mm/percpu: use list_first_entry_or_null in pcpu_reclaim_populated()
[linux-block.git] / mm / percpu.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
fbf59bc9 2/*
88999a89 3 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
4 *
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 *
5e81ee3e 8 * Copyright (C) 2017 Facebook Inc.
bfacd38f 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
5e81ee3e 10 *
9c015162
DZF
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
fbf59bc9
TH
15 *
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
20 *
9c015162
DZF
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
27 *
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
5e81ee3e 30 * are not online yet. In short, the first chunk is structured like so:
9c015162
DZF
31 *
32 * <Static | [Reserved] | Dynamic>
33 *
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
fbf59bc9 38 *
5e81ee3e 39 * The allocator organizes chunks into lists according to free size and
3c7be18a
RG
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
44 *
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
5e81ee3e
DZF
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
52 *
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
9c015162 58 *
4091fb95 59 * To use this allocator, arch code should do the following:
fbf59bc9 60 *
fbf59bc9 61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
fbf59bc9 64 *
8d408b4b
TH
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
67 */
68
870d4b12
JP
69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
fbf59bc9 71#include <linux/bitmap.h>
d7d29ac7 72#include <linux/cpumask.h>
57c8a661 73#include <linux/memblock.h>
fd1e8a1f 74#include <linux/err.h>
ca460b3c 75#include <linux/lcm.h>
fbf59bc9 76#include <linux/list.h>
a530b795 77#include <linux/log2.h>
fbf59bc9
TH
78#include <linux/mm.h>
79#include <linux/module.h>
80#include <linux/mutex.h>
81#include <linux/percpu.h>
82#include <linux/pfn.h>
fbf59bc9 83#include <linux/slab.h>
ccea34b5 84#include <linux/spinlock.h>
fbf59bc9 85#include <linux/vmalloc.h>
a56dbddf 86#include <linux/workqueue.h>
f528f0b8 87#include <linux/kmemleak.h>
71546d10 88#include <linux/sched.h>
28307d93 89#include <linux/sched/mm.h>
3c7be18a 90#include <linux/memcontrol.h>
fbf59bc9
TH
91
92#include <asm/cacheflush.h>
e0100983 93#include <asm/sections.h>
fbf59bc9 94#include <asm/tlbflush.h>
3b034b0d 95#include <asm/io.h>
fbf59bc9 96
df95e795
DZ
97#define CREATE_TRACE_POINTS
98#include <trace/events/percpu.h>
99
8fa3ed80
DZ
100#include "percpu-internal.h"
101
ac9380f6
RG
102/*
103 * The slots are sorted by the size of the biggest continuous free area.
104 * 1-31 bytes share the same slot.
105 */
40064aec 106#define PCPU_SLOT_BASE_SHIFT 5
8744d859
DZ
107/* chunks in slots below this are subject to being sidelined on failed alloc */
108#define PCPU_SLOT_FAIL_THRESHOLD 3
40064aec 109
1a4d7607
TH
110#define PCPU_EMPTY_POP_PAGES_LOW 2
111#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 112
bbddff05 113#ifdef CONFIG_SMP
e0100983
TH
114/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
115#ifndef __addr_to_pcpu_ptr
116#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
117 (void __percpu *)((unsigned long)(addr) - \
118 (unsigned long)pcpu_base_addr + \
119 (unsigned long)__per_cpu_start)
e0100983
TH
120#endif
121#ifndef __pcpu_ptr_to_addr
122#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
123 (void __force *)((unsigned long)(ptr) + \
124 (unsigned long)pcpu_base_addr - \
125 (unsigned long)__per_cpu_start)
e0100983 126#endif
bbddff05
TH
127#else /* CONFIG_SMP */
128/* on UP, it's always identity mapped */
129#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
130#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
131#endif /* CONFIG_SMP */
e0100983 132
1328710b
DM
133static int pcpu_unit_pages __ro_after_init;
134static int pcpu_unit_size __ro_after_init;
135static int pcpu_nr_units __ro_after_init;
136static int pcpu_atom_size __ro_after_init;
8fa3ed80 137int pcpu_nr_slots __ro_after_init;
8d55ba5d 138static int pcpu_free_slot __ro_after_init;
f1833241
RG
139int pcpu_sidelined_slot __ro_after_init;
140int pcpu_to_depopulate_slot __ro_after_init;
1328710b 141static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 142
a855b84c 143/* cpus with the lowest and highest unit addresses */
1328710b
DM
144static unsigned int pcpu_low_unit_cpu __ro_after_init;
145static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 146
fbf59bc9 147/* the address of the first chunk which starts with the kernel static area */
1328710b 148void *pcpu_base_addr __ro_after_init;
fbf59bc9 149
1328710b
DM
150static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
151const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 152
6563297c 153/* group information, used for vm allocation */
1328710b
DM
154static int pcpu_nr_groups __ro_after_init;
155static const unsigned long *pcpu_group_offsets __ro_after_init;
156static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 157
ae9e6bc9
TH
158/*
159 * The first chunk which always exists. Note that unlike other
160 * chunks, this one can be allocated and mapped in several different
161 * ways and thus often doesn't live in the vmalloc area.
162 */
8fa3ed80 163struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
164
165/*
166 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
167 * chunk and serves it for reserved allocations. When the reserved
168 * region doesn't exist, the following variable is NULL.
ae9e6bc9 169 */
8fa3ed80 170struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 171
8fa3ed80 172DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 173static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 174
3c7be18a 175struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
fbf59bc9 176
b539b87f 177/*
faf65dde 178 * The number of empty populated pages, protected by pcpu_lock.
0760fa3d 179 * The reserved chunk doesn't contribute to the count.
b539b87f 180 */
faf65dde 181int pcpu_nr_empty_pop_pages;
b539b87f 182
7e8a6304
DZF
183/*
184 * The number of populated pages in use by the allocator, protected by
185 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
186 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
187 * and increments/decrements this count by 1).
188 */
189static unsigned long pcpu_nr_populated;
190
1a4d7607
TH
191/*
192 * Balance work is used to populate or destroy chunks asynchronously. We
193 * try to keep the number of populated free pages between
194 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
195 * empty chunk.
196 */
fe6bd8c3
TH
197static void pcpu_balance_workfn(struct work_struct *work);
198static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
199static bool pcpu_async_enabled __read_mostly;
200static bool pcpu_atomic_alloc_failed;
201
202static void pcpu_schedule_balance_work(void)
203{
204 if (pcpu_async_enabled)
205 schedule_work(&pcpu_balance_work);
206}
a56dbddf 207
c0ebfdc3 208/**
560f2c23
DZF
209 * pcpu_addr_in_chunk - check if the address is served from this chunk
210 * @chunk: chunk of interest
211 * @addr: percpu address
c0ebfdc3
DZF
212 *
213 * RETURNS:
560f2c23 214 * True if the address is served from this chunk.
c0ebfdc3 215 */
560f2c23 216static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 217{
c0ebfdc3
DZF
218 void *start_addr, *end_addr;
219
560f2c23 220 if (!chunk)
c0ebfdc3 221 return false;
020ec653 222
560f2c23
DZF
223 start_addr = chunk->base_addr + chunk->start_offset;
224 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
225 chunk->end_offset;
c0ebfdc3
DZF
226
227 return addr >= start_addr && addr < end_addr;
020ec653
TH
228}
229
d9b55eeb 230static int __pcpu_size_to_slot(int size)
fbf59bc9 231{
cae3aeb8 232 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
233 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
234}
235
d9b55eeb
TH
236static int pcpu_size_to_slot(int size)
237{
238 if (size == pcpu_unit_size)
1c29a3ce 239 return pcpu_free_slot;
d9b55eeb
TH
240 return __pcpu_size_to_slot(size);
241}
242
fbf59bc9
TH
243static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
244{
92c14cab
DZ
245 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
246
247 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
248 chunk_md->contig_hint == 0)
fbf59bc9
TH
249 return 0;
250
92c14cab 251 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
fbf59bc9
TH
252}
253
88999a89
TH
254/* set the pointer to a chunk in a page struct */
255static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
256{
257 page->index = (unsigned long)pcpu;
258}
259
260/* obtain pointer to a chunk from a page struct */
261static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
262{
263 return (struct pcpu_chunk *)page->index;
264}
265
266static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 267{
2f39e637 268 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
269}
270
c0ebfdc3
DZF
271static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
272{
273 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
274}
275
9983b6f0
TH
276static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
277 unsigned int cpu, int page_idx)
fbf59bc9 278{
c0ebfdc3
DZF
279 return (unsigned long)chunk->base_addr +
280 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
281}
282
ca460b3c
DZF
283/*
284 * The following are helper functions to help access bitmaps and convert
285 * between bitmap offsets to address offsets.
286 */
287static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
288{
289 return chunk->alloc_map +
290 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
291}
292
293static unsigned long pcpu_off_to_block_index(int off)
294{
295 return off / PCPU_BITMAP_BLOCK_BITS;
296}
297
298static unsigned long pcpu_off_to_block_off(int off)
299{
300 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
301}
302
b185cd0d
DZF
303static unsigned long pcpu_block_off_to_off(int index, int off)
304{
305 return index * PCPU_BITMAP_BLOCK_BITS + off;
306}
307
8ea2e1e3
RG
308/**
309 * pcpu_check_block_hint - check against the contig hint
310 * @block: block of interest
311 * @bits: size of allocation
312 * @align: alignment of area (max PAGE_SIZE)
313 *
314 * Check to see if the allocation can fit in the block's contig hint.
315 * Note, a chunk uses the same hints as a block so this can also check against
316 * the chunk's contig hint.
317 */
318static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
319 size_t align)
320{
321 int bit_off = ALIGN(block->contig_hint_start, align) -
322 block->contig_hint_start;
323
324 return bit_off + bits <= block->contig_hint;
325}
326
382b88e9
DZ
327/*
328 * pcpu_next_hint - determine which hint to use
329 * @block: block of interest
330 * @alloc_bits: size of allocation
331 *
332 * This determines if we should scan based on the scan_hint or first_free.
333 * In general, we want to scan from first_free to fulfill allocations by
334 * first fit. However, if we know a scan_hint at position scan_hint_start
335 * cannot fulfill an allocation, we can begin scanning from there knowing
336 * the contig_hint will be our fallback.
337 */
338static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
339{
340 /*
341 * The three conditions below determine if we can skip past the
342 * scan_hint. First, does the scan hint exist. Second, is the
343 * contig_hint after the scan_hint (possibly not true iff
344 * contig_hint == scan_hint). Third, is the allocation request
345 * larger than the scan_hint.
346 */
347 if (block->scan_hint &&
348 block->contig_hint_start > block->scan_hint_start &&
349 alloc_bits > block->scan_hint)
350 return block->scan_hint_start + block->scan_hint;
351
352 return block->first_free;
353}
354
525ca84d
DZF
355/**
356 * pcpu_next_md_free_region - finds the next hint free area
357 * @chunk: chunk of interest
358 * @bit_off: chunk offset
359 * @bits: size of free area
360 *
361 * Helper function for pcpu_for_each_md_free_region. It checks
362 * block->contig_hint and performs aggregation across blocks to find the
363 * next hint. It modifies bit_off and bits in-place to be consumed in the
364 * loop.
365 */
366static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
367 int *bits)
368{
369 int i = pcpu_off_to_block_index(*bit_off);
370 int block_off = pcpu_off_to_block_off(*bit_off);
371 struct pcpu_block_md *block;
372
373 *bits = 0;
374 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
375 block++, i++) {
376 /* handles contig area across blocks */
377 if (*bits) {
378 *bits += block->left_free;
379 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
380 continue;
381 return;
382 }
383
384 /*
385 * This checks three things. First is there a contig_hint to
386 * check. Second, have we checked this hint before by
387 * comparing the block_off. Third, is this the same as the
388 * right contig hint. In the last case, it spills over into
389 * the next block and should be handled by the contig area
390 * across blocks code.
391 */
392 *bits = block->contig_hint;
393 if (*bits && block->contig_hint_start >= block_off &&
394 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
395 *bit_off = pcpu_block_off_to_off(i,
396 block->contig_hint_start);
397 return;
398 }
1fa4df3e
DZ
399 /* reset to satisfy the second predicate above */
400 block_off = 0;
525ca84d
DZF
401
402 *bits = block->right_free;
403 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
404 }
405}
406
b4c2116c
DZF
407/**
408 * pcpu_next_fit_region - finds fit areas for a given allocation request
409 * @chunk: chunk of interest
410 * @alloc_bits: size of allocation
411 * @align: alignment of area (max PAGE_SIZE)
412 * @bit_off: chunk offset
413 * @bits: size of free area
414 *
415 * Finds the next free region that is viable for use with a given size and
416 * alignment. This only returns if there is a valid area to be used for this
417 * allocation. block->first_free is returned if the allocation request fits
418 * within the block to see if the request can be fulfilled prior to the contig
419 * hint.
420 */
421static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
422 int align, int *bit_off, int *bits)
423{
424 int i = pcpu_off_to_block_index(*bit_off);
425 int block_off = pcpu_off_to_block_off(*bit_off);
426 struct pcpu_block_md *block;
427
428 *bits = 0;
429 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
430 block++, i++) {
431 /* handles contig area across blocks */
432 if (*bits) {
433 *bits += block->left_free;
434 if (*bits >= alloc_bits)
435 return;
436 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
437 continue;
438 }
439
440 /* check block->contig_hint */
441 *bits = ALIGN(block->contig_hint_start, align) -
442 block->contig_hint_start;
443 /*
444 * This uses the block offset to determine if this has been
445 * checked in the prior iteration.
446 */
447 if (block->contig_hint &&
448 block->contig_hint_start >= block_off &&
449 block->contig_hint >= *bits + alloc_bits) {
382b88e9
DZ
450 int start = pcpu_next_hint(block, alloc_bits);
451
b4c2116c 452 *bits += alloc_bits + block->contig_hint_start -
382b88e9
DZ
453 start;
454 *bit_off = pcpu_block_off_to_off(i, start);
b4c2116c
DZF
455 return;
456 }
1fa4df3e
DZ
457 /* reset to satisfy the second predicate above */
458 block_off = 0;
b4c2116c
DZF
459
460 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
461 align);
462 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
463 *bit_off = pcpu_block_off_to_off(i, *bit_off);
464 if (*bits >= alloc_bits)
465 return;
466 }
467
468 /* no valid offsets were found - fail condition */
469 *bit_off = pcpu_chunk_map_bits(chunk);
470}
471
525ca84d
DZF
472/*
473 * Metadata free area iterators. These perform aggregation of free areas
474 * based on the metadata blocks and return the offset @bit_off and size in
b4c2116c
DZF
475 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
476 * a fit is found for the allocation request.
