mm: remove the skip_page argument to read_pages
[linux-2.6-block.git] / mm / readahead.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
e1f8e874 7 * 09Apr2002 Andrew Morton
1da177e4
LT
8 * Initial version.
9 */
10
84dacdbd
N
11/**
12 * DOC: Readahead Overview
13 *
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read pages that are not yet in the page cache. If a
17 * page is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->readpage() will be requested.
19 *
20 * Readahead is triggered when an application read request (whether a
21 * systemcall or a page fault) finds that the requested page is not in
22 * the page cache, or that it is in the page cache and has the
23 * %PG_readahead flag set. This flag indicates that the page was loaded
24 * as part of a previous read-ahead request and now that it has been
25 * accessed, it is time for the next read-ahead.
26 *
27 * Each readahead request is partly synchronous read, and partly async
28 * read-ahead. This is reflected in the struct file_ra_state which
29 * contains ->size being to total number of pages, and ->async_size
30 * which is the number of pages in the async section. The first page in
31 * this async section will have %PG_readahead set as a trigger for a
32 * subsequent read ahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all read ahead request will be fully asynchronous.
35 *
36 * When either of the triggers causes a readahead, three numbers need to
37 * be determined: the start of the region, the size of the region, and
38 * the size of the async tail.
39 *
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
43 *
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE.
49 *
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the %PG_readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
60 *
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
67 *
68 * In general read ahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the read ahead size in various special cases and these
71 * are best discovered by reading the code.
72 *
73 * The above calculation determines the readahead, to which any requested
74 * read size may be added.
75 *
76 * Readahead requests are sent to the filesystem using the ->readahead()
77 * address space operation, for which mpage_readahead() is a canonical
78 * implementation. ->readahead() should normally initiate reads on all
79 * pages, but may fail to read any or all pages without causing an IO
80 * error. The page cache reading code will issue a ->readpage() request
81 * for any page which ->readahead() does not provided, and only an error
82 * from this will be final.
83 *
84 * ->readahead() will generally call readahead_page() repeatedly to get
85 * each page from those prepared for read ahead. It may fail to read a
86 * page by:
87 *
88 * * not calling readahead_page() sufficiently many times, effectively
89 * ignoring some pages, as might be appropriate if the path to
90 * storage is congested.
91 *
92 * * failing to actually submit a read request for a given page,
93 * possibly due to insufficient resources, or
94 *
95 * * getting an error during subsequent processing of a request.
96 *
97 * In the last two cases, the page should be unlocked to indicate that
98 * the read attempt has failed. In the first case the page will be
99 * unlocked by the caller.
100 *
101 * Those pages not in the final ``async_size`` of the request should be
102 * considered to be important and ->readahead() should not fail them due
103 * to congestion or temporary resource unavailability, but should wait
104 * for necessary resources (e.g. memory or indexing information) to
105 * become available. Pages in the final ``async_size`` may be
106 * considered less urgent and failure to read them is more acceptable.
9fd472af
N
107 * In this case it is best to use delete_from_page_cache() to remove the
108 * pages from the page cache as is automatically done for pages that
109 * were not fetched with readahead_page(). This will allow a
110 * subsequent synchronous read ahead request to try them again. If they
111 * are left in the page cache, then they will be read individually using
112 * ->readpage().
113 *
84dacdbd
N
114 */
115
1da177e4 116#include <linux/kernel.h>
11bd969f 117#include <linux/dax.h>
5a0e3ad6 118#include <linux/gfp.h>
b95f1b31 119#include <linux/export.h>
1da177e4 120#include <linux/backing-dev.h>
8bde37f0 121#include <linux/task_io_accounting_ops.h>
1da177e4 122#include <linux/pagevec.h>
f5ff8422 123#include <linux/pagemap.h>
782182e5
CW
124#include <linux/syscalls.h>
125#include <linux/file.h>
d72ee911 126#include <linux/mm_inline.h>
ca47e8c7 127#include <linux/blk-cgroup.h>
3d8f7615 128#include <linux/fadvise.h>
f2c817be 129#include <linux/sched/mm.h>
1da177e4 130
29f175d1
FF
131#include "internal.h"
132
1da177e4
LT
133/*
134 * Initialise a struct file's readahead state. Assumes that the caller has
135 * memset *ra to zero.
