mm/page_alloc.c: simplify the code by using macro K()
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
2c335680
AK
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
c8e251fa
CS
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 124
dbbee9d5
MG
125struct pagesets {
126 local_lock_t lock;
dbbee9d5
MG
127};
128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130};
c8e251fa 131
72812019
LS
132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133DEFINE_PER_CPU(int, numa_node);
134EXPORT_PER_CPU_SYMBOL(numa_node);
135#endif
136
4518085e
KW
137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
7aac7898
LS
139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
140/*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148#endif
149
bd233f53 150/* work_structs for global per-cpu drains */
d9367bd0
WY
151struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154};
8b885f53
JY
155static DEFINE_MUTEX(pcpu_drain_mutex);
156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 157
38addce8 158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 159volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
160EXPORT_SYMBOL(latent_entropy);
161#endif
162
1da177e4 163/*
13808910 164 * Array of node states.
1da177e4 165 */
13808910
CL
166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169#ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171#ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 173#endif
20b2f52b 174 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
175 [N_CPU] = { { [0] = 1UL } },
176#endif /* NUMA */
177};
178EXPORT_SYMBOL(node_states);
179
ca79b0c2
AK
180atomic_long_t _totalram_pages __read_mostly;
181EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 182unsigned long totalreserve_pages __read_mostly;
e48322ab 183unsigned long totalcma_pages __read_mostly;
ab8fabd4 184
74f44822 185int percpu_pagelist_high_fraction;
dcce284a 186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
188EXPORT_SYMBOL(init_on_alloc);
189
51cba1eb 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
191EXPORT_SYMBOL(init_on_free);
192
04013513
VB
193static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
195static int __init early_init_on_alloc(char *buf)
196{
6471384a 197
04013513 198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
199}
200early_param("init_on_alloc", early_init_on_alloc);
201
04013513
VB
202static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
204static int __init early_init_on_free(char *buf)
205{
04013513 206 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
207}
208early_param("init_on_free", early_init_on_free);
1da177e4 209
bb14c2c7
VB
210/*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218static inline int get_pcppage_migratetype(struct page *page)
219{
220 return page->index;
221}
222
223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224{
225 page->index = migratetype;
226}
227
452aa699
RW
228#ifdef CONFIG_PM_SLEEP
229/*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
452aa699 237 */
c9e664f1
RW
238
239static gfp_t saved_gfp_mask;
240
241void pm_restore_gfp_mask(void)
452aa699 242{
55f2503c 243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
452aa699
RW
248}
249
c9e664f1 250void pm_restrict_gfp_mask(void)
452aa699 251{
55f2503c 252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
d0164adc 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 256}
f90ac398
MG
257
258bool pm_suspended_storage(void)
259{
d0164adc 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
261 return false;
262 return true;
263}
452aa699
RW
264#endif /* CONFIG_PM_SLEEP */
265
d9c23400 266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 267unsigned int pageblock_order __read_mostly;
d9c23400
MG
268#endif
269
7fef431b
DH
270static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
a226f6c8 272
1da177e4
LT
273/*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
1da177e4 283 */
d3cda233 284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 285#ifdef CONFIG_ZONE_DMA
d3cda233 286 [ZONE_DMA] = 256,
4b51d669 287#endif
fb0e7942 288#ifdef CONFIG_ZONE_DMA32
d3cda233 289 [ZONE_DMA32] = 256,
fb0e7942 290#endif
d3cda233 291 [ZONE_NORMAL] = 32,
e53ef38d 292#ifdef CONFIG_HIGHMEM
d3cda233 293 [ZONE_HIGHMEM] = 0,
e53ef38d 294#endif
d3cda233 295 [ZONE_MOVABLE] = 0,
2f1b6248 296};
1da177e4 297
15ad7cdc 298static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 299#ifdef CONFIG_ZONE_DMA
2f1b6248 300 "DMA",
4b51d669 301#endif
fb0e7942 302#ifdef CONFIG_ZONE_DMA32
2f1b6248 303 "DMA32",
fb0e7942 304#endif
2f1b6248 305 "Normal",
e53ef38d 306#ifdef CONFIG_HIGHMEM
2a1e274a 307 "HighMem",
e53ef38d 308#endif
2a1e274a 309 "Movable",
033fbae9
DW
310#ifdef CONFIG_ZONE_DEVICE
311 "Device",
312#endif
2f1b6248
CL
313};
314
c999fbd3 315const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320#ifdef CONFIG_CMA
321 "CMA",
322#endif
323#ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325#endif
326};
327
ae70eddd
AK
328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 331#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 332 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 333#endif
9a982250 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 336#endif
f1e61557
KS
337};
338
1da177e4 339int min_free_kbytes = 1024;
42aa83cb 340int user_min_free_kbytes = -1;
1c30844d 341int watermark_boost_factor __read_mostly = 15000;
795ae7a0 342int watermark_scale_factor = 10;
1da177e4 343
bbe5d993
OS
344static unsigned long nr_kernel_pages __initdata;
345static unsigned long nr_all_pages __initdata;
346static unsigned long dma_reserve __initdata;
1da177e4 347
bbe5d993
OS
348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 350static unsigned long required_kernelcore __initdata;
a5c6d650 351static unsigned long required_kernelcore_percent __initdata;
7f16f91f 352static unsigned long required_movablecore __initdata;
a5c6d650 353static unsigned long required_movablecore_percent __initdata;
bbe5d993 354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 355static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
356
357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358int movable_zone;
359EXPORT_SYMBOL(movable_zone);
c713216d 360
418508c1 361#if MAX_NUMNODES > 1
b9726c26 362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 363unsigned int nr_online_nodes __read_mostly = 1;
418508c1 364EXPORT_SYMBOL(nr_node_ids);
62bc62a8 365EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
366#endif
367
9ef9acb0
MG
368int page_group_by_mobility_disabled __read_mostly;
369
3a80a7fa 370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
371/*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378/*
7a3b8353 379 * Calling kasan_poison_pages() only after deferred memory initialization
3c0c12cc
WL
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
c275c5c6 391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
3c0c12cc 392{
7a3b8353
PC
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
3c0c12cc
WL
397}
398
3a80a7fa 399/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 401{
ef70b6f4
MG
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
405 return true;
406
407 return false;
408}
409
410/*
d3035be4 411 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
412 * later in the boot cycle when it can be parallelised.
413 */
d3035be4
PT
414static bool __meminit
415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 416{
d3035be4
PT
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
3c2c6488 428 /* Always populate low zones for address-constrained allocations */
d3035be4 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 430 return false;
23b68cfa 431
dc2da7b4
BH
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
23b68cfa
WY
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
d3035be4 438 nr_initialised++;
23b68cfa 439 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
3a80a7fa 443 }
d3035be4 444 return false;
3a80a7fa
MG
445}
446#else
c275c5c6 447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
2c335680 448{
7a3b8353 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
2c335680 452}
3c0c12cc 453
3a80a7fa
MG
454static inline bool early_page_uninitialised(unsigned long pfn)
455{
456 return false;
457}
458
d3035be4 459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 460{
d3035be4 461 return false;
3a80a7fa
MG
462}
463#endif
464
0b423ca2 465/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
467 unsigned long pfn)
468{
469#ifdef CONFIG_SPARSEMEM
f1eca35a 470 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
471#else
472 return page_zone(page)->pageblock_flags;
473#endif /* CONFIG_SPARSEMEM */
474}
475
ca891f41 476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
477{
478#ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
480#else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 482#endif /* CONFIG_SPARSEMEM */
399b795b 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
484}
485
535b81e2 486static __always_inline
ca891f41 487unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 488 unsigned long pfn,
0b423ca2
MG
489 unsigned long mask)
490{
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
d93d5ab9 501 return (word >> bitidx) & mask;
0b423ca2
MG
502}
503
a00cda3f
MCC
504/**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
ca891f41
MWO
512unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
0b423ca2 514{
535b81e2 515 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
516}
517
ca891f41
MWO
518static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
0b423ca2 520{
535b81e2 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
522}
523
524/**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
0b423ca2
MG
529 * @mask: mask of bits that the caller is interested in
530 */
531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
0b423ca2
MG
533 unsigned long mask)
534{
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
d93d5ab9
WY
549 mask <<= bitidx;
550 flags <<= bitidx;
0b423ca2
MG
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559}
3a80a7fa 560
ee6f509c 561void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 562{
5d0f3f72
KM
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
565 migratetype = MIGRATE_UNMOVABLE;
566
d93d5ab9 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 568 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
569}
570
13e7444b 571#ifdef CONFIG_DEBUG_VM
c6a57e19 572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 573{
bdc8cb98
DH
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 577 unsigned long sp, start_pfn;
c6a57e19 578
bdc8cb98
DH
579 do {
580 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
108bcc96 583 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
b5e6a5a2 587 if (ret)
613813e8
DH
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
b5e6a5a2 591
bdc8cb98 592 return ret;
c6a57e19
DH
593}
594
595static int page_is_consistent(struct zone *zone, struct page *page)
596{
1da177e4 597 if (zone != page_zone(page))
c6a57e19
DH
598 return 0;
599
600 return 1;
601}
602/*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
d73d3c9f 605static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
606{
607 if (page_outside_zone_boundaries(zone, page))
1da177e4 608 return 1;
c6a57e19
DH
609 if (!page_is_consistent(zone, page))
610 return 1;
611
1da177e4
LT
612 return 0;
613}
13e7444b 614#else
d73d3c9f 615static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
616{
617 return 0;
618}
619#endif
620
82a3241a 621static void bad_page(struct page *page, const char *reason)
1da177e4 622{
d936cf9b
HD
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
ff8e8116 637 pr_alert(
1e9e6365 638 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
ff8e8116 647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 648 current->comm, page_to_pfn(page));
d2f07ec0 649 dump_page(page, reason);
3dc14741 650
4f31888c 651 print_modules();
1da177e4 652 dump_stack();
d936cf9b 653out:
8cc3b392 654 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 655 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
657}
658
44042b44
MG
659static inline unsigned int order_to_pindex(int migratetype, int order)
660{
661 int base = order;
662
663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668#else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670#endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673}
674
675static inline int pindex_to_order(unsigned int pindex)
676{
677 int order = pindex / MIGRATE_PCPTYPES;
678
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ea808b4e 680 if (order > PAGE_ALLOC_COSTLY_ORDER)
44042b44 681 order = pageblock_order;
44042b44
MG
682#else
683 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
684#endif
685
686 return order;
687}
688
689static inline bool pcp_allowed_order(unsigned int order)
690{
691 if (order <= PAGE_ALLOC_COSTLY_ORDER)
692 return true;
693#ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 if (order == pageblock_order)
695 return true;
696#endif
697 return false;
698}
699
21d02f8f
MG
700static inline void free_the_page(struct page *page, unsigned int order)
701{
44042b44
MG
702 if (pcp_allowed_order(order)) /* Via pcp? */
703 free_unref_page(page, order);
21d02f8f
MG
704 else
705 __free_pages_ok(page, order, FPI_NONE);
706}
707
1da177e4
LT
708/*
709 * Higher-order pages are called "compound pages". They are structured thusly:
710 *
1d798ca3 711 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 712 *
1d798ca3
KS
713 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
714 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 715 *
1d798ca3
KS
716 * The first tail page's ->compound_dtor holds the offset in array of compound
717 * page destructors. See compound_page_dtors.
1da177e4 718 *
1d798ca3 719 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 720 * This usage means that zero-order pages may not be compound.
1da177e4 721 */
d98c7a09 722
9a982250 723void free_compound_page(struct page *page)
d98c7a09 724{
7ae88534 725 mem_cgroup_uncharge(page);
44042b44 726 free_the_page(page, compound_order(page));
d98c7a09
HD
727}
728
d00181b9 729void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
730{
731 int i;
732 int nr_pages = 1 << order;
733
18229df5
AW
734 __SetPageHead(page);
735 for (i = 1; i < nr_pages; i++) {
736 struct page *p = page + i;
1c290f64 737 p->mapping = TAIL_MAPPING;
1d798ca3 738 set_compound_head(p, page);
18229df5 739 }
1378a5ee
MWO
740
741 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
742 set_compound_order(page, order);
53f9263b 743 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
744 if (hpage_pincount_available(page))
745 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
746}
747
c0a32fc5
SG
748#ifdef CONFIG_DEBUG_PAGEALLOC
749unsigned int _debug_guardpage_minorder;
96a2b03f 750
8e57f8ac
VB
751bool _debug_pagealloc_enabled_early __read_mostly
752 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
753EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 754DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 755EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
756
757DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 758
031bc574
JK
759static int __init early_debug_pagealloc(char *buf)
760{
8e57f8ac 761 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
762}
763early_param("debug_pagealloc", early_debug_pagealloc);
764
c0a32fc5
SG
765static int __init debug_guardpage_minorder_setup(char *buf)
766{
767 unsigned long res;
768
769 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 770 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
771 return 0;
772 }
773 _debug_guardpage_minorder = res;
1170532b 774 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
775 return 0;
776}
f1c1e9f7 777early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 778
acbc15a4 779static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 780 unsigned int order, int migratetype)
c0a32fc5 781{
e30825f1 782 if (!debug_guardpage_enabled())
acbc15a4
JK
783 return false;
784
785 if (order >= debug_guardpage_minorder())
786 return false;
e30825f1 787
3972f6bb 788 __SetPageGuard(page);
2847cf95
JK
789 INIT_LIST_HEAD(&page->lru);
790 set_page_private(page, order);
791 /* Guard pages are not available for any usage */
792 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
793
794 return true;
c0a32fc5
SG
795}
796
2847cf95
JK
797static inline void clear_page_guard(struct zone *zone, struct page *page,
798 unsigned int order, int migratetype)
c0a32fc5 799{
e30825f1
JK
800 if (!debug_guardpage_enabled())
801 return;
802
3972f6bb 803 __ClearPageGuard(page);
e30825f1 804
2847cf95
JK
805 set_page_private(page, 0);
806 if (!is_migrate_isolate(migratetype))
807 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
808}
809#else
acbc15a4
JK
810static inline bool set_page_guard(struct zone *zone, struct page *page,
811 unsigned int order, int migratetype) { return false; }
2847cf95
JK
812static inline void clear_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) {}
c0a32fc5
SG
814#endif
815
04013513
VB
816/*
817 * Enable static keys related to various memory debugging and hardening options.
818 * Some override others, and depend on early params that are evaluated in the
819 * order of appearance. So we need to first gather the full picture of what was
820 * enabled, and then make decisions.
821 */
822void init_mem_debugging_and_hardening(void)
823{
9df65f52
ST
824 bool page_poisoning_requested = false;
825
826#ifdef CONFIG_PAGE_POISONING
827 /*
828 * Page poisoning is debug page alloc for some arches. If
829 * either of those options are enabled, enable poisoning.
830 */
831 if (page_poisoning_enabled() ||
832 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
833 debug_pagealloc_enabled())) {
834 static_branch_enable(&_page_poisoning_enabled);
835 page_poisoning_requested = true;
836 }
837#endif
838
69e5d322
ST
839 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
840 page_poisoning_requested) {
841 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
842 "will take precedence over init_on_alloc and init_on_free\n");
843 _init_on_alloc_enabled_early = false;
844 _init_on_free_enabled_early = false;
04013513
VB
845 }
846
69e5d322
ST
847 if (_init_on_alloc_enabled_early)
848 static_branch_enable(&init_on_alloc);
849 else
850 static_branch_disable(&init_on_alloc);
851
852 if (_init_on_free_enabled_early)
853 static_branch_enable(&init_on_free);
854 else
855 static_branch_disable(&init_on_free);
856
04013513
VB
857#ifdef CONFIG_DEBUG_PAGEALLOC
858 if (!debug_pagealloc_enabled())
859 return;
860
861 static_branch_enable(&_debug_pagealloc_enabled);
862
863 if (!debug_guardpage_minorder())
864 return;
865
866 static_branch_enable(&_debug_guardpage_enabled);
867#endif
868}
869
ab130f91 870static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 871{
4c21e2f2 872 set_page_private(page, order);
676165a8 873 __SetPageBuddy(page);
1da177e4
LT
874}
875
1da177e4
LT
876/*
877 * This function checks whether a page is free && is the buddy
6e292b9b 878 * we can coalesce a page and its buddy if
13ad59df 879 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 880 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
881 * (c) a page and its buddy have the same order &&
882 * (d) a page and its buddy are in the same zone.
676165a8 883 *
6e292b9b
MW
884 * For recording whether a page is in the buddy system, we set PageBuddy.
885 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 886 *
676165a8 887 * For recording page's order, we use page_private(page).
1da177e4 888 */
fe925c0c 889static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 890 unsigned int order)
1da177e4 891{
fe925c0c 892 if (!page_is_guard(buddy) && !PageBuddy(buddy))
893 return false;
4c5018ce 894
ab130f91 895 if (buddy_order(buddy) != order)
fe925c0c 896 return false;
c0a32fc5 897
fe925c0c 898 /*
899 * zone check is done late to avoid uselessly calculating
900 * zone/node ids for pages that could never merge.
