memcg: remove PCG_MOVE_LOCK flag from page_cgroup
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
2b575eb6 27 * anon_vma->mutex
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
9b679320
PZ
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
01d8b20d
PZ
69 struct anon_vma *anon_vma;
70
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
74 /*
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
77 */
78 anon_vma->root = anon_vma;
79 }
80
81 return anon_vma;
fdd2e5f8
AB
82}
83
01d8b20d 84static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 85{
01d8b20d 86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
87
88 /*
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
92 *
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 *
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
101 *
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
104 */
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
108 }
109
fdd2e5f8
AB
110 kmem_cache_free(anon_vma_cachep, anon_vma);
111}
1da177e4 112
dd34739c 113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 114{
dd34739c 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
116}
117
e574b5fd 118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
119{
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121}
122
6583a843
KC
123static void anon_vma_chain_link(struct vm_area_struct *vma,
124 struct anon_vma_chain *avc,
125 struct anon_vma *anon_vma)
126{
127 avc->vma = vma;
128 avc->anon_vma = anon_vma;
129 list_add(&avc->same_vma, &vma->anon_vma_chain);
130
131 /*
132 * It's critical to add new vmas to the tail of the anon_vma,
133 * see comment in huge_memory.c:__split_huge_page().
134 */
135 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
136}
137
d9d332e0
LT
138/**
139 * anon_vma_prepare - attach an anon_vma to a memory region
140 * @vma: the memory region in question
141 *
142 * This makes sure the memory mapping described by 'vma' has
143 * an 'anon_vma' attached to it, so that we can associate the
144 * anonymous pages mapped into it with that anon_vma.
145 *
146 * The common case will be that we already have one, but if
23a0790a 147 * not we either need to find an adjacent mapping that we
d9d332e0
LT
148 * can re-use the anon_vma from (very common when the only
149 * reason for splitting a vma has been mprotect()), or we
150 * allocate a new one.
151 *
152 * Anon-vma allocations are very subtle, because we may have
153 * optimistically looked up an anon_vma in page_lock_anon_vma()
154 * and that may actually touch the spinlock even in the newly
155 * allocated vma (it depends on RCU to make sure that the
156 * anon_vma isn't actually destroyed).
157 *
158 * As a result, we need to do proper anon_vma locking even
159 * for the new allocation. At the same time, we do not want
160 * to do any locking for the common case of already having
161 * an anon_vma.
162 *
163 * This must be called with the mmap_sem held for reading.
164 */
1da177e4
LT
165int anon_vma_prepare(struct vm_area_struct *vma)
166{
167 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 168 struct anon_vma_chain *avc;
1da177e4
LT
169
170 might_sleep();
171 if (unlikely(!anon_vma)) {
172 struct mm_struct *mm = vma->vm_mm;
d9d332e0 173 struct anon_vma *allocated;
1da177e4 174
dd34739c 175 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
176 if (!avc)
177 goto out_enomem;
178
1da177e4 179 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
180 allocated = NULL;
181 if (!anon_vma) {
1da177e4
LT
182 anon_vma = anon_vma_alloc();
183 if (unlikely(!anon_vma))
5beb4930 184 goto out_enomem_free_avc;
1da177e4 185 allocated = anon_vma;
1da177e4
LT
186 }
187
cba48b98 188 anon_vma_lock(anon_vma);
1da177e4
LT
189 /* page_table_lock to protect against threads */
190 spin_lock(&mm->page_table_lock);
191 if (likely(!vma->anon_vma)) {
192 vma->anon_vma = anon_vma;
6583a843 193 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 194 allocated = NULL;
31f2b0eb 195 avc = NULL;
1da177e4
LT
196 }
197 spin_unlock(&mm->page_table_lock);
cba48b98 198 anon_vma_unlock(anon_vma);
31f2b0eb
ON
199
200 if (unlikely(allocated))
01d8b20d 201 put_anon_vma(allocated);
31f2b0eb 202 if (unlikely(avc))
5beb4930 203 anon_vma_chain_free(avc);
1da177e4
LT
204 }
205 return 0;
5beb4930
RR
206
207 out_enomem_free_avc:
208 anon_vma_chain_free(avc);
209 out_enomem:
210 return -ENOMEM;
1da177e4
LT
211}
212
bb4aa396
LT
213/*
214 * This is a useful helper function for locking the anon_vma root as
215 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
216 * have the same vma.
217 *
218 * Such anon_vma's should have the same root, so you'd expect to see
219 * just a single mutex_lock for the whole traversal.
220 */
221static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
222{
223 struct anon_vma *new_root = anon_vma->root;
224 if (new_root != root) {
225 if (WARN_ON_ONCE(root))
226 mutex_unlock(&root->mutex);
227 root = new_root;
228 mutex_lock(&root->mutex);
229 }
230 return root;
231}
232
233static inline void unlock_anon_vma_root(struct anon_vma *root)
234{
235 if (root)
236 mutex_unlock(&root->mutex);
237}
238
5beb4930
RR
239/*
240 * Attach the anon_vmas from src to dst.
241 * Returns 0 on success, -ENOMEM on failure.
242 */
243int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 244{
5beb4930 245 struct anon_vma_chain *avc, *pavc;
bb4aa396 246 struct anon_vma *root = NULL;
5beb4930 247
646d87b4 248 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
249 struct anon_vma *anon_vma;
250
dd34739c
LT
251 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
252 if (unlikely(!avc)) {
253 unlock_anon_vma_root(root);
254 root = NULL;
255 avc = anon_vma_chain_alloc(GFP_KERNEL);
256 if (!avc)
257 goto enomem_failure;
258 }
bb4aa396
LT
259 anon_vma = pavc->anon_vma;
260 root = lock_anon_vma_root(root, anon_vma);
261 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 262 }
bb4aa396 263 unlock_anon_vma_root(root);
5beb4930 264 return 0;
1da177e4 265
5beb4930
RR
266 enomem_failure:
267 unlink_anon_vmas(dst);
268 return -ENOMEM;
1da177e4
LT
269}
270
948f017b
AA
271/*
272 * Some rmap walk that needs to find all ptes/hugepmds without false
273 * negatives (like migrate and split_huge_page) running concurrent
274 * with operations that copy or move pagetables (like mremap() and
275 * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
276 * list to be in a certain order: the dst_vma must be placed after the
277 * src_vma in the list. This is always guaranteed by fork() but
278 * mremap() needs to call this function to enforce it in case the
279 * dst_vma isn't newly allocated and chained with the anon_vma_clone()
280 * function but just an extension of a pre-existing vma through
281 * vma_merge.
282 *
283 * NOTE: the same_anon_vma list can still be changed by other
284 * processes while mremap runs because mremap doesn't hold the
285 * anon_vma mutex to prevent modifications to the list while it
286 * runs. All we need to enforce is that the relative order of this
287 * process vmas isn't changing (we don't care about other vmas
288 * order). Each vma corresponds to an anon_vma_chain structure so
289 * there's no risk that other processes calling anon_vma_moveto_tail()
290 * and changing the same_anon_vma list under mremap() will screw with
291 * the relative order of this process vmas in the list, because we
292 * they can't alter the order of any vma that belongs to this
293 * process. And there can't be another anon_vma_moveto_tail() running
294 * concurrently with mremap() coming from this process because we hold
295 * the mmap_sem for the whole mremap(). fork() ordering dependency
296 * also shouldn't be affected because fork() only cares that the
297 * parent vmas are placed in the list before the child vmas and
298 * anon_vma_moveto_tail() won't reorder vmas from either the fork()
299 * parent or child.
300 */
301void anon_vma_moveto_tail(struct vm_area_struct *dst)
302{
303 struct anon_vma_chain *pavc;
304 struct anon_vma *root = NULL;
305
306 list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
307 struct anon_vma *anon_vma = pavc->anon_vma;
308 VM_BUG_ON(pavc->vma != dst);
309 root = lock_anon_vma_root(root, anon_vma);
310 list_del(&pavc->same_anon_vma);
311 list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
312 }
313 unlock_anon_vma_root(root);
314}
315
5beb4930
RR
316/*
317 * Attach vma to its own anon_vma, as well as to the anon_vmas that
318 * the corresponding VMA in the parent process is attached to.
319 * Returns 0 on success, non-zero on failure.
320 */
321int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 322{
5beb4930
RR
323 struct anon_vma_chain *avc;
324 struct anon_vma *anon_vma;
1da177e4 325
5beb4930
RR
326 /* Don't bother if the parent process has no anon_vma here. */
327 if (!pvma->anon_vma)
328 return 0;
329
330 /*
331 * First, attach the new VMA to the parent VMA's anon_vmas,
332 * so rmap can find non-COWed pages in child processes.
333 */
334 if (anon_vma_clone(vma, pvma))
335 return -ENOMEM;
336
337 /* Then add our own anon_vma. */
338 anon_vma = anon_vma_alloc();
339 if (!anon_vma)
340 goto out_error;
dd34739c 341 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
342 if (!avc)
343 goto out_error_free_anon_vma;
5c341ee1
RR
344
345 /*
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
348 */
349 anon_vma->root = pvma->anon_vma->root;
76545066 350 /*
01d8b20d
PZ
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
354 */
355 get_anon_vma(anon_vma->root);
5beb4930
RR
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
bb4aa396 358 anon_vma_lock(anon_vma);
5c341ee1 359 anon_vma_chain_link(vma, avc, anon_vma);
bb4aa396 360 anon_vma_unlock(anon_vma);
5beb4930
RR
361
362 return 0;
363
364 out_error_free_anon_vma:
01d8b20d 365 put_anon_vma(anon_vma);
5beb4930 366 out_error:
4946d54c 367 unlink_anon_vmas(vma);
5beb4930 368 return -ENOMEM;
1da177e4
LT
369}
370
5beb4930
RR
371void unlink_anon_vmas(struct vm_area_struct *vma)
372{
373 struct anon_vma_chain *avc, *next;
eee2acba 374 struct anon_vma *root = NULL;
5beb4930 375
5c341ee1
RR
376 /*
377 * Unlink each anon_vma chained to the VMA. This list is ordered
378 * from newest to oldest, ensuring the root anon_vma gets freed last.
379 */
5beb4930 380 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
381 struct anon_vma *anon_vma = avc->anon_vma;
382
383 root = lock_anon_vma_root(root, anon_vma);
384 list_del(&avc->same_anon_vma);
385
386 /*
387 * Leave empty anon_vmas on the list - we'll need
388 * to free them outside the lock.
389 */
390 if (list_empty(&anon_vma->head))
391 continue;
392
393 list_del(&avc->same_vma);
394 anon_vma_chain_free(avc);
395 }
396 unlock_anon_vma_root(root);
397
398 /*
399 * Iterate the list once more, it now only contains empty and unlinked
400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 * needing to acquire the anon_vma->root->mutex.
402 */
403 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404 struct anon_vma *anon_vma = avc->anon_vma;
405
406 put_anon_vma(anon_vma);
407
5beb4930
RR
408 list_del(&avc->same_vma);
409 anon_vma_chain_free(avc);
410 }
411}
412
51cc5068 413static void anon_vma_ctor(void *data)
1da177e4 414{
a35afb83 415 struct anon_vma *anon_vma = data;
1da177e4 416
2b575eb6 417 mutex_init(&anon_vma->mutex);
83813267 418 atomic_set(&anon_vma->refcount, 0);
a35afb83 419 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
420}
421
422void __init anon_vma_init(void)
423{
424 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 425 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 426 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
427}
428
429/*
6111e4ca
PZ
430 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
431 *
432 * Since there is no serialization what so ever against page_remove_rmap()
433 * the best this function can do is return a locked anon_vma that might
434 * have been relevant to this page.
435 *
436 * The page might have been remapped to a different anon_vma or the anon_vma
437 * returned may already be freed (and even reused).
438 *
bc658c96
PZ
439 * In case it was remapped to a different anon_vma, the new anon_vma will be a
440 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
441 * ensure that any anon_vma obtained from the page will still be valid for as
442 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
443 *
6111e4ca
PZ
444 * All users of this function must be very careful when walking the anon_vma
445 * chain and verify that the page in question is indeed mapped in it
446 * [ something equivalent to page_mapped_in_vma() ].
447 *
448 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
449 * that the anon_vma pointer from page->mapping is valid if there is a
450 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 451 */
746b18d4 452struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 453{
746b18d4 454 struct anon_vma *anon_vma = NULL;
1da177e4
LT
455 unsigned long anon_mapping;
456
457 rcu_read_lock();
80e14822 458 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 459 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
460 goto out;
461 if (!page_mapped(page))
462 goto out;
463
464 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
465 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
466 anon_vma = NULL;
467 goto out;
468 }
f1819427
HD
469
470 /*
471 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
472 * freed. But if it has been unmapped, we have no security against the
473 * anon_vma structure being freed and reused (for another anon_vma:
474 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
475 * above cannot corrupt).
f1819427 476 */
746b18d4
PZ
477 if (!page_mapped(page)) {
478 put_anon_vma(anon_vma);
479 anon_vma = NULL;
480 }
1da177e4
LT
481out:
482 rcu_read_unlock();
746b18d4
PZ
483
484 return anon_vma;
485}
486
88c22088
PZ
487/*
488 * Similar to page_get_anon_vma() except it locks the anon_vma.
489 *
490 * Its a little more complex as it tries to keep the fast path to a single
491 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
492 * reference like with page_get_anon_vma() and then block on the mutex.
493 */
746b18d4
PZ
494struct anon_vma *page_lock_anon_vma(struct page *page)
495{
88c22088 496 struct anon_vma *anon_vma = NULL;
eee0f252 497 struct anon_vma *root_anon_vma;
88c22088 498 unsigned long anon_mapping;
746b18d4 499
88c22088
PZ
500 rcu_read_lock();
501 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
502 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
503 goto out;
504 if (!page_mapped(page))
505 goto out;
506
507 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252
HD
508 root_anon_vma = ACCESS_ONCE(anon_vma->root);
509 if (mutex_trylock(&root_anon_vma->mutex)) {
88c22088 510 /*
eee0f252
HD
511 * If the page is still mapped, then this anon_vma is still
512 * its anon_vma, and holding the mutex ensures that it will
bc658c96 513 * not go away, see anon_vma_free().
88c22088 514 */
eee0f252
HD
515 if (!page_mapped(page)) {
516 mutex_unlock(&root_anon_vma->mutex);
88c22088
PZ
517 anon_vma = NULL;
518 }
519 goto out;
520 }
746b18d4 521
88c22088
PZ
522 /* trylock failed, we got to sleep */
523 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
524 anon_vma = NULL;
525 goto out;
526 }
527
528 if (!page_mapped(page)) {
529 put_anon_vma(anon_vma);
530 anon_vma = NULL;
531 goto out;
532 }
533
534 /* we pinned the anon_vma, its safe to sleep */
535 rcu_read_unlock();
536 anon_vma_lock(anon_vma);
537
538 if (atomic_dec_and_test(&anon_vma->refcount)) {
539 /*
540 * Oops, we held the last refcount, release the lock
541 * and bail -- can't simply use put_anon_vma() because
542 * we'll deadlock on the anon_vma_lock() recursion.
543 */
544 anon_vma_unlock(anon_vma);
545 __put_anon_vma(anon_vma);
546 anon_vma = NULL;
547 }
548
549 return anon_vma;
550
551out:
552 rcu_read_unlock();
746b18d4 553 return anon_vma;
34bbd704
ON
554}
555
10be22df 556void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 557{
cba48b98 558 anon_vma_unlock(anon_vma);
1da177e4
LT
559}
560
561/*
3ad33b24
LS
562 * At what user virtual address is page expected in @vma?
563 * Returns virtual address or -EFAULT if page's index/offset is not
564 * within the range mapped the @vma.
1da177e4 565 */
71e3aac0 566inline unsigned long
1da177e4
LT
567vma_address(struct page *page, struct vm_area_struct *vma)
568{
569 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
570 unsigned long address;
571
0fe6e20b
NH
572 if (unlikely(is_vm_hugetlb_page(vma)))
573 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
574 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
575 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 576 /* page should be within @vma mapping range */
1da177e4
LT
577 return -EFAULT;
578 }
579 return address;
580}
581
582/*
bf89c8c8 583 * At what user virtual address is page expected in vma?
ab941e0f 584 * Caller should check the page is actually part of the vma.
1da177e4
LT
585 */
586unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
587{
21d0d443 588 if (PageAnon(page)) {
4829b906
HD
589 struct anon_vma *page__anon_vma = page_anon_vma(page);
590 /*
591 * Note: swapoff's unuse_vma() is more efficient with this
592 * check, and needs it to match anon_vma when KSM is active.
593 */
594 if (!vma->anon_vma || !page__anon_vma ||
595 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
596 return -EFAULT;
597 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
598 if (!vma->vm_file ||
599 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
600 return -EFAULT;
601 } else
602 return -EFAULT;
603 return vma_address(page, vma);
604}
605
81b4082d
ND
606/*
607 * Check that @page is mapped at @address into @mm.
608 *
479db0bf
NP
609 * If @sync is false, page_check_address may perform a racy check to avoid
610 * the page table lock when the pte is not present (helpful when reclaiming
611 * highly shared pages).
612 *
b8072f09 613 * On success returns with pte mapped and locked.
81b4082d 614 */
e9a81a82 615pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 616 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
617{
618 pgd_t *pgd;
619 pud_t *pud;
620 pmd_t *pmd;
621 pte_t *pte;
c0718806 622 spinlock_t *ptl;
81b4082d 623
0fe6e20b
NH
624 if (unlikely(PageHuge(page))) {
625 pte = huge_pte_offset(mm, address);
626 ptl = &mm->page_table_lock;
627 goto check;
628 }
629
81b4082d 630 pgd = pgd_offset(mm, address);
c0718806
HD
631 if (!pgd_present(*pgd))
632 return NULL;
633
634 pud = pud_offset(pgd, address);
635 if (!pud_present(*pud))
636 return NULL;
637
638 pmd = pmd_offset(pud, address);
639 if (!pmd_present(*pmd))
640 return NULL;
71e3aac0
AA
641 if (pmd_trans_huge(*pmd))
642 return NULL;
c0718806
HD
643
644 pte = pte_offset_map(pmd, address);
645 /* Make a quick check before getting the lock */
479db0bf 646 if (!sync && !pte_present(*pte)) {
c0718806
HD
647 pte_unmap(pte);
648 return NULL;
649 }
650
4c21e2f2 651 ptl = pte_lockptr(mm, pmd);
0fe6e20b 652check:
c0718806
HD
653 spin_lock(ptl);
654 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
655 *ptlp = ptl;
656 return pte;
81b4082d 657 }
c0718806
HD
658 pte_unmap_unlock(pte, ptl);
659 return NULL;
81b4082d
ND
660}
661
b291f000
NP
662/**
663 * page_mapped_in_vma - check whether a page is really mapped in a VMA
664 * @page: the page to test
665 * @vma: the VMA to test
666 *
667 * Returns 1 if the page is mapped into the page tables of the VMA, 0
668 * if the page is not mapped into the page tables of this VMA. Only
669 * valid for normal file or anonymous VMAs.
670 */
6a46079c 671int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
672{
673 unsigned long address;
674 pte_t *pte;
675 spinlock_t *ptl;
676
677 address = vma_address(page, vma);
678 if (address == -EFAULT) /* out of vma range */
679 return 0;
680 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
681 if (!pte) /* the page is not in this mm */
682 return 0;
683 pte_unmap_unlock(pte, ptl);
684
685 return 1;
686}
687
1da177e4
LT
688/*
689 * Subfunctions of page_referenced: page_referenced_one called
690 * repeatedly from either page_referenced_anon or page_referenced_file.
691 */
5ad64688
HD
692int page_referenced_one(struct page *page, struct vm_area_struct *vma,
693 unsigned long address, unsigned int *mapcount,
694 unsigned long *vm_flags)
1da177e4
LT
695{
696 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
697 int referenced = 0;
698
71e3aac0
AA
699 if (unlikely(PageTransHuge(page))) {
700 pmd_t *pmd;
701
702 spin_lock(&mm->page_table_lock);
2da28bfd
AA
703 /*
704 * rmap might return false positives; we must filter
705 * these out using page_check_address_pmd().
706 */
71e3aac0
AA
707 pmd = page_check_address_pmd(page, mm, address,
708 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
709 if (!pmd) {
710 spin_unlock(&mm->page_table_lock);
711 goto out;
712 }
713
714 if (vma->vm_flags & VM_LOCKED) {
715 spin_unlock(&mm->page_table_lock);
716 *mapcount = 0; /* break early from loop */
717 *vm_flags |= VM_LOCKED;
718 goto out;
719 }
720
721 /* go ahead even if the pmd is pmd_trans_splitting() */
722 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
723 referenced++;
724 spin_unlock(&mm->page_table_lock);
725 } else {
726 pte_t *pte;
727 spinlock_t *ptl;
728
2da28bfd
AA
729 /*
730 * rmap might return false positives; we must filter
731 * these out using page_check_address().
732 */
71e3aac0
AA
733 pte = page_check_address(page, mm, address, &ptl, 0);
734 if (!pte)
735 goto out;
736
2da28bfd
AA
737 if (vma->vm_flags & VM_LOCKED) {
738 pte_unmap_unlock(pte, ptl);
739 *mapcount = 0; /* break early from loop */
740 *vm_flags |= VM_LOCKED;
741 goto out;
742 }
743
71e3aac0
AA
744 if (ptep_clear_flush_young_notify(vma, address, pte)) {
745 /*
746 * Don't treat a reference through a sequentially read
747 * mapping as such. If the page has been used in
748 * another mapping, we will catch it; if this other
749 * mapping is already gone, the unmap path will have
750 * set PG_referenced or activated the page.
751 */
752 if (likely(!VM_SequentialReadHint(vma)))
753 referenced++;
754 }
755 pte_unmap_unlock(pte, ptl);
756 }
757
2da28bfd
AA
758 /* Pretend the page is referenced if the task has the
759 swap token and is in the middle of a page fault. */
760 if (mm != current->mm && has_swap_token(mm) &&
761 rwsem_is_locked(&mm->mmap_sem))
762 referenced++;
763
c0718806 764 (*mapcount)--;
273f047e 765
6fe6b7e3
WF
766 if (referenced)
767 *vm_flags |= vma->vm_flags;
273f047e 768out:
1da177e4
LT
769 return referenced;
770}
771
bed7161a 772static int page_referenced_anon(struct page *page,
72835c86 773 struct mem_cgroup *memcg,
6fe6b7e3 774 unsigned long *vm_flags)
1da177e4
LT
775{
776 unsigned int mapcount;
777 struct anon_vma *anon_vma;
5beb4930 778 struct anon_vma_chain *avc;
1da177e4
LT
779 int referenced = 0;
780
781 anon_vma = page_lock_anon_vma(page);
782 if (!anon_vma)
783 return referenced;
784
785 mapcount = page_mapcount(page);
5beb4930
RR
786 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
787 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
788 unsigned long address = vma_address(page, vma);
789 if (address == -EFAULT)
790 continue;
bed7161a
BS
791 /*
792 * If we are reclaiming on behalf of a cgroup, skip
793 * counting on behalf of references from different
794 * cgroups
795 */
72835c86 796 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 797 continue;
1cb1729b 798 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 799 &mapcount, vm_flags);
1da177e4
LT
800 if (!mapcount)
801 break;
802 }
34bbd704
ON
803
804 page_unlock_anon_vma(anon_vma);
1da177e4
LT
805 return referenced;
806}
807
808/**
809 * page_referenced_file - referenced check for object-based rmap
810 * @page: the page we're checking references on.
72835c86 811 * @memcg: target memory control group
6fe6b7e3 812 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
813 *
814 * For an object-based mapped page, find all the places it is mapped and
815 * check/clear the referenced flag. This is done by following the page->mapping
816 * pointer, then walking the chain of vmas it holds. It returns the number
817 * of references it found.
818 *
819 * This function is only called from page_referenced for object-based pages.
820 */
bed7161a 821static int page_referenced_file(struct page *page,
72835c86 822 struct mem_cgroup *memcg,
6fe6b7e3 823 unsigned long *vm_flags)
1da177e4
LT
824{
825 unsigned int mapcount;
826 struct address_space *mapping = page->mapping;
827 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
828 struct vm_area_struct *vma;
829 struct prio_tree_iter iter;
830 int referenced = 0;
831
832 /*
833 * The caller's checks on page->mapping and !PageAnon have made
834 * sure that this is a file page: the check for page->mapping
835 * excludes the case just before it gets set on an anon page.
836 */
837 BUG_ON(PageAnon(page));
838
839 /*
840 * The page lock not only makes sure that page->mapping cannot
841 * suddenly be NULLified by truncation, it makes sure that the
842 * structure at mapping cannot be freed and reused yet,
3d48ae45 843 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
844 */
845 BUG_ON(!PageLocked(page));
846
3d48ae45 847 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
848
849 /*
3d48ae45 850 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
851 * is more likely to be accurate if we note it after spinning.
852 */
853 mapcount = page_mapcount(page);
854
855 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
856 unsigned long address = vma_address(page, vma);
857 if (address == -EFAULT)
858 continue;
bed7161a
BS
859 /*
860 * If we are reclaiming on behalf of a cgroup, skip
861 * counting on behalf of references from different
862 * cgroups
863 */
72835c86 864 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 865 continue;
1cb1729b 866 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 867 &mapcount, vm_flags);
1da177e4
LT
868 if (!mapcount)
869 break;
870 }
871
3d48ae45 872 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
873 return referenced;
874}
875
876/**
877 * page_referenced - test if the page was referenced
878 * @page: the page to test
879 * @is_locked: caller holds lock on the page
72835c86 880 * @memcg: target memory cgroup
6fe6b7e3 881 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
882 *
883 * Quick test_and_clear_referenced for all mappings to a page,
884 * returns the number of ptes which referenced the page.
885 */
6fe6b7e3
WF
886int page_referenced(struct page *page,
887 int is_locked,
72835c86 888 struct mem_cgroup *memcg,
6fe6b7e3 889 unsigned long *vm_flags)
1da177e4
LT
890{
891 int referenced = 0;
5ad64688 892 int we_locked = 0;
1da177e4 893
6fe6b7e3 894 *vm_flags = 0;
3ca7b3c5 895 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
896 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
897 we_locked = trylock_page(page);
898 if (!we_locked) {
899 referenced++;
900 goto out;
901 }
902 }
903 if (unlikely(PageKsm(page)))
72835c86 904 referenced += page_referenced_ksm(page, memcg,
5ad64688
HD
905 vm_flags);
906 else if (PageAnon(page))
72835c86 907 referenced += page_referenced_anon(page, memcg,
6fe6b7e3 908 vm_flags);
5ad64688 909 else if (page->mapping)
72835c86 910 referenced += page_referenced_file(page, memcg,
6fe6b7e3 911 vm_flags);
5ad64688 912 if (we_locked)
1da177e4 913 unlock_page(page);
50a15981
MS
914
915 if (page_test_and_clear_young(page_to_pfn(page)))
916 referenced++;
1da177e4 917 }
5ad64688 918out:
1da177e4
LT
919 return referenced;
920}
921
1cb1729b
HD
922static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
923 unsigned long address)
d08b3851
PZ
924{
925 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 926 pte_t *pte;
d08b3851
PZ
927 spinlock_t *ptl;
928 int ret = 0;
929
479db0bf 930 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
931 if (!pte)
932 goto out;
933
c2fda5fe
PZ
934 if (pte_dirty(*pte) || pte_write(*pte)) {
935 pte_t entry;
d08b3851 936
c2fda5fe 937 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 938 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
939 entry = pte_wrprotect(entry);
940 entry = pte_mkclean(entry);
d6e88e67 941 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
942 ret = 1;
943 }
d08b3851 944
d08b3851
PZ
945 pte_unmap_unlock(pte, ptl);
946out:
947 return ret;
948}
949
950static int page_mkclean_file(struct address_space *mapping, struct page *page)
951{
952 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
953 struct vm_area_struct *vma;
954 struct prio_tree_iter iter;
955 int ret = 0;
956
957 BUG_ON(PageAnon(page));
958
3d48ae45 959 mutex_lock(&mapping->i_mmap_mutex);
d08b3851 960 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
961 if (vma->vm_flags & VM_SHARED) {
962 unsigned long address = vma_address(page, vma);
963 if (address == -EFAULT)
964 continue;
965 ret += page_mkclean_one(page, vma, address);
966 }
d08b3851 967 }
3d48ae45 968 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
969 return ret;
970}
971
972int page_mkclean(struct page *page)
973{
974 int ret = 0;
975
976 BUG_ON(!PageLocked(page));
977
978 if (page_mapped(page)) {
979 struct address_space *mapping = page_mapping(page);
ce7e9fae 980 if (mapping) {
d08b3851 981 ret = page_mkclean_file(mapping, page);
2d42552d 982 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 983 ret = 1;
6c210482 984 }
d08b3851
PZ
985 }
986
987 return ret;
988}
60b59bea 989EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 990
c44b6743
RR
991/**
992 * page_move_anon_rmap - move a page to our anon_vma
993 * @page: the page to move to our anon_vma
994 * @vma: the vma the page belongs to
995 * @address: the user virtual address mapped
996 *
997 * When a page belongs exclusively to one process after a COW event,
998 * that page can be moved into the anon_vma that belongs to just that
999 * process, so the rmap code will not search the parent or sibling
1000 * processes.
1001 */
1002void page_move_anon_rmap(struct page *page,
1003 struct vm_area_struct *vma, unsigned long address)
1004{
1005 struct anon_vma *anon_vma = vma->anon_vma;
1006
1007 VM_BUG_ON(!PageLocked(page));
1008 VM_BUG_ON(!anon_vma);
1009 VM_BUG_ON(page->index != linear_page_index(vma, address));
1010
1011 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1012 page->mapping = (struct address_space *) anon_vma;
1013}
1014
9617d95e 1015/**
4e1c1975
AK
1016 * __page_set_anon_rmap - set up new anonymous rmap
1017 * @page: Page to add to rmap
1018 * @vma: VM area to add page to.
1019 * @address: User virtual address of the mapping
e8a03feb 1020 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1021 */
1022static void __page_set_anon_rmap(struct page *page,
e8a03feb 1023 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1024{
e8a03feb 1025 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1026
e8a03feb 1027 BUG_ON(!anon_vma);
ea90002b 1028
4e1c1975
AK
1029 if (PageAnon(page))
1030 return;
1031
ea90002b 1032 /*
e8a03feb
RR
1033 * If the page isn't exclusively mapped into this vma,
1034 * we must use the _oldest_ possible anon_vma for the
1035 * page mapping!
ea90002b 1036 */
4e1c1975 1037 if (!exclusive)
288468c3 1038 anon_vma = anon_vma->root;
9617d95e 1039
9617d95e
NP
1040 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1041 page->mapping = (struct address_space *) anon_vma;
9617d95e 1042 page->index = linear_page_index(vma, address);
9617d95e
NP
1043}
1044
c97a9e10 1045/**
43d8eac4 1046 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1047 * @page: the page to add the mapping to
1048 * @vma: the vm area in which the mapping is added
1049 * @address: the user virtual address mapped
1050 */
1051static void __page_check_anon_rmap(struct page *page,
1052 struct vm_area_struct *vma, unsigned long address)
1053{
1054#ifdef CONFIG_DEBUG_VM
1055 /*
1056 * The page's anon-rmap details (mapping and index) are guaranteed to
1057 * be set up correctly at this point.
1058 *
1059 * We have exclusion against page_add_anon_rmap because the caller
1060 * always holds the page locked, except if called from page_dup_rmap,
1061 * in which case the page is already known to be setup.
1062 *
1063 * We have exclusion against page_add_new_anon_rmap because those pages
1064 * are initially only visible via the pagetables, and the pte is locked
1065 * over the call to page_add_new_anon_rmap.
1066 */
44ab57a0 1067 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1068 BUG_ON(page->index != linear_page_index(vma, address));
1069#endif
1070}
1071
1da177e4
LT
1072/**
1073 * page_add_anon_rmap - add pte mapping to an anonymous page
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1077 *
5ad64688 1078 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1079 * the anon_vma case: to serialize mapping,index checking after setting,
1080 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1081 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1082 */
1083void page_add_anon_rmap(struct page *page,
1084 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1085{
1086 do_page_add_anon_rmap(page, vma, address, 0);
1087}
1088
1089/*
1090 * Special version of the above for do_swap_page, which often runs
1091 * into pages that are exclusively owned by the current process.
1092 * Everybody else should continue to use page_add_anon_rmap above.
1093 */
1094void do_page_add_anon_rmap(struct page *page,
1095 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1096{
5ad64688 1097 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1098 if (first) {
1099 if (!PageTransHuge(page))
1100 __inc_zone_page_state(page, NR_ANON_PAGES);
1101 else
1102 __inc_zone_page_state(page,
1103 NR_ANON_TRANSPARENT_HUGEPAGES);
1104 }
5ad64688
HD
1105 if (unlikely(PageKsm(page)))
1106 return;
1107
c97a9e10 1108 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1109 /* address might be in next vma when migration races vma_adjust */
5ad64688 1110 if (first)
ad8c2ee8 1111 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1112 else
c97a9e10 1113 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1114}
1115
43d8eac4 1116/**
9617d95e
NP
1117 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1118 * @page: the page to add the mapping to
1119 * @vma: the vm area in which the mapping is added
1120 * @address: the user virtual address mapped
1121 *
1122 * Same as page_add_anon_rmap but must only be called on *new* pages.
1123 * This means the inc-and-test can be bypassed.
c97a9e10 1124 * Page does not have to be locked.
9617d95e
NP
1125 */
1126void page_add_new_anon_rmap(struct page *page,
1127 struct vm_area_struct *vma, unsigned long address)
1128{
b5934c53 1129 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1130 SetPageSwapBacked(page);
1131 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1132 if (!PageTransHuge(page))
1133 __inc_zone_page_state(page, NR_ANON_PAGES);
1134 else
1135 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1136 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 1137 if (page_evictable(page, vma))
cbf84b7a 1138 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1139 else
1140 add_page_to_unevictable_list(page);
9617d95e
NP
1141}
1142
1da177e4
LT
1143/**
1144 * page_add_file_rmap - add pte mapping to a file page
1145 * @page: the page to add the mapping to
1146 *
b8072f09 1147 * The caller needs to hold the pte lock.
1da177e4
LT
1148 */
1149void page_add_file_rmap(struct page *page)
1150{
d69b042f 1151 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1152 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1153 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1154 }
1da177e4
LT
1155}
1156
1157/**
1158 * page_remove_rmap - take down pte mapping from a page
1159 * @page: page to remove mapping from
1160 *
b8072f09 1161 * The caller needs to hold the pte lock.
1da177e4 1162 */
edc315fd 1163void page_remove_rmap(struct page *page)
1da177e4 1164{
b904dcfe
KM
1165 /* page still mapped by someone else? */
1166 if (!atomic_add_negative(-1, &page->_mapcount))
1167 return;
1168
1169 /*
1170 * Now that the last pte has gone, s390 must transfer dirty
1171 * flag from storage key to struct page. We can usually skip
1172 * this if the page is anon, so about to be freed; but perhaps
1173 * not if it's in swapcache - there might be another pte slot
1174 * containing the swap entry, but page not yet written to swap.
1175 */
2d42552d
MS
1176 if ((!PageAnon(page) || PageSwapCache(page)) &&
1177 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1178 set_page_dirty(page);
0fe6e20b
NH
1179 /*
1180 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1181 * and not charged by memcg for now.
1182 */
1183 if (unlikely(PageHuge(page)))
1184 return;
b904dcfe
KM
1185 if (PageAnon(page)) {
1186 mem_cgroup_uncharge_page(page);
79134171
AA
1187 if (!PageTransHuge(page))
1188 __dec_zone_page_state(page, NR_ANON_PAGES);
1189 else
1190 __dec_zone_page_state(page,
1191 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1192 } else {
1193 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1194 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 1195 }
b904dcfe
KM
1196 /*
1197 * It would be tidy to reset the PageAnon mapping here,
1198 * but that might overwrite a racing page_add_anon_rmap
1199 * which increments mapcount after us but sets mapping
1200 * before us: so leave the reset to free_hot_cold_page,
1201 * and remember that it's only reliable while mapped.
1202 * Leaving it set also helps swapoff to reinstate ptes
1203 * faster for those pages still in swapcache.
1204 */
1da177e4
LT
1205}
1206
1207/*
1208 * Subfunctions of try_to_unmap: try_to_unmap_one called
99ef0315 1209 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1da177e4 1210 */
5ad64688
HD
1211int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1212 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1213{
1214 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1215 pte_t *pte;
1216 pte_t pteval;
c0718806 1217 spinlock_t *ptl;
1da177e4
LT
1218 int ret = SWAP_AGAIN;
1219
479db0bf 1220 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1221 if (!pte)
81b4082d 1222 goto out;
1da177e4
LT
1223
1224 /*
1225 * If the page is mlock()d, we cannot swap it out.
1226 * If it's recently referenced (perhaps page_referenced
1227 * skipped over this mm) then we should reactivate it.
1228 */
14fa31b8 1229 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1230 if (vma->vm_flags & VM_LOCKED)
1231 goto out_mlock;
1232
af8e3354 1233 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1234 goto out_unmap;
14fa31b8
AK
1235 }
1236 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1237 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1238 ret = SWAP_FAIL;
1239 goto out_unmap;
1240 }
1241 }
1da177e4 1242
1da177e4
LT
1243 /* Nuke the page table entry. */
1244 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1245 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1246
1247 /* Move the dirty bit to the physical page now the pte is gone. */
1248 if (pte_dirty(pteval))
1249 set_page_dirty(page);
1250
365e9c87
HD
1251 /* Update high watermark before we lower rss */
1252 update_hiwater_rss(mm);
1253
888b9f7c
AK
1254 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1255 if (PageAnon(page))
d559db08 1256 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1257 else
d559db08 1258 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1259 set_pte_at(mm, address, pte,
1260 swp_entry_to_pte(make_hwpoison_entry(page)));
1261 } else if (PageAnon(page)) {
4c21e2f2 1262 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1263
1264 if (PageSwapCache(page)) {
1265 /*
1266 * Store the swap location in the pte.
1267 * See handle_pte_fault() ...
1268 */
570a335b
HD
1269 if (swap_duplicate(entry) < 0) {
1270 set_pte_at(mm, address, pte, pteval);
1271 ret = SWAP_FAIL;
1272 goto out_unmap;
1273 }
0697212a
CL
1274 if (list_empty(&mm->mmlist)) {
1275 spin_lock(&mmlist_lock);
1276 if (list_empty(&mm->mmlist))
1277 list_add(&mm->mmlist, &init_mm.mmlist);
1278 spin_unlock(&mmlist_lock);
1279 }
d559db08 1280 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1281 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1282 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1283 /*
1284 * Store the pfn of the page in a special migration
1285 * pte. do_swap_page() will wait until the migration
1286 * pte is removed and then restart fault handling.
1287 */
14fa31b8 1288 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1289 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1290 }
1291 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1292 BUG_ON(pte_file(*pte));
ce1744f4
KK
1293 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1294 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1295 /* Establish migration entry for a file page */
1296 swp_entry_t entry;
1297 entry = make_migration_entry(page, pte_write(pteval));
1298 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1299 } else
d559db08 1300 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1301
edc315fd 1302 page_remove_rmap(page);
1da177e4
LT
1303 page_cache_release(page);
1304
1305out_unmap:
c0718806 1306 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1307out:
1308 return ret;
53f79acb 1309
caed0f48
KM
1310out_mlock:
1311 pte_unmap_unlock(pte, ptl);
1312
1313
1314 /*
1315 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1316 * unstable result and race. Plus, We can't wait here because
2b575eb6 1317 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
caed0f48
KM
1318 * if trylock failed, the page remain in evictable lru and later
1319 * vmscan could retry to move the page to unevictable lru if the
1320 * page is actually mlocked.
1321 */
1322 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1323 if (vma->vm_flags & VM_LOCKED) {
1324 mlock_vma_page(page);
1325 ret = SWAP_MLOCK;
53f79acb 1326 }
caed0f48 1327 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1328 }
1da177e4
LT
1329 return ret;
1330}
1331
1332/*
1333 * objrmap doesn't work for nonlinear VMAs because the assumption that
1334 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1335 * Consequently, given a particular page and its ->index, we cannot locate the
1336 * ptes which are mapping that page without an exhaustive linear search.
1337 *
1338 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1339 * maps the file to which the target page belongs. The ->vm_private_data field
1340 * holds the current cursor into that scan. Successive searches will circulate
1341 * around the vma's virtual address space.
1342 *
1343 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1344 * more scanning pressure is placed against them as well. Eventually pages
1345 * will become fully unmapped and are eligible for eviction.
1346 *
1347 * For very sparsely populated VMAs this is a little inefficient - chances are
1348 * there there won't be many ptes located within the scan cluster. In this case
1349 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1350 *
1351 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1352 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1353 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1354 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1355 */
1356#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1357#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1358
b291f000
NP
1359static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1360 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1361{
1362 struct mm_struct *mm = vma->vm_mm;
1363 pgd_t *pgd;
1364 pud_t *pud;
1365 pmd_t *pmd;
c0718806 1366 pte_t *pte;
1da177e4 1367 pte_t pteval;
c0718806 1368 spinlock_t *ptl;
1da177e4
LT
1369 struct page *page;
1370 unsigned long address;
1371 unsigned long end;
b291f000
NP
1372 int ret = SWAP_AGAIN;
1373 int locked_vma = 0;
1da177e4 1374
1da177e4
LT
1375 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1376 end = address + CLUSTER_SIZE;
1377 if (address < vma->vm_start)
1378 address = vma->vm_start;
1379 if (end > vma->vm_end)
1380 end = vma->vm_end;
1381
1382 pgd = pgd_offset(mm, address);
1383 if (!pgd_present(*pgd))
b291f000 1384 return ret;
1da177e4
LT
1385
1386 pud = pud_offset(pgd, address);
1387 if (!pud_present(*pud))
b291f000 1388 return ret;
1da177e4
LT
1389
1390 pmd = pmd_offset(pud, address);
1391 if (!pmd_present(*pmd))
b291f000
NP
1392 return ret;
1393
1394 /*
af8e3354 1395 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1396 * keep the sem while scanning the cluster for mlocking pages.
1397 */
af8e3354 1398 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1399 locked_vma = (vma->vm_flags & VM_LOCKED);
1400 if (!locked_vma)
1401 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1402 }
c0718806
HD
1403
1404 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1405
365e9c87
HD
1406 /* Update high watermark before we lower rss */
1407 update_hiwater_rss(mm);
1408
c0718806 1409 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1410 if (!pte_present(*pte))
1411 continue;
6aab341e
LT
1412 page = vm_normal_page(vma, address, *pte);
1413 BUG_ON(!page || PageAnon(page));
1da177e4 1414
b291f000
NP
1415 if (locked_vma) {
1416 mlock_vma_page(page); /* no-op if already mlocked */
1417 if (page == check_page)
1418 ret = SWAP_MLOCK;
1419 continue; /* don't unmap */
1420 }
1421
cddb8a5c 1422 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1423 continue;
1424
1425 /* Nuke the page table entry. */
eca35133 1426 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1427 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1428
1429 /* If nonlinear, store the file page offset in the pte. */
1430 if (page->index != linear_page_index(vma, address))
1431 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1432
1433 /* Move the dirty bit to the physical page now the pte is gone. */
1434 if (pte_dirty(pteval))
1435 set_page_dirty(page);
1436
edc315fd 1437 page_remove_rmap(page);
1da177e4 1438 page_cache_release(page);
d559db08 1439 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1440 (*mapcount)--;
1441 }
c0718806 1442 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1443 if (locked_vma)
1444 up_read(&vma->vm_mm->mmap_sem);
1445 return ret;
1da177e4
LT
1446}
1447
71e3aac0 1448bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1449{
1450 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1451
1452 if (!maybe_stack)
1453 return false;
1454
1455 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1456 VM_STACK_INCOMPLETE_SETUP)
1457 return true;
1458
1459 return false;
1460}
1461
b291f000
NP
1462/**
1463 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1464 * rmap method
1465 * @page: the page to unmap/unlock
8051be5e 1466 * @flags: action and flags
b291f000
NP
1467 *
1468 * Find all the mappings of a page using the mapping pointer and the vma chains
1469 * contained in the anon_vma struct it points to.
1470 *
1471 * This function is only called from try_to_unmap/try_to_munlock for
1472 * anonymous pages.
1473 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1474 * where the page was found will be held for write. So, we won't recheck
1475 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1476 * 'LOCKED.
1477 */
14fa31b8 1478static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1479{
1480 struct anon_vma *anon_vma;
5beb4930 1481 struct anon_vma_chain *avc;
1da177e4 1482 int ret = SWAP_AGAIN;
b291f000 1483
1da177e4
LT
1484 anon_vma = page_lock_anon_vma(page);
1485 if (!anon_vma)
1486 return ret;
1487
5beb4930
RR
1488 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1489 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1490 unsigned long address;
1491
1492 /*
1493 * During exec, a temporary VMA is setup and later moved.
1494 * The VMA is moved under the anon_vma lock but not the
1495 * page tables leading to a race where migration cannot
1496 * find the migration ptes. Rather than increasing the
1497 * locking requirements of exec(), migration skips
1498 * temporary VMAs until after exec() completes.
1499 */
ce1744f4 1500 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
a8bef8ff
MG
1501 is_vma_temporary_stack(vma))
1502 continue;
1503
1504 address = vma_address(page, vma);
1cb1729b
HD
1505 if (address == -EFAULT)
1506 continue;
1507 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1508 if (ret != SWAP_AGAIN || !page_mapped(page))
1509 break;
1da177e4 1510 }
34bbd704
ON
1511
1512 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1513 return ret;
1514}
1515
1516/**
b291f000
NP
1517 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1518 * @page: the page to unmap/unlock
14fa31b8 1519 * @flags: action and flags
1da177e4
LT
1520 *
1521 * Find all the mappings of a page using the mapping pointer and the vma chains
1522 * contained in the address_space struct it points to.
1523 *
b291f000
NP
1524 * This function is only called from try_to_unmap/try_to_munlock for
1525 * object-based pages.
1526 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1527 * where the page was found will be held for write. So, we won't recheck
1528 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1529 * 'LOCKED.
1da177e4 1530 */
14fa31b8 1531static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1532{
1533 struct address_space *mapping = page->mapping;
1534 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1535 struct vm_area_struct *vma;
1536 struct prio_tree_iter iter;
1537 int ret = SWAP_AGAIN;
1538 unsigned long cursor;
1539 unsigned long max_nl_cursor = 0;
1540 unsigned long max_nl_size = 0;
1541 unsigned int mapcount;
1542
3d48ae45 1543 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 1544 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1545 unsigned long address = vma_address(page, vma);
1546 if (address == -EFAULT)
1547 continue;
1548 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1549 if (ret != SWAP_AGAIN || !page_mapped(page))
1550 goto out;
1da177e4
LT
1551 }
1552
1553 if (list_empty(&mapping->i_mmap_nonlinear))
1554 goto out;
1555
53f79acb
HD
1556 /*
1557 * We don't bother to try to find the munlocked page in nonlinears.
1558 * It's costly. Instead, later, page reclaim logic may call
1559 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1560 */
1561 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1562 goto out;
1563
1da177e4
LT
1564 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1565 shared.vm_set.list) {
1da177e4
LT
1566 cursor = (unsigned long) vma->vm_private_data;
1567 if (cursor > max_nl_cursor)
1568 max_nl_cursor = cursor;
1569 cursor = vma->vm_end - vma->vm_start;
1570 if (cursor > max_nl_size)
1571 max_nl_size = cursor;
1572 }
1573
b291f000 1574 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1575 ret = SWAP_FAIL;
1576 goto out;
1577 }
1578
1579 /*
1580 * We don't try to search for this page in the nonlinear vmas,
1581 * and page_referenced wouldn't have found it anyway. Instead
1582 * just walk the nonlinear vmas trying to age and unmap some.
1583 * The mapcount of the page we came in with is irrelevant,
1584 * but even so use it as a guide to how hard we should try?
1585 */
1586 mapcount = page_mapcount(page);
1587 if (!mapcount)
1588 goto out;
3d48ae45 1589 cond_resched();
1da177e4
LT
1590
1591 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1592 if (max_nl_cursor == 0)
1593 max_nl_cursor = CLUSTER_SIZE;
1594
1595 do {
1596 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1597 shared.vm_set.list) {
1da177e4 1598 cursor = (unsigned long) vma->vm_private_data;
839b9685 1599 while ( cursor < max_nl_cursor &&
1da177e4 1600 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1601 if (try_to_unmap_cluster(cursor, &mapcount,
1602 vma, page) == SWAP_MLOCK)
1603 ret = SWAP_MLOCK;
1da177e4
LT
1604 cursor += CLUSTER_SIZE;
1605 vma->vm_private_data = (void *) cursor;
1606 if ((int)mapcount <= 0)
1607 goto out;
1608 }
1609 vma->vm_private_data = (void *) max_nl_cursor;
1610 }
3d48ae45 1611 cond_resched();
1da177e4
LT
1612 max_nl_cursor += CLUSTER_SIZE;
1613 } while (max_nl_cursor <= max_nl_size);
1614
1615 /*
1616 * Don't loop forever (perhaps all the remaining pages are
1617 * in locked vmas). Reset cursor on all unreserved nonlinear
1618 * vmas, now forgetting on which ones it had fallen behind.
1619 */
101d2be7
HD
1620 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1621 vma->vm_private_data = NULL;
1da177e4 1622out:
3d48ae45 1623 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1624 return ret;
1625}
1626
1627/**
1628 * try_to_unmap - try to remove all page table mappings to a page
1629 * @page: the page to get unmapped
14fa31b8 1630 * @flags: action and flags
1da177e4
LT
1631 *
1632 * Tries to remove all the page table entries which are mapping this
1633 * page, used in the pageout path. Caller must hold the page lock.
1634 * Return values are:
1635 *
1636 * SWAP_SUCCESS - we succeeded in removing all mappings
1637 * SWAP_AGAIN - we missed a mapping, try again later
1638 * SWAP_FAIL - the page is unswappable
b291f000 1639 * SWAP_MLOCK - page is mlocked.
1da177e4 1640 */
14fa31b8 1641int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1642{
1643 int ret;
1644
1da177e4 1645 BUG_ON(!PageLocked(page));
91600e9e 1646 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1647
5ad64688
HD
1648 if (unlikely(PageKsm(page)))
1649 ret = try_to_unmap_ksm(page, flags);
1650 else if (PageAnon(page))
14fa31b8 1651 ret = try_to_unmap_anon(page, flags);
1da177e4 1652 else
14fa31b8 1653 ret = try_to_unmap_file(page, flags);
b291f000 1654 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1655 ret = SWAP_SUCCESS;
1656 return ret;
1657}
81b4082d 1658
b291f000
NP
1659/**
1660 * try_to_munlock - try to munlock a page
1661 * @page: the page to be munlocked
1662 *
1663 * Called from munlock code. Checks all of the VMAs mapping the page
1664 * to make sure nobody else has this page mlocked. The page will be
1665 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1666 *
1667 * Return values are:
1668 *
53f79acb 1669 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1670 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1671 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1672 * SWAP_MLOCK - page is now mlocked.
1673 */
1674int try_to_munlock(struct page *page)
1675{
1676 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1677
5ad64688
HD
1678 if (unlikely(PageKsm(page)))
1679 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1680 else if (PageAnon(page))
14fa31b8 1681 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1682 else
14fa31b8 1683 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1684}
e9995ef9 1685
01d8b20d 1686void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1687{
01d8b20d 1688 struct anon_vma *root = anon_vma->root;
76545066 1689
01d8b20d
PZ
1690 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1691 anon_vma_free(root);
76545066 1692
01d8b20d 1693 anon_vma_free(anon_vma);
76545066 1694}
76545066 1695
e9995ef9
HD
1696#ifdef CONFIG_MIGRATION
1697/*
1698 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1699 * Called by migrate.c to remove migration ptes, but might be used more later.
1700 */
1701static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1702 struct vm_area_struct *, unsigned long, void *), void *arg)
1703{
1704 struct anon_vma *anon_vma;
5beb4930 1705 struct anon_vma_chain *avc;
e9995ef9
HD
1706 int ret = SWAP_AGAIN;
1707
1708 /*
1709 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1710 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1711 * are holding mmap_sem. Users without mmap_sem are required to
1712 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1713 */
1714 anon_vma = page_anon_vma(page);
1715 if (!anon_vma)
1716 return ret;
cba48b98 1717 anon_vma_lock(anon_vma);
5beb4930
RR
1718 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1719 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1720 unsigned long address = vma_address(page, vma);
1721 if (address == -EFAULT)
1722 continue;
1723 ret = rmap_one(page, vma, address, arg);
1724 if (ret != SWAP_AGAIN)
1725 break;
1726 }
cba48b98 1727 anon_vma_unlock(anon_vma);
e9995ef9
HD
1728 return ret;
1729}
1730
1731static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1732 struct vm_area_struct *, unsigned long, void *), void *arg)
1733{
1734 struct address_space *mapping = page->mapping;
1735 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1736 struct vm_area_struct *vma;
1737 struct prio_tree_iter iter;
1738 int ret = SWAP_AGAIN;
1739
1740 if (!mapping)
1741 return ret;
3d48ae45 1742 mutex_lock(&mapping->i_mmap_mutex);
e9995ef9
HD
1743 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1744 unsigned long address = vma_address(page, vma);
1745 if (address == -EFAULT)
1746 continue;
1747 ret = rmap_one(page, vma, address, arg);
1748 if (ret != SWAP_AGAIN)
1749 break;
1750 }
1751 /*
1752 * No nonlinear handling: being always shared, nonlinear vmas
1753 * never contain migration ptes. Decide what to do about this
1754 * limitation to linear when we need rmap_walk() on nonlinear.
1755 */
3d48ae45 1756 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1757 return ret;
1758}
1759
1760int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1761 struct vm_area_struct *, unsigned long, void *), void *arg)
1762{
1763 VM_BUG_ON(!PageLocked(page));
1764
1765 if (unlikely(PageKsm(page)))
1766 return rmap_walk_ksm(page, rmap_one, arg);
1767 else if (PageAnon(page))
1768 return rmap_walk_anon(page, rmap_one, arg);
1769 else
1770 return rmap_walk_file(page, rmap_one, arg);
1771}
1772#endif /* CONFIG_MIGRATION */
0fe6e20b 1773
e3390f67 1774#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1775/*
1776 * The following three functions are for anonymous (private mapped) hugepages.
1777 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1778 * and no lru code, because we handle hugepages differently from common pages.
1779 */
1780static void __hugepage_set_anon_rmap(struct page *page,
1781 struct vm_area_struct *vma, unsigned long address, int exclusive)
1782{
1783 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1784
0fe6e20b 1785 BUG_ON(!anon_vma);
433abed6
NH
1786
1787 if (PageAnon(page))
1788 return;
1789 if (!exclusive)
1790 anon_vma = anon_vma->root;
1791
0fe6e20b
NH
1792 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1793 page->mapping = (struct address_space *) anon_vma;
1794 page->index = linear_page_index(vma, address);
1795}
1796
1797void hugepage_add_anon_rmap(struct page *page,
1798 struct vm_area_struct *vma, unsigned long address)
1799{
1800 struct anon_vma *anon_vma = vma->anon_vma;
1801 int first;
a850ea30
NH
1802
1803 BUG_ON(!PageLocked(page));
0fe6e20b 1804 BUG_ON(!anon_vma);
5dbe0af4 1805 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1806 first = atomic_inc_and_test(&page->_mapcount);
1807 if (first)
1808 __hugepage_set_anon_rmap(page, vma, address, 0);
1809}
1810
1811void hugepage_add_new_anon_rmap(struct page *page,
1812 struct vm_area_struct *vma, unsigned long address)
1813{
1814 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1815 atomic_set(&page->_mapcount, 0);
1816 __hugepage_set_anon_rmap(page, vma, address, 1);
1817}
e3390f67 1818#endif /* CONFIG_HUGETLB_PAGE */