136 */
137void
138file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
139{
de1414a6 140 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
f4e6b498 141 ra->prev_pos = -1;
1da177e4 142}
d41cc702 143EXPORT_SYMBOL_GPL(file_ra_state_init);
1da177e4 144
b4e089d7 145static void read_pages(struct readahead_control *rac)
1da177e4 146{
a4d96536 147 const struct address_space_operations *aops = rac->mapping->a_ops;
c1f6925e 148 struct page *page;
5b417b18 149 struct blk_plug plug;
1da177e4 150
a4d96536 151 if (!readahead_count(rac))
b4e089d7 152 return;
ad4ae1c7 153
5b417b18
JA
154 blk_start_plug(&plug);
155
8151b4c8
MWO
156 if (aops->readahead) {
157 aops->readahead(rac);
9fd472af
N
158 /*
159 * Clean up the remaining pages. The sizes in ->ra
160 * maybe be used to size next read-ahead, so make sure
161 * they accurately reflect what happened.
162 */
8151b4c8 163 while ((page = readahead_page(rac))) {
9fd472af
N
164 rac->ra->size -= 1;
165 if (rac->ra->async_size > 0) {
166 rac->ra->async_size -= 1;
167 delete_from_page_cache(page);
168 }
8151b4c8
MWO
169 unlock_page(page);
170 put_page(page);
171 }
c1f6925e
MWO
172 } else {
173 while ((page = readahead_page(rac))) {
a4d96536 174 aops->readpage(rac->file, page);
c1f6925e
MWO
175 put_page(page);
176 }
1da177e4 177 }
5b417b18 178
5b417b18 179 blk_finish_plug(&plug);
ad4ae1c7 180
c1f6925e 181 BUG_ON(readahead_count(rac));
1da177e4
LT
182}
183
2c684234 184/**
73bb49da
MWO
185 * page_cache_ra_unbounded - Start unchecked readahead.
186 * @ractl: Readahead control.
2c684234
MWO
187 * @nr_to_read: The number of pages to read.
188 * @lookahead_size: Where to start the next readahead.
189 *
190 * This function is for filesystems to call when they want to start
191 * readahead beyond a file's stated i_size. This is almost certainly
192 * not the function you want to call. Use page_cache_async_readahead()
193 * or page_cache_sync_readahead() instead.
194 *
195 * Context: File is referenced by caller. Mutexes may be held by caller.
196 * May sleep, but will not reenter filesystem to reclaim memory.
1da177e4 197 */
73bb49da
MWO
198void page_cache_ra_unbounded(struct readahead_control *ractl,
199 unsigned long nr_to_read, unsigned long lookahead_size)
1da177e4 200{
73bb49da
MWO
201 struct address_space *mapping = ractl->mapping;
202 unsigned long index = readahead_index(ractl);
8a5c743e 203 gfp_t gfp_mask = readahead_gfp_mask(mapping);
c2c7ad74 204 unsigned long i;
1da177e4 205
f2c817be
MWO
206 /*
207 * Partway through the readahead operation, we will have added
208 * locked pages to the page cache, but will not yet have submitted
209 * them for I/O. Adding another page may need to allocate memory,
210 * which can trigger memory reclaim. Telling the VM we're in
211 * the middle of a filesystem operation will cause it to not
212 * touch file-backed pages, preventing a deadlock. Most (all?)
213 * filesystems already specify __GFP_NOFS in their mapping's
214 * gfp_mask, but let's be explicit here.
215 */
216 unsigned int nofs = memalloc_nofs_save();
217
730633f0 218 filemap_invalidate_lock_shared(mapping);
1da177e4
LT
219 /*
220 * Preallocate as many pages as we will need.
221 */
c2c7ad74 222 for (i = 0; i < nr_to_read; i++) {
0387df1d 223 struct folio *folio = xa_load(&mapping->i_pages, index + i);
1da177e4 224
0387df1d 225 if (folio && !xa_is_value(folio)) {
b3751e6a 226 /*
2d8163e4
MWO
227 * Page already present? Kick off the current batch
228 * of contiguous pages before continuing with the
229 * next batch. This page may be the one we would
230 * have intended to mark as Readahead, but we don't
231 * have a stable reference to this page, and it's
232 * not worth getting one just for that.