901 */
902 if (page_zone_id(page) != page_zone_id(buddy))
903 return false;
d34c5fa0 904
fe925c0c 905 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 906
fe925c0c 907 return true;
1da177e4
LT
908}
909
5e1f0f09
MG
910#ifdef CONFIG_COMPACTION
911static inline struct capture_control *task_capc(struct zone *zone)
912{
913 struct capture_control *capc = current->capture_control;
914
deba0487 915 return unlikely(capc) &&
5e1f0f09
MG
916 !(current->flags & PF_KTHREAD) &&
917 !capc->page &&
deba0487 918 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
919}
920
921static inline bool
922compaction_capture(struct capture_control *capc, struct page *page,
923 int order, int migratetype)
924{
925 if (!capc || order != capc->cc->order)
926 return false;
927
928 /* Do not accidentally pollute CMA or isolated regions*/
929 if (is_migrate_cma(migratetype) ||
930 is_migrate_isolate(migratetype))
931 return false;
932
933 /*
f0953a1b 934 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
935 * This might let an unmovable request use a reclaimable pageblock
936 * and vice-versa but no more than normal fallback logic which can
937 * have trouble finding a high-order free page.
938 */
939 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
940 return false;
941
942 capc->page = page;
943 return true;
944}
945
946#else
947static inline struct capture_control *task_capc(struct zone *zone)
948{
949 return NULL;
950}
951
952static inline bool
953compaction_capture(struct capture_control *capc, struct page *page,
954 int order, int migratetype)
955{
956 return false;
957}
958#endif /* CONFIG_COMPACTION */
959
6ab01363
AD
960/* Used for pages not on another list */
961static inline void add_to_free_list(struct page *page, struct zone *zone,
962 unsigned int order, int migratetype)
963{
964 struct free_area *area = &zone->free_area[order];
965
966 list_add(&page->lru, &area->free_list[migratetype]);
967 area->nr_free++;
968}
969
970/* Used for pages not on another list */
971static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
972 unsigned int order, int migratetype)
973{
974 struct free_area *area = &zone->free_area[order];
975
976 list_add_tail(&page->lru, &area->free_list[migratetype]);
977 area->nr_free++;
978}
979
293ffa5e
DH
980/*
981 * Used for pages which are on another list. Move the pages to the tail
982 * of the list - so the moved pages won't immediately be considered for
983 * allocation again (e.g., optimization for memory onlining).
984 */
6ab01363
AD
985static inline void move_to_free_list(struct page *page, struct zone *zone,
986 unsigned int order, int migratetype)
987{
988 struct free_area *area = &zone->free_area[order];
989
293ffa5e 990 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
991}
992
993static inline void del_page_from_free_list(struct page *page, struct zone *zone,
994 unsigned int order)
995{
36e66c55
AD
996 /* clear reported state and update reported page count */
997 if (page_reported(page))
998 __ClearPageReported(page);
999
6ab01363
AD
1000 list_del(&page->lru);
1001 __ClearPageBuddy(page);
1002 set_page_private(page, 0);
1003 zone->free_area[order].nr_free--;
1004}
1005
a2129f24
AD
1006/*
1007 * If this is not the largest possible page, check if the buddy
1008 * of the next-highest order is free. If it is, it's possible
1009 * that pages are being freed that will coalesce soon. In case,
1010 * that is happening, add the free page to the tail of the list
1011 * so it's less likely to be used soon and more likely to be merged
1012 * as a higher order page
1013 */
1014static inline bool
1015buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1016 struct page *page, unsigned int order)
1017{
1018 struct page *higher_page, *higher_buddy;
1019 unsigned long combined_pfn;
1020
1021 if (order >= MAX_ORDER - 2)
1022 return false;
1023
a2129f24
AD
1024 combined_pfn = buddy_pfn & pfn;
1025 higher_page = page + (combined_pfn - pfn);
1026 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1027 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1028
859a85dd 1029 return page_is_buddy(higher_page, higher_buddy, order + 1);
a2129f24
AD
1030}
1031
1da177e4
LT
1032/*
1033 * Freeing function for a buddy system allocator.
1034 *
1035 * The concept of a buddy system is to maintain direct-mapped table
1036 * (containing bit values) for memory blocks of various "orders".
1037 * The bottom level table contains the map for the smallest allocatable
1038 * units of memory (here, pages), and each level above it describes
1039 * pairs of units from the levels below, hence, "buddies".
1040 * At a high level, all that happens here is marking the table entry
1041 * at the bottom level available, and propagating the changes upward
1042 * as necessary, plus some accounting needed to play nicely with other
1043 * parts of the VM system.
1044 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1045 * free pages of length of (1 << order) and marked with PageBuddy.
1046 * Page's order is recorded in page_private(page) field.
1da177e4 1047 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1048 * other. That is, if we allocate a small block, and both were
1049 * free, the remainder of the region must be split into blocks.
1da177e4 1050 * If a block is freed, and its buddy is also free, then this
5f63b720 1051 * triggers coalescing into a block of larger size.
1da177e4 1052 *
6d49e352 1053 * -- nyc
1da177e4
LT
1054 */
1055
48db57f8 1056static inline void __free_one_page(struct page *page,
dc4b0caf 1057 unsigned long pfn,
ed0ae21d 1058 struct zone *zone, unsigned int order,
f04a5d5d 1059 int migratetype, fpi_t fpi_flags)
1da177e4 1060{
a2129f24 1061 struct capture_control *capc = task_capc(zone);
3f649ab7 1062 unsigned long buddy_pfn;
a2129f24 1063 unsigned long combined_pfn;
d9dddbf5 1064 unsigned int max_order;
a2129f24
AD
1065 struct page *buddy;
1066 bool to_tail;
d9dddbf5 1067
7ad69832 1068 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1069
d29bb978 1070 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1071 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1072
ed0ae21d 1073 VM_BUG_ON(migratetype == -1);
d9dddbf5 1074 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1075 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1076
76741e77 1077 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1078 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1079
d9dddbf5 1080continue_merging:
7ad69832 1081 while (order < max_order) {
5e1f0f09
MG
1082 if (compaction_capture(capc, page, order, migratetype)) {
1083 __mod_zone_freepage_state(zone, -(1 << order),
1084 migratetype);
1085 return;
1086 }
76741e77
VB
1087 buddy_pfn = __find_buddy_pfn(pfn, order);
1088 buddy = page + (buddy_pfn - pfn);
13ad59df 1089
cb2b95e1 1090 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1091 goto done_merging;
c0a32fc5
SG
1092 /*
1093 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1094 * merge with it and move up one order.
1095 */
b03641af 1096 if (page_is_guard(buddy))
2847cf95 1097 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1098 else
6ab01363 1099 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1100 combined_pfn = buddy_pfn & pfn;
1101 page = page + (combined_pfn - pfn);
1102 pfn = combined_pfn;
1da177e4
LT
1103 order++;
1104 }
7ad69832 1105 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1106 /* If we are here, it means order is >= pageblock_order.
1107 * We want to prevent merge between freepages on isolate
1108 * pageblock and normal pageblock. Without this, pageblock
1109 * isolation could cause incorrect freepage or CMA accounting.
1110 *
1111 * We don't want to hit this code for the more frequent
1112 * low-order merging.
1113 */
1114 if (unlikely(has_isolate_pageblock(zone))) {
1115 int buddy_mt;
1116
76741e77
VB
1117 buddy_pfn = __find_buddy_pfn(pfn, order);
1118 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1119 buddy_mt = get_pageblock_migratetype(buddy);
1120
1121 if (migratetype != buddy_mt
1122 && (is_migrate_isolate(migratetype) ||
1123 is_migrate_isolate(buddy_mt)))
1124 goto done_merging;
1125 }
7ad69832 1126 max_order = order + 1;
d9dddbf5
VB
1127 goto continue_merging;
1128 }
1129
1130done_merging:
ab130f91 1131 set_buddy_order(page, order);
6dda9d55 1132
47b6a24a
DH
1133 if (fpi_flags & FPI_TO_TAIL)
1134 to_tail = true;
1135 else if (is_shuffle_order(order))
a2129f24 1136 to_tail = shuffle_pick_tail();
97500a4a 1137 else
a2129f24 1138 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1139
a2129f24 1140 if (to_tail)
6ab01363 1141 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1142 else
6ab01363 1143 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1144
1145 /* Notify page reporting subsystem of freed page */
f04a5d5d 1146 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1147 page_reporting_notify_free(order);
1da177e4
LT
1148}
1149
7bfec6f4
MG
1150/*
1151 * A bad page could be due to a number of fields. Instead of multiple branches,
1152 * try and check multiple fields with one check. The caller must do a detailed
1153 * check if necessary.
1154 */
1155static inline bool page_expected_state(struct page *page,
1156 unsigned long check_flags)
1157{
1158 if (unlikely(atomic_read(&page->_mapcount) != -1))
1159 return false;
1160
1161 if (unlikely((unsigned long)page->mapping |
1162 page_ref_count(page) |
1163#ifdef CONFIG_MEMCG
48060834 1164 page->memcg_data |
7bfec6f4
MG
1165#endif
1166 (page->flags & check_flags)))
1167 return false;
1168
1169 return true;
1170}
1171
58b7f119 1172static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1173{
82a3241a 1174 const char *bad_reason = NULL;
f0b791a3 1175
53f9263b 1176 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1177 bad_reason = "nonzero mapcount";
1178 if (unlikely(page->mapping != NULL))
1179 bad_reason = "non-NULL mapping";
fe896d18 1180 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1181 bad_reason = "nonzero _refcount";
58b7f119
WY
1182 if (unlikely(page->flags & flags)) {
1183 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1184 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1185 else
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1187 }
9edad6ea 1188#ifdef CONFIG_MEMCG
48060834 1189 if (unlikely(page->memcg_data))
9edad6ea
JW
1190 bad_reason = "page still charged to cgroup";
1191#endif
58b7f119
WY
1192 return bad_reason;
1193}
1194
1195static void check_free_page_bad(struct page *page)
1196{
1197 bad_page(page,
1198 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1199}
1200
534fe5e3 1201static inline int check_free_page(struct page *page)
bb552ac6 1202{
da838d4f 1203 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1204 return 0;
bb552ac6
MG
1205
1206 /* Something has gone sideways, find it */
0d0c48a2 1207 check_free_page_bad(page);
7bfec6f4 1208 return 1;
1da177e4
LT
1209}
1210
4db7548c
MG
1211static int free_tail_pages_check(struct page *head_page, struct page *page)
1212{
1213 int ret = 1;
1214
1215 /*
1216 * We rely page->lru.next never has bit 0 set, unless the page
1217 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1218 */
1219 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1220
1221 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1222 ret = 0;
1223 goto out;
1224 }
1225 switch (page - head_page) {
1226 case 1:
4da1984e 1227 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1228 if (unlikely(compound_mapcount(page))) {
82a3241a 1229 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1230 goto out;
1231 }
1232 break;
1233 case 2:
1234 /*
1235 * the second tail page: ->mapping is
fa3015b7 1236 * deferred_list.next -- ignore value.
4db7548c
MG
1237 */
1238 break;
1239 default:
1240 if (page->mapping != TAIL_MAPPING) {
82a3241a 1241 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1242 goto out;
1243 }
1244 break;
1245 }
1246 if (unlikely(!PageTail(page))) {
82a3241a 1247 bad_page(page, "PageTail not set");
4db7548c
MG
1248 goto out;
1249 }
1250 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1251 bad_page(page, "compound_head not consistent");
4db7548c
MG
1252 goto out;
1253 }
1254 ret = 0;
1255out:
1256 page->mapping = NULL;
1257 clear_compound_head(page);
1258 return ret;
1259}
1260
013bb59d 1261static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
6471384a
AP
1262{
1263 int i;
1264
013bb59d
PC
1265 if (zero_tags) {
1266 for (i = 0; i < numpages; i++)
1267 tag_clear_highpage(page + i);
1268 return;
1269 }
1270
9e15afa5
QC
1271 /* s390's use of memset() could override KASAN redzones. */
1272 kasan_disable_current();
aa1ef4d7 1273 for (i = 0; i < numpages; i++) {
acb35b17 1274 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1275 page_kasan_tag_reset(page + i);
6471384a 1276 clear_highpage(page + i);
acb35b17 1277 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1278 }
9e15afa5 1279 kasan_enable_current();
6471384a
AP
1280}
1281
e2769dbd 1282static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1283 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1284{
e2769dbd 1285 int bad = 0;
c275c5c6 1286 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
4db7548c 1287
4db7548c
MG
1288 VM_BUG_ON_PAGE(PageTail(page), page);
1289
e2769dbd 1290 trace_mm_page_free(page, order);
e2769dbd 1291
79f5f8fa
OS
1292 if (unlikely(PageHWPoison(page)) && !order) {
1293 /*
1294 * Do not let hwpoison pages hit pcplists/buddy
1295 * Untie memcg state and reset page's owner
1296 */
18b2db3b 1297 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1298 __memcg_kmem_uncharge_page(page, order);
1299 reset_page_owner(page, order);
1300 return false;
1301 }
1302
e2769dbd
MG
1303 /*
1304 * Check tail pages before head page information is cleared to
1305 * avoid checking PageCompound for order-0 pages.
1306 */
1307 if (unlikely(order)) {
1308 bool compound = PageCompound(page);
1309 int i;
1310
1311 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1312
eac96c3e 1313 if (compound) {
9a73f61b 1314 ClearPageDoubleMap(page);
eac96c3e
YS
1315 ClearPageHasHWPoisoned(page);
1316 }
e2769dbd
MG
1317 for (i = 1; i < (1 << order); i++) {
1318 if (compound)
1319 bad += free_tail_pages_check(page, page + i);
534fe5e3 1320 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1321 bad++;
1322 continue;
1323 }
1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 }
1326 }
bda807d4 1327 if (PageMappingFlags(page))
4db7548c 1328 page->mapping = NULL;
18b2db3b 1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1330 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1331 if (check_free)
534fe5e3 1332 bad += check_free_page(page);
e2769dbd
MG
1333 if (bad)
1334 return false;
4db7548c 1335
e2769dbd
MG
1336 page_cpupid_reset_last(page);
1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 reset_page_owner(page, order);
4db7548c
MG
1339
1340 if (!PageHighMem(page)) {
1341 debug_check_no_locks_freed(page_address(page),
e2769dbd 1342 PAGE_SIZE << order);
4db7548c 1343 debug_check_no_obj_freed(page_address(page),
e2769dbd 1344 PAGE_SIZE << order);
4db7548c 1345 }
6471384a 1346
8db26a3d
VB
1347 kernel_poison_pages(page, 1 << order);
1348
f9d79e8d 1349 /*
1bb5eab3
AK
1350 * As memory initialization might be integrated into KASAN,
1351 * kasan_free_pages and kernel_init_free_pages must be
1352 * kept together to avoid discrepancies in behavior.
1353 *
f9d79e8d
AK
1354 * With hardware tag-based KASAN, memory tags must be set before the
1355 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 */
7a3b8353
PC
1357 if (kasan_has_integrated_init()) {
1358 if (!skip_kasan_poison)
1359 kasan_free_pages(page, order);
1360 } else {
1361 bool init = want_init_on_free();
1362
1363 if (init)
013bb59d 1364 kernel_init_free_pages(page, 1 << order, false);
7a3b8353
PC
1365 if (!skip_kasan_poison)
1366 kasan_poison_pages(page, order, init);
1367 }
f9d79e8d 1368
234fdce8
QC
1369 /*
1370 * arch_free_page() can make the page's contents inaccessible. s390
1371 * does this. So nothing which can access the page's contents should
1372 * happen after this.
1373 */
1374 arch_free_page(page, order);
1375
77bc7fd6 1376 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1377
4db7548c
MG
1378 return true;
1379}
1380
e2769dbd 1381#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1382/*
1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385 * moved from pcp lists to free lists.
1386 */
44042b44 1387static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1388{
44042b44 1389 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1390}
1391
4462b32c 1392static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1393{
8e57f8ac 1394 if (debug_pagealloc_enabled_static())
534fe5e3 1395 return check_free_page(page);
4462b32c
VB
1396 else
1397 return false;
e2769dbd
MG
1398}
1399#else
4462b32c
VB
1400/*
1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402 * moving from pcp lists to free list in order to reduce overhead. With
1403 * debug_pagealloc enabled, they are checked also immediately when being freed
1404 * to the pcp lists.
1405 */
44042b44 1406static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1407{
8e57f8ac 1408 if (debug_pagealloc_enabled_static())
44042b44 1409 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1410 else
44042b44 1411 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1412}
1413
4db7548c
MG
1414static bool bulkfree_pcp_prepare(struct page *page)
1415{
534fe5e3 1416 return check_free_page(page);
4db7548c
MG
1417}
1418#endif /* CONFIG_DEBUG_VM */
1419
97334162
AL
1420static inline void prefetch_buddy(struct page *page)
1421{
1422 unsigned long pfn = page_to_pfn(page);
1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 struct page *buddy = page + (buddy_pfn - pfn);
1425
1426 prefetch(buddy);
1427}
1428
1da177e4 1429/*
5f8dcc21 1430 * Frees a number of pages from the PCP lists
1da177e4 1431 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1432 * count is the number of pages to free.
1da177e4
LT
1433 *
1434 * If the zone was previously in an "all pages pinned" state then look to
1435 * see if this freeing clears that state.
1436 *
1437 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1438 * pinned" detection logic.
1439 */
5f8dcc21
MG
1440static void free_pcppages_bulk(struct zone *zone, int count,
1441 struct per_cpu_pages *pcp)
1da177e4 1442{
44042b44 1443 int pindex = 0;
a6f9edd6 1444 int batch_free = 0;
44042b44
MG
1445 int nr_freed = 0;
1446 unsigned int order;
5c3ad2eb 1447 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1448 bool isolated_pageblocks;
0a5f4e5b
AL
1449 struct page *page, *tmp;
1450 LIST_HEAD(head);
f2260e6b 1451
88e8ac11
CTR
1452 /*
1453 * Ensure proper count is passed which otherwise would stuck in the
1454 * below while (list_empty(list)) loop.
