mm/mlock: stop counting mlocked pages when none vma is found
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
c0d0381a 25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
c0d0381a 28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
88f306b6
KS
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
15b44736 34 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
b93b0163 35 * i_pages lock (widely used)
15b44736 36 * lruvec->lru_lock (in lock_page_lruvec_irq)
88f306b6
KS
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
b93b0163 40 * i_pages lock (widely used, in set_page_dirty,
88f306b6
KS
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 43 *
5a505085 44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 45 * ->tasklist_lock
6a46079c 46 * pte map lock
c0d0381a
MK
47 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
1da177e4
LT
52 */
53
54#include <linux/mm.h>
6e84f315 55#include <linux/sched/mm.h>
29930025 56#include <linux/sched/task.h>
1da177e4
LT
57#include <linux/pagemap.h>
58#include <linux/swap.h>
59#include <linux/swapops.h>
60#include <linux/slab.h>
61#include <linux/init.h>
5ad64688 62#include <linux/ksm.h>
1da177e4
LT
63#include <linux/rmap.h>
64#include <linux/rcupdate.h>
b95f1b31 65#include <linux/export.h>
8a9f3ccd 66#include <linux/memcontrol.h>
cddb8a5c 67#include <linux/mmu_notifier.h>
64cdd548 68#include <linux/migrate.h>
0fe6e20b 69#include <linux/hugetlb.h>
444f84fd 70#include <linux/huge_mm.h>
ef5d437f 71#include <linux/backing-dev.h>
33c3fc71 72#include <linux/page_idle.h>
a5430dda 73#include <linux/memremap.h>
bce73e48 74#include <linux/userfaultfd_k.h>
1da177e4
LT
75
76#include <asm/tlbflush.h>
77
72b252ae
MG
78#include <trace/events/tlb.h>
79
b291f000
NP
80#include "internal.h"
81
fdd2e5f8 82static struct kmem_cache *anon_vma_cachep;
5beb4930 83static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
84
85static inline struct anon_vma *anon_vma_alloc(void)
86{
01d8b20d
PZ
87 struct anon_vma *anon_vma;
88
89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 if (anon_vma) {
91 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
92 anon_vma->degree = 1; /* Reference for first vma */
93 anon_vma->parent = anon_vma;
01d8b20d
PZ
94 /*
95 * Initialise the anon_vma root to point to itself. If called
96 * from fork, the root will be reset to the parents anon_vma.
97 */
98 anon_vma->root = anon_vma;
99 }
100
101 return anon_vma;
fdd2e5f8
AB
102}
103
01d8b20d 104static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 105{
01d8b20d 106 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
107
108 /*
4fc3f1d6 109 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
110 * we can safely hold the lock without the anon_vma getting
111 * freed.
112 *
113 * Relies on the full mb implied by the atomic_dec_and_test() from
114 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 115 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 116 *
4fc3f1d6
IM
117 * page_lock_anon_vma_read() VS put_anon_vma()
118 * down_read_trylock() atomic_dec_and_test()
88c22088 119 * LOCK MB
4fc3f1d6 120 * atomic_read() rwsem_is_locked()
88c22088
PZ
121 *
122 * LOCK should suffice since the actual taking of the lock must
123 * happen _before_ what follows.
124 */
7f39dda9 125 might_sleep();
5a505085 126 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 127 anon_vma_lock_write(anon_vma);
08b52706 128 anon_vma_unlock_write(anon_vma);
88c22088
PZ
129 }
130
fdd2e5f8
AB
131 kmem_cache_free(anon_vma_cachep, anon_vma);
132}
1da177e4 133
dd34739c 134static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 135{
dd34739c 136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
137}
138
e574b5fd 139static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
140{
141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142}
143
6583a843
KC
144static void anon_vma_chain_link(struct vm_area_struct *vma,
145 struct anon_vma_chain *avc,
146 struct anon_vma *anon_vma)
147{
148 avc->vma = vma;
149 avc->anon_vma = anon_vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
152}
153
d9d332e0 154/**
d5a187da 155 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
156 * @vma: the memory region in question
157 *
158 * This makes sure the memory mapping described by 'vma' has
159 * an 'anon_vma' attached to it, so that we can associate the
160 * anonymous pages mapped into it with that anon_vma.
161 *
d5a187da
VB
162 * The common case will be that we already have one, which
163 * is handled inline by anon_vma_prepare(). But if
23a0790a 164 * not we either need to find an adjacent mapping that we
d9d332e0
LT
165 * can re-use the anon_vma from (very common when the only
166 * reason for splitting a vma has been mprotect()), or we
167 * allocate a new one.
168 *
169 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
171 * and that may actually touch the spinlock even in the newly
172 * allocated vma (it depends on RCU to make sure that the
173 * anon_vma isn't actually destroyed).
174 *
175 * As a result, we need to do proper anon_vma locking even
176 * for the new allocation. At the same time, we do not want
177 * to do any locking for the common case of already having
178 * an anon_vma.
179 *
c1e8d7c6 180 * This must be called with the mmap_lock held for reading.
d9d332e0 181 */
d5a187da 182int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 183{
d5a187da
VB
184 struct mm_struct *mm = vma->vm_mm;
185 struct anon_vma *anon_vma, *allocated;
5beb4930 186 struct anon_vma_chain *avc;
1da177e4
LT
187
188 might_sleep();
1da177e4 189
d5a187da
VB
190 avc = anon_vma_chain_alloc(GFP_KERNEL);
191 if (!avc)
192 goto out_enomem;
193
194 anon_vma = find_mergeable_anon_vma(vma);
195 allocated = NULL;
196 if (!anon_vma) {
197 anon_vma = anon_vma_alloc();
198 if (unlikely(!anon_vma))
199 goto out_enomem_free_avc;
200 allocated = anon_vma;
201 }
5beb4930 202
d5a187da
VB
203 anon_vma_lock_write(anon_vma);
204 /* page_table_lock to protect against threads */
205 spin_lock(&mm->page_table_lock);
206 if (likely(!vma->anon_vma)) {
207 vma->anon_vma = anon_vma;
208 anon_vma_chain_link(vma, avc, anon_vma);
209 /* vma reference or self-parent link for new root */
210 anon_vma->degree++;
d9d332e0 211 allocated = NULL;
d5a187da
VB
212 avc = NULL;
213 }
214 spin_unlock(&mm->page_table_lock);
215 anon_vma_unlock_write(anon_vma);
1da177e4 216
d5a187da
VB
217 if (unlikely(allocated))
218 put_anon_vma(allocated);
219 if (unlikely(avc))
220 anon_vma_chain_free(avc);
31f2b0eb 221
1da177e4 222 return 0;
5beb4930
RR
223
224 out_enomem_free_avc:
225 anon_vma_chain_free(avc);
226 out_enomem:
227 return -ENOMEM;
1da177e4
LT
228}
229
bb4aa396
LT
230/*
231 * This is a useful helper function for locking the anon_vma root as
232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233 * have the same vma.
234 *
235 * Such anon_vma's should have the same root, so you'd expect to see
236 * just a single mutex_lock for the whole traversal.
237 */
238static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239{
240 struct anon_vma *new_root = anon_vma->root;
241 if (new_root != root) {
242 if (WARN_ON_ONCE(root))
5a505085 243 up_write(&root->rwsem);
bb4aa396 244 root = new_root;
5a505085 245 down_write(&root->rwsem);
bb4aa396
LT
246 }
247 return root;
248}
249
250static inline void unlock_anon_vma_root(struct anon_vma *root)
251{
252 if (root)
5a505085 253 up_write(&root->rwsem);
bb4aa396
LT
254}
255
5beb4930
RR
256/*
257 * Attach the anon_vmas from src to dst.
258 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 259 *
47b390d2
WY
260 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
261 * anon_vma_fork(). The first three want an exact copy of src, while the last
262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265 *
266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
269 * case of constantly forking task. On the other hand, an anon_vma with more
270 * than one child isn't reused even if there was no alive vma, thus rmap
271 * walker has a good chance of avoiding scanning the whole hierarchy when it
272 * searches where page is mapped.
5beb4930
RR
273 */
274int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 275{
5beb4930 276 struct anon_vma_chain *avc, *pavc;
bb4aa396 277 struct anon_vma *root = NULL;
5beb4930 278
646d87b4 279 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
280 struct anon_vma *anon_vma;
281
dd34739c
LT
282 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 if (unlikely(!avc)) {
284 unlock_anon_vma_root(root);
285 root = NULL;
286 avc = anon_vma_chain_alloc(GFP_KERNEL);
287 if (!avc)
288 goto enomem_failure;
289 }
bb4aa396
LT
290 anon_vma = pavc->anon_vma;
291 root = lock_anon_vma_root(root, anon_vma);
292 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
293
294 /*
295 * Reuse existing anon_vma if its degree lower than two,
296 * that means it has no vma and only one anon_vma child.
297 *
298 * Do not chose parent anon_vma, otherwise first child
299 * will always reuse it. Root anon_vma is never reused:
300 * it has self-parent reference and at least one child.
301 */
47b390d2
WY
302 if (!dst->anon_vma && src->anon_vma &&
303 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 304 dst->anon_vma = anon_vma;
5beb4930 305 }
7a3ef208
KK
306 if (dst->anon_vma)
307 dst->anon_vma->degree++;
bb4aa396 308 unlock_anon_vma_root(root);
5beb4930 309 return 0;
1da177e4 310
5beb4930 311 enomem_failure:
3fe89b3e
LY
312 /*
313 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 * decremented in unlink_anon_vmas().
315 * We can safely do this because callers of anon_vma_clone() don't care
316 * about dst->anon_vma if anon_vma_clone() failed.
317 */
318 dst->anon_vma = NULL;
5beb4930
RR
319 unlink_anon_vmas(dst);
320 return -ENOMEM;
1da177e4
LT
321}
322
5beb4930
RR
323/*
324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
325 * the corresponding VMA in the parent process is attached to.
326 * Returns 0 on success, non-zero on failure.
327 */
328int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 329{
5beb4930
RR
330 struct anon_vma_chain *avc;
331 struct anon_vma *anon_vma;
c4ea95d7 332 int error;
1da177e4 333
5beb4930
RR
334 /* Don't bother if the parent process has no anon_vma here. */
335 if (!pvma->anon_vma)
336 return 0;
337
7a3ef208
KK
338 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 vma->anon_vma = NULL;
340
5beb4930
RR
341 /*
342 * First, attach the new VMA to the parent VMA's anon_vmas,
343 * so rmap can find non-COWed pages in child processes.
344 */
c4ea95d7
DF
345 error = anon_vma_clone(vma, pvma);
346 if (error)
347 return error;
5beb4930 348
7a3ef208
KK
349 /* An existing anon_vma has been reused, all done then. */
350 if (vma->anon_vma)
351 return 0;
352
5beb4930
RR
353 /* Then add our own anon_vma. */
354 anon_vma = anon_vma_alloc();
355 if (!anon_vma)
356 goto out_error;
dd34739c 357 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
358 if (!avc)
359 goto out_error_free_anon_vma;
5c341ee1
RR
360
361 /*
362 * The root anon_vma's spinlock is the lock actually used when we
363 * lock any of the anon_vmas in this anon_vma tree.
364 */
365 anon_vma->root = pvma->anon_vma->root;
7a3ef208 366 anon_vma->parent = pvma->anon_vma;
76545066 367 /*
01d8b20d
PZ
368 * With refcounts, an anon_vma can stay around longer than the
369 * process it belongs to. The root anon_vma needs to be pinned until
370 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
371 */
372 get_anon_vma(anon_vma->root);
5beb4930
RR
373 /* Mark this anon_vma as the one where our new (COWed) pages go. */
374 vma->anon_vma = anon_vma;
4fc3f1d6 375 anon_vma_lock_write(anon_vma);
5c341ee1 376 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 377 anon_vma->parent->degree++;
08b52706 378 anon_vma_unlock_write(anon_vma);
5beb4930
RR
379
380 return 0;
381
382 out_error_free_anon_vma:
01d8b20d 383 put_anon_vma(anon_vma);
5beb4930 384 out_error:
4946d54c 385 unlink_anon_vmas(vma);
5beb4930 386 return -ENOMEM;
1da177e4
LT
387}
388
5beb4930
RR
389void unlink_anon_vmas(struct vm_area_struct *vma)
390{
391 struct anon_vma_chain *avc, *next;
eee2acba 392 struct anon_vma *root = NULL;
5beb4930 393
5c341ee1
RR
394 /*
395 * Unlink each anon_vma chained to the VMA. This list is ordered
396 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 */
5beb4930 398 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
399 struct anon_vma *anon_vma = avc->anon_vma;
400
401 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 402 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
403
404 /*
405 * Leave empty anon_vmas on the list - we'll need
406 * to free them outside the lock.
407 */
f808c13f 408 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 409 anon_vma->parent->degree--;
eee2acba 410 continue;
7a3ef208 411 }
eee2acba
PZ
412
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
ee8ab190 416 if (vma->anon_vma) {
7a3ef208 417 vma->anon_vma->degree--;
ee8ab190
LX
418
419 /*
420 * vma would still be needed after unlink, and anon_vma will be prepared
421 * when handle fault.
422 */
423 vma->anon_vma = NULL;
424 }
eee2acba
PZ
425 unlock_anon_vma_root(root);
426
427 /*
428 * Iterate the list once more, it now only contains empty and unlinked
429 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 430 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
431 */
432 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 struct anon_vma *anon_vma = avc->anon_vma;
434
e4c5800a 435 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
436 put_anon_vma(anon_vma);
437
5beb4930
RR
438 list_del(&avc->same_vma);
439 anon_vma_chain_free(avc);
440 }
441}
442
51cc5068 443static void anon_vma_ctor(void *data)
1da177e4 444{
a35afb83 445 struct anon_vma *anon_vma = data;
1da177e4 446
5a505085 447 init_rwsem(&anon_vma->rwsem);
83813267 448 atomic_set(&anon_vma->refcount, 0);
f808c13f 449 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
450}
451
452void __init anon_vma_init(void)
453{
454 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 455 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
456 anon_vma_ctor);
457 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
459}
460
461/*
6111e4ca
PZ
462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463 *
464 * Since there is no serialization what so ever against page_remove_rmap()
465 * the best this function can do is return a locked anon_vma that might
466 * have been relevant to this page.
467 *
468 * The page might have been remapped to a different anon_vma or the anon_vma
469 * returned may already be freed (and even reused).
470 *
bc658c96
PZ
471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473 * ensure that any anon_vma obtained from the page will still be valid for as
474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475 *
6111e4ca
PZ
476 * All users of this function must be very careful when walking the anon_vma
477 * chain and verify that the page in question is indeed mapped in it
478 * [ something equivalent to page_mapped_in_vma() ].
479 *
091e4299
MC
480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482 * if there is a mapcount, we can dereference the anon_vma after observing
483 * those.
1da177e4 484 */
746b18d4 485struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 486{
746b18d4 487 struct anon_vma *anon_vma = NULL;
1da177e4
LT
488 unsigned long anon_mapping;
489
490 rcu_read_lock();
4db0c3c2 491 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 492 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
493 goto out;
494 if (!page_mapped(page))
495 goto out;
496
497 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
498 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 anon_vma = NULL;
500 goto out;
501 }
f1819427
HD
502
503 /*
504 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
505 * freed. But if it has been unmapped, we have no security against the
506 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 507 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 508 * above cannot corrupt).
f1819427 509 */
746b18d4 510 if (!page_mapped(page)) {
7f39dda9 511 rcu_read_unlock();
746b18d4 512 put_anon_vma(anon_vma);
7f39dda9 513 return NULL;
746b18d4 514 }
1da177e4
LT
515out:
516 rcu_read_unlock();
746b18d4
PZ
517
518 return anon_vma;
519}
520
88c22088
PZ
521/*
522 * Similar to page_get_anon_vma() except it locks the anon_vma.
523 *
524 * Its a little more complex as it tries to keep the fast path to a single
525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526 * reference like with page_get_anon_vma() and then block on the mutex.
527 */
4fc3f1d6 528struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 529{
88c22088 530 struct anon_vma *anon_vma = NULL;
eee0f252 531 struct anon_vma *root_anon_vma;
88c22088 532 unsigned long anon_mapping;
746b18d4 533
88c22088 534 rcu_read_lock();
4db0c3c2 535 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
536 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 goto out;
538 if (!page_mapped(page))
539 goto out;
540
541 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 542 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 543 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 544 /*
eee0f252
HD
545 * If the page is still mapped, then this anon_vma is still
546 * its anon_vma, and holding the mutex ensures that it will
bc658c96 547 * not go away, see anon_vma_free().
88c22088 548 */
eee0f252 549 if (!page_mapped(page)) {
4fc3f1d6 550 up_read(&root_anon_vma->rwsem);
88c22088
PZ
551 anon_vma = NULL;
552 }
553 goto out;
554 }
746b18d4 555
88c22088
PZ
556 /* trylock failed, we got to sleep */
557 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 anon_vma = NULL;
559 goto out;
560 }
561
562 if (!page_mapped(page)) {
7f39dda9 563 rcu_read_unlock();
88c22088 564 put_anon_vma(anon_vma);
7f39dda9 565 return NULL;
88c22088
PZ
566 }
567
568 /* we pinned the anon_vma, its safe to sleep */
569 rcu_read_unlock();
4fc3f1d6 570 anon_vma_lock_read(anon_vma);
88c22088
PZ
571
572 if (atomic_dec_and_test(&anon_vma->refcount)) {
573 /*
574 * Oops, we held the last refcount, release the lock
575 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 576 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 577 */
4fc3f1d6 578 anon_vma_unlock_read(anon_vma);
88c22088
PZ
579 __put_anon_vma(anon_vma);
580 anon_vma = NULL;
581 }
582
583 return anon_vma;
584
585out:
586 rcu_read_unlock();
746b18d4 587 return anon_vma;
34bbd704
ON
588}
589
4fc3f1d6 590void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 591{
4fc3f1d6 592 anon_vma_unlock_read(anon_vma);
1da177e4
LT
593}
594
72b252ae 595#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
596/*
597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598 * important if a PTE was dirty when it was unmapped that it's flushed
599 * before any IO is initiated on the page to prevent lost writes. Similarly,
600 * it must be flushed before freeing to prevent data leakage.
601 */
602void try_to_unmap_flush(void)
603{
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
605
606 if (!tlb_ubc->flush_required)
607 return;
608
e73ad5ff 609 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 610 tlb_ubc->flush_required = false;
d950c947 611 tlb_ubc->writable = false;
72b252ae
MG
612}
613
d950c947
MG
614/* Flush iff there are potentially writable TLB entries that can race with IO */
615void try_to_unmap_flush_dirty(void)
616{
617 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618
619 if (tlb_ubc->writable)
620 try_to_unmap_flush();
621}
622
c7ab0d2f 623static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
624{
625 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626
e73ad5ff 627 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 628 tlb_ubc->flush_required = true;
d950c947 629
3ea27719
MG
630 /*
631 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 * before the PTE is cleared.
633 */
634 barrier();
635 mm->tlb_flush_batched = true;
636
d950c947
MG
637 /*
638 * If the PTE was dirty then it's best to assume it's writable. The
639 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 * before the page is queued for IO.
641 */
642 if (writable)
643 tlb_ubc->writable = true;
72b252ae
MG
644}
645
646/*
647 * Returns true if the TLB flush should be deferred to the end of a batch of
648 * unmap operations to reduce IPIs.
649 */
650static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651{
652 bool should_defer = false;
653
654 if (!(flags & TTU_BATCH_FLUSH))
655 return false;
656
657 /* If remote CPUs need to be flushed then defer batch the flush */
658 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 should_defer = true;
660 put_cpu();
661
662 return should_defer;
663}
3ea27719
MG
664
665/*
666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668 * operation such as mprotect or munmap to race between reclaim unmapping
669 * the page and flushing the page. If this race occurs, it potentially allows
670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
671 * batching in flight would be expensive during reclaim so instead track
672 * whether TLB batching occurred in the past and if so then do a flush here
673 * if required. This will cost one additional flush per reclaim cycle paid
674 * by the first operation at risk such as mprotect and mumap.
675 *
676 * This must be called under the PTL so that an access to tlb_flush_batched
677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678 * via the PTL.
679 */
680void flush_tlb_batched_pending(struct mm_struct *mm)
681{
9c1177b6 682 if (data_race(mm->tlb_flush_batched)) {
3ea27719
MG
683 flush_tlb_mm(mm);
684
685 /*
686 * Do not allow the compiler to re-order the clearing of
687 * tlb_flush_batched before the tlb is flushed.
688 */
689 barrier();
690 mm->tlb_flush_batched = false;
691 }
692}
72b252ae 693#else
c7ab0d2f 694static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
695{
696}
697
698static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699{
700 return false;
701}
702#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703
1da177e4 704/*
bf89c8c8 705 * At what user virtual address is page expected in vma?
ab941e0f 706 * Caller should check the page is actually part of the vma.
1da177e4
LT
707 */
708unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709{
86c2ad19 710 unsigned long address;
21d0d443 711 if (PageAnon(page)) {
4829b906
HD
712 struct anon_vma *page__anon_vma = page_anon_vma(page);
713 /*
714 * Note: swapoff's unuse_vma() is more efficient with this
715 * check, and needs it to match anon_vma when KSM is active.
716 */
717 if (!vma->anon_vma || !page__anon_vma ||
718 vma->anon_vma->root != page__anon_vma->root)
21d0d443 719 return -EFAULT;
27ba0644
KS
720 } else if (page->mapping) {
721 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
722 return -EFAULT;
723 } else
724 return -EFAULT;
86c2ad19
ML
725 address = __vma_address(page, vma);
726 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
727 return -EFAULT;
728 return address;
1da177e4
LT
729}
730
6219049a
BL
731pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
732{
733 pgd_t *pgd;
c2febafc 734 p4d_t *p4d;
6219049a
BL
735 pud_t *pud;
736 pmd_t *pmd = NULL;
f72e7dcd 737 pmd_t pmde;
6219049a
BL
738
739 pgd = pgd_offset(mm, address);
740 if (!pgd_present(*pgd))
741 goto out;
742
c2febafc
KS
743 p4d = p4d_offset(pgd, address);
744 if (!p4d_present(*p4d))
745 goto out;
746
747 pud = pud_offset(p4d, address);
6219049a
BL
748 if (!pud_present(*pud))
749 goto out;
750
751 pmd = pmd_offset(pud, address);
f72e7dcd 752 /*
8809aa2d 753 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
754 * without holding anon_vma lock for write. So when looking for a
755 * genuine pmde (in which to find pte), test present and !THP together.
756 */
e37c6982
CB
757 pmde = *pmd;
758 barrier();
f72e7dcd 759 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
760 pmd = NULL;
761out:
762 return pmd;
763}
764
8749cfea
VD
765struct page_referenced_arg {
766 int mapcount;
767 int referenced;
768 unsigned long vm_flags;
769 struct mem_cgroup *memcg;
770};
771/*
772 * arg: page_referenced_arg will be passed
773 */
e4b82222 774static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
775 unsigned long address, void *arg)
776{
8749cfea 777 struct page_referenced_arg *pra = arg;
8eaedede
KS
778 struct page_vma_mapped_walk pvmw = {
779 .page = page,
780 .vma = vma,
781 .address = address,
782 };
8749cfea
VD
783 int referenced = 0;
784
8eaedede
KS
785 while (page_vma_mapped_walk(&pvmw)) {
786 address = pvmw.address;
b20ce5e0 787
8eaedede
KS
788 if (vma->vm_flags & VM_LOCKED) {
789 page_vma_mapped_walk_done(&pvmw);
790 pra->vm_flags |= VM_LOCKED;
e4b82222 791 return false; /* To break the loop */
8eaedede 792 }
71e3aac0 793
8eaedede
KS
794 if (pvmw.pte) {
795 if (ptep_clear_flush_young_notify(vma, address,
796 pvmw.pte)) {
797 /*
798 * Don't treat a reference through
799 * a sequentially read mapping as such.
800 * If the page has been used in another mapping,
801 * we will catch it; if this other mapping is
802 * already gone, the unmap path will have set
803 * PG_referenced or activated the page.
804 */
805 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
806 referenced++;
807 }
808 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
809 if (pmdp_clear_flush_young_notify(vma, address,
810 pvmw.pmd))
8749cfea 811 referenced++;
8eaedede
KS
812 } else {
813 /* unexpected pmd-mapped page? */
814 WARN_ON_ONCE(1);
8749cfea 815 }
8eaedede
KS
816
817 pra->mapcount--;
b20ce5e0 818 }
b20ce5e0 819
33c3fc71
VD
820 if (referenced)
821 clear_page_idle(page);
822 if (test_and_clear_page_young(page))
823 referenced++;
824
9f32624b
JK
825 if (referenced) {
826 pra->referenced++;
827 pra->vm_flags |= vma->vm_flags;
1da177e4 828 }
34bbd704 829
9f32624b 830 if (!pra->mapcount)
e4b82222 831 return false; /* To break the loop */
9f32624b 832
e4b82222 833 return true;
1da177e4
LT
834}
835
9f32624b 836static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 837{
9f32624b
JK
838 struct page_referenced_arg *pra = arg;
839 struct mem_cgroup *memcg = pra->memcg;
1da177e4 840
9f32624b
JK
841 if (!mm_match_cgroup(vma->vm_mm, memcg))
842 return true;
1da177e4 843
9f32624b 844 return false;
1da177e4
LT
845}
846
847/**
848 * page_referenced - test if the page was referenced
849 * @page: the page to test
850 * @is_locked: caller holds lock on the page
72835c86 851 * @memcg: target memory cgroup
6fe6b7e3 852 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
853 *
854 * Quick test_and_clear_referenced for all mappings to a page,
855 * returns the number of ptes which referenced the page.
856 */
6fe6b7e3
WF
857int page_referenced(struct page *page,
858 int is_locked,
72835c86 859 struct mem_cgroup *memcg,
6fe6b7e3 860 unsigned long *vm_flags)
1da177e4 861{
5ad64688 862 int we_locked = 0;
9f32624b 863 struct page_referenced_arg pra = {
b20ce5e0 864 .mapcount = total_mapcount(page),
9f32624b
JK
865 .memcg = memcg,
866 };
867 struct rmap_walk_control rwc = {
868 .rmap_one = page_referenced_one,
869 .arg = (void *)&pra,
870 .anon_lock = page_lock_anon_vma_read,
871 };
1da177e4 872
6fe6b7e3 873 *vm_flags = 0;
059d8442 874 if (!pra.mapcount)
9f32624b
JK
875 return 0;
876
877 if (!page_rmapping(page))
878 return 0;
879
880 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
881 we_locked = trylock_page(page);
882 if (!we_locked)
883 return 1;
1da177e4 884 }
9f32624b
JK
885
886 /*
887 * If we are reclaiming on behalf of a cgroup, skip
888 * counting on behalf of references from different
889 * cgroups
890 */
891 if (memcg) {
892 rwc.invalid_vma = invalid_page_referenced_vma;
893 }
894
c24f386c 895 rmap_walk(page, &rwc);
9f32624b
JK
896 *vm_flags = pra.vm_flags;
897
898 if (we_locked)
899 unlock_page(page);
900
901 return pra.referenced;
1da177e4
LT
902}
903
e4b82222 904static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 905 unsigned long address, void *arg)
d08b3851 906{
f27176cf
KS
907 struct page_vma_mapped_walk pvmw = {
908 .page = page,
909 .vma = vma,
910 .address = address,
911 .flags = PVMW_SYNC,
912 };
ac46d4f3 913 struct mmu_notifier_range range;
9853a407 914 int *cleaned = arg;
d08b3851 915
369ea824
JG
916 /*
917 * We have to assume the worse case ie pmd for invalidation. Note that
918 * the page can not be free from this function.
919 */
7269f999
JG
920 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
921 0, vma, vma->vm_mm, address,
a50b854e 922 min(vma->vm_end, address + page_size(page)));
ac46d4f3 923 mmu_notifier_invalidate_range_start(&range);
369ea824 924
f27176cf
KS
925 while (page_vma_mapped_walk(&pvmw)) {
926 int ret = 0;
369ea824 927
1f18b296 928 address = pvmw.address;
f27176cf
KS
929 if (pvmw.pte) {
930 pte_t entry;
931 pte_t *pte = pvmw.pte;
932
933 if (!pte_dirty(*pte) && !pte_write(*pte))
934 continue;
935
785373b4
LT
936 flush_cache_page(vma, address, pte_pfn(*pte));
937 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
938 entry = pte_wrprotect(entry);
939 entry = pte_mkclean(entry);
785373b4 940 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
941 ret = 1;
942 } else {
396bcc52 943#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f27176cf
KS
944 pmd_t *pmd = pvmw.pmd;
945 pmd_t entry;
946
947 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
948 continue;
949
785373b4 950 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 951 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
952 entry = pmd_wrprotect(entry);
953 entry = pmd_mkclean(entry);
785373b4 954 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
955 ret = 1;
956#else
957 /* unexpected pmd-mapped page? */
958 WARN_ON_ONCE(1);
959#endif
960 }
d08b3851 961
0f10851e
JG
962 /*
963 * No need to call mmu_notifier_invalidate_range() as we are
964 * downgrading page table protection not changing it to point
965 * to a new page.
966 *
ad56b738 967 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
968 */
969 if (ret)
f27176cf 970 (*cleaned)++;
c2fda5fe 971 }
d08b3851 972
ac46d4f3 973 mmu_notifier_invalidate_range_end(&range);
369ea824 974
e4b82222 975 return true;
d08b3851
PZ
976}
977
9853a407 978static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 979{
9853a407 980 if (vma->vm_flags & VM_SHARED)
871beb8c 981 return false;
d08b3851 982
871beb8c 983 return true;
d08b3851
PZ
984}
985
986int page_mkclean(struct page *page)
987{
9853a407
JK
988 int cleaned = 0;
989 struct address_space *mapping;
990 struct rmap_walk_control rwc = {
991 .arg = (void *)&cleaned,
992 .rmap_one = page_mkclean_one,
993 .invalid_vma = invalid_mkclean_vma,
994 };
d08b3851
PZ
995
996 BUG_ON(!PageLocked(page));
997
9853a407
JK
998 if (!page_mapped(page))
999 return 0;
1000
1001 mapping = page_mapping(page);
1002 if (!mapping)
1003 return 0;
1004
1005 rmap_walk(page, &rwc);
d08b3851 1006
9853a407 1007 return cleaned;
d08b3851 1008}
60b59bea 1009EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1010
c44b6743
RR
1011/**
1012 * page_move_anon_rmap - move a page to our anon_vma
1013 * @page: the page to move to our anon_vma
1014 * @vma: the vma the page belongs to
c44b6743
RR
1015 *
1016 * When a page belongs exclusively to one process after a COW event,
1017 * that page can be moved into the anon_vma that belongs to just that
1018 * process, so the rmap code will not search the parent or sibling
1019 * processes.
1020 */
5a49973d 1021void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1022{
1023 struct anon_vma *anon_vma = vma->anon_vma;
1024
5a49973d
HD
1025 page = compound_head(page);
1026
309381fe 1027 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1028 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1029
1030 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1031 /*
1032 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1033 * simultaneously, so a concurrent reader (eg page_referenced()'s
1034 * PageAnon()) will not see one without the other.
1035 */
1036 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1037}
1038
9617d95e 1039/**
4e1c1975 1040 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1041 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1042 * @vma: VM area to add page to.
1043 * @address: User virtual address of the mapping
e8a03feb 1044 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1045 */
1046static void __page_set_anon_rmap(struct page *page,
e8a03feb 1047 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1048{
e8a03feb 1049 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1050
e8a03feb 1051 BUG_ON(!anon_vma);
ea90002b 1052
4e1c1975
AK
1053 if (PageAnon(page))
1054 return;
1055
ea90002b 1056 /*
e8a03feb
RR
1057 * If the page isn't exclusively mapped into this vma,
1058 * we must use the _oldest_ possible anon_vma for the
1059 * page mapping!
ea90002b 1060 */
4e1c1975 1061 if (!exclusive)
288468c3 1062 anon_vma = anon_vma->root;
9617d95e 1063
16f5e707
AS
1064 /*
1065 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1066 * Make sure the compiler doesn't split the stores of anon_vma and
1067 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1068 * could mistake the mapping for a struct address_space and crash.
1069 */
9617d95e 1070 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1071 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1072 page->index = linear_page_index(vma, address);
9617d95e
NP
1073}
1074
c97a9e10 1075/**
43d8eac4 1076 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1077 * @page: the page to add the mapping to
1078 * @vma: the vm area in which the mapping is added
1079 * @address: the user virtual address mapped
1080 */
1081static void __page_check_anon_rmap(struct page *page,
1082 struct vm_area_struct *vma, unsigned long address)
1083{
c97a9e10
NP
1084 /*
1085 * The page's anon-rmap details (mapping and index) are guaranteed to
1086 * be set up correctly at this point.
1087 *
1088 * We have exclusion against page_add_anon_rmap because the caller
1089 * always holds the page locked, except if called from page_dup_rmap,
1090 * in which case the page is already known to be setup.
1091 *
1092 * We have exclusion against page_add_new_anon_rmap because those pages
1093 * are initially only visible via the pagetables, and the pte is locked
1094 * over the call to page_add_new_anon_rmap.
1095 */
30c46382
YS
1096 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1097 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1098 page);
c97a9e10
NP
1099}
1100
1da177e4
LT
1101/**
1102 * page_add_anon_rmap - add pte mapping to an anonymous page
1103 * @page: the page to add the mapping to
1104 * @vma: the vm area in which the mapping is added
1105 * @address: the user virtual address mapped
d281ee61 1106 * @compound: charge the page as compound or small page
1da177e4 1107 *
5ad64688 1108 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1109 * the anon_vma case: to serialize mapping,index checking after setting,
1110 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1111 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1112 */
1113void page_add_anon_rmap(struct page *page,
d281ee61 1114 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1115{
d281ee61 1116 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1117}
1118
1119/*
1120 * Special version of the above for do_swap_page, which often runs
1121 * into pages that are exclusively owned by the current process.
1122 * Everybody else should continue to use page_add_anon_rmap above.
1123 */
1124void do_page_add_anon_rmap(struct page *page,
d281ee61 1125 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1126{
53f9263b
KS
1127 bool compound = flags & RMAP_COMPOUND;
1128 bool first;
1129
be5d0a74
JW
1130 if (unlikely(PageKsm(page)))
1131 lock_page_memcg(page);
1132 else
1133 VM_BUG_ON_PAGE(!PageLocked(page), page);
1134
e9b61f19
KS
1135 if (compound) {
1136 atomic_t *mapcount;
53f9263b 1137 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1138 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1139 mapcount = compound_mapcount_ptr(page);
1140 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1141 } else {
1142 first = atomic_inc_and_test(&page->_mapcount);
1143 }
1144
79134171 1145 if (first) {
6c357848 1146 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1147 /*
1148 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1149 * these counters are not modified in interrupt context, and
1150 * pte lock(a spinlock) is held, which implies preemption
1151 * disabled.
1152 */
65c45377 1153 if (compound)
69473e5d 1154 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1155 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1156 }
5ad64688 1157
be5d0a74
JW
1158 if (unlikely(PageKsm(page))) {
1159 unlock_page_memcg(page);
1160 return;
1161 }
53f9263b 1162
5dbe0af4 1163 /* address might be in next vma when migration races vma_adjust */
5ad64688 1164 if (first)
d281ee61
KS
1165 __page_set_anon_rmap(page, vma, address,
1166 flags & RMAP_EXCLUSIVE);
69029cd5 1167 else
c97a9e10 1168 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1169}
1170
43d8eac4 1171/**
9617d95e
NP
1172 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1173 * @page: the page to add the mapping to
1174 * @vma: the vm area in which the mapping is added
1175 * @address: the user virtual address mapped
d281ee61 1176 * @compound: charge the page as compound or small page
9617d95e
NP
1177 *
1178 * Same as page_add_anon_rmap but must only be called on *new* pages.
1179 * This means the inc-and-test can be bypassed.
c97a9e10 1180 * Page does not have to be locked.
9617d95e
NP
1181 */
1182void page_add_new_anon_rmap(struct page *page,
d281ee61 1183 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1184{
6c357848 1185 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1186
81d1b09c 1187 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1188 __SetPageSwapBacked(page);
d281ee61
KS
1189 if (compound) {
1190 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1191 /* increment count (starts at -1) */
1192 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1193 if (hpage_pincount_available(page))
1194 atomic_set(compound_pincount_ptr(page), 0);
1195
69473e5d 1196 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b
KS
1197 } else {
1198 /* Anon THP always mapped first with PMD */
1199 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1200 /* increment count (starts at -1) */
1201 atomic_set(&page->_mapcount, 0);
d281ee61 1202 }
be5d0a74 1203 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1204 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1205}
1206
1da177e4
LT
1207/**
1208 * page_add_file_rmap - add pte mapping to a file page
1209 * @page: the page to add the mapping to
e8b098fc 1210 * @compound: charge the page as compound or small page
1da177e4 1211 *
b8072f09 1212 * The caller needs to hold the pte lock.
1da177e4 1213 */
dd78fedd 1214void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1215{
dd78fedd
KS
1216 int i, nr = 1;
1217
1218 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1219 lock_page_memcg(page);
dd78fedd 1220 if (compound && PageTransHuge(page)) {
a1528e21
MS
1221 int nr_pages = thp_nr_pages(page);
1222
1223 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1224 if (atomic_inc_and_test(&page[i]._mapcount))
1225 nr++;
1226 }
1227 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1228 goto out;
99cb0dbd 1229 if (PageSwapBacked(page))
a1528e21
MS
1230 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1231 nr_pages);
99cb0dbd 1232 else
380780e7
MS
1233 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1234 nr_pages);
dd78fedd 1235 } else {
c8efc390
KS
1236 if (PageTransCompound(page) && page_mapping(page)) {
1237 VM_WARN_ON_ONCE(!PageLocked(page));
1238
9a73f61b
KS
1239 SetPageDoubleMap(compound_head(page));
1240 if (PageMlocked(page))
1241 clear_page_mlock(compound_head(page));
1242 }
dd78fedd
KS
1243 if (!atomic_inc_and_test(&page->_mapcount))
1244 goto out;
d69b042f 1245 }
00f3ca2c 1246 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1247out:
62cccb8c 1248 unlock_page_memcg(page);
1da177e4
LT
1249}
1250
dd78fedd 1251static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1252{
dd78fedd
KS
1253 int i, nr = 1;
1254
57dea93a 1255 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1256
53f9263b
KS
1257 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1258 if (unlikely(PageHuge(page))) {
1259 /* hugetlb pages are always mapped with pmds */
1260 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1261 return;
53f9263b 1262 }
8186eb6a 1263
53f9263b 1264 /* page still mapped by someone else? */
dd78fedd 1265 if (compound && PageTransHuge(page)) {
a1528e21
MS
1266 int nr_pages = thp_nr_pages(page);
1267
1268 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1269 if (atomic_add_negative(-1, &page[i]._mapcount))
1270 nr++;
1271 }
1272 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
be5d0a74 1273 return;
99cb0dbd 1274 if (PageSwapBacked(page))
a1528e21
MS
1275 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1276 -nr_pages);
99cb0dbd 1277 else
380780e7
MS
1278 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1279 -nr_pages);
dd78fedd
KS
1280 } else {
1281 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1282 return;
dd78fedd 1283 }
8186eb6a
JW
1284
1285 /*
00f3ca2c 1286 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1287 * these counters are not modified in interrupt context, and
1288 * pte lock(a spinlock) is held, which implies preemption disabled.
1289 */
00f3ca2c 1290 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1291
1292 if (unlikely(PageMlocked(page)))
1293 clear_page_mlock(page);
8186eb6a
JW
1294}
1295
53f9263b
KS
1296static void page_remove_anon_compound_rmap(struct page *page)
1297{
1298 int i, nr;
1299
1300 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1301 return;
1302
1303 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1304 if (unlikely(PageHuge(page)))
1305 return;
1306
1307 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1308 return;
1309
69473e5d 1310 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1311
1312 if (TestClearPageDoubleMap(page)) {
1313 /*
1314 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1315 * them are still mapped.
53f9263b 1316 */
5eaf35ab 1317 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1318 if (atomic_add_negative(-1, &page[i]._mapcount))
1319 nr++;
1320 }
f1fe80d4
KS
1321
1322 /*
1323 * Queue the page for deferred split if at least one small
1324 * page of the compound page is unmapped, but at least one
1325 * small page is still mapped.
1326 */
5eaf35ab 1327 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1328 deferred_split_huge_page(page);
53f9263b 1329 } else {
5eaf35ab 1330 nr = thp_nr_pages(page);
53f9263b
KS
1331 }
1332
e90309c9
KS
1333 if (unlikely(PageMlocked(page)))
1334 clear_page_mlock(page);
1335
f1fe80d4 1336 if (nr)
be5d0a74 1337 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1338}
1339
1da177e4
LT
1340/**
1341 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1342 * @page: page to remove mapping from
1343 * @compound: uncharge the page as compound or small page
1da177e4 1344 *
b8072f09 1345 * The caller needs to hold the pte lock.
1da177e4 1346 */
d281ee61 1347void page_remove_rmap(struct page *page, bool compound)
1da177e4 1348{
be5d0a74 1349 lock_page_memcg(page);
89c06bd5 1350
be5d0a74
JW
1351 if (!PageAnon(page)) {
1352 page_remove_file_rmap(page, compound);
1353 goto out;
1354 }
1355
1356 if (compound) {
1357 page_remove_anon_compound_rmap(page);
1358 goto out;
1359 }
53f9263b 1360
b904dcfe
KM
1361 /* page still mapped by someone else? */
1362 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1363 goto out;
8186eb6a 1364
0fe6e20b 1365 /*
bea04b07
JZ
1366 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1367 * these counters are not modified in interrupt context, and
bea04b07 1368 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1369 */
be5d0a74 1370 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1371
e6c509f8
HD
1372 if (unlikely(PageMlocked(page)))
1373 clear_page_mlock(page);
8186eb6a 1374
9a982250
KS
1375 if (PageTransCompound(page))
1376 deferred_split_huge_page(compound_head(page));
1377
b904dcfe
KM
1378 /*
1379 * It would be tidy to reset the PageAnon mapping here,
1380 * but that might overwrite a racing page_add_anon_rmap
1381 * which increments mapcount after us but sets mapping
2d4894b5 1382 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1383 * and remember that it's only reliable while mapped.
1384 * Leaving it set also helps swapoff to reinstate ptes
1385 * faster for those pages still in swapcache.
1386 */
be5d0a74
JW
1387out:
1388 unlock_page_memcg(page);
1da177e4
LT
1389}
1390
1391/*
52629506 1392 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1393 */
e4b82222 1394static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1395 unsigned long address, void *arg)
1da177e4
LT
1396{
1397 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1398 struct page_vma_mapped_walk pvmw = {
1399 .page = page,
1400 .vma = vma,
1401 .address = address,
1402 };
1da177e4 1403 pte_t pteval;
c7ab0d2f 1404 struct page *subpage;
785373b4 1405 bool ret = true;
ac46d4f3 1406 struct mmu_notifier_range range;
4708f318 1407 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1408
b87537d9
HD
1409 /* munlock has nothing to gain from examining un-locked vmas */
1410 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
e4b82222 1411 return true;
b87537d9 1412
a5430dda
JG
1413 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1414 is_zone_device_page(page) && !is_device_private_page(page))
1415 return true;
1416
fec89c10
KS
1417 if (flags & TTU_SPLIT_HUGE_PMD) {
1418 split_huge_pmd_address(vma, address,
b5ff8161 1419 flags & TTU_SPLIT_FREEZE, page);
fec89c10
KS
1420 }
1421
369ea824 1422 /*
017b1660
MK
1423 * For THP, we have to assume the worse case ie pmd for invalidation.
1424 * For hugetlb, it could be much worse if we need to do pud
1425 * invalidation in the case of pmd sharing.
1426 *
1427 * Note that the page can not be free in this function as call of
1428 * try_to_unmap() must hold a reference on the page.
369ea824 1429 */
7269f999 1430 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1431 address,
a50b854e 1432 min(vma->vm_end, address + page_size(page)));
017b1660
MK
1433 if (PageHuge(page)) {
1434 /*
1435 * If sharing is possible, start and end will be adjusted
1436 * accordingly.
1437 */
ac46d4f3
JG
1438 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1439 &range.end);
017b1660 1440 }
ac46d4f3 1441 mmu_notifier_invalidate_range_start(&range);
369ea824 1442
c7ab0d2f 1443 while (page_vma_mapped_walk(&pvmw)) {
616b8371
ZY
1444#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1445 /* PMD-mapped THP migration entry */
1446 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1447 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1448
616b8371
ZY
1449 set_pmd_migration_entry(&pvmw, page);
1450 continue;
1451 }
1452#endif
1453
c7ab0d2f
KS
1454 /*
1455 * If the page is mlock()d, we cannot swap it out.
1456 * If it's recently referenced (perhaps page_referenced
1457 * skipped over this mm) then we should reactivate it.
1458 */
1459 if (!(flags & TTU_IGNORE_MLOCK)) {
1460 if (vma->vm_flags & VM_LOCKED) {
1461 /* PTE-mapped THP are never mlocked */
1462 if (!PageTransCompound(page)) {
1463 /*
1464 * Holding pte lock, we do *not* need
c1e8d7c6 1465 * mmap_lock here
c7ab0d2f
KS
1466 */
1467 mlock_vma_page(page);
1468 }
e4b82222 1469 ret = false;
c7ab0d2f
KS
1470 page_vma_mapped_walk_done(&pvmw);
1471 break;
9a73f61b 1472 }
c7ab0d2f
KS
1473 if (flags & TTU_MUNLOCK)
1474 continue;
b87537d9 1475 }
c7ab0d2f 1476
8346242a
KS
1477 /* Unexpected PMD-mapped THP? */
1478 VM_BUG_ON_PAGE(!pvmw.pte, page);
1479
1480 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1481 address = pvmw.address;
1482
336bf30e 1483 if (PageHuge(page) && !PageAnon(page)) {
c0d0381a
MK
1484 /*
1485 * To call huge_pmd_unshare, i_mmap_rwsem must be
1486 * held in write mode. Caller needs to explicitly
1487 * do this outside rmap routines.
1488 */
1489 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
34ae204f 1490 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
017b1660
MK
1491 /*
1492 * huge_pmd_unshare unmapped an entire PMD
1493 * page. There is no way of knowing exactly
1494 * which PMDs may be cached for this mm, so
1495 * we must flush them all. start/end were
1496 * already adjusted above to cover this range.
1497 */
ac46d4f3
JG
1498 flush_cache_range(vma, range.start, range.end);
1499 flush_tlb_range(vma, range.start, range.end);
1500 mmu_notifier_invalidate_range(mm, range.start,
1501 range.end);
017b1660
MK
1502
1503 /*
1504 * The ref count of the PMD page was dropped
1505 * which is part of the way map counting
1506 * is done for shared PMDs. Return 'true'
1507 * here. When there is no other sharing,
1508 * huge_pmd_unshare returns false and we will
1509 * unmap the actual page and drop map count
1510 * to zero.
1511 */
1512 page_vma_mapped_walk_done(&pvmw);
1513 break;
1514 }
1515 }
8346242a 1516
a5430dda
JG
1517 if (IS_ENABLED(CONFIG_MIGRATION) &&
1518 (flags & TTU_MIGRATION) &&
1519 is_zone_device_page(page)) {
1520 swp_entry_t entry;
1521 pte_t swp_pte;
1522
1523 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1524
1525 /*
1526 * Store the pfn of the page in a special migration
1527 * pte. do_swap_page() will wait until the migration
1528 * pte is removed and then restart fault handling.
1529 */
1530 entry = make_migration_entry(page, 0);
1531 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
1532
1533 /*
1534 * pteval maps a zone device page and is therefore
1535 * a swap pte.
1536 */
1537 if (pte_swp_soft_dirty(pteval))
a5430dda 1538 swp_pte = pte_swp_mksoft_dirty(swp_pte);
ad7df764 1539 if (pte_swp_uffd_wp(pteval))
f45ec5ff 1540 swp_pte = pte_swp_mkuffd_wp(swp_pte);
a5430dda 1541 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
0f10851e
JG
1542 /*
1543 * No need to invalidate here it will synchronize on
1544 * against the special swap migration pte.
1de13ee5
RC
1545 *
1546 * The assignment to subpage above was computed from a
1547 * swap PTE which results in an invalid pointer.
1548 * Since only PAGE_SIZE pages can currently be
1549 * migrated, just set it to page. This will need to be
1550 * changed when hugepage migrations to device private
1551 * memory are supported.
0f10851e 1552 */
1de13ee5 1553 subpage = page;
a5430dda
JG
1554 goto discard;
1555 }
1556
c7ab0d2f 1557 /* Nuke the page table entry. */
785373b4 1558 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1559 if (should_defer_flush(mm, flags)) {
1560 /*
1561 * We clear the PTE but do not flush so potentially
1562 * a remote CPU could still be writing to the page.
1563 * If the entry was previously clean then the
1564 * architecture must guarantee that a clear->dirty
1565 * transition on a cached TLB entry is written through
1566 * and traps if the PTE is unmapped.
1567 */
785373b4 1568 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1569
1570 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1571 } else {
785373b4 1572 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1573 }
72b252ae 1574
c7ab0d2f
KS
1575 /* Move the dirty bit to the page. Now the pte is gone. */
1576 if (pte_dirty(pteval))
1577 set_page_dirty(page);
1da177e4 1578
c7ab0d2f
KS
1579 /* Update high watermark before we lower rss */
1580 update_hiwater_rss(mm);
1da177e4 1581
c7ab0d2f 1582 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1583 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1584 if (PageHuge(page)) {
d8c6546b 1585 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1586 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1587 pvmw.pte, pteval,
1588 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1589 } else {
1590 dec_mm_counter(mm, mm_counter(page));
785373b4 1591 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1592 }
365e9c87 1593
bce73e48 1594 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1595 /*
1596 * The guest indicated that the page content is of no
1597 * interest anymore. Simply discard the pte, vmscan
1598 * will take care of the rest.
bce73e48
CB
1599 * A future reference will then fault in a new zero
1600 * page. When userfaultfd is active, we must not drop
1601 * this page though, as its main user (postcopy
1602 * migration) will not expect userfaults on already
1603 * copied pages.
c7ab0d2f 1604 */
eca56ff9 1605 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1606 /* We have to invalidate as we cleared the pte */
1607 mmu_notifier_invalidate_range(mm, address,
1608 address + PAGE_SIZE);
c7ab0d2f 1609 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
b5ff8161 1610 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
c7ab0d2f
KS
1611 swp_entry_t entry;
1612 pte_t swp_pte;
ca827d55
KA
1613
1614 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1615 set_pte_at(mm, address, pvmw.pte, pteval);
1616 ret = false;
1617 page_vma_mapped_walk_done(&pvmw);
1618 break;
1619 }
1620
c7ab0d2f
KS
1621 /*
1622 * Store the pfn of the page in a special migration
1623 * pte. do_swap_page() will wait until the migration
1624 * pte is removed and then restart fault handling.
1625 */
1626 entry = make_migration_entry(subpage,
1627 pte_write(pteval));
1628 swp_pte = swp_entry_to_pte(entry);
1629 if (pte_soft_dirty(pteval))
1630 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1631 if (pte_uffd_wp(pteval))
1632 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1633 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1634 /*
1635 * No need to invalidate here it will synchronize on
1636 * against the special swap migration pte.
1637 */
c7ab0d2f
KS
1638 } else if (PageAnon(page)) {
1639 swp_entry_t entry = { .val = page_private(subpage) };
1640 pte_t swp_pte;
1641 /*
1642 * Store the swap location in the pte.
1643 * See handle_pte_fault() ...
1644 */
eb94a878
MK
1645 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1646 WARN_ON_ONCE(1);
83612a94 1647 ret = false;
369ea824 1648 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1649 mmu_notifier_invalidate_range(mm, address,
1650 address + PAGE_SIZE);
eb94a878
MK
1651 page_vma_mapped_walk_done(&pvmw);
1652 break;
1653 }
c7ab0d2f 1654
802a3a92
SL
1655 /* MADV_FREE page check */
1656 if (!PageSwapBacked(page)) {
1657 if (!PageDirty(page)) {
0f10851e
JG
1658 /* Invalidate as we cleared the pte */
1659 mmu_notifier_invalidate_range(mm,
1660 address, address + PAGE_SIZE);
802a3a92
SL
1661 dec_mm_counter(mm, MM_ANONPAGES);
1662 goto discard;
1663 }
1664
1665 /*
1666 * If the page was redirtied, it cannot be
1667 * discarded. Remap the page to page table.
1668 */
785373b4 1669 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1670 SetPageSwapBacked(page);
e4b82222 1671 ret = false;
802a3a92
SL
1672 page_vma_mapped_walk_done(&pvmw);
1673 break;
c7ab0d2f 1674 }
854e9ed0 1675
c7ab0d2f 1676 if (swap_duplicate(entry) < 0) {
785373b4 1677 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1678 ret = false;
c7ab0d2f
KS
1679 page_vma_mapped_walk_done(&pvmw);
1680 break;
1681 }
ca827d55
KA
1682 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1683 set_pte_at(mm, address, pvmw.pte, pteval);
1684 ret = false;
1685 page_vma_mapped_walk_done(&pvmw);
1686 break;
1687 }
c7ab0d2f
KS
1688 if (list_empty(&mm->mmlist)) {
1689 spin_lock(&mmlist_lock);
1690 if (list_empty(&mm->mmlist))
1691 list_add(&mm->mmlist, &init_mm.mmlist);
1692 spin_unlock(&mmlist_lock);
1693 }
854e9ed0 1694 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1695 inc_mm_counter(mm, MM_SWAPENTS);
1696 swp_pte = swp_entry_to_pte(entry);
1697 if (pte_soft_dirty(pteval))
1698 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1699 if (pte_uffd_wp(pteval))
1700 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1701 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1702 /* Invalidate as we cleared the pte */
1703 mmu_notifier_invalidate_range(mm, address,
1704 address + PAGE_SIZE);
1705 } else {
1706 /*
906f9cdf
HD
1707 * This is a locked file-backed page, thus it cannot
1708 * be removed from the page cache and replaced by a new
1709 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1710 * concurrent thread might update its page table to
1711 * point at new page while a device still is using this
1712 * page.
1713 *
ad56b738 1714 * See Documentation/vm/mmu_notifier.rst
0f10851e 1715 */
c7ab0d2f 1716 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1717 }
854e9ed0 1718discard:
0f10851e
JG
1719 /*
1720 * No need to call mmu_notifier_invalidate_range() it has be
1721 * done above for all cases requiring it to happen under page
1722 * table lock before mmu_notifier_invalidate_range_end()
1723 *
ad56b738 1724 * See Documentation/vm/mmu_notifier.rst
0f10851e 1725 */
c7ab0d2f
KS
1726 page_remove_rmap(subpage, PageHuge(page));
1727 put_page(page);
c7ab0d2f 1728 }
369ea824 1729
ac46d4f3 1730 mmu_notifier_invalidate_range_end(&range);
369ea824 1731
caed0f48 1732 return ret;
1da177e4
LT
1733}
1734
52629506
JK
1735static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1736{
222100ee 1737 return vma_is_temporary_stack(vma);
52629506
JK
1738}
1739
2a52bcbc 1740static int page_mapcount_is_zero(struct page *page)
52629506 1741{
c7ab0d2f 1742 return !total_mapcount(page);
2a52bcbc 1743}
52629506 1744
1da177e4
LT
1745/**
1746 * try_to_unmap - try to remove all page table mappings to a page
1747 * @page: the page to get unmapped
14fa31b8 1748 * @flags: action and flags
1da177e4
LT
1749 *
1750 * Tries to remove all the page table entries which are mapping this
1751 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1752 *
666e5a40 1753 * If unmap is successful, return true. Otherwise, false.
1da177e4 1754 */
666e5a40 1755bool try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1756{
52629506
JK
1757 struct rmap_walk_control rwc = {
1758 .rmap_one = try_to_unmap_one,
802a3a92 1759 .arg = (void *)flags,
2a52bcbc 1760 .done = page_mapcount_is_zero,
52629506
JK
1761 .anon_lock = page_lock_anon_vma_read,
1762 };
1da177e4 1763
52629506
JK
1764 /*
1765 * During exec, a temporary VMA is setup and later moved.
1766 * The VMA is moved under the anon_vma lock but not the
1767 * page tables leading to a race where migration cannot
1768 * find the migration ptes. Rather than increasing the
1769 * locking requirements of exec(), migration skips
1770 * temporary VMAs until after exec() completes.
1771 */
b5ff8161
NH
1772 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1773 && !PageKsm(page) && PageAnon(page))
52629506
JK
1774 rwc.invalid_vma = invalid_migration_vma;
1775
2a52bcbc 1776 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1777 rmap_walk_locked(page, &rwc);
2a52bcbc 1778 else
33fc80e2 1779 rmap_walk(page, &rwc);
52629506 1780
666e5a40 1781 return !page_mapcount(page) ? true : false;
1da177e4 1782}
81b4082d 1783
2a52bcbc
KS
1784static int page_not_mapped(struct page *page)
1785{
1786 return !page_mapped(page);
1787};
1788
b291f000
NP
1789/**
1790 * try_to_munlock - try to munlock a page
1791 * @page: the page to be munlocked
1792 *
1793 * Called from munlock code. Checks all of the VMAs mapping the page
1794 * to make sure nobody else has this page mlocked. The page will be
1795 * returned with PG_mlocked cleared if no other vmas have it mlocked.
b291f000 1796 */
854e9ed0 1797
192d7232
MK
1798void try_to_munlock(struct page *page)
1799{
e8351ac9
JK
1800 struct rmap_walk_control rwc = {
1801 .rmap_one = try_to_unmap_one,
802a3a92 1802 .arg = (void *)TTU_MUNLOCK,
e8351ac9 1803 .done = page_not_mapped,
e8351ac9
JK
1804 .anon_lock = page_lock_anon_vma_read,
1805
1806 };
1807
309381fe 1808 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 1809 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 1810
192d7232 1811 rmap_walk(page, &rwc);
b291f000 1812}
e9995ef9 1813
01d8b20d 1814void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1815{
01d8b20d 1816 struct anon_vma *root = anon_vma->root;
76545066 1817
624483f3 1818 anon_vma_free(anon_vma);
01d8b20d
PZ
1819 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1820 anon_vma_free(root);
76545066 1821}
76545066 1822
0dd1c7bb
JK
1823static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1824 struct rmap_walk_control *rwc)
faecd8dd
JK
1825{
1826 struct anon_vma *anon_vma;
1827
0dd1c7bb
JK
1828 if (rwc->anon_lock)
1829 return rwc->anon_lock(page);
1830
faecd8dd
JK
1831 /*
1832 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1833 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 1834 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
1835 * take a reference count to prevent the anon_vma disappearing
1836 */
1837 anon_vma = page_anon_vma(page);
1838 if (!anon_vma)
1839 return NULL;
1840
1841 anon_vma_lock_read(anon_vma);
1842 return anon_vma;
1843}
1844
e9995ef9 1845/*
e8351ac9
JK
1846 * rmap_walk_anon - do something to anonymous page using the object-based
1847 * rmap method
1848 * @page: the page to be handled
1849 * @rwc: control variable according to each walk type
1850 *
1851 * Find all the mappings of a page using the mapping pointer and the vma chains
1852 * contained in the anon_vma struct it points to.
1853 *
c1e8d7c6 1854 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
e8351ac9
JK
1855 * where the page was found will be held for write. So, we won't recheck
1856 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1857 * LOCKED.
e9995ef9 1858 */
1df631ae 1859static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 1860 bool locked)
e9995ef9
HD
1861{
1862 struct anon_vma *anon_vma;
a8fa41ad 1863 pgoff_t pgoff_start, pgoff_end;
5beb4930 1864 struct anon_vma_chain *avc;
e9995ef9 1865
b9773199
KS
1866 if (locked) {
1867 anon_vma = page_anon_vma(page);
1868 /* anon_vma disappear under us? */
1869 VM_BUG_ON_PAGE(!anon_vma, page);
1870 } else {
1871 anon_vma = rmap_walk_anon_lock(page, rwc);
1872 }
e9995ef9 1873 if (!anon_vma)
1df631ae 1874 return;
faecd8dd 1875
a8fa41ad 1876 pgoff_start = page_to_pgoff(page);
6c357848 1877 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
a8fa41ad
KS
1878 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1879 pgoff_start, pgoff_end) {
5beb4930 1880 struct vm_area_struct *vma = avc->vma;
e9995ef9 1881 unsigned long address = vma_address(page, vma);
0dd1c7bb 1882
ad12695f
AA
1883 cond_resched();
1884
0dd1c7bb
JK
1885 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1886 continue;
1887
e4b82222 1888 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 1889 break;
0dd1c7bb
JK
1890 if (rwc->done && rwc->done(page))
1891 break;
e9995ef9 1892 }
b9773199
KS
1893
1894 if (!locked)
1895 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1896}
1897
e8351ac9
JK
1898/*
1899 * rmap_walk_file - do something to file page using the object-based rmap method
1900 * @page: the page to be handled
1901 * @rwc: control variable according to each walk type
1902 *
1903 * Find all the mappings of a page using the mapping pointer and the vma chains
1904 * contained in the address_space struct it points to.
1905 *
c1e8d7c6 1906 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
e8351ac9
JK
1907 * where the page was found will be held for write. So, we won't recheck
1908 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1909 * LOCKED.
1910 */
1df631ae 1911static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 1912 bool locked)
e9995ef9 1913{
b9773199 1914 struct address_space *mapping = page_mapping(page);
a8fa41ad 1915 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1916 struct vm_area_struct *vma;
e9995ef9 1917
9f32624b
JK
1918 /*
1919 * The page lock not only makes sure that page->mapping cannot
1920 * suddenly be NULLified by truncation, it makes sure that the
1921 * structure at mapping cannot be freed and reused yet,
c8c06efa 1922 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1923 */
81d1b09c 1924 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1925
e9995ef9 1926 if (!mapping)
1df631ae 1927 return;
3dec0ba0 1928
a8fa41ad 1929 pgoff_start = page_to_pgoff(page);
6c357848 1930 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
b9773199
KS
1931 if (!locked)
1932 i_mmap_lock_read(mapping);
a8fa41ad
KS
1933 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1934 pgoff_start, pgoff_end) {
e9995ef9 1935 unsigned long address = vma_address(page, vma);
0dd1c7bb 1936
ad12695f
AA
1937 cond_resched();
1938
0dd1c7bb
JK
1939 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1940 continue;
1941
e4b82222 1942 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
1943 goto done;
1944 if (rwc->done && rwc->done(page))
1945 goto done;
e9995ef9 1946 }
0dd1c7bb 1947
0dd1c7bb 1948done:
b9773199
KS
1949 if (!locked)
1950 i_mmap_unlock_read(mapping);
e9995ef9
HD
1951}
1952
1df631ae 1953void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1954{
e9995ef9 1955 if (unlikely(PageKsm(page)))
1df631ae 1956 rmap_walk_ksm(page, rwc);
e9995ef9 1957 else if (PageAnon(page))
1df631ae 1958 rmap_walk_anon(page, rwc, false);
b9773199 1959 else
1df631ae 1960 rmap_walk_file(page, rwc, false);
b9773199
KS
1961}
1962
1963/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 1964void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
1965{
1966 /* no ksm support for now */
1967 VM_BUG_ON_PAGE(PageKsm(page), page);
1968 if (PageAnon(page))
1df631ae 1969 rmap_walk_anon(page, rwc, true);
e9995ef9 1970 else
1df631ae 1971 rmap_walk_file(page, rwc, true);
e9995ef9 1972}
0fe6e20b 1973
e3390f67 1974#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 1975/*
451b9514 1976 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
1977 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1978 * and no lru code, because we handle hugepages differently from common pages.
1979 */
0fe6e20b
NH
1980void hugepage_add_anon_rmap(struct page *page,
1981 struct vm_area_struct *vma, unsigned long address)
1982{
1983 struct anon_vma *anon_vma = vma->anon_vma;
1984 int first;
a850ea30
NH
1985
1986 BUG_ON(!PageLocked(page));
0fe6e20b 1987 BUG_ON(!anon_vma);
5dbe0af4 1988 /* address might be in next vma when migration races vma_adjust */
53f9263b 1989 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 1990 if (first)
451b9514 1991 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
1992}
1993
1994void hugepage_add_new_anon_rmap(struct page *page,
1995 struct vm_area_struct *vma, unsigned long address)
1996{
1997 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1998 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1999 if (hpage_pincount_available(page))
2000 atomic_set(compound_pincount_ptr(page), 0);
2001
451b9514 2002 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2003}
e3390f67 2004#endif /* CONFIG_HUGETLB_PAGE */