr(page);
1213 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1214 } else {
1215 first = atomic_inc_and_test(&page->_mapcount);
1216 }
6c287605
DH
1217 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1218 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
53f9263b 1219
79134171 1220 if (first) {
6c357848 1221 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1222 /*
1223 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1224 * these counters are not modified in interrupt context, and
1225 * pte lock(a spinlock) is held, which implies preemption
1226 * disabled.
1227 */
65c45377 1228 if (compound)
69473e5d 1229 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1230 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1231 }
5ad64688 1232
cea86fe2 1233 if (unlikely(PageKsm(page)))
be5d0a74 1234 unlock_page_memcg(page);
53f9263b 1235
5dbe0af4 1236 /* address might be in next vma when migration races vma_adjust */
cea86fe2 1237 else if (first)
d281ee61 1238 __page_set_anon_rmap(page, vma, address,
14f9135d 1239 !!(flags & RMAP_EXCLUSIVE));
69029cd5 1240 else
c97a9e10 1241 __page_check_anon_rmap(page, vma, address);
cea86fe2
HD
1242
1243 mlock_vma_page(page, vma, compound);
1da177e4
LT
1244}
1245
43d8eac4 1246/**
40f2bbf7 1247 * page_add_new_anon_rmap - add mapping to a new anonymous page
9617d95e
NP
1248 * @page: the page to add the mapping to
1249 * @vma: the vm area in which the mapping is added
1250 * @address: the user virtual address mapped
40f2bbf7
DH
1251 *
1252 * If it's a compound page, it is accounted as a compound page. As the page
1253 * is new, it's assume to get mapped exclusively by a single process.
9617d95e
NP
1254 *
1255 * Same as page_add_anon_rmap but must only be called on *new* pages.
1256 * This means the inc-and-test can be bypassed.
c97a9e10 1257 * Page does not have to be locked.
9617d95e
NP
1258 */
1259void page_add_new_anon_rmap(struct page *page,
40f2bbf7 1260 struct vm_area_struct *vma, unsigned long address)
9617d95e 1261{
40f2bbf7 1262 const bool compound = PageCompound(page);
6c357848 1263 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1264
81d1b09c 1265 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1266 __SetPageSwapBacked(page);
d281ee61
KS
1267 if (compound) {
1268 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1269 /* increment count (starts at -1) */
1270 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 1271 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1272
69473e5d 1273 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b 1274 } else {
53f9263b
KS
1275 /* increment count (starts at -1) */
1276 atomic_set(&page->_mapcount, 0);
d281ee61 1277 }
be5d0a74 1278 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1279 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1280}
1281
1da177e4
LT
1282/**
1283 * page_add_file_rmap - add pte mapping to a file page
cea86fe2
HD
1284 * @page: the page to add the mapping to
1285 * @vma: the vm area in which the mapping is added
1286 * @compound: charge the page as compound or small page
1da177e4 1287 *
b8072f09 1288 * The caller needs to hold the pte lock.
1da177e4 1289 */
cea86fe2
HD
1290void page_add_file_rmap(struct page *page,
1291 struct vm_area_struct *vma, bool compound)
1da177e4 1292{
5d543f13 1293 int i, nr = 0;
dd78fedd
KS
1294
1295 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1296 lock_page_memcg(page);
dd78fedd 1297 if (compound && PageTransHuge(page)) {
a1528e21
MS
1298 int nr_pages = thp_nr_pages(page);
1299
5d543f13 1300 for (i = 0; i < nr_pages; i++) {
dd78fedd
KS
1301 if (atomic_inc_and_test(&page[i]._mapcount))
1302 nr++;
1303 }
1304 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1305 goto out;
bd55b0c2
HD
1306
1307 /*
1308 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1309 * but page lock is held by all page_add_file_rmap() compound
1310 * callers, and SetPageDoubleMap below warns if !PageLocked:
1311 * so here is a place that DoubleMap can be safely cleared.
1312 */
1313 VM_WARN_ON_ONCE(!PageLocked(page));
1314 if (nr == nr_pages && PageDoubleMap(page))
1315 ClearPageDoubleMap(page);
1316
99cb0dbd 1317 if (PageSwapBacked(page))
a1528e21
MS
1318 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1319 nr_pages);
99cb0dbd 1320 else
380780e7
MS
1321 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1322 nr_pages);
dd78fedd 1323 } else {
c8efc390
KS
1324 if (PageTransCompound(page) && page_mapping(page)) {
1325 VM_WARN_ON_ONCE(!PageLocked(page));
cea86fe2 1326 SetPageDoubleMap(compound_head(page));
9a73f61b 1327 }
5d543f13
HD
1328 if (atomic_inc_and_test(&page->_mapcount))
1329 nr++;
d69b042f 1330 }
dd78fedd 1331out:
5d543f13
HD
1332 if (nr)
1333 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
62cccb8c 1334 unlock_page_memcg(page);
cea86fe2
HD
1335
1336 mlock_vma_page(page, vma, compound);
1da177e4
LT
1337}
1338
dd78fedd 1339static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1340{
5d543f13 1341 int i, nr = 0;
dd78fedd 1342
57dea93a 1343 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1344
53f9263b
KS
1345 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1346 if (unlikely(PageHuge(page))) {
1347 /* hugetlb pages are always mapped with pmds */
1348 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1349 return;
53f9263b 1350 }
8186eb6a 1351
53f9263b 1352 /* page still mapped by someone else? */
dd78fedd 1353 if (compound && PageTransHuge(page)) {
a1528e21
MS
1354 int nr_pages = thp_nr_pages(page);
1355
5d543f13 1356 for (i = 0; i < nr_pages; i++) {
dd78fedd
KS
1357 if (atomic_add_negative(-1, &page[i]._mapcount))
1358 nr++;
1359 }
1360 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
5d543f13 1361 goto out;
99cb0dbd 1362 if (PageSwapBacked(page))
a1528e21
MS
1363 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1364 -nr_pages);
99cb0dbd 1365 else
380780e7
MS
1366 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1367 -nr_pages);
dd78fedd 1368 } else {
5d543f13
HD
1369 if (atomic_add_negative(-1, &page->_mapcount))
1370 nr++;
dd78fedd 1371 }
5d543f13
HD
1372out:
1373 if (nr)
1374 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1375}
1376
53f9263b
KS
1377static void page_remove_anon_compound_rmap(struct page *page)
1378{
1379 int i, nr;
1380
1381 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1382 return;
1383
1384 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1385 if (unlikely(PageHuge(page)))
1386 return;
1387
1388 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1389 return;
1390
69473e5d 1391 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1392
1393 if (TestClearPageDoubleMap(page)) {
1394 /*
1395 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1396 * them are still mapped.