1455 */
1456 count = min(pcp->count, count);
44042b44 1457 while (count > 0) {
5f8dcc21
MG
1458 struct list_head *list;
1459
1460 /*
a6f9edd6
MG
1461 * Remove pages from lists in a round-robin fashion. A
1462 * batch_free count is maintained that is incremented when an
1463 * empty list is encountered. This is so more pages are freed
1464 * off fuller lists instead of spinning excessively around empty
1465 * lists
5f8dcc21
MG
1466 */
1467 do {
a6f9edd6 1468 batch_free++;
44042b44
MG
1469 if (++pindex == NR_PCP_LISTS)
1470 pindex = 0;
1471 list = &pcp->lists[pindex];
5f8dcc21 1472 } while (list_empty(list));
48db57f8 1473
1d16871d 1474 /* This is the only non-empty list. Free them all. */
44042b44 1475 if (batch_free == NR_PCP_LISTS)
e5b31ac2 1476 batch_free = count;
1d16871d 1477
44042b44
MG
1478 order = pindex_to_order(pindex);
1479 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1480 do {
a16601c5 1481 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1482 /* must delete to avoid corrupting pcp list */
a6f9edd6 1483 list_del(&page->lru);
44042b44
MG
1484 nr_freed += 1 << order;
1485 count -= 1 << order;
aa016d14 1486
4db7548c
MG
1487 if (bulkfree_pcp_prepare(page))
1488 continue;
1489
44042b44
MG
1490 /* Encode order with the migratetype */
1491 page->index <<= NR_PCP_ORDER_WIDTH;
1492 page->index |= order;
1493
0a5f4e5b 1494 list_add_tail(&page->lru, &head);
97334162
AL
1495
1496 /*
1497 * We are going to put the page back to the global
1498 * pool, prefetch its buddy to speed up later access
1499 * under zone->lock. It is believed the overhead of
1500 * an additional test and calculating buddy_pfn here
1501 * can be offset by reduced memory latency later. To
1502 * avoid excessive prefetching due to large count, only
1503 * prefetch buddy for the first pcp->batch nr of pages.
1504 */
5c3ad2eb 1505 if (prefetch_nr) {
97334162 1506 prefetch_buddy(page);
5c3ad2eb
VB
1507 prefetch_nr--;
1508 }
44042b44 1509 } while (count > 0 && --batch_free && !list_empty(list));
1da177e4 1510 }
44042b44 1511 pcp->count -= nr_freed;
0a5f4e5b 1512
dbbee9d5
MG
1513 /*
1514 * local_lock_irq held so equivalent to spin_lock_irqsave for
1515 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1516 */
0a5f4e5b
AL
1517 spin_lock(&zone->lock);
1518 isolated_pageblocks = has_isolate_pageblock(zone);
1519
1520 /*
1521 * Use safe version since after __free_one_page(),
1522 * page->lru.next will not point to original list.
1523 */
1524 list_for_each_entry_safe(page, tmp, &head, lru) {
1525 int mt = get_pcppage_migratetype(page);
44042b44
MG
1526
1527 /* mt has been encoded with the order (see above) */
1528 order = mt & NR_PCP_ORDER_MASK;
1529 mt >>= NR_PCP_ORDER_WIDTH;
1530
0a5f4e5b
AL
1531 /* MIGRATE_ISOLATE page should not go to pcplists */
1532 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1533 /* Pageblock could have been isolated meanwhile */
1534 if (unlikely(isolated_pageblocks))
1535 mt = get_pageblock_migratetype(page);
1536
44042b44
MG
1537 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1538 trace_mm_page_pcpu_drain(page, order, mt);
0a5f4e5b 1539 }
d34b0733 1540 spin_unlock(&zone->lock);
1da177e4
LT
1541}
1542
dc4b0caf
MG
1543static void free_one_page(struct zone *zone,
1544 struct page *page, unsigned long pfn,
7aeb09f9 1545 unsigned int order,
7fef431b 1546 int migratetype, fpi_t fpi_flags)
1da177e4 1547{
df1acc85
MG
1548 unsigned long flags;
1549
1550 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1551 if (unlikely(has_isolate_pageblock(zone) ||
1552 is_migrate_isolate(migratetype))) {
1553 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1554 }
7fef431b 1555 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1556 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1557}
1558
1e8ce83c 1559static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1560 unsigned long zone, int nid)
1e8ce83c 1561{
d0dc12e8 1562 mm_zero_struct_page(page);
1e8ce83c 1563 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1564 init_page_count(page);
1565 page_mapcount_reset(page);
1566 page_cpupid_reset_last(page);
2813b9c0 1567 page_kasan_tag_reset(page);
1e8ce83c 1568
1e8ce83c
RH
1569 INIT_LIST_HEAD(&page->lru);
1570#ifdef WANT_PAGE_VIRTUAL
1571 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1572 if (!is_highmem_idx(zone))
1573 set_page_address(page, __va(pfn << PAGE_SHIFT));
1574#endif
1575}
1576
7e18adb4 1577#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1578static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1579{
1580 pg_data_t *pgdat;
1581 int nid, zid;
1582
1583 if (!early_page_uninitialised(pfn))
1584 return;
1585
1586 nid = early_pfn_to_nid(pfn);
1587 pgdat = NODE_DATA(nid);
1588
1589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1590 struct zone *zone = &pgdat->node_zones[zid];
1591
1592 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1593 break;
1594 }
d0dc12e8 1595 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1596}
1597#else
1598static inline void init_reserved_page(unsigned long pfn)
1599{
1600}
1601#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1602
92923ca3
NZ
1603/*
1604 * Initialised pages do not have PageReserved set. This function is
1605 * called for each range allocated by the bootmem allocator and
1606 * marks the pages PageReserved. The remaining valid pages are later
1607 * sent to the buddy page allocator.
1608 */
4b50bcc7 1609void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1610{
1611 unsigned long start_pfn = PFN_DOWN(start);
1612 unsigned long end_pfn = PFN_UP(end);
1613
7e18adb4
MG
1614 for (; start_pfn < end_pfn; start_pfn++) {
1615 if (pfn_valid(start_pfn)) {
1616 struct page *page = pfn_to_page(start_pfn);
1617
1618 init_reserved_page(start_pfn);
1d798ca3
KS
1619
1620 /* Avoid false-positive PageTail() */
1621 INIT_LIST_HEAD(&page->lru);
1622
d483da5b
AD
1623 /*
1624 * no need for atomic set_bit because the struct
1625 * page is not visible yet so nobody should
1626 * access it yet.
1627 */
1628 __SetPageReserved(page);
7e18adb4
MG
1629 }
1630 }
92923ca3
NZ
1631}
1632
7fef431b
DH
1633static void __free_pages_ok(struct page *page, unsigned int order,
1634 fpi_t fpi_flags)
ec95f53a 1635{
d34b0733 1636 unsigned long flags;
95e34412 1637 int migratetype;
dc4b0caf 1638 unsigned long pfn = page_to_pfn(page);
56f0e661 1639 struct zone *zone = page_zone(page);
ec95f53a 1640
2c335680 1641 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1642 return;
1643
cfc47a28 1644 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1645
56f0e661 1646 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1647 if (unlikely(has_isolate_pageblock(zone) ||
1648 is_migrate_isolate(migratetype))) {
1649 migratetype = get_pfnblock_migratetype(page, pfn);
1650 }
1651 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1652 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1653
d34b0733 1654 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1655}
1656
a9cd410a 1657void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1658{
c3993076 1659 unsigned int nr_pages = 1 << order;
e2d0bd2b 1660 struct page *p = page;
c3993076 1661 unsigned int loop;
a226f6c8 1662
7fef431b
DH
1663 /*
1664 * When initializing the memmap, __init_single_page() sets the refcount
1665 * of all pages to 1 ("allocated"/"not free"). We have to set the
1666 * refcount of all involved pages to 0.
1667 */
e2d0bd2b
YL
1668 prefetchw(p);
1669 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1670 prefetchw(p + 1);
c3993076
JW
1671 __ClearPageReserved(p);
1672 set_page_count(p, 0);
a226f6c8 1673 }
e2d0bd2b
YL
1674 __ClearPageReserved(p);
1675 set_page_count(p, 0);
c3993076 1676
9705bea5 1677 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1678
1679 /*
1680 * Bypass PCP and place fresh pages right to the tail, primarily
1681 * relevant for memory onlining.
1682 */
2c335680 1683 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1684}
1685
a9ee6cf5 1686#ifdef CONFIG_NUMA
7ace9917 1687
03e92a5e
MR
1688/*
1689 * During memory init memblocks map pfns to nids. The search is expensive and
1690 * this caches recent lookups. The implementation of __early_pfn_to_nid
1691 * treats start/end as pfns.
1692 */
1693struct mminit_pfnnid_cache {
1694 unsigned long last_start;
1695 unsigned long last_end;
1696 int last_nid;
1697};
75a592a4 1698
03e92a5e 1699static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1700
1701/*
1702 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1703 */
03e92a5e 1704static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1705 struct mminit_pfnnid_cache *state)
75a592a4 1706{
6f24fbd3 1707 unsigned long start_pfn, end_pfn;
75a592a4
MG
1708 int nid;
1709
6f24fbd3
MR
1710 if (state->last_start <= pfn && pfn < state->last_end)
1711 return state->last_nid;
1712
1713 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1714 if (nid != NUMA_NO_NODE) {
1715 state->last_start = start_pfn;
1716 state->last_end = end_pfn;
1717 state->last_nid = nid;
1718 }
7ace9917
MG
1719
1720 return nid;
75a592a4 1721}
75a592a4 1722
75a592a4 1723int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1724{
7ace9917 1725 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1726 int nid;
1727
7ace9917 1728 spin_lock(&early_pfn_lock);
56ec43d8 1729 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1730 if (nid < 0)
e4568d38 1731 nid = first_online_node;
7ace9917 1732 spin_unlock(&early_pfn_lock);
75a592a4 1733
7ace9917 1734 return nid;
75a592a4 1735}
a9ee6cf5 1736#endif /* CONFIG_NUMA */
75a592a4 1737
7c2ee349 1738void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1739 unsigned int order)
1740{
1741 if (early_page_uninitialised(pfn))
1742 return;
a9cd410a 1743 __free_pages_core(page, order);
3a80a7fa
MG
1744}
1745
7cf91a98
JK
1746/*
1747 * Check that the whole (or subset of) a pageblock given by the interval of
1748 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1749 * with the migration of free compaction scanner.
7cf91a98
JK
1750 *
1751 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1752 *
1753 * It's possible on some configurations to have a setup like node0 node1 node0
1754 * i.e. it's possible that all pages within a zones range of pages do not
1755 * belong to a single zone. We assume that a border between node0 and node1
1756 * can occur within a single pageblock, but not a node0 node1 node0
1757 * interleaving within a single pageblock. It is therefore sufficient to check
1758 * the first and last page of a pageblock and avoid checking each individual
1759 * page in a pageblock.
1760 */
1761struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1762 unsigned long end_pfn, struct zone *zone)
1763{
1764 struct page *start_page;
1765 struct page *end_page;
1766
1767 /* end_pfn is one past the range we are checking */
1768 end_pfn--;
1769
1770 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1771 return NULL;
1772
2d070eab
MH
1773 start_page = pfn_to_online_page(start_pfn);
1774 if (!start_page)
1775 return NULL;
7cf91a98
JK
1776
1777 if (page_zone(start_page) != zone)
1778 return NULL;
1779
1780 end_page = pfn_to_page(end_pfn);
1781
1782 /* This gives a shorter code than deriving page_zone(end_page) */
1783 if (page_zone_id(start_page) != page_zone_id(end_page))
1784 return NULL;
1785
1786 return start_page;
1787}
1788
1789void set_zone_contiguous(struct zone *zone)
1790{
1791 unsigned long block_start_pfn = zone->zone_start_pfn;
1792 unsigned long block_end_pfn;
1793
1794 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1795 for (; block_start_pfn < zone_end_pfn(zone);
1796 block_start_pfn = block_end_pfn,
1797 block_end_pfn += pageblock_nr_pages) {
1798
1799 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1800
1801 if (!__pageblock_pfn_to_page(block_start_pfn,
1802 block_end_pfn, zone))
1803 return;
e84fe99b 1804 cond_resched();
7cf91a98
JK
1805 }
1806
1807 /* We confirm that there is no hole */
1808 zone->contiguous = true;
1809}
1810
1811void clear_zone_contiguous(struct zone *zone)
1812{
1813 zone->contiguous = false;
1814}
1815
7e18adb4 1816#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1817static void __init deferred_free_range(unsigned long pfn,
1818 unsigned long nr_pages)
a4de83dd 1819{
2f47a91f
PT
1820 struct page *page;
1821 unsigned long i;
a4de83dd 1822
2f47a91f 1823 if (!nr_pages)
a4de83dd
MG
1824 return;
1825
2f47a91f
PT
1826 page = pfn_to_page(pfn);
1827
a4de83dd 1828 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1829 if (nr_pages == pageblock_nr_pages &&
1830 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1831 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1832 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1833 return;
1834 }
1835
e780149b
XQ
1836 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1837 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1838 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1839 __free_pages_core(page, 0);
e780149b 1840 }
a4de83dd
MG
1841}
1842
d3cd131d
NS
1843/* Completion tracking for deferred_init_memmap() threads */
1844static atomic_t pgdat_init_n_undone __initdata;
1845static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1846
1847static inline void __init pgdat_init_report_one_done(void)
1848{
1849 if (atomic_dec_and_test(&pgdat_init_n_undone))
1850 complete(&pgdat_init_all_done_comp);
1851}
0e1cc95b 1852
2f47a91f 1853/*
80b1f41c
PT
1854 * Returns true if page needs to be initialized or freed to buddy allocator.
1855 *
1856 * First we check if pfn is valid on architectures where it is possible to have
1857 * holes within pageblock_nr_pages. On systems where it is not possible, this
1858 * function is optimized out.
1859 *
1860 * Then, we check if a current large page is valid by only checking the validity
1861 * of the head pfn.
2f47a91f 1862 */
56ec43d8 1863static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1864{
80b1f41c
PT
1865 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1866 return false;
80b1f41c
PT
1867 return true;
1868}
2f47a91f 1869
80b1f41c
PT
1870/*
1871 * Free pages to buddy allocator. Try to free aligned pages in
1872 * pageblock_nr_pages sizes.
1873 */
56ec43d8 1874static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1875 unsigned long end_pfn)
1876{
80b1f41c
PT
1877 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1878 unsigned long nr_free = 0;
2f47a91f 1879
80b1f41c 1880 for (; pfn < end_pfn; pfn++) {
56ec43d8 1881 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1882 deferred_free_range(pfn - nr_free, nr_free);
1883 nr_free = 0;
1884 } else if (!(pfn & nr_pgmask)) {
1885 deferred_free_range(pfn - nr_free, nr_free);
1886 nr_free = 1;
80b1f41c
PT
1887 } else {
1888 nr_free++;
1889 }
1890 }
1891 /* Free the last block of pages to allocator */
1892 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1893}
1894
80b1f41c
PT
1895/*
1896 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1897 * by performing it only once every pageblock_nr_pages.
1898 * Return number of pages initialized.
1899 */
56ec43d8 1900static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1901 unsigned long pfn,
1902 unsigned long end_pfn)
2f47a91f 1903{
2f47a91f 1904 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1905 int nid = zone_to_nid(zone);
2f47a91f 1906 unsigned long nr_pages = 0;
56ec43d8 1907 int zid = zone_idx(zone);
2f47a91f 1908 struct page *page = NULL;
2f47a91f 1909
80b1f41c 1910 for (; pfn < end_pfn; pfn++) {
56ec43d8 1911 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1912 page = NULL;
2f47a91f 1913 continue;
80b1f41c 1914 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1915 page = pfn_to_page(pfn);
80b1f41c
PT
1916 } else {
1917 page++;
2f47a91f 1918 }
d0dc12e8 1919 __init_single_page(page, pfn, zid, nid);
80b1f41c 1920 nr_pages++;
2f47a91f 1921 }
80b1f41c 1922 return (nr_pages);
2f47a91f
PT
1923}
1924
0e56acae
AD
1925/*
1926 * This function is meant to pre-load the iterator for the zone init.
1927 * Specifically it walks through the ranges until we are caught up to the
1928 * first_init_pfn value and exits there. If we never encounter the value we
1929 * return false indicating there are no valid ranges left.
1930 */
1931static bool __init
1932deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1933 unsigned long *spfn, unsigned long *epfn,
1934 unsigned long first_init_pfn)
1935{
1936 u64 j;
1937
1938 /*
1939 * Start out by walking through the ranges in this zone that have
1940 * already been initialized. We don't need to do anything with them
1941 * so we just need to flush them out of the system.
1942 */
1943 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1944 if (*epfn <= first_init_pfn)
1945 continue;
1946 if (*spfn < first_init_pfn)
1947 *spfn = first_init_pfn;
1948 *i = j;
1949 return true;
1950 }
1951
1952 return false;
1953}
1954
1955/*
1956 * Initialize and free pages. We do it in two loops: first we initialize
1957 * struct page, then free to buddy allocator, because while we are
1958 * freeing pages we can access pages that are ahead (computing buddy
1959 * page in __free_one_page()).
1960 *
1961 * In order to try and keep some memory in the cache we have the loop
1962 * broken along max page order boundaries. This way we will not cause
1963 * any issues with the buddy page computation.