b3751e6a 233 */
b4e089d7
CH
234 read_pages(ractl);
235 ractl->_index++;
f615bd5c 236 i = ractl->_index + ractl->_nr_pages - index - 1;
1da177e4 237 continue;
b3751e6a 238 }
1da177e4 239
0387df1d
MWO
240 folio = filemap_alloc_folio(gfp_mask, 0);
241 if (!folio)
1da177e4 242 break;
704528d8 243 if (filemap_add_folio(mapping, folio, index + i,
c1f6925e 244 gfp_mask) < 0) {
0387df1d 245 folio_put(folio);
b4e089d7
CH
246 read_pages(ractl);
247 ractl->_index++;
f615bd5c 248 i = ractl->_index + ractl->_nr_pages - index - 1;
c1f6925e
MWO
249 continue;
250 }
c2c7ad74 251 if (i == nr_to_read - lookahead_size)
0387df1d 252 folio_set_readahead(folio);
73bb49da 253 ractl->_nr_pages++;
1da177e4 254 }
1da177e4
LT
255
256 /*
257 * Now start the IO. We ignore I/O errors - if the page is not
258 * uptodate then the caller will launch readpage again, and
259 * will then handle the error.
260 */
b4e089d7 261 read_pages(ractl);
730633f0 262 filemap_invalidate_unlock_shared(mapping);
f2c817be 263 memalloc_nofs_restore(nofs);
1da177e4 264}
73bb49da 265EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
2c684234
MWO
266
267/*
8238287e 268 * do_page_cache_ra() actually reads a chunk of disk. It allocates
2c684234
MWO
269 * the pages first, then submits them for I/O. This avoids the very bad
270 * behaviour which would occur if page allocations are causing VM writeback.
271 * We really don't want to intermingle reads and writes like that.
272 */
56a4d67c 273static void do_page_cache_ra(struct readahead_control *ractl,
8238287e 274 unsigned long nr_to_read, unsigned long lookahead_size)
2c684234 275{
8238287e
MWO
276 struct inode *inode = ractl->mapping->host;
277 unsigned long index = readahead_index(ractl);
2c684234
MWO
278 loff_t isize = i_size_read(inode);
279 pgoff_t end_index; /* The last page we want to read */
280
281 if (isize == 0)
282 return;
283
284 end_index = (isize - 1) >> PAGE_SHIFT;
285 if (index > end_index)
286 return;
287 /* Don't read past the page containing the last byte of the file */
288 if (nr_to_read > end_index - index)
289 nr_to_read = end_index - index + 1;
290
8238287e 291 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
2c684234 292}
1da177e4
LT
293
294/*
295 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
296 * memory at once.
297 */
7b3df3b9 298void force_page_cache_ra(struct readahead_control *ractl,
fcd9ae4f 299 unsigned long nr_to_read)
1da177e4 300{
7b3df3b9 301 struct address_space *mapping = ractl->mapping;
fcd9ae4f 302 struct file_ra_state *ra = ractl->ra;
9491ae4a 303 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
7b3df3b9 304 unsigned long max_pages, index;
9491ae4a 305
704528d8 306 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readahead))
9a42823a 307 return;
1da177e4 308
9491ae4a
JA
309 /*
310 * If the request exceeds the readahead window, allow the read to
311 * be up to the optimal hardware IO size
312 */
7b3df3b9 313 index = readahead_index(ractl);
9491ae4a 314 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
7b3df3b9 315 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
1da177e4 316 while (nr_to_read) {
09cbfeaf 317 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
1da177e4
LT
318
319 if (this_chunk > nr_to_read)
320 this_chunk = nr_to_read;
7b3df3b9
DH
321 ractl->_index = index;
322 do_page_cache_ra(ractl, this_chunk, 0);
58d5640e 323
08eb9658 324 index += this_chunk;
1da177e4
LT
325 nr_to_read -= this_chunk;
326 }
1da177e4
LT
327}
328
c743d96b
FW
329/*
330 * Set the initial window size, round to next power of 2 and square
331 * for small size, x 4 for medium, and x 2 for large
332 * for 128k (32 page) max ra
fb25a77d 333 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
c743d96b
FW
334 */
335static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
336{
337 unsigned long newsize = roundup_pow_of_two(size);
338
339 if (newsize <= max / 32)
340 newsize = newsize * 4;
341 else if (newsize <= max / 4)
342 newsize = newsize * 2;
343 else
344 newsize = max;
345
346 return newsize;
347}
348
122a21d1
FW
349/*
350 * Get the previous window size, ramp it up, and
351 * return it as the new window size.
