percpu: do not search past bitmap when allocating an area
[linux-block.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
5e81ee3e
DZF
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
9c015162 10 * This file is released under the GPLv2 license.
fbf59bc9 11 *
9c015162
DZF
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
fbf59bc9
TH
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
9c015162
DZF
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
5e81ee3e 31 * are not online yet. In short, the first chunk is structured like so:
9c015162
DZF
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
fbf59bc9 39 *
5e81ee3e
DZF
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
9c015162 54 *
4091fb95 55 * To use this allocator, arch code should do the following:
fbf59bc9 56 *
fbf59bc9 57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
fbf59bc9 60 *
8d408b4b
TH
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
63 */
64
870d4b12
JP
65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
fbf59bc9 67#include <linux/bitmap.h>
57c8a661 68#include <linux/memblock.h>
fd1e8a1f 69#include <linux/err.h>
ca460b3c 70#include <linux/lcm.h>
fbf59bc9 71#include <linux/list.h>
a530b795 72#include <linux/log2.h>
fbf59bc9
TH
73#include <linux/mm.h>
74#include <linux/module.h>
75#include <linux/mutex.h>
76#include <linux/percpu.h>
77#include <linux/pfn.h>
fbf59bc9 78#include <linux/slab.h>
ccea34b5 79#include <linux/spinlock.h>
fbf59bc9 80#include <linux/vmalloc.h>
a56dbddf 81#include <linux/workqueue.h>
f528f0b8 82#include <linux/kmemleak.h>
71546d10 83#include <linux/sched.h>
fbf59bc9
TH
84
85#include <asm/cacheflush.h>
e0100983 86#include <asm/sections.h>
fbf59bc9 87#include <asm/tlbflush.h>
3b034b0d 88#include <asm/io.h>
fbf59bc9 89
df95e795
DZ
90#define CREATE_TRACE_POINTS
91#include <trace/events/percpu.h>
92
8fa3ed80
DZ
93#include "percpu-internal.h"
94
40064aec
DZF
95/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96#define PCPU_SLOT_BASE_SHIFT 5
97
1a4d7607
TH
98#define PCPU_EMPTY_POP_PAGES_LOW 2
99#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 100
bbddff05 101#ifdef CONFIG_SMP
e0100983
TH
102/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103#ifndef __addr_to_pcpu_ptr
104#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
105 (void __percpu *)((unsigned long)(addr) - \
106 (unsigned long)pcpu_base_addr + \
107 (unsigned long)__per_cpu_start)
e0100983
TH
108#endif
109#ifndef __pcpu_ptr_to_addr
110#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
111 (void __force *)((unsigned long)(ptr) + \
112 (unsigned long)pcpu_base_addr - \
113 (unsigned long)__per_cpu_start)
e0100983 114#endif
bbddff05
TH
115#else /* CONFIG_SMP */
116/* on UP, it's always identity mapped */
117#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
118#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
119#endif /* CONFIG_SMP */
e0100983 120
1328710b
DM
121static int pcpu_unit_pages __ro_after_init;
122static int pcpu_unit_size __ro_after_init;
123static int pcpu_nr_units __ro_after_init;
124static int pcpu_atom_size __ro_after_init;
8fa3ed80 125int pcpu_nr_slots __ro_after_init;
1328710b 126static size_t pcpu_chunk_struct_size __ro_after_init;
fbf59bc9 127
a855b84c 128/* cpus with the lowest and highest unit addresses */
1328710b
DM
129static unsigned int pcpu_low_unit_cpu __ro_after_init;
130static unsigned int pcpu_high_unit_cpu __ro_after_init;
2f39e637 131
fbf59bc9 132/* the address of the first chunk which starts with the kernel static area */
1328710b 133void *pcpu_base_addr __ro_after_init;
fbf59bc9
TH
134EXPORT_SYMBOL_GPL(pcpu_base_addr);
135
1328710b
DM
136static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
137const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
2f39e637 138
6563297c 139/* group information, used for vm allocation */
1328710b
DM
140static int pcpu_nr_groups __ro_after_init;
141static const unsigned long *pcpu_group_offsets __ro_after_init;
142static const size_t *pcpu_group_sizes __ro_after_init;
6563297c 143
ae9e6bc9
TH
144/*
145 * The first chunk which always exists. Note that unlike other
146 * chunks, this one can be allocated and mapped in several different
147 * ways and thus often doesn't live in the vmalloc area.
148 */
8fa3ed80 149struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
ae9e6bc9
TH
150
151/*
152 * Optional reserved chunk. This chunk reserves part of the first
e2266705
DZF
153 * chunk and serves it for reserved allocations. When the reserved
154 * region doesn't exist, the following variable is NULL.
ae9e6bc9 155 */
8fa3ed80 156struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
edcb4639 157
8fa3ed80 158DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
6710e594 159static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
fbf59bc9 160
8fa3ed80 161struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
fbf59bc9 162
4f996e23
TH
163/* chunks which need their map areas extended, protected by pcpu_lock */
164static LIST_HEAD(pcpu_map_extend_chunks);
165
b539b87f
TH
166/*
167 * The number of empty populated pages, protected by pcpu_lock. The
168 * reserved chunk doesn't contribute to the count.
169 */
6b9b6f39 170int pcpu_nr_empty_pop_pages;
b539b87f 171
7e8a6304
DZF
172/*
173 * The number of populated pages in use by the allocator, protected by
174 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
175 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
176 * and increments/decrements this count by 1).
177 */
178static unsigned long pcpu_nr_populated;
179
1a4d7607
TH
180/*
181 * Balance work is used to populate or destroy chunks asynchronously. We
182 * try to keep the number of populated free pages between
183 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
184 * empty chunk.
185 */
fe6bd8c3
TH
186static void pcpu_balance_workfn(struct work_struct *work);
187static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
188static bool pcpu_async_enabled __read_mostly;
189static bool pcpu_atomic_alloc_failed;
190
191static void pcpu_schedule_balance_work(void)
192{
193 if (pcpu_async_enabled)
194 schedule_work(&pcpu_balance_work);
195}
a56dbddf 196
c0ebfdc3 197/**
560f2c23
DZF
198 * pcpu_addr_in_chunk - check if the address is served from this chunk
199 * @chunk: chunk of interest
200 * @addr: percpu address
c0ebfdc3
DZF
201 *
202 * RETURNS:
560f2c23 203 * True if the address is served from this chunk.
c0ebfdc3 204 */
560f2c23 205static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
020ec653 206{
c0ebfdc3
DZF
207 void *start_addr, *end_addr;
208
560f2c23 209 if (!chunk)
c0ebfdc3 210 return false;
020ec653 211
560f2c23
DZF
212 start_addr = chunk->base_addr + chunk->start_offset;
213 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
214 chunk->end_offset;
c0ebfdc3
DZF
215
216 return addr >= start_addr && addr < end_addr;
020ec653
TH
217}
218
d9b55eeb 219static int __pcpu_size_to_slot(int size)
fbf59bc9 220{
cae3aeb8 221 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
222 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
223}
224
d9b55eeb
TH
225static int pcpu_size_to_slot(int size)
226{
227 if (size == pcpu_unit_size)
228 return pcpu_nr_slots - 1;
229 return __pcpu_size_to_slot(size);
230}
231
fbf59bc9
TH
232static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
233{
40064aec 234 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
fbf59bc9
TH
235 return 0;
236
40064aec 237 return pcpu_size_to_slot(chunk->free_bytes);
fbf59bc9
TH
238}
239
88999a89
TH
240/* set the pointer to a chunk in a page struct */
241static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
242{
243 page->index = (unsigned long)pcpu;
244}
245
246/* obtain pointer to a chunk from a page struct */
247static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
248{
249 return (struct pcpu_chunk *)page->index;
250}
251
252static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 253{
2f39e637 254 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
255}
256
c0ebfdc3
DZF
257static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
258{
259 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
260}
261
9983b6f0
TH
262static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
263 unsigned int cpu, int page_idx)
fbf59bc9 264{
c0ebfdc3
DZF
265 return (unsigned long)chunk->base_addr +
266 pcpu_unit_page_offset(cpu, page_idx);
fbf59bc9
TH
267}
268
91e914c5 269static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 270{
91e914c5
DZF
271 *rs = find_next_zero_bit(bitmap, end, *rs);
272 *re = find_next_bit(bitmap, end, *rs + 1);
ce3141a2
TH
273}
274
91e914c5 275static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
ce3141a2 276{
91e914c5
DZF
277 *rs = find_next_bit(bitmap, end, *rs);
278 *re = find_next_zero_bit(bitmap, end, *rs + 1);
ce3141a2
TH
279}
280
281/*
91e914c5
DZF
282 * Bitmap region iterators. Iterates over the bitmap between
283 * [@start, @end) in @chunk. @rs and @re should be integer variables
284 * and will be set to start and end index of the current free region.
ce3141a2 285 */
91e914c5
DZF
286#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
287 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
288 (rs) < (re); \
289 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
ce3141a2 290
91e914c5
DZF
291#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
292 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
293 (rs) < (re); \
294 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
ce3141a2 295
ca460b3c
DZF
296/*
297 * The following are helper functions to help access bitmaps and convert
298 * between bitmap offsets to address offsets.
299 */
300static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
301{
302 return chunk->alloc_map +
303 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
304}
305
306static unsigned long pcpu_off_to_block_index(int off)
307{
308 return off / PCPU_BITMAP_BLOCK_BITS;
309}
310
311static unsigned long pcpu_off_to_block_off(int off)
312{
313 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
314}
315
b185cd0d
DZF
316static unsigned long pcpu_block_off_to_off(int index, int off)
317{
318 return index * PCPU_BITMAP_BLOCK_BITS + off;
319}
320
525ca84d
DZF
321/**
322 * pcpu_next_md_free_region - finds the next hint free area
323 * @chunk: chunk of interest
324 * @bit_off: chunk offset
325 * @bits: size of free area
326 *
327 * Helper function for pcpu_for_each_md_free_region. It checks
328 * block->contig_hint and performs aggregation across blocks to find the
329 * next hint. It modifies bit_off and bits in-place to be consumed in the
330 * loop.
331 */
332static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
333 int *bits)
334{
335 int i = pcpu_off_to_block_index(*bit_off);
336 int block_off = pcpu_off_to_block_off(*bit_off);
337 struct pcpu_block_md *block;
338
339 *bits = 0;
340 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
341 block++, i++) {
342 /* handles contig area across blocks */
343 if (*bits) {
344 *bits += block->left_free;
345 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
346 continue;
347 return;
348 }
349
350 /*
351 * This checks three things. First is there a contig_hint to
352 * check. Second, have we checked this hint before by
353 * comparing the block_off. Third, is this the same as the
354 * right contig hint. In the last case, it spills over into
355 * the next block and should be handled by the contig area
356 * across blocks code.
357 */
358 *bits = block->contig_hint;
359 if (*bits && block->contig_hint_start >= block_off &&
360 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
361 *bit_off = pcpu_block_off_to_off(i,
362 block->contig_hint_start);
363 return;
364 }
1fa4df3e
DZ
365 /* reset to satisfy the second predicate above */
366 block_off = 0;
525ca84d
DZF
367
368 *bits = block->right_free;
369 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
370 }
371}
372
b4c2116c
DZF
373/**
374 * pcpu_next_fit_region - finds fit areas for a given allocation request
375 * @chunk: chunk of interest
376 * @alloc_bits: size of allocation
377 * @align: alignment of area (max PAGE_SIZE)
378 * @bit_off: chunk offset
379 * @bits: size of free area
380 *
381 * Finds the next free region that is viable for use with a given size and
382 * alignment. This only returns if there is a valid area to be used for this
383 * allocation. block->first_free is returned if the allocation request fits
384 * within the block to see if the request can be fulfilled prior to the contig
385 * hint.
386 */
387static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
388 int align, int *bit_off, int *bits)
389{
390 int i = pcpu_off_to_block_index(*bit_off);
391 int block_off = pcpu_off_to_block_off(*bit_off);
392 struct pcpu_block_md *block;
393
394 *bits = 0;
395 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
396 block++, i++) {
397 /* handles contig area across blocks */
398 if (*bits) {
399 *bits += block->left_free;
400 if (*bits >= alloc_bits)
401 return;
402 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
403 continue;
404 }
405
406 /* check block->contig_hint */
407 *bits = ALIGN(block->contig_hint_start, align) -
408 block->contig_hint_start;
409 /*
410 * This uses the block offset to determine if this has been
411 * checked in the prior iteration.