1964 */
1965static unsigned long __init
1966deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1967 unsigned long *end_pfn)
1968{
1969 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1970 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1971 unsigned long nr_pages = 0;
1972 u64 j = *i;
1973
1974 /* First we loop through and initialize the page values */
1975 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1976 unsigned long t;
1977
1978 if (mo_pfn <= *start_pfn)
1979 break;
1980
1981 t = min(mo_pfn, *end_pfn);
1982 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1983
1984 if (mo_pfn < *end_pfn) {
1985 *start_pfn = mo_pfn;
1986 break;
1987 }
1988 }
1989
1990 /* Reset values and now loop through freeing pages as needed */
1991 swap(j, *i);
1992
1993 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1994 unsigned long t;
1995
1996 if (mo_pfn <= spfn)
1997 break;
1998
1999 t = min(mo_pfn, epfn);
2000 deferred_free_pages(spfn, t);
2001
2002 if (mo_pfn <= epfn)
2003 break;
2004 }
2005
2006 return nr_pages;
2007}
2008
e4443149
DJ
2009static void __init
2010deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2011 void *arg)
2012{
2013 unsigned long spfn, epfn;
2014 struct zone *zone = arg;
2015 u64 i;
2016
2017 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2018
2019 /*
2020 * Initialize and free pages in MAX_ORDER sized increments so that we
2021 * can avoid introducing any issues with the buddy allocator.
2022 */
2023 while (spfn < end_pfn) {
2024 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2025 cond_resched();
2026 }
2027}
2028
ecd09650
DJ
2029/* An arch may override for more concurrency. */
2030__weak int __init
2031deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2032{
2033 return 1;
2034}
2035
7e18adb4 2036/* Initialise remaining memory on a node */
0e1cc95b 2037static int __init deferred_init_memmap(void *data)
7e18adb4 2038{
0e1cc95b 2039 pg_data_t *pgdat = data;
0e56acae 2040 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2041 unsigned long spfn = 0, epfn = 0;
0e56acae 2042 unsigned long first_init_pfn, flags;
7e18adb4 2043 unsigned long start = jiffies;
7e18adb4 2044 struct zone *zone;
e4443149 2045 int zid, max_threads;
2f47a91f 2046 u64 i;
7e18adb4 2047
3a2d7fa8
PT
2048 /* Bind memory initialisation thread to a local node if possible */
2049 if (!cpumask_empty(cpumask))
2050 set_cpus_allowed_ptr(current, cpumask);
2051
2052 pgdat_resize_lock(pgdat, &flags);
2053 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2054 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2055 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2056 pgdat_init_report_one_done();
0e1cc95b
MG
2057 return 0;
2058 }
2059
7e18adb4
MG
2060 /* Sanity check boundaries */
2061 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2062 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2063 pgdat->first_deferred_pfn = ULONG_MAX;
2064
3d060856
PT
2065 /*
2066 * Once we unlock here, the zone cannot be grown anymore, thus if an
2067 * interrupt thread must allocate this early in boot, zone must be
2068 * pre-grown prior to start of deferred page initialization.
2069 */
2070 pgdat_resize_unlock(pgdat, &flags);
2071
7e18adb4
MG
2072 /* Only the highest zone is deferred so find it */
2073 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2074 zone = pgdat->node_zones + zid;
2075 if (first_init_pfn < zone_end_pfn(zone))
2076 break;
2077 }
0e56acae
AD
2078
2079 /* If the zone is empty somebody else may have cleared out the zone */
2080 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2081 first_init_pfn))
2082 goto zone_empty;
7e18adb4 2083
ecd09650 2084 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2085
117003c3 2086 while (spfn < epfn) {
e4443149
DJ
2087 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2088 struct padata_mt_job job = {
2089 .thread_fn = deferred_init_memmap_chunk,
2090 .fn_arg = zone,
2091 .start = spfn,
2092 .size = epfn_align - spfn,
2093 .align = PAGES_PER_SECTION,
2094 .min_chunk = PAGES_PER_SECTION,
2095 .max_threads = max_threads,
2096 };
2097
2098 padata_do_multithreaded(&job);
2099 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2100 epfn_align);
117003c3 2101 }
0e56acae 2102zone_empty:
7e18adb4
MG
2103 /* Sanity check that the next zone really is unpopulated */
2104 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2105
89c7c402
DJ
2106 pr_info("node %d deferred pages initialised in %ums\n",
2107 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2108
2109 pgdat_init_report_one_done();
0e1cc95b
MG
2110 return 0;
2111}
c9e97a19 2112
c9e97a19
PT
2113/*
2114 * If this zone has deferred pages, try to grow it by initializing enough
2115 * deferred pages to satisfy the allocation specified by order, rounded up to
2116 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2117 * of SECTION_SIZE bytes by initializing struct pages in increments of
2118 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2119 *
2120 * Return true when zone was grown, otherwise return false. We return true even
2121 * when we grow less than requested, to let the caller decide if there are
2122 * enough pages to satisfy the allocation.
2123 *
2124 * Note: We use noinline because this function is needed only during boot, and
2125 * it is called from a __ref function _deferred_grow_zone. This way we are
2126 * making sure that it is not inlined into permanent text section.
2127 */
2128static noinline bool __init
2129deferred_grow_zone(struct zone *zone, unsigned int order)
2130{
c9e97a19 2131 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2132 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2133 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2134 unsigned long spfn, epfn, flags;
2135 unsigned long nr_pages = 0;
c9e97a19
PT
2136 u64 i;
2137
2138 /* Only the last zone may have deferred pages */
2139 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2140 return false;
2141
2142 pgdat_resize_lock(pgdat, &flags);
2143
c9e97a19
PT
2144 /*
2145 * If someone grew this zone while we were waiting for spinlock, return
2146 * true, as there might be enough pages already.
2147 */
2148 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2149 pgdat_resize_unlock(pgdat, &flags);
2150 return true;
2151 }
2152
0e56acae
AD
2153 /* If the zone is empty somebody else may have cleared out the zone */
2154 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2155 first_deferred_pfn)) {
2156 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2157 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2158 /* Retry only once. */
2159 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2160 }
2161
0e56acae
AD
2162 /*
2163 * Initialize and free pages in MAX_ORDER sized increments so
2164 * that we can avoid introducing any issues with the buddy
2165 * allocator.
2166 */
2167 while (spfn < epfn) {
2168 /* update our first deferred PFN for this section */
2169 first_deferred_pfn = spfn;
2170
2171 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2172 touch_nmi_watchdog();
c9e97a19 2173
0e56acae
AD
2174 /* We should only stop along section boundaries */
2175 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2176 continue;
c9e97a19 2177
0e56acae 2178 /* If our quota has been met we can stop here */
c9e97a19
PT
2179 if (nr_pages >= nr_pages_needed)
2180 break;
2181 }
2182
0e56acae 2183 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2184 pgdat_resize_unlock(pgdat, &flags);
2185
2186 return nr_pages > 0;
2187}
2188
2189/*
2190 * deferred_grow_zone() is __init, but it is called from
2191 * get_page_from_freelist() during early boot until deferred_pages permanently
2192 * disables this call. This is why we have refdata wrapper to avoid warning,
2193 * and to ensure that the function body gets unloaded.
2194 */
2195static bool __ref
2196_deferred_grow_zone(struct zone *zone, unsigned int order)
2197{
2198 return deferred_grow_zone(zone, order);
2199}
2200
7cf91a98 2201#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2202
2203void __init page_alloc_init_late(void)
2204{
7cf91a98 2205 struct zone *zone;
e900a918 2206 int nid;
7cf91a98
JK
2207
2208#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2209
d3cd131d
NS
2210 /* There will be num_node_state(N_MEMORY) threads */
2211 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2212 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2213 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2214 }
2215
2216 /* Block until all are initialised */
d3cd131d 2217 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2218
c9e97a19
PT
2219 /*
2220 * We initialized the rest of the deferred pages. Permanently disable
2221 * on-demand struct page initialization.
2222 */
2223 static_branch_disable(&deferred_pages);
2224
4248b0da
MG
2225 /* Reinit limits that are based on free pages after the kernel is up */
2226 files_maxfiles_init();
7cf91a98 2227#endif
350e88ba 2228
ba8f3587
LF
2229 buffer_init();
2230
3010f876
PT
2231 /* Discard memblock private memory */
2232 memblock_discard();
7cf91a98 2233
e900a918
DW
2234 for_each_node_state(nid, N_MEMORY)
2235 shuffle_free_memory(NODE_DATA(nid));
2236
7cf91a98
JK
2237 for_each_populated_zone(zone)
2238 set_zone_contiguous(zone);
7e18adb4 2239}
7e18adb4 2240
47118af0 2241#ifdef CONFIG_CMA
9cf510a5 2242/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2243void __init init_cma_reserved_pageblock(struct page *page)
2244{
2245 unsigned i = pageblock_nr_pages;
2246 struct page *p = page;
2247
2248 do {
2249 __ClearPageReserved(p);
2250 set_page_count(p, 0);
d883c6cf 2251 } while (++p, --i);
47118af0 2252
47118af0 2253 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2254
2255 if (pageblock_order >= MAX_ORDER) {
2256 i = pageblock_nr_pages;
2257 p = page;
2258 do {
2259 set_page_refcounted(p);
2260 __free_pages(p, MAX_ORDER - 1);
2261 p += MAX_ORDER_NR_PAGES;
2262 } while (i -= MAX_ORDER_NR_PAGES);
2263 } else {
2264 set_page_refcounted(page);
2265 __free_pages(page, pageblock_order);
2266 }
2267
3dcc0571 2268 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2269 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2270}
2271#endif
1da177e4
LT
2272
2273/*
2274 * The order of subdivision here is critical for the IO subsystem.
2275 * Please do not alter this order without good reasons and regression
2276 * testing. Specifically, as large blocks of memory are subdivided,
2277 * the order in which smaller blocks are delivered depends on the order
2278 * they're subdivided in this function. This is the primary factor
2279 * influencing the order in which pages are delivered to the IO
2280 * subsystem according to empirical testing, and this is also justified
2281 * by considering the behavior of a buddy system containing a single
2282 * large block of memory acted on by a series of small allocations.
2283 * This behavior is a critical factor in sglist merging's success.
2284 *
6d49e352 2285 * -- nyc
1da177e4 2286 */
085cc7d5 2287static inline void expand(struct zone *zone, struct page *page,
6ab01363 2288 int low, int high, int migratetype)
1da177e4
LT
2289{
2290 unsigned long size = 1 << high;
2291
2292 while (high > low) {
1da177e4
LT
2293 high--;
2294 size >>= 1;
309381fe 2295 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2296
acbc15a4
JK
2297 /*
2298 * Mark as guard pages (or page), that will allow to
2299 * merge back to allocator when buddy will be freed.
2300 * Corresponding page table entries will not be touched,
2301 * pages will stay not present in virtual address space
2302 */
2303 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2304 continue;
acbc15a4 2305
6ab01363 2306 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2307 set_buddy_order(&page[size], high);
1da177e4 2308 }
1da177e4
LT
2309}
2310
4e611801 2311static void check_new_page_bad(struct page *page)
1da177e4 2312{
f4c18e6f 2313 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2314 /* Don't complain about hwpoisoned pages */
2315 page_mapcount_reset(page); /* remove PageBuddy */
2316 return;
f4c18e6f 2317 }
58b7f119
WY
2318
2319 bad_page(page,
2320 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2321}
2322
2323/*
2324 * This page is about to be returned from the page allocator
2325 */
2326static inline int check_new_page(struct page *page)
2327{
2328 if (likely(page_expected_state(page,
2329 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2330 return 0;
2331
2332 check_new_page_bad(page);
2333 return 1;
2a7684a2
WF
2334}
2335
479f854a 2336#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2337/*
2338 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2339 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2340 * also checked when pcp lists are refilled from the free lists.
2341 */
2342static inline bool check_pcp_refill(struct page *page)
479f854a 2343{
8e57f8ac 2344 if (debug_pagealloc_enabled_static())
4462b32c
VB
2345 return check_new_page(page);
2346 else
2347 return false;
479f854a
MG
2348}
2349
4462b32c 2350static inline bool check_new_pcp(struct page *page)
479f854a
MG
2351{
2352 return check_new_page(page);
2353}
2354#else
4462b32c
VB
2355/*
2356 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2357 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2358 * enabled, they are also checked when being allocated from the pcp lists.
2359 */
2360static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2361{
2362 return check_new_page(page);
2363}
4462b32c 2364static inline bool check_new_pcp(struct page *page)
479f854a 2365{
8e57f8ac 2366 if (debug_pagealloc_enabled_static())
4462b32c
VB
2367 return check_new_page(page);
2368 else
2369 return false;
479f854a
MG
2370}
2371#endif /* CONFIG_DEBUG_VM */
2372
2373static bool check_new_pages(struct page *page, unsigned int order)
2374{
2375 int i;
2376 for (i = 0; i < (1 << order); i++) {
2377 struct page *p = page + i;
2378
2379 if (unlikely(check_new_page(p)))
2380 return true;
2381 }
2382
2383 return false;
2384}
2385
46f24fd8
JK
2386inline void post_alloc_hook(struct page *page, unsigned int order,
2387 gfp_t gfp_flags)
2388{
2389 set_page_private(page, 0);
2390 set_page_refcounted(page);
2391
2392 arch_alloc_page(page, order);
77bc7fd6 2393 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2394
2395 /*
2396 * Page unpoisoning must happen before memory initialization.
2397 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2398 * allocations and the page unpoisoning code will complain.
2399 */
8db26a3d 2400 kernel_unpoison_pages(page, 1 << order);
862b6dee 2401
1bb5eab3
AK
2402 /*
2403 * As memory initialization might be integrated into KASAN,
2404 * kasan_alloc_pages and kernel_init_free_pages must be
2405 * kept together to avoid discrepancies in behavior.
2406 */
7a3b8353
PC
2407 if (kasan_has_integrated_init()) {
2408 kasan_alloc_pages(page, order, gfp_flags);
2409 } else {
2410 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2411
2412 kasan_unpoison_pages(page, order, init);
2413 if (init)
013bb59d
PC
2414 kernel_init_free_pages(page, 1 << order,
2415 gfp_flags & __GFP_ZEROTAGS);
7a3b8353 2416 }
1bb5eab3
AK
2417
2418 set_page_owner(page, order, gfp_flags);
46f24fd8
JK
2419}
2420
479f854a 2421static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2422 unsigned int alloc_flags)
2a7684a2 2423{
46f24fd8 2424 post_alloc_hook(page, order, gfp_flags);
17cf4406 2425
17cf4406
NP
2426 if (order && (gfp_flags & __GFP_COMP))
2427 prep_compound_page(page, order);
2428
75379191 2429 /*
2f064f34 2430 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2431 * allocate the page. The expectation is that the caller is taking
2432 * steps that will free more memory. The caller should avoid the page
2433 * being used for !PFMEMALLOC purposes.
2434 */
2f064f34
MH
2435 if (alloc_flags & ALLOC_NO_WATERMARKS)
2436 set_page_pfmemalloc(page);
2437 else
2438 clear_page_pfmemalloc(page);
1da177e4
LT
2439}
2440
56fd56b8
MG
2441/*
2442 * Go through the free lists for the given migratetype and remove
2443 * the smallest available page from the freelists
2444 */
85ccc8fa 2445static __always_inline
728ec980 2446struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2447 int migratetype)
2448{
2449 unsigned int current_order;
b8af2941 2450 struct free_area *area;
56fd56b8
MG
2451 struct page *page;
2452
2453 /* Find a page of the appropriate size in the preferred list */
2454 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2455 area = &(zone->free_area[current_order]);
b03641af 2456 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2457 if (!page)
2458 continue;
6ab01363
AD
2459 del_page_from_free_list(page, zone, current_order);
2460 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2461 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2462 return page;
2463 }
2464
2465 return NULL;
2466}
2467
2468
b2a0ac88
MG
2469/*
2470 * This array describes the order lists are fallen back to when
2471 * the free lists for the desirable migrate type are depleted
2472 */
da415663 2473static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2474 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2475 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2476 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2477#ifdef CONFIG_CMA
974a786e 2478 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2479#endif
194159fb 2480#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2481 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2482#endif
b2a0ac88
MG
2483};
2484
dc67647b 2485#ifdef CONFIG_CMA
85ccc8fa 2486static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2487 unsigned int order)
2488{
2489 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2490}
2491#else
2492static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2493 unsigned int order) { return NULL; }
2494#endif
2495
c361be55 2496/*
293ffa5e 2497 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2498 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2499 * boundary. If alignment is required, use move_freepages_block()
2500 */
02aa0cdd 2501static int move_freepages(struct zone *zone,
39ddb991 2502 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2503 int migratetype, int *num_movable)
c361be55
MG
2504{
2505 struct page *page;
39ddb991 2506 unsigned long pfn;
d00181b9 2507 unsigned int order;
d100313f 2508 int pages_moved = 0;
c361be55 2509
39ddb991 2510 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2511 page = pfn_to_page(pfn);
c361be55 2512 if (!PageBuddy(page)) {
02aa0cdd
VB
2513 /*
2514 * We assume that pages that could be isolated for
2515 * migration are movable. But we don't actually try
2516 * isolating, as that would be expensive.