53f9263b 1397 */
5eaf35ab 1398 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1399 if (atomic_add_negative(-1, &page[i]._mapcount))
1400 nr++;
1401 }
f1fe80d4
KS
1402
1403 /*
1404 * Queue the page for deferred split if at least one small
1405 * page of the compound page is unmapped, but at least one
1406 * small page is still mapped.
1407 */
5eaf35ab 1408 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1409 deferred_split_huge_page(page);
53f9263b 1410 } else {
5eaf35ab 1411 nr = thp_nr_pages(page);
53f9263b
KS
1412 }
1413
f1fe80d4 1414 if (nr)
be5d0a74 1415 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1416}
1417
1da177e4
LT
1418/**
1419 * page_remove_rmap - take down pte mapping from a page
d281ee61 1420 * @page: page to remove mapping from
cea86fe2 1421 * @vma: the vm area from which the mapping is removed
d281ee61 1422 * @compound: uncharge the page as compound or small page
1da177e4 1423 *
b8072f09 1424 * The caller needs to hold the pte lock.
1da177e4 1425 */
cea86fe2
HD
1426void page_remove_rmap(struct page *page,
1427 struct vm_area_struct *vma, bool compound)
1da177e4 1428{
be5d0a74 1429 lock_page_memcg(page);
89c06bd5 1430
be5d0a74
JW
1431 if (!PageAnon(page)) {
1432 page_remove_file_rmap(page, compound);
1433 goto out;
1434 }
1435
1436 if (compound) {
1437 page_remove_anon_compound_rmap(page);
1438 goto out;
1439 }
53f9263b 1440
b904dcfe
KM
1441 /* page still mapped by someone else? */
1442 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1443 goto out;
8186eb6a 1444
0fe6e20b 1445 /*
bea04b07
JZ
1446 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1447 * these counters are not modified in interrupt context, and
bea04b07 1448 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1449 */
be5d0a74 1450 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1451
9a982250
KS
1452 if (PageTransCompound(page))
1453 deferred_split_huge_page(compound_head(page));
1454
b904dcfe
KM
1455 /*
1456 * It would be tidy to reset the PageAnon mapping here,
1457 * but that might overwrite a racing page_add_anon_rmap
1458 * which increments mapcount after us but sets mapping
2d4894b5 1459 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1460 * and remember that it's only reliable while mapped.
1461 * Leaving it set also helps swapoff to reinstate ptes
1462 * faster for those pages still in swapcache.
1463 */
be5d0a74
JW
1464out:
1465 unlock_page_memcg(page);
cea86fe2
HD
1466
1467 munlock_vma_page(page, vma, compound);
1da177e4
LT
1468}
1469
1470/*
52629506 1471 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1472 */
2f031c6f 1473static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
52629506 1474 unsigned long address, void *arg)
1da177e4
LT
1475{
1476 struct mm_struct *mm = vma->vm_mm;
869f7ee6 1477 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1da177e4 1478 pte_t pteval;
c7ab0d2f 1479 struct page *subpage;
6c287605 1480 bool anon_exclusive, ret = true;
ac46d4f3 1481 struct mmu_notifier_range range;
4708f318 1482 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1483
732ed558
HD
1484 /*
1485 * When racing against e.g. zap_pte_range() on another cpu,
1486 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1487 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1488 * if page table locking is skipped: use TTU_SYNC to wait for that.
1489 */
1490 if (flags & TTU_SYNC)
1491 pvmw.flags = PVMW_SYNC;
1492
a98a2f0c 1493 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1494 split_huge_pmd_address(vma, address, false, folio);
fec89c10 1495
369ea824 1496 /*
017b1660
MK
1497 * For THP, we have to assume the worse case ie pmd for invalidation.
1498 * For hugetlb, it could be much worse if we need to do pud
1499 * invalidation in the case of pmd sharing.
1500 *
869f7ee6
MWO
1501 * Note that the folio can not be freed in this function as call of
1502 * try_to_unmap() must hold a reference on the folio.
369ea824 1503 */
2aff7a47 1504 range.end = vma_address_end(&pvmw);
7269f999 1505 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1506 address, range.end);
869f7ee6 1507 if (folio_test_hugetlb(folio)) {
017b1660
MK
1508 /*
1509 * If sharing is possible, start and end will be adjusted
1510 * accordingly.
1511 */
ac46d4f3
JG
1512 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1513 &range.end);
017b1660 1514 }
ac46d4f3 1515 mmu_notifier_invalidate_range_start(&range);
369ea824 1516
c7ab0d2f 1517 while (page_vma_mapped_walk(&pvmw)) {
cea86fe2 1518 /* Unexpected PMD-mapped THP? */
869f7ee6 1519 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
cea86fe2 1520
c7ab0d2f 1521 /*
869f7ee6 1522 * If the folio is in an mlock()d vma, we must not swap it out.
c7ab0d2f 1523 */
efdb6720
HD
1524 if (!(flags & TTU_IGNORE_MLOCK) &&
1525 (vma->vm_flags & VM_LOCKED)) {
cea86fe2 1526 /* Restore the mlock which got missed */
869f7ee6 1527 mlock_vma_folio(folio, vma, false);
efdb6720
HD
1528 page_vma_mapped_walk_done(&pvmw);
1529 ret = false;
1530 break;
b87537d9 1531 }
c7ab0d2f 1532
869f7ee6
MWO
1533 subpage = folio_page(folio,
1534 pte_pfn(*pvmw.pte) - folio_pfn(folio));
785373b4 1535 address = pvmw.address;
6c287605
DH
1536 anon_exclusive = folio_test_anon(folio) &&
1537 PageAnonExclusive(subpage);
785373b4 1538
dfc7ab57 1539 if (folio_test_hugetlb(folio)) {
0506c31d
BW
1540 bool anon = folio_test_anon(folio);
1541
a00a8759
BW
1542 /*
1543 * The try_to_unmap() is only passed a hugetlb page
1544 * in the case where the hugetlb page is poisoned.
1545 */
1546 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
54205e9c
BW
1547 /*
1548 * huge_pmd_unshare may unmap an entire PMD page.
1549 * There is no way of knowing exactly which PMDs may
1550 * be cached for this mm, so we must flush them all.
1551 * start/end were already adjusted above to cover this
1552 * range.