352 */
c743d96b 353static unsigned long get_next_ra_size(struct file_ra_state *ra,
20ff1c95 354 unsigned long max)
122a21d1 355{
f9acc8c7 356 unsigned long cur = ra->size;
122a21d1
FW
357
358 if (cur < max / 16)
20ff1c95
GX
359 return 4 * cur;
360 if (cur <= max / 2)
361 return 2 * cur;
362 return max;
122a21d1
FW
363}
364
365/*
366 * On-demand readahead design.
367 *
368 * The fields in struct file_ra_state represent the most-recently-executed
369 * readahead attempt:
370 *
f9acc8c7
FW
371 * |<----- async_size ---------|
372 * |------------------- size -------------------->|
373 * |==================#===========================|
374 * ^start ^page marked with PG_readahead
122a21d1
FW
375 *
376 * To overlap application thinking time and disk I/O time, we do
377 * `readahead pipelining': Do not wait until the application consumed all
378 * readahead pages and stalled on the missing page at readahead_index;
f9acc8c7
FW
379 * Instead, submit an asynchronous readahead I/O as soon as there are
380 * only async_size pages left in the readahead window. Normally async_size
381 * will be equal to size, for maximum pipelining.
122a21d1
FW
382 *
383 * In interleaved sequential reads, concurrent streams on the same fd can
384 * be invalidating each other's readahead state. So we flag the new readahead
f9acc8c7 385 * page at (start+size-async_size) with PG_readahead, and use it as readahead
122a21d1
FW
386 * indicator. The flag won't be set on already cached pages, to avoid the
387 * readahead-for-nothing fuss, saving pointless page cache lookups.
388 *
f4e6b498 389 * prev_pos tracks the last visited byte in the _previous_ read request.
122a21d1
FW
390 * It should be maintained by the caller, and will be used for detecting
391 * small random reads. Note that the readahead algorithm checks loosely
392 * for sequential patterns. Hence interleaved reads might be served as
393 * sequential ones.
394 *
395 * There is a special-case: if the first page which the application tries to
396 * read happens to be the first page of the file, it is assumed that a linear
397 * read is about to happen and the window is immediately set to the initial size
398 * based on I/O request size and the max_readahead.
399 *
400 * The code ramps up the readahead size aggressively at first, but slow down as
401 * it approaches max_readhead.
402 */
403
10be0b37 404/*
08eb9658 405 * Count contiguously cached pages from @index-1 to @index-@max,
10be0b37
WF
406 * this count is a conservative estimation of
407 * - length of the sequential read sequence, or
408 * - thrashing threshold in memory tight systems
409 */
410static pgoff_t count_history_pages(struct address_space *mapping,
08eb9658 411 pgoff_t index, unsigned long max)
10be0b37
WF
412{
413 pgoff_t head;
414
415 rcu_read_lock();
08eb9658 416 head = page_cache_prev_miss(mapping, index - 1, max);
10be0b37
WF
417 rcu_read_unlock();
418
08eb9658 419 return index - 1 - head;
10be0b37
WF
420}
421
422/*
423 * page cache context based read-ahead
424 */
425static int try_context_readahead(struct address_space *mapping,
426 struct file_ra_state *ra,
08eb9658 427 pgoff_t index,
10be0b37
WF
428 unsigned long req_size,
429 unsigned long max)
430{
431 pgoff_t size;
432
08eb9658 433 size = count_history_pages(mapping, index, max);
10be0b37
WF
434
435 /*
2cad4018 436 * not enough history pages:
10be0b37
WF
437 * it could be a random read
438 */
2cad4018 439 if (size <= req_size)
10be0b37
WF
440 return 0;
441
442 /*
443 * starts from beginning of file:
444 * it is a strong indication of long-run stream (or whole-file-read)
445 */
08eb9658 446 if (size >= index)
10be0b37
WF
447 size *= 2;
448
08eb9658 449 ra->start = index;
2cad4018
FW
450 ra->size = min(size + req_size, max);
451 ra->async_size = 1;
10be0b37
WF
452
453 return 1;
454}
455
793917d9
MWO
456/*
457 * There are some parts of the kernel which assume that PMD entries
458 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