2517 */
2518 if (num_movable &&
2519 (PageLRU(page) || __PageMovable(page)))
2520 (*num_movable)++;
39ddb991 2521 pfn++;
c361be55
MG
2522 continue;
2523 }
2524
cd961038
DR
2525 /* Make sure we are not inadvertently changing nodes */
2526 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2527 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2528
ab130f91 2529 order = buddy_order(page);
6ab01363 2530 move_to_free_list(page, zone, order, migratetype);
39ddb991 2531 pfn += 1 << order;
d100313f 2532 pages_moved += 1 << order;
c361be55
MG
2533 }
2534
d100313f 2535 return pages_moved;
c361be55
MG
2536}
2537
ee6f509c 2538int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2539 int migratetype, int *num_movable)
c361be55 2540{
39ddb991 2541 unsigned long start_pfn, end_pfn, pfn;
c361be55 2542
4a222127
DR
2543 if (num_movable)
2544 *num_movable = 0;
2545
39ddb991
KW
2546 pfn = page_to_pfn(page);
2547 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2548 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2549
2550 /* Do not cross zone boundaries */
108bcc96 2551 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2552 start_pfn = pfn;
108bcc96 2553 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2554 return 0;
2555
39ddb991 2556 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2557 num_movable);
c361be55
MG
2558}
2559
2f66a68f
MG
2560static void change_pageblock_range(struct page *pageblock_page,
2561 int start_order, int migratetype)
2562{
2563 int nr_pageblocks = 1 << (start_order - pageblock_order);
2564
2565 while (nr_pageblocks--) {
2566 set_pageblock_migratetype(pageblock_page, migratetype);
2567 pageblock_page += pageblock_nr_pages;
2568 }
2569}
2570
fef903ef 2571/*
9c0415eb
VB
2572 * When we are falling back to another migratetype during allocation, try to
2573 * steal extra free pages from the same pageblocks to satisfy further
2574 * allocations, instead of polluting multiple pageblocks.
2575 *
2576 * If we are stealing a relatively large buddy page, it is likely there will
2577 * be more free pages in the pageblock, so try to steal them all. For
2578 * reclaimable and unmovable allocations, we steal regardless of page size,
2579 * as fragmentation caused by those allocations polluting movable pageblocks
2580 * is worse than movable allocations stealing from unmovable and reclaimable
2581 * pageblocks.
fef903ef 2582 */
4eb7dce6
JK
2583static bool can_steal_fallback(unsigned int order, int start_mt)
2584{
2585 /*
2586 * Leaving this order check is intended, although there is
2587 * relaxed order check in next check. The reason is that
2588 * we can actually steal whole pageblock if this condition met,
2589 * but, below check doesn't guarantee it and that is just heuristic
2590 * so could be changed anytime.
2591 */
2592 if (order >= pageblock_order)
2593 return true;
2594
2595 if (order >= pageblock_order / 2 ||
2596 start_mt == MIGRATE_RECLAIMABLE ||
2597 start_mt == MIGRATE_UNMOVABLE ||
2598 page_group_by_mobility_disabled)
2599 return true;
2600
2601 return false;
2602}
2603
597c8920 2604static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2605{
2606 unsigned long max_boost;
2607
2608 if (!watermark_boost_factor)
597c8920 2609 return false;
14f69140
HW
2610 /*
2611 * Don't bother in zones that are unlikely to produce results.
2612 * On small machines, including kdump capture kernels running
2613 * in a small area, boosting the watermark can cause an out of
2614 * memory situation immediately.
2615 */
2616 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2617 return false;
1c30844d
MG
2618
2619 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2620 watermark_boost_factor, 10000);
94b3334c
MG
2621
2622 /*
2623 * high watermark may be uninitialised if fragmentation occurs
2624 * very early in boot so do not boost. We do not fall
2625 * through and boost by pageblock_nr_pages as failing
2626 * allocations that early means that reclaim is not going
2627 * to help and it may even be impossible to reclaim the
2628 * boosted watermark resulting in a hang.
2629 */
2630 if (!max_boost)
597c8920 2631 return false;
94b3334c 2632
1c30844d
MG
2633 max_boost = max(pageblock_nr_pages, max_boost);
2634
2635 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2636 max_boost);
597c8920
JW
2637
2638 return true;
1c30844d
MG
2639}
2640
4eb7dce6
JK
2641/*
2642 * This function implements actual steal behaviour. If order is large enough,
2643 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2644 * pageblock to our migratetype and determine how many already-allocated pages
2645 * are there in the pageblock with a compatible migratetype. If at least half
2646 * of pages are free or compatible, we can change migratetype of the pageblock
2647 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2648 */
2649static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2650 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2651{
ab130f91 2652 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2653 int free_pages, movable_pages, alike_pages;
2654 int old_block_type;
2655
2656 old_block_type = get_pageblock_migratetype(page);
fef903ef 2657
3bc48f96
VB
2658 /*
2659 * This can happen due to races and we want to prevent broken
2660 * highatomic accounting.
2661 */
02aa0cdd 2662 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2663 goto single_page;
2664
fef903ef
SB
2665 /* Take ownership for orders >= pageblock_order */
2666 if (current_order >= pageblock_order) {
2667 change_pageblock_range(page, current_order, start_type);
3bc48f96 2668 goto single_page;
fef903ef
SB
2669 }
2670
1c30844d
MG
2671 /*
2672 * Boost watermarks to increase reclaim pressure to reduce the
2673 * likelihood of future fallbacks. Wake kswapd now as the node
2674 * may be balanced overall and kswapd will not wake naturally.
2675 */
597c8920 2676 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2677 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2678
3bc48f96
VB
2679 /* We are not allowed to try stealing from the whole block */
2680 if (!whole_block)
2681 goto single_page;
2682
02aa0cdd
VB
2683 free_pages = move_freepages_block(zone, page, start_type,
2684 &movable_pages);
2685 /*
2686 * Determine how many pages are compatible with our allocation.
2687 * For movable allocation, it's the number of movable pages which
2688 * we just obtained. For other types it's a bit more tricky.
2689 */
2690 if (start_type == MIGRATE_MOVABLE) {
2691 alike_pages = movable_pages;
2692 } else {
2693 /*
2694 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2695 * to MOVABLE pageblock, consider all non-movable pages as
2696 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2697 * vice versa, be conservative since we can't distinguish the
2698 * exact migratetype of non-movable pages.
2699 */
2700 if (old_block_type == MIGRATE_MOVABLE)
2701 alike_pages = pageblock_nr_pages
2702 - (free_pages + movable_pages);
2703 else
2704 alike_pages = 0;
2705 }
2706
3bc48f96 2707 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2708 if (!free_pages)
3bc48f96 2709 goto single_page;
fef903ef 2710
02aa0cdd
VB
2711 /*
2712 * If a sufficient number of pages in the block are either free or of
2713 * comparable migratability as our allocation, claim the whole block.
2714 */
2715 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2716 page_group_by_mobility_disabled)
2717 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2718
2719 return;
2720
2721single_page:
6ab01363 2722 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2723}
2724
2149cdae
JK
2725/*
2726 * Check whether there is a suitable fallback freepage with requested order.
2727 * If only_stealable is true, this function returns fallback_mt only if
2728 * we can steal other freepages all together. This would help to reduce
2729 * fragmentation due to mixed migratetype pages in one pageblock.
2730 */
2731int find_suitable_fallback(struct free_area *area, unsigned int order,
2732 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2733{
2734 int i;
2735 int fallback_mt;
2736
2737 if (area->nr_free == 0)
2738 return -1;
2739
2740 *can_steal = false;
2741 for (i = 0;; i++) {
2742 fallback_mt = fallbacks[migratetype][i];
974a786e 2743 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2744 break;
2745
b03641af 2746 if (free_area_empty(area, fallback_mt))
4eb7dce6 2747 continue;
fef903ef 2748
4eb7dce6
JK
2749 if (can_steal_fallback(order, migratetype))
2750 *can_steal = true;
2751
2149cdae
JK
2752 if (!only_stealable)
2753 return fallback_mt;
2754
2755 if (*can_steal)
2756 return fallback_mt;
fef903ef 2757 }
4eb7dce6
JK
2758
2759 return -1;
fef903ef
SB
2760}
2761
0aaa29a5
MG
2762/*
2763 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2764 * there are no empty page blocks that contain a page with a suitable order
2765 */
2766static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2767 unsigned int alloc_order)
2768{
2769 int mt;
2770 unsigned long max_managed, flags;
2771
2772 /*
2773 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2774 * Check is race-prone but harmless.
2775 */
9705bea5 2776 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2777 if (zone->nr_reserved_highatomic >= max_managed)
2778 return;
2779
2780 spin_lock_irqsave(&zone->lock, flags);
2781
2782 /* Recheck the nr_reserved_highatomic limit under the lock */
2783 if (zone->nr_reserved_highatomic >= max_managed)
2784 goto out_unlock;
2785
2786 /* Yoink! */
2787 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2788 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2789 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2790 zone->nr_reserved_highatomic += pageblock_nr_pages;
2791 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2792 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2793 }
2794
2795out_unlock:
2796 spin_unlock_irqrestore(&zone->lock, flags);
2797}
2798
2799/*
2800 * Used when an allocation is about to fail under memory pressure. This
2801 * potentially hurts the reliability of high-order allocations when under
2802 * intense memory pressure but failed atomic allocations should be easier
2803 * to recover from than an OOM.
29fac03b
MK
2804 *
2805 * If @force is true, try to unreserve a pageblock even though highatomic
2806 * pageblock is exhausted.
0aaa29a5 2807 */
29fac03b
MK
2808static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2809 bool force)
0aaa29a5
MG
2810{
2811 struct zonelist *zonelist = ac->zonelist;
2812 unsigned long flags;
2813 struct zoneref *z;
2814 struct zone *zone;
2815 struct page *page;
2816 int order;
04c8716f 2817 bool ret;
0aaa29a5 2818
97a225e6 2819 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2820 ac->nodemask) {
29fac03b
MK
2821 /*
2822 * Preserve at least one pageblock unless memory pressure
2823 * is really high.
2824 */
2825 if (!force && zone->nr_reserved_highatomic <=
2826 pageblock_nr_pages)
0aaa29a5
MG
2827 continue;
2828
2829 spin_lock_irqsave(&zone->lock, flags);
2830 for (order = 0; order < MAX_ORDER; order++) {
2831 struct free_area *area = &(zone->free_area[order]);
2832
b03641af 2833 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2834 if (!page)
0aaa29a5
MG
2835 continue;
2836
0aaa29a5 2837 /*
4855e4a7
MK
2838 * In page freeing path, migratetype change is racy so
2839 * we can counter several free pages in a pageblock
f0953a1b 2840 * in this loop although we changed the pageblock type
4855e4a7
MK
2841 * from highatomic to ac->migratetype. So we should
2842 * adjust the count once.
0aaa29a5 2843 */
a6ffdc07 2844 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2845 /*
2846 * It should never happen but changes to
2847 * locking could inadvertently allow a per-cpu
2848 * drain to add pages to MIGRATE_HIGHATOMIC
2849 * while unreserving so be safe and watch for
2850 * underflows.
2851 */
2852 zone->nr_reserved_highatomic -= min(
2853 pageblock_nr_pages,
2854 zone->nr_reserved_highatomic);
2855 }
0aaa29a5
MG
2856
2857 /*
2858 * Convert to ac->migratetype and avoid the normal
2859 * pageblock stealing heuristics. Minimally, the caller
2860 * is doing the work and needs the pages. More
2861 * importantly, if the block was always converted to
2862 * MIGRATE_UNMOVABLE or another type then the number
2863 * of pageblocks that cannot be completely freed
2864 * may increase.
2865 */
2866 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2867 ret = move_freepages_block(zone, page, ac->migratetype,
2868 NULL);
29fac03b
MK
2869 if (ret) {
2870 spin_unlock_irqrestore(&zone->lock, flags);
2871 return ret;
2872 }
0aaa29a5
MG
2873 }
2874 spin_unlock_irqrestore(&zone->lock, flags);
2875 }
04c8716f
MK
2876
2877 return false;
0aaa29a5
MG
2878}
2879
3bc48f96
VB
2880/*
2881 * Try finding a free buddy page on the fallback list and put it on the free
2882 * list of requested migratetype, possibly along with other pages from the same
2883 * block, depending on fragmentation avoidance heuristics. Returns true if
2884 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2885 *
2886 * The use of signed ints for order and current_order is a deliberate
2887 * deviation from the rest of this file, to make the for loop
2888 * condition simpler.
3bc48f96 2889 */
85ccc8fa 2890static __always_inline bool
6bb15450
MG
2891__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2892 unsigned int alloc_flags)
b2a0ac88 2893{
b8af2941 2894 struct free_area *area;
b002529d 2895 int current_order;
6bb15450 2896 int min_order = order;
b2a0ac88 2897 struct page *page;
4eb7dce6
JK
2898 int fallback_mt;
2899 bool can_steal;
b2a0ac88 2900
6bb15450
MG
2901 /*
2902 * Do not steal pages from freelists belonging to other pageblocks
2903 * i.e. orders < pageblock_order. If there are no local zones free,
2904 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2905 */
2906 if (alloc_flags & ALLOC_NOFRAGMENT)
2907 min_order = pageblock_order;
2908
7a8f58f3
VB
2909 /*
2910 * Find the largest available free page in the other list. This roughly
2911 * approximates finding the pageblock with the most free pages, which
2912 * would be too costly to do exactly.
2913 */
6bb15450 2914 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2915 --current_order) {
4eb7dce6
JK
2916 area = &(zone->free_area[current_order]);
2917 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2918 start_migratetype, false, &can_steal);
4eb7dce6
JK
2919 if (fallback_mt == -1)
2920 continue;
b2a0ac88 2921
7a8f58f3
VB
2922 /*
2923 * We cannot steal all free pages from the pageblock and the
2924 * requested migratetype is movable. In that case it's better to
2925 * steal and split the smallest available page instead of the
2926 * largest available page, because even if the next movable
2927 * allocation falls back into a different pageblock than this
2928 * one, it won't cause permanent fragmentation.
2929 */
2930 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2931 && current_order > order)
2932 goto find_smallest;
b2a0ac88 2933
7a8f58f3
VB
2934 goto do_steal;
2935 }
e0fff1bd 2936
7a8f58f3 2937 return false;
e0fff1bd 2938
7a8f58f3
VB
2939find_smallest:
2940 for (current_order = order; current_order < MAX_ORDER;
2941 current_order++) {
2942 area = &(zone->free_area[current_order]);
2943 fallback_mt = find_suitable_fallback(area, current_order,
2944 start_migratetype, false, &can_steal);
2945 if (fallback_mt != -1)
2946 break;
b2a0ac88
MG
2947 }
2948
7a8f58f3
VB
2949 /*
2950 * This should not happen - we already found a suitable fallback
2951 * when looking for the largest page.
2952 */
2953 VM_BUG_ON(current_order == MAX_ORDER);
2954
2955do_steal:
b03641af 2956 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2957
1c30844d
MG
2958 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2959 can_steal);
7a8f58f3
VB
2960
2961 trace_mm_page_alloc_extfrag(page, order, current_order,
2962 start_migratetype, fallback_mt);
2963
2964 return true;
2965
b2a0ac88
MG
2966}
2967
56fd56b8 2968/*
1da177e4
LT
2969 * Do the hard work of removing an element from the buddy allocator.
2970 * Call me with the zone->lock already held.
2971 */
85ccc8fa 2972static __always_inline struct page *
6bb15450
MG
2973__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2974 unsigned int alloc_flags)
1da177e4 2975{
1da177e4
LT
2976 struct page *page;
2977
ce8f86ee
H
2978 if (IS_ENABLED(CONFIG_CMA)) {
2979 /*
2980 * Balance movable allocations between regular and CMA areas by
2981 * allocating from CMA when over half of the zone's free memory
2982 * is in the CMA area.
2983 */
2984 if (alloc_flags & ALLOC_CMA &&
2985 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2986 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2987 page = __rmqueue_cma_fallback(zone, order);
2988 if (page)
2989 goto out;
2990 }
16867664 2991 }
3bc48f96 2992retry:
56fd56b8 2993 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2994 if (unlikely(!page)) {
8510e69c 2995 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2996 page = __rmqueue_cma_fallback(zone, order);
2997
6bb15450
MG
2998 if (!page && __rmqueue_fallback(zone, order, migratetype,
2999 alloc_flags))
3bc48f96 3000 goto retry;
728ec980 3001 }
ce8f86ee
H
3002out:
3003 if (page)
3004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 3005 return page;
1da177e4
LT
3006}
3007
5f63b720 3008/*
1da177e4
LT
3009 * Obtain a specified number of elements from the buddy allocator, all under
3010 * a single hold of the lock, for efficiency. Add them to the supplied list.
3011 * Returns the number of new pages which were placed at *list.
3012 */
5f63b720 3013static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3014 unsigned long count, struct list_head *list,
6bb15450 3015 int migratetype, unsigned int alloc_flags)
1da177e4 3016{
cb66bede 3017 int i, allocated = 0;
5f63b720 3018
dbbee9d5
MG
3019 /*
3020 * local_lock_irq held so equivalent to spin_lock_irqsave for
3021 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3022 */
d34b0733 3023 spin_lock(&zone->lock);
1da177e4 3024 for (i = 0; i < count; ++i) {
6bb15450
MG
3025 struct page *page = __rmqueue(zone, order, migratetype,
3026 alloc_flags);
085cc7d5 3027 if (unlikely(page == NULL))
1da177e4 3028 break;
81eabcbe 3029
479f854a
MG
3030 if (unlikely(check_pcp_refill(page)))
3031 continue;
3032
81eabcbe 3033 /*
0fac3ba5
VB
3034 * Split buddy pages returned by expand() are received here in
3035 * physical page order. The page is added to the tail of
3036 * caller's list. From the callers perspective, the linked list
3037 * is ordered by page number under some conditions. This is
3038 * useful for IO devices that can forward direction from the
3039 * head, thus also in the physical page order. This is useful
3040 * for IO devices that can merge IO requests if the physical
3041 * pages are ordered properly.