1553 */
1554 flush_cache_range(vma, range.start, range.end);
1555
0506c31d
BW
1556 /*
1557 * To call huge_pmd_unshare, i_mmap_rwsem must be
1558 * held in write mode. Caller needs to explicitly
1559 * do this outside rmap routines.
1560 */
1561 VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
1562 if (!anon && huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1563 flush_tlb_range(vma, range.start, range.end);
1564 mmu_notifier_invalidate_range(mm, range.start,
1565 range.end);
1566
017b1660 1567 /*
0506c31d
BW
1568 * The ref count of the PMD page was dropped
1569 * which is part of the way map counting
1570 * is done for shared PMDs. Return 'true'
1571 * here. When there is no other sharing,
1572 * huge_pmd_unshare returns false and we will
1573 * unmap the actual page and drop map count
1574 * to zero.
017b1660 1575 */
0506c31d
BW
1576 page_vma_mapped_walk_done(&pvmw);
1577 break;
017b1660 1578 }
a00a8759 1579 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
54205e9c
BW
1580 } else {
1581 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f 1582 /*
a00a8759
BW
1583 * Nuke the page table entry. When having to clear
1584 * PageAnonExclusive(), we always have to flush.
c7ab0d2f 1585 */
a00a8759
BW
1586 if (should_defer_flush(mm, flags) && !anon_exclusive) {
1587 /*
1588 * We clear the PTE but do not flush so potentially
1589 * a remote CPU could still be writing to the folio.
1590 * If the entry was previously clean then the
1591 * architecture must guarantee that a clear->dirty
1592 * transition on a cached TLB entry is written through
1593 * and traps if the PTE is unmapped.
1594 */
1595 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f 1596
a00a8759
BW
1597 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1598 } else {
1599 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1600 }
c7ab0d2f 1601 }
72b252ae 1602
999dad82
PX
1603 /*
1604 * Now the pte is cleared. If this pte was uffd-wp armed,
1605 * we may want to replace a none pte with a marker pte if
1606 * it's file-backed, so we don't lose the tracking info.
1607 */
1608 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1609
869f7ee6 1610 /* Set the dirty flag on the folio now the pte is gone. */
c7ab0d2f 1611 if (pte_dirty(pteval))
869f7ee6 1612 folio_mark_dirty(folio);
1da177e4 1613
c7ab0d2f
KS
1614 /* Update high watermark before we lower rss */
1615 update_hiwater_rss(mm);
1da177e4 1616
da358d5c 1617 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1618 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
869f7ee6
MWO
1619 if (folio_test_hugetlb(folio)) {
1620 hugetlb_count_sub(folio_nr_pages(folio), mm);
18f39629 1621 set_huge_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1622 } else {
869f7ee6 1623 dec_mm_counter(mm, mm_counter(&folio->page));
785373b4 1624 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1625 }
365e9c87 1626
bce73e48 1627 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1628 /*
1629 * The guest indicated that the page content is of no
1630 * interest anymore. Simply discard the pte, vmscan
1631 * will take care of the rest.
bce73e48
CB
1632 * A future reference will then fault in a new zero
1633 * page. When userfaultfd is active, we must not drop
1634 * this page though, as its main user (postcopy
1635 * migration) will not expect userfaults on already
1636 * copied pages.
c7ab0d2f 1637 */
869f7ee6 1638 dec_mm_counter(mm, mm_counter(&folio->page));
0f10851e
JG
1639 /* We have to invalidate as we cleared the pte */
1640 mmu_notifier_invalidate_range(mm, address,
1641 address + PAGE_SIZE);
869f7ee6 1642 } else if (folio_test_anon(folio)) {
c7ab0d2f
KS
1643 swp_entry_t entry = { .val = page_private(subpage) };
1644 pte_t swp_pte;
1645 /*
1646 * Store the swap location in the pte.
1647 * See handle_pte_fault() ...
1648 */
869f7ee6
MWO
1649 if (unlikely(folio_test_swapbacked(folio) !=
1650 folio_test_swapcache(folio))) {
eb94a878 1651 WARN_ON_ONCE(1);
83612a94 1652 ret = false;
369ea824 1653 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1654 mmu_notifier_invalidate_range(mm, address,
1655 address + PAGE_SIZE);
eb94a878
MK
1656 page_vma_mapped_walk_done(&pvmw);
1657 break;
1658 }
c7ab0d2f 1659
802a3a92 1660 /* MADV_FREE page check */
869f7ee6 1661 if (!folio_test_swapbacked(folio)) {
6c8e2a25
MFO
1662 int ref_count, map_count;
1663
1664 /*
1665 * Synchronize with gup_pte_range():
1666 * - clear PTE; barrier; read refcount
1667 * - inc refcount; barrier; read PTE
1668 */
1669 smp_mb();
1670
1671 ref_count = folio_ref_count(folio);
1672 map_count = folio_mapcount(folio);
1673
1674 /*
1675 * Order reads for page refcount and dirty flag
1676 * (see comments in __remove_mapping()).
1677 */
1678 smp_rmb();
1679
1680 /*
1681 * The only page refs must be one from isolation
1682 * plus the rmap(s) (dropped by discard:).
1683 */
1684 if (ref_count == 1 + map_count &&
1685 !folio_test_dirty(folio)) {
0f10851e
JG
1686 /* Invalidate as we cleared the pte */
1687 mmu_notifier_invalidate_range(mm,
1688 address, address + PAGE_SIZE);
802a3a92
SL
1689 dec_mm_counter(mm, MM_ANONPAGES);
1690 goto discard;
1691 }
1692
1693 /*
869f7ee6 1694 * If the folio was redirtied, it cannot be
802a3a92
SL
1695 * discarded. Remap the page to page table.
1696 */
785373b4 1697 set_pte_at(mm, address, pvmw.pte, pteval);
869f7ee6 1698 folio_set_swapbacked(folio);
e4b82222 1699 ret = false;
802a3a92
SL
1700 page_vma_mapped_walk_done(&pvmw);
1701 break;
c7ab0d2f 1702 }
854e9ed0 1703
c7ab0d2f 1704 if (swap_duplicate(entry) < 0) {
785373b4 1705 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1706 ret = false;
c7ab0d2f
KS
1707 page_vma_mapped_walk_done(&pvmw);
1708 break;
1709 }
ca827d55 1710 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
322842ea 1711 swap_free(entry);
ca827d55
KA
1712 set_pte_at(mm, address, pvmw.pte, pteval);
1713 ret = false;
1714 page_vma_mapped_walk_done(&pvmw);
1715 break;
1716 }
6c287605
DH
1717 if (anon_exclusive &&
1718 page_try_share_anon_rmap(subpage)) {
1719 swap_free(entry);
1720 set_pte_at(mm, address, pvmw.pte, pteval);
1721 ret = false;
1722 page_vma_mapped_walk_done(&pvmw);
1723 break;
1724 }
1725 /*
1493a191
DH
1726 * Note: We *don't* remember if the page was mapped
1727 * exclusively in the swap pte if the architecture
1728 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1729 * that case, swapin code has to re-determine that
1730 * manually and might detect the page as possibly
1731 * shared, for example, if there are other references on
1732 * the page or if the page is under writeback. We made
1733 * sure that there are no GUP pins on the page that
1734 * would rely on it, so for GUP pins this is fine.