525ca84d
DZF
477 */
478#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
479 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
480 (bit_off) < pcpu_chunk_map_bits((chunk)); \
481 (bit_off) += (bits) + 1, \
482 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
483
b4c2116c
DZF
484#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
485 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
486 &(bits)); \
487 (bit_off) < pcpu_chunk_map_bits((chunk)); \
488 (bit_off) += (bits), \
489 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
490 &(bits)))
491
fbf59bc9 492/**
90459ce0 493 * pcpu_mem_zalloc - allocate memory
1880d93b 494 * @size: bytes to allocate
47504ee0 495 * @gfp: allocation flags
fbf59bc9 496 *
1880d93b 497 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
47504ee0
DZ
498 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
499 * This is to facilitate passing through whitelisted flags. The
500 * returned memory is always zeroed.
fbf59bc9
TH
501 *
502 * RETURNS:
1880d93b 503 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 504 */
47504ee0 505static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
fbf59bc9 506{
099a19d9
TH
507 if (WARN_ON_ONCE(!slab_is_available()))
508 return NULL;
509
1880d93b 510 if (size <= PAGE_SIZE)
554fef1c 511 return kzalloc(size, gfp);
7af4c093 512 else
88dca4ca 513 return __vmalloc(size, gfp | __GFP_ZERO);
1880d93b 514}
fbf59bc9 515
1880d93b
TH
516/**
517 * pcpu_mem_free - free memory
518 * @ptr: memory to free
1880d93b 519 *
90459ce0 520 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 521 */
1d5cfdb0 522static void pcpu_mem_free(void *ptr)
1880d93b 523{
1d5cfdb0 524 kvfree(ptr);
fbf59bc9
TH
525}
526
8744d859
DZ
527static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
528 bool move_front)
529{
530 if (chunk != pcpu_reserved_chunk) {
531 if (move_front)
faf65dde 532 list_move(&chunk->list, &pcpu_chunk_lists[slot]);
8744d859 533 else
faf65dde 534 list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
8744d859
DZ
535 }
536}
537
538static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
539{
540 __pcpu_chunk_move(chunk, slot, true);
541}
542
fbf59bc9
TH
543/**
544 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
545 * @chunk: chunk of interest
546 * @oslot: the previous slot it was on
547 *
548 * This function is called after an allocation or free changed @chunk.
549 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
550 * moved to the slot. Note that the reserved chunk is never put on
551 * chunk slots.
ccea34b5
TH
552 *
553 * CONTEXT:
554 * pcpu_lock.
fbf59bc9
TH
555 */
556static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
557{
558 int nslot = pcpu_chunk_slot(chunk);
559
f1833241
RG
560 /* leave isolated chunks in-place */
561 if (chunk->isolated)
562 return;
563
8744d859
DZ
564 if (oslot != nslot)
565 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
833af842
TH
566}
567
f1833241
RG
568static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
569{
f1833241
RG
570 lockdep_assert_held(&pcpu_lock);
571
572 if (!chunk->isolated) {
573 chunk->isolated = true;
faf65dde 574 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
f1833241 575 }
faf65dde 576 list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
f1833241
RG
577}
578
579static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
580{
f1833241
RG
581 lockdep_assert_held(&pcpu_lock);
582
583 if (chunk->isolated) {
584 chunk->isolated = false;
faf65dde 585 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
f1833241
RG
586 pcpu_chunk_relocate(chunk, -1);
587 }
588}
589
b239f7da
DZ
590/*
591 * pcpu_update_empty_pages - update empty page counters
833af842 592 * @chunk: chunk of interest
b239f7da 593 * @nr: nr of empty pages
833af842 594 *
b239f7da
DZ
595 * This is used to keep track of the empty pages now based on the premise
596 * a md_block covers a page. The hint update functions recognize if a block
597 * is made full or broken to calculate deltas for keeping track of free pages.
40064aec 598 */
b239f7da 599static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
40064aec 600{
b239f7da 601 chunk->nr_empty_pop_pages += nr;
f1833241 602 if (chunk != pcpu_reserved_chunk && !chunk->isolated)
faf65dde 603 pcpu_nr_empty_pop_pages += nr;
40064aec
DZF
604}
605
d9f3a01e
DZ
606/*
607 * pcpu_region_overlap - determines if two regions overlap
608 * @a: start of first region, inclusive
609 * @b: end of first region, exclusive
610 * @x: start of second region, inclusive
611 * @y: end of second region, exclusive
833af842 612 *
d9f3a01e
DZ
613 * This is used to determine if the hint region [a, b) overlaps with the
614 * allocated region [x, y).
833af842 615 */
d9f3a01e 616static inline bool pcpu_region_overlap(int a, int b, int x, int y)
833af842 617{
d9f3a01e 618 return (a < y) && (x < b);
40064aec 619}
9f7dcf22 620
ca460b3c
DZF
621/**
622 * pcpu_block_update - updates a block given a free area
623 * @block: block of interest
624 * @start: start offset in block
625 * @end: end offset in block
626 *
627 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
628 * expected to be the entirety of the free area within a block. Chooses
629 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
630 */
631static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
632{
633 int contig = end - start;
634
635 block->first_free = min(block->first_free, start);
636 if (start == 0)
637 block->left_free = contig;
638
047924c9 639 if (end == block->nr_bits)
ca460b3c
DZF
640 block->right_free = contig;
641
642 if (contig > block->contig_hint) {
382b88e9
DZ
643 /* promote the old contig_hint to be the new scan_hint */
644 if (start > block->contig_hint_start) {
645 if (block->contig_hint > block->scan_hint) {
646 block->scan_hint_start =
647 block->contig_hint_start;
648 block->scan_hint = block->contig_hint;
649 } else if (start < block->scan_hint_start) {
650 /*
651 * The old contig_hint == scan_hint. But, the
652 * new contig is larger so hold the invariant
653 * scan_hint_start < contig_hint_start.
654 */
655 block->scan_hint = 0;
656 }
657 } else {
658 block->scan_hint = 0;
659 }
ca460b3c
DZF
660 block->contig_hint_start = start;
661 block->contig_hint = contig;
382b88e9
DZ
662 } else if (contig == block->contig_hint) {
663 if (block->contig_hint_start &&
664 (!start ||
665 __ffs(start) > __ffs(block->contig_hint_start))) {
666 /* start has a better alignment so use it */
667 block->contig_hint_start = start;
668 if (start < block->scan_hint_start &&
669 block->contig_hint > block->scan_hint)
670 block->scan_hint = 0;
671 } else if (start > block->scan_hint_start ||
672 block->contig_hint > block->scan_hint) {
673 /*
674 * Knowing contig == contig_hint, update the scan_hint
675 * if it is farther than or larger than the current
676 * scan_hint.
677 */
678 block->scan_hint_start = start;
679 block->scan_hint = contig;
680 }
681 } else {
682 /*
683 * The region is smaller than the contig_hint. So only update
684 * the scan_hint if it is larger than or equal and farther than
685 * the current scan_hint.
686 */
687 if ((start < block->contig_hint_start &&
688 (contig > block->scan_hint ||
689 (contig == block->scan_hint &&
690 start > block->scan_hint_start)))) {
691 block->scan_hint_start = start;
692 block->scan_hint = contig;
693 }
ca460b3c
DZF
694 }
695}
696
b89462a9
DZ
697/*
698 * pcpu_block_update_scan - update a block given a free area from a scan
699 * @chunk: chunk of interest
700 * @bit_off: chunk offset
701 * @bits: size of free area
702 *
703 * Finding the final allocation spot first goes through pcpu_find_block_fit()
704 * to find a block that can hold the allocation and then pcpu_alloc_area()
705 * where a scan is used. When allocations require specific alignments,
706 * we can inadvertently create holes which will not be seen in the alloc
707 * or free paths.
708 *
709 * This takes a given free area hole and updates a block as it may change the
710 * scan_hint. We need to scan backwards to ensure we don't miss free bits
711 * from alignment.
712 */
713static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
714 int bits)
715{
716 int s_off = pcpu_off_to_block_off(bit_off);
717 int e_off = s_off + bits;
718 int s_index, l_bit;
719 struct pcpu_block_md *block;
720
721 if (e_off > PCPU_BITMAP_BLOCK_BITS)
722 return;
723
724 s_index = pcpu_off_to_block_index(bit_off);
725 block = chunk->md_blocks + s_index;
726
727 /* scan backwards in case of alignment skipping free bits */
728 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
729 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
730
731 pcpu_block_update(block, s_off, e_off);
732}
733
92c14cab
DZ
734/**
735 * pcpu_chunk_refresh_hint - updates metadata about a chunk
736 * @chunk: chunk of interest
d33d9f3d 737 * @full_scan: if we should scan from the beginning
92c14cab
DZ
738 *
739 * Iterates over the metadata blocks to find the largest contig area.
d33d9f3d
DZ
740 * A full scan can be avoided on the allocation path as this is triggered
741 * if we broke the contig_hint. In doing so, the scan_hint will be before
742 * the contig_hint or after if the scan_hint == contig_hint. This cannot
743 * be prevented on freeing as we want to find the largest area possibly
744 * spanning blocks.
92c14cab 745 */
d33d9f3d 746static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
92c14cab
DZ
747{
748 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
749 int bit_off, bits;
750
d33d9f3d
DZ
751 /* promote scan_hint to contig_hint */
752 if (!full_scan && chunk_md->scan_hint) {
753 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
754 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
755 chunk_md->contig_hint = chunk_md->scan_hint;
756 chunk_md->scan_hint = 0;
757 } else {
758 bit_off = chunk_md->first_free;
759 chunk_md->contig_hint = 0;
760 }
92c14cab 761
92c14cab 762 bits = 0;
e837dfde 763 pcpu_for_each_md_free_region(chunk, bit_off, bits)
92c14cab 764 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
ca460b3c
DZF
765}
766
767/**
768 * pcpu_block_refresh_hint
769 * @chunk: chunk of interest
770 * @index: index of the metadata block
771 *
772 * Scans over the block beginning at first_free and updates the block
773 * metadata accordingly.
774 */
775static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
776{
777 struct pcpu_block_md *block = chunk->md_blocks + index;
778 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
ec288a2c 779 unsigned int start, end; /* region start, region end */
da3afdd5
DZ
780
781 /* promote scan_hint to contig_hint */
782 if (block->scan_hint) {
783 start = block->scan_hint_start + block->scan_hint;
784 block->contig_hint_start = block->scan_hint_start;
785 block->contig_hint = block->scan_hint;
786 block->scan_hint = 0;
787 } else {
788 start = block->first_free;
789 block->contig_hint = 0;
790 }
ca460b3c 791
da3afdd5 792 block->right_free = 0;
ca460b3c
DZF
793
794 /* iterate over free areas and update the contig hints */
ec288a2c
YN
795 for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
796 pcpu_block_update(block, start, end);
ca460b3c
DZF
797}
798
799/**
800 * pcpu_block_update_hint_alloc - update hint on allocation path
801 * @chunk: chunk of interest
802 * @bit_off: chunk offset
803 * @bits: size of request
fc304334
DZF
804 *
805 * Updates metadata for the allocation path. The metadata only has to be
806 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
807 * scans are required if the block's contig hint is broken.
ca460b3c
DZF
808 */
809static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
810 int bits)
811{
92c14cab 812 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
b239f7da 813 int nr_empty_pages = 0;
ca460b3c
DZF
814 struct pcpu_block_md *s_block, *e_block, *block;
815 int s_index, e_index; /* block indexes of the freed allocation */
816 int s_off, e_off; /* block offsets of the freed allocation */
817
818 /*
819 * Calculate per block offsets.
820 * The calculation uses an inclusive range, but the resulting offsets
821 * are [start, end). e_index always points to the last block in the
822 * range.
823 */
824 s_index = pcpu_off_to_block_index(bit_off);
825 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
826 s_off = pcpu_off_to_block_off(bit_off);
827 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
828
829 s_block = chunk->md_blocks + s_index;
830 e_block = chunk->md_blocks + e_index;
831
832 /*
833 * Update s_block.
fc304334
DZF
834 * block->first_free must be updated if the allocation takes its place.
835 * If the allocation breaks the contig_hint, a scan is required to
836 * restore this hint.
ca460b3c 837 */
b239f7da
DZ
838 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
839 nr_empty_pages++;
840
fc304334
DZF
841 if (s_off == s_block->first_free)
842 s_block->first_free = find_next_zero_bit(
843 pcpu_index_alloc_map(chunk, s_index),
844 PCPU_BITMAP_BLOCK_BITS,
845 s_off + bits);
846
382b88e9
DZ
847 if (pcpu_region_overlap(s_block->scan_hint_start,
848 s_block->scan_hint_start + s_block->scan_hint,
849 s_off,
850 s_off + bits))
851 s_block->scan_hint = 0;
852
d9f3a01e
DZ
853 if (pcpu_region_overlap(s_block->contig_hint_start,
854 s_block->contig_hint_start +
855 s_block->contig_hint,
856 s_off,
857 s_off + bits)) {
fc304334 858 /* block contig hint is broken - scan to fix it */
da3afdd5
DZ
859 if (!s_off)
860 s_block->left_free = 0;
fc304334
DZF
861 pcpu_block_refresh_hint(chunk, s_index);
862 } else {
863 /* update left and right contig manually */
864 s_block->left_free = min(s_block->left_free, s_off);
865 if (s_index == e_index)
866 s_block->right_free = min_t(int, s_block->right_free,
867 PCPU_BITMAP_BLOCK_BITS - e_off);
868 else
869 s_block->right_free = 0;
870 }
ca460b3c
DZF
871
872 /*
873 * Update e_block.
874 */
875 if (s_index != e_index) {
b239f7da
DZ
876 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
877 nr_empty_pages++;
878
fc304334
DZF
879 /*
880 * When the allocation is across blocks, the end is along
881 * the left part of the e_block.
882 */
883 e_block->first_free = find_next_zero_bit(
884 pcpu_index_alloc_map(chunk, e_index),
885 PCPU_BITMAP_BLOCK_BITS, e_off);
886
887 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
888 /* reset the block */
889 e_block++;
890 } else {
382b88e9
DZ
891 if (e_off > e_block->scan_hint_start)
892 e_block->scan_hint = 0;
893
da3afdd5 894 e_block->left_free = 0;
fc304334
DZF
895 if (e_off > e_block->contig_hint_start) {
896 /* contig hint is broken - scan to fix it */
897 pcpu_block_refresh_hint(chunk, e_index);
898 } else {
fc304334
DZF
899 e_block->right_free =
900 min_t(int, e_block->right_free,
901 PCPU_BITMAP_BLOCK_BITS - e_off);
902 }
903 }
ca460b3c
DZF
904
905 /* update in-between md_blocks */
b239f7da 906 nr_empty_pages += (e_index - s_index - 1);
ca460b3c 907 for (block = s_block + 1; block < e_block; block++) {
382b88e9 908 block->scan_hint = 0;
ca460b3c
DZF
909 block->contig_hint = 0;
910 block->left_free = 0;
911 block->right_free = 0;
912 }
913 }
914
b239f7da
DZ
915 if (nr_empty_pages)
916 pcpu_update_empty_pages(chunk, -nr_empty_pages);
917
d33d9f3d
DZ
918 if (pcpu_region_overlap(chunk_md->scan_hint_start,
919 chunk_md->scan_hint_start +
920 chunk_md->scan_hint,
921 bit_off,
922 bit_off + bits))
923 chunk_md->scan_hint = 0;
924
fc304334
DZF
925 /*
926 * The only time a full chunk scan is required is if the chunk
927 * contig hint is broken. Otherwise, it means a smaller space
928 * was used and therefore the chunk contig hint is still correct.
929 */
92c14cab
DZ
930 if (pcpu_region_overlap(chunk_md->contig_hint_start,
931 chunk_md->contig_hint_start +
932 chunk_md->contig_hint,
d9f3a01e
DZ
933 bit_off,
934 bit_off + bits))
d33d9f3d 935 pcpu_chunk_refresh_hint(chunk, false);
ca460b3c
DZF
936}
937
938/**
939 * pcpu_block_update_hint_free - updates the block hints on the free path
940 * @chunk: chunk of interest
941 * @bit_off: chunk offset
942 * @bits: size of request
b185cd0d
DZF
943 *
944 * Updates metadata for the allocation path. This avoids a blind block
945 * refresh by making use of the block contig hints. If this fails, it scans
946 * forward and backward to determine the extent of the free area. This is
947 * capped at the boundary of blocks.
948 *
949 * A chunk update is triggered if a page becomes free, a block becomes free,
950 * or the free spans across blocks. This tradeoff is to minimize iterating
92c14cab
DZ
951 * over the block metadata to update chunk_md->contig_hint.
952 * chunk_md->contig_hint may be off by up to a page, but it will never be more
953 * than the available space. If the contig hint is contained in one block, it
954 * will be accurate.
ca460b3c
DZF
955 */
956static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
957 int bits)
958{
b239f7da 959 int nr_empty_pages = 0;
ca460b3c
DZF
960 struct pcpu_block_md *s_block, *e_block, *block;
961 int s_index, e_index; /* block indexes of the freed allocation */
962 int s_off, e_off; /* block offsets of the freed allocation */
b185cd0d 963 int start, end; /* start and end of the whole free area */
ca460b3c
DZF
964
965 /*
966 * Calculate per block offsets.
967 * The calculation uses an inclusive range, but the resulting offsets
968 * are [start, end). e_index always points to the last block in the
969 * range.
970 */
971 s_index = pcpu_off_to_block_index(bit_off);
972 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
973 s_off = pcpu_off_to_block_off(bit_off);
974 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
975
976 s_block = chunk->md_blocks + s_index;
977 e_block = chunk->md_blocks + e_index;
978
b185cd0d
DZF
979 /*
980 * Check if the freed area aligns with the block->contig_hint.
981 * If it does, then the scan to find the beginning/end of the
982 * larger free area can be avoided.
983 *
984 * start and end refer to beginning and end of the free area
985 * within each their respective blocks. This is not necessarily
986 * the entire free area as it may span blocks past the beginning
987 * or end of the block.
988 */
989 start = s_off;
990 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
991 start = s_block->contig_hint_start;
992 } else {
993 /*
994 * Scan backwards to find the extent of the free area.
995 * find_last_bit returns the starting bit, so if the start bit
996 * is returned, that means there was no last bit and the
997 * remainder of the chunk is free.
998 */
999 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1000 start);
1001 start = (start == l_bit) ? 0 : l_bit + 1;
1002 }
1003
1004 end = e_off;
1005 if (e_off == e_block->contig_hint_start)
1006 end = e_block->contig_hint_start + e_block->contig_hint;
1007 else
1008 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1009 PCPU_BITMAP_BLOCK_BITS, end);
1010
ca460b3c 1011 /* update s_block */
b185cd0d 1012 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
b239f7da
DZ
1013 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1014 nr_empty_pages++;
b185cd0d 1015 pcpu_block_update(s_block, start, e_off);
ca460b3c
DZF
1016
1017 /* freeing in the same block */
1018 if (s_index != e_index) {
1019 /* update e_block */
b239f7da
DZ
1020 if (end == PCPU_BITMAP_BLOCK_BITS)
1021 nr_empty_pages++;
b185cd0d 1022 pcpu_block_update(e_block, 0, end);
ca460b3c
DZF
1023
1024 /* reset md_blocks in the middle */
b239f7da 1025 nr_empty_pages += (e_index - s_index - 1);
ca460b3c
DZF
1026 for (block = s_block + 1; block < e_block; block++) {
1027 block->first_free = 0;
382b88e9 1028 block->scan_hint = 0;
ca460b3c
DZF
1029 block->contig_hint_start = 0;
1030 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1031 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1032 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1033 }
1034 }
1035
b239f7da
DZ
1036 if (nr_empty_pages)
1037 pcpu_update_empty_pages(chunk, nr_empty_pages);
1038
b185cd0d 1039 /*
b239f7da
DZ
1040 * Refresh chunk metadata when the free makes a block free or spans
1041 * across blocks. The contig_hint may be off by up to a page, but if
1042 * the contig_hint is contained in a block, it will be accurate with
1043 * the else condition below.
b185cd0d 1044 */
b239f7da 1045 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
d33d9f3d 1046 pcpu_chunk_refresh_hint(chunk, true);
b185cd0d 1047 else
92c14cab
DZ
1048 pcpu_block_update(&chunk->chunk_md,
1049 pcpu_block_off_to_off(s_index, start),
1050 end);
ca460b3c
DZF
1051}
1052
40064aec
DZF
1053/**
1054 * pcpu_is_populated - determines if the region is populated
1055 * @chunk: chunk of interest
1056 * @bit_off: chunk offset
1057 * @bits: size of area
1058 * @next_off: return value for the next offset to start searching
1059 *
1060 * For atomic allocations, check if the backing pages are populated.
1061 *
1062 * RETURNS:
1063 * Bool if the backing pages are populated.
1064 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1065 */
1066static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1067 int *next_off)
1068{
801a5736 1069 unsigned int start, end;
833af842 1070
801a5736
YN
1071 start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1072 end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 1073
801a5736
YN
1074 start = find_next_zero_bit(chunk->populated, end, start);
1075 if (start >= end)
40064aec 1076 return true;
833af842 1077
801a5736
YN
1078 end = find_next_bit(chunk->populated, end, start + 1);
1079
1080 *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
40064aec 1081 return false;
9f7dcf22
TH
1082}
1083
a16037c8 1084/**
40064aec
DZF
1085 * pcpu_find_block_fit - finds the block index to start searching
1086 * @chunk: chunk of interest
1087 * @alloc_bits: size of request in allocation units
1088 * @align: alignment of area (max PAGE_SIZE bytes)
1089 * @pop_only: use populated regions only
1090 *
b4c2116c
DZF
1091 * Given a chunk and an allocation spec, find the offset to begin searching
1092 * for a free region. This iterates over the bitmap metadata blocks to
1093 * find an offset that will be guaranteed to fit the requirements. It is
1094 * not quite first fit as if the allocation does not fit in the contig hint
1095 * of a block or chunk, it is skipped. This errs on the side of caution
1096 * to prevent excess iteration. Poor alignment can cause the allocator to
1097 * skip over blocks and chunks that have valid free areas.
1098 *
40064aec
DZF
1099 * RETURNS:
1100 * The offset in the bitmap to begin searching.
1101 * -1 if no offset is found.
a16037c8 1102 */
40064aec
DZF
1103static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1104 size_t align, bool pop_only)
a16037c8 1105{
92c14cab 1106 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
b4c2116c 1107 int bit_off, bits, next_off;
a16037c8 1108
13f96637 1109 /*
8ea2e1e3
RG
1110 * This is an optimization to prevent scanning by assuming if the
1111 * allocation cannot fit in the global hint, there is memory pressure
1112 * and creating a new chunk would happen soon.
13f96637 1113 */
8ea2e1e3 1114 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
13f96637
DZF
1115 return -1;
1116
d33d9f3d 1117 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
b4c2116c
DZF
1118 bits = 0;
1119 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
40064aec 1120 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
b4c2116c 1121 &next_off))
40064aec 1122 break;
a16037c8 1123
b4c2116c 1124 bit_off = next_off;
40064aec 1125 bits = 0;
a16037c8 1126 }
40064aec
DZF
1127
1128 if (bit_off == pcpu_chunk_map_bits(chunk))
1129 return -1;
1130
1131 return bit_off;
a16037c8
TH
1132}
1133
b89462a9
DZ
1134/*
1135 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1136 * @map: the address to base the search on
1137 * @size: the bitmap size in bits
1138 * @start: the bitnumber to start searching at
1139 * @nr: the number of zeroed bits we're looking for
1140 * @align_mask: alignment mask for zero area
1141 * @largest_off: offset of the largest area skipped
1142 * @largest_bits: size of the largest area skipped
1143 *
1144 * The @align_mask should be one less than a power of 2.
1145 *
1146 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1147 * the largest area that was skipped. This is imperfect, but in general is
1148 * good enough. The largest remembered region is the largest failed region
1149 * seen. This does not include anything we possibly skipped due to alignment.
1150 * pcpu_block_update_scan() does scan backwards to try and recover what was
1151 * lost to alignment. While this can cause scanning to miss earlier possible
1152 * free areas, smaller allocations will eventually fill those holes.
1153 */
1154static unsigned long pcpu_find_zero_area(unsigned long *map,
1155 unsigned long size,
1156 unsigned long start,
1157 unsigned long nr,
1158 unsigned long align_mask,
1159 unsigned long *largest_off,
1160 unsigned long *largest_bits)
1161{
1162 unsigned long index, end, i, area_off, area_bits;
1163again:
1164 index = find_next_zero_bit(map, size, start);
1165
1166 /* Align allocation */
1167 index = __ALIGN_MASK(index, align_mask);
1168 area_off = index;
1169
1170 end = index + nr;
1171 if (end > size)
1172 return end;
1173 i = find_next_bit(map, end, index);
1174 if (i < end) {
1175 area_bits = i - area_off;
1176 /* remember largest unused area with best alignment */
1177 if (area_bits > *largest_bits ||
1178 (area_bits == *largest_bits && *largest_off &&
1179 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1180 *largest_off = area_off;
1181 *largest_bits = area_bits;
1182 }
1183
1184 start = i + 1;
1185 goto again;
1186 }
1187 return index;
1188}
1189
fbf59bc9 1190/**
40064aec 1191 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 1192 * @chunk: chunk of interest
40064aec
DZF
1193 * @alloc_bits: size of request in allocation units
1194 * @align: alignment of area (max PAGE_SIZE)
1195 * @start: bit_off to start searching
9f7dcf22 1196 *
40064aec 1197 * This function takes in a @start offset to begin searching to fit an
b4c2116c
DZF
1198 * allocation of @alloc_bits with alignment @align. It needs to scan
1199 * the allocation map because if it fits within the block's contig hint,
1200 * @start will be block->first_free. This is an attempt to fill the
1201 * allocation prior to breaking the contig hint. The allocation and
1202 * boundary maps are updated accordingly if it confirms a valid
1203 * free area.
ccea34b5 1204 *
fbf59bc9 1205 * RETURNS:
40064aec
DZF
1206 * Allocated addr offset in @chunk on success.
1207 * -1 if no matching area is found.
fbf59bc9 1208 */
40064aec
DZF
1209static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1210 size_t align, int start)
fbf59bc9 1211{
92c14cab 1212 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
40064aec 1213 size_t align_mask = (align) ? (align - 1) : 0;
b89462a9 1214 unsigned long area_off = 0, area_bits = 0;
40064aec 1215 int bit_off, end, oslot;
a16037c8 1216
40064aec 1217 lockdep_assert_held(&pcpu_lock);
fbf59bc9 1218
40064aec 1219 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1220
40064aec
DZF
1221 /*
1222 * Search to find a fit.
1223 */
8c43004a
DZ
1224 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1225 pcpu_chunk_map_bits(chunk));
b89462a9
DZ
1226 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1227 align_mask, &area_off, &area_bits);
40064aec
DZF
1228 if (bit_off >= end)
1229 return -1;
fbf59bc9 1230
b89462a9
DZ
1231 if (area_bits)
1232 pcpu_block_update_scan(chunk, area_off, area_bits);
1233
40064aec
DZF
1234 /* update alloc map */
1235 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 1236
40064aec
DZF
1237 /* update boundary map */
1238 set_bit(bit_off, chunk->bound_map);
1239 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1240 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 1241
40064aec 1242 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 1243
86b442fb 1244 /* update first free bit */
92c14cab
DZ
1245 if (bit_off == chunk_md->first_free)
1246 chunk_md->first_free = find_next_zero_bit(
86b442fb
DZF
1247 chunk->alloc_map,
1248 pcpu_chunk_map_bits(chunk),
1249 bit_off + alloc_bits);
1250
ca460b3c 1251 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 1252
fbf59bc9
TH
1253 pcpu_chunk_relocate(chunk, oslot);
1254
40064aec 1255 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
1256}
1257
1258/**
40064aec 1259 * pcpu_free_area - frees the corresponding offset
fbf59bc9 1260 * @chunk: chunk of interest
40064aec 1261 * @off: addr offset into chunk
ccea34b5 1262 *
40064aec
DZF
1263 * This function determines the size of an allocation to free using
1264 * the boundary bitmap and clears the allocation map.
5b32af91
RG
1265 *
1266 * RETURNS:
1267 * Number of freed bytes.
fbf59bc9 1268 */
5b32af91 1269static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 1270{
92c14cab 1271 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
5b32af91 1272 int bit_off, bits, end, oslot, freed;
723ad1d9 1273
5ccd30e4 1274 lockdep_assert_held(&pcpu_lock);
30a5b536 1275 pcpu_stats_area_dealloc(chunk);
5ccd30e4 1276
40064aec 1277 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1278
40064aec 1279 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 1280
40064aec
DZF
1281 /* find end index */
1282 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1283 bit_off + 1);
1284 bits = end - bit_off;
1285 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 1286
5b32af91
RG
1287 freed = bits * PCPU_MIN_ALLOC_SIZE;
1288
40064aec 1289 /* update metadata */
5b32af91 1290 chunk->free_bytes += freed;
b539b87f 1291
86b442fb 1292 /* update first free bit */
92c14cab 1293 chunk_md->first_free = min(chunk_md->first_free, bit_off);
86b442fb 1294
ca460b3c 1295 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 1296
fbf59bc9 1297 pcpu_chunk_relocate(chunk, oslot);
5b32af91
RG
1298
1299 return freed;
fbf59bc9
TH
1300}
1301
047924c9
DZ
1302static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1303{
1304 block->scan_hint = 0;
1305 block->contig_hint = nr_bits;
1306 block->left_free = nr_bits;
1307 block->right_free = nr_bits;
1308 block->first_free = 0;
1309 block->nr_bits = nr_bits;
1310}
1311
ca460b3c
DZF
1312static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1313{
1314 struct pcpu_block_md *md_block;
1315
92c14cab
DZ
1316 /* init the chunk's block */
1317 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1318
ca460b3c
DZF
1319 for (md_block = chunk->md_blocks;
1320 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
047924c9
DZ
1321 md_block++)
1322 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
ca460b3c
DZF
1323}
1324
40064aec
DZF
1325/**
1326 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1327 * @tmp_addr: the start of the region served
1328 * @map_size: size of the region served
1329 *
1330 * This is responsible for creating the chunks that serve the first chunk. The
1331 * base_addr is page aligned down of @tmp_addr while the region end is page
1332 * aligned up. Offsets are kept track of to determine the region served. All
1333 * this is done to appease the bitmap allocator in avoiding partial blocks.
1334 *
1335 * RETURNS:
1336 * Chunk serving the region at @tmp_addr of @map_size.
1337 */
c0ebfdc3 1338static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 1339 int map_size)
10edf5b0
DZF
1340{
1341 struct pcpu_chunk *chunk;
ca460b3c 1342 unsigned long aligned_addr, lcm_align;
40064aec 1343 int start_offset, offset_bits, region_size, region_bits;
f655f405 1344 size_t alloc_size;
c0ebfdc3
DZF
1345
1346 /* region calculations */
1347 aligned_addr = tmp_addr & PAGE_MASK;
1348
1349 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 1350
ca460b3c
DZF
1351 /*
1352 * Align the end of the region with the LCM of PAGE_SIZE and
1353 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1354 * the other.
1355 */
1356 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1357 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 1358
c0ebfdc3 1359 /* allocate chunk */
61cf93d3
DZ
1360 alloc_size = struct_size(chunk, populated,
1361 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
f655f405
MR
1362 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1363 if (!chunk)
1364 panic("%s: Failed to allocate %zu bytes\n", __func__,
1365 alloc_size);
c0ebfdc3 1366
10edf5b0 1367 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
1368
1369 chunk->base_addr = (void *)aligned_addr;
10edf5b0 1370 chunk->start_offset = start_offset;
6b9d7c8e 1371 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 1372
8ab16c43 1373 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 1374 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 1375
f655f405
MR
1376 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1377 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1378 if (!chunk->alloc_map)
1379 panic("%s: Failed to allocate %zu bytes\n", __func__,
1380 alloc_size);
1381
1382 alloc_size =
1383 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1384 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1385 if (!chunk->bound_map)
1386 panic("%s: Failed to allocate %zu bytes\n", __func__,
1387 alloc_size);
1388
1389 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1390 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1391 if (!chunk->md_blocks)
1392 panic("%s: Failed to allocate %zu bytes\n", __func__,
1393 alloc_size);
1394
3c7be18a 1395#ifdef CONFIG_MEMCG_KMEM
faf65dde 1396 /* first chunk is free to use */
3c7be18a
RG
1397 chunk->obj_cgroups = NULL;
1398#endif
ca460b3c 1399 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
1400
1401 /* manage populated page bitmap */
1402 chunk->immutable = true;
8ab16c43
DZF
1403 bitmap_fill(chunk->populated, chunk->nr_pages);
1404 chunk->nr_populated = chunk->nr_pages;
b239f7da 1405 chunk->nr_empty_pop_pages = chunk->nr_pages;
10edf5b0 1406
40064aec 1407 chunk->free_bytes = map_size;
c0ebfdc3
DZF
1408
1409 if (chunk->start_offset) {
1410 /* hide the beginning of the bitmap */
40064aec
DZF
1411 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1412 bitmap_set(chunk->alloc_map, 0, offset_bits);
1413 set_bit(0, chunk->bound_map);
1414 set_bit(offset_bits, chunk->bound_map);
ca460b3c 1415
92c14cab 1416 chunk->chunk_md.first_free = offset_bits;
86b442fb 1417
ca460b3c 1418 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
1419 }
1420
6b9d7c8e
DZF
1421 if (chunk->end_offset) {
1422 /* hide the end of the bitmap */
40064aec
DZF
1423 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1424 bitmap_set(chunk->alloc_map,
1425 pcpu_chunk_map_bits(chunk) - offset_bits,
1426 offset_bits);
1427 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1428 chunk->bound_map);
1429 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 1430
ca460b3c
DZF
1431 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1432 - offset_bits, offset_bits);
1433 }
40064aec 1434
10edf5b0
DZF
1435 return chunk;
1436}
1437
faf65dde 1438static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
6081089f
TH
1439{
1440 struct pcpu_chunk *chunk;
40064aec 1441 int region_bits;
6081089f 1442
47504ee0 1443 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
6081089f
TH
1444 if (!chunk)
1445 return NULL;
1446
40064aec
DZF
1447 INIT_LIST_HEAD(&chunk->list);
1448 chunk->nr_pages = pcpu_unit_pages;
1449 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 1450
40064aec 1451 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
47504ee0 1452 sizeof(chunk->alloc_map[0]), gfp);
40064aec
DZF
1453 if (!chunk->alloc_map)
1454 goto alloc_map_fail;
6081089f 1455
40064aec 1456 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
47504ee0 1457 sizeof(chunk->bound_map[0]), gfp);
40064aec
DZF
1458 if (!chunk->bound_map)
1459 goto bound_map_fail;
6081089f 1460
ca460b3c 1461 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
47504ee0 1462 sizeof(chunk->md_blocks[0]), gfp);
ca460b3c
DZF
1463 if (!chunk->md_blocks)
1464 goto md_blocks_fail;
1465
3c7be18a 1466#ifdef CONFIG_MEMCG_KMEM
faf65dde 1467 if (!mem_cgroup_kmem_disabled()) {
3c7be18a
RG
1468 chunk->obj_cgroups =
1469 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1470 sizeof(struct obj_cgroup *), gfp);
1471 if (!chunk->obj_cgroups)
1472 goto objcg_fail;
1473 }
1474#endif
1475
ca460b3c
DZF
1476 pcpu_init_md_blocks(chunk);
1477
40064aec 1478 /* init metadata */
40064aec 1479 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 1480
6081089f 1481 return chunk;
40064aec 1482
3c7be18a
RG
1483#ifdef CONFIG_MEMCG_KMEM
1484objcg_fail:
1485 pcpu_mem_free(chunk->md_blocks);
1486#endif
ca460b3c
DZF
1487md_blocks_fail:
1488 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
1489bound_map_fail:
1490 pcpu_mem_free(chunk->alloc_map);
1491alloc_map_fail:
1492 pcpu_mem_free(chunk);
1493
1494 return NULL;
6081089f
TH
1495}
1496
1497static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1498{
1499 if (!chunk)
1500 return;
3c7be18a
RG
1501#ifdef CONFIG_MEMCG_KMEM
1502 pcpu_mem_free(chunk->obj_cgroups);
1503#endif
6685b357 1504 pcpu_mem_free(chunk->md_blocks);
40064aec
DZF
1505 pcpu_mem_free(chunk->bound_map);
1506 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 1507 pcpu_mem_free(chunk);
6081089f
TH
1508}
1509
b539b87f
TH
1510/**
1511 * pcpu_chunk_populated - post-population bookkeeping
1512 * @chunk: pcpu_chunk which got populated
1513 * @page_start: the start page
1514 * @page_end: the end page
1515 *
1516 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1517 * the bookkeeping information accordingly. Must be called after each
1518 * successful population.
1519 */
40064aec 1520static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
b239f7da 1521 int page_end)
b539b87f
TH
1522{
1523 int nr = page_end - page_start;
1524
1525 lockdep_assert_held(&pcpu_lock);
1526
1527 bitmap_set(chunk->populated, page_start, nr);
1528 chunk->nr_populated += nr;
7e8a6304 1529 pcpu_nr_populated += nr;
40064aec 1530
b239f7da 1531 pcpu_update_empty_pages(chunk, nr);
b539b87f
TH
1532}
1533
1534/**
1535 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1536 * @chunk: pcpu_chunk which got depopulated
1537 * @page_start: the start page
1538 * @page_end: the end page
1539 *
1540 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1541 * Update the bookkeeping information accordingly. Must be called after
1542 * each successful depopulation.
1543 */
1544static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1545 int page_start, int page_end)
1546{
1547 int nr = page_end - page_start;
1548
1549 lockdep_assert_held(&pcpu_lock);
1550
1551 bitmap_clear(chunk->populated, page_start, nr);
1552 chunk->nr_populated -= nr;
7e8a6304 1553 pcpu_nr_populated -= nr;
b239f7da
DZ
1554
1555 pcpu_update_empty_pages(chunk, -nr);
b539b87f
TH
1556}
1557
9f645532
TH
1558/*
1559 * Chunk management implementation.
1560 *
1561 * To allow different implementations, chunk alloc/free and
1562 * [de]population are implemented in a separate file which is pulled
1563 * into this file and compiled together. The following functions
1564 * should be implemented.
1565 *
1566 * pcpu_populate_chunk - populate the specified range of a chunk
1567 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
93274f1d 1568 * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk
9f645532
TH
1569 * pcpu_create_chunk - create a new chunk
1570 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1571 * pcpu_addr_to_page - translate address to physical address
1572 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1573 */
15d9f3d1 1574static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
47504ee0 1575 int page_start, int page_end, gfp_t gfp);
15d9f3d1
DZ
1576static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1577 int page_start, int page_end);
93274f1d
DZ
1578static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1579 int page_start, int page_end);
faf65dde 1580static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
9f645532
TH
1581static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1582static struct page *pcpu_addr_to_page(void *addr);
1583static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1584
b0c9778b
TH
1585#ifdef CONFIG_NEED_PER_CPU_KM
1586#include "percpu-km.c"
1587#else
9f645532 1588#include "percpu-vm.c"
b0c9778b 1589#endif
fbf59bc9 1590
88999a89
TH
1591/**
1592 * pcpu_chunk_addr_search - determine chunk containing specified address
1593 * @addr: address for which the chunk needs to be determined.
1594 *
c0ebfdc3
DZF
1595 * This is an internal function that handles all but static allocations.
1596 * Static percpu address values should never be passed into the allocator.
1597 *
88999a89
TH
1598 * RETURNS:
1599 * The address of the found chunk.
1600 */
1601static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1602{
c0ebfdc3 1603 /* is it in the dynamic region (first chunk)? */
560f2c23 1604 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1605 return pcpu_first_chunk;
c0ebfdc3
DZF
1606
1607 /* is it in the reserved region? */
560f2c23 1608 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1609 return pcpu_reserved_chunk;
88999a89
TH
1610
1611 /*
1612 * The address is relative to unit0 which might be unused and
1613 * thus unmapped. Offset the address to the unit space of the
1614 * current processor before looking it up in the vmalloc
1615 * space. Note that any possible cpu id can be used here, so
1616 * there's no need to worry about preemption or cpu hotplug.
1617 */
1618 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1619 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1620}
1621
3c7be18a 1622#ifdef CONFIG_MEMCG_KMEM
faf65dde
RG
1623static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1624 struct obj_cgroup **objcgp)
3c7be18a
RG
1625{
1626 struct obj_cgroup *objcg;
1627
279c3393 1628 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
faf65dde 1629 return true;
3c7be18a
RG
1630
1631 objcg = get_obj_cgroup_from_current();
1632 if (!objcg)
faf65dde 1633 return true;
3c7be18a 1634
8c57c077 1635 if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) {
3c7be18a 1636 obj_cgroup_put(objcg);
faf65dde 1637 return false;
3c7be18a
RG
1638 }
1639
1640 *objcgp = objcg;
faf65dde 1641 return true;
3c7be18a
RG
1642}
1643
1644static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1645 struct pcpu_chunk *chunk, int off,
1646 size_t size)
1647{
1648 if (!objcg)
1649 return;
1650
faf65dde 1651 if (likely(chunk && chunk->obj_cgroups)) {
3c7be18a 1652 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
772616b0
RG
1653
1654 rcu_read_lock();
1655 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
8c57c077 1656 pcpu_obj_full_size(size));
772616b0 1657 rcu_read_unlock();
3c7be18a 1658 } else {
8c57c077 1659 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
3c7be18a
RG
1660 obj_cgroup_put(objcg);
1661 }
1662}
1663
1664static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1665{
1666 struct obj_cgroup *objcg;
1667
faf65dde 1668 if (unlikely(!chunk->obj_cgroups))
3c7be18a
RG
1669 return;
1670
1671 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
faf65dde
RG
1672 if (!objcg)
1673 return;
3c7be18a
RG
1674 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1675
8c57c077 1676 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
3c7be18a 1677
772616b0
RG
1678 rcu_read_lock();
1679 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
8c57c077 1680 -pcpu_obj_full_size(size));
772616b0
RG
1681 rcu_read_unlock();
1682
3c7be18a
RG
1683 obj_cgroup_put(objcg);
1684}
1685
1686#else /* CONFIG_MEMCG_KMEM */
faf65dde 1687static bool
3c7be18a
RG
1688pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1689{
faf65dde 1690 return true;
3c7be18a
RG
1691}
1692
1693static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1694 struct pcpu_chunk *chunk, int off,
1695 size_t size)
1696{
1697}
1698
1699static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1700{
1701}
1702#endif /* CONFIG_MEMCG_KMEM */
1703
fbf59bc9 1704/**
edcb4639 1705 * pcpu_alloc - the percpu allocator
cae3aeb8 1706 * @size: size of area to allocate in bytes
fbf59bc9 1707 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1708 * @reserved: allocate from the reserved chunk if available
5835d96e 1709 * @gfp: allocation flags
fbf59bc9 1710 *
5835d96e 1711 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
0ea7eeec
DB
1712 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1713 * then no warning will be triggered on invalid or failed allocation
1714 * requests.
fbf59bc9
TH
1715 *
1716 * RETURNS:
1717 * Percpu pointer to the allocated area on success, NULL on failure.
1718 */
5835d96e
TH
1719static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1720 gfp_t gfp)
fbf59bc9 1721{
28307d93
FM
1722 gfp_t pcpu_gfp;
1723 bool is_atomic;
1724 bool do_warn;
3c7be18a 1725 struct obj_cgroup *objcg = NULL;
f2badb0c 1726 static int warn_limit = 10;
8744d859 1727 struct pcpu_chunk *chunk, *next;
f2badb0c 1728 const char *err;
40064aec 1729 int slot, off, cpu, ret;
403a91b1 1730 unsigned long flags;
f528f0b8 1731 void __percpu *ptr;
40064aec 1732 size_t bits, bit_align;
fbf59bc9 1733
28307d93
FM
1734 gfp = current_gfp_context(gfp);
1735 /* whitelisted flags that can be passed to the backing allocators */
1736 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1737 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1738 do_warn = !(gfp & __GFP_NOWARN);
1739
723ad1d9 1740 /*
40064aec
DZF
1741 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1742 * therefore alignment must be a minimum of that many bytes.
1743 * An allocation may have internal fragmentation from rounding up
1744 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1745 */
d2f3c384
DZF
1746 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1747 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1748
d2f3c384 1749 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1750 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1751 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1752
3ca45a46 1753 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1754 !is_power_of_2(align))) {
0ea7eeec 1755 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
756a025f 1756 size, align);
fbf59bc9
TH
1757 return NULL;
1758 }
1759
faf65dde 1760 if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
3c7be18a 1761 return NULL;
3c7be18a 1762
f52ba1fe
KT
1763 if (!is_atomic) {
1764 /*
1765 * pcpu_balance_workfn() allocates memory under this mutex,
1766 * and it may wait for memory reclaim. Allow current task
1767 * to become OOM victim, in case of memory pressure.
1768 */
3c7be18a 1769 if (gfp & __GFP_NOFAIL) {
f52ba1fe 1770 mutex_lock(&pcpu_alloc_mutex);
3c7be18a
RG
1771 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1772 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
f52ba1fe 1773 return NULL;
3c7be18a 1774 }
f52ba1fe 1775 }
6710e594 1776
403a91b1 1777 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1778
edcb4639
TH
1779 /* serve reserved allocations from the reserved chunk if available */
1780 if (reserved && pcpu_reserved_chunk) {
1781 chunk = pcpu_reserved_chunk;
833af842 1782
40064aec
DZF
1783 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1784 if (off < 0) {
833af842 1785 err = "alloc from reserved chunk failed";
ccea34b5 1786 goto fail_unlock;
f2badb0c 1787 }
833af842 1788
40064aec 1789 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1790 if (off >= 0)
1791 goto area_found;
833af842 1792
f2badb0c 1793 err = "alloc from reserved chunk failed";
ccea34b5 1794 goto fail_unlock;
edcb4639
TH
1795 }
1796
ccea34b5 1797restart:
edcb4639 1798 /* search through normal chunks */
f1833241 1799 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
faf65dde
RG
1800 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1801 list) {
40064aec
DZF
1802 off = pcpu_find_block_fit(chunk, bits, bit_align,
1803 is_atomic);
8744d859
DZ
1804 if (off < 0) {
1805 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1806 pcpu_chunk_move(chunk, 0);
fbf59bc9 1807 continue;
8744d859 1808 }
ccea34b5 1809
40064aec 1810 off = pcpu_alloc_area(chunk, bits, bit_align, off);
f1833241
RG
1811 if (off >= 0) {
1812 pcpu_reintegrate_chunk(chunk);
fbf59bc9 1813 goto area_found;
f1833241 1814 }
fbf59bc9
TH
1815 }
1816 }
1817
403a91b1 1818 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1819
b38d08f3
TH
1820 /*
1821 * No space left. Create a new chunk. We don't want multiple
1822 * tasks to create chunks simultaneously. Serialize and create iff
1823 * there's still no empty chunk after grabbing the mutex.
1824 */
11df02bf
DZ
1825 if (is_atomic) {
1826 err = "atomic alloc failed, no space left";
5835d96e 1827 goto fail;
11df02bf 1828 }
5835d96e 1829
faf65dde
RG
1830 if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1831 chunk = pcpu_create_chunk(pcpu_gfp);
b38d08f3
TH
1832 if (!chunk) {
1833 err = "failed to allocate new chunk";
1834 goto fail;
1835 }
1836
1837 spin_lock_irqsave(&pcpu_lock, flags);
1838 pcpu_chunk_relocate(chunk, -1);
1839 } else {
1840 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1841 }
ccea34b5 1842
ccea34b5 1843 goto restart;
fbf59bc9
TH
1844
1845area_found:
30a5b536 1846 pcpu_stats_area_alloc(chunk, size);
403a91b1 1847 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1848
dca49645 1849 /* populate if not all pages are already there */
5835d96e 1850 if (!is_atomic) {
ec288a2c 1851 unsigned int page_end, rs, re;
dca49645 1852
ec288a2c 1853 rs = PFN_DOWN(off);
e04d3208 1854 page_end = PFN_UP(off + size);
b38d08f3 1855
ec288a2c 1856 for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
e04d3208
TH
1857 WARN_ON(chunk->immutable);
1858
554fef1c 1859 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
e04d3208
TH
1860
1861 spin_lock_irqsave(&pcpu_lock, flags);
1862 if (ret) {
40064aec 1863 pcpu_free_area(chunk, off);
e04d3208
TH
1864 err = "failed to populate";
1865 goto fail_unlock;
1866 }
b239f7da 1867 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1868 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1869 }
fbf59bc9 1870
e04d3208
TH
1871 mutex_unlock(&pcpu_alloc_mutex);
1872 }
ccea34b5 1873
faf65dde 1874 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1a4d7607
TH
1875 pcpu_schedule_balance_work();
1876
dca49645
TH
1877 /* clear the areas and return address relative to base address */
1878 for_each_possible_cpu(cpu)
1879 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1880
f528f0b8 1881 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1882 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795 1883
f67bed13
VA
1884 trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
1885 chunk->base_addr, off, ptr,
1886 pcpu_obj_full_size(size), gfp);
df95e795 1887
3c7be18a
RG
1888 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1889
f528f0b8 1890 return ptr;
ccea34b5
TH
1891
1892fail_unlock:
403a91b1 1893 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1894fail:
df95e795
DZ
1895 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1896
0ea7eeec 1897 if (!is_atomic && do_warn && warn_limit) {
870d4b12 1898 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1899 size, align, is_atomic, err);
f2badb0c
TH
1900 dump_stack();
1901 if (!--warn_limit)
870d4b12 1902 pr_info("limit reached, disable warning\n");
f2badb0c 1903 }
1a4d7607 1904 if (is_atomic) {
f0953a1b 1905 /* see the flag handling in pcpu_balance_workfn() */
1a4d7607
TH
1906 pcpu_atomic_alloc_failed = true;
1907 pcpu_schedule_balance_work();
6710e594
TH
1908 } else {
1909 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1910 }
3c7be18a
RG
1911
1912 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1913
ccea34b5 1914 return NULL;
fbf59bc9 1915}
edcb4639
TH
1916
1917/**
5835d96e 1918 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1919 * @size: size of area to allocate in bytes
1920 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1921 * @gfp: allocation flags
edcb4639 1922 *
5835d96e
TH
1923 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1924 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
0ea7eeec
DB
1925 * be called from any context but is a lot more likely to fail. If @gfp
1926 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1927 * allocation requests.
ccea34b5 1928 *
edcb4639
TH
1929 * RETURNS:
1930 * Percpu pointer to the allocated area on success, NULL on failure.
1931 */
5835d96e
TH
1932void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1933{
1934 return pcpu_alloc(size, align, false, gfp);
1935}
1936EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1937
1938/**
1939 * __alloc_percpu - allocate dynamic percpu area
1940 * @size: size of area to allocate in bytes
1941 * @align: alignment of area (max PAGE_SIZE)
1942 *
1943 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1944 */
43cf38eb 1945void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1946{
5835d96e 1947 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1948}
fbf59bc9
TH
1949EXPORT_SYMBOL_GPL(__alloc_percpu);
1950
edcb4639
TH
1951/**
1952 * __alloc_reserved_percpu - allocate reserved percpu area
1953 * @size: size of area to allocate in bytes
1954 * @align: alignment of area (max PAGE_SIZE)
1955 *
9329ba97
TH
1956 * Allocate zero-filled percpu area of @size bytes aligned at @align
1957 * from reserved percpu area if arch has set it up; otherwise,
1958 * allocation is served from the same dynamic area. Might sleep.
1959 * Might trigger writeouts.
edcb4639 1960 *
ccea34b5
TH
1961 * CONTEXT:
1962 * Does GFP_KERNEL allocation.
1963 *
edcb4639
TH
1964 * RETURNS:
1965 * Percpu pointer to the allocated area on success, NULL on failure.
1966 */
43cf38eb 1967void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1968{
5835d96e 1969 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1970}
1971
a56dbddf 1972/**
67c2669d 1973 * pcpu_balance_free - manage the amount of free chunks
f1833241 1974 * @empty_only: free chunks only if there are no populated pages
a56dbddf 1975 *
f1833241
RG
1976 * If empty_only is %false, reclaim all fully free chunks regardless of the
1977 * number of populated pages. Otherwise, only reclaim chunks that have no
1978 * populated pages.
e4d77700
RG
1979 *
1980 * CONTEXT:
1981 * pcpu_lock (can be dropped temporarily)
a56dbddf 1982 */
faf65dde 1983static void pcpu_balance_free(bool empty_only)
fbf59bc9 1984{
fe6bd8c3 1985 LIST_HEAD(to_free);
faf65dde 1986 struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
a56dbddf
TH
1987 struct pcpu_chunk *chunk, *next;
1988
e4d77700 1989 lockdep_assert_held(&pcpu_lock);
a56dbddf 1990
1a4d7607
TH
1991 /*
1992 * There's no reason to keep around multiple unused chunks and VM
1993 * areas can be scarce. Destroy all free chunks except for one.
1994 */
fe6bd8c3 1995 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1996 WARN_ON(chunk->immutable);
1997
1998 /* spare the first one */
fe6bd8c3 1999 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
2000 continue;
2001
f1833241
RG
2002 if (!empty_only || chunk->nr_empty_pop_pages == 0)
2003 list_move(&chunk->list, &to_free);
a56dbddf
TH
2004 }
2005
e4d77700
RG
2006 if (list_empty(&to_free))
2007 return;
a56dbddf 2008
e4d77700 2009 spin_unlock_irq(&pcpu_lock);
fe6bd8c3 2010 list_for_each_entry_safe(chunk, next, &to_free, list) {
e837dfde 2011 unsigned int rs, re;
dca49645 2012
ec288a2c 2013 for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
a93ace48 2014 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
2015 spin_lock_irq(&pcpu_lock);
2016 pcpu_chunk_depopulated(chunk, rs, re);
2017 spin_unlock_irq(&pcpu_lock);
a93ace48 2018 }
6081089f 2019 pcpu_destroy_chunk(chunk);
accd4f36 2020 cond_resched();
a56dbddf 2021 }
e4d77700 2022 spin_lock_irq(&pcpu_lock);
67c2669d
RG
2023}
2024
2025/**
2026 * pcpu_balance_populated - manage the amount of populated pages
67c2669d
RG
2027 *
2028 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2029 * It is possible that this is called when physical memory is scarce causing
2030 * OOM killer to be triggered. We should avoid doing so until an actual
2031 * allocation causes the failure as it is possible that requests can be
2032 * serviced from already backed regions.
e4d77700
RG
2033 *
2034 * CONTEXT:
2035 * pcpu_lock (can be dropped temporarily)
67c2669d 2036 */
faf65dde 2037static void pcpu_balance_populated(void)
67c2669d
RG
2038{
2039 /* gfp flags passed to underlying allocators */
2040 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
67c2669d
RG
2041 struct pcpu_chunk *chunk;
2042 int slot, nr_to_pop, ret;
971f3918 2043
e4d77700 2044 lockdep_assert_held(&pcpu_lock);
971f3918 2045
1a4d7607
TH
2046 /*
2047 * Ensure there are certain number of free populated pages for
2048 * atomic allocs. Fill up from the most packed so that atomic
2049 * allocs don't increase fragmentation. If atomic allocation
2050 * failed previously, always populate the maximum amount. This
2051 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2052 * failing indefinitely; however, large atomic allocs are not
2053 * something we support properly and can be highly unreliable and
2054 * inefficient.
2055 */
2056retry_pop:
2057 if (pcpu_atomic_alloc_failed) {
2058 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2059 /* best effort anyway, don't worry about synchronization */
2060 pcpu_atomic_alloc_failed = false;
2061 } else {
2062 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
faf65dde 2063 pcpu_nr_empty_pop_pages,
1a4d7607
TH
2064 0, PCPU_EMPTY_POP_PAGES_HIGH);
2065 }
2066
1c29a3ce 2067 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
e837dfde 2068 unsigned int nr_unpop = 0, rs, re;
1a4d7607
TH
2069
2070 if (!nr_to_pop)
2071 break;
2072
faf65dde 2073 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
8ab16c43 2074 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
2075 if (nr_unpop)
2076 break;
2077 }
1a4d7607
TH
2078
2079 if (!nr_unpop)
2080 continue;
2081
2082 /* @chunk can't go away while pcpu_alloc_mutex is held */
ec288a2c 2083 for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
e837dfde 2084 int nr = min_t(int, re - rs, nr_to_pop);
1a4d7607 2085
e4d77700 2086 spin_unlock_irq(&pcpu_lock);
47504ee0 2087 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
e4d77700
RG
2088 cond_resched();
2089 spin_lock_irq(&pcpu_lock);
1a4d7607
TH
2090 if (!ret) {
2091 nr_to_pop -= nr;
b239f7da 2092 pcpu_chunk_populated(chunk, rs, rs + nr);
1a4d7607
TH
2093 } else {
2094 nr_to_pop = 0;
2095 }
2096
2097 if (!nr_to_pop)
2098 break;
2099 }
2100 }
2101
2102 if (nr_to_pop) {
2103 /* ran out of chunks to populate, create a new one and retry */
e4d77700 2104 spin_unlock_irq(&pcpu_lock);
faf65dde 2105 chunk = pcpu_create_chunk(gfp);
e4d77700
RG
2106 cond_resched();
2107 spin_lock_irq(&pcpu_lock);
1a4d7607 2108 if (chunk) {
1a4d7607 2109 pcpu_chunk_relocate(chunk, -1);
1a4d7607
TH
2110 goto retry_pop;
2111 }
2112 }
fbf59bc9 2113}
1a4d7607 2114
f1833241
RG
2115/**
2116 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
f1833241
RG
2117 *
2118 * Scan over chunks in the depopulate list and try to release unused populated
2119 * pages back to the system. Depopulated chunks are sidelined to prevent
2120 * repopulating these pages unless required. Fully free chunks are reintegrated
2121 * and freed accordingly (1 is kept around). If we drop below the empty
2122 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2123 * Each chunk is scanned in the reverse order to keep populated pages close to
2124 * the beginning of the chunk.
e4d77700
RG
2125 *
2126 * CONTEXT:
2127 * pcpu_lock (can be dropped temporarily)
2128 *
f1833241 2129 */
faf65dde 2130static void pcpu_reclaim_populated(void)
f1833241 2131{
f1833241
RG
2132 struct pcpu_chunk *chunk;
2133 struct pcpu_block_md *block;
93274f1d 2134 int freed_page_start, freed_page_end;
f1833241 2135 int i, end;
93274f1d 2136 bool reintegrate;
f1833241 2137
e4d77700 2138 lockdep_assert_held(&pcpu_lock);
f1833241 2139
f1833241
RG
2140 /*
2141 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2142 * longer discoverable to allocations whom may populate pages. The only
2143 * other accessor is the free path which only returns area back to the
2144 * allocator not touching the populated bitmap.
2145 */
c1f6688d
BH
2146 while ((chunk = list_first_entry_or_null(
2147 &pcpu_chunk_lists[pcpu_to_depopulate_slot],
2148 struct pcpu_chunk, list))) {
f1833241
RG
2149 WARN_ON(chunk->immutable);
2150
2151 /*
2152 * Scan chunk's pages in the reverse order to keep populated
2153 * pages close to the beginning of the chunk.
2154 */
93274f1d
DZ
2155 freed_page_start = chunk->nr_pages;
2156 freed_page_end = 0;
2157 reintegrate = false;
f1833241
RG
2158 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2159 /* no more work to do */
2160 if (chunk->nr_empty_pop_pages == 0)
2161 break;
2162
2163 /* reintegrate chunk to prevent atomic alloc failures */
faf65dde 2164 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
93274f1d
DZ
2165 reintegrate = true;
2166 goto end_chunk;
f1833241
RG
2167 }
2168
2169 /*
2170 * If the page is empty and populated, start or
2171 * extend the (i, end) range. If i == 0, decrease
2172 * i and perform the depopulation to cover the last
2173 * (first) page in the chunk.
2174 */
2175 block = chunk->md_blocks + i;
2176 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2177 test_bit(i, chunk->populated)) {
2178 if (end == -1)
2179 end = i;
2180 if (i > 0)
2181 continue;
2182 i--;
2183 }
2184
2185 /* depopulate if there is an active range */
2186 if (end == -1)
2187 continue;
2188
2189 spin_unlock_irq(&pcpu_lock);
2190 pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2191 cond_resched();
2192 spin_lock_irq(&pcpu_lock);
2193
2194 pcpu_chunk_depopulated(chunk, i + 1, end + 1);
93274f1d
DZ
2195 freed_page_start = min(freed_page_start, i + 1);
2196 freed_page_end = max(freed_page_end, end + 1);
f1833241
RG
2197
2198 /* reset the range and continue */
2199 end = -1;
2200 }
2201
93274f1d
DZ
2202end_chunk:
2203 /* batch tlb flush per chunk to amortize cost */
2204 if (freed_page_start < freed_page_end) {
2205 spin_unlock_irq(&pcpu_lock);
2206 pcpu_post_unmap_tlb_flush(chunk,
2207 freed_page_start,
2208 freed_page_end);
2209 cond_resched();
2210 spin_lock_irq(&pcpu_lock);
2211 }
2212
2213 if (reintegrate || chunk->free_bytes == pcpu_unit_size)
f1833241
RG
2214 pcpu_reintegrate_chunk(chunk);
2215 else
93274f1d
DZ
2216 list_move_tail(&chunk->list,
2217 &pcpu_chunk_lists[pcpu_sidelined_slot]);
f1833241 2218 }
fbf59bc9
TH
2219}
2220
3c7be18a
RG
2221/**
2222 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2223 * @work: unused
2224 *
f1833241
RG
2225 * For each chunk type, manage the number of fully free chunks and the number of
2226 * populated pages. An important thing to consider is when pages are freed and
2227 * how they contribute to the global counts.
3c7be18a
RG
2228 */
2229static void pcpu_balance_workfn(struct work_struct *work)
2230{
f1833241
RG
2231 /*
2232 * pcpu_balance_free() is called twice because the first time we may
2233 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2234 * to grow other chunks. This then gives pcpu_reclaim_populated() time
2235 * to move fully free chunks to the active list to be freed if
2236 * appropriate.
2237 */
faf65dde 2238 mutex_lock(&pcpu_alloc_mutex);
e4d77700
RG
2239 spin_lock_irq(&pcpu_lock);
2240
faf65dde
RG
2241 pcpu_balance_free(false);
2242 pcpu_reclaim_populated();
2243 pcpu_balance_populated();
2244 pcpu_balance_free(true);
3c7be18a 2245
e4d77700 2246 spin_unlock_irq(&pcpu_lock);
faf65dde 2247 mutex_unlock(&pcpu_alloc_mutex);
3c7be18a
RG
2248}
2249
fbf59bc9
TH
2250/**
2251 * free_percpu - free percpu area
2252 * @ptr: pointer to area to free
2253 *
ccea34b5
TH
2254 * Free percpu area @ptr.
2255 *
2256 * CONTEXT:
2257 * Can be called from atomic context.
fbf59bc9 2258 */
43cf38eb 2259void free_percpu(void __percpu *ptr)
fbf59bc9 2260{
129182e5 2261 void *addr;
fbf59bc9 2262 struct pcpu_chunk *chunk;
ccea34b5 2263 unsigned long flags;
3c7be18a 2264 int size, off;
198790d9 2265 bool need_balance = false;
fbf59bc9
TH
2266
2267 if (!ptr)
2268 return;
2269
f528f0b8
CM
2270 kmemleak_free_percpu(ptr);
2271
129182e5
AM
2272 addr = __pcpu_ptr_to_addr(ptr);
2273
ccea34b5 2274 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
2275
2276 chunk = pcpu_chunk_addr_search(addr);
bba174f5 2277 off = addr - chunk->base_addr;
fbf59bc9 2278
3c7be18a
RG
2279 size = pcpu_free_area(chunk, off);
2280
3c7be18a 2281 pcpu_memcg_free_hook(chunk, off, size);
fbf59bc9 2282
f1833241
RG
2283 /*
2284 * If there are more than one fully free chunks, wake up grim reaper.
2285 * If the chunk is isolated, it may be in the process of being
2286 * reclaimed. Let reclaim manage cleaning up of that chunk.
2287 */
2288 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
2289 struct pcpu_chunk *pos;
2290
faf65dde 2291 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
fbf59bc9 2292 if (pos != chunk) {
198790d9 2293 need_balance = true;
fbf59bc9
TH
2294 break;
2295 }
f1833241
RG
2296 } else if (pcpu_should_reclaim_chunk(chunk)) {
2297 pcpu_isolate_chunk(chunk);
2298 need_balance = true;
fbf59bc9
TH
2299 }
2300
df95e795
DZ
2301 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2302
ccea34b5 2303 spin_unlock_irqrestore(&pcpu_lock, flags);
198790d9
JS
2304
2305 if (need_balance)
2306 pcpu_schedule_balance_work();
fbf59bc9
TH
2307}
2308EXPORT_SYMBOL_GPL(free_percpu);
2309
383776fa 2310bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 2311{
bbddff05 2312#ifdef CONFIG_SMP
10fad5e4
TH
2313 const size_t static_size = __per_cpu_end - __per_cpu_start;
2314 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2315 unsigned int cpu;
2316
2317 for_each_possible_cpu(cpu) {
2318 void *start = per_cpu_ptr(base, cpu);
383776fa 2319 void *va = (void *)addr;
10fad5e4 2320
383776fa 2321 if (va >= start && va < start + static_size) {
8ce371f9 2322 if (can_addr) {
383776fa 2323 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
2324 *can_addr += (unsigned long)
2325 per_cpu_ptr(base, get_boot_cpu_id());
2326 }
10fad5e4 2327 return true;
383776fa
TG
2328 }
2329 }
bbddff05
TH
2330#endif
2331 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
2332 return false;
2333}
2334
383776fa
TG
2335/**
2336 * is_kernel_percpu_address - test whether address is from static percpu area
2337 * @addr: address to test
2338 *
2339 * Test whether @addr belongs to in-kernel static percpu area. Module
2340 * static percpu areas are not considered. For those, use
2341 * is_module_percpu_address().
2342 *
2343 * RETURNS:
2344 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2345 */
2346bool is_kernel_percpu_address(unsigned long addr)
2347{
2348 return __is_kernel_percpu_address(addr, NULL);
2349}
2350
3b034b0d
VG
2351/**
2352 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2353 * @addr: the address to be converted to physical address
2354 *
2355 * Given @addr which is dereferenceable address obtained via one of
2356 * percpu access macros, this function translates it into its physical
2357 * address. The caller is responsible for ensuring @addr stays valid
2358 * until this function finishes.
2359 *
67589c71
DY
2360 * percpu allocator has special setup for the first chunk, which currently
2361 * supports either embedding in linear address space or vmalloc mapping,
2362 * and, from the second one, the backing allocator (currently either vm or
2363 * km) provides translation.
2364 *
bffc4375 2365 * The addr can be translated simply without checking if it falls into the
67589c71
DY
2366 * first chunk. But the current code reflects better how percpu allocator
2367 * actually works, and the verification can discover both bugs in percpu
2368 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2369 * code.
2370 *
3b034b0d
VG
2371 * RETURNS:
2372 * The physical address for @addr.
2373 */
2374phys_addr_t per_cpu_ptr_to_phys(void *addr)
2375{
9983b6f0
TH
2376 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2377 bool in_first_chunk = false;
a855b84c 2378 unsigned long first_low, first_high;
9983b6f0
TH
2379 unsigned int cpu;
2380
2381 /*
a855b84c 2382 * The following test on unit_low/high isn't strictly
9983b6f0
TH
2383 * necessary but will speed up lookups of addresses which
2384 * aren't in the first chunk.
c0ebfdc3
DZF
2385 *
2386 * The address check is against full chunk sizes. pcpu_base_addr
2387 * points to the beginning of the first chunk including the
2388 * static region. Assumes good intent as the first chunk may
2389 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 2390 */
c0ebfdc3
DZF
2391 first_low = (unsigned long)pcpu_base_addr +
2392 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2393 first_high = (unsigned long)pcpu_base_addr +
2394 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
2395 if ((unsigned long)addr >= first_low &&
2396 (unsigned long)addr < first_high) {
9983b6f0
TH
2397 for_each_possible_cpu(cpu) {
2398 void *start = per_cpu_ptr(base, cpu);
2399
2400 if (addr >= start && addr < start + pcpu_unit_size) {
2401 in_first_chunk = true;
2402 break;
2403 }
2404 }
2405 }
2406
2407 if (in_first_chunk) {
eac522ef 2408 if (!is_vmalloc_addr(addr))
020ec653
TH
2409 return __pa(addr);
2410 else
9f57bd4d
ES
2411 return page_to_phys(vmalloc_to_page(addr)) +
2412 offset_in_page(addr);
020ec653 2413 } else
9f57bd4d
ES
2414 return page_to_phys(pcpu_addr_to_page(addr)) +
2415 offset_in_page(addr);
3b034b0d
VG
2416}
2417
fbf59bc9 2418/**
fd1e8a1f
TH
2419 * pcpu_alloc_alloc_info - allocate percpu allocation info
2420 * @nr_groups: the number of groups
2421 * @nr_units: the number of units
2422 *
2423 * Allocate ai which is large enough for @nr_groups groups containing
2424 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2425 * cpu_map array which is long enough for @nr_units and filled with
2426 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2427 * pointer of other groups.
2428 *
2429 * RETURNS:
2430 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2431 * failure.
2432 */
2433struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2434 int nr_units)
2435{
2436 struct pcpu_alloc_info *ai;
2437 size_t base_size, ai_size;
2438 void *ptr;
2439 int unit;
2440
14d37612 2441 base_size = ALIGN(struct_size(ai, groups, nr_groups),
fd1e8a1f
TH
2442 __alignof__(ai->groups[0].cpu_map[0]));
2443 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2444
26fb3dae 2445 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
fd1e8a1f
TH
2446 if (!ptr)
2447 return NULL;
2448 ai = ptr;
2449 ptr += base_size;
2450
2451 ai->groups[0].cpu_map = ptr;
2452
2453 for (unit = 0; unit < nr_units; unit++)
2454 ai->groups[0].cpu_map[unit] = NR_CPUS;
2455
2456 ai->nr_groups = nr_groups;
2457 ai->__ai_size = PFN_ALIGN(ai_size);
2458
2459 return ai;
2460}
2461
2462/**
2463 * pcpu_free_alloc_info - free percpu allocation info
2464 * @ai: pcpu_alloc_info to free
2465 *
2466 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2467 */
2468void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2469{
4421cca0 2470 memblock_free(ai, ai->__ai_size);
fd1e8a1f
TH
2471}
2472
fd1e8a1f
TH
2473/**
2474 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2475 * @lvl: loglevel
2476 * @ai: allocation info to dump
2477 *
2478 * Print out information about @ai using loglevel @lvl.
2479 */
2480static void pcpu_dump_alloc_info(const char *lvl,
2481 const struct pcpu_alloc_info *ai)
033e48fb 2482{
fd1e8a1f 2483 int group_width = 1, cpu_width = 1, width;
033e48fb 2484 char empty_str[] = "--------";
fd1e8a1f
TH
2485 int alloc = 0, alloc_end = 0;
2486 int group, v;
2487 int upa, apl; /* units per alloc, allocs per line */
2488
2489 v = ai->nr_groups;
2490 while (v /= 10)
2491 group_width++;
033e48fb 2492
fd1e8a1f 2493 v = num_possible_cpus();
033e48fb 2494 while (v /= 10)
fd1e8a1f
TH
2495 cpu_width++;
2496 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 2497
fd1e8a1f
TH
2498 upa = ai->alloc_size / ai->unit_size;
2499 width = upa * (cpu_width + 1) + group_width + 3;
2500 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 2501
fd1e8a1f
TH
2502 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2503 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2504 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 2505
fd1e8a1f
TH
2506 for (group = 0; group < ai->nr_groups; group++) {
2507 const struct pcpu_group_info *gi = &ai->groups[group];
2508 int unit = 0, unit_end = 0;
2509
2510 BUG_ON(gi->nr_units % upa);
2511 for (alloc_end += gi->nr_units / upa;
2512 alloc < alloc_end; alloc++) {
2513 if (!(alloc % apl)) {
1170532b 2514 pr_cont("\n");
fd1e8a1f
TH
2515 printk("%spcpu-alloc: ", lvl);
2516 }
1170532b 2517 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
2518
2519 for (unit_end += upa; unit < unit_end; unit++)
2520 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
2521 pr_cont("%0*d ",
2522 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 2523 else
1170532b 2524 pr_cont("%s ", empty_str);
033e48fb 2525 }
033e48fb 2526 }
1170532b 2527 pr_cont("\n");
033e48fb 2528}
033e48fb 2529
fbf59bc9 2530/**
8d408b4b 2531 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 2532 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 2533 * @base_addr: mapped address
8d408b4b
TH
2534 *
2535 * Initialize the first percpu chunk which contains the kernel static
69ab285b 2536 * percpu area. This function is to be called from arch percpu area
38a6be52 2537 * setup path.
8d408b4b 2538 *
fd1e8a1f
TH
2539 * @ai contains all information necessary to initialize the first
2540 * chunk and prime the dynamic percpu allocator.
2541 *
2542 * @ai->static_size is the size of static percpu area.
2543 *
2544 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
2545 * reserve after the static area in the first chunk. This reserves
2546 * the first chunk such that it's available only through reserved
2547 * percpu allocation. This is primarily used to serve module percpu
2548 * static areas on architectures where the addressing model has
2549 * limited offset range for symbol relocations to guarantee module
2550 * percpu symbols fall inside the relocatable range.
2551 *
fd1e8a1f
TH
2552 * @ai->dyn_size determines the number of bytes available for dynamic
2553 * allocation in the first chunk. The area between @ai->static_size +
2554 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 2555 *
fd1e8a1f
TH
2556 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2557 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2558 * @ai->dyn_size.
8d408b4b 2559 *
fd1e8a1f
TH
2560 * @ai->atom_size is the allocation atom size and used as alignment
2561 * for vm areas.
8d408b4b 2562 *
fd1e8a1f
TH
2563 * @ai->alloc_size is the allocation size and always multiple of
2564 * @ai->atom_size. This is larger than @ai->atom_size if
2565 * @ai->unit_size is larger than @ai->atom_size.
2566 *
2567 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2568 * percpu areas. Units which should be colocated are put into the
2569 * same group. Dynamic VM areas will be allocated according to these
2570 * groupings. If @ai->nr_groups is zero, a single group containing
2571 * all units is assumed.
8d408b4b 2572 *
38a6be52
TH
2573 * The caller should have mapped the first chunk at @base_addr and
2574 * copied static data to each unit.
fbf59bc9 2575 *
c0ebfdc3
DZF
2576 * The first chunk will always contain a static and a dynamic region.
2577 * However, the static region is not managed by any chunk. If the first
2578 * chunk also contains a reserved region, it is served by two chunks -
2579 * one for the reserved region and one for the dynamic region. They
2580 * share the same vm, but use offset regions in the area allocation map.
2581 * The chunk serving the dynamic region is circulated in the chunk slots
2582 * and available for dynamic allocation like any other chunk.
fbf59bc9 2583 */
163fa234
KW
2584void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2585 void *base_addr)
fbf59bc9 2586{
b9c39442 2587 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 2588 size_t static_size, dyn_size;
0c4169c3 2589 struct pcpu_chunk *chunk;
6563297c
TH
2590 unsigned long *group_offsets;
2591 size_t *group_sizes;
fb435d52 2592 unsigned long *unit_off;
fbf59bc9 2593 unsigned int cpu;
fd1e8a1f
TH
2594 int *unit_map;
2595 int group, unit, i;
c0ebfdc3
DZF
2596 int map_size;
2597 unsigned long tmp_addr;
f655f405 2598 size_t alloc_size;
fbf59bc9 2599
635b75fc
TH
2600#define PCPU_SETUP_BUG_ON(cond) do { \
2601 if (unlikely(cond)) { \
870d4b12
JP
2602 pr_emerg("failed to initialize, %s\n", #cond); \
2603 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 2604 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
2605 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2606 BUG(); \
2607 } \
2608} while (0)
2609
2f39e637 2610 /* sanity checks */
635b75fc 2611 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 2612#ifdef CONFIG_SMP
635b75fc 2613 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 2614 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 2615#endif
635b75fc 2616 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 2617 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 2618 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 2619 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 2620 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 2621 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 2622 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 2623 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 2624 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
2625 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2626 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 2627 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 2628
6563297c 2629 /* process group information and build config tables accordingly */
f655f405
MR
2630 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2631 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2632 if (!group_offsets)
2633 panic("%s: Failed to allocate %zu bytes\n", __func__,
2634 alloc_size);
2635
2636 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2637 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2638 if (!group_sizes)
2639 panic("%s: Failed to allocate %zu bytes\n", __func__,
2640 alloc_size);
2641
2642 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2643 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2644 if (!unit_map)
2645 panic("%s: Failed to allocate %zu bytes\n", __func__,
2646 alloc_size);
2647
2648 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2649 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2650 if (!unit_off)
2651 panic("%s: Failed to allocate %zu bytes\n", __func__,
2652 alloc_size);
2f39e637 2653
fd1e8a1f 2654 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 2655 unit_map[cpu] = UINT_MAX;
a855b84c
TH
2656
2657 pcpu_low_unit_cpu = NR_CPUS;
2658 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 2659
fd1e8a1f
TH
2660 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2661 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 2662
6563297c
TH
2663 group_offsets[group] = gi->base_offset;
2664 group_sizes[group] = gi->nr_units * ai->unit_size;
2665
fd1e8a1f
TH
2666 for (i = 0; i < gi->nr_units; i++) {
2667 cpu = gi->cpu_map[i];
2668 if (cpu == NR_CPUS)
2669 continue;
8d408b4b 2670
9f295664 2671 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
2672 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2673 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 2674
fd1e8a1f 2675 unit_map[cpu] = unit + i;
fb435d52
TH
2676 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2677
a855b84c
TH
2678 /* determine low/high unit_cpu */
2679 if (pcpu_low_unit_cpu == NR_CPUS ||
2680 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2681 pcpu_low_unit_cpu = cpu;
2682 if (pcpu_high_unit_cpu == NR_CPUS ||
2683 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2684 pcpu_high_unit_cpu = cpu;
fd1e8a1f 2685 }
2f39e637 2686 }
fd1e8a1f
TH
2687 pcpu_nr_units = unit;
2688
2689 for_each_possible_cpu(cpu)
635b75fc
TH
2690 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2691
2692 /* we're done parsing the input, undefine BUG macro and dump config */
2693#undef PCPU_SETUP_BUG_ON
bcbea798 2694 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 2695
6563297c
TH
2696 pcpu_nr_groups = ai->nr_groups;
2697 pcpu_group_offsets = group_offsets;
2698 pcpu_group_sizes = group_sizes;
fd1e8a1f 2699 pcpu_unit_map = unit_map;
fb435d52 2700 pcpu_unit_offsets = unit_off;
2f39e637
TH
2701
2702 /* determine basic parameters */
fd1e8a1f 2703 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 2704 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 2705 pcpu_atom_size = ai->atom_size;
61cf93d3
DZ
2706 pcpu_chunk_struct_size = struct_size(chunk, populated,
2707 BITS_TO_LONGS(pcpu_unit_pages));
cafe8816 2708
30a5b536
DZ
2709 pcpu_stats_save_ai(ai);
2710
d9b55eeb 2711 /*
f1833241
RG
2712 * Allocate chunk slots. The slots after the active slots are:
2713 * sidelined_slot - isolated, depopulated chunks
2714 * free_slot - fully free chunks
2715 * to_depopulate_slot - isolated, chunks to depopulate
d9b55eeb 2716 */
f1833241
RG
2717 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2718 pcpu_free_slot = pcpu_sidelined_slot + 1;
2719 pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2720 pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
3c7be18a 2721 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
faf65dde 2722 sizeof(pcpu_chunk_lists[0]),
3c7be18a
RG
2723 SMP_CACHE_BYTES);
2724 if (!pcpu_chunk_lists)
f655f405 2725 panic("%s: Failed to allocate %zu bytes\n", __func__,
faf65dde 2726 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
3c7be18a 2727
faf65dde
RG
2728 for (i = 0; i < pcpu_nr_slots; i++)
2729 INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
fbf59bc9 2730
d2f3c384
DZF
2731 /*
2732 * The end of the static region needs to be aligned with the
2733 * minimum allocation size as this offsets the reserved and
2734 * dynamic region. The first chunk ends page aligned by
2735 * expanding the dynamic region, therefore the dynamic region
2736 * can be shrunk to compensate while still staying above the
2737 * configured sizes.
2738 */
2739 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2740 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2741
edcb4639 2742 /*
c0ebfdc3
DZF
2743 * Initialize first chunk.
2744 * If the reserved_size is non-zero, this initializes the reserved
2745 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2746 * and the dynamic region is initialized here. The first chunk,
2747 * pcpu_first_chunk, will always point to the chunk that serves
2748 * the dynamic region.
edcb4639 2749 */
d2f3c384
DZF
2750 tmp_addr = (unsigned long)base_addr + static_size;
2751 map_size = ai->reserved_size ?: dyn_size;
40064aec 2752 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 2753
edcb4639 2754 /* init dynamic chunk if necessary */
b9c39442 2755 if (ai->reserved_size) {
0c4169c3 2756 pcpu_reserved_chunk = chunk;
b9c39442 2757
d2f3c384 2758 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 2759 ai->reserved_size;
d2f3c384 2760 map_size = dyn_size;
40064aec 2761 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
2762 }
2763
2441d15c 2764 /* link the first chunk in */
0c4169c3 2765 pcpu_first_chunk = chunk;
faf65dde 2766 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 2767 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 2768
7e8a6304
DZF
2769 /* include all regions of the first chunk */
2770 pcpu_nr_populated += PFN_DOWN(size_sum);
2771
30a5b536 2772 pcpu_stats_chunk_alloc();
df95e795 2773 trace_percpu_create_chunk(base_addr);
30a5b536 2774
fbf59bc9 2775 /* we're done */
bba174f5 2776 pcpu_base_addr = base_addr;
fbf59bc9 2777}
66c3a757 2778
bbddff05
TH
2779#ifdef CONFIG_SMP
2780
17f3609c 2781const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
2782 [PCPU_FC_AUTO] = "auto",
2783 [PCPU_FC_EMBED] = "embed",
2784 [PCPU_FC_PAGE] = "page",
f58dc01b 2785};
66c3a757 2786
f58dc01b 2787enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 2788
f58dc01b
TH
2789static int __init percpu_alloc_setup(char *str)
2790{
5479c78a
CG
2791 if (!str)
2792 return -EINVAL;
2793
f58dc01b
TH
2794 if (0)
2795 /* nada */;
2796#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2797 else if (!strcmp(str, "embed"))
2798 pcpu_chosen_fc = PCPU_FC_EMBED;
2799#endif
2800#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2801 else if (!strcmp(str, "page"))
2802 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
2803#endif
2804 else
870d4b12 2805 pr_warn("unknown allocator %s specified\n", str);
66c3a757 2806
f58dc01b 2807 return 0;
66c3a757 2808}
f58dc01b 2809early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 2810
3c9a024f
TH
2811/*
2812 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2813 * Build it if needed by the arch config or the generic setup is going
2814 * to be used.
2815 */
08fc4580
TH
2816#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2817 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
2818#define BUILD_EMBED_FIRST_CHUNK
2819#endif
2820
2821/* build pcpu_page_first_chunk() iff needed by the arch config */
2822#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2823#define BUILD_PAGE_FIRST_CHUNK
2824#endif
2825
2826/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2827#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2828/**
2829 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2830 * @reserved_size: the size of reserved percpu area in bytes
2831 * @dyn_size: minimum free size for dynamic allocation in bytes
2832 * @atom_size: allocation atom size
2833 * @cpu_distance_fn: callback to determine distance between cpus, optional
2834 *
2835 * This function determines grouping of units, their mappings to cpus
2836 * and other parameters considering needed percpu size, allocation
2837 * atom size and distances between CPUs.
2838 *
bffc4375 2839 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
2840 * LOCAL_DISTANCE both ways are grouped together and share space for
2841 * units in the same group. The returned configuration is guaranteed
2842 * to have CPUs on different nodes on different groups and >=75% usage
2843 * of allocated virtual address space.
2844 *
2845 * RETURNS:
2846 * On success, pointer to the new allocation_info is returned. On
2847 * failure, ERR_PTR value is returned.
2848 */
258e0815 2849static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
3c9a024f
TH
2850 size_t reserved_size, size_t dyn_size,
2851 size_t atom_size,
2852 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2853{
2854 static int group_map[NR_CPUS] __initdata;
2855 static int group_cnt[NR_CPUS] __initdata;
d7d29ac7 2856 static struct cpumask mask __initdata;
3c9a024f
TH
2857 const size_t static_size = __per_cpu_end - __per_cpu_start;
2858 int nr_groups = 1, nr_units = 0;
2859 size_t size_sum, min_unit_size, alloc_size;
3f649ab7 2860 int upa, max_upa, best_upa; /* units_per_alloc */
3c9a024f
TH
2861 int last_allocs, group, unit;
2862 unsigned int cpu, tcpu;
2863 struct pcpu_alloc_info *ai;
2864 unsigned int *cpu_map;
2865
2866 /* this function may be called multiple times */
2867 memset(group_map, 0, sizeof(group_map));
2868 memset(group_cnt, 0, sizeof(group_cnt));
d7d29ac7 2869 cpumask_clear(&mask);
3c9a024f
TH
2870
2871 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2872 size_sum = PFN_ALIGN(static_size + reserved_size +
2873 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2874 dyn_size = size_sum - static_size - reserved_size;
2875
2876 /*
2877 * Determine min_unit_size, alloc_size and max_upa such that
2878 * alloc_size is multiple of atom_size and is the smallest
25985edc 2879 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2880 * or larger than min_unit_size.
2881 */
2882 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2883
9c015162 2884 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2885 alloc_size = roundup(min_unit_size, atom_size);
2886 upa = alloc_size / min_unit_size;
f09f1243 2887 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2888 upa--;
2889 max_upa = upa;
2890
d7d29ac7
WY
2891 cpumask_copy(&mask, cpu_possible_mask);
2892
3c9a024f 2893 /* group cpus according to their proximity */
d7d29ac7
WY
2894 for (group = 0; !cpumask_empty(&mask); group++) {
2895 /* pop the group's first cpu */
2896 cpu = cpumask_first(&mask);
3c9a024f
TH
2897 group_map[cpu] = group;
2898 group_cnt[group]++;
d7d29ac7
WY
2899 cpumask_clear_cpu(cpu, &mask);
2900
2901 for_each_cpu(tcpu, &mask) {
2902 if (!cpu_distance_fn ||
2903 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2904 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2905 group_map[tcpu] = group;
2906 group_cnt[group]++;
2907 cpumask_clear_cpu(tcpu, &mask);
2908 }
2909 }
3c9a024f 2910 }
d7d29ac7 2911 nr_groups = group;
3c9a024f
TH
2912
2913 /*
9c015162
DZF
2914 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2915 * Expand the unit_size until we use >= 75% of the units allocated.
2916 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2917 */
2918 last_allocs = INT_MAX;
4829c791 2919 best_upa = 0;
3c9a024f
TH
2920 for (upa = max_upa; upa; upa--) {
2921 int allocs = 0, wasted = 0;
2922
f09f1243 2923 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2924 continue;
2925
2926 for (group = 0; group < nr_groups; group++) {
2927 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2928 allocs += this_allocs;
2929 wasted += this_allocs * upa - group_cnt[group];
2930 }
2931
2932 /*
2933 * Don't accept if wastage is over 1/3. The
2934 * greater-than comparison ensures upa==1 always
2935 * passes the following check.
2936 */
2937 if (wasted > num_possible_cpus() / 3)
2938 continue;
2939
2940 /* and then don't consume more memory */
2941 if (allocs > last_allocs)
2942 break;
2943 last_allocs = allocs;
2944 best_upa = upa;
2945 }
4829c791 2946 BUG_ON(!best_upa);
3c9a024f
TH
2947 upa = best_upa;
2948
2949 /* allocate and fill alloc_info */
2950 for (group = 0; group < nr_groups; group++)
2951 nr_units += roundup(group_cnt[group], upa);
2952
2953 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2954 if (!ai)
2955 return ERR_PTR(-ENOMEM);
2956 cpu_map = ai->groups[0].cpu_map;
2957
2958 for (group = 0; group < nr_groups; group++) {
2959 ai->groups[group].cpu_map = cpu_map;
2960 cpu_map += roundup(group_cnt[group], upa);
2961 }
2962
2963 ai->static_size = static_size;
2964 ai->reserved_size = reserved_size;
2965 ai->dyn_size = dyn_size;
2966 ai->unit_size = alloc_size / upa;
2967 ai->atom_size = atom_size;
2968 ai->alloc_size = alloc_size;
2969
2de7852f 2970 for (group = 0, unit = 0; group < nr_groups; group++) {
3c9a024f
TH
2971 struct pcpu_group_info *gi = &ai->groups[group];
2972
2973 /*
2974 * Initialize base_offset as if all groups are located
2975 * back-to-back. The caller should update this to
2976 * reflect actual allocation.
2977 */
2978 gi->base_offset = unit * ai->unit_size;
2979
2980 for_each_possible_cpu(cpu)
2981 if (group_map[cpu] == group)
2982 gi->cpu_map[gi->nr_units++] = cpu;
2983 gi->nr_units = roundup(gi->nr_units, upa);
2984 unit += gi->nr_units;
2985 }
2986 BUG_ON(unit != nr_units);
2987
2988 return ai;
2989}
23f91716
KW
2990
2991static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
2992 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
2993{
2994 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
2995#ifdef CONFIG_NUMA
2996 int node = NUMA_NO_NODE;
2997 void *ptr;
2998
2999 if (cpu_to_nd_fn)
3000 node = cpu_to_nd_fn(cpu);
3001
3002 if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
3003 ptr = memblock_alloc_from(size, align, goal);
3004 pr_info("cpu %d has no node %d or node-local memory\n",
3005 cpu, node);
3006 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
3007 cpu, size, (u64)__pa(ptr));
3008 } else {
3009 ptr = memblock_alloc_try_nid(size, align, goal,
3010 MEMBLOCK_ALLOC_ACCESSIBLE,
3011 node);
3012
3013 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
3014 cpu, size, node, (u64)__pa(ptr));
3015 }
3016 return ptr;
3017#else
3018 return memblock_alloc_from(size, align, goal);
3019#endif
3020}
3021
3022static void __init pcpu_fc_free(void *ptr, size_t size)
3023{
3024 memblock_free(ptr, size);
3025}
3c9a024f
TH
3026#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
3027
3028#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
3029/**
3030 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 3031 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 3032 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
3033 * @atom_size: allocation atom size
3034 * @cpu_distance_fn: callback to determine distance between cpus, optional
1ca3fb3a 3035 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
66c3a757
TH
3036 *
3037 * This is a helper to ease setting up embedded first percpu chunk and
3038 * can be called where pcpu_setup_first_chunk() is expected.
3039 *
3040 * If this function is used to setup the first chunk, it is allocated
23f91716 3041 * by calling pcpu_fc_alloc and used as-is without being mapped into
c8826dd5
TH
3042 * vmalloc area. Allocations are always whole multiples of @atom_size
3043 * aligned to @atom_size.
3044 *
3045 * This enables the first chunk to piggy back on the linear physical
3046 * mapping which often uses larger page size. Please note that this
3047 * can result in very sparse cpu->unit mapping on NUMA machines thus
3048 * requiring large vmalloc address space. Don't use this allocator if
3049 * vmalloc space is not orders of magnitude larger than distances
3050 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 3051 *
4ba6ce25 3052 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
3053 *
3054 * If the needed size is smaller than the minimum or specified unit
23f91716 3055 * size, the leftover is returned using pcpu_fc_free.
66c3a757
TH
3056 *
3057 * RETURNS:
fb435d52 3058 * 0 on success, -errno on failure.
66c3a757 3059 */
4ba6ce25 3060int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
3061 size_t atom_size,
3062 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
23f91716 3063 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
66c3a757 3064{
c8826dd5
TH
3065 void *base = (void *)ULONG_MAX;
3066 void **areas = NULL;
fd1e8a1f 3067 struct pcpu_alloc_info *ai;
93c76b6b 3068 size_t size_sum, areas_size;
3069 unsigned long max_distance;
163fa234 3070 int group, i, highest_group, rc = 0;
66c3a757 3071
c8826dd5
TH
3072 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3073 cpu_distance_fn);
fd1e8a1f
TH
3074 if (IS_ERR(ai))
3075 return PTR_ERR(ai);
66c3a757 3076
fd1e8a1f 3077 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 3078 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 3079
26fb3dae 3080 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
c8826dd5 3081 if (!areas) {
fb435d52 3082 rc = -ENOMEM;
c8826dd5 3083 goto out_free;
fa8a7094 3084 }
66c3a757 3085
9b739662 3086 /* allocate, copy and determine base address & max_distance */
3087 highest_group = 0;
c8826dd5
TH
3088 for (group = 0; group < ai->nr_groups; group++) {
3089 struct pcpu_group_info *gi = &ai->groups[group];
3090 unsigned int cpu = NR_CPUS;
3091 void *ptr;
3092
3093 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3094 cpu = gi->cpu_map[i];
3095 BUG_ON(cpu == NR_CPUS);
3096
3097 /* allocate space for the whole group */
23f91716 3098 ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
c8826dd5
TH
3099 if (!ptr) {
3100 rc = -ENOMEM;
3101 goto out_free_areas;
3102 }
f528f0b8 3103 /* kmemleak tracks the percpu allocations separately */
a317ebcc 3104 kmemleak_ignore_phys(__pa(ptr));
c8826dd5 3105 areas[group] = ptr;
fd1e8a1f 3106
c8826dd5 3107 base = min(ptr, base);
9b739662 3108 if (ptr > areas[highest_group])
3109 highest_group = group;
3110 }
3111 max_distance = areas[highest_group] - base;
3112 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3113
3114 /* warn if maximum distance is further than 75% of vmalloc space */
3115 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3116 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3117 max_distance, VMALLOC_TOTAL);
3118#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3119 /* and fail if we have fallback */
3120 rc = -EINVAL;
3121 goto out_free_areas;
3122#endif
42b64281
TH
3123 }
3124
3125 /*
3126 * Copy data and free unused parts. This should happen after all
3127 * allocations are complete; otherwise, we may end up with
3128 * overlapping groups.
3129 */
3130 for (group = 0; group < ai->nr_groups; group++) {
3131 struct pcpu_group_info *gi = &ai->groups[group];
3132 void *ptr = areas[group];
c8826dd5
TH
3133
3134 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3135 if (gi->cpu_map[i] == NR_CPUS) {
3136 /* unused unit, free whole */
23f91716 3137 pcpu_fc_free(ptr, ai->unit_size);
c8826dd5
TH
3138 continue;
3139 }
3140 /* copy and return the unused part */
3141 memcpy(ptr, __per_cpu_load, ai->static_size);
23f91716 3142 pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
c8826dd5 3143 }
fa8a7094 3144 }
66c3a757 3145
c8826dd5 3146 /* base address is now known, determine group base offsets */
6ea529a2 3147 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 3148 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 3149 }
c8826dd5 3150
00206a69
MC
3151 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3152 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
fd1e8a1f 3153 ai->dyn_size, ai->unit_size);
d4b95f80 3154
163fa234 3155 pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
3156 goto out_free;
3157
3158out_free_areas:
3159 for (group = 0; group < ai->nr_groups; group++)
f851c8d8 3160 if (areas[group])
23f91716 3161 pcpu_fc_free(areas[group],
f851c8d8 3162 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 3163out_free:
fd1e8a1f 3164 pcpu_free_alloc_info(ai);
c8826dd5 3165 if (areas)
4421cca0 3166 memblock_free(areas, areas_size);
fb435d52 3167 return rc;
d4b95f80 3168}
3c9a024f 3169#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 3170
3c9a024f 3171#ifdef BUILD_PAGE_FIRST_CHUNK
20c03576
KW
3172#include <asm/pgalloc.h>
3173
3174#ifndef P4D_TABLE_SIZE
3175#define P4D_TABLE_SIZE PAGE_SIZE
3176#endif
3177
3178#ifndef PUD_TABLE_SIZE
3179#define PUD_TABLE_SIZE PAGE_SIZE
3180#endif
3181
3182#ifndef PMD_TABLE_SIZE
3183#define PMD_TABLE_SIZE PAGE_SIZE
3184#endif
3185
3186#ifndef PTE_TABLE_SIZE
3187#define PTE_TABLE_SIZE PAGE_SIZE
3188#endif
3189void __init __weak pcpu_populate_pte(unsigned long addr)
3190{
3191 pgd_t *pgd = pgd_offset_k(addr);
3192 p4d_t *p4d;
3193 pud_t *pud;
3194 pmd_t *pmd;
3195
3196 if (pgd_none(*pgd)) {
3197 p4d_t *new;
3198
3199 new = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
3200 if (!new)
3201 goto err_alloc;
3202 pgd_populate(&init_mm, pgd, new);
3203 }
3204
3205 p4d = p4d_offset(pgd, addr);
3206 if (p4d_none(*p4d)) {
3207 pud_t *new;
3208
3209 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
3210 if (!new)
3211 goto err_alloc;
3212 p4d_populate(&init_mm, p4d, new);
3213 }
3214
3215 pud = pud_offset(p4d, addr);
3216 if (pud_none(*pud)) {
3217 pmd_t *new;
3218
3219 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
3220 if (!new)
3221 goto err_alloc;
3222 pud_populate(&init_mm, pud, new);
3223 }
3224
3225 pmd = pmd_offset(pud, addr);
3226 if (!pmd_present(*pmd)) {
3227 pte_t *new;
3228
3229 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
3230 if (!new)
3231 goto err_alloc;
3232 pmd_populate_kernel(&init_mm, pmd, new);
3233 }
3234
3235 return;
3236
3237err_alloc:
3238 panic("%s: Failed to allocate memory\n", __func__);
3239}
3240
d4b95f80 3241/**
00ae4064 3242 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80 3243 * @reserved_size: the size of reserved percpu area in bytes
1ca3fb3a 3244 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
d4b95f80 3245 *
00ae4064
TH
3246 * This is a helper to ease setting up page-remapped first percpu
3247 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
3248 *
3249 * This is the basic allocator. Static percpu area is allocated
3250 * page-by-page into vmalloc area.
3251 *
3252 * RETURNS:
fb435d52 3253 * 0 on success, -errno on failure.
d4b95f80 3254 */
20c03576 3255int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
d4b95f80 3256{
8f05a6a6 3257 static struct vm_struct vm;
fd1e8a1f 3258 struct pcpu_alloc_info *ai;
00ae4064 3259 char psize_str[16];
ce3141a2 3260 int unit_pages;
d4b95f80 3261 size_t pages_size;
ce3141a2 3262 struct page **pages;
163fa234 3263 int unit, i, j, rc = 0;
8f606604 3264 int upa;
3265 int nr_g0_units;
d4b95f80 3266
00ae4064
TH
3267 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3268
4ba6ce25 3269 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
3270 if (IS_ERR(ai))
3271 return PTR_ERR(ai);
3272 BUG_ON(ai->nr_groups != 1);
8f606604 3273 upa = ai->alloc_size/ai->unit_size;
3274 nr_g0_units = roundup(num_possible_cpus(), upa);
0b59c25f 3275 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
8f606604 3276 pcpu_free_alloc_info(ai);
3277 return -EINVAL;
3278 }
fd1e8a1f
TH
3279
3280 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
3281
3282 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
3283 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3284 sizeof(pages[0]));
7e1c4e27 3285 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
f655f405
MR
3286 if (!pages)
3287 panic("%s: Failed to allocate %zu bytes\n", __func__,
3288 pages_size);
d4b95f80 3289
8f05a6a6 3290 /* allocate pages */
d4b95f80 3291 j = 0;
8f606604 3292 for (unit = 0; unit < num_possible_cpus(); unit++) {
3293 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 3294 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
3295 void *ptr;
3296
23f91716 3297 ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
d4b95f80 3298 if (!ptr) {
870d4b12 3299 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 3300 psize_str, cpu);
d4b95f80
TH
3301 goto enomem;
3302 }
f528f0b8 3303 /* kmemleak tracks the percpu allocations separately */
a317ebcc 3304 kmemleak_ignore_phys(__pa(ptr));
ce3141a2 3305 pages[j++] = virt_to_page(ptr);
d4b95f80 3306 }
8f606604 3307 }
d4b95f80 3308
8f05a6a6
TH
3309 /* allocate vm area, map the pages and copy static data */
3310 vm.flags = VM_ALLOC;
fd1e8a1f 3311 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
3312 vm_area_register_early(&vm, PAGE_SIZE);
3313
fd1e8a1f 3314 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 3315 unsigned long unit_addr =
fd1e8a1f 3316 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 3317
ce3141a2 3318 for (i = 0; i < unit_pages; i++)
20c03576 3319 pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
8f05a6a6
TH
3320
3321 /* pte already populated, the following shouldn't fail */
fb435d52
TH
3322 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3323 unit_pages);
3324 if (rc < 0)
3325 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 3326
8f05a6a6
TH
3327 /*
3328 * FIXME: Archs with virtual cache should flush local
3329 * cache for the linear mapping here - something
3330 * equivalent to flush_cache_vmap() on the local cpu.
3331 * flush_cache_vmap() can't be used as most supporting
3332 * data structures are not set up yet.
3333 */
3334
3335 /* copy static data */
fd1e8a1f 3336 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
3337 }
3338
3339 /* we're ready, commit */
00206a69
MC
3340 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3341 unit_pages, psize_str, ai->static_size,
fd1e8a1f 3342 ai->reserved_size, ai->dyn_size);
d4b95f80 3343
163fa234 3344 pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
3345 goto out_free_ar;
3346
3347enomem:
3348 while (--j >= 0)
23f91716 3349 pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
fb435d52 3350 rc = -ENOMEM;
d4b95f80 3351out_free_ar:
4421cca0 3352 memblock_free(pages, pages_size);
fd1e8a1f 3353 pcpu_free_alloc_info(ai);
fb435d52 3354 return rc;
d4b95f80 3355}
3c9a024f 3356#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 3357
bbddff05 3358#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 3359/*
bbddff05 3360 * Generic SMP percpu area setup.
e74e3962
TH
3361 *
3362 * The embedding helper is used because its behavior closely resembles
3363 * the original non-dynamic generic percpu area setup. This is
3364 * important because many archs have addressing restrictions and might
3365 * fail if the percpu area is located far away from the previous
3366 * location. As an added bonus, in non-NUMA cases, embedding is
3367 * generally a good idea TLB-wise because percpu area can piggy back
3368 * on the physical linear memory mapping which uses large page
3369 * mappings on applicable archs.
3370 */
e74e3962
TH
3371unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3372EXPORT_SYMBOL(__per_cpu_offset);
3373
3374void __init setup_per_cpu_areas(void)
3375{
e74e3962
TH
3376 unsigned long delta;
3377 unsigned int cpu;
fb435d52 3378 int rc;
e74e3962
TH
3379
3380 /*
3381 * Always reserve area for module percpu variables. That's
3382 * what the legacy allocator did.
3383 */
23f91716
KW
3384 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
3385 PAGE_SIZE, NULL, NULL);
fb435d52 3386 if (rc < 0)
bbddff05 3387 panic("Failed to initialize percpu areas.");
e74e3962
TH
3388
3389 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3390 for_each_possible_cpu(cpu)
fb435d52 3391 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 3392}
bbddff05
TH
3393#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3394
3395#else /* CONFIG_SMP */
3396
3397/*
3398 * UP percpu area setup.
3399 *
3400 * UP always uses km-based percpu allocator with identity mapping.
3401 * Static percpu variables are indistinguishable from the usual static
3402 * variables and don't require any special preparation.
3403 */
3404void __init setup_per_cpu_areas(void)
3405{
3406 const size_t unit_size =
3407 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3408 PERCPU_DYNAMIC_RESERVE));
3409 struct pcpu_alloc_info *ai;
3410 void *fc;
3411
3412 ai = pcpu_alloc_alloc_info(1, 1);
26fb3dae 3413 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
bbddff05
TH
3414 if (!ai || !fc)
3415 panic("Failed to allocate memory for percpu areas.");
100d13c3 3416 /* kmemleak tracks the percpu allocations separately */
a317ebcc 3417 kmemleak_ignore_phys(__pa(fc));
bbddff05
TH
3418
3419 ai->dyn_size = unit_size;
3420 ai->unit_size = unit_size;
3421 ai->atom_size = unit_size;
3422 ai->alloc_size = unit_size;
3423 ai->groups[0].nr_units = 1;
3424 ai->groups[0].cpu_map[0] = 0;
3425
163fa234 3426 pcpu_setup_first_chunk(ai, fc);
438a5061 3427 pcpu_free_alloc_info(ai);
bbddff05
TH
3428}
3429
3430#endif /* CONFIG_SMP */
099a19d9 3431
7e8a6304
DZF
3432/*
3433 * pcpu_nr_pages - calculate total number of populated backing pages
3434 *
3435 * This reflects the number of pages populated to back chunks. Metadata is
3436 * excluded in the number exposed in meminfo as the number of backing pages
3437 * scales with the number of cpus and can quickly outweigh the memory used for
3438 * metadata. It also keeps this calculation nice and simple.
3439 *
3440 * RETURNS:
3441 * Total number of populated backing pages in use by the allocator.
3442 */
3443unsigned long pcpu_nr_pages(void)
3444{
3445 return pcpu_nr_populated * pcpu_nr_units;
3446}
3447
1a4d7607
TH
3448/*
3449 * Percpu allocator is initialized early during boot when neither slab or
3450 * workqueue is available. Plug async management until everything is up
3451 * and running.
3452 */
3453static int __init percpu_enable_async(void)
3454{
3455 pcpu_async_enabled = true;
3456 return 0;
3457}
3458subsys_initcall(percpu_enable_async);