412 */
413 if (block->contig_hint &&
414 block->contig_hint_start >= block_off &&
415 block->contig_hint >= *bits + alloc_bits) {
416 *bits += alloc_bits + block->contig_hint_start -
417 block->first_free;
418 *bit_off = pcpu_block_off_to_off(i, block->first_free);
419 return;
420 }
1fa4df3e
DZ
421 /* reset to satisfy the second predicate above */
422 block_off = 0;
b4c2116c
DZF
423
424 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
425 align);
426 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
427 *bit_off = pcpu_block_off_to_off(i, *bit_off);
428 if (*bits >= alloc_bits)
429 return;
430 }
431
432 /* no valid offsets were found - fail condition */
433 *bit_off = pcpu_chunk_map_bits(chunk);
434}
435
525ca84d
DZF
436/*
437 * Metadata free area iterators. These perform aggregation of free areas
438 * based on the metadata blocks and return the offset @bit_off and size in
b4c2116c
DZF
439 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
440 * a fit is found for the allocation request.
525ca84d
DZF
441 */
442#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
443 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
444 (bit_off) < pcpu_chunk_map_bits((chunk)); \
445 (bit_off) += (bits) + 1, \
446 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
447
b4c2116c
DZF
448#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
449 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
450 &(bits)); \
451 (bit_off) < pcpu_chunk_map_bits((chunk)); \
452 (bit_off) += (bits), \
453 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
454 &(bits)))
455
fbf59bc9 456/**
90459ce0 457 * pcpu_mem_zalloc - allocate memory
1880d93b 458 * @size: bytes to allocate
47504ee0 459 * @gfp: allocation flags
fbf59bc9 460 *
1880d93b 461 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
47504ee0
DZ
462 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
463 * This is to facilitate passing through whitelisted flags. The
464 * returned memory is always zeroed.
fbf59bc9
TH
465 *
466 * RETURNS:
1880d93b 467 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 468 */
47504ee0 469static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
fbf59bc9 470{
099a19d9
TH
471 if (WARN_ON_ONCE(!slab_is_available()))
472 return NULL;
473
1880d93b 474 if (size <= PAGE_SIZE)
554fef1c 475 return kzalloc(size, gfp);
7af4c093 476 else
554fef1c 477 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
1880d93b 478}
fbf59bc9 479
1880d93b
TH
480/**
481 * pcpu_mem_free - free memory
482 * @ptr: memory to free
1880d93b 483 *
90459ce0 484 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b 485 */
1d5cfdb0 486static void pcpu_mem_free(void *ptr)
1880d93b 487{
1d5cfdb0 488 kvfree(ptr);
fbf59bc9
TH
489}
490
491/**
492 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
493 * @chunk: chunk of interest
494 * @oslot: the previous slot it was on
495 *
496 * This function is called after an allocation or free changed @chunk.
497 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
498 * moved to the slot. Note that the reserved chunk is never put on
499 * chunk slots.
ccea34b5
TH
500 *
501 * CONTEXT:
502 * pcpu_lock.
fbf59bc9
TH
503 */
504static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
505{
506 int nslot = pcpu_chunk_slot(chunk);
507
edcb4639 508 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
509 if (oslot < nslot)
510 list_move(&chunk->list, &pcpu_slot[nslot]);
511 else
512 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
513 }
514}
515
9f7dcf22 516/**
40064aec 517 * pcpu_cnt_pop_pages- counts populated backing pages in range
833af842 518 * @chunk: chunk of interest
40064aec
DZF
519 * @bit_off: start offset
520 * @bits: size of area to check
9f7dcf22 521 *
40064aec
DZF
522 * Calculates the number of populated pages in the region
523 * [page_start, page_end). This keeps track of how many empty populated
524 * pages are available and decide if async work should be scheduled.
ccea34b5 525 *
9f7dcf22 526 * RETURNS:
40064aec 527 * The nr of populated pages.
9f7dcf22 528 */
40064aec
DZF
529static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
530 int bits)
9f7dcf22 531{
40064aec
DZF
532 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
533 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
4f996e23 534
40064aec 535 if (page_start >= page_end)
9f7dcf22
TH
536 return 0;
537
40064aec
DZF
538 /*
539 * bitmap_weight counts the number of bits set in a bitmap up to
540 * the specified number of bits. This is counting the populated
541 * pages up to page_end and then subtracting the populated pages
542 * up to page_start to count the populated pages in
543 * [page_start, page_end).
544 */
545 return bitmap_weight(chunk->populated, page_end) -
546 bitmap_weight(chunk->populated, page_start);
833af842
TH
547}
548
549/**
40064aec 550 * pcpu_chunk_update - updates the chunk metadata given a free area
833af842 551 * @chunk: chunk of interest
40064aec
DZF
552 * @bit_off: chunk offset
553 * @bits: size of free area
833af842 554 *
13f96637 555 * This updates the chunk's contig hint and starting offset given a free area.
268625a6 556 * Choose the best starting offset if the contig hint is equal.
40064aec
DZF
557 */
558static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
559{
13f96637
DZF
560 if (bits > chunk->contig_bits) {
561 chunk->contig_bits_start = bit_off;
40064aec 562 chunk->contig_bits = bits;
268625a6
DZF
563 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
564 (!bit_off ||
565 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
566 /* use the start with the best alignment */
567 chunk->contig_bits_start = bit_off;
13f96637 568 }
40064aec
DZF
569}
570
571/**
572 * pcpu_chunk_refresh_hint - updates metadata about a chunk
573 * @chunk: chunk of interest
833af842 574 *
525ca84d
DZF
575 * Iterates over the metadata blocks to find the largest contig area.
576 * It also counts the populated pages and uses the delta to update the
577 * global count.
833af842 578 *
40064aec
DZF
579 * Updates:
580 * chunk->contig_bits
13f96637 581 * chunk->contig_bits_start
525ca84d 582 * nr_empty_pop_pages (chunk and global)
833af842 583 */
40064aec 584static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
833af842 585{
525ca84d 586 int bit_off, bits, nr_empty_pop_pages;
833af842 587
40064aec
DZF
588 /* clear metadata */
589 chunk->contig_bits = 0;
6710e594 590
525ca84d 591 bit_off = chunk->first_bit;
40064aec 592 bits = nr_empty_pop_pages = 0;
525ca84d
DZF
593 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
594 pcpu_chunk_update(chunk, bit_off, bits);
833af842 595
525ca84d 596 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
40064aec 597 }
9f7dcf22 598
40064aec
DZF
599 /*
600 * Keep track of nr_empty_pop_pages.
601 *
602 * The chunk maintains the previous number of free pages it held,
603 * so the delta is used to update the global counter. The reserved
604 * chunk is not part of the free page count as they are populated
605 * at init and are special to serving reserved allocations.
606 */
607 if (chunk != pcpu_reserved_chunk)
608 pcpu_nr_empty_pop_pages +=
609 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
a002d148 610
40064aec
DZF
611 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
612}
9f7dcf22 613
ca460b3c
DZF
614/**
615 * pcpu_block_update - updates a block given a free area
616 * @block: block of interest
617 * @start: start offset in block
618 * @end: end offset in block
619 *
620 * Updates a block given a known free area. The region [start, end) is
268625a6
DZF
621 * expected to be the entirety of the free area within a block. Chooses
622 * the best starting offset if the contig hints are equal.
ca460b3c
DZF
623 */
624static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
625{
626 int contig = end - start;
627
628 block->first_free = min(block->first_free, start);
629 if (start == 0)
630 block->left_free = contig;
631
632 if (end == PCPU_BITMAP_BLOCK_BITS)
633 block->right_free = contig;
634
635 if (contig > block->contig_hint) {
636 block->contig_hint_start = start;
637 block->contig_hint = contig;
268625a6
DZF
638 } else if (block->contig_hint_start && contig == block->contig_hint &&
639 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
640 /* use the start with the best alignment */
641 block->contig_hint_start = start;
ca460b3c
DZF
642 }
643}
644
645/**
646 * pcpu_block_refresh_hint
647 * @chunk: chunk of interest
648 * @index: index of the metadata block
649 *
650 * Scans over the block beginning at first_free and updates the block
651 * metadata accordingly.
652 */
653static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
654{
655 struct pcpu_block_md *block = chunk->md_blocks + index;
656 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
657 int rs, re; /* region start, region end */
658
659 /* clear hints */
660 block->contig_hint = 0;
661 block->left_free = block->right_free = 0;
662
663 /* iterate over free areas and update the contig hints */
664 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
665 PCPU_BITMAP_BLOCK_BITS) {
666 pcpu_block_update(block, rs, re);
667 }
668}
669
670/**
671 * pcpu_block_update_hint_alloc - update hint on allocation path
672 * @chunk: chunk of interest
673 * @bit_off: chunk offset
674 * @bits: size of request
fc304334
DZF
675 *
676 * Updates metadata for the allocation path. The metadata only has to be
677 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
678 * scans are required if the block's contig hint is broken.
ca460b3c
DZF
679 */
680static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
681 int bits)
682{
683 struct pcpu_block_md *s_block, *e_block, *block;
684 int s_index, e_index; /* block indexes of the freed allocation */
685 int s_off, e_off; /* block offsets of the freed allocation */
686
687 /*
688 * Calculate per block offsets.
689 * The calculation uses an inclusive range, but the resulting offsets
690 * are [start, end). e_index always points to the last block in the
691 * range.
692 */
693 s_index = pcpu_off_to_block_index(bit_off);
694 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
695 s_off = pcpu_off_to_block_off(bit_off);
696 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
697
698 s_block = chunk->md_blocks + s_index;
699 e_block = chunk->md_blocks + e_index;
700
701 /*
702 * Update s_block.
fc304334
DZF
703 * block->first_free must be updated if the allocation takes its place.
704 * If the allocation breaks the contig_hint, a scan is required to
705 * restore this hint.
ca460b3c 706 */
fc304334
DZF
707 if (s_off == s_block->first_free)
708 s_block->first_free = find_next_zero_bit(
709 pcpu_index_alloc_map(chunk, s_index),
710 PCPU_BITMAP_BLOCK_BITS,
711 s_off + bits);
712
713 if (s_off >= s_block->contig_hint_start &&
714 s_off < s_block->contig_hint_start + s_block->contig_hint) {
715 /* block contig hint is broken - scan to fix it */
716 pcpu_block_refresh_hint(chunk, s_index);
717 } else {
718 /* update left and right contig manually */
719 s_block->left_free = min(s_block->left_free, s_off);
720 if (s_index == e_index)
721 s_block->right_free = min_t(int, s_block->right_free,
722 PCPU_BITMAP_BLOCK_BITS - e_off);
723 else
724 s_block->right_free = 0;
725 }
ca460b3c
DZF
726
727 /*
728 * Update e_block.
729 */
730 if (s_index != e_index) {
fc304334
DZF
731 /*
732 * When the allocation is across blocks, the end is along
733 * the left part of the e_block.
734 */
735 e_block->first_free = find_next_zero_bit(
736 pcpu_index_alloc_map(chunk, e_index),
737 PCPU_BITMAP_BLOCK_BITS, e_off);
738
739 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
740 /* reset the block */
741 e_block++;
742 } else {
743 if (e_off > e_block->contig_hint_start) {
744 /* contig hint is broken - scan to fix it */
745 pcpu_block_refresh_hint(chunk, e_index);
746 } else {
747 e_block->left_free = 0;
748 e_block->right_free =
749 min_t(int, e_block->right_free,
750 PCPU_BITMAP_BLOCK_BITS - e_off);
751 }
752 }
ca460b3c
DZF
753
754 /* update in-between md_blocks */
755 for (block = s_block + 1; block < e_block; block++) {
756 block->contig_hint = 0;
757 block->left_free = 0;
758 block->right_free = 0;
759 }
760 }
761
fc304334
DZF
762 /*
763 * The only time a full chunk scan is required is if the chunk
764 * contig hint is broken. Otherwise, it means a smaller space
765 * was used and therefore the chunk contig hint is still correct.
766 */
767 if (bit_off >= chunk->contig_bits_start &&
768 bit_off < chunk->contig_bits_start + chunk->contig_bits)
769 pcpu_chunk_refresh_hint(chunk);
ca460b3c
DZF
770}
771
772/**
773 * pcpu_block_update_hint_free - updates the block hints on the free path
774 * @chunk: chunk of interest
775 * @bit_off: chunk offset
776 * @bits: size of request
b185cd0d
DZF
777 *
778 * Updates metadata for the allocation path. This avoids a blind block
779 * refresh by making use of the block contig hints. If this fails, it scans
780 * forward and backward to determine the extent of the free area. This is
781 * capped at the boundary of blocks.
782 *
783 * A chunk update is triggered if a page becomes free, a block becomes free,
784 * or the free spans across blocks. This tradeoff is to minimize iterating
785 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
786 * may be off by up to a page, but it will never be more than the available
787 * space. If the contig hint is contained in one block, it will be accurate.
ca460b3c
DZF
788 */
789static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
790 int bits)
791{
792 struct pcpu_block_md *s_block, *e_block, *block;
793 int s_index, e_index; /* block indexes of the freed allocation */
794 int s_off, e_off; /* block offsets of the freed allocation */
b185cd0d 795 int start, end; /* start and end of the whole free area */
ca460b3c
DZF
796
797 /*
798 * Calculate per block offsets.
799 * The calculation uses an inclusive range, but the resulting offsets
800 * are [start, end). e_index always points to the last block in the
801 * range.
802 */
803 s_index = pcpu_off_to_block_index(bit_off);
804 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
805 s_off = pcpu_off_to_block_off(bit_off);
806 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
807
808 s_block = chunk->md_blocks + s_index;
809 e_block = chunk->md_blocks + e_index;
810
b185cd0d
DZF
811 /*
812 * Check if the freed area aligns with the block->contig_hint.
813 * If it does, then the scan to find the beginning/end of the
814 * larger free area can be avoided.
815 *
816 * start and end refer to beginning and end of the free area
817 * within each their respective blocks. This is not necessarily
818 * the entire free area as it may span blocks past the beginning
819 * or end of the block.
820 */
821 start = s_off;
822 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
823 start = s_block->contig_hint_start;
824 } else {
825 /*
826 * Scan backwards to find the extent of the free area.
827 * find_last_bit returns the starting bit, so if the start bit
828 * is returned, that means there was no last bit and the
829 * remainder of the chunk is free.
830 */
831 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
832 start);
833 start = (start == l_bit) ? 0 : l_bit + 1;
834 }
835
836 end = e_off;
837 if (e_off == e_block->contig_hint_start)
838 end = e_block->contig_hint_start + e_block->contig_hint;
839 else
840 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
841 PCPU_BITMAP_BLOCK_BITS, end);
842
ca460b3c 843 /* update s_block */
b185cd0d
DZF
844 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
845 pcpu_block_update(s_block, start, e_off);
ca460b3c
DZF
846
847 /* freeing in the same block */
848 if (s_index != e_index) {
849 /* update e_block */
b185cd0d 850 pcpu_block_update(e_block, 0, end);
ca460b3c
DZF
851
852 /* reset md_blocks in the middle */
853 for (block = s_block + 1; block < e_block; block++) {
854 block->first_free = 0;
855 block->contig_hint_start = 0;
856 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
857 block->left_free = PCPU_BITMAP_BLOCK_BITS;
858 block->right_free = PCPU_BITMAP_BLOCK_BITS;
859 }
860 }
861
b185cd0d
DZF
862 /*
863 * Refresh chunk metadata when the free makes a page free, a block
864 * free, or spans across blocks. The contig hint may be off by up to
865 * a page, but if the hint is contained in a block, it will be accurate
866 * with the else condition below.
867 */
868 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
869 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
870 s_index != e_index)
871 pcpu_chunk_refresh_hint(chunk);
872 else
873 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
8e5a2b98 874 end - start);
ca460b3c
DZF
875}
876
40064aec
DZF
877/**
878 * pcpu_is_populated - determines if the region is populated
879 * @chunk: chunk of interest
880 * @bit_off: chunk offset
881 * @bits: size of area
882 * @next_off: return value for the next offset to start searching
883 *
884 * For atomic allocations, check if the backing pages are populated.
885 *
886 * RETURNS:
887 * Bool if the backing pages are populated.
888 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
889 */
890static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
891 int *next_off)
892{
893 int page_start, page_end, rs, re;
833af842 894
40064aec
DZF
895 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
896 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
833af842 897
40064aec
DZF
898 rs = page_start;
899 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
900 if (rs >= page_end)
901 return true;
833af842 902
40064aec
DZF
903 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
904 return false;
9f7dcf22
TH
905}
906
a16037c8 907/**
40064aec
DZF
908 * pcpu_find_block_fit - finds the block index to start searching
909 * @chunk: chunk of interest
910 * @alloc_bits: size of request in allocation units
911 * @align: alignment of area (max PAGE_SIZE bytes)
912 * @pop_only: use populated regions only
913 *
b4c2116c
DZF
914 * Given a chunk and an allocation spec, find the offset to begin searching
915 * for a free region. This iterates over the bitmap metadata blocks to
916 * find an offset that will be guaranteed to fit the requirements. It is
917 * not quite first fit as if the allocation does not fit in the contig hint
918 * of a block or chunk, it is skipped. This errs on the side of caution
919 * to prevent excess iteration. Poor alignment can cause the allocator to
920 * skip over blocks and chunks that have valid free areas.
921 *
40064aec
DZF
922 * RETURNS:
923 * The offset in the bitmap to begin searching.
924 * -1 if no offset is found.
a16037c8 925 */
40064aec
DZF
926static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
927 size_t align, bool pop_only)
a16037c8 928{
b4c2116c 929 int bit_off, bits, next_off;
a16037c8 930
13f96637
DZF
931 /*
932 * Check to see if the allocation can fit in the chunk's contig hint.
933 * This is an optimization to prevent scanning by assuming if it
934 * cannot fit in the global hint, there is memory pressure and creating
935 * a new chunk would happen soon.
936 */
937 bit_off = ALIGN(chunk->contig_bits_start, align) -
938 chunk->contig_bits_start;
939 if (bit_off + alloc_bits > chunk->contig_bits)
940 return -1;
941
b4c2116c
DZF
942 bit_off = chunk->first_bit;
943 bits = 0;
944 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
40064aec 945 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
b4c2116c 946 &next_off))
40064aec 947 break;
a16037c8 948
b4c2116c 949 bit_off = next_off;
40064aec 950 bits = 0;
a16037c8 951 }
40064aec
DZF
952
953 if (bit_off == pcpu_chunk_map_bits(chunk))
954 return -1;
955
956 return bit_off;
a16037c8
TH
957}
958
fbf59bc9 959/**
40064aec 960 * pcpu_alloc_area - allocates an area from a pcpu_chunk
fbf59bc9 961 * @chunk: chunk of interest
40064aec
DZF
962 * @alloc_bits: size of request in allocation units
963 * @align: alignment of area (max PAGE_SIZE)
964 * @start: bit_off to start searching
9f7dcf22 965 *
40064aec 966 * This function takes in a @start offset to begin searching to fit an
b4c2116c
DZF
967 * allocation of @alloc_bits with alignment @align. It needs to scan
968 * the allocation map because if it fits within the block's contig hint,
969 * @start will be block->first_free. This is an attempt to fill the
970 * allocation prior to breaking the contig hint. The allocation and
971 * boundary maps are updated accordingly if it confirms a valid
972 * free area.
ccea34b5 973 *
fbf59bc9 974 * RETURNS:
40064aec
DZF
975 * Allocated addr offset in @chunk on success.
976 * -1 if no matching area is found.
fbf59bc9 977 */
40064aec
DZF
978static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
979 size_t align, int start)
fbf59bc9 980{
40064aec
DZF
981 size_t align_mask = (align) ? (align - 1) : 0;
982 int bit_off, end, oslot;
a16037c8 983
40064aec 984 lockdep_assert_held(&pcpu_lock);
fbf59bc9 985
40064aec 986 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 987
40064aec
DZF
988 /*
989 * Search to find a fit.
990 */
8c43004a
DZ
991 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
992 pcpu_chunk_map_bits(chunk));
40064aec
DZF
993 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
994 alloc_bits, align_mask);
995 if (bit_off >= end)
996 return -1;
fbf59bc9 997
40064aec
DZF
998 /* update alloc map */
999 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
3d331ad7 1000
40064aec
DZF
1001 /* update boundary map */
1002 set_bit(bit_off, chunk->bound_map);
1003 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1004 set_bit(bit_off + alloc_bits, chunk->bound_map);
fbf59bc9 1005
40064aec 1006 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
fbf59bc9 1007
86b442fb
DZF
1008 /* update first free bit */
1009 if (bit_off == chunk->first_bit)
1010 chunk->first_bit = find_next_zero_bit(
1011 chunk->alloc_map,
1012 pcpu_chunk_map_bits(chunk),
1013 bit_off + alloc_bits);
1014
ca460b3c 1015 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
fbf59bc9 1016
fbf59bc9
TH
1017 pcpu_chunk_relocate(chunk, oslot);
1018
40064aec 1019 return bit_off * PCPU_MIN_ALLOC_SIZE;
fbf59bc9
TH
1020}
1021
1022/**
40064aec 1023 * pcpu_free_area - frees the corresponding offset
fbf59bc9 1024 * @chunk: chunk of interest
40064aec 1025 * @off: addr offset into chunk
ccea34b5 1026 *
40064aec
DZF
1027 * This function determines the size of an allocation to free using
1028 * the boundary bitmap and clears the allocation map.
fbf59bc9 1029 */
40064aec 1030static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
fbf59bc9 1031{
40064aec 1032 int bit_off, bits, end, oslot;
723ad1d9 1033
5ccd30e4 1034 lockdep_assert_held(&pcpu_lock);
30a5b536 1035 pcpu_stats_area_dealloc(chunk);
5ccd30e4 1036
40064aec 1037 oslot = pcpu_chunk_slot(chunk);
fbf59bc9 1038
40064aec 1039 bit_off = off / PCPU_MIN_ALLOC_SIZE;
3d331ad7 1040
40064aec
DZF
1041 /* find end index */
1042 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1043 bit_off + 1);
1044 bits = end - bit_off;
1045 bitmap_clear(chunk->alloc_map, bit_off, bits);
fbf59bc9 1046
40064aec
DZF
1047 /* update metadata */
1048 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
b539b87f 1049
86b442fb
DZF
1050 /* update first free bit */
1051 chunk->first_bit = min(chunk->first_bit, bit_off);
1052
ca460b3c 1053 pcpu_block_update_hint_free(chunk, bit_off, bits);
fbf59bc9 1054
fbf59bc9
TH
1055 pcpu_chunk_relocate(chunk, oslot);
1056}
1057
ca460b3c
DZF
1058static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1059{
1060 struct pcpu_block_md *md_block;
1061
1062 for (md_block = chunk->md_blocks;
1063 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1064 md_block++) {
1065 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1066 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1067 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1068 }
1069}
1070
40064aec
DZF
1071/**
1072 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1073 * @tmp_addr: the start of the region served
1074 * @map_size: size of the region served
1075 *
1076 * This is responsible for creating the chunks that serve the first chunk. The
1077 * base_addr is page aligned down of @tmp_addr while the region end is page
1078 * aligned up. Offsets are kept track of to determine the region served. All
1079 * this is done to appease the bitmap allocator in avoiding partial blocks.
1080 *
1081 * RETURNS:
1082 * Chunk serving the region at @tmp_addr of @map_size.
1083 */
c0ebfdc3 1084static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
40064aec 1085 int map_size)
10edf5b0
DZF
1086{
1087 struct pcpu_chunk *chunk;
ca460b3c 1088 unsigned long aligned_addr, lcm_align;
40064aec 1089 int start_offset, offset_bits, region_size, region_bits;
f655f405 1090 size_t alloc_size;
c0ebfdc3
DZF
1091
1092 /* region calculations */
1093 aligned_addr = tmp_addr & PAGE_MASK;
1094
1095 start_offset = tmp_addr - aligned_addr;
6b9d7c8e 1096
ca460b3c
DZF
1097 /*
1098 * Align the end of the region with the LCM of PAGE_SIZE and
1099 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1100 * the other.
1101 */
1102 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1103 region_size = ALIGN(start_offset + map_size, lcm_align);
10edf5b0 1104
c0ebfdc3 1105 /* allocate chunk */
f655f405
MR
1106 alloc_size = sizeof(struct pcpu_chunk) +
1107 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1108 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1109 if (!chunk)
1110 panic("%s: Failed to allocate %zu bytes\n", __func__,
1111 alloc_size);
c0ebfdc3 1112
10edf5b0 1113 INIT_LIST_HEAD(&chunk->list);
c0ebfdc3
DZF
1114
1115 chunk->base_addr = (void *)aligned_addr;
10edf5b0 1116 chunk->start_offset = start_offset;
6b9d7c8e 1117 chunk->end_offset = region_size - chunk->start_offset - map_size;
c0ebfdc3 1118
8ab16c43 1119 chunk->nr_pages = region_size >> PAGE_SHIFT;
40064aec 1120 region_bits = pcpu_chunk_map_bits(chunk);
c0ebfdc3 1121
f655f405
MR
1122 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1123 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1124 if (!chunk->alloc_map)
1125 panic("%s: Failed to allocate %zu bytes\n", __func__,
1126 alloc_size);
1127
1128 alloc_size =
1129 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1130 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1131 if (!chunk->bound_map)
1132 panic("%s: Failed to allocate %zu bytes\n", __func__,
1133 alloc_size);
1134
1135 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1136 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1137 if (!chunk->md_blocks)
1138 panic("%s: Failed to allocate %zu bytes\n", __func__,
1139 alloc_size);
1140
ca460b3c 1141 pcpu_init_md_blocks(chunk);
10edf5b0
DZF
1142
1143 /* manage populated page bitmap */
1144 chunk->immutable = true;
8ab16c43
DZF
1145 bitmap_fill(chunk->populated, chunk->nr_pages);
1146 chunk->nr_populated = chunk->nr_pages;
40064aec
DZF
1147 chunk->nr_empty_pop_pages =
1148 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1149 map_size / PCPU_MIN_ALLOC_SIZE);
10edf5b0 1150
40064aec
DZF
1151 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1152 chunk->free_bytes = map_size;
c0ebfdc3
DZF
1153
1154 if (chunk->start_offset) {
1155 /* hide the beginning of the bitmap */
40064aec
DZF
1156 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1157 bitmap_set(chunk->alloc_map, 0, offset_bits);
1158 set_bit(0, chunk->bound_map);
1159 set_bit(offset_bits, chunk->bound_map);
ca460b3c 1160
86b442fb
DZF
1161 chunk->first_bit = offset_bits;
1162
ca460b3c 1163 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
c0ebfdc3
DZF
1164 }
1165
6b9d7c8e
DZF
1166 if (chunk->end_offset) {
1167 /* hide the end of the bitmap */
40064aec
DZF
1168 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1169 bitmap_set(chunk->alloc_map,
1170 pcpu_chunk_map_bits(chunk) - offset_bits,
1171 offset_bits);
1172 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1173 chunk->bound_map);
1174 set_bit(region_bits, chunk->bound_map);
6b9d7c8e 1175
ca460b3c
DZF
1176 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1177 - offset_bits, offset_bits);
1178 }
40064aec 1179
10edf5b0
DZF
1180 return chunk;
1181}
1182
47504ee0 1183static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
6081089f
TH
1184{
1185 struct pcpu_chunk *chunk;
40064aec 1186 int region_bits;
6081089f 1187
47504ee0 1188 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
6081089f
TH
1189 if (!chunk)
1190 return NULL;
1191
40064aec
DZF
1192 INIT_LIST_HEAD(&chunk->list);
1193 chunk->nr_pages = pcpu_unit_pages;
1194 region_bits = pcpu_chunk_map_bits(chunk);
6081089f 1195
40064aec 1196 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
47504ee0 1197 sizeof(chunk->alloc_map[0]), gfp);
40064aec
DZF
1198 if (!chunk->alloc_map)
1199 goto alloc_map_fail;
6081089f 1200
40064aec 1201 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
47504ee0 1202 sizeof(chunk->bound_map[0]), gfp);
40064aec
DZF
1203 if (!chunk->bound_map)
1204 goto bound_map_fail;
6081089f 1205
ca460b3c 1206 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
47504ee0 1207 sizeof(chunk->md_blocks[0]), gfp);
ca460b3c
DZF
1208 if (!chunk->md_blocks)
1209 goto md_blocks_fail;
1210
1211 pcpu_init_md_blocks(chunk);
1212
40064aec
DZF
1213 /* init metadata */
1214 chunk->contig_bits = region_bits;
1215 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
c0ebfdc3 1216
6081089f 1217 return chunk;
40064aec 1218
ca460b3c
DZF
1219md_blocks_fail:
1220 pcpu_mem_free(chunk->bound_map);
40064aec
DZF
1221bound_map_fail:
1222 pcpu_mem_free(chunk->alloc_map);
1223alloc_map_fail:
1224 pcpu_mem_free(chunk);
1225
1226 return NULL;
6081089f
TH
1227}
1228
1229static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1230{
1231 if (!chunk)
1232 return;
6685b357 1233 pcpu_mem_free(chunk->md_blocks);
40064aec
DZF
1234 pcpu_mem_free(chunk->bound_map);
1235 pcpu_mem_free(chunk->alloc_map);
1d5cfdb0 1236 pcpu_mem_free(chunk);
6081089f
TH
1237}
1238
b539b87f
TH
1239/**
1240 * pcpu_chunk_populated - post-population bookkeeping
1241 * @chunk: pcpu_chunk which got populated
1242 * @page_start: the start page
1243 * @page_end: the end page
40064aec 1244 * @for_alloc: if this is to populate for allocation
b539b87f
TH
1245 *
1246 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1247 * the bookkeeping information accordingly. Must be called after each
1248 * successful population.
40064aec
DZF
1249 *
1250 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1251 * is to serve an allocation in that area.
b539b87f 1252 */
40064aec
DZF
1253static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1254 int page_end, bool for_alloc)
b539b87f
TH
1255{
1256 int nr = page_end - page_start;
1257
1258 lockdep_assert_held(&pcpu_lock);
1259
1260 bitmap_set(chunk->populated, page_start, nr);
1261 chunk->nr_populated += nr;
7e8a6304 1262 pcpu_nr_populated += nr;
40064aec
DZF
1263
1264 if (!for_alloc) {
1265 chunk->nr_empty_pop_pages += nr;
1266 pcpu_nr_empty_pop_pages += nr;
1267 }
b539b87f
TH
1268}
1269
1270/**
1271 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1272 * @chunk: pcpu_chunk which got depopulated
1273 * @page_start: the start page
1274 * @page_end: the end page
1275 *
1276 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1277 * Update the bookkeeping information accordingly. Must be called after
1278 * each successful depopulation.
1279 */
1280static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1281 int page_start, int page_end)
1282{
1283 int nr = page_end - page_start;
1284
1285 lockdep_assert_held(&pcpu_lock);
1286
1287 bitmap_clear(chunk->populated, page_start, nr);
1288 chunk->nr_populated -= nr;
0cecf50c 1289 chunk->nr_empty_pop_pages -= nr;
b539b87f 1290 pcpu_nr_empty_pop_pages -= nr;
7e8a6304 1291 pcpu_nr_populated -= nr;
b539b87f
TH
1292}
1293
9f645532
TH
1294/*
1295 * Chunk management implementation.
1296 *
1297 * To allow different implementations, chunk alloc/free and
1298 * [de]population are implemented in a separate file which is pulled
1299 * into this file and compiled together. The following functions
1300 * should be implemented.
1301 *
1302 * pcpu_populate_chunk - populate the specified range of a chunk
1303 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1304 * pcpu_create_chunk - create a new chunk
1305 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1306 * pcpu_addr_to_page - translate address to physical address
1307 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 1308 */
15d9f3d1 1309static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
47504ee0 1310 int page_start, int page_end, gfp_t gfp);
15d9f3d1
DZ
1311static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1312 int page_start, int page_end);
47504ee0 1313static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
9f645532
TH
1314static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1315static struct page *pcpu_addr_to_page(void *addr);
1316static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 1317
b0c9778b
TH
1318#ifdef CONFIG_NEED_PER_CPU_KM
1319#include "percpu-km.c"
1320#else
9f645532 1321#include "percpu-vm.c"
b0c9778b 1322#endif
fbf59bc9 1323
88999a89
TH
1324/**
1325 * pcpu_chunk_addr_search - determine chunk containing specified address
1326 * @addr: address for which the chunk needs to be determined.
1327 *
c0ebfdc3
DZF
1328 * This is an internal function that handles all but static allocations.
1329 * Static percpu address values should never be passed into the allocator.
1330 *
88999a89
TH
1331 * RETURNS:
1332 * The address of the found chunk.
1333 */
1334static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1335{
c0ebfdc3 1336 /* is it in the dynamic region (first chunk)? */
560f2c23 1337 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
88999a89 1338 return pcpu_first_chunk;
c0ebfdc3
DZF
1339
1340 /* is it in the reserved region? */
560f2c23 1341 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
c0ebfdc3 1342 return pcpu_reserved_chunk;
88999a89
TH
1343
1344 /*
1345 * The address is relative to unit0 which might be unused and
1346 * thus unmapped. Offset the address to the unit space of the
1347 * current processor before looking it up in the vmalloc
1348 * space. Note that any possible cpu id can be used here, so
1349 * there's no need to worry about preemption or cpu hotplug.
1350 */
1351 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 1352 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
1353}
1354
fbf59bc9 1355/**
edcb4639 1356 * pcpu_alloc - the percpu allocator
cae3aeb8 1357 * @size: size of area to allocate in bytes
fbf59bc9 1358 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1359 * @reserved: allocate from the reserved chunk if available
5835d96e 1360 * @gfp: allocation flags
fbf59bc9 1361 *
5835d96e 1362 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
0ea7eeec
DB
1363 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1364 * then no warning will be triggered on invalid or failed allocation
1365 * requests.
fbf59bc9
TH
1366 *
1367 * RETURNS:
1368 * Percpu pointer to the allocated area on success, NULL on failure.
1369 */
5835d96e
TH
1370static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1371 gfp_t gfp)
fbf59bc9 1372{
554fef1c
DZ
1373 /* whitelisted flags that can be passed to the backing allocators */
1374 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
0ea7eeec
DB
1375 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1376 bool do_warn = !(gfp & __GFP_NOWARN);
f2badb0c 1377 static int warn_limit = 10;
fbf59bc9 1378 struct pcpu_chunk *chunk;
f2badb0c 1379 const char *err;
40064aec 1380 int slot, off, cpu, ret;
403a91b1 1381 unsigned long flags;
f528f0b8 1382 void __percpu *ptr;
40064aec 1383 size_t bits, bit_align;
fbf59bc9 1384
723ad1d9 1385 /*
40064aec
DZF
1386 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1387 * therefore alignment must be a minimum of that many bytes.
1388 * An allocation may have internal fragmentation from rounding up
1389 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
723ad1d9 1390 */
d2f3c384
DZF
1391 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1392 align = PCPU_MIN_ALLOC_SIZE;
723ad1d9 1393
d2f3c384 1394 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
40064aec
DZF
1395 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1396 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
2f69fa82 1397
3ca45a46 1398 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1399 !is_power_of_2(align))) {
0ea7eeec 1400 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
756a025f 1401 size, align);
fbf59bc9
TH
1402 return NULL;
1403 }
1404
f52ba1fe
KT
1405 if (!is_atomic) {
1406 /*
1407 * pcpu_balance_workfn() allocates memory under this mutex,
1408 * and it may wait for memory reclaim. Allow current task
1409 * to become OOM victim, in case of memory pressure.
1410 */
1411 if (gfp & __GFP_NOFAIL)
1412 mutex_lock(&pcpu_alloc_mutex);
1413 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1414 return NULL;
1415 }
6710e594 1416
403a91b1 1417 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1418
edcb4639
TH
1419 /* serve reserved allocations from the reserved chunk if available */
1420 if (reserved && pcpu_reserved_chunk) {
1421 chunk = pcpu_reserved_chunk;
833af842 1422
40064aec
DZF
1423 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1424 if (off < 0) {
833af842 1425 err = "alloc from reserved chunk failed";
ccea34b5 1426 goto fail_unlock;
f2badb0c 1427 }
833af842 1428
40064aec 1429 off = pcpu_alloc_area(chunk, bits, bit_align, off);
edcb4639
TH
1430 if (off >= 0)
1431 goto area_found;
833af842 1432
f2badb0c 1433 err = "alloc from reserved chunk failed";
ccea34b5 1434 goto fail_unlock;
edcb4639
TH
1435 }
1436
ccea34b5 1437restart:
edcb4639 1438 /* search through normal chunks */
fbf59bc9
TH
1439 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1440 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
40064aec
DZF
1441 off = pcpu_find_block_fit(chunk, bits, bit_align,
1442 is_atomic);
1443 if (off < 0)
fbf59bc9 1444 continue;
ccea34b5 1445
40064aec 1446 off = pcpu_alloc_area(chunk, bits, bit_align, off);
fbf59bc9
TH
1447 if (off >= 0)
1448 goto area_found;
40064aec 1449
fbf59bc9
TH
1450 }
1451 }
1452
403a91b1 1453 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1454
b38d08f3
TH
1455 /*
1456 * No space left. Create a new chunk. We don't want multiple
1457 * tasks to create chunks simultaneously. Serialize and create iff
1458 * there's still no empty chunk after grabbing the mutex.
1459 */
11df02bf
DZ
1460 if (is_atomic) {
1461 err = "atomic alloc failed, no space left";
5835d96e 1462 goto fail;
11df02bf 1463 }
5835d96e 1464
b38d08f3 1465 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
554fef1c 1466 chunk = pcpu_create_chunk(pcpu_gfp);
b38d08f3
TH
1467 if (!chunk) {
1468 err = "failed to allocate new chunk";
1469 goto fail;
1470 }
1471
1472 spin_lock_irqsave(&pcpu_lock, flags);
1473 pcpu_chunk_relocate(chunk, -1);
1474 } else {
1475 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 1476 }
ccea34b5 1477
ccea34b5 1478 goto restart;
fbf59bc9
TH
1479
1480area_found:
30a5b536 1481 pcpu_stats_area_alloc(chunk, size);
403a91b1 1482 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1483
dca49645 1484 /* populate if not all pages are already there */
5835d96e 1485 if (!is_atomic) {
e04d3208 1486 int page_start, page_end, rs, re;
dca49645 1487
e04d3208
TH
1488 page_start = PFN_DOWN(off);
1489 page_end = PFN_UP(off + size);
b38d08f3 1490
91e914c5
DZF
1491 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1492 page_start, page_end) {
e04d3208
TH
1493 WARN_ON(chunk->immutable);
1494
554fef1c 1495 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
e04d3208
TH
1496
1497 spin_lock_irqsave(&pcpu_lock, flags);
1498 if (ret) {
40064aec 1499 pcpu_free_area(chunk, off);
e04d3208
TH
1500 err = "failed to populate";
1501 goto fail_unlock;
1502 }
40064aec 1503 pcpu_chunk_populated(chunk, rs, re, true);
e04d3208 1504 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1505 }
fbf59bc9 1506
e04d3208
TH
1507 mutex_unlock(&pcpu_alloc_mutex);
1508 }
ccea34b5 1509
1a4d7607
TH
1510 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1511 pcpu_schedule_balance_work();
1512
dca49645
TH
1513 /* clear the areas and return address relative to base address */
1514 for_each_possible_cpu(cpu)
1515 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1516
f528f0b8 1517 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
8a8c35fa 1518 kmemleak_alloc_percpu(ptr, size, gfp);
df95e795
DZ
1519
1520 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1521 chunk->base_addr, off, ptr);
1522
f528f0b8 1523 return ptr;
ccea34b5
TH
1524
1525fail_unlock:
403a91b1 1526 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1527fail:
df95e795
DZ
1528 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1529
0ea7eeec 1530 if (!is_atomic && do_warn && warn_limit) {
870d4b12 1531 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
598d8091 1532 size, align, is_atomic, err);
f2badb0c
TH
1533 dump_stack();
1534 if (!--warn_limit)
870d4b12 1535 pr_info("limit reached, disable warning\n");
f2badb0c 1536 }
1a4d7607
TH
1537 if (is_atomic) {
1538 /* see the flag handling in pcpu_blance_workfn() */
1539 pcpu_atomic_alloc_failed = true;
1540 pcpu_schedule_balance_work();
6710e594
TH
1541 } else {
1542 mutex_unlock(&pcpu_alloc_mutex);
1a4d7607 1543 }
ccea34b5 1544 return NULL;
fbf59bc9 1545}
edcb4639
TH
1546
1547/**
5835d96e 1548 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1549 * @size: size of area to allocate in bytes
1550 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1551 * @gfp: allocation flags
edcb4639 1552 *
5835d96e
TH
1553 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1554 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
0ea7eeec
DB
1555 * be called from any context but is a lot more likely to fail. If @gfp
1556 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1557 * allocation requests.
ccea34b5 1558 *
edcb4639
TH
1559 * RETURNS:
1560 * Percpu pointer to the allocated area on success, NULL on failure.
1561 */
5835d96e
TH
1562void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1563{
1564 return pcpu_alloc(size, align, false, gfp);
1565}
1566EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1567
1568/**
1569 * __alloc_percpu - allocate dynamic percpu area
1570 * @size: size of area to allocate in bytes
1571 * @align: alignment of area (max PAGE_SIZE)
1572 *
1573 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1574 */
43cf38eb 1575void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1576{
5835d96e 1577 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1578}
fbf59bc9
TH
1579EXPORT_SYMBOL_GPL(__alloc_percpu);
1580
edcb4639
TH
1581/**
1582 * __alloc_reserved_percpu - allocate reserved percpu area
1583 * @size: size of area to allocate in bytes
1584 * @align: alignment of area (max PAGE_SIZE)
1585 *
9329ba97
TH
1586 * Allocate zero-filled percpu area of @size bytes aligned at @align
1587 * from reserved percpu area if arch has set it up; otherwise,
1588 * allocation is served from the same dynamic area. Might sleep.
1589 * Might trigger writeouts.
edcb4639 1590 *
ccea34b5
TH
1591 * CONTEXT:
1592 * Does GFP_KERNEL allocation.
1593 *
edcb4639
TH
1594 * RETURNS:
1595 * Percpu pointer to the allocated area on success, NULL on failure.
1596 */
43cf38eb 1597void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1598{
5835d96e 1599 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1600}
1601
a56dbddf 1602/**
1a4d7607 1603 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1604 * @work: unused
1605 *
47504ee0
DZ
1606 * Reclaim all fully free chunks except for the first one. This is also
1607 * responsible for maintaining the pool of empty populated pages. However,
1608 * it is possible that this is called when physical memory is scarce causing
1609 * OOM killer to be triggered. We should avoid doing so until an actual
1610 * allocation causes the failure as it is possible that requests can be
1611 * serviced from already backed regions.
a56dbddf 1612 */
fe6bd8c3 1613static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1614{
47504ee0 1615 /* gfp flags passed to underlying allocators */
554fef1c 1616 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
fe6bd8c3
TH
1617 LIST_HEAD(to_free);
1618 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1619 struct pcpu_chunk *chunk, *next;
1a4d7607 1620 int slot, nr_to_pop, ret;
a56dbddf 1621
1a4d7607
TH
1622 /*
1623 * There's no reason to keep around multiple unused chunks and VM
1624 * areas can be scarce. Destroy all free chunks except for one.
1625 */
ccea34b5
TH
1626 mutex_lock(&pcpu_alloc_mutex);
1627 spin_lock_irq(&pcpu_lock);
a56dbddf 1628
fe6bd8c3 1629 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1630 WARN_ON(chunk->immutable);
1631
1632 /* spare the first one */
fe6bd8c3 1633 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1634 continue;
1635
fe6bd8c3 1636 list_move(&chunk->list, &to_free);
a56dbddf
TH
1637 }
1638
ccea34b5 1639 spin_unlock_irq(&pcpu_lock);
a56dbddf 1640
fe6bd8c3 1641 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1642 int rs, re;
dca49645 1643
91e914c5
DZF
1644 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1645 chunk->nr_pages) {
a93ace48 1646 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1647 spin_lock_irq(&pcpu_lock);
1648 pcpu_chunk_depopulated(chunk, rs, re);
1649 spin_unlock_irq(&pcpu_lock);
a93ace48 1650 }
6081089f 1651 pcpu_destroy_chunk(chunk);
accd4f36 1652 cond_resched();
a56dbddf 1653 }
971f3918 1654
1a4d7607
TH
1655 /*
1656 * Ensure there are certain number of free populated pages for
1657 * atomic allocs. Fill up from the most packed so that atomic
1658 * allocs don't increase fragmentation. If atomic allocation
1659 * failed previously, always populate the maximum amount. This
1660 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1661 * failing indefinitely; however, large atomic allocs are not
1662 * something we support properly and can be highly unreliable and
1663 * inefficient.
1664 */
1665retry_pop:
1666 if (pcpu_atomic_alloc_failed) {
1667 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1668 /* best effort anyway, don't worry about synchronization */
1669 pcpu_atomic_alloc_failed = false;
1670 } else {
1671 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1672 pcpu_nr_empty_pop_pages,
1673 0, PCPU_EMPTY_POP_PAGES_HIGH);
1674 }
1675
1676 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1677 int nr_unpop = 0, rs, re;
1678
1679 if (!nr_to_pop)
1680 break;
1681
1682 spin_lock_irq(&pcpu_lock);
1683 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
8ab16c43 1684 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1a4d7607
TH
1685 if (nr_unpop)
1686 break;
1687 }
1688 spin_unlock_irq(&pcpu_lock);
1689
1690 if (!nr_unpop)
1691 continue;
1692
1693 /* @chunk can't go away while pcpu_alloc_mutex is held */
91e914c5
DZF
1694 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1695 chunk->nr_pages) {
1a4d7607
TH
1696 int nr = min(re - rs, nr_to_pop);
1697
47504ee0 1698 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1a4d7607
TH
1699 if (!ret) {
1700 nr_to_pop -= nr;
1701 spin_lock_irq(&pcpu_lock);
40064aec 1702 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1a4d7607
TH
1703 spin_unlock_irq(&pcpu_lock);
1704 } else {
1705 nr_to_pop = 0;
1706 }
1707
1708 if (!nr_to_pop)
1709 break;
1710 }
1711 }
1712
1713 if (nr_to_pop) {
1714 /* ran out of chunks to populate, create a new one and retry */
47504ee0 1715 chunk = pcpu_create_chunk(gfp);
1a4d7607
TH
1716 if (chunk) {
1717 spin_lock_irq(&pcpu_lock);
1718 pcpu_chunk_relocate(chunk, -1);
1719 spin_unlock_irq(&pcpu_lock);
1720 goto retry_pop;
1721 }
1722 }
1723
971f3918 1724 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1725}
1726
1727/**
1728 * free_percpu - free percpu area
1729 * @ptr: pointer to area to free
1730 *
ccea34b5
TH
1731 * Free percpu area @ptr.
1732 *
1733 * CONTEXT:
1734 * Can be called from atomic context.
fbf59bc9 1735 */
43cf38eb 1736void free_percpu(void __percpu *ptr)
fbf59bc9 1737{
129182e5 1738 void *addr;
fbf59bc9 1739 struct pcpu_chunk *chunk;
ccea34b5 1740 unsigned long flags;
40064aec 1741 int off;
fbf59bc9
TH
1742
1743 if (!ptr)
1744 return;
1745
f528f0b8
CM
1746 kmemleak_free_percpu(ptr);
1747
129182e5
AM
1748 addr = __pcpu_ptr_to_addr(ptr);
1749
ccea34b5 1750 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1751
1752 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1753 off = addr - chunk->base_addr;
fbf59bc9 1754
40064aec 1755 pcpu_free_area(chunk, off);
fbf59bc9 1756
a56dbddf 1757 /* if there are more than one fully free chunks, wake up grim reaper */
40064aec 1758 if (chunk->free_bytes == pcpu_unit_size) {
fbf59bc9
TH
1759 struct pcpu_chunk *pos;
1760
a56dbddf 1761 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1762 if (pos != chunk) {
1a4d7607 1763 pcpu_schedule_balance_work();
fbf59bc9
TH
1764 break;
1765 }
1766 }
1767
df95e795
DZ
1768 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1769
ccea34b5 1770 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1771}
1772EXPORT_SYMBOL_GPL(free_percpu);
1773
383776fa 1774bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
10fad5e4 1775{
bbddff05 1776#ifdef CONFIG_SMP
10fad5e4
TH
1777 const size_t static_size = __per_cpu_end - __per_cpu_start;
1778 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1779 unsigned int cpu;
1780
1781 for_each_possible_cpu(cpu) {
1782 void *start = per_cpu_ptr(base, cpu);
383776fa 1783 void *va = (void *)addr;
10fad5e4 1784
383776fa 1785 if (va >= start && va < start + static_size) {
8ce371f9 1786 if (can_addr) {
383776fa 1787 *can_addr = (unsigned long) (va - start);
8ce371f9
PZ
1788 *can_addr += (unsigned long)
1789 per_cpu_ptr(base, get_boot_cpu_id());
1790 }
10fad5e4 1791 return true;
383776fa
TG
1792 }
1793 }
bbddff05
TH
1794#endif
1795 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1796 return false;
1797}
1798
383776fa
TG
1799/**
1800 * is_kernel_percpu_address - test whether address is from static percpu area
1801 * @addr: address to test
1802 *
1803 * Test whether @addr belongs to in-kernel static percpu area. Module
1804 * static percpu areas are not considered. For those, use
1805 * is_module_percpu_address().
1806 *
1807 * RETURNS:
1808 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1809 */
1810bool is_kernel_percpu_address(unsigned long addr)
1811{
1812 return __is_kernel_percpu_address(addr, NULL);
1813}
1814
3b034b0d
VG
1815/**
1816 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1817 * @addr: the address to be converted to physical address
1818 *
1819 * Given @addr which is dereferenceable address obtained via one of
1820 * percpu access macros, this function translates it into its physical
1821 * address. The caller is responsible for ensuring @addr stays valid
1822 * until this function finishes.
1823 *
67589c71
DY
1824 * percpu allocator has special setup for the first chunk, which currently
1825 * supports either embedding in linear address space or vmalloc mapping,
1826 * and, from the second one, the backing allocator (currently either vm or
1827 * km) provides translation.
1828 *
bffc4375 1829 * The addr can be translated simply without checking if it falls into the
67589c71
DY
1830 * first chunk. But the current code reflects better how percpu allocator
1831 * actually works, and the verification can discover both bugs in percpu
1832 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1833 * code.
1834 *
3b034b0d
VG
1835 * RETURNS:
1836 * The physical address for @addr.
1837 */
1838phys_addr_t per_cpu_ptr_to_phys(void *addr)
1839{
9983b6f0
TH
1840 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1841 bool in_first_chunk = false;
a855b84c 1842 unsigned long first_low, first_high;
9983b6f0
TH
1843 unsigned int cpu;
1844
1845 /*
a855b84c 1846 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1847 * necessary but will speed up lookups of addresses which
1848 * aren't in the first chunk.
c0ebfdc3
DZF
1849 *
1850 * The address check is against full chunk sizes. pcpu_base_addr
1851 * points to the beginning of the first chunk including the
1852 * static region. Assumes good intent as the first chunk may
1853 * not be full (ie. < pcpu_unit_pages in size).
9983b6f0 1854 */
c0ebfdc3
DZF
1855 first_low = (unsigned long)pcpu_base_addr +
1856 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1857 first_high = (unsigned long)pcpu_base_addr +
1858 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
a855b84c
TH
1859 if ((unsigned long)addr >= first_low &&
1860 (unsigned long)addr < first_high) {
9983b6f0
TH
1861 for_each_possible_cpu(cpu) {
1862 void *start = per_cpu_ptr(base, cpu);
1863
1864 if (addr >= start && addr < start + pcpu_unit_size) {
1865 in_first_chunk = true;
1866 break;
1867 }
1868 }
1869 }
1870
1871 if (in_first_chunk) {
eac522ef 1872 if (!is_vmalloc_addr(addr))
020ec653
TH
1873 return __pa(addr);
1874 else
9f57bd4d
ES
1875 return page_to_phys(vmalloc_to_page(addr)) +
1876 offset_in_page(addr);
020ec653 1877 } else
9f57bd4d
ES
1878 return page_to_phys(pcpu_addr_to_page(addr)) +
1879 offset_in_page(addr);
3b034b0d
VG
1880}
1881
fbf59bc9 1882/**
fd1e8a1f
TH
1883 * pcpu_alloc_alloc_info - allocate percpu allocation info
1884 * @nr_groups: the number of groups
1885 * @nr_units: the number of units
1886 *
1887 * Allocate ai which is large enough for @nr_groups groups containing
1888 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1889 * cpu_map array which is long enough for @nr_units and filled with
1890 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1891 * pointer of other groups.
1892 *
1893 * RETURNS:
1894 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1895 * failure.
1896 */
1897struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1898 int nr_units)
1899{
1900 struct pcpu_alloc_info *ai;
1901 size_t base_size, ai_size;
1902 void *ptr;
1903 int unit;
1904
1905 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1906 __alignof__(ai->groups[0].cpu_map[0]));
1907 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1908
26fb3dae 1909 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
fd1e8a1f
TH
1910 if (!ptr)
1911 return NULL;
1912 ai = ptr;
1913 ptr += base_size;
1914
1915 ai->groups[0].cpu_map = ptr;
1916
1917 for (unit = 0; unit < nr_units; unit++)
1918 ai->groups[0].cpu_map[unit] = NR_CPUS;
1919
1920 ai->nr_groups = nr_groups;
1921 ai->__ai_size = PFN_ALIGN(ai_size);
1922
1923 return ai;
1924}
1925
1926/**
1927 * pcpu_free_alloc_info - free percpu allocation info
1928 * @ai: pcpu_alloc_info to free
1929 *
1930 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1931 */
1932void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1933{
999c17e3 1934 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1935}
1936
fd1e8a1f
TH
1937/**
1938 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1939 * @lvl: loglevel
1940 * @ai: allocation info to dump
1941 *
1942 * Print out information about @ai using loglevel @lvl.
1943 */
1944static void pcpu_dump_alloc_info(const char *lvl,
1945 const struct pcpu_alloc_info *ai)
033e48fb 1946{
fd1e8a1f 1947 int group_width = 1, cpu_width = 1, width;
033e48fb 1948 char empty_str[] = "--------";
fd1e8a1f
TH
1949 int alloc = 0, alloc_end = 0;
1950 int group, v;
1951 int upa, apl; /* units per alloc, allocs per line */
1952
1953 v = ai->nr_groups;
1954 while (v /= 10)
1955 group_width++;
033e48fb 1956
fd1e8a1f 1957 v = num_possible_cpus();
033e48fb 1958 while (v /= 10)
fd1e8a1f
TH
1959 cpu_width++;
1960 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1961
fd1e8a1f
TH
1962 upa = ai->alloc_size / ai->unit_size;
1963 width = upa * (cpu_width + 1) + group_width + 3;
1964 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1965
fd1e8a1f
TH
1966 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1967 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1968 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1969
fd1e8a1f
TH
1970 for (group = 0; group < ai->nr_groups; group++) {
1971 const struct pcpu_group_info *gi = &ai->groups[group];
1972 int unit = 0, unit_end = 0;
1973
1974 BUG_ON(gi->nr_units % upa);
1975 for (alloc_end += gi->nr_units / upa;
1976 alloc < alloc_end; alloc++) {
1977 if (!(alloc % apl)) {
1170532b 1978 pr_cont("\n");
fd1e8a1f
TH
1979 printk("%spcpu-alloc: ", lvl);
1980 }
1170532b 1981 pr_cont("[%0*d] ", group_width, group);
fd1e8a1f
TH
1982
1983 for (unit_end += upa; unit < unit_end; unit++)
1984 if (gi->cpu_map[unit] != NR_CPUS)
1170532b
JP
1985 pr_cont("%0*d ",
1986 cpu_width, gi->cpu_map[unit]);
fd1e8a1f 1987 else
1170532b 1988 pr_cont("%s ", empty_str);
033e48fb 1989 }
033e48fb 1990 }
1170532b 1991 pr_cont("\n");
033e48fb 1992}
033e48fb 1993
fbf59bc9 1994/**
8d408b4b 1995 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1996 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1997 * @base_addr: mapped address
8d408b4b
TH
1998 *
1999 * Initialize the first percpu chunk which contains the kernel static
2000 * perpcu area. This function is to be called from arch percpu area
38a6be52 2001 * setup path.
8d408b4b 2002 *
fd1e8a1f
TH
2003 * @ai contains all information necessary to initialize the first
2004 * chunk and prime the dynamic percpu allocator.
2005 *
2006 * @ai->static_size is the size of static percpu area.
2007 *
2008 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
2009 * reserve after the static area in the first chunk. This reserves
2010 * the first chunk such that it's available only through reserved
2011 * percpu allocation. This is primarily used to serve module percpu
2012 * static areas on architectures where the addressing model has
2013 * limited offset range for symbol relocations to guarantee module
2014 * percpu symbols fall inside the relocatable range.
2015 *
fd1e8a1f
TH
2016 * @ai->dyn_size determines the number of bytes available for dynamic
2017 * allocation in the first chunk. The area between @ai->static_size +
2018 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 2019 *
fd1e8a1f
TH
2020 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2021 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2022 * @ai->dyn_size.
8d408b4b 2023 *
fd1e8a1f
TH
2024 * @ai->atom_size is the allocation atom size and used as alignment
2025 * for vm areas.
8d408b4b 2026 *
fd1e8a1f
TH
2027 * @ai->alloc_size is the allocation size and always multiple of
2028 * @ai->atom_size. This is larger than @ai->atom_size if
2029 * @ai->unit_size is larger than @ai->atom_size.
2030 *
2031 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2032 * percpu areas. Units which should be colocated are put into the
2033 * same group. Dynamic VM areas will be allocated according to these
2034 * groupings. If @ai->nr_groups is zero, a single group containing
2035 * all units is assumed.
8d408b4b 2036 *
38a6be52
TH
2037 * The caller should have mapped the first chunk at @base_addr and
2038 * copied static data to each unit.
fbf59bc9 2039 *
c0ebfdc3
DZF
2040 * The first chunk will always contain a static and a dynamic region.
2041 * However, the static region is not managed by any chunk. If the first
2042 * chunk also contains a reserved region, it is served by two chunks -
2043 * one for the reserved region and one for the dynamic region. They
2044 * share the same vm, but use offset regions in the area allocation map.
2045 * The chunk serving the dynamic region is circulated in the chunk slots
2046 * and available for dynamic allocation like any other chunk.
edcb4639 2047 *
fbf59bc9 2048 * RETURNS:
fb435d52 2049 * 0 on success, -errno on failure.
fbf59bc9 2050 */
fb435d52
TH
2051int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2052 void *base_addr)
fbf59bc9 2053{
b9c39442 2054 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
d2f3c384 2055 size_t static_size, dyn_size;
0c4169c3 2056 struct pcpu_chunk *chunk;
6563297c
TH
2057 unsigned long *group_offsets;
2058 size_t *group_sizes;
fb435d52 2059 unsigned long *unit_off;
fbf59bc9 2060 unsigned int cpu;
fd1e8a1f
TH
2061 int *unit_map;
2062 int group, unit, i;
c0ebfdc3
DZF
2063 int map_size;
2064 unsigned long tmp_addr;
f655f405 2065 size_t alloc_size;
fbf59bc9 2066
635b75fc
TH
2067#define PCPU_SETUP_BUG_ON(cond) do { \
2068 if (unlikely(cond)) { \
870d4b12
JP
2069 pr_emerg("failed to initialize, %s\n", #cond); \
2070 pr_emerg("cpu_possible_mask=%*pb\n", \
807de073 2071 cpumask_pr_args(cpu_possible_mask)); \
635b75fc
TH
2072 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2073 BUG(); \
2074 } \
2075} while (0)
2076
2f39e637 2077 /* sanity checks */
635b75fc 2078 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 2079#ifdef CONFIG_SMP
635b75fc 2080 PCPU_SETUP_BUG_ON(!ai->static_size);
f09f1243 2081 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
bbddff05 2082#endif
635b75fc 2083 PCPU_SETUP_BUG_ON(!base_addr);
f09f1243 2084 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
635b75fc 2085 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
f09f1243 2086 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
635b75fc 2087 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
ca460b3c 2088 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
099a19d9 2089 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
fb29a2cc 2090 PCPU_SETUP_BUG_ON(!ai->dyn_size);
d2f3c384 2091 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
ca460b3c
DZF
2092 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2093 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
9f645532 2094 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 2095
6563297c 2096 /* process group information and build config tables accordingly */
f655f405
MR
2097 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2098 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2099 if (!group_offsets)
2100 panic("%s: Failed to allocate %zu bytes\n", __func__,
2101 alloc_size);
2102
2103 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2104 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2105 if (!group_sizes)
2106 panic("%s: Failed to allocate %zu bytes\n", __func__,
2107 alloc_size);
2108
2109 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2110 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2111 if (!unit_map)
2112 panic("%s: Failed to allocate %zu bytes\n", __func__,
2113 alloc_size);
2114
2115 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2116 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2117 if (!unit_off)
2118 panic("%s: Failed to allocate %zu bytes\n", __func__,
2119 alloc_size);
2f39e637 2120
fd1e8a1f 2121 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 2122 unit_map[cpu] = UINT_MAX;
a855b84c
TH
2123
2124 pcpu_low_unit_cpu = NR_CPUS;
2125 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 2126
fd1e8a1f
TH
2127 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2128 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 2129
6563297c
TH
2130 group_offsets[group] = gi->base_offset;
2131 group_sizes[group] = gi->nr_units * ai->unit_size;
2132
fd1e8a1f
TH
2133 for (i = 0; i < gi->nr_units; i++) {
2134 cpu = gi->cpu_map[i];
2135 if (cpu == NR_CPUS)
2136 continue;
8d408b4b 2137
9f295664 2138 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
635b75fc
TH
2139 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2140 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 2141
fd1e8a1f 2142 unit_map[cpu] = unit + i;
fb435d52
TH
2143 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2144
a855b84c
TH
2145 /* determine low/high unit_cpu */
2146 if (pcpu_low_unit_cpu == NR_CPUS ||
2147 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2148 pcpu_low_unit_cpu = cpu;
2149 if (pcpu_high_unit_cpu == NR_CPUS ||
2150 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2151 pcpu_high_unit_cpu = cpu;
fd1e8a1f 2152 }
2f39e637 2153 }
fd1e8a1f
TH
2154 pcpu_nr_units = unit;
2155
2156 for_each_possible_cpu(cpu)
635b75fc
TH
2157 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2158
2159 /* we're done parsing the input, undefine BUG macro and dump config */
2160#undef PCPU_SETUP_BUG_ON
bcbea798 2161 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 2162
6563297c
TH
2163 pcpu_nr_groups = ai->nr_groups;
2164 pcpu_group_offsets = group_offsets;
2165 pcpu_group_sizes = group_sizes;
fd1e8a1f 2166 pcpu_unit_map = unit_map;
fb435d52 2167 pcpu_unit_offsets = unit_off;
2f39e637
TH
2168
2169 /* determine basic parameters */
fd1e8a1f 2170 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 2171 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 2172 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
2173 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2174 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 2175
30a5b536
DZ
2176 pcpu_stats_save_ai(ai);
2177
d9b55eeb
TH
2178 /*
2179 * Allocate chunk slots. The additional last slot is for
2180 * empty chunks.
2181 */
2182 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
7e1c4e27
MR
2183 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2184 SMP_CACHE_BYTES);
f655f405
MR
2185 if (!pcpu_slot)
2186 panic("%s: Failed to allocate %zu bytes\n", __func__,
2187 pcpu_nr_slots * sizeof(pcpu_slot[0]));
fbf59bc9
TH
2188 for (i = 0; i < pcpu_nr_slots; i++)
2189 INIT_LIST_HEAD(&pcpu_slot[i]);
2190
d2f3c384
DZF
2191 /*
2192 * The end of the static region needs to be aligned with the
2193 * minimum allocation size as this offsets the reserved and
2194 * dynamic region. The first chunk ends page aligned by
2195 * expanding the dynamic region, therefore the dynamic region
2196 * can be shrunk to compensate while still staying above the
2197 * configured sizes.
2198 */
2199 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2200 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2201
edcb4639 2202 /*
c0ebfdc3
DZF
2203 * Initialize first chunk.
2204 * If the reserved_size is non-zero, this initializes the reserved
2205 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2206 * and the dynamic region is initialized here. The first chunk,
2207 * pcpu_first_chunk, will always point to the chunk that serves
2208 * the dynamic region.
edcb4639 2209 */
d2f3c384
DZF
2210 tmp_addr = (unsigned long)base_addr + static_size;
2211 map_size = ai->reserved_size ?: dyn_size;
40064aec 2212 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
61ace7fa 2213
edcb4639 2214 /* init dynamic chunk if necessary */
b9c39442 2215 if (ai->reserved_size) {
0c4169c3 2216 pcpu_reserved_chunk = chunk;
b9c39442 2217
d2f3c384 2218 tmp_addr = (unsigned long)base_addr + static_size +
c0ebfdc3 2219 ai->reserved_size;
d2f3c384 2220 map_size = dyn_size;
40064aec 2221 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
edcb4639
TH
2222 }
2223
2441d15c 2224 /* link the first chunk in */
0c4169c3 2225 pcpu_first_chunk = chunk;
0cecf50c 2226 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
ae9e6bc9 2227 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9 2228
7e8a6304
DZF
2229 /* include all regions of the first chunk */
2230 pcpu_nr_populated += PFN_DOWN(size_sum);
2231
30a5b536 2232 pcpu_stats_chunk_alloc();
df95e795 2233 trace_percpu_create_chunk(base_addr);
30a5b536 2234
fbf59bc9 2235 /* we're done */
bba174f5 2236 pcpu_base_addr = base_addr;
fb435d52 2237 return 0;
fbf59bc9 2238}
66c3a757 2239
bbddff05
TH
2240#ifdef CONFIG_SMP
2241
17f3609c 2242const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
2243 [PCPU_FC_AUTO] = "auto",
2244 [PCPU_FC_EMBED] = "embed",
2245 [PCPU_FC_PAGE] = "page",
f58dc01b 2246};
66c3a757 2247
f58dc01b 2248enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 2249
f58dc01b
TH
2250static int __init percpu_alloc_setup(char *str)
2251{
5479c78a
CG
2252 if (!str)
2253 return -EINVAL;
2254
f58dc01b
TH
2255 if (0)
2256 /* nada */;
2257#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2258 else if (!strcmp(str, "embed"))
2259 pcpu_chosen_fc = PCPU_FC_EMBED;
2260#endif
2261#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2262 else if (!strcmp(str, "page"))
2263 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
2264#endif
2265 else
870d4b12 2266 pr_warn("unknown allocator %s specified\n", str);
66c3a757 2267
f58dc01b 2268 return 0;
66c3a757 2269}
f58dc01b 2270early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 2271
3c9a024f
TH
2272/*
2273 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2274 * Build it if needed by the arch config or the generic setup is going
2275 * to be used.
2276 */
08fc4580
TH
2277#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2278 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
2279#define BUILD_EMBED_FIRST_CHUNK
2280#endif
2281
2282/* build pcpu_page_first_chunk() iff needed by the arch config */
2283#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2284#define BUILD_PAGE_FIRST_CHUNK
2285#endif
2286
2287/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2288#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2289/**
2290 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2291 * @reserved_size: the size of reserved percpu area in bytes
2292 * @dyn_size: minimum free size for dynamic allocation in bytes
2293 * @atom_size: allocation atom size
2294 * @cpu_distance_fn: callback to determine distance between cpus, optional
2295 *
2296 * This function determines grouping of units, their mappings to cpus
2297 * and other parameters considering needed percpu size, allocation
2298 * atom size and distances between CPUs.
2299 *
bffc4375 2300 * Groups are always multiples of atom size and CPUs which are of
3c9a024f
TH
2301 * LOCAL_DISTANCE both ways are grouped together and share space for
2302 * units in the same group. The returned configuration is guaranteed
2303 * to have CPUs on different nodes on different groups and >=75% usage
2304 * of allocated virtual address space.
2305 *
2306 * RETURNS:
2307 * On success, pointer to the new allocation_info is returned. On
2308 * failure, ERR_PTR value is returned.
2309 */
2310static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2311 size_t reserved_size, size_t dyn_size,
2312 size_t atom_size,
2313 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2314{
2315 static int group_map[NR_CPUS] __initdata;
2316 static int group_cnt[NR_CPUS] __initdata;
2317 const size_t static_size = __per_cpu_end - __per_cpu_start;
2318 int nr_groups = 1, nr_units = 0;
2319 size_t size_sum, min_unit_size, alloc_size;
2320 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2321 int last_allocs, group, unit;
2322 unsigned int cpu, tcpu;
2323 struct pcpu_alloc_info *ai;
2324 unsigned int *cpu_map;
2325
2326 /* this function may be called multiple times */
2327 memset(group_map, 0, sizeof(group_map));
2328 memset(group_cnt, 0, sizeof(group_cnt));
2329
2330 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2331 size_sum = PFN_ALIGN(static_size + reserved_size +
2332 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2333 dyn_size = size_sum - static_size - reserved_size;
2334
2335 /*
2336 * Determine min_unit_size, alloc_size and max_upa such that
2337 * alloc_size is multiple of atom_size and is the smallest
25985edc 2338 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
2339 * or larger than min_unit_size.
2340 */
2341 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2342
9c015162 2343 /* determine the maximum # of units that can fit in an allocation */
3c9a024f
TH
2344 alloc_size = roundup(min_unit_size, atom_size);
2345 upa = alloc_size / min_unit_size;
f09f1243 2346 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2347 upa--;
2348 max_upa = upa;
2349
2350 /* group cpus according to their proximity */
2351 for_each_possible_cpu(cpu) {
2352 group = 0;
2353 next_group:
2354 for_each_possible_cpu(tcpu) {
2355 if (cpu == tcpu)
2356 break;
2357 if (group_map[tcpu] == group && cpu_distance_fn &&
2358 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2359 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2360 group++;
2361 nr_groups = max(nr_groups, group + 1);
2362 goto next_group;
2363 }
2364 }
2365 group_map[cpu] = group;
2366 group_cnt[group]++;
2367 }
2368
2369 /*
9c015162
DZF
2370 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2371 * Expand the unit_size until we use >= 75% of the units allocated.
2372 * Related to atom_size, which could be much larger than the unit_size.
3c9a024f
TH
2373 */
2374 last_allocs = INT_MAX;
2375 for (upa = max_upa; upa; upa--) {
2376 int allocs = 0, wasted = 0;
2377
f09f1243 2378 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
3c9a024f
TH
2379 continue;
2380
2381 for (group = 0; group < nr_groups; group++) {
2382 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2383 allocs += this_allocs;
2384 wasted += this_allocs * upa - group_cnt[group];
2385 }
2386
2387 /*
2388 * Don't accept if wastage is over 1/3. The
2389 * greater-than comparison ensures upa==1 always
2390 * passes the following check.
2391 */
2392 if (wasted > num_possible_cpus() / 3)
2393 continue;
2394
2395 /* and then don't consume more memory */
2396 if (allocs > last_allocs)
2397 break;
2398 last_allocs = allocs;
2399 best_upa = upa;
2400 }
2401 upa = best_upa;
2402
2403 /* allocate and fill alloc_info */
2404 for (group = 0; group < nr_groups; group++)
2405 nr_units += roundup(group_cnt[group], upa);
2406
2407 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2408 if (!ai)
2409 return ERR_PTR(-ENOMEM);
2410 cpu_map = ai->groups[0].cpu_map;
2411
2412 for (group = 0; group < nr_groups; group++) {
2413 ai->groups[group].cpu_map = cpu_map;
2414 cpu_map += roundup(group_cnt[group], upa);
2415 }
2416
2417 ai->static_size = static_size;
2418 ai->reserved_size = reserved_size;
2419 ai->dyn_size = dyn_size;
2420 ai->unit_size = alloc_size / upa;
2421 ai->atom_size = atom_size;
2422 ai->alloc_size = alloc_size;
2423
2de7852f 2424 for (group = 0, unit = 0; group < nr_groups; group++) {
3c9a024f
TH
2425 struct pcpu_group_info *gi = &ai->groups[group];
2426
2427 /*
2428 * Initialize base_offset as if all groups are located
2429 * back-to-back. The caller should update this to
2430 * reflect actual allocation.
2431 */
2432 gi->base_offset = unit * ai->unit_size;
2433
2434 for_each_possible_cpu(cpu)
2435 if (group_map[cpu] == group)
2436 gi->cpu_map[gi->nr_units++] = cpu;
2437 gi->nr_units = roundup(gi->nr_units, upa);
2438 unit += gi->nr_units;
2439 }
2440 BUG_ON(unit != nr_units);
2441
2442 return ai;
2443}
2444#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2445
2446#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
2447/**
2448 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 2449 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 2450 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
2451 * @atom_size: allocation atom size
2452 * @cpu_distance_fn: callback to determine distance between cpus, optional
2453 * @alloc_fn: function to allocate percpu page
25985edc 2454 * @free_fn: function to free percpu page
66c3a757
TH
2455 *
2456 * This is a helper to ease setting up embedded first percpu chunk and
2457 * can be called where pcpu_setup_first_chunk() is expected.
2458 *
2459 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
2460 * by calling @alloc_fn and used as-is without being mapped into
2461 * vmalloc area. Allocations are always whole multiples of @atom_size
2462 * aligned to @atom_size.
2463 *
2464 * This enables the first chunk to piggy back on the linear physical
2465 * mapping which often uses larger page size. Please note that this
2466 * can result in very sparse cpu->unit mapping on NUMA machines thus
2467 * requiring large vmalloc address space. Don't use this allocator if
2468 * vmalloc space is not orders of magnitude larger than distances
2469 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 2470 *
4ba6ce25 2471 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
2472 *
2473 * If the needed size is smaller than the minimum or specified unit
c8826dd5 2474 * size, the leftover is returned using @free_fn.
66c3a757
TH
2475 *
2476 * RETURNS:
fb435d52 2477 * 0 on success, -errno on failure.
66c3a757 2478 */
4ba6ce25 2479int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
2480 size_t atom_size,
2481 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2482 pcpu_fc_alloc_fn_t alloc_fn,
2483 pcpu_fc_free_fn_t free_fn)
66c3a757 2484{
c8826dd5
TH
2485 void *base = (void *)ULONG_MAX;
2486 void **areas = NULL;
fd1e8a1f 2487 struct pcpu_alloc_info *ai;
93c76b6b 2488 size_t size_sum, areas_size;
2489 unsigned long max_distance;
9b739662 2490 int group, i, highest_group, rc;
66c3a757 2491
c8826dd5
TH
2492 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2493 cpu_distance_fn);
fd1e8a1f
TH
2494 if (IS_ERR(ai))
2495 return PTR_ERR(ai);
66c3a757 2496
fd1e8a1f 2497 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 2498 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 2499
26fb3dae 2500 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
c8826dd5 2501 if (!areas) {
fb435d52 2502 rc = -ENOMEM;
c8826dd5 2503 goto out_free;
fa8a7094 2504 }
66c3a757 2505
9b739662 2506 /* allocate, copy and determine base address & max_distance */
2507 highest_group = 0;
c8826dd5
TH
2508 for (group = 0; group < ai->nr_groups; group++) {
2509 struct pcpu_group_info *gi = &ai->groups[group];
2510 unsigned int cpu = NR_CPUS;
2511 void *ptr;
2512
2513 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2514 cpu = gi->cpu_map[i];
2515 BUG_ON(cpu == NR_CPUS);
2516
2517 /* allocate space for the whole group */
2518 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2519 if (!ptr) {
2520 rc = -ENOMEM;
2521 goto out_free_areas;
2522 }
f528f0b8
CM
2523 /* kmemleak tracks the percpu allocations separately */
2524 kmemleak_free(ptr);
c8826dd5 2525 areas[group] = ptr;
fd1e8a1f 2526
c8826dd5 2527 base = min(ptr, base);
9b739662 2528 if (ptr > areas[highest_group])
2529 highest_group = group;
2530 }
2531 max_distance = areas[highest_group] - base;
2532 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2533
2534 /* warn if maximum distance is further than 75% of vmalloc space */
2535 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2536 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2537 max_distance, VMALLOC_TOTAL);
2538#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2539 /* and fail if we have fallback */
2540 rc = -EINVAL;
2541 goto out_free_areas;
2542#endif
42b64281
TH
2543 }
2544
2545 /*
2546 * Copy data and free unused parts. This should happen after all
2547 * allocations are complete; otherwise, we may end up with
2548 * overlapping groups.
2549 */
2550 for (group = 0; group < ai->nr_groups; group++) {
2551 struct pcpu_group_info *gi = &ai->groups[group];
2552 void *ptr = areas[group];
c8826dd5
TH
2553
2554 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2555 if (gi->cpu_map[i] == NR_CPUS) {
2556 /* unused unit, free whole */
2557 free_fn(ptr, ai->unit_size);
2558 continue;
2559 }
2560 /* copy and return the unused part */
2561 memcpy(ptr, __per_cpu_load, ai->static_size);
2562 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2563 }
fa8a7094 2564 }
66c3a757 2565
c8826dd5 2566 /* base address is now known, determine group base offsets */
6ea529a2 2567 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2568 ai->groups[group].base_offset = areas[group] - base;
6ea529a2 2569 }
c8826dd5 2570
870d4b12 2571 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2572 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2573 ai->dyn_size, ai->unit_size);
d4b95f80 2574
fb435d52 2575 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2576 goto out_free;
2577
2578out_free_areas:
2579 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2580 if (areas[group])
2581 free_fn(areas[group],
2582 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2583out_free:
fd1e8a1f 2584 pcpu_free_alloc_info(ai);
c8826dd5 2585 if (areas)
999c17e3 2586 memblock_free_early(__pa(areas), areas_size);
fb435d52 2587 return rc;
d4b95f80 2588}
3c9a024f 2589#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2590
3c9a024f 2591#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2592/**
00ae4064 2593 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2594 * @reserved_size: the size of reserved percpu area in bytes
2595 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2596 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2597 * @populate_pte_fn: function to populate pte
2598 *
00ae4064
TH
2599 * This is a helper to ease setting up page-remapped first percpu
2600 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2601 *
2602 * This is the basic allocator. Static percpu area is allocated
2603 * page-by-page into vmalloc area.
2604 *
2605 * RETURNS:
fb435d52 2606 * 0 on success, -errno on failure.
d4b95f80 2607 */
fb435d52
TH
2608int __init pcpu_page_first_chunk(size_t reserved_size,
2609 pcpu_fc_alloc_fn_t alloc_fn,
2610 pcpu_fc_free_fn_t free_fn,
2611 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2612{
8f05a6a6 2613 static struct vm_struct vm;
fd1e8a1f 2614 struct pcpu_alloc_info *ai;
00ae4064 2615 char psize_str[16];
ce3141a2 2616 int unit_pages;
d4b95f80 2617 size_t pages_size;
ce3141a2 2618 struct page **pages;
fb435d52 2619 int unit, i, j, rc;
8f606604 2620 int upa;
2621 int nr_g0_units;
d4b95f80 2622
00ae4064
TH
2623 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2624
4ba6ce25 2625 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2626 if (IS_ERR(ai))
2627 return PTR_ERR(ai);
2628 BUG_ON(ai->nr_groups != 1);
8f606604 2629 upa = ai->alloc_size/ai->unit_size;
2630 nr_g0_units = roundup(num_possible_cpus(), upa);
0b59c25f 2631 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
8f606604 2632 pcpu_free_alloc_info(ai);
2633 return -EINVAL;
2634 }
fd1e8a1f
TH
2635
2636 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2637
2638 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2639 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2640 sizeof(pages[0]));
7e1c4e27 2641 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
f655f405
MR
2642 if (!pages)
2643 panic("%s: Failed to allocate %zu bytes\n", __func__,
2644 pages_size);
d4b95f80 2645
8f05a6a6 2646 /* allocate pages */
d4b95f80 2647 j = 0;
8f606604 2648 for (unit = 0; unit < num_possible_cpus(); unit++) {
2649 unsigned int cpu = ai->groups[0].cpu_map[unit];
ce3141a2 2650 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
2651 void *ptr;
2652
3cbc8565 2653 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2654 if (!ptr) {
870d4b12 2655 pr_warn("failed to allocate %s page for cpu%u\n",
8f606604 2656 psize_str, cpu);
d4b95f80
TH
2657 goto enomem;
2658 }
f528f0b8
CM
2659 /* kmemleak tracks the percpu allocations separately */
2660 kmemleak_free(ptr);
ce3141a2 2661 pages[j++] = virt_to_page(ptr);
d4b95f80 2662 }
8f606604 2663 }
d4b95f80 2664
8f05a6a6
TH
2665 /* allocate vm area, map the pages and copy static data */
2666 vm.flags = VM_ALLOC;
fd1e8a1f 2667 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2668 vm_area_register_early(&vm, PAGE_SIZE);
2669
fd1e8a1f 2670 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2671 unsigned long unit_addr =
fd1e8a1f 2672 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2673
ce3141a2 2674 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2675 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2676
2677 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2678 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2679 unit_pages);
2680 if (rc < 0)
2681 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2682
8f05a6a6
TH
2683 /*
2684 * FIXME: Archs with virtual cache should flush local
2685 * cache for the linear mapping here - something
2686 * equivalent to flush_cache_vmap() on the local cpu.
2687 * flush_cache_vmap() can't be used as most supporting
2688 * data structures are not set up yet.
2689 */
2690
2691 /* copy static data */
fd1e8a1f 2692 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2693 }
2694
2695 /* we're ready, commit */
870d4b12 2696 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2697 unit_pages, psize_str, vm.addr, ai->static_size,
2698 ai->reserved_size, ai->dyn_size);
d4b95f80 2699
fb435d52 2700 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2701 goto out_free_ar;
2702
2703enomem:
2704 while (--j >= 0)
ce3141a2 2705 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2706 rc = -ENOMEM;
d4b95f80 2707out_free_ar:
999c17e3 2708 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2709 pcpu_free_alloc_info(ai);
fb435d52 2710 return rc;
d4b95f80 2711}
3c9a024f 2712#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2713
bbddff05 2714#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2715/*
bbddff05 2716 * Generic SMP percpu area setup.
e74e3962
TH
2717 *
2718 * The embedding helper is used because its behavior closely resembles
2719 * the original non-dynamic generic percpu area setup. This is
2720 * important because many archs have addressing restrictions and might
2721 * fail if the percpu area is located far away from the previous
2722 * location. As an added bonus, in non-NUMA cases, embedding is
2723 * generally a good idea TLB-wise because percpu area can piggy back
2724 * on the physical linear memory mapping which uses large page
2725 * mappings on applicable archs.
2726 */
e74e3962
TH
2727unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2728EXPORT_SYMBOL(__per_cpu_offset);
2729
c8826dd5
TH
2730static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2731 size_t align)
2732{
26fb3dae 2733 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2734}
66c3a757 2735
c8826dd5
TH
2736static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2737{
999c17e3 2738 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2739}
2740
e74e3962
TH
2741void __init setup_per_cpu_areas(void)
2742{
e74e3962
TH
2743 unsigned long delta;
2744 unsigned int cpu;
fb435d52 2745 int rc;
e74e3962
TH
2746
2747 /*
2748 * Always reserve area for module percpu variables. That's
2749 * what the legacy allocator did.
2750 */
fb435d52 2751 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2752 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2753 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2754 if (rc < 0)
bbddff05 2755 panic("Failed to initialize percpu areas.");
e74e3962
TH
2756
2757 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2758 for_each_possible_cpu(cpu)
fb435d52 2759 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2760}
bbddff05
TH
2761#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2762
2763#else /* CONFIG_SMP */
2764
2765/*
2766 * UP percpu area setup.
2767 *
2768 * UP always uses km-based percpu allocator with identity mapping.
2769 * Static percpu variables are indistinguishable from the usual static
2770 * variables and don't require any special preparation.
2771 */
2772void __init setup_per_cpu_areas(void)
2773{
2774 const size_t unit_size =
2775 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2776 PERCPU_DYNAMIC_RESERVE));
2777 struct pcpu_alloc_info *ai;
2778 void *fc;
2779
2780 ai = pcpu_alloc_alloc_info(1, 1);
26fb3dae 2781 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2782 if (!ai || !fc)
2783 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2784 /* kmemleak tracks the percpu allocations separately */
2785 kmemleak_free(fc);
bbddff05
TH
2786
2787 ai->dyn_size = unit_size;
2788 ai->unit_size = unit_size;
2789 ai->atom_size = unit_size;
2790 ai->alloc_size = unit_size;
2791 ai->groups[0].nr_units = 1;
2792 ai->groups[0].cpu_map[0] = 0;
2793
2794 if (pcpu_setup_first_chunk(ai, fc) < 0)
2795 panic("Failed to initialize percpu areas.");
438a5061 2796 pcpu_free_alloc_info(ai);
bbddff05
TH
2797}
2798
2799#endif /* CONFIG_SMP */
099a19d9 2800
7e8a6304
DZF
2801/*
2802 * pcpu_nr_pages - calculate total number of populated backing pages
2803 *
2804 * This reflects the number of pages populated to back chunks. Metadata is
2805 * excluded in the number exposed in meminfo as the number of backing pages
2806 * scales with the number of cpus and can quickly outweigh the memory used for
2807 * metadata. It also keeps this calculation nice and simple.
2808 *
2809 * RETURNS:
2810 * Total number of populated backing pages in use by the allocator.
2811 */
2812unsigned long pcpu_nr_pages(void)
2813{
2814 return pcpu_nr_populated * pcpu_nr_units;
2815}
2816
1a4d7607
TH
2817/*
2818 * Percpu allocator is initialized early during boot when neither slab or
2819 * workqueue is available. Plug async management until everything is up
2820 * and running.
2821 */
2822static int __init percpu_enable_async(void)
2823{
2824 pcpu_async_enabled = true;
2825 return 0;
2826}
2827subsys_initcall(percpu_enable_async);