81eabcbe 3042 */
0fac3ba5 3043 list_add_tail(&page->lru, list);
cb66bede 3044 allocated++;
bb14c2c7 3045 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3046 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3047 -(1 << order));
1da177e4 3048 }
a6de734b
MG
3049
3050 /*
3051 * i pages were removed from the buddy list even if some leak due
3052 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3053 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3054 * pages added to the pcp list.
3055 */
f2260e6b 3056 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3057 spin_unlock(&zone->lock);
cb66bede 3058 return allocated;
1da177e4
LT
3059}
3060
4ae7c039 3061#ifdef CONFIG_NUMA
8fce4d8e 3062/*
4037d452
CL
3063 * Called from the vmstat counter updater to drain pagesets of this
3064 * currently executing processor on remote nodes after they have
3065 * expired.
3066 *
879336c3
CL
3067 * Note that this function must be called with the thread pinned to
3068 * a single processor.
8fce4d8e 3069 */
4037d452 3070void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3071{
4ae7c039 3072 unsigned long flags;
7be12fc9 3073 int to_drain, batch;
4ae7c039 3074
dbbee9d5 3075 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3076 batch = READ_ONCE(pcp->batch);
7be12fc9 3077 to_drain = min(pcp->count, batch);
77ba9062 3078 if (to_drain > 0)
2a13515c 3079 free_pcppages_bulk(zone, to_drain, pcp);
dbbee9d5 3080 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3081}
3082#endif
3083
9f8f2172 3084/*
93481ff0 3085 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3086 *
3087 * The processor must either be the current processor and the
3088 * thread pinned to the current processor or a processor that
3089 * is not online.
3090 */
93481ff0 3091static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3092{
c54ad30c 3093 unsigned long flags;
93481ff0 3094 struct per_cpu_pages *pcp;
1da177e4 3095
dbbee9d5 3096 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3097
28f836b6 3098 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3099 if (pcp->count)
93481ff0 3100 free_pcppages_bulk(zone, pcp->count, pcp);
28f836b6 3101
dbbee9d5 3102 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3103}
3dfa5721 3104
93481ff0
VB
3105/*
3106 * Drain pcplists of all zones on the indicated processor.
3107 *
3108 * The processor must either be the current processor and the
3109 * thread pinned to the current processor or a processor that
3110 * is not online.
3111 */
3112static void drain_pages(unsigned int cpu)
3113{
3114 struct zone *zone;
3115
3116 for_each_populated_zone(zone) {
3117 drain_pages_zone(cpu, zone);
1da177e4
LT
3118 }
3119}
1da177e4 3120
9f8f2172
CL
3121/*
3122 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3123 *
3124 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3125 * the single zone's pages.
9f8f2172 3126 */
93481ff0 3127void drain_local_pages(struct zone *zone)
9f8f2172 3128{
93481ff0
VB
3129 int cpu = smp_processor_id();
3130
3131 if (zone)
3132 drain_pages_zone(cpu, zone);
3133 else
3134 drain_pages(cpu);
9f8f2172
CL
3135}
3136
0ccce3b9
MG
3137static void drain_local_pages_wq(struct work_struct *work)
3138{
d9367bd0
WY
3139 struct pcpu_drain *drain;
3140
3141 drain = container_of(work, struct pcpu_drain, work);
3142
a459eeb7
MH
3143 /*
3144 * drain_all_pages doesn't use proper cpu hotplug protection so
3145 * we can race with cpu offline when the WQ can move this from
3146 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3147 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3148 * a different one.
3149 */
3150 preempt_disable();
d9367bd0 3151 drain_local_pages(drain->zone);
a459eeb7 3152 preempt_enable();
0ccce3b9
MG
3153}
3154
9f8f2172 3155/*
ec6e8c7e
VB
3156 * The implementation of drain_all_pages(), exposing an extra parameter to
3157 * drain on all cpus.
93481ff0 3158 *
ec6e8c7e
VB
3159 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3160 * not empty. The check for non-emptiness can however race with a free to
3161 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3162 * that need the guarantee that every CPU has drained can disable the
3163 * optimizing racy check.
9f8f2172 3164 */
3b1f3658 3165static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3166{
74046494 3167 int cpu;
74046494
GBY
3168
3169 /*
041711ce 3170 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3171 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3172 */
3173 static cpumask_t cpus_with_pcps;
3174
ce612879
MH
3175 /*
3176 * Make sure nobody triggers this path before mm_percpu_wq is fully
3177 * initialized.
3178 */
3179 if (WARN_ON_ONCE(!mm_percpu_wq))
3180 return;
3181
bd233f53
MG
3182 /*
3183 * Do not drain if one is already in progress unless it's specific to
3184 * a zone. Such callers are primarily CMA and memory hotplug and need
3185 * the drain to be complete when the call returns.
3186 */
3187 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3188 if (!zone)
3189 return;
3190 mutex_lock(&pcpu_drain_mutex);
3191 }
0ccce3b9 3192
74046494
GBY
3193 /*
3194 * We don't care about racing with CPU hotplug event
3195 * as offline notification will cause the notified
3196 * cpu to drain that CPU pcps and on_each_cpu_mask
3197 * disables preemption as part of its processing
3198 */
3199 for_each_online_cpu(cpu) {
28f836b6 3200 struct per_cpu_pages *pcp;
93481ff0 3201 struct zone *z;
74046494 3202 bool has_pcps = false;
93481ff0 3203
ec6e8c7e
VB
3204 if (force_all_cpus) {
3205 /*
3206 * The pcp.count check is racy, some callers need a
3207 * guarantee that no cpu is missed.
3208 */
3209 has_pcps = true;
3210 } else if (zone) {
28f836b6
MG
3211 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3212 if (pcp->count)
74046494 3213 has_pcps = true;
93481ff0
VB
3214 } else {
3215 for_each_populated_zone(z) {
28f836b6
MG
3216 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3217 if (pcp->count) {
93481ff0
VB
3218 has_pcps = true;
3219 break;
3220 }
74046494
GBY
3221 }
3222 }
93481ff0 3223
74046494
GBY
3224 if (has_pcps)
3225 cpumask_set_cpu(cpu, &cpus_with_pcps);
3226 else
3227 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3228 }
0ccce3b9 3229
bd233f53 3230 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3231 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3232
3233 drain->zone = zone;
3234 INIT_WORK(&drain->work, drain_local_pages_wq);
3235 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3236 }
bd233f53 3237 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3238 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3239
3240 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3241}
3242
ec6e8c7e
VB
3243/*
3244 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3245 *
3246 * When zone parameter is non-NULL, spill just the single zone's pages.
3247 *
3248 * Note that this can be extremely slow as the draining happens in a workqueue.
3249 */
3250void drain_all_pages(struct zone *zone)
3251{
3252 __drain_all_pages(zone, false);
3253}
3254
296699de 3255#ifdef CONFIG_HIBERNATION
1da177e4 3256
556b969a
CY
3257/*
3258 * Touch the watchdog for every WD_PAGE_COUNT pages.
3259 */
3260#define WD_PAGE_COUNT (128*1024)
3261
1da177e4
LT
3262void mark_free_pages(struct zone *zone)
3263{
556b969a 3264 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3265 unsigned long flags;
7aeb09f9 3266 unsigned int order, t;
86760a2c 3267 struct page *page;
1da177e4 3268
8080fc03 3269 if (zone_is_empty(zone))
1da177e4
LT
3270 return;
3271
3272 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3273
108bcc96 3274 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3275 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3276 if (pfn_valid(pfn)) {
86760a2c 3277 page = pfn_to_page(pfn);
ba6b0979 3278
556b969a
CY
3279 if (!--page_count) {
3280 touch_nmi_watchdog();
3281 page_count = WD_PAGE_COUNT;
3282 }
3283
ba6b0979
JK
3284 if (page_zone(page) != zone)
3285 continue;
3286
7be98234
RW
3287 if (!swsusp_page_is_forbidden(page))
3288 swsusp_unset_page_free(page);
f623f0db 3289 }
1da177e4 3290
b2a0ac88 3291 for_each_migratetype_order(order, t) {
86760a2c
GT
3292 list_for_each_entry(page,
3293 &zone->free_area[order].free_list[t], lru) {
f623f0db 3294 unsigned long i;
1da177e4 3295
86760a2c 3296 pfn = page_to_pfn(page);
556b969a
CY
3297 for (i = 0; i < (1UL << order); i++) {
3298 if (!--page_count) {
3299 touch_nmi_watchdog();
3300 page_count = WD_PAGE_COUNT;
3301 }
7be98234 3302 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3303 }
f623f0db 3304 }
b2a0ac88 3305 }
1da177e4
LT
3306 spin_unlock_irqrestore(&zone->lock, flags);
3307}
e2c55dc8 3308#endif /* CONFIG_PM */
1da177e4 3309
44042b44
MG
3310static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3311 unsigned int order)
1da177e4 3312{
5f8dcc21 3313 int migratetype;
1da177e4 3314
44042b44 3315 if (!free_pcp_prepare(page, order))
9cca35d4 3316 return false;
689bcebf 3317
dc4b0caf 3318 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3319 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3320 return true;
3321}
3322
3b12e7e9
MG
3323static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3324{
3325 int min_nr_free, max_nr_free;
3326
3327 /* Check for PCP disabled or boot pageset */
3328 if (unlikely(high < batch))
3329 return 1;
3330
3331 /* Leave at least pcp->batch pages on the list */
3332 min_nr_free = batch;
3333 max_nr_free = high - batch;
3334
3335 /*
3336 * Double the number of pages freed each time there is subsequent
3337 * freeing of pages without any allocation.
3338 */
3339 batch <<= pcp->free_factor;
3340 if (batch < max_nr_free)
3341 pcp->free_factor++;
3342 batch = clamp(batch, min_nr_free, max_nr_free);
3343
3344 return batch;
3345}
3346
c49c2c47
MG
3347static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3348{
3349 int high = READ_ONCE(pcp->high);
3350
3351 if (unlikely(!high))
3352 return 0;
3353
3354 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3355 return high;
3356
3357 /*
3358 * If reclaim is active, limit the number of pages that can be
3359 * stored on pcp lists
3360 */
3361 return min(READ_ONCE(pcp->batch) << 2, high);
3362}
3363
df1acc85 3364static void free_unref_page_commit(struct page *page, unsigned long pfn,
44042b44 3365 int migratetype, unsigned int order)
9cca35d4
MG
3366{
3367 struct zone *zone = page_zone(page);
3368 struct per_cpu_pages *pcp;
3b12e7e9 3369 int high;
44042b44 3370 int pindex;
9cca35d4 3371
d34b0733 3372 __count_vm_event(PGFREE);
28f836b6 3373 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3374 pindex = order_to_pindex(migratetype, order);
3375 list_add(&page->lru, &pcp->lists[pindex]);
3376 pcp->count += 1 << order;
c49c2c47 3377 high = nr_pcp_high(pcp, zone);
3b12e7e9
MG
3378 if (pcp->count >= high) {
3379 int batch = READ_ONCE(pcp->batch);
3380
3381 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3382 }
9cca35d4 3383}
5f8dcc21 3384
9cca35d4 3385/*
44042b44 3386 * Free a pcp page
9cca35d4 3387 */
44042b44 3388void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3389{
3390 unsigned long flags;
3391 unsigned long pfn = page_to_pfn(page);
df1acc85 3392 int migratetype;
9cca35d4 3393
44042b44 3394 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3395 return;
da456f14 3396
5f8dcc21
MG
3397 /*
3398 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3399 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3400 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3401 * areas back if necessary. Otherwise, we may have to free
3402 * excessively into the page allocator
3403 */
df1acc85
MG
3404 migratetype = get_pcppage_migratetype(page);
3405 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3406 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3407 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3408 return;
5f8dcc21
MG
3409 }
3410 migratetype = MIGRATE_MOVABLE;
3411 }
3412
dbbee9d5 3413 local_lock_irqsave(&pagesets.lock, flags);
44042b44 3414 free_unref_page_commit(page, pfn, migratetype, order);
dbbee9d5 3415 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3416}
3417
cc59850e
KK
3418/*
3419 * Free a list of 0-order pages
3420 */
2d4894b5 3421void free_unref_page_list(struct list_head *list)
cc59850e
KK
3422{
3423 struct page *page, *next;
9cca35d4 3424 unsigned long flags, pfn;
c24ad77d 3425 int batch_count = 0;
df1acc85 3426 int migratetype;
9cca35d4
MG
3427
3428 /* Prepare pages for freeing */
3429 list_for_each_entry_safe(page, next, list, lru) {
3430 pfn = page_to_pfn(page);
053cfda1 3431 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3432 list_del(&page->lru);
053cfda1
ML
3433 continue;
3434 }
df1acc85
MG
3435
3436 /*
3437 * Free isolated pages directly to the allocator, see
3438 * comment in free_unref_page.
3439 */
3440 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3441 if (unlikely(is_migrate_isolate(migratetype))) {
3442 list_del(&page->lru);
3443 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3444 continue;
df1acc85
MG
3445 }
3446
9cca35d4
MG
3447 set_page_private(page, pfn);
3448 }
cc59850e 3449
dbbee9d5 3450 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3451 list_for_each_entry_safe(page, next, list, lru) {
df1acc85 3452 pfn = page_private(page);
9cca35d4 3453 set_page_private(page, 0);
47aef601
DB
3454
3455 /*
3456 * Non-isolated types over MIGRATE_PCPTYPES get added
3457 * to the MIGRATE_MOVABLE pcp list.
3458 */
df1acc85 3459 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3460 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3461 migratetype = MIGRATE_MOVABLE;
3462
2d4894b5 3463 trace_mm_page_free_batched(page);
44042b44 3464 free_unref_page_commit(page, pfn, migratetype, 0);
c24ad77d
LS
3465
3466 /*
3467 * Guard against excessive IRQ disabled times when we get
3468 * a large list of pages to free.
3469 */
3470 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3471 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3472 batch_count = 0;
dbbee9d5 3473 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3474 }
cc59850e 3475 }
dbbee9d5 3476 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3477}
3478
8dfcc9ba
NP
3479/*
3480 * split_page takes a non-compound higher-order page, and splits it into
3481 * n (1<<order) sub-pages: page[0..n]
3482 * Each sub-page must be freed individually.
3483 *
3484 * Note: this is probably too low level an operation for use in drivers.
3485 * Please consult with lkml before using this in your driver.
3486 */
3487void split_page(struct page *page, unsigned int order)
3488{
3489 int i;
3490
309381fe
SL
3491 VM_BUG_ON_PAGE(PageCompound(page), page);
3492 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3493
a9627bc5 3494 for (i = 1; i < (1 << order); i++)
7835e98b 3495 set_page_refcounted(page + i);
8fb156c9 3496 split_page_owner(page, 1 << order);
e1baddf8 3497 split_page_memcg(page, 1 << order);
8dfcc9ba 3498}
5853ff23 3499EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3500
3c605096 3501int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3502{
748446bb
MG
3503 unsigned long watermark;
3504 struct zone *zone;
2139cbe6 3505 int mt;
748446bb
MG
3506
3507 BUG_ON(!PageBuddy(page));
3508
3509 zone = page_zone(page);
2e30abd1 3510 mt = get_pageblock_migratetype(page);
748446bb 3511
194159fb 3512 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3513 /*
3514 * Obey watermarks as if the page was being allocated. We can
3515 * emulate a high-order watermark check with a raised order-0
3516 * watermark, because we already know our high-order page
3517 * exists.
3518 */
fd1444b2 3519 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3520 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3521 return 0;
3522
8fb74b9f 3523 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3524 }
748446bb
MG
3525
3526 /* Remove page from free list */
b03641af 3527
6ab01363 3528 del_page_from_free_list(page, zone, order);
2139cbe6 3529
400bc7fd 3530 /*
3531 * Set the pageblock if the isolated page is at least half of a
3532 * pageblock
3533 */
748446bb
MG
3534 if (order >= pageblock_order - 1) {
3535 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3536 for (; page < endpage; page += pageblock_nr_pages) {
3537 int mt = get_pageblock_migratetype(page);
88ed365e 3538 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3539 && !is_migrate_highatomic(mt))
47118af0
MN
3540 set_pageblock_migratetype(page,
3541 MIGRATE_MOVABLE);
3542 }
748446bb
MG
3543 }
3544
f3a14ced 3545
8fb74b9f 3546 return 1UL << order;
1fb3f8ca
MG
3547}
3548
624f58d8
AD
3549/**
3550 * __putback_isolated_page - Return a now-isolated page back where we got it
3551 * @page: Page that was isolated
3552 * @order: Order of the isolated page
e6a0a7ad 3553 * @mt: The page's pageblock's migratetype
624f58d8
AD
3554 *
3555 * This function is meant to return a page pulled from the free lists via
3556 * __isolate_free_page back to the free lists they were pulled from.
3557 */
3558void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3559{
3560 struct zone *zone = page_zone(page);
3561
3562 /* zone lock should be held when this function is called */
3563 lockdep_assert_held(&zone->lock);
3564
3565 /* Return isolated page to tail of freelist. */
f04a5d5d 3566 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3567 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3568}
3569
060e7417
MG
3570/*
3571 * Update NUMA hit/miss statistics
3572 *
3573 * Must be called with interrupts disabled.