6c287605 1735 */
c7ab0d2f
KS
1736 if (list_empty(&mm->mmlist)) {
1737 spin_lock(&mmlist_lock);
1738 if (list_empty(&mm->mmlist))
1739 list_add(&mm->mmlist, &init_mm.mmlist);
1740 spin_unlock(&mmlist_lock);
1741 }
854e9ed0 1742 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1743 inc_mm_counter(mm, MM_SWAPENTS);
1744 swp_pte = swp_entry_to_pte(entry);
1493a191
DH
1745 if (anon_exclusive)
1746 swp_pte = pte_swp_mkexclusive(swp_pte);
c7ab0d2f
KS
1747 if (pte_soft_dirty(pteval))
1748 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1749 if (pte_uffd_wp(pteval))
1750 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1751 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1752 /* Invalidate as we cleared the pte */
1753 mmu_notifier_invalidate_range(mm, address,
1754 address + PAGE_SIZE);
1755 } else {
1756 /*
869f7ee6
MWO
1757 * This is a locked file-backed folio,
1758 * so it cannot be removed from the page
1759 * cache and replaced by a new folio before
1760 * mmu_notifier_invalidate_range_end, so no
1761 * concurrent thread might update its page table
1762 * to point at a new folio while a device is
1763 * still using this folio.
0f10851e 1764 *
ee65728e 1765 * See Documentation/mm/mmu_notifier.rst
0f10851e 1766 */
869f7ee6 1767 dec_mm_counter(mm, mm_counter_file(&folio->page));
0f10851e 1768 }
854e9ed0 1769discard:
0f10851e
JG
1770 /*
1771 * No need to call mmu_notifier_invalidate_range() it has be
1772 * done above for all cases requiring it to happen under page
1773 * table lock before mmu_notifier_invalidate_range_end()
1774 *
ee65728e 1775 * See Documentation/mm/mmu_notifier.rst
0f10851e 1776 */
869f7ee6 1777 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 1778 if (vma->vm_flags & VM_LOCKED)
adb11e78 1779 mlock_page_drain_local();
869f7ee6 1780 folio_put(folio);
c7ab0d2f 1781 }
369ea824 1782
ac46d4f3 1783 mmu_notifier_invalidate_range_end(&range);
369ea824 1784
caed0f48 1785 return ret;
1da177e4
LT
1786}
1787
52629506
JK
1788static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1789{
222100ee 1790 return vma_is_temporary_stack(vma);
52629506
JK
1791}
1792
2f031c6f 1793static int page_not_mapped(struct folio *folio)
52629506 1794{
2f031c6f 1795 return !folio_mapped(folio);
2a52bcbc 1796}
52629506 1797
1da177e4 1798/**
869f7ee6
MWO
1799 * try_to_unmap - Try to remove all page table mappings to a folio.
1800 * @folio: The folio to unmap.
14fa31b8 1801 * @flags: action and flags
1da177e4
LT
1802 *
1803 * Tries to remove all the page table entries which are mapping this
869f7ee6
MWO
1804 * folio. It is the caller's responsibility to check if the folio is
1805 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1da177e4 1806 *
869f7ee6 1807 * Context: Caller must hold the folio lock.
1da177e4 1808 */
869f7ee6 1809void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1da177e4 1810{
52629506
JK
1811 struct rmap_walk_control rwc = {
1812 .rmap_one = try_to_unmap_one,
802a3a92 1813 .arg = (void *)flags,
b7e188ec 1814 .done = page_not_mapped,
2f031c6f 1815 .anon_lock = folio_lock_anon_vma_read,
52629506 1816 };
1da177e4 1817
a98a2f0c 1818 if (flags & TTU_RMAP_LOCKED)
2f031c6f 1819 rmap_walk_locked(folio, &rwc);
a98a2f0c 1820 else
2f031c6f 1821 rmap_walk(folio, &rwc);
a98a2f0c
AP
1822}
1823
1824/*
1825 * @arg: enum ttu_flags will be passed to this argument.
1826 *
1827 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1828 * containing migration entries.
a98a2f0c 1829 */
2f031c6f 1830static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
a98a2f0c
AP
1831 unsigned long address, void *arg)
1832{
1833 struct mm_struct *mm = vma->vm_mm;
4b8554c5 1834 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
a98a2f0c
AP
1835 pte_t pteval;
1836 struct page *subpage;
6c287605 1837 bool anon_exclusive, ret = true;
a98a2f0c
AP
1838 struct mmu_notifier_range range;
1839 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1840
a98a2f0c
AP
1841 /*
1842 * When racing against e.g. zap_pte_range() on another cpu,
1843 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1844 * try_to_migrate() may return before page_mapped() has become false,
1845 * if page table locking is skipped: use TTU_SYNC to wait for that.
1846 */
1847 if (flags & TTU_SYNC)
1848 pvmw.flags = PVMW_SYNC;
1849
1850 /*
1851 * unmap_page() in mm/huge_memory.c is the only user of migration with
1852 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1853 */
1854 if (flags & TTU_SPLIT_HUGE_PMD)
af28a988 1855 split_huge_pmd_address(vma, address, true, folio);
a98a2f0c
AP
1856
1857 /*
1858 * For THP, we have to assume the worse case ie pmd for invalidation.
1859 * For hugetlb, it could be much worse if we need to do pud
1860 * invalidation in the case of pmd sharing.
1861 *
1862 * Note that the page can not be free in this function as call of
1863 * try_to_unmap() must hold a reference on the page.
1864 */
2aff7a47 1865 range.end = vma_address_end(&pvmw);
a98a2f0c
AP
1866 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1867 address, range.end);
4b8554c5 1868 if (folio_test_hugetlb(folio)) {
a98a2f0c
AP
1869 /*
1870 * If sharing is possible, start and end will be adjusted
1871 * accordingly.
1872 */
1873 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1874 &range.end);
1875 }
1876 mmu_notifier_invalidate_range_start(&range);
1877
1878 while (page_vma_mapped_walk(&pvmw)) {
1879#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1880 /* PMD-mapped THP migration entry */
1881 if (!pvmw.pte) {
4b8554c5
MWO
1882 subpage = folio_page(folio,
1883 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1884 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1885 !folio_test_pmd_mappable(folio), folio);
a98a2f0c 1886
7f5abe60
DH
1887 if (set_pmd_migration_entry(&pvmw, subpage)) {
1888 ret = false;
1889 page_vma_mapped_walk_done(&pvmw);
1890 break;
1891 }
a98a2f0c
AP
1892 continue;
1893 }
1894#endif
1895
1896 /* Unexpected PMD-mapped THP? */
4b8554c5 1897 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
a98a2f0c 1898
4b8554c5
MWO
1899 subpage = folio_page(folio,
1900 pte_pfn(*pvmw.pte) - folio_pfn(folio));
a98a2f0c 1901 address = pvmw.address;
6c287605
DH
1902 anon_exclusive = folio_test_anon(folio) &&
1903 PageAnonExclusive(subpage);
a98a2f0c 1904
dfc7ab57 1905 if (folio_test_hugetlb(folio)) {
0506c31d
BW
1906 bool anon = folio_test_anon(folio);
1907
54205e9c
BW
1908 /*
1909 * huge_pmd_unshare may unmap an entire PMD page.
1910 * There is no way of knowing exactly which PMDs may
1911 * be cached for this mm, so we must flush them all.
1912 * start/end were already adjusted above to cover this
1913 * range.
1914 */
1915 flush_cache_range(vma, range.start, range.end);
1916
0506c31d
BW
1917 /*
1918 * To call huge_pmd_unshare, i_mmap_rwsem must be
1919 * held in write mode. Caller needs to explicitly
1920 * do this outside rmap routines.
1921 */
1922 VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
1923 if (!anon && huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1924 flush_tlb_range(vma, range.start, range.end);
1925 mmu_notifier_invalidate_range(mm, range.start,
1926 range.end);
1927
a98a2f0c 1928 /*
0506c31d
BW
1929 * The ref count of the PMD page was dropped
1930 * which is part of the way map counting
1931 * is done for shared PMDs. Return 'true'
1932 * here. When there is no other sharing,
1933 * huge_pmd_unshare returns false and we will
1934 * unmap the actual page and drop map count
1935 * to zero.
a98a2f0c 1936 */
0506c31d
BW
1937 page_vma_mapped_walk_done(&pvmw);
1938 break;
a98a2f0c 1939 }
5d4af619
BW
1940
1941 /* Nuke the hugetlb page table entry */
1942 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
54205e9c
BW
1943 } else {
1944 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
5d4af619
BW
1945 /* Nuke the page table entry. */
1946 pteval = ptep_clear_flush(vma, address, pvmw.pte);
a98a2f0c
AP
1947 }
1948
4b8554c5 1949 /* Set the dirty flag on the folio now the pte is gone. */
a98a2f0c 1950 if (pte_dirty(pteval))
4b8554c5 1951 folio_mark_dirty(folio);
a98a2f0c
AP
1952
1953 /* Update high watermark before we lower rss */
1954 update_hiwater_rss(mm);
1955
4b8554c5
MWO
1956 if (folio_is_zone_device(folio)) {
1957 unsigned long pfn = folio_pfn(folio);
a98a2f0c
AP
1958 swp_entry_t entry;
1959 pte_t swp_pte;
1960
6c287605
DH
1961 if (anon_exclusive)
1962 BUG_ON(page_try_share_anon_rmap(subpage));
1963
a98a2f0c
AP
1964 /*
1965 * Store the pfn of the page in a special migration
1966 * pte. do_swap_page() will wait until the migration
1967 * pte is removed and then restart fault handling.
1968 */
3d88705c
AP
1969 entry = pte_to_swp_entry(pteval);
1970 if (is_writable_device_private_entry(entry))
1971 entry = make_writable_migration_entry(pfn);
6c287605
DH
1972 else if (anon_exclusive)
1973 entry = make_readable_exclusive_migration_entry(pfn);
3d88705c
AP
1974 else
1975 entry = make_readable_migration_entry(pfn);
a98a2f0c
AP
1976 swp_pte = swp_entry_to_pte(entry);
1977
1978 /*
1979 * pteval maps a zone device page and is therefore
1980 * a swap pte.
1981 */
1982 if (pte_swp_soft_dirty(pteval))
1983 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1984 if (pte_swp_uffd_wp(pteval))
1985 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1986 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
4cc79b33
AK
1987 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
1988 compound_order(&folio->page));
a98a2f0c
AP
1989 /*
1990 * No need to invalidate here it will synchronize on
1991 * against the special swap migration pte.
1992 *
1993 * The assignment to subpage above was computed from a
1994 * swap PTE which results in an invalid pointer.
1995 * Since only PAGE_SIZE pages can currently be
1996 * migrated, just set it to page. This will need to be
1997 * changed when hugepage migrations to device private
1998 * memory are supported.
1999 */
4b8554c5 2000 subpage = &folio->page;
da358d5c 2001 } else if (PageHWPoison(subpage)) {
a98a2f0c 2002 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
4b8554c5
MWO
2003 if (folio_test_hugetlb(folio)) {
2004 hugetlb_count_sub(folio_nr_pages(folio), mm);
18f39629 2005 set_huge_pte_at(mm, address, pvmw.pte, pteval);
a98a2f0c 2006 } else {
4b8554c5 2007 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
2008 set_pte_at(mm, address, pvmw.pte, pteval);
2009 }
2010
2011 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2012 /*
2013 * The guest indicated that the page content is of no
2014 * interest anymore. Simply discard the pte, vmscan
2015 * will take care of the rest.
2016 * A future reference will then fault in a new zero
2017 * page. When userfaultfd is active, we must not drop
2018 * this page though, as its main user (postcopy
2019 * migration) will not expect userfaults on already
2020 * copied pages.
2021 */
4b8554c5 2022 dec_mm_counter(mm, mm_counter(&folio->page));
a98a2f0c
AP
2023 /* We have to invalidate as we cleared the pte */
2024 mmu_notifier_invalidate_range(mm, address,
2025 address + PAGE_SIZE);
2026 } else {
2027 swp_entry_t entry;
2028 pte_t swp_pte;
2029
2030 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
5d4af619
BW
2031 if (folio_test_hugetlb(folio))
2032 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2033 else
2034 set_pte_at(mm, address, pvmw.pte, pteval);
a98a2f0c
AP
2035 ret = false;
2036 page_vma_mapped_walk_done(&pvmw);
2037 break;
2038 }
6c287605
DH
2039 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2040 !anon_exclusive, subpage);
2041 if (anon_exclusive &&
2042 page_try_share_anon_rmap(subpage)) {
5d4af619
BW
2043 if (folio_test_hugetlb(folio))
2044 set_huge_pte_at(mm, address, pvmw.pte, pteval);
2045 else
2046 set_pte_at(mm, address, pvmw.pte, pteval);
6c287605
DH
2047 ret = false;
2048 page_vma_mapped_walk_done(&pvmw);
2049 break;
2050 }
a98a2f0c
AP
2051
2052 /*
2053 * Store the pfn of the page in a special migration
2054 * pte. do_swap_page() will wait until the migration
2055 * pte is removed and then restart fault handling.
2056 */
2057 if (pte_write(pteval))
2058 entry = make_writable_migration_entry(
2059 page_to_pfn(subpage));
6c287605
DH
2060 else if (anon_exclusive)
2061 entry = make_readable_exclusive_migration_entry(
2062 page_to_pfn(subpage));
a98a2f0c
AP
2063 else
2064 entry = make_readable_migration_entry(
2065 page_to_pfn(subpage));
2066
2067 swp_pte = swp_entry_to_pte(entry);
2068 if (pte_soft_dirty(pteval))
2069 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2070 if (pte_uffd_wp(pteval))
2071 swp_pte = pte_swp_mkuffd_wp(swp_pte);
5d4af619 2072 if (folio_test_hugetlb(folio))
18f39629 2073 set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
5d4af619
BW
2074 else
2075 set_pte_at(mm, address, pvmw.pte, swp_pte);
4cc79b33
AK
2076 trace_set_migration_pte(address, pte_val(swp_pte),
2077 compound_order(&folio->page));
a98a2f0c
AP
2078 /*
2079 * No need to invalidate here it will synchronize on
2080 * against the special swap migration pte.
2081 */
2082 }
2083
2084 /*
2085 * No need to call mmu_notifier_invalidate_range() it has be
2086 * done above for all cases requiring it to happen under page
2087 * table lock before mmu_notifier_invalidate_range_end()
2088 *
ee65728e 2089 * See Documentation/mm/mmu_notifier.rst
a98a2f0c 2090 */
4b8554c5 2091 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
b7435507 2092 if (vma->vm_flags & VM_LOCKED)
adb11e78 2093 mlock_page_drain_local();
4b8554c5 2094 folio_put(folio);
a98a2f0c
AP
2095 }
2096
2097 mmu_notifier_invalidate_range_end(&range);
2098
2099 return ret;
2100}
2101
2102/**
2103 * try_to_migrate - try to replace all page table mappings with swap entries
4b8554c5 2104 * @folio: the folio to replace page table entries for
a98a2f0c
AP
2105 * @flags: action and flags
2106 *
4b8554c5
MWO
2107 * Tries to remove all the page table entries which are mapping this folio and
2108 * replace them with special swap entries. Caller must hold the folio lock.
a98a2f0c 2109 */
4b8554c5 2110void try_to_migrate(struct folio *folio, enum ttu_flags flags)
a98a2f0c
AP
2111{
2112 struct rmap_walk_control rwc = {
2113 .rmap_one = try_to_migrate_one,
2114 .arg = (void *)flags,
2115 .done = page_not_mapped,
2f031c6f 2116 .anon_lock = folio_lock_anon_vma_read,
a98a2f0c
AP
2117 };
2118
2119 /*
2120 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2121 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2122 */
2123 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2124 TTU_SYNC)))
2125 return;
2126
4b8554c5 2127 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
6c855fce
HD
2128 return;
2129
52629506
JK
2130 /*
2131 * During exec, a temporary VMA is setup and later moved.
2132 * The VMA is moved under the anon_vma lock but not the
2133 * page tables leading to a race where migration cannot
2134 * find the migration ptes. Rather than increasing the
2135 * locking requirements of exec(), migration skips
2136 * temporary VMAs until after exec() completes.
2137 */
4b8554c5 2138 if (!folio_test_ksm(folio) && folio_test_anon(folio))
52629506
JK
2139 rwc.invalid_vma = invalid_migration_vma;
2140
2a52bcbc 2141 if (flags & TTU_RMAP_LOCKED)
2f031c6f 2142 rmap_walk_locked(folio, &rwc);
2a52bcbc 2143 else
2f031c6f 2144 rmap_walk(folio, &rwc);
b291f000 2145}
e9995ef9 2146
b756a3b5
AP
2147#ifdef CONFIG_DEVICE_PRIVATE
2148struct make_exclusive_args {
2149 struct mm_struct *mm;
2150 unsigned long address;
2151 void *owner;
2152 bool valid;
2153};
2154
2f031c6f 2155static bool page_make_device_exclusive_one(struct folio *folio,
b756a3b5
AP
2156 struct vm_area_struct *vma, unsigned long address, void *priv)
2157{
2158 struct mm_struct *mm = vma->vm_mm;
0d251485 2159 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
b756a3b5
AP
2160 struct make_exclusive_args *args = priv;
2161 pte_t pteval;
2162 struct page *subpage;
2163 bool ret = true;
2164 struct mmu_notifier_range range;
2165 swp_entry_t entry;
2166 pte_t swp_pte;
2167
2168 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2169 vma->vm_mm, address, min(vma->vm_end,
0d251485
MWO
2170 address + folio_size(folio)),
2171 args->owner);
b756a3b5
AP
2172 mmu_notifier_invalidate_range_start(&range);
2173
2174 while (page_vma_mapped_walk(&pvmw)) {
2175 /* Unexpected PMD-mapped THP? */
0d251485 2176 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
b756a3b5
AP
2177
2178 if (!pte_present(*pvmw.pte)) {
2179 ret = false;
2180 page_vma_mapped_walk_done(&pvmw);
2181 break;
2182 }
2183
0d251485
MWO
2184 subpage = folio_page(folio,
2185 pte_pfn(*pvmw.pte) - folio_pfn(folio));
b756a3b5
AP
2186 address = pvmw.address;
2187
2188 /* Nuke the page table entry. */
2189 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2190 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2191
0d251485 2192 /* Set the dirty flag on the folio now the pte is gone. */
b756a3b5 2193 if (pte_dirty(pteval))
0d251485 2194 folio_mark_dirty(folio);
b756a3b5
AP
2195
2196 /*
2197 * Check that our target page is still mapped at the expected
2198 * address.
2199 */
2200 if (args->mm == mm && args->address == address &&
2201 pte_write(pteval))
2202 args->valid = true;
2203
2204 /*
2205 * Store the pfn of the page in a special migration
2206 * pte. do_swap_page() will wait until the migration
2207 * pte is removed and then restart fault handling.
2208 */
2209 if (pte_write(pteval))
2210 entry = make_writable_device_exclusive_entry(
2211 page_to_pfn(subpage));
2212 else
2213 entry = make_readable_device_exclusive_entry(
2214 page_to_pfn(subpage));
2215 swp_pte = swp_entry_to_pte(entry);
2216 if (pte_soft_dirty(pteval))
2217 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2218 if (pte_uffd_wp(pteval))
2219 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2220
2221 set_pte_at(mm, address, pvmw.pte, swp_pte);
2222
2223 /*
2224 * There is a reference on the page for the swap entry which has
2225 * been removed, so shouldn't take another.
2226 */
cea86fe2 2227 page_remove_rmap(subpage, vma, false);
b756a3b5
AP
2228 }
2229
2230 mmu_notifier_invalidate_range_end(&range);
2231
2232 return ret;
2233}
2234
2235/**
0d251485
MWO
2236 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2237 * @folio: The folio to replace page table entries for.
2238 * @mm: The mm_struct where the folio is expected to be mapped.
2239 * @address: Address where the folio is expected to be mapped.
b756a3b5
AP
2240 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2241 *
0d251485
MWO
2242 * Tries to remove all the page table entries which are mapping this
2243 * folio and replace them with special device exclusive swap entries to
2244 * grant a device exclusive access to the folio.
b756a3b5 2245 *
0d251485
MWO
2246 * Context: Caller must hold the folio lock.
2247 * Return: false if the page is still mapped, or if it could not be unmapped
b756a3b5
AP
2248 * from the expected address. Otherwise returns true (success).
2249 */
0d251485
MWO
2250static bool folio_make_device_exclusive(struct folio *folio,
2251 struct mm_struct *mm, unsigned long address, void *owner)
b756a3b5
AP
2252{
2253 struct make_exclusive_args args = {
2254 .mm = mm,
2255 .address = address,
2256 .owner = owner,
2257 .valid = false,
2258 };
2259 struct rmap_walk_control rwc = {
2260 .rmap_one = page_make_device_exclusive_one,
2261 .done = page_not_mapped,
2f031c6f 2262 .anon_lock = folio_lock_anon_vma_read,
b756a3b5
AP
2263 .arg = &args,
2264 };
2265
2266 /*
0d251485
MWO
2267 * Restrict to anonymous folios for now to avoid potential writeback
2268 * issues.
b756a3b5 2269 */
0d251485 2270 if (!folio_test_anon(folio))
b756a3b5
AP
2271 return false;
2272
2f031c6f 2273 rmap_walk(folio, &rwc);
b756a3b5 2274
0d251485 2275 return args.valid && !folio_mapcount(folio);
b756a3b5
AP
2276}
2277
2278/**
2279 * make_device_exclusive_range() - Mark a range for exclusive use by a device
dd062302 2280 * @mm: mm_struct of associated target process
b756a3b5
AP
2281 * @start: start of the region to mark for exclusive device access
2282 * @end: end address of region
2283 * @pages: returns the pages which were successfully marked for exclusive access
2284 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2285 *
2286 * Returns: number of pages found in the range by GUP. A page is marked for
2287 * exclusive access only if the page pointer is non-NULL.
2288 *
2289 * This function finds ptes mapping page(s) to the given address range, locks
2290 * them and replaces mappings with special swap entries preventing userspace CPU
2291 * access. On fault these entries are replaced with the original mapping after
2292 * calling MMU notifiers.
2293 *
2294 * A driver using this to program access from a device must use a mmu notifier
2295 * critical section to hold a device specific lock during programming. Once
2296 * programming is complete it should drop the page lock and reference after
2297 * which point CPU access to the page will revoke the exclusive access.
2298 */
2299int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2300 unsigned long end, struct page **pages,
2301 void *owner)
2302{
2303 long npages = (end - start) >> PAGE_SHIFT;
2304 long i;
2305
2306 npages = get_user_pages_remote(mm, start, npages,
2307 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2308 pages, NULL, NULL);
2309 if (npages < 0)
2310 return npages;
2311
2312 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
0d251485
MWO
2313 struct folio *folio = page_folio(pages[i]);
2314 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2315 folio_put(folio);
b756a3b5
AP
2316 pages[i] = NULL;
2317 continue;
2318 }
2319
0d251485
MWO
2320 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2321 folio_unlock(folio);
2322 folio_put(folio);
b756a3b5
AP
2323 pages[i] = NULL;
2324 }
2325 }
2326
2327 return npages;
2328}
2329EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2330#endif
2331
01d8b20d 2332void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2333{
01d8b20d 2334 struct anon_vma *root = anon_vma->root;
76545066 2335
624483f3 2336 anon_vma_free(anon_vma);
01d8b20d
PZ
2337 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2338 anon_vma_free(root);
76545066 2339}
76545066 2340
2f031c6f 2341static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
6d4675e6 2342 struct rmap_walk_control *rwc)
faecd8dd
JK
2343{
2344 struct anon_vma *anon_vma;
2345
0dd1c7bb 2346 if (rwc->anon_lock)
6d4675e6 2347 return rwc->anon_lock(folio, rwc);
0dd1c7bb 2348
faecd8dd 2349 /*
2f031c6f 2350 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
faecd8dd 2351 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2352 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2353 * take a reference count to prevent the anon_vma disappearing
2354 */
e05b3453 2355 anon_vma = folio_anon_vma(folio);
faecd8dd
JK
2356 if (!anon_vma)
2357 return NULL;
2358
6d4675e6
MK
2359 if (anon_vma_trylock_read(anon_vma))
2360 goto out;
2361
2362 if (rwc->try_lock) {
2363 anon_vma = NULL;
2364 rwc->contended = true;
2365 goto out;
2366 }
2367
faecd8dd 2368 anon_vma_lock_read(anon_vma);
6d4675e6 2369out:
faecd8dd
JK
2370 return anon_vma;
2371}
2372
e9995ef9 2373/*
e8351ac9
JK
2374 * rmap_walk_anon - do something to anonymous page using the object-based
2375 * rmap method
2376 * @page: the page to be handled
2377 * @rwc: control variable according to each walk type
2378 *
2379 * Find all the mappings of a page using the mapping pointer and the vma chains
2380 * contained in the anon_vma struct it points to.
e9995ef9 2381 */
84fbbe21 2382static void rmap_walk_anon(struct folio *folio,
6d4675e6 2383 struct rmap_walk_control *rwc, bool locked)
e9995ef9
HD
2384{
2385 struct anon_vma *anon_vma;
a8fa41ad 2386 pgoff_t pgoff_start, pgoff_end;
5beb4930 2387 struct anon_vma_chain *avc;
e9995ef9 2388
b9773199 2389 if (locked) {
e05b3453 2390 anon_vma = folio_anon_vma(folio);
b9773199 2391 /* anon_vma disappear under us? */
e05b3453 2392 VM_BUG_ON_FOLIO(!anon_vma, folio);
b9773199 2393 } else {
2f031c6f 2394 anon_vma = rmap_walk_anon_lock(folio, rwc);
b9773199 2395 }
e9995ef9 2396 if (!anon_vma)
1df631ae 2397 return;
faecd8dd 2398
2f031c6f
MWO
2399 pgoff_start = folio_pgoff(folio);
2400 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
a8fa41ad
KS
2401 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2402 pgoff_start, pgoff_end) {
5beb4930 2403 struct vm_area_struct *vma = avc->vma;
2f031c6f 2404 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2405
494334e4 2406 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2407 cond_resched();
2408
0dd1c7bb
JK
2409 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2410 continue;
2411
2f031c6f 2412 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
e9995ef9 2413 break;
2f031c6f 2414 if (rwc->done && rwc->done(folio))
0dd1c7bb 2415 break;
e9995ef9 2416 }
b9773199
KS
2417
2418 if (!locked)
2419 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2420}
2421
e8351ac9
JK
2422/*
2423 * rmap_walk_file - do something to file page using the object-based rmap method
2424 * @page: the page to be handled
2425 * @rwc: control variable according to each walk type
2426 *
2427 * Find all the mappings of a page using the mapping pointer and the vma chains
2428 * contained in the address_space struct it points to.
e8351ac9 2429 */
84fbbe21 2430static void rmap_walk_file(struct folio *folio,
6d4675e6 2431 struct rmap_walk_control *rwc, bool locked)
e9995ef9 2432{
2f031c6f 2433 struct address_space *mapping = folio_mapping(folio);
a8fa41ad 2434 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2435 struct vm_area_struct *vma;
e9995ef9 2436
9f32624b
JK
2437 /*
2438 * The page lock not only makes sure that page->mapping cannot
2439 * suddenly be NULLified by truncation, it makes sure that the
2440 * structure at mapping cannot be freed and reused yet,
c8c06efa 2441 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2442 */
2f031c6f 2443 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
9f32624b 2444
e9995ef9 2445 if (!mapping)
1df631ae 2446 return;
3dec0ba0 2447
2f031c6f
MWO
2448 pgoff_start = folio_pgoff(folio);
2449 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
6d4675e6
MK
2450 if (!locked) {
2451 if (i_mmap_trylock_read(mapping))
2452 goto lookup;
2453
2454 if (rwc->try_lock) {
2455 rwc->contended = true;
2456 return;
2457 }
2458
b9773199 2459 i_mmap_lock_read(mapping);
6d4675e6
MK
2460 }
2461lookup:
a8fa41ad
KS
2462 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2463 pgoff_start, pgoff_end) {
2f031c6f 2464 unsigned long address = vma_address(&folio->page, vma);
0dd1c7bb 2465
494334e4 2466 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2467 cond_resched();
2468
0dd1c7bb
JK
2469 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2470 continue;
2471
2f031c6f 2472 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
0dd1c7bb 2473 goto done;
2f031c6f 2474 if (rwc->done && rwc->done(folio))
0dd1c7bb 2475 goto done;
e9995ef9 2476 }
0dd1c7bb 2477
0dd1c7bb 2478done:
b9773199
KS
2479 if (!locked)
2480 i_mmap_unlock_read(mapping);
e9995ef9
HD
2481}
2482
6d4675e6 2483void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2484{
2f031c6f
MWO
2485 if (unlikely(folio_test_ksm(folio)))
2486 rmap_walk_ksm(folio, rwc);
2487 else if (folio_test_anon(folio))
2488 rmap_walk_anon(folio, rwc, false);
b9773199 2489 else
2f031c6f 2490 rmap_walk_file(folio, rwc, false);
b9773199
KS
2491}
2492
2493/* Like rmap_walk, but caller holds relevant rmap lock */
6d4675e6 2494void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
b9773199
KS
2495{
2496 /* no ksm support for now */
2f031c6f
MWO
2497 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2498 if (folio_test_anon(folio))
2499 rmap_walk_anon(folio, rwc, true);
e9995ef9 2500 else
2f031c6f 2501 rmap_walk_file(folio, rwc, true);
e9995ef9 2502}
0fe6e20b 2503
e3390f67 2504#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2505/*
451b9514 2506 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2507 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2508 * and no lru code, because we handle hugepages differently from common pages.
28c5209d
DH
2509 *
2510 * RMAP_COMPOUND is ignored.
0fe6e20b 2511 */
28c5209d
DH
2512void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2513 unsigned long address, rmap_t flags)
0fe6e20b
NH
2514{
2515 struct anon_vma *anon_vma = vma->anon_vma;
2516 int first;
a850ea30
NH
2517
2518 BUG_ON(!PageLocked(page));
0fe6e20b 2519 BUG_ON(!anon_vma);
5dbe0af4 2520 /* address might be in next vma when migration races vma_adjust */
53f9263b 2521 first = atomic_inc_and_test(compound_mapcount_ptr(page));
6c287605
DH
2522 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2523 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
0fe6e20b 2524 if (first)
28c5209d
DH
2525 __page_set_anon_rmap(page, vma, address,
2526 !!(flags & RMAP_EXCLUSIVE));
0fe6e20b
NH
2527}
2528
2529void hugepage_add_new_anon_rmap(struct page *page,
2530 struct vm_area_struct *vma, unsigned long address)
2531{
2532 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2533 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 2534 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 2535
451b9514 2536 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2537}
e3390f67 2538#endif /* CONFIG_HUGETLB_PAGE */