459 * limit the maximum allocation order to PMD size. I'm not aware of any
460 * assumptions about maximum order if THP are disabled, but 8 seems like
461 * a good order (that's 1MB if you're using 4kB pages)
462 */
463#ifdef CONFIG_TRANSPARENT_HUGEPAGE
464#define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
465#else
466#define MAX_PAGECACHE_ORDER 8
467#endif
468
469static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
470 pgoff_t mark, unsigned int order, gfp_t gfp)
471{
472 int err;
473 struct folio *folio = filemap_alloc_folio(gfp, order);
474
475 if (!folio)
476 return -ENOMEM;
477 if (mark - index < (1UL << order))
478 folio_set_readahead(folio);
479 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
480 if (err)
481 folio_put(folio);
482 else
483 ractl->_nr_pages += 1UL << order;
484 return err;
485}
486
56a4d67c 487void page_cache_ra_order(struct readahead_control *ractl,
793917d9
MWO
488 struct file_ra_state *ra, unsigned int new_order)
489{
490 struct address_space *mapping = ractl->mapping;
491 pgoff_t index = readahead_index(ractl);
492 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
493 pgoff_t mark = index + ra->size - ra->async_size;
494 int err = 0;
495 gfp_t gfp = readahead_gfp_mask(mapping);
496
497 if (!mapping_large_folio_support(mapping) || ra->size < 4)
498 goto fallback;
499
500 limit = min(limit, index + ra->size - 1);
501
502 if (new_order < MAX_PAGECACHE_ORDER) {
503 new_order += 2;
504 if (new_order > MAX_PAGECACHE_ORDER)
505 new_order = MAX_PAGECACHE_ORDER;
506 while ((1 << new_order) > ra->size)
507 new_order--;
508 }
509
510 while (index <= limit) {
511 unsigned int order = new_order;
512
513 /* Align with smaller pages if needed */
514 if (index & ((1UL << order) - 1)) {
515 order = __ffs(index);
516 if (order == 1)
517 order = 0;
518 }
519 /* Don't allocate pages past EOF */
520 while (index + (1UL << order) - 1 > limit) {
521 if (--order == 1)
522 order = 0;
523 }
524 err = ra_alloc_folio(ractl, index, mark, order, gfp);
525 if (err)
526 break;
527 index += 1UL << order;
528 }
529
530 if (index > limit) {
531 ra->size += index - limit - 1;
532 ra->async_size += index - limit - 1;
533 }
534
b4e089d7 535 read_pages(ractl);
793917d9
MWO
536
537 /*
538 * If there were already pages in the page cache, then we may have
539 * left some gaps. Let the regular readahead code take care of this
540 * situation.
541 */
542 if (!err)
543 return;
544fallback:
545 do_page_cache_ra(ractl, ra->size, ra->async_size);
546}
547
122a21d1
FW
548/*
549 * A minimal readahead algorithm for trivial sequential/random reads.
550 */
6e4af69a 551static void ondemand_readahead(struct readahead_control *ractl,
793917d9 552 struct folio *folio, unsigned long req_size)
122a21d1 553{
6e4af69a 554 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
fcd9ae4f 555 struct file_ra_state *ra = ractl->ra;
9491ae4a 556 unsigned long max_pages = ra->ra_pages;
dc30b96a 557 unsigned long add_pages;
6e4af69a 558 unsigned long index = readahead_index(ractl);
08eb9658 559 pgoff_t prev_index;
045a2529 560
9491ae4a
JA
561 /*
562 * If the request exceeds the readahead window, allow the read to
563 * be up to the optimal hardware IO size
564 */
565 if (req_size > max_pages && bdi->io_pages > max_pages)
566 max_pages = min(req_size, bdi->io_pages);
567
045a2529
WF
568 /*
569 * start of file
570 */
08eb9658 571 if (!index)
045a2529 572 goto initial_readahead;
122a21d1
FW
573
574 /*
08eb9658 575 * It's the expected callback index, assume sequential access.
122a21d1
FW
576 * Ramp up sizes, and push forward the readahead window.
577 */
08eb9658
MWO
578 if ((index == (ra->start + ra->size - ra->async_size) ||
579 index == (ra->start + ra->size))) {
f9acc8c7 580 ra->start += ra->size;
9491ae4a 581 ra->size = get_next_ra_size(ra, max_pages);
f9acc8c7
FW
582 ra->async_size = ra->size;
583 goto readit;
122a21d1
FW
584 }
585
6b10c6c9 586 /*
793917d9 587 * Hit a marked folio without valid readahead state.
6b10c6c9
FW
588 * E.g. interleaved reads.
589 * Query the pagecache for async_size, which normally equals to
590 * readahead size. Ramp it up and use it as the new readahead size.
591 */
793917d9 592 if (folio) {
6b10c6c9
FW
593 pgoff_t start;
594
30002ed2 595 rcu_read_lock();
6e4af69a
DH
596 start = page_cache_next_miss(ractl->mapping, index + 1,
597 max_pages);
30002ed2 598 rcu_read_unlock();
6b10c6c9 599
08eb9658 600 if (!start || start - index > max_pages)
9a42823a 601 return;
6b10c6c9
FW
602
603 ra->start = start;
08eb9658 604 ra->size = start - index; /* old async_size */
160334a0 605 ra->size += req_size;
9491ae4a 606 ra->size = get_next_ra_size(ra, max_pages);
6b10c6c9
FW
607 ra->async_size = ra->size;
608 goto readit;
609 }
610
122a21d1 611 /*
045a2529 612 * oversize read
122a21d1 613 */
9491ae4a 614 if (req_size > max_pages)
045a2529
WF
615 goto initial_readahead;
616
617 /*
618 * sequential cache miss
08eb9658
MWO
619 * trivial case: (index - prev_index) == 1
620 * unaligned reads: (index - prev_index) == 0
045a2529 621 */
08eb9658
MWO
622 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
623 if (index - prev_index <= 1UL)
045a2529
WF
624 goto initial_readahead;
625
10be0b37
WF
626 /*
627 * Query the page cache and look for the traces(cached history pages)
628 * that a sequential stream would leave behind.
629 */
6e4af69a
DH
630 if (try_context_readahead(ractl->mapping, ra, index, req_size,
631 max_pages))
10be0b37
WF
632 goto readit;
633
045a2529
WF
634 /*
635 * standalone, small random read
636 * Read as is, and do not pollute the readahead state.
637 */
6e4af69a 638 do_page_cache_ra(ractl, req_size, 0);
9a42823a 639 return;
045a2529
WF
640
641initial_readahead:
08eb9658 642 ra->start = index;
9491ae4a 643 ra->size = get_init_ra_size(req_size, max_pages);
f9acc8c7 644 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
122a21d1 645
f9acc8c7 646readit:
51daa88e
WF
647 /*
648 * Will this read hit the readahead marker made by itself?
649 * If so, trigger the readahead marker hit now, and merge
650 * the resulted next readahead window into the current one.
dc30b96a 651 * Take care of maximum IO pages as above.
51daa88e 652 */
08eb9658 653 if (index == ra->start && ra->size == ra->async_size) {
dc30b96a
MS
654 add_pages = get_next_ra_size(ra, max_pages);
655 if (ra->size + add_pages <= max_pages) {
656 ra->async_size = add_pages;
657 ra->size += add_pages;
658 } else {
659 ra->size = max_pages;
660 ra->async_size = max_pages >> 1;
661 }
51daa88e
WF
662 }
663
6e4af69a 664 ractl->_index = ra->start;
793917d9 665 page_cache_ra_order(ractl, ra, folio ? folio_order(folio) : 0);
122a21d1
FW
666}
667
fefa7c47 668void page_cache_sync_ra(struct readahead_control *ractl,
fcd9ae4f 669 unsigned long req_count)
122a21d1 670{
324bcf54 671 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
cf914a7d 672
324bcf54
JA
673 /*
674 * Even if read-ahead is disabled, issue this request as read-ahead
675 * as we'll need it to satisfy the requested range. The forced
676 * read-ahead will do the right thing and limit the read to just the
677 * requested range, which we'll set to 1 page for this case.
678 */
fcd9ae4f 679 if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
324bcf54
JA
680 if (!ractl->file)
681 return;
682 req_count = 1;
683 do_forced_ra = true;
684 }
ca47e8c7 685
0141450f 686 /* be dumb */
324bcf54 687 if (do_forced_ra) {
fcd9ae4f 688 force_page_cache_ra(ractl, req_count);
0141450f
WF
689 return;
690 }
691
cf914a7d 692 /* do read-ahead */
793917d9 693 ondemand_readahead(ractl, NULL, req_count);
cf914a7d 694}
fefa7c47 695EXPORT_SYMBOL_GPL(page_cache_sync_ra);
cf914a7d 696
fefa7c47 697void page_cache_async_ra(struct readahead_control *ractl,
7836d999 698 struct folio *folio, unsigned long req_count)
cf914a7d
RR
699{
700 /* no read-ahead */
fcd9ae4f 701 if (!ractl->ra->ra_pages)
cf914a7d
RR
702 return;
703
704 /*
705 * Same bit is used for PG_readahead and PG_reclaim.
706 */
7836d999 707 if (folio_test_writeback(folio))
cf914a7d
RR
708 return;
709
7836d999 710 folio_clear_readahead(folio);
cf914a7d 711
ca47e8c7
JB
712 if (blk_cgroup_congested())
713 return;
714
122a21d1 715 /* do read-ahead */
793917d9 716 ondemand_readahead(ractl, folio, req_count);
122a21d1 717}
fefa7c47 718EXPORT_SYMBOL_GPL(page_cache_async_ra);
782182e5 719
c7b95d51 720ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
782182e5
CW
721{
722 ssize_t ret;
2903ff01 723 struct fd f;
782182e5
CW
724
725 ret = -EBADF;
2903ff01 726 f = fdget(fd);
3d8f7615
AG
727 if (!f.file || !(f.file->f_mode & FMODE_READ))
728 goto out;
729
730 /*
731 * The readahead() syscall is intended to run only on files
732 * that can execute readahead. If readahead is not possible
733 * on this file, then we must return -EINVAL.
734 */
735 ret = -EINVAL;
736 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
737 !S_ISREG(file_inode(f.file)->i_mode))
738 goto out;
739
740 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
741out:
742 fdput(f);
782182e5
CW
743 return ret;
744}
c7b95d51
DB
745
746SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
747{
748 return ksys_readahead(fd, offset, count);
749}
3ca23644
DH
750
751/**
752 * readahead_expand - Expand a readahead request
753 * @ractl: The request to be expanded
754 * @new_start: The revised start
755 * @new_len: The revised size of the request
756 *
757 * Attempt to expand a readahead request outwards from the current size to the
758 * specified size by inserting locked pages before and after the current window
759 * to increase the size to the new window. This may involve the insertion of
760 * THPs, in which case the window may get expanded even beyond what was
761 * requested.
762 *
763 * The algorithm will stop if it encounters a conflicting page already in the
764 * pagecache and leave a smaller expansion than requested.
765 *
766 * The caller must check for this by examining the revised @ractl object for a
767 * different expansion than was requested.
768 */
769void readahead_expand(struct readahead_control *ractl,
770 loff_t new_start, size_t new_len)
771{
772 struct address_space *mapping = ractl->mapping;
773 struct file_ra_state *ra = ractl->ra;
774 pgoff_t new_index, new_nr_pages;
775 gfp_t gfp_mask = readahead_gfp_mask(mapping);
776
777 new_index = new_start / PAGE_SIZE;
778
779 /* Expand the leading edge downwards */
780 while (ractl->_index > new_index) {
781 unsigned long index = ractl->_index - 1;
782 struct page *page = xa_load(&mapping->i_pages, index);
783
784 if (page && !xa_is_value(page))
785 return; /* Page apparently present */
786
787 page = __page_cache_alloc(gfp_mask);
788 if (!page)
789 return;
790 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
791 put_page(page);
792 return;
793 }
794
795 ractl->_nr_pages++;
796 ractl->_index = page->index;
797 }
798
799 new_len += new_start - readahead_pos(ractl);
800 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
801
802 /* Expand the trailing edge upwards */
803 while (ractl->_nr_pages < new_nr_pages) {
804 unsigned long index = ractl->_index + ractl->_nr_pages;
805 struct page *page = xa_load(&mapping->i_pages, index);
806
807 if (page && !xa_is_value(page))
808 return; /* Page apparently present */
809
810 page = __page_cache_alloc(gfp_mask);
811 if (!page)
812 return;
813 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
814 put_page(page);
815 return;
816 }
817 ractl->_nr_pages++;
818 if (ra) {
819 ra->size++;
820 ra->async_size++;
821 }
822 }
823}
824EXPORT_SYMBOL(readahead_expand);