060e7417 3574 */
3e23060b
MG
3575static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3576 long nr_account)
060e7417
MG
3577{
3578#ifdef CONFIG_NUMA
3a321d2a 3579 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3580
4518085e
KW
3581 /* skip numa counters update if numa stats is disabled */
3582 if (!static_branch_likely(&vm_numa_stat_key))
3583 return;
3584
c1093b74 3585 if (zone_to_nid(z) != numa_node_id())
060e7417 3586 local_stat = NUMA_OTHER;
060e7417 3587
c1093b74 3588 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3589 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3590 else {
3e23060b
MG
3591 __count_numa_events(z, NUMA_MISS, nr_account);
3592 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3593 }
3e23060b 3594 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3595#endif
3596}
3597
066b2393 3598/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3599static inline
44042b44
MG
3600struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3601 int migratetype,
6bb15450 3602 unsigned int alloc_flags,
453f85d4 3603 struct per_cpu_pages *pcp,
066b2393
MG
3604 struct list_head *list)
3605{
3606 struct page *page;
3607
3608 do {
3609 if (list_empty(list)) {
44042b44
MG
3610 int batch = READ_ONCE(pcp->batch);
3611 int alloced;
3612
3613 /*
3614 * Scale batch relative to order if batch implies
3615 * free pages can be stored on the PCP. Batch can
3616 * be 1 for small zones or for boot pagesets which
3617 * should never store free pages as the pages may
3618 * belong to arbitrary zones.
3619 */
3620 if (batch > 1)
3621 batch = max(batch >> order, 2);
3622 alloced = rmqueue_bulk(zone, order,
3623 batch, list,
6bb15450 3624 migratetype, alloc_flags);
44042b44
MG
3625
3626 pcp->count += alloced << order;
066b2393
MG
3627 if (unlikely(list_empty(list)))
3628 return NULL;
3629 }
3630
453f85d4 3631 page = list_first_entry(list, struct page, lru);
066b2393 3632 list_del(&page->lru);
44042b44 3633 pcp->count -= 1 << order;
066b2393
MG
3634 } while (check_new_pcp(page));
3635
3636 return page;
3637}
3638
3639/* Lock and remove page from the per-cpu list */
3640static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3641 struct zone *zone, unsigned int order,
3642 gfp_t gfp_flags, int migratetype,
3643 unsigned int alloc_flags)
066b2393
MG
3644{
3645 struct per_cpu_pages *pcp;
3646 struct list_head *list;
066b2393 3647 struct page *page;
d34b0733 3648 unsigned long flags;
066b2393 3649
dbbee9d5 3650 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3651
3652 /*
3653 * On allocation, reduce the number of pages that are batch freed.
3654 * See nr_pcp_free() where free_factor is increased for subsequent
3655 * frees.
3656 */
28f836b6 3657 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3658 pcp->free_factor >>= 1;
44042b44
MG
3659 list = &pcp->lists[order_to_pindex(migratetype, order)];
3660 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3661 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3662 if (page) {
1c52e6d0 3663 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3664 zone_statistics(preferred_zone, zone, 1);
066b2393 3665 }
066b2393
MG
3666 return page;
3667}
3668
1da177e4 3669/*
75379191 3670 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3671 */
0a15c3e9 3672static inline
066b2393 3673struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3674 struct zone *zone, unsigned int order,
c603844b
MG
3675 gfp_t gfp_flags, unsigned int alloc_flags,
3676 int migratetype)
1da177e4
LT
3677{
3678 unsigned long flags;
689bcebf 3679 struct page *page;
1da177e4 3680
44042b44 3681 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3682 /*
3683 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3684 * we need to skip it when CMA area isn't allowed.
3685 */
3686 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3687 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3688 page = rmqueue_pcplist(preferred_zone, zone, order,
3689 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3690 goto out;
3691 }
066b2393 3692 }
83b9355b 3693
066b2393
MG
3694 /*
3695 * We most definitely don't want callers attempting to
3696 * allocate greater than order-1 page units with __GFP_NOFAIL.
3697 */
3698 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3699 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3700
066b2393
MG
3701 do {
3702 page = NULL;
1d91df85
JK
3703 /*
3704 * order-0 request can reach here when the pcplist is skipped
3705 * due to non-CMA allocation context. HIGHATOMIC area is
3706 * reserved for high-order atomic allocation, so order-0
3707 * request should skip it.
3708 */
3709 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3710 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3711 if (page)
3712 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3713 }
a74609fa 3714 if (!page)
6bb15450 3715 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393 3716 } while (page && check_new_pages(page, order));
066b2393
MG
3717 if (!page)
3718 goto failed;
43c95bcc 3719
066b2393
MG
3720 __mod_zone_freepage_state(zone, -(1 << order),
3721 get_pcppage_migratetype(page));
43c95bcc 3722 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 3723
16709d1d 3724 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3725 zone_statistics(preferred_zone, zone, 1);
1da177e4 3726
066b2393 3727out:
73444bc4
MG
3728 /* Separate test+clear to avoid unnecessary atomics */
3729 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3730 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3731 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3732 }
3733
066b2393 3734 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3735 return page;
a74609fa
NP
3736
3737failed:
43c95bcc 3738 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3739 return NULL;
1da177e4
LT
3740}
3741
933e312e
AM
3742#ifdef CONFIG_FAIL_PAGE_ALLOC
3743
b2588c4b 3744static struct {
933e312e
AM
3745 struct fault_attr attr;
3746
621a5f7a 3747 bool ignore_gfp_highmem;
71baba4b 3748 bool ignore_gfp_reclaim;
54114994 3749 u32 min_order;
933e312e
AM
3750} fail_page_alloc = {
3751 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3752 .ignore_gfp_reclaim = true,
621a5f7a 3753 .ignore_gfp_highmem = true,
54114994 3754 .min_order = 1,
933e312e
AM
3755};
3756
3757static int __init setup_fail_page_alloc(char *str)
3758{
3759 return setup_fault_attr(&fail_page_alloc.attr, str);
3760}
3761__setup("fail_page_alloc=", setup_fail_page_alloc);
3762
af3b8544 3763static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3764{
54114994 3765 if (order < fail_page_alloc.min_order)
deaf386e 3766 return false;
933e312e 3767 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3768 return false;
933e312e 3769 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3770 return false;
71baba4b
MG
3771 if (fail_page_alloc.ignore_gfp_reclaim &&
3772 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3773 return false;
933e312e
AM
3774
3775 return should_fail(&fail_page_alloc.attr, 1 << order);
3776}
3777
3778#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3779
3780static int __init fail_page_alloc_debugfs(void)
3781{
0825a6f9 3782 umode_t mode = S_IFREG | 0600;
933e312e 3783 struct dentry *dir;
933e312e 3784
dd48c085
AM
3785 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3786 &fail_page_alloc.attr);
b2588c4b 3787
d9f7979c
GKH
3788 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3789 &fail_page_alloc.ignore_gfp_reclaim);
3790 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3791 &fail_page_alloc.ignore_gfp_highmem);
3792 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3793
d9f7979c 3794 return 0;
933e312e
AM
3795}
3796
3797late_initcall(fail_page_alloc_debugfs);
3798
3799#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3800
3801#else /* CONFIG_FAIL_PAGE_ALLOC */
3802
af3b8544 3803static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3804{
deaf386e 3805 return false;
933e312e
AM
3806}
3807
3808#endif /* CONFIG_FAIL_PAGE_ALLOC */
3809
54aa3866 3810noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3811{
3812 return __should_fail_alloc_page(gfp_mask, order);
3813}
3814ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3815
f27ce0e1
JK
3816static inline long __zone_watermark_unusable_free(struct zone *z,
3817 unsigned int order, unsigned int alloc_flags)
3818{
3819 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3820 long unusable_free = (1 << order) - 1;
3821
3822 /*
3823 * If the caller does not have rights to ALLOC_HARDER then subtract
3824 * the high-atomic reserves. This will over-estimate the size of the
3825 * atomic reserve but it avoids a search.
3826 */
3827 if (likely(!alloc_harder))
3828 unusable_free += z->nr_reserved_highatomic;
3829
3830#ifdef CONFIG_CMA
3831 /* If allocation can't use CMA areas don't use free CMA pages */
3832 if (!(alloc_flags & ALLOC_CMA))
3833 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3834#endif
3835
3836 return unusable_free;
3837}
3838
1da177e4 3839/*
97a16fc8
MG
3840 * Return true if free base pages are above 'mark'. For high-order checks it
3841 * will return true of the order-0 watermark is reached and there is at least
3842 * one free page of a suitable size. Checking now avoids taking the zone lock
3843 * to check in the allocation paths if no pages are free.
1da177e4 3844 */
86a294a8 3845bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3846 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3847 long free_pages)
1da177e4 3848{
d23ad423 3849 long min = mark;
1da177e4 3850 int o;
cd04ae1e 3851 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3852
0aaa29a5 3853 /* free_pages may go negative - that's OK */
f27ce0e1 3854 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3855
7fb1d9fc 3856 if (alloc_flags & ALLOC_HIGH)
1da177e4 3857 min -= min / 2;
0aaa29a5 3858
f27ce0e1 3859 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3860 /*
3861 * OOM victims can try even harder than normal ALLOC_HARDER
3862 * users on the grounds that it's definitely going to be in
3863 * the exit path shortly and free memory. Any allocation it
3864 * makes during the free path will be small and short-lived.
3865 */
3866 if (alloc_flags & ALLOC_OOM)
3867 min -= min / 2;
3868 else
3869 min -= min / 4;
3870 }
3871
97a16fc8
MG
3872 /*
3873 * Check watermarks for an order-0 allocation request. If these
3874 * are not met, then a high-order request also cannot go ahead
3875 * even if a suitable page happened to be free.
3876 */
97a225e6 3877 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3878 return false;
1da177e4 3879
97a16fc8
MG
3880 /* If this is an order-0 request then the watermark is fine */
3881 if (!order)
3882 return true;
3883
3884 /* For a high-order request, check at least one suitable page is free */
3885 for (o = order; o < MAX_ORDER; o++) {
3886 struct free_area *area = &z->free_area[o];
3887 int mt;
3888
3889 if (!area->nr_free)
3890 continue;
3891
97a16fc8 3892 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3893 if (!free_area_empty(area, mt))
97a16fc8
MG
3894 return true;
3895 }
3896
3897#ifdef CONFIG_CMA
d883c6cf 3898 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3899 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3900 return true;
d883c6cf 3901 }
97a16fc8 3902#endif
76089d00 3903 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3904 return true;
1da177e4 3905 }
97a16fc8 3906 return false;
88f5acf8
MG
3907}
3908
7aeb09f9 3909bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3910 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3911{
97a225e6 3912 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3913 zone_page_state(z, NR_FREE_PAGES));
3914}
3915
48ee5f36 3916static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3917 unsigned long mark, int highest_zoneidx,
f80b08fc 3918 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3919{
f27ce0e1 3920 long free_pages;
d883c6cf 3921
f27ce0e1 3922 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3923
3924 /*
3925 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3926 * need to be calculated.
48ee5f36 3927 */
f27ce0e1
JK
3928 if (!order) {
3929 long fast_free;
3930
3931 fast_free = free_pages;
3932 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3933 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3934 return true;
3935 }
48ee5f36 3936
f80b08fc
CTR
3937 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3938 free_pages))
3939 return true;
3940 /*
3941 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3942 * when checking the min watermark. The min watermark is the
3943 * point where boosting is ignored so that kswapd is woken up
3944 * when below the low watermark.
3945 */
3946 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3947 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3948 mark = z->_watermark[WMARK_MIN];
3949 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3950 alloc_flags, free_pages);
3951 }
3952
3953 return false;
48ee5f36
MG
3954}
3955
7aeb09f9 3956bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3957 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3958{
3959 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3960
3961 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3962 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3963
97a225e6 3964 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3965 free_pages);
1da177e4
LT
3966}
3967
9276b1bc 3968#ifdef CONFIG_NUMA
957f822a
DR
3969static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3970{
e02dc017 3971 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3972 node_reclaim_distance;
957f822a 3973}
9276b1bc 3974#else /* CONFIG_NUMA */
957f822a
DR
3975static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3976{
3977 return true;
3978}
9276b1bc
PJ
3979#endif /* CONFIG_NUMA */
3980
6bb15450
MG
3981/*
3982 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3983 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3984 * premature use of a lower zone may cause lowmem pressure problems that
3985 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3986 * probably too small. It only makes sense to spread allocations to avoid
3987 * fragmentation between the Normal and DMA32 zones.
3988 */
3989static inline unsigned int
0a79cdad 3990alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3991{
736838e9 3992 unsigned int alloc_flags;
0a79cdad 3993
736838e9
MN
3994 /*
3995 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3996 * to save a branch.
3997 */
3998 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3999
4000#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4001 if (!zone)
4002 return alloc_flags;
4003
6bb15450 4004 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4005 return alloc_flags;
6bb15450
MG
4006
4007 /*
4008 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4009 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4010 * on UMA that if Normal is populated then so is DMA32.
4011 */
4012 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4013 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4014 return alloc_flags;
6bb15450 4015
8118b82e 4016 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4017#endif /* CONFIG_ZONE_DMA32 */
4018 return alloc_flags;
6bb15450 4019}
6bb15450 4020
8e3560d9
PT
4021/* Must be called after current_gfp_context() which can change gfp_mask */
4022static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4023 unsigned int alloc_flags)
8510e69c
JK
4024{
4025#ifdef CONFIG_CMA
8e3560d9 4026 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4027 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4028#endif
4029 return alloc_flags;
4030}
4031
7fb1d9fc 4032/*
0798e519 4033 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4034 * a page.
4035 */
4036static struct page *
a9263751
VB
4037get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4038 const struct alloc_context *ac)
753ee728 4039{
6bb15450 4040 struct zoneref *z;
5117f45d 4041 struct zone *zone;
3b8c0be4 4042 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 4043 bool no_fallback;
3b8c0be4 4044
6bb15450 4045retry:
7fb1d9fc 4046 /*
9276b1bc 4047 * Scan zonelist, looking for a zone with enough free.
344736f2 4048 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4049 */
6bb15450
MG
4050 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4051 z = ac->preferred_zoneref;
30d8ec73
MN
4052 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4053 ac->nodemask) {
be06af00 4054 struct page *page;
e085dbc5
JW
4055 unsigned long mark;
4056
664eedde
MG
4057 if (cpusets_enabled() &&
4058 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4059 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4060 continue;
a756cf59
JW
4061 /*
4062 * When allocating a page cache page for writing, we
281e3726
MG
4063 * want to get it from a node that is within its dirty
4064 * limit, such that no single node holds more than its
a756cf59 4065 * proportional share of globally allowed dirty pages.
281e3726 4066 * The dirty limits take into account the node's
a756cf59
JW
4067 * lowmem reserves and high watermark so that kswapd
4068 * should be able to balance it without having to
4069 * write pages from its LRU list.
4070 *
a756cf59 4071 * XXX: For now, allow allocations to potentially
281e3726 4072 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4073 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4074 * which is important when on a NUMA setup the allowed
281e3726 4075 * nodes are together not big enough to reach the
a756cf59 4076 * global limit. The proper fix for these situations
281e3726 4077 * will require awareness of nodes in the
a756cf59
JW
4078 * dirty-throttling and the flusher threads.
4079 */
3b8c0be4
MG
4080 if (ac->spread_dirty_pages) {
4081 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4082 continue;
4083
4084 if (!node_dirty_ok(zone->zone_pgdat)) {
4085 last_pgdat_dirty_limit = zone->zone_pgdat;
4086 continue;
4087 }
4088 }
7fb1d9fc 4089
6bb15450
MG
4090 if (no_fallback && nr_online_nodes > 1 &&
4091 zone != ac->preferred_zoneref->zone) {
4092 int local_nid;
4093
4094 /*
4095 * If moving to a remote node, retry but allow
4096 * fragmenting fallbacks. Locality is more important
4097 * than fragmentation avoidance.
4098 */
4099 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4100 if (zone_to_nid(zone) != local_nid) {
4101 alloc_flags &= ~ALLOC_NOFRAGMENT;
4102 goto retry;
4103 }
4104 }
4105
a9214443 4106 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4107 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4108 ac->highest_zoneidx, alloc_flags,
4109 gfp_mask)) {
fa5e084e
MG
4110 int ret;
4111
c9e97a19
PT
4112#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4113 /*
4114 * Watermark failed for this zone, but see if we can
4115 * grow this zone if it contains deferred pages.
4116 */
4117 if (static_branch_unlikely(&deferred_pages)) {
4118 if (_deferred_grow_zone(zone, order))
4119 goto try_this_zone;
4120 }
4121#endif
5dab2911
MG
4122 /* Checked here to keep the fast path fast */
4123 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4124 if (alloc_flags & ALLOC_NO_WATERMARKS)
4125 goto try_this_zone;
4126
202e35db 4127 if (!node_reclaim_enabled() ||
c33d6c06 4128 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4129 continue;
4130
a5f5f91d 4131 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4132 switch (ret) {
a5f5f91d 4133 case NODE_RECLAIM_NOSCAN:
fa5e084e 4134 /* did not scan */
cd38b115 4135 continue;
a5f5f91d 4136 case NODE_RECLAIM_FULL:
fa5e084e 4137 /* scanned but unreclaimable */
cd38b115 4138 continue;
fa5e084e
MG
4139 default:
4140 /* did we reclaim enough */
fed2719e 4141 if (zone_watermark_ok(zone, order, mark,
97a225e6 4142 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4143 goto try_this_zone;
4144
fed2719e 4145 continue;
0798e519 4146 }
7fb1d9fc
RS
4147 }
4148
fa5e084e 4149try_this_zone:
066b2393 4150 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4151 gfp_mask, alloc_flags, ac->migratetype);
75379191 4152 if (page) {
479f854a 4153 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4154
4155 /*
4156 * If this is a high-order atomic allocation then check
4157 * if the pageblock should be reserved for the future
4158 */
4159 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4160 reserve_highatomic_pageblock(page, zone, order);
4161
75379191 4162 return page;
c9e97a19
PT
4163 } else {
4164#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4165 /* Try again if zone has deferred pages */
4166 if (static_branch_unlikely(&deferred_pages)) {
4167 if (_deferred_grow_zone(zone, order))
4168 goto try_this_zone;
4169 }
4170#endif
75379191 4171 }
54a6eb5c 4172 }
9276b1bc 4173
6bb15450
MG
4174 /*
4175 * It's possible on a UMA machine to get through all zones that are
4176 * fragmented. If avoiding fragmentation, reset and try again.
4177 */
4178 if (no_fallback) {
4179 alloc_flags &= ~ALLOC_NOFRAGMENT;
4180 goto retry;
4181 }
4182
4ffeaf35 4183 return NULL;
753ee728
MH
4184}
4185
9af744d7 4186static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4187{
a238ab5b 4188 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4189
4190 /*
4191 * This documents exceptions given to allocations in certain
4192 * contexts that are allowed to allocate outside current's set
4193 * of allowed nodes.
4194 */
4195 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4196 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4197 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4198 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4199 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4200 filter &= ~SHOW_MEM_FILTER_NODES;
4201
9af744d7 4202 show_mem(filter, nodemask);
aa187507
MH
4203}
4204
a8e99259 4205void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4206{
4207 struct va_format vaf;
4208 va_list args;
1be334e5 4209 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4210
0f7896f1 4211 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4212 return;
4213
7877cdcc
MH
4214 va_start(args, fmt);
4215 vaf.fmt = fmt;
4216 vaf.va = &args;
ef8444ea 4217 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4218 current->comm, &vaf, gfp_mask, &gfp_mask,
4219 nodemask_pr_args(nodemask));
7877cdcc 4220 va_end(args);
3ee9a4f0 4221
a8e99259 4222 cpuset_print_current_mems_allowed();
ef8444ea 4223 pr_cont("\n");
a238ab5b 4224 dump_stack();
685dbf6f 4225 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4226}
4227
6c18ba7a
MH
4228static inline struct page *
4229__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4230 unsigned int alloc_flags,
4231 const struct alloc_context *ac)
4232{
4233 struct page *page;
4234
4235 page = get_page_from_freelist(gfp_mask, order,
4236 alloc_flags|ALLOC_CPUSET, ac);
4237 /*
4238 * fallback to ignore cpuset restriction if our nodes
4239 * are depleted
4240 */
4241 if (!page)
4242 page = get_page_from_freelist(gfp_mask, order,
4243 alloc_flags, ac);
4244
4245 return page;
4246}
4247
11e33f6a
MG
4248static inline struct page *
4249__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4250 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4251{
6e0fc46d
DR
4252 struct oom_control oc = {
4253 .zonelist = ac->zonelist,
4254 .nodemask = ac->nodemask,
2a966b77 4255 .memcg = NULL,
6e0fc46d
DR
4256 .gfp_mask = gfp_mask,
4257 .order = order,
6e0fc46d 4258 };
11e33f6a
MG
4259 struct page *page;
4260
9879de73
JW
4261 *did_some_progress = 0;
4262
9879de73 4263 /*
dc56401f
JW
4264 * Acquire the oom lock. If that fails, somebody else is
4265 * making progress for us.
9879de73 4266 */
dc56401f 4267 if (!mutex_trylock(&oom_lock)) {
9879de73 4268 *did_some_progress = 1;
11e33f6a 4269 schedule_timeout_uninterruptible(1);
1da177e4
LT
4270 return NULL;
4271 }
6b1de916 4272
11e33f6a
MG
4273 /*
4274 * Go through the zonelist yet one more time, keep very high watermark
4275 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4276 * we're still under heavy pressure. But make sure that this reclaim
4277 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4278 * allocation which will never fail due to oom_lock already held.
11e33f6a 4279 */
e746bf73
TH
4280 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4281 ~__GFP_DIRECT_RECLAIM, order,
4282 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4283 if (page)
11e33f6a
MG
4284 goto out;
4285
06ad276a
MH
4286 /* Coredumps can quickly deplete all memory reserves */
4287 if (current->flags & PF_DUMPCORE)
4288 goto out;
4289 /* The OOM killer will not help higher order allocs */
4290 if (order > PAGE_ALLOC_COSTLY_ORDER)
4291 goto out;
dcda9b04
MH
4292 /*
4293 * We have already exhausted all our reclaim opportunities without any
4294 * success so it is time to admit defeat. We will skip the OOM killer
4295 * because it is very likely that the caller has a more reasonable
4296 * fallback than shooting a random task.
cfb4a541
MN
4297 *
4298 * The OOM killer may not free memory on a specific node.
dcda9b04 4299 */
cfb4a541 4300 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4301 goto out;
06ad276a 4302 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4303 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4304 goto out;
4305 if (pm_suspended_storage())
4306 goto out;
4307 /*
4308 * XXX: GFP_NOFS allocations should rather fail than rely on
4309 * other request to make a forward progress.
4310 * We are in an unfortunate situation where out_of_memory cannot
4311 * do much for this context but let's try it to at least get
4312 * access to memory reserved if the current task is killed (see
4313 * out_of_memory). Once filesystems are ready to handle allocation
4314 * failures more gracefully we should just bail out here.
4315 */
4316
3c2c6488 4317 /* Exhausted what can be done so it's blame time */
5020e285 4318 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4319 *did_some_progress = 1;
5020e285 4320
6c18ba7a
MH
4321 /*
4322 * Help non-failing allocations by giving them access to memory
4323 * reserves
4324 */
4325 if (gfp_mask & __GFP_NOFAIL)
4326 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4327 ALLOC_NO_WATERMARKS, ac);
5020e285 4328 }
11e33f6a 4329out:
dc56401f 4330 mutex_unlock(&oom_lock);
11e33f6a
MG
4331 return page;
4332}
4333
33c2d214 4334/*
baf2f90b 4335 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4336 * killer is consider as the only way to move forward.
4337 */
4338#define MAX_COMPACT_RETRIES 16
4339
56de7263
MG
4340#ifdef CONFIG_COMPACTION
4341/* Try memory compaction for high-order allocations before reclaim */
4342static struct page *
4343__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4344 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4345 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4346{
5e1f0f09 4347 struct page *page = NULL;
eb414681 4348 unsigned long pflags;
499118e9 4349 unsigned int noreclaim_flag;
53853e2d
VB
4350
4351 if (!order)
66199712 4352 return NULL;
66199712 4353
eb414681 4354 psi_memstall_enter(&pflags);
499118e9 4355 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4356
c5d01d0d 4357 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4358 prio, &page);
eb414681 4359
499118e9 4360 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4361 psi_memstall_leave(&pflags);
56de7263 4362
06dac2f4
CTR
4363 if (*compact_result == COMPACT_SKIPPED)
4364 return NULL;
98dd3b48
VB
4365 /*
4366 * At least in one zone compaction wasn't deferred or skipped, so let's
4367 * count a compaction stall
4368 */
4369 count_vm_event(COMPACTSTALL);
8fb74b9f 4370
5e1f0f09
MG
4371 /* Prep a captured page if available */
4372 if (page)
4373 prep_new_page(page, order, gfp_mask, alloc_flags);
4374
4375 /* Try get a page from the freelist if available */
4376 if (!page)
4377 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4378
98dd3b48
VB
4379 if (page) {
4380 struct zone *zone = page_zone(page);
53853e2d 4381
98dd3b48
VB
4382 zone->compact_blockskip_flush = false;
4383 compaction_defer_reset(zone, order, true);
4384 count_vm_event(COMPACTSUCCESS);
4385 return page;
4386 }
56de7263 4387
98dd3b48
VB
4388 /*
4389 * It's bad if compaction run occurs and fails. The most likely reason
4390 * is that pages exist, but not enough to satisfy watermarks.
4391 */
4392 count_vm_event(COMPACTFAIL);
66199712 4393
98dd3b48 4394 cond_resched();
56de7263
MG
4395
4396 return NULL;
4397}
33c2d214 4398
3250845d
VB
4399static inline bool
4400should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4401 enum compact_result compact_result,
4402 enum compact_priority *compact_priority,
d9436498 4403 int *compaction_retries)
3250845d
VB
4404{
4405 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4406 int min_priority;
65190cff
MH
4407 bool ret = false;
4408 int retries = *compaction_retries;
4409 enum compact_priority priority = *compact_priority;
3250845d
VB
4410
4411 if (!order)
4412 return false;
4413
691d9497
AT
4414 if (fatal_signal_pending(current))
4415 return false;
4416
d9436498
VB
4417 if (compaction_made_progress(compact_result))
4418 (*compaction_retries)++;
4419
3250845d
VB
4420 /*
4421 * compaction considers all the zone as desperately out of memory
4422 * so it doesn't really make much sense to retry except when the
4423 * failure could be caused by insufficient priority
4424 */
d9436498
VB
4425 if (compaction_failed(compact_result))
4426 goto check_priority;
3250845d 4427
49433085
VB
4428 /*
4429 * compaction was skipped because there are not enough order-0 pages
4430 * to work with, so we retry only if it looks like reclaim can help.
4431 */
4432 if (compaction_needs_reclaim(compact_result)) {
4433 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4434 goto out;
4435 }
4436
3250845d
VB
4437 /*
4438 * make sure the compaction wasn't deferred or didn't bail out early
4439 * due to locks contention before we declare that we should give up.
49433085
VB
4440 * But the next retry should use a higher priority if allowed, so
4441 * we don't just keep bailing out endlessly.
3250845d 4442 */
65190cff 4443 if (compaction_withdrawn(compact_result)) {
49433085 4444 goto check_priority;
65190cff 4445 }
3250845d
VB
4446
4447 /*
dcda9b04 4448 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4449 * costly ones because they are de facto nofail and invoke OOM
4450 * killer to move on while costly can fail and users are ready
4451 * to cope with that. 1/4 retries is rather arbitrary but we
4452 * would need much more detailed feedback from compaction to
4453 * make a better decision.
4454 */
4455 if (order > PAGE_ALLOC_COSTLY_ORDER)
4456 max_retries /= 4;
65190cff
MH
4457 if (*compaction_retries <= max_retries) {
4458 ret = true;
4459 goto out;
4460 }
3250845d 4461
d9436498
VB
4462 /*
4463 * Make sure there are attempts at the highest priority if we exhausted
4464 * all retries or failed at the lower priorities.
4465 */
4466check_priority:
c2033b00
VB
4467 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4468 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4469
c2033b00 4470 if (*compact_priority > min_priority) {
d9436498
VB
4471 (*compact_priority)--;
4472 *compaction_retries = 0;
65190cff 4473 ret = true;
d9436498 4474 }
65190cff
MH
4475out:
4476 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4477 return ret;
3250845d 4478}
56de7263
MG
4479#else
4480static inline struct page *
4481__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4482 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4483 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4484{
33c2d214 4485 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4486 return NULL;
4487}
33c2d214
MH
4488
4489static inline bool
86a294a8
MH
4490should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4491 enum compact_result compact_result,
a5508cd8 4492 enum compact_priority *compact_priority,
d9436498 4493 int *compaction_retries)
33c2d214 4494{
31e49bfd
MH
4495 struct zone *zone;
4496 struct zoneref *z;
4497
4498 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4499 return false;
4500
4501 /*
4502 * There are setups with compaction disabled which would prefer to loop
4503 * inside the allocator rather than hit the oom killer prematurely.
4504 * Let's give them a good hope and keep retrying while the order-0
4505 * watermarks are OK.
4506 */
97a225e6
JK
4507 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4508 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4509 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4510 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4511 return true;
4512 }
33c2d214
MH
4513 return false;
4514}
3250845d 4515#endif /* CONFIG_COMPACTION */
56de7263 4516
d92a8cfc 4517#ifdef CONFIG_LOCKDEP
93781325 4518static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4519 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4520
f920e413 4521static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4522{
d92a8cfc
PZ
4523 /* no reclaim without waiting on it */
4524 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4525 return false;
4526
4527 /* this guy won't enter reclaim */
2e517d68 4528 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4529 return false;
4530
d92a8cfc
PZ
4531 if (gfp_mask & __GFP_NOLOCKDEP)
4532 return false;
4533
4534 return true;
4535}
4536
4f3eaf45 4537void __fs_reclaim_acquire(unsigned long ip)
93781325 4538{
4f3eaf45 4539 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4540}
4541
4f3eaf45 4542void __fs_reclaim_release(unsigned long ip)
93781325 4543{
4f3eaf45 4544 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4545}
4546
d92a8cfc
PZ
4547void fs_reclaim_acquire(gfp_t gfp_mask)
4548{
f920e413
DV
4549 gfp_mask = current_gfp_context(gfp_mask);
4550
4551 if (__need_reclaim(gfp_mask)) {
4552 if (gfp_mask & __GFP_FS)
4f3eaf45 4553 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4554
4555#ifdef CONFIG_MMU_NOTIFIER
4556 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4557 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4558#endif
4559
4560 }
d92a8cfc
PZ
4561}
4562EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4563
4564void fs_reclaim_release(gfp_t gfp_mask)
4565{
f920e413
DV
4566 gfp_mask = current_gfp_context(gfp_mask);
4567
4568 if (__need_reclaim(gfp_mask)) {
4569 if (gfp_mask & __GFP_FS)
4f3eaf45 4570 __fs_reclaim_release(_RET_IP_);
f920e413 4571 }
d92a8cfc
PZ
4572}
4573EXPORT_SYMBOL_GPL(fs_reclaim_release);
4574#endif
4575
bba90710 4576/* Perform direct synchronous page reclaim */
2187e17b 4577static unsigned long
a9263751
VB
4578__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4579 const struct alloc_context *ac)
11e33f6a 4580{
499118e9 4581 unsigned int noreclaim_flag;
2187e17b 4582 unsigned long pflags, progress;
11e33f6a
MG
4583
4584 cond_resched();
4585
4586 /* We now go into synchronous reclaim */
4587 cpuset_memory_pressure_bump();
eb414681 4588 psi_memstall_enter(&pflags);
d92a8cfc 4589 fs_reclaim_acquire(gfp_mask);
93781325 4590 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4591
a9263751
VB
4592 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4593 ac->nodemask);
11e33f6a 4594
499118e9 4595 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4596 fs_reclaim_release(gfp_mask);
eb414681 4597 psi_memstall_leave(&pflags);
11e33f6a
MG
4598
4599 cond_resched();
4600
bba90710
MS
4601 return progress;
4602}
4603
4604/* The really slow allocator path where we enter direct reclaim */
4605static inline struct page *
4606__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4607 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4608 unsigned long *did_some_progress)
bba90710
MS
4609{
4610 struct page *page = NULL;
4611 bool drained = false;
4612
a9263751 4613 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4614 if (unlikely(!(*did_some_progress)))
4615 return NULL;
11e33f6a 4616
9ee493ce 4617retry:
31a6c190 4618 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4619
4620 /*
4621 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4622 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4623 * Shrink them and try again
9ee493ce
MG
4624 */
4625 if (!page && !drained) {
29fac03b 4626 unreserve_highatomic_pageblock(ac, false);
93481ff0 4627 drain_all_pages(NULL);
9ee493ce
MG
4628 drained = true;
4629 goto retry;
4630 }
4631
11e33f6a
MG
4632 return page;
4633}
4634
5ecd9d40
DR
4635static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4636 const struct alloc_context *ac)
3a025760
JW
4637{
4638 struct zoneref *z;
4639 struct zone *zone;
e1a55637 4640 pg_data_t *last_pgdat = NULL;
97a225e6 4641 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4642
97a225e6 4643 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4644 ac->nodemask) {
e1a55637 4645 if (last_pgdat != zone->zone_pgdat)
97a225e6 4646 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4647 last_pgdat = zone->zone_pgdat;
4648 }
3a025760
JW
4649}
4650
c603844b 4651static inline unsigned int
341ce06f
PZ
4652gfp_to_alloc_flags(gfp_t gfp_mask)
4653{
c603844b 4654 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4655
736838e9
MN
4656 /*
4657 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4658 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4659 * to save two branches.
4660 */
e6223a3b 4661 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4662 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4663
341ce06f
PZ
4664 /*
4665 * The caller may dip into page reserves a bit more if the caller
4666 * cannot run direct reclaim, or if the caller has realtime scheduling
4667 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4668 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4669 */
736838e9
MN
4670 alloc_flags |= (__force int)
4671 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4672
d0164adc 4673 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4674 /*
b104a35d
DR
4675 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4676 * if it can't schedule.
5c3240d9 4677 */
b104a35d 4678 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4679 alloc_flags |= ALLOC_HARDER;
523b9458 4680 /*
b104a35d 4681 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4682 * comment for __cpuset_node_allowed().
523b9458 4683 */
341ce06f 4684 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4685 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4686 alloc_flags |= ALLOC_HARDER;
4687
8e3560d9 4688 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4689
341ce06f
PZ
4690 return alloc_flags;
4691}
4692
cd04ae1e 4693static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4694{
cd04ae1e
MH
4695 if (!tsk_is_oom_victim(tsk))
4696 return false;
4697
4698 /*
4699 * !MMU doesn't have oom reaper so give access to memory reserves
4700 * only to the thread with TