mm/munlock: mlock_page() munlock_page() batch by pagevec
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0
JK
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
36 * i_pages lock (widely used)
e809c3fe 37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
730633f0
JK
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 44 *
9608703e 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 46 * ->tasklist_lock
6a46079c 47 * pte map lock
c0d0381a
MK
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
1da177e4
LT
76
77#include <asm/tlbflush.h>
78
72b252ae
MG
79#include <trace/events/tlb.h>
80
b291f000
NP
81#include "internal.h"
82
fdd2e5f8 83static struct kmem_cache *anon_vma_cachep;
5beb4930 84static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
85
86static inline struct anon_vma *anon_vma_alloc(void)
87{
01d8b20d
PZ
88 struct anon_vma *anon_vma;
89
90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
91 if (anon_vma) {
92 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
93 anon_vma->degree = 1; /* Reference for first vma */
94 anon_vma->parent = anon_vma;
01d8b20d
PZ
95 /*
96 * Initialise the anon_vma root to point to itself. If called
97 * from fork, the root will be reset to the parents anon_vma.
98 */
99 anon_vma->root = anon_vma;
100 }
101
102 return anon_vma;
fdd2e5f8
AB
103}
104
01d8b20d 105static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 106{
01d8b20d 107 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
108
109 /*
4fc3f1d6 110 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
111 * we can safely hold the lock without the anon_vma getting
112 * freed.
113 *
114 * Relies on the full mb implied by the atomic_dec_and_test() from
115 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 116 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 117 *
4fc3f1d6
IM
118 * page_lock_anon_vma_read() VS put_anon_vma()
119 * down_read_trylock() atomic_dec_and_test()
88c22088 120 * LOCK MB
4fc3f1d6 121 * atomic_read() rwsem_is_locked()
88c22088
PZ
122 *
123 * LOCK should suffice since the actual taking of the lock must
124 * happen _before_ what follows.
125 */
7f39dda9 126 might_sleep();
5a505085 127 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 128 anon_vma_lock_write(anon_vma);
08b52706 129 anon_vma_unlock_write(anon_vma);
88c22088
PZ
130 }
131
fdd2e5f8
AB
132 kmem_cache_free(anon_vma_cachep, anon_vma);
133}
1da177e4 134
dd34739c 135static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 136{
dd34739c 137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
138}
139
e574b5fd 140static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
141{
142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
143}
144
6583a843
KC
145static void anon_vma_chain_link(struct vm_area_struct *vma,
146 struct anon_vma_chain *avc,
147 struct anon_vma *anon_vma)
148{
149 avc->vma = vma;
150 avc->anon_vma = anon_vma;
151 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
153}
154
d9d332e0 155/**
d5a187da 156 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
157 * @vma: the memory region in question
158 *
159 * This makes sure the memory mapping described by 'vma' has
160 * an 'anon_vma' attached to it, so that we can associate the
161 * anonymous pages mapped into it with that anon_vma.
162 *
d5a187da
VB
163 * The common case will be that we already have one, which
164 * is handled inline by anon_vma_prepare(). But if
23a0790a 165 * not we either need to find an adjacent mapping that we
d9d332e0
LT
166 * can re-use the anon_vma from (very common when the only
167 * reason for splitting a vma has been mprotect()), or we
168 * allocate a new one.
169 *
170 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 171 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
aaf1f990 172 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
173 * allocated vma (it depends on RCU to make sure that the
174 * anon_vma isn't actually destroyed).
175 *
176 * As a result, we need to do proper anon_vma locking even
177 * for the new allocation. At the same time, we do not want
178 * to do any locking for the common case of already having
179 * an anon_vma.
180 *
c1e8d7c6 181 * This must be called with the mmap_lock held for reading.
d9d332e0 182 */
d5a187da 183int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 184{
d5a187da
VB
185 struct mm_struct *mm = vma->vm_mm;
186 struct anon_vma *anon_vma, *allocated;
5beb4930 187 struct anon_vma_chain *avc;
1da177e4
LT
188
189 might_sleep();
1da177e4 190
d5a187da
VB
191 avc = anon_vma_chain_alloc(GFP_KERNEL);
192 if (!avc)
193 goto out_enomem;
194
195 anon_vma = find_mergeable_anon_vma(vma);
196 allocated = NULL;
197 if (!anon_vma) {
198 anon_vma = anon_vma_alloc();
199 if (unlikely(!anon_vma))
200 goto out_enomem_free_avc;
201 allocated = anon_vma;
202 }
5beb4930 203
d5a187da
VB
204 anon_vma_lock_write(anon_vma);
205 /* page_table_lock to protect against threads */
206 spin_lock(&mm->page_table_lock);
207 if (likely(!vma->anon_vma)) {
208 vma->anon_vma = anon_vma;
209 anon_vma_chain_link(vma, avc, anon_vma);
210 /* vma reference or self-parent link for new root */
211 anon_vma->degree++;
d9d332e0 212 allocated = NULL;
d5a187da
VB
213 avc = NULL;
214 }
215 spin_unlock(&mm->page_table_lock);
216 anon_vma_unlock_write(anon_vma);
1da177e4 217
d5a187da
VB
218 if (unlikely(allocated))
219 put_anon_vma(allocated);
220 if (unlikely(avc))
221 anon_vma_chain_free(avc);
31f2b0eb 222
1da177e4 223 return 0;
5beb4930
RR
224
225 out_enomem_free_avc:
226 anon_vma_chain_free(avc);
227 out_enomem:
228 return -ENOMEM;
1da177e4
LT
229}
230
bb4aa396
LT
231/*
232 * This is a useful helper function for locking the anon_vma root as
233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
234 * have the same vma.
235 *
236 * Such anon_vma's should have the same root, so you'd expect to see
237 * just a single mutex_lock for the whole traversal.
238 */
239static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
240{
241 struct anon_vma *new_root = anon_vma->root;
242 if (new_root != root) {
243 if (WARN_ON_ONCE(root))
5a505085 244 up_write(&root->rwsem);
bb4aa396 245 root = new_root;
5a505085 246 down_write(&root->rwsem);
bb4aa396
LT
247 }
248 return root;
249}
250
251static inline void unlock_anon_vma_root(struct anon_vma *root)
252{
253 if (root)
5a505085 254 up_write(&root->rwsem);
bb4aa396
LT
255}
256
5beb4930
RR
257/*
258 * Attach the anon_vmas from src to dst.
259 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 260 *
cb152a1a 261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
262 * anon_vma_fork(). The first three want an exact copy of src, while the last
263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
266 *
267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
268 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
269 * This prevents degradation of anon_vma hierarchy to endless linear chain in
270 * case of constantly forking task. On the other hand, an anon_vma with more
271 * than one child isn't reused even if there was no alive vma, thus rmap
272 * walker has a good chance of avoiding scanning the whole hierarchy when it
273 * searches where page is mapped.
5beb4930
RR
274 */
275int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 276{
5beb4930 277 struct anon_vma_chain *avc, *pavc;
bb4aa396 278 struct anon_vma *root = NULL;
5beb4930 279
646d87b4 280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
281 struct anon_vma *anon_vma;
282
dd34739c
LT
283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
284 if (unlikely(!avc)) {
285 unlock_anon_vma_root(root);
286 root = NULL;
287 avc = anon_vma_chain_alloc(GFP_KERNEL);
288 if (!avc)
289 goto enomem_failure;
290 }
bb4aa396
LT
291 anon_vma = pavc->anon_vma;
292 root = lock_anon_vma_root(root, anon_vma);
293 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
294
295 /*
296 * Reuse existing anon_vma if its degree lower than two,
297 * that means it has no vma and only one anon_vma child.
298 *
299 * Do not chose parent anon_vma, otherwise first child
300 * will always reuse it. Root anon_vma is never reused:
301 * it has self-parent reference and at least one child.
302 */
47b390d2
WY
303 if (!dst->anon_vma && src->anon_vma &&
304 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 305 dst->anon_vma = anon_vma;
5beb4930 306 }
7a3ef208
KK
307 if (dst->anon_vma)
308 dst->anon_vma->degree++;
bb4aa396 309 unlock_anon_vma_root(root);
5beb4930 310 return 0;
1da177e4 311
5beb4930 312 enomem_failure:
3fe89b3e
LY
313 /*
314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
315 * decremented in unlink_anon_vmas().
316 * We can safely do this because callers of anon_vma_clone() don't care
317 * about dst->anon_vma if anon_vma_clone() failed.
318 */
319 dst->anon_vma = NULL;
5beb4930
RR
320 unlink_anon_vmas(dst);
321 return -ENOMEM;
1da177e4
LT
322}
323
5beb4930
RR
324/*
325 * Attach vma to its own anon_vma, as well as to the anon_vmas that
326 * the corresponding VMA in the parent process is attached to.
327 * Returns 0 on success, non-zero on failure.
328 */
329int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 330{
5beb4930
RR
331 struct anon_vma_chain *avc;
332 struct anon_vma *anon_vma;
c4ea95d7 333 int error;
1da177e4 334
5beb4930
RR
335 /* Don't bother if the parent process has no anon_vma here. */
336 if (!pvma->anon_vma)
337 return 0;
338
7a3ef208
KK
339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
340 vma->anon_vma = NULL;
341
5beb4930
RR
342 /*
343 * First, attach the new VMA to the parent VMA's anon_vmas,
344 * so rmap can find non-COWed pages in child processes.
345 */
c4ea95d7
DF
346 error = anon_vma_clone(vma, pvma);
347 if (error)
348 return error;
5beb4930 349
7a3ef208
KK
350 /* An existing anon_vma has been reused, all done then. */
351 if (vma->anon_vma)
352 return 0;
353
5beb4930
RR
354 /* Then add our own anon_vma. */
355 anon_vma = anon_vma_alloc();
356 if (!anon_vma)
357 goto out_error;
dd34739c 358 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
359 if (!avc)
360 goto out_error_free_anon_vma;
5c341ee1
RR
361
362 /*
aaf1f990 363 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
364 * lock any of the anon_vmas in this anon_vma tree.
365 */
366 anon_vma->root = pvma->anon_vma->root;
7a3ef208 367 anon_vma->parent = pvma->anon_vma;
76545066 368 /*
01d8b20d
PZ
369 * With refcounts, an anon_vma can stay around longer than the
370 * process it belongs to. The root anon_vma needs to be pinned until
371 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
372 */
373 get_anon_vma(anon_vma->root);
5beb4930
RR
374 /* Mark this anon_vma as the one where our new (COWed) pages go. */
375 vma->anon_vma = anon_vma;
4fc3f1d6 376 anon_vma_lock_write(anon_vma);
5c341ee1 377 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 378 anon_vma->parent->degree++;
08b52706 379 anon_vma_unlock_write(anon_vma);
5beb4930
RR
380
381 return 0;
382
383 out_error_free_anon_vma:
01d8b20d 384 put_anon_vma(anon_vma);
5beb4930 385 out_error:
4946d54c 386 unlink_anon_vmas(vma);
5beb4930 387 return -ENOMEM;
1da177e4
LT
388}
389
5beb4930
RR
390void unlink_anon_vmas(struct vm_area_struct *vma)
391{
392 struct anon_vma_chain *avc, *next;
eee2acba 393 struct anon_vma *root = NULL;
5beb4930 394
5c341ee1
RR
395 /*
396 * Unlink each anon_vma chained to the VMA. This list is ordered
397 * from newest to oldest, ensuring the root anon_vma gets freed last.
398 */
5beb4930 399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
400 struct anon_vma *anon_vma = avc->anon_vma;
401
402 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
404
405 /*
406 * Leave empty anon_vmas on the list - we'll need
407 * to free them outside the lock.
408 */
f808c13f 409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 410 anon_vma->parent->degree--;
eee2acba 411 continue;
7a3ef208 412 }
eee2acba
PZ
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
ee8ab190 417 if (vma->anon_vma) {
7a3ef208 418 vma->anon_vma->degree--;
ee8ab190
LX
419
420 /*
421 * vma would still be needed after unlink, and anon_vma will be prepared
422 * when handle fault.
423 */
424 vma->anon_vma = NULL;
425 }
eee2acba
PZ
426 unlock_anon_vma_root(root);
427
428 /*
429 * Iterate the list once more, it now only contains empty and unlinked
430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 431 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
432 */
433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
434 struct anon_vma *anon_vma = avc->anon_vma;
435
e4c5800a 436 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
437 put_anon_vma(anon_vma);
438
5beb4930
RR
439 list_del(&avc->same_vma);
440 anon_vma_chain_free(avc);
441 }
442}
443
51cc5068 444static void anon_vma_ctor(void *data)
1da177e4 445{
a35afb83 446 struct anon_vma *anon_vma = data;
1da177e4 447
5a505085 448 init_rwsem(&anon_vma->rwsem);
83813267 449 atomic_set(&anon_vma->refcount, 0);
f808c13f 450 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
451}
452
453void __init anon_vma_init(void)
454{
455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
457 anon_vma_ctor);
458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
459 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
460}
461
462/*
6111e4ca
PZ
463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
464 *
465 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
466 * the best this function can do is return a refcount increased anon_vma
467 * that might have been relevant to this page.
6111e4ca
PZ
468 *
469 * The page might have been remapped to a different anon_vma or the anon_vma
470 * returned may already be freed (and even reused).
471 *
bc658c96
PZ
472 * In case it was remapped to a different anon_vma, the new anon_vma will be a
473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
474 * ensure that any anon_vma obtained from the page will still be valid for as
475 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
476 *
6111e4ca
PZ
477 * All users of this function must be very careful when walking the anon_vma
478 * chain and verify that the page in question is indeed mapped in it
479 * [ something equivalent to page_mapped_in_vma() ].
480 *
091e4299
MC
481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
483 * if there is a mapcount, we can dereference the anon_vma after observing
484 * those.
1da177e4 485 */
746b18d4 486struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 487{
746b18d4 488 struct anon_vma *anon_vma = NULL;
1da177e4
LT
489 unsigned long anon_mapping;
490
491 rcu_read_lock();
4db0c3c2 492 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
494 goto out;
495 if (!page_mapped(page))
496 goto out;
497
498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
499 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
500 anon_vma = NULL;
501 goto out;
502 }
f1819427
HD
503
504 /*
505 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
506 * freed. But if it has been unmapped, we have no security against the
507 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 509 * above cannot corrupt).
f1819427 510 */
746b18d4 511 if (!page_mapped(page)) {
7f39dda9 512 rcu_read_unlock();
746b18d4 513 put_anon_vma(anon_vma);
7f39dda9 514 return NULL;
746b18d4 515 }
1da177e4
LT
516out:
517 rcu_read_unlock();
746b18d4
PZ
518
519 return anon_vma;
520}
521
88c22088
PZ
522/*
523 * Similar to page_get_anon_vma() except it locks the anon_vma.
524 *
525 * Its a little more complex as it tries to keep the fast path to a single
526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
527 * reference like with page_get_anon_vma() and then block on the mutex.
528 */
4fc3f1d6 529struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 530{
88c22088 531 struct anon_vma *anon_vma = NULL;
eee0f252 532 struct anon_vma *root_anon_vma;
88c22088 533 unsigned long anon_mapping;
746b18d4 534
88c22088 535 rcu_read_lock();
4db0c3c2 536 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
538 goto out;
539 if (!page_mapped(page))
540 goto out;
541
542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 543 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 544 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 545 /*
eee0f252
HD
546 * If the page is still mapped, then this anon_vma is still
547 * its anon_vma, and holding the mutex ensures that it will
bc658c96 548 * not go away, see anon_vma_free().
88c22088 549 */
eee0f252 550 if (!page_mapped(page)) {
4fc3f1d6 551 up_read(&root_anon_vma->rwsem);
88c22088
PZ
552 anon_vma = NULL;
553 }
554 goto out;
555 }
746b18d4 556
88c22088
PZ
557 /* trylock failed, we got to sleep */
558 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
559 anon_vma = NULL;
560 goto out;
561 }
562
563 if (!page_mapped(page)) {
7f39dda9 564 rcu_read_unlock();
88c22088 565 put_anon_vma(anon_vma);
7f39dda9 566 return NULL;
88c22088
PZ
567 }
568
569 /* we pinned the anon_vma, its safe to sleep */
570 rcu_read_unlock();
4fc3f1d6 571 anon_vma_lock_read(anon_vma);
88c22088
PZ
572
573 if (atomic_dec_and_test(&anon_vma->refcount)) {
574 /*
575 * Oops, we held the last refcount, release the lock
576 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 577 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 578 */
4fc3f1d6 579 anon_vma_unlock_read(anon_vma);
88c22088
PZ
580 __put_anon_vma(anon_vma);
581 anon_vma = NULL;
582 }
583
584 return anon_vma;
585
586out:
587 rcu_read_unlock();
746b18d4 588 return anon_vma;
34bbd704
ON
589}
590
4fc3f1d6 591void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 592{
4fc3f1d6 593 anon_vma_unlock_read(anon_vma);
1da177e4
LT
594}
595
72b252ae 596#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
597/*
598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
599 * important if a PTE was dirty when it was unmapped that it's flushed
600 * before any IO is initiated on the page to prevent lost writes. Similarly,
601 * it must be flushed before freeing to prevent data leakage.
602 */
603void try_to_unmap_flush(void)
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
606
607 if (!tlb_ubc->flush_required)
608 return;
609
e73ad5ff 610 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 611 tlb_ubc->flush_required = false;
d950c947 612 tlb_ubc->writable = false;
72b252ae
MG
613}
614
d950c947
MG
615/* Flush iff there are potentially writable TLB entries that can race with IO */
616void try_to_unmap_flush_dirty(void)
617{
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
622}
623
5ee2fa2f
HY
624/*
625 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
626 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
627 */
628#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
629#define TLB_FLUSH_BATCH_PENDING_MASK \
630 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
631#define TLB_FLUSH_BATCH_PENDING_LARGE \
632 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
633
c7ab0d2f 634static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
635{
636 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
5ee2fa2f 637 int batch, nbatch;
72b252ae 638
e73ad5ff 639 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 640 tlb_ubc->flush_required = true;
d950c947 641
3ea27719
MG
642 /*
643 * Ensure compiler does not re-order the setting of tlb_flush_batched
644 * before the PTE is cleared.
645 */
646 barrier();
5ee2fa2f
HY
647 batch = atomic_read(&mm->tlb_flush_batched);
648retry:
649 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
650 /*
651 * Prevent `pending' from catching up with `flushed' because of
652 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
653 * `pending' becomes large.
654 */
655 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
656 if (nbatch != batch) {
657 batch = nbatch;
658 goto retry;
659 }
660 } else {
661 atomic_inc(&mm->tlb_flush_batched);
662 }
3ea27719 663
d950c947
MG
664 /*
665 * If the PTE was dirty then it's best to assume it's writable. The
666 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
667 * before the page is queued for IO.
668 */
669 if (writable)
670 tlb_ubc->writable = true;
72b252ae
MG
671}
672
673/*
674 * Returns true if the TLB flush should be deferred to the end of a batch of
675 * unmap operations to reduce IPIs.
676 */
677static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678{
679 bool should_defer = false;
680
681 if (!(flags & TTU_BATCH_FLUSH))
682 return false;
683
684 /* If remote CPUs need to be flushed then defer batch the flush */
685 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
686 should_defer = true;
687 put_cpu();
688
689 return should_defer;
690}
3ea27719
MG
691
692/*
693 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
694 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
695 * operation such as mprotect or munmap to race between reclaim unmapping
696 * the page and flushing the page. If this race occurs, it potentially allows
697 * access to data via a stale TLB entry. Tracking all mm's that have TLB
698 * batching in flight would be expensive during reclaim so instead track
699 * whether TLB batching occurred in the past and if so then do a flush here
700 * if required. This will cost one additional flush per reclaim cycle paid
701 * by the first operation at risk such as mprotect and mumap.
702 *
703 * This must be called under the PTL so that an access to tlb_flush_batched
704 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
705 * via the PTL.
706 */
707void flush_tlb_batched_pending(struct mm_struct *mm)
708{
5ee2fa2f
HY
709 int batch = atomic_read(&mm->tlb_flush_batched);
710 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
711 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
3ea27719 712
5ee2fa2f
HY
713 if (pending != flushed) {
714 flush_tlb_mm(mm);
3ea27719 715 /*
5ee2fa2f
HY
716 * If the new TLB flushing is pending during flushing, leave
717 * mm->tlb_flush_batched as is, to avoid losing flushing.
3ea27719 718 */
5ee2fa2f
HY
719 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
720 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
3ea27719
MG
721 }
722}
72b252ae 723#else
c7ab0d2f 724static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
725{
726}
727
728static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
729{
730 return false;
731}
732#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
733
1da177e4 734/*
bf89c8c8 735 * At what user virtual address is page expected in vma?
ab941e0f 736 * Caller should check the page is actually part of the vma.
1da177e4
LT
737 */
738unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
739{
21d0d443 740 if (PageAnon(page)) {
4829b906
HD
741 struct anon_vma *page__anon_vma = page_anon_vma(page);
742 /*
743 * Note: swapoff's unuse_vma() is more efficient with this
744 * check, and needs it to match anon_vma when KSM is active.
745 */
746 if (!vma->anon_vma || !page__anon_vma ||
747 vma->anon_vma->root != page__anon_vma->root)
21d0d443 748 return -EFAULT;
31657170
JW
749 } else if (!vma->vm_file) {
750 return -EFAULT;
751 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
1da177e4 752 return -EFAULT;
31657170 753 }
494334e4
HD
754
755 return vma_address(page, vma);
1da177e4
LT
756}
757
6219049a
BL
758pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
759{
760 pgd_t *pgd;
c2febafc 761 p4d_t *p4d;
6219049a
BL
762 pud_t *pud;
763 pmd_t *pmd = NULL;
f72e7dcd 764 pmd_t pmde;
6219049a
BL
765
766 pgd = pgd_offset(mm, address);
767 if (!pgd_present(*pgd))
768 goto out;
769
c2febafc
KS
770 p4d = p4d_offset(pgd, address);
771 if (!p4d_present(*p4d))
772 goto out;
773
774 pud = pud_offset(p4d, address);
6219049a
BL
775 if (!pud_present(*pud))
776 goto out;
777
778 pmd = pmd_offset(pud, address);
f72e7dcd 779 /*
8809aa2d 780 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
781 * without holding anon_vma lock for write. So when looking for a
782 * genuine pmde (in which to find pte), test present and !THP together.
783 */
e37c6982
CB
784 pmde = *pmd;
785 barrier();
f72e7dcd 786 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
787 pmd = NULL;
788out:
789 return pmd;
790}
791
8749cfea
VD
792struct page_referenced_arg {
793 int mapcount;
794 int referenced;
795 unsigned long vm_flags;
796 struct mem_cgroup *memcg;
797};
798/*
799 * arg: page_referenced_arg will be passed
800 */
e4b82222 801static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
802 unsigned long address, void *arg)
803{
8749cfea 804 struct page_referenced_arg *pra = arg;
8eaedede
KS
805 struct page_vma_mapped_walk pvmw = {
806 .page = page,
807 .vma = vma,
808 .address = address,
809 };
8749cfea
VD
810 int referenced = 0;
811
8eaedede
KS
812 while (page_vma_mapped_walk(&pvmw)) {
813 address = pvmw.address;
b20ce5e0 814
8eaedede
KS
815 if (vma->vm_flags & VM_LOCKED) {
816 page_vma_mapped_walk_done(&pvmw);
817 pra->vm_flags |= VM_LOCKED;
e4b82222 818 return false; /* To break the loop */
8eaedede 819 }
71e3aac0 820
8eaedede
KS
821 if (pvmw.pte) {
822 if (ptep_clear_flush_young_notify(vma, address,
823 pvmw.pte)) {
824 /*
825 * Don't treat a reference through
826 * a sequentially read mapping as such.
827 * If the page has been used in another mapping,
828 * we will catch it; if this other mapping is
829 * already gone, the unmap path will have set
830 * PG_referenced or activated the page.
831 */
832 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
833 referenced++;
834 }
835 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
836 if (pmdp_clear_flush_young_notify(vma, address,
837 pvmw.pmd))
8749cfea 838 referenced++;
8eaedede
KS
839 } else {
840 /* unexpected pmd-mapped page? */
841 WARN_ON_ONCE(1);
8749cfea 842 }
8eaedede
KS
843
844 pra->mapcount--;
b20ce5e0 845 }
b20ce5e0 846
33c3fc71
VD
847 if (referenced)
848 clear_page_idle(page);
849 if (test_and_clear_page_young(page))
850 referenced++;
851
9f32624b
JK
852 if (referenced) {
853 pra->referenced++;
854 pra->vm_flags |= vma->vm_flags;
1da177e4 855 }
34bbd704 856
9f32624b 857 if (!pra->mapcount)
e4b82222 858 return false; /* To break the loop */
9f32624b 859
e4b82222 860 return true;
1da177e4
LT
861}
862
9f32624b 863static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 864{
9f32624b
JK
865 struct page_referenced_arg *pra = arg;
866 struct mem_cgroup *memcg = pra->memcg;
1da177e4 867
9f32624b
JK
868 if (!mm_match_cgroup(vma->vm_mm, memcg))
869 return true;
1da177e4 870
9f32624b 871 return false;
1da177e4
LT
872}
873
874/**
875 * page_referenced - test if the page was referenced
876 * @page: the page to test
877 * @is_locked: caller holds lock on the page
72835c86 878 * @memcg: target memory cgroup
6fe6b7e3 879 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
880 *
881 * Quick test_and_clear_referenced for all mappings to a page,
882 * returns the number of ptes which referenced the page.
883 */
6fe6b7e3
WF
884int page_referenced(struct page *page,
885 int is_locked,
72835c86 886 struct mem_cgroup *memcg,
6fe6b7e3 887 unsigned long *vm_flags)
1da177e4 888{
5ad64688 889 int we_locked = 0;
9f32624b 890 struct page_referenced_arg pra = {
b20ce5e0 891 .mapcount = total_mapcount(page),
9f32624b
JK
892 .memcg = memcg,
893 };
894 struct rmap_walk_control rwc = {
895 .rmap_one = page_referenced_one,
896 .arg = (void *)&pra,
897 .anon_lock = page_lock_anon_vma_read,
898 };
1da177e4 899
6fe6b7e3 900 *vm_flags = 0;
059d8442 901 if (!pra.mapcount)
9f32624b
JK
902 return 0;
903
904 if (!page_rmapping(page))
905 return 0;
906
907 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
908 we_locked = trylock_page(page);
909 if (!we_locked)
910 return 1;
1da177e4 911 }
9f32624b
JK
912
913 /*
914 * If we are reclaiming on behalf of a cgroup, skip
915 * counting on behalf of references from different
916 * cgroups
917 */
918 if (memcg) {
919 rwc.invalid_vma = invalid_page_referenced_vma;
920 }
921
c24f386c 922 rmap_walk(page, &rwc);
9f32624b
JK
923 *vm_flags = pra.vm_flags;
924
925 if (we_locked)
926 unlock_page(page);
927
928 return pra.referenced;
1da177e4
LT
929}
930
e4b82222 931static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 932 unsigned long address, void *arg)
d08b3851 933{
f27176cf
KS
934 struct page_vma_mapped_walk pvmw = {
935 .page = page,
936 .vma = vma,
937 .address = address,
938 .flags = PVMW_SYNC,
939 };
ac46d4f3 940 struct mmu_notifier_range range;
9853a407 941 int *cleaned = arg;
d08b3851 942
369ea824
JG
943 /*
944 * We have to assume the worse case ie pmd for invalidation. Note that
945 * the page can not be free from this function.
946 */
7269f999
JG
947 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
948 0, vma, vma->vm_mm, address,
494334e4 949 vma_address_end(page, vma));
ac46d4f3 950 mmu_notifier_invalidate_range_start(&range);
369ea824 951
f27176cf
KS
952 while (page_vma_mapped_walk(&pvmw)) {
953 int ret = 0;
369ea824 954
1f18b296 955 address = pvmw.address;
f27176cf
KS
956 if (pvmw.pte) {
957 pte_t entry;
958 pte_t *pte = pvmw.pte;
959
960 if (!pte_dirty(*pte) && !pte_write(*pte))
961 continue;
962
785373b4
LT
963 flush_cache_page(vma, address, pte_pfn(*pte));
964 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
965 entry = pte_wrprotect(entry);
966 entry = pte_mkclean(entry);
785373b4 967 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
968 ret = 1;
969 } else {
396bcc52 970#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f27176cf
KS
971 pmd_t *pmd = pvmw.pmd;
972 pmd_t entry;
973
974 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
975 continue;
976
785373b4 977 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 978 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
979 entry = pmd_wrprotect(entry);
980 entry = pmd_mkclean(entry);
785373b4 981 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
982 ret = 1;
983#else
984 /* unexpected pmd-mapped page? */
985 WARN_ON_ONCE(1);
986#endif
987 }
d08b3851 988
0f10851e
JG
989 /*
990 * No need to call mmu_notifier_invalidate_range() as we are
991 * downgrading page table protection not changing it to point
992 * to a new page.
993 *
ad56b738 994 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
995 */
996 if (ret)
f27176cf 997 (*cleaned)++;
c2fda5fe 998 }
d08b3851 999
ac46d4f3 1000 mmu_notifier_invalidate_range_end(&range);
369ea824 1001
e4b82222 1002 return true;
d08b3851
PZ
1003}
1004
9853a407 1005static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1006{
9853a407 1007 if (vma->vm_flags & VM_SHARED)
871beb8c 1008 return false;
d08b3851 1009
871beb8c 1010 return true;
d08b3851
PZ
1011}
1012
d9c08e22 1013int folio_mkclean(struct folio *folio)
d08b3851 1014{
9853a407
JK
1015 int cleaned = 0;
1016 struct address_space *mapping;
1017 struct rmap_walk_control rwc = {
1018 .arg = (void *)&cleaned,
1019 .rmap_one = page_mkclean_one,
1020 .invalid_vma = invalid_mkclean_vma,
1021 };
d08b3851 1022
d9c08e22 1023 BUG_ON(!folio_test_locked(folio));
d08b3851 1024
d9c08e22 1025 if (!folio_mapped(folio))
9853a407
JK
1026 return 0;
1027
d9c08e22 1028 mapping = folio_mapping(folio);
9853a407
JK
1029 if (!mapping)
1030 return 0;
1031
d9c08e22 1032 rmap_walk(&folio->page, &rwc);
d08b3851 1033
9853a407 1034 return cleaned;
d08b3851 1035}
d9c08e22 1036EXPORT_SYMBOL_GPL(folio_mkclean);
d08b3851 1037
c44b6743
RR
1038/**
1039 * page_move_anon_rmap - move a page to our anon_vma
1040 * @page: the page to move to our anon_vma
1041 * @vma: the vma the page belongs to
c44b6743
RR
1042 *
1043 * When a page belongs exclusively to one process after a COW event,
1044 * that page can be moved into the anon_vma that belongs to just that
1045 * process, so the rmap code will not search the parent or sibling
1046 * processes.
1047 */
5a49973d 1048void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1049{
1050 struct anon_vma *anon_vma = vma->anon_vma;
1051
5a49973d
HD
1052 page = compound_head(page);
1053
309381fe 1054 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1055 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1056
1057 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1058 /*
1059 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1060 * simultaneously, so a concurrent reader (eg page_referenced()'s
1061 * PageAnon()) will not see one without the other.
1062 */
1063 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1064}
1065
9617d95e 1066/**
4e1c1975 1067 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1068 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1069 * @vma: VM area to add page to.
1070 * @address: User virtual address of the mapping
e8a03feb 1071 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1072 */
1073static void __page_set_anon_rmap(struct page *page,
e8a03feb 1074 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1075{
e8a03feb 1076 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1077
e8a03feb 1078 BUG_ON(!anon_vma);
ea90002b 1079
4e1c1975
AK
1080 if (PageAnon(page))
1081 return;
1082
ea90002b 1083 /*
e8a03feb
RR
1084 * If the page isn't exclusively mapped into this vma,
1085 * we must use the _oldest_ possible anon_vma for the
1086 * page mapping!
ea90002b 1087 */
4e1c1975 1088 if (!exclusive)
288468c3 1089 anon_vma = anon_vma->root;
9617d95e 1090
16f5e707
AS
1091 /*
1092 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1093 * Make sure the compiler doesn't split the stores of anon_vma and
1094 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1095 * could mistake the mapping for a struct address_space and crash.
1096 */
9617d95e 1097 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1098 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1099 page->index = linear_page_index(vma, address);
9617d95e
NP
1100}
1101
c97a9e10 1102/**
43d8eac4 1103 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1104 * @page: the page to add the mapping to
1105 * @vma: the vm area in which the mapping is added
1106 * @address: the user virtual address mapped
1107 */
1108static void __page_check_anon_rmap(struct page *page,
1109 struct vm_area_struct *vma, unsigned long address)
1110{
c97a9e10
NP
1111 /*
1112 * The page's anon-rmap details (mapping and index) are guaranteed to
1113 * be set up correctly at this point.
1114 *
1115 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1116 * always holds the page locked.
c97a9e10
NP
1117 *
1118 * We have exclusion against page_add_new_anon_rmap because those pages
1119 * are initially only visible via the pagetables, and the pte is locked
1120 * over the call to page_add_new_anon_rmap.
1121 */
30c46382
YS
1122 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1123 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1124 page);
c97a9e10
NP
1125}
1126
1da177e4
LT
1127/**
1128 * page_add_anon_rmap - add pte mapping to an anonymous page
1129 * @page: the page to add the mapping to
1130 * @vma: the vm area in which the mapping is added
1131 * @address: the user virtual address mapped
d281ee61 1132 * @compound: charge the page as compound or small page
1da177e4 1133 *
5ad64688 1134 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1135 * the anon_vma case: to serialize mapping,index checking after setting,
1136 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1137 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1138 */
1139void page_add_anon_rmap(struct page *page,
d281ee61 1140 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1141{
d281ee61 1142 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1143}
1144
1145/*
1146 * Special version of the above for do_swap_page, which often runs
1147 * into pages that are exclusively owned by the current process.
1148 * Everybody else should continue to use page_add_anon_rmap above.
1149 */
1150void do_page_add_anon_rmap(struct page *page,
d281ee61 1151 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1152{
53f9263b
KS
1153 bool compound = flags & RMAP_COMPOUND;
1154 bool first;
1155
be5d0a74
JW
1156 if (unlikely(PageKsm(page)))
1157 lock_page_memcg(page);
1158 else
1159 VM_BUG_ON_PAGE(!PageLocked(page), page);
1160
e9b61f19
KS
1161 if (compound) {
1162 atomic_t *mapcount;
53f9263b 1163 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1164 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1165 mapcount = compound_mapcount_ptr(page);
1166 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1167 } else {
1168 first = atomic_inc_and_test(&page->_mapcount);
1169 }
1170
79134171 1171 if (first) {
6c357848 1172 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1173 /*
1174 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1175 * these counters are not modified in interrupt context, and
1176 * pte lock(a spinlock) is held, which implies preemption
1177 * disabled.
1178 */
65c45377 1179 if (compound)
69473e5d 1180 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1181 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1182 }
5ad64688 1183
cea86fe2 1184 if (unlikely(PageKsm(page)))
be5d0a74 1185 unlock_page_memcg(page);
53f9263b 1186
5dbe0af4 1187 /* address might be in next vma when migration races vma_adjust */
cea86fe2 1188 else if (first)
d281ee61
KS
1189 __page_set_anon_rmap(page, vma, address,
1190 flags & RMAP_EXCLUSIVE);
69029cd5 1191 else
c97a9e10 1192 __page_check_anon_rmap(page, vma, address);
cea86fe2
HD
1193
1194 mlock_vma_page(page, vma, compound);
1da177e4
LT
1195}
1196
43d8eac4 1197/**
9617d95e
NP
1198 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1199 * @page: the page to add the mapping to
1200 * @vma: the vm area in which the mapping is added
1201 * @address: the user virtual address mapped
d281ee61 1202 * @compound: charge the page as compound or small page
9617d95e
NP
1203 *
1204 * Same as page_add_anon_rmap but must only be called on *new* pages.
1205 * This means the inc-and-test can be bypassed.
c97a9e10 1206 * Page does not have to be locked.
9617d95e
NP
1207 */
1208void page_add_new_anon_rmap(struct page *page,
d281ee61 1209 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1210{
6c357848 1211 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1212
81d1b09c 1213 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1214 __SetPageSwapBacked(page);
d281ee61
KS
1215 if (compound) {
1216 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1217 /* increment count (starts at -1) */
1218 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1219 if (hpage_pincount_available(page))
1220 atomic_set(compound_pincount_ptr(page), 0);
1221
69473e5d 1222 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b
KS
1223 } else {
1224 /* Anon THP always mapped first with PMD */
1225 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1226 /* increment count (starts at -1) */
1227 atomic_set(&page->_mapcount, 0);
d281ee61 1228 }
be5d0a74 1229 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1230 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1231}
1232
1da177e4
LT
1233/**
1234 * page_add_file_rmap - add pte mapping to a file page
cea86fe2
HD
1235 * @page: the page to add the mapping to
1236 * @vma: the vm area in which the mapping is added
1237 * @compound: charge the page as compound or small page
1da177e4 1238 *
b8072f09 1239 * The caller needs to hold the pte lock.
1da177e4 1240 */
cea86fe2
HD
1241void page_add_file_rmap(struct page *page,
1242 struct vm_area_struct *vma, bool compound)
1da177e4 1243{
dd78fedd
KS
1244 int i, nr = 1;
1245
1246 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1247 lock_page_memcg(page);
dd78fedd 1248 if (compound && PageTransHuge(page)) {
a1528e21
MS
1249 int nr_pages = thp_nr_pages(page);
1250
1251 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1252 if (atomic_inc_and_test(&page[i]._mapcount))
1253 nr++;
1254 }
1255 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1256 goto out;
99cb0dbd 1257 if (PageSwapBacked(page))
a1528e21
MS
1258 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1259 nr_pages);
99cb0dbd 1260 else
380780e7
MS
1261 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1262 nr_pages);
dd78fedd 1263 } else {
c8efc390
KS
1264 if (PageTransCompound(page) && page_mapping(page)) {
1265 VM_WARN_ON_ONCE(!PageLocked(page));
cea86fe2 1266 SetPageDoubleMap(compound_head(page));
9a73f61b 1267 }
dd78fedd
KS
1268 if (!atomic_inc_and_test(&page->_mapcount))
1269 goto out;
d69b042f 1270 }
00f3ca2c 1271 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1272out:
62cccb8c 1273 unlock_page_memcg(page);
cea86fe2
HD
1274
1275 mlock_vma_page(page, vma, compound);
1da177e4
LT
1276}
1277
dd78fedd 1278static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1279{
dd78fedd
KS
1280 int i, nr = 1;
1281
57dea93a 1282 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1283
53f9263b
KS
1284 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1285 if (unlikely(PageHuge(page))) {
1286 /* hugetlb pages are always mapped with pmds */
1287 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1288 return;
53f9263b 1289 }
8186eb6a 1290
53f9263b 1291 /* page still mapped by someone else? */
dd78fedd 1292 if (compound && PageTransHuge(page)) {
a1528e21
MS
1293 int nr_pages = thp_nr_pages(page);
1294
1295 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1296 if (atomic_add_negative(-1, &page[i]._mapcount))
1297 nr++;
1298 }
1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
be5d0a74 1300 return;
99cb0dbd 1301 if (PageSwapBacked(page))
a1528e21
MS
1302 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1303 -nr_pages);
99cb0dbd 1304 else
380780e7
MS
1305 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1306 -nr_pages);
dd78fedd
KS
1307 } else {
1308 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1309 return;
dd78fedd 1310 }
8186eb6a
JW
1311
1312 /*
00f3ca2c 1313 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1314 * these counters are not modified in interrupt context, and
1315 * pte lock(a spinlock) is held, which implies preemption disabled.
1316 */
00f3ca2c 1317 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1318}
1319
53f9263b
KS
1320static void page_remove_anon_compound_rmap(struct page *page)
1321{
1322 int i, nr;
1323
1324 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1325 return;
1326
1327 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1328 if (unlikely(PageHuge(page)))
1329 return;
1330
1331 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1332 return;
1333
69473e5d 1334 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1335
1336 if (TestClearPageDoubleMap(page)) {
1337 /*
1338 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1339 * them are still mapped.
53f9263b 1340 */
5eaf35ab 1341 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1342 if (atomic_add_negative(-1, &page[i]._mapcount))
1343 nr++;
1344 }
f1fe80d4
KS
1345
1346 /*
1347 * Queue the page for deferred split if at least one small
1348 * page of the compound page is unmapped, but at least one
1349 * small page is still mapped.
1350 */
5eaf35ab 1351 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1352 deferred_split_huge_page(page);
53f9263b 1353 } else {
5eaf35ab 1354 nr = thp_nr_pages(page);
53f9263b
KS
1355 }
1356
f1fe80d4 1357 if (nr)
be5d0a74 1358 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1359}
1360
1da177e4
LT
1361/**
1362 * page_remove_rmap - take down pte mapping from a page
d281ee61 1363 * @page: page to remove mapping from
cea86fe2 1364 * @vma: the vm area from which the mapping is removed
d281ee61 1365 * @compound: uncharge the page as compound or small page
1da177e4 1366 *
b8072f09 1367 * The caller needs to hold the pte lock.
1da177e4 1368 */
cea86fe2
HD
1369void page_remove_rmap(struct page *page,
1370 struct vm_area_struct *vma, bool compound)
1da177e4 1371{
be5d0a74 1372 lock_page_memcg(page);
89c06bd5 1373
be5d0a74
JW
1374 if (!PageAnon(page)) {
1375 page_remove_file_rmap(page, compound);
1376 goto out;
1377 }
1378
1379 if (compound) {
1380 page_remove_anon_compound_rmap(page);
1381 goto out;
1382 }
53f9263b 1383
b904dcfe
KM
1384 /* page still mapped by someone else? */
1385 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1386 goto out;
8186eb6a 1387
0fe6e20b 1388 /*
bea04b07
JZ
1389 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1390 * these counters are not modified in interrupt context, and
bea04b07 1391 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1392 */
be5d0a74 1393 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1394
9a982250
KS
1395 if (PageTransCompound(page))
1396 deferred_split_huge_page(compound_head(page));
1397
b904dcfe
KM
1398 /*
1399 * It would be tidy to reset the PageAnon mapping here,
1400 * but that might overwrite a racing page_add_anon_rmap
1401 * which increments mapcount after us but sets mapping
2d4894b5 1402 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1403 * and remember that it's only reliable while mapped.
1404 * Leaving it set also helps swapoff to reinstate ptes
1405 * faster for those pages still in swapcache.
1406 */
be5d0a74
JW
1407out:
1408 unlock_page_memcg(page);
cea86fe2
HD
1409
1410 munlock_vma_page(page, vma, compound);
1da177e4
LT
1411}
1412
1413/*
52629506 1414 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1415 */
e4b82222 1416static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1417 unsigned long address, void *arg)
1da177e4
LT
1418{
1419 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1420 struct page_vma_mapped_walk pvmw = {
1421 .page = page,
1422 .vma = vma,
1423 .address = address,
1424 };
1da177e4 1425 pte_t pteval;
c7ab0d2f 1426 struct page *subpage;
785373b4 1427 bool ret = true;
ac46d4f3 1428 struct mmu_notifier_range range;
4708f318 1429 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1430
732ed558
HD
1431 /*
1432 * When racing against e.g. zap_pte_range() on another cpu,
1433 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1434 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1435 * if page table locking is skipped: use TTU_SYNC to wait for that.
1436 */
1437 if (flags & TTU_SYNC)
1438 pvmw.flags = PVMW_SYNC;
1439
a98a2f0c
AP
1440 if (flags & TTU_SPLIT_HUGE_PMD)
1441 split_huge_pmd_address(vma, address, false, page);
fec89c10 1442
369ea824 1443 /*
017b1660
MK
1444 * For THP, we have to assume the worse case ie pmd for invalidation.
1445 * For hugetlb, it could be much worse if we need to do pud
1446 * invalidation in the case of pmd sharing.
1447 *
1448 * Note that the page can not be free in this function as call of
1449 * try_to_unmap() must hold a reference on the page.
369ea824 1450 */
494334e4
HD
1451 range.end = PageKsm(page) ?
1452 address + PAGE_SIZE : vma_address_end(page, vma);
7269f999 1453 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1454 address, range.end);
017b1660
MK
1455 if (PageHuge(page)) {
1456 /*
1457 * If sharing is possible, start and end will be adjusted
1458 * accordingly.
1459 */
ac46d4f3
JG
1460 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1461 &range.end);
017b1660 1462 }
ac46d4f3 1463 mmu_notifier_invalidate_range_start(&range);
369ea824 1464
c7ab0d2f 1465 while (page_vma_mapped_walk(&pvmw)) {
cea86fe2
HD
1466 /* Unexpected PMD-mapped THP? */
1467 VM_BUG_ON_PAGE(!pvmw.pte, page);
1468
c7ab0d2f 1469 /*
cea86fe2 1470 * If the page is in an mlock()d vma, we must not swap it out.
c7ab0d2f 1471 */
efdb6720
HD
1472 if (!(flags & TTU_IGNORE_MLOCK) &&
1473 (vma->vm_flags & VM_LOCKED)) {
cea86fe2
HD
1474 /* Restore the mlock which got missed */
1475 mlock_vma_page(page, vma, false);
efdb6720
HD
1476 page_vma_mapped_walk_done(&pvmw);
1477 ret = false;
1478 break;
b87537d9 1479 }
c7ab0d2f 1480
8346242a 1481 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1482 address = pvmw.address;
1483
336bf30e 1484 if (PageHuge(page) && !PageAnon(page)) {
c0d0381a
MK
1485 /*
1486 * To call huge_pmd_unshare, i_mmap_rwsem must be
1487 * held in write mode. Caller needs to explicitly
1488 * do this outside rmap routines.
1489 */
1490 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
34ae204f 1491 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
017b1660
MK
1492 /*
1493 * huge_pmd_unshare unmapped an entire PMD
1494 * page. There is no way of knowing exactly
1495 * which PMDs may be cached for this mm, so
1496 * we must flush them all. start/end were
1497 * already adjusted above to cover this range.
1498 */
ac46d4f3
JG
1499 flush_cache_range(vma, range.start, range.end);
1500 flush_tlb_range(vma, range.start, range.end);
1501 mmu_notifier_invalidate_range(mm, range.start,
1502 range.end);
017b1660
MK
1503
1504 /*
1505 * The ref count of the PMD page was dropped
1506 * which is part of the way map counting
1507 * is done for shared PMDs. Return 'true'
1508 * here. When there is no other sharing,
1509 * huge_pmd_unshare returns false and we will
1510 * unmap the actual page and drop map count
1511 * to zero.
1512 */
1513 page_vma_mapped_walk_done(&pvmw);
1514 break;
1515 }
1516 }
8346242a 1517
c7ab0d2f 1518 /* Nuke the page table entry. */
785373b4 1519 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1520 if (should_defer_flush(mm, flags)) {
1521 /*
1522 * We clear the PTE but do not flush so potentially
1523 * a remote CPU could still be writing to the page.
1524 * If the entry was previously clean then the
1525 * architecture must guarantee that a clear->dirty
1526 * transition on a cached TLB entry is written through
1527 * and traps if the PTE is unmapped.
1528 */
785373b4 1529 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1530
1531 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1532 } else {
785373b4 1533 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1534 }
72b252ae 1535
c7ab0d2f
KS
1536 /* Move the dirty bit to the page. Now the pte is gone. */
1537 if (pte_dirty(pteval))
1538 set_page_dirty(page);
1da177e4 1539
c7ab0d2f
KS
1540 /* Update high watermark before we lower rss */
1541 update_hiwater_rss(mm);
1da177e4 1542
c7ab0d2f 1543 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1544 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1545 if (PageHuge(page)) {
d8c6546b 1546 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1547 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1548 pvmw.pte, pteval,
1549 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1550 } else {
1551 dec_mm_counter(mm, mm_counter(page));
785373b4 1552 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1553 }
365e9c87 1554
bce73e48 1555 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1556 /*
1557 * The guest indicated that the page content is of no
1558 * interest anymore. Simply discard the pte, vmscan
1559 * will take care of the rest.
bce73e48
CB
1560 * A future reference will then fault in a new zero
1561 * page. When userfaultfd is active, we must not drop
1562 * this page though, as its main user (postcopy
1563 * migration) will not expect userfaults on already
1564 * copied pages.
c7ab0d2f 1565 */
eca56ff9 1566 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1567 /* We have to invalidate as we cleared the pte */
1568 mmu_notifier_invalidate_range(mm, address,
1569 address + PAGE_SIZE);
c7ab0d2f
KS
1570 } else if (PageAnon(page)) {
1571 swp_entry_t entry = { .val = page_private(subpage) };
1572 pte_t swp_pte;
1573 /*
1574 * Store the swap location in the pte.
1575 * See handle_pte_fault() ...
1576 */
eb94a878
MK
1577 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1578 WARN_ON_ONCE(1);
83612a94 1579 ret = false;
369ea824 1580 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1581 mmu_notifier_invalidate_range(mm, address,
1582 address + PAGE_SIZE);
eb94a878
MK
1583 page_vma_mapped_walk_done(&pvmw);
1584 break;
1585 }
c7ab0d2f 1586
802a3a92
SL
1587 /* MADV_FREE page check */
1588 if (!PageSwapBacked(page)) {
1589 if (!PageDirty(page)) {
0f10851e
JG
1590 /* Invalidate as we cleared the pte */
1591 mmu_notifier_invalidate_range(mm,
1592 address, address + PAGE_SIZE);
802a3a92
SL
1593 dec_mm_counter(mm, MM_ANONPAGES);
1594 goto discard;
1595 }
1596
1597 /*
1598 * If the page was redirtied, it cannot be
1599 * discarded. Remap the page to page table.
1600 */
785373b4 1601 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1602 SetPageSwapBacked(page);
e4b82222 1603 ret = false;
802a3a92
SL
1604 page_vma_mapped_walk_done(&pvmw);
1605 break;
c7ab0d2f 1606 }
854e9ed0 1607
c7ab0d2f 1608 if (swap_duplicate(entry) < 0) {
785373b4 1609 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1610 ret = false;
c7ab0d2f
KS
1611 page_vma_mapped_walk_done(&pvmw);
1612 break;
1613 }
ca827d55
KA
1614 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1615 set_pte_at(mm, address, pvmw.pte, pteval);
1616 ret = false;
1617 page_vma_mapped_walk_done(&pvmw);
1618 break;
1619 }
c7ab0d2f
KS
1620 if (list_empty(&mm->mmlist)) {
1621 spin_lock(&mmlist_lock);
1622 if (list_empty(&mm->mmlist))
1623 list_add(&mm->mmlist, &init_mm.mmlist);
1624 spin_unlock(&mmlist_lock);
1625 }
854e9ed0 1626 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1627 inc_mm_counter(mm, MM_SWAPENTS);
1628 swp_pte = swp_entry_to_pte(entry);
1629 if (pte_soft_dirty(pteval))
1630 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1631 if (pte_uffd_wp(pteval))
1632 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1633 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1634 /* Invalidate as we cleared the pte */
1635 mmu_notifier_invalidate_range(mm, address,
1636 address + PAGE_SIZE);
1637 } else {
1638 /*
906f9cdf
HD
1639 * This is a locked file-backed page, thus it cannot
1640 * be removed from the page cache and replaced by a new
1641 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1642 * concurrent thread might update its page table to
1643 * point at new page while a device still is using this
1644 * page.
1645 *
ad56b738 1646 * See Documentation/vm/mmu_notifier.rst
0f10851e 1647 */
c7ab0d2f 1648 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1649 }
854e9ed0 1650discard:
0f10851e
JG
1651 /*
1652 * No need to call mmu_notifier_invalidate_range() it has be
1653 * done above for all cases requiring it to happen under page
1654 * table lock before mmu_notifier_invalidate_range_end()
1655 *
ad56b738 1656 * See Documentation/vm/mmu_notifier.rst
0f10851e 1657 */
cea86fe2 1658 page_remove_rmap(subpage, vma, PageHuge(page));
c7ab0d2f 1659 put_page(page);
c7ab0d2f 1660 }
369ea824 1661
ac46d4f3 1662 mmu_notifier_invalidate_range_end(&range);
369ea824 1663
caed0f48 1664 return ret;
1da177e4
LT
1665}
1666
52629506
JK
1667static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1668{
222100ee 1669 return vma_is_temporary_stack(vma);
52629506
JK
1670}
1671
b7e188ec 1672static int page_not_mapped(struct page *page)
52629506 1673{
b7e188ec 1674 return !page_mapped(page);
2a52bcbc 1675}
52629506 1676
1da177e4
LT
1677/**
1678 * try_to_unmap - try to remove all page table mappings to a page
1679 * @page: the page to get unmapped
14fa31b8 1680 * @flags: action and flags
1da177e4
LT
1681 *
1682 * Tries to remove all the page table entries which are mapping this
1683 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1684 *
1fb08ac6
YS
1685 * It is the caller's responsibility to check if the page is still
1686 * mapped when needed (use TTU_SYNC to prevent accounting races).
1da177e4 1687 */
1fb08ac6 1688void try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1689{
52629506
JK
1690 struct rmap_walk_control rwc = {
1691 .rmap_one = try_to_unmap_one,
802a3a92 1692 .arg = (void *)flags,
b7e188ec 1693 .done = page_not_mapped,
52629506
JK
1694 .anon_lock = page_lock_anon_vma_read,
1695 };
1da177e4 1696
a98a2f0c
AP
1697 if (flags & TTU_RMAP_LOCKED)
1698 rmap_walk_locked(page, &rwc);
1699 else
1700 rmap_walk(page, &rwc);
1701}
1702
1703/*
1704 * @arg: enum ttu_flags will be passed to this argument.
1705 *
1706 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1707 * containing migration entries.
a98a2f0c
AP
1708 */
1709static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1710 unsigned long address, void *arg)
1711{
1712 struct mm_struct *mm = vma->vm_mm;
1713 struct page_vma_mapped_walk pvmw = {
1714 .page = page,
1715 .vma = vma,
1716 .address = address,
1717 };
1718 pte_t pteval;
1719 struct page *subpage;
1720 bool ret = true;
1721 struct mmu_notifier_range range;
1722 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1723
a98a2f0c
AP
1724 /*
1725 * When racing against e.g. zap_pte_range() on another cpu,
1726 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1727 * try_to_migrate() may return before page_mapped() has become false,
1728 * if page table locking is skipped: use TTU_SYNC to wait for that.
1729 */
1730 if (flags & TTU_SYNC)
1731 pvmw.flags = PVMW_SYNC;
1732
1733 /*
1734 * unmap_page() in mm/huge_memory.c is the only user of migration with
1735 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1736 */
1737 if (flags & TTU_SPLIT_HUGE_PMD)
1738 split_huge_pmd_address(vma, address, true, page);
1739
1740 /*
1741 * For THP, we have to assume the worse case ie pmd for invalidation.
1742 * For hugetlb, it could be much worse if we need to do pud
1743 * invalidation in the case of pmd sharing.
1744 *
1745 * Note that the page can not be free in this function as call of
1746 * try_to_unmap() must hold a reference on the page.
1747 */
1748 range.end = PageKsm(page) ?
1749 address + PAGE_SIZE : vma_address_end(page, vma);
1750 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1751 address, range.end);
1752 if (PageHuge(page)) {
1753 /*
1754 * If sharing is possible, start and end will be adjusted
1755 * accordingly.
1756 */
1757 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1758 &range.end);
1759 }
1760 mmu_notifier_invalidate_range_start(&range);
1761
1762 while (page_vma_mapped_walk(&pvmw)) {
1763#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1764 /* PMD-mapped THP migration entry */
1765 if (!pvmw.pte) {
1766 VM_BUG_ON_PAGE(PageHuge(page) ||
1767 !PageTransCompound(page), page);
1768
1769 set_pmd_migration_entry(&pvmw, page);
1770 continue;
1771 }
1772#endif
1773
1774 /* Unexpected PMD-mapped THP? */
1775 VM_BUG_ON_PAGE(!pvmw.pte, page);
1776
1777 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1778 address = pvmw.address;
1779
1780 if (PageHuge(page) && !PageAnon(page)) {
1781 /*
1782 * To call huge_pmd_unshare, i_mmap_rwsem must be
1783 * held in write mode. Caller needs to explicitly
1784 * do this outside rmap routines.
1785 */
1786 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1787 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1788 /*
1789 * huge_pmd_unshare unmapped an entire PMD
1790 * page. There is no way of knowing exactly
1791 * which PMDs may be cached for this mm, so
1792 * we must flush them all. start/end were
1793 * already adjusted above to cover this range.
1794 */
1795 flush_cache_range(vma, range.start, range.end);
1796 flush_tlb_range(vma, range.start, range.end);
1797 mmu_notifier_invalidate_range(mm, range.start,
1798 range.end);
1799
1800 /*
1801 * The ref count of the PMD page was dropped
1802 * which is part of the way map counting
1803 * is done for shared PMDs. Return 'true'
1804 * here. When there is no other sharing,
1805 * huge_pmd_unshare returns false and we will
1806 * unmap the actual page and drop map count
1807 * to zero.
1808 */
1809 page_vma_mapped_walk_done(&pvmw);
1810 break;
1811 }
1812 }
1813
1814 /* Nuke the page table entry. */
1815 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1816 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1817
1818 /* Move the dirty bit to the page. Now the pte is gone. */
1819 if (pte_dirty(pteval))
1820 set_page_dirty(page);
1821
1822 /* Update high watermark before we lower rss */
1823 update_hiwater_rss(mm);
1824
1825 if (is_zone_device_page(page)) {
3d88705c 1826 unsigned long pfn = page_to_pfn(page);
a98a2f0c
AP
1827 swp_entry_t entry;
1828 pte_t swp_pte;
1829
1830 /*
1831 * Store the pfn of the page in a special migration
1832 * pte. do_swap_page() will wait until the migration
1833 * pte is removed and then restart fault handling.
1834 */
3d88705c
AP
1835 entry = pte_to_swp_entry(pteval);
1836 if (is_writable_device_private_entry(entry))
1837 entry = make_writable_migration_entry(pfn);
1838 else
1839 entry = make_readable_migration_entry(pfn);
a98a2f0c
AP
1840 swp_pte = swp_entry_to_pte(entry);
1841
1842 /*
1843 * pteval maps a zone device page and is therefore
1844 * a swap pte.
1845 */
1846 if (pte_swp_soft_dirty(pteval))
1847 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1848 if (pte_swp_uffd_wp(pteval))
1849 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1850 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1851 /*
1852 * No need to invalidate here it will synchronize on
1853 * against the special swap migration pte.
1854 *
1855 * The assignment to subpage above was computed from a
1856 * swap PTE which results in an invalid pointer.
1857 * Since only PAGE_SIZE pages can currently be
1858 * migrated, just set it to page. This will need to be
1859 * changed when hugepage migrations to device private
1860 * memory are supported.
1861 */
1862 subpage = page;
1863 } else if (PageHWPoison(page)) {
1864 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1865 if (PageHuge(page)) {
1866 hugetlb_count_sub(compound_nr(page), mm);
1867 set_huge_swap_pte_at(mm, address,
1868 pvmw.pte, pteval,
1869 vma_mmu_pagesize(vma));
1870 } else {
1871 dec_mm_counter(mm, mm_counter(page));
1872 set_pte_at(mm, address, pvmw.pte, pteval);
1873 }
1874
1875 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1876 /*
1877 * The guest indicated that the page content is of no
1878 * interest anymore. Simply discard the pte, vmscan
1879 * will take care of the rest.
1880 * A future reference will then fault in a new zero
1881 * page. When userfaultfd is active, we must not drop
1882 * this page though, as its main user (postcopy
1883 * migration) will not expect userfaults on already
1884 * copied pages.
1885 */
1886 dec_mm_counter(mm, mm_counter(page));
1887 /* We have to invalidate as we cleared the pte */
1888 mmu_notifier_invalidate_range(mm, address,
1889 address + PAGE_SIZE);
1890 } else {
1891 swp_entry_t entry;
1892 pte_t swp_pte;
1893
1894 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1895 set_pte_at(mm, address, pvmw.pte, pteval);
1896 ret = false;
1897 page_vma_mapped_walk_done(&pvmw);
1898 break;
1899 }
1900
1901 /*
1902 * Store the pfn of the page in a special migration
1903 * pte. do_swap_page() will wait until the migration
1904 * pte is removed and then restart fault handling.
1905 */
1906 if (pte_write(pteval))
1907 entry = make_writable_migration_entry(
1908 page_to_pfn(subpage));
1909 else
1910 entry = make_readable_migration_entry(
1911 page_to_pfn(subpage));
1912
1913 swp_pte = swp_entry_to_pte(entry);
1914 if (pte_soft_dirty(pteval))
1915 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1916 if (pte_uffd_wp(pteval))
1917 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1918 set_pte_at(mm, address, pvmw.pte, swp_pte);
1919 /*
1920 * No need to invalidate here it will synchronize on
1921 * against the special swap migration pte.
1922 */
1923 }
1924
1925 /*
1926 * No need to call mmu_notifier_invalidate_range() it has be
1927 * done above for all cases requiring it to happen under page
1928 * table lock before mmu_notifier_invalidate_range_end()
1929 *
1930 * See Documentation/vm/mmu_notifier.rst
1931 */
cea86fe2 1932 page_remove_rmap(subpage, vma, PageHuge(page));
a98a2f0c
AP
1933 put_page(page);
1934 }
1935
1936 mmu_notifier_invalidate_range_end(&range);
1937
1938 return ret;
1939}
1940
1941/**
1942 * try_to_migrate - try to replace all page table mappings with swap entries
1943 * @page: the page to replace page table entries for
1944 * @flags: action and flags
1945 *
1946 * Tries to remove all the page table entries which are mapping this page and
1947 * replace them with special swap entries. Caller must hold the page lock.
a98a2f0c
AP
1948 */
1949void try_to_migrate(struct page *page, enum ttu_flags flags)
1950{
1951 struct rmap_walk_control rwc = {
1952 .rmap_one = try_to_migrate_one,
1953 .arg = (void *)flags,
1954 .done = page_not_mapped,
1955 .anon_lock = page_lock_anon_vma_read,
1956 };
1957
1958 /*
1959 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1960 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1961 */
1962 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1963 TTU_SYNC)))
1964 return;
1965
6c855fce
HD
1966 if (is_zone_device_page(page) && !is_device_private_page(page))
1967 return;
1968
52629506
JK
1969 /*
1970 * During exec, a temporary VMA is setup and later moved.
1971 * The VMA is moved under the anon_vma lock but not the
1972 * page tables leading to a race where migration cannot
1973 * find the migration ptes. Rather than increasing the
1974 * locking requirements of exec(), migration skips
1975 * temporary VMAs until after exec() completes.
1976 */
a98a2f0c 1977 if (!PageKsm(page) && PageAnon(page))
52629506
JK
1978 rwc.invalid_vma = invalid_migration_vma;
1979
2a52bcbc 1980 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1981 rmap_walk_locked(page, &rwc);
2a52bcbc 1982 else
33fc80e2 1983 rmap_walk(page, &rwc);
1da177e4 1984}
81b4082d 1985
b756a3b5
AP
1986#ifdef CONFIG_DEVICE_PRIVATE
1987struct make_exclusive_args {
1988 struct mm_struct *mm;
1989 unsigned long address;
1990 void *owner;
1991 bool valid;
1992};
1993
1994static bool page_make_device_exclusive_one(struct page *page,
1995 struct vm_area_struct *vma, unsigned long address, void *priv)
1996{
1997 struct mm_struct *mm = vma->vm_mm;
1998 struct page_vma_mapped_walk pvmw = {
1999 .page = page,
2000 .vma = vma,
2001 .address = address,
2002 };
2003 struct make_exclusive_args *args = priv;
2004 pte_t pteval;
2005 struct page *subpage;
2006 bool ret = true;
2007 struct mmu_notifier_range range;
2008 swp_entry_t entry;
2009 pte_t swp_pte;
2010
2011 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2012 vma->vm_mm, address, min(vma->vm_end,
2013 address + page_size(page)), args->owner);
2014 mmu_notifier_invalidate_range_start(&range);
2015
2016 while (page_vma_mapped_walk(&pvmw)) {
2017 /* Unexpected PMD-mapped THP? */
2018 VM_BUG_ON_PAGE(!pvmw.pte, page);
2019
2020 if (!pte_present(*pvmw.pte)) {
2021 ret = false;
2022 page_vma_mapped_walk_done(&pvmw);
2023 break;
2024 }
2025
2026 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2027 address = pvmw.address;
2028
2029 /* Nuke the page table entry. */
2030 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2031 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2032
2033 /* Move the dirty bit to the page. Now the pte is gone. */
2034 if (pte_dirty(pteval))
2035 set_page_dirty(page);
2036
2037 /*
2038 * Check that our target page is still mapped at the expected
2039 * address.
2040 */
2041 if (args->mm == mm && args->address == address &&
2042 pte_write(pteval))
2043 args->valid = true;
2044
2045 /*
2046 * Store the pfn of the page in a special migration
2047 * pte. do_swap_page() will wait until the migration
2048 * pte is removed and then restart fault handling.
2049 */
2050 if (pte_write(pteval))
2051 entry = make_writable_device_exclusive_entry(
2052 page_to_pfn(subpage));
2053 else
2054 entry = make_readable_device_exclusive_entry(
2055 page_to_pfn(subpage));
2056 swp_pte = swp_entry_to_pte(entry);
2057 if (pte_soft_dirty(pteval))
2058 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2059 if (pte_uffd_wp(pteval))
2060 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2061
2062 set_pte_at(mm, address, pvmw.pte, swp_pte);
2063
2064 /*
2065 * There is a reference on the page for the swap entry which has
2066 * been removed, so shouldn't take another.
2067 */
cea86fe2 2068 page_remove_rmap(subpage, vma, false);
b756a3b5
AP
2069 }
2070
2071 mmu_notifier_invalidate_range_end(&range);
2072
2073 return ret;
2074}
2075
2076/**
2077 * page_make_device_exclusive - mark the page exclusively owned by a device
2078 * @page: the page to replace page table entries for
2079 * @mm: the mm_struct where the page is expected to be mapped
2080 * @address: address where the page is expected to be mapped
2081 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2082 *
2083 * Tries to remove all the page table entries which are mapping this page and
2084 * replace them with special device exclusive swap entries to grant a device
2085 * exclusive access to the page. Caller must hold the page lock.
2086 *
2087 * Returns false if the page is still mapped, or if it could not be unmapped
2088 * from the expected address. Otherwise returns true (success).
2089 */
2090static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2091 unsigned long address, void *owner)
2092{
2093 struct make_exclusive_args args = {
2094 .mm = mm,
2095 .address = address,
2096 .owner = owner,
2097 .valid = false,
2098 };
2099 struct rmap_walk_control rwc = {
2100 .rmap_one = page_make_device_exclusive_one,
2101 .done = page_not_mapped,
2102 .anon_lock = page_lock_anon_vma_read,
2103 .arg = &args,
2104 };
2105
2106 /*
2107 * Restrict to anonymous pages for now to avoid potential writeback
2108 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2109 * those.
2110 */
2111 if (!PageAnon(page) || PageTail(page))
2112 return false;
2113
2114 rmap_walk(page, &rwc);
2115
2116 return args.valid && !page_mapcount(page);
2117}
2118
2119/**
2120 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2121 * @mm: mm_struct of assoicated target process
2122 * @start: start of the region to mark for exclusive device access
2123 * @end: end address of region
2124 * @pages: returns the pages which were successfully marked for exclusive access
2125 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2126 *
2127 * Returns: number of pages found in the range by GUP. A page is marked for
2128 * exclusive access only if the page pointer is non-NULL.
2129 *
2130 * This function finds ptes mapping page(s) to the given address range, locks
2131 * them and replaces mappings with special swap entries preventing userspace CPU
2132 * access. On fault these entries are replaced with the original mapping after
2133 * calling MMU notifiers.
2134 *
2135 * A driver using this to program access from a device must use a mmu notifier
2136 * critical section to hold a device specific lock during programming. Once
2137 * programming is complete it should drop the page lock and reference after
2138 * which point CPU access to the page will revoke the exclusive access.
2139 */
2140int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2141 unsigned long end, struct page **pages,
2142 void *owner)
2143{
2144 long npages = (end - start) >> PAGE_SHIFT;
2145 long i;
2146
2147 npages = get_user_pages_remote(mm, start, npages,
2148 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2149 pages, NULL, NULL);
2150 if (npages < 0)
2151 return npages;
2152
2153 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2154 if (!trylock_page(pages[i])) {
2155 put_page(pages[i]);
2156 pages[i] = NULL;
2157 continue;
2158 }
2159
2160 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2161 unlock_page(pages[i]);
2162 put_page(pages[i]);
2163 pages[i] = NULL;
2164 }
2165 }
2166
2167 return npages;
2168}
2169EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2170#endif
2171
01d8b20d 2172void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2173{
01d8b20d 2174 struct anon_vma *root = anon_vma->root;
76545066 2175
624483f3 2176 anon_vma_free(anon_vma);
01d8b20d
PZ
2177 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2178 anon_vma_free(root);
76545066 2179}
76545066 2180
0dd1c7bb
JK
2181static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2182 struct rmap_walk_control *rwc)
faecd8dd
JK
2183{
2184 struct anon_vma *anon_vma;
2185
0dd1c7bb
JK
2186 if (rwc->anon_lock)
2187 return rwc->anon_lock(page);
2188
faecd8dd
JK
2189 /*
2190 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2191 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2192 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2193 * take a reference count to prevent the anon_vma disappearing
2194 */
2195 anon_vma = page_anon_vma(page);
2196 if (!anon_vma)
2197 return NULL;
2198
2199 anon_vma_lock_read(anon_vma);
2200 return anon_vma;
2201}
2202
e9995ef9 2203/*
e8351ac9
JK
2204 * rmap_walk_anon - do something to anonymous page using the object-based
2205 * rmap method
2206 * @page: the page to be handled
2207 * @rwc: control variable according to each walk type
2208 *
2209 * Find all the mappings of a page using the mapping pointer and the vma chains
2210 * contained in the anon_vma struct it points to.
e9995ef9 2211 */
1df631ae 2212static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 2213 bool locked)
e9995ef9
HD
2214{
2215 struct anon_vma *anon_vma;
a8fa41ad 2216 pgoff_t pgoff_start, pgoff_end;
5beb4930 2217 struct anon_vma_chain *avc;
e9995ef9 2218
b9773199
KS
2219 if (locked) {
2220 anon_vma = page_anon_vma(page);
2221 /* anon_vma disappear under us? */
2222 VM_BUG_ON_PAGE(!anon_vma, page);
2223 } else {
2224 anon_vma = rmap_walk_anon_lock(page, rwc);
2225 }
e9995ef9 2226 if (!anon_vma)
1df631ae 2227 return;
faecd8dd 2228
a8fa41ad 2229 pgoff_start = page_to_pgoff(page);
6c357848 2230 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
a8fa41ad
KS
2231 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2232 pgoff_start, pgoff_end) {
5beb4930 2233 struct vm_area_struct *vma = avc->vma;
e9995ef9 2234 unsigned long address = vma_address(page, vma);
0dd1c7bb 2235
494334e4 2236 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2237 cond_resched();
2238
0dd1c7bb
JK
2239 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2240 continue;
2241
e4b82222 2242 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 2243 break;
0dd1c7bb
JK
2244 if (rwc->done && rwc->done(page))
2245 break;
e9995ef9 2246 }
b9773199
KS
2247
2248 if (!locked)
2249 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2250}
2251
e8351ac9
JK
2252/*
2253 * rmap_walk_file - do something to file page using the object-based rmap method
2254 * @page: the page to be handled
2255 * @rwc: control variable according to each walk type
2256 *
2257 * Find all the mappings of a page using the mapping pointer and the vma chains
2258 * contained in the address_space struct it points to.
e8351ac9 2259 */
1df631ae 2260static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 2261 bool locked)
e9995ef9 2262{
b9773199 2263 struct address_space *mapping = page_mapping(page);
a8fa41ad 2264 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2265 struct vm_area_struct *vma;
e9995ef9 2266
9f32624b
JK
2267 /*
2268 * The page lock not only makes sure that page->mapping cannot
2269 * suddenly be NULLified by truncation, it makes sure that the
2270 * structure at mapping cannot be freed and reused yet,
c8c06efa 2271 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2272 */
81d1b09c 2273 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 2274
e9995ef9 2275 if (!mapping)
1df631ae 2276 return;
3dec0ba0 2277
a8fa41ad 2278 pgoff_start = page_to_pgoff(page);
6c357848 2279 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
b9773199
KS
2280 if (!locked)
2281 i_mmap_lock_read(mapping);
a8fa41ad
KS
2282 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2283 pgoff_start, pgoff_end) {
e9995ef9 2284 unsigned long address = vma_address(page, vma);
0dd1c7bb 2285
494334e4 2286 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2287 cond_resched();
2288
0dd1c7bb
JK
2289 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2290 continue;
2291
e4b82222 2292 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
2293 goto done;
2294 if (rwc->done && rwc->done(page))
2295 goto done;
e9995ef9 2296 }
0dd1c7bb 2297
0dd1c7bb 2298done:
b9773199
KS
2299 if (!locked)
2300 i_mmap_unlock_read(mapping);
e9995ef9
HD
2301}
2302
1df631ae 2303void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 2304{
e9995ef9 2305 if (unlikely(PageKsm(page)))
1df631ae 2306 rmap_walk_ksm(page, rwc);
e9995ef9 2307 else if (PageAnon(page))
1df631ae 2308 rmap_walk_anon(page, rwc, false);
b9773199 2309 else
1df631ae 2310 rmap_walk_file(page, rwc, false);
b9773199
KS
2311}
2312
2313/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 2314void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
2315{
2316 /* no ksm support for now */
2317 VM_BUG_ON_PAGE(PageKsm(page), page);
2318 if (PageAnon(page))
1df631ae 2319 rmap_walk_anon(page, rwc, true);
e9995ef9 2320 else
1df631ae 2321 rmap_walk_file(page, rwc, true);
e9995ef9 2322}
0fe6e20b 2323
e3390f67 2324#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2325/*
451b9514 2326 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2327 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2328 * and no lru code, because we handle hugepages differently from common pages.
2329 */
0fe6e20b
NH
2330void hugepage_add_anon_rmap(struct page *page,
2331 struct vm_area_struct *vma, unsigned long address)
2332{
2333 struct anon_vma *anon_vma = vma->anon_vma;
2334 int first;
a850ea30
NH
2335
2336 BUG_ON(!PageLocked(page));
0fe6e20b 2337 BUG_ON(!anon_vma);
5dbe0af4 2338 /* address might be in next vma when migration races vma_adjust */
53f9263b 2339 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 2340 if (first)
451b9514 2341 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
2342}
2343
2344void hugepage_add_new_anon_rmap(struct page *page,
2345 struct vm_area_struct *vma, unsigned long address)
2346{
2347 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2348 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
2349 if (hpage_pincount_available(page))
2350 atomic_set(compound_pincount_ptr(page), 0);
2351
451b9514 2352 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2353}
e3390f67 2354#endif /* CONFIG_HUGETLB_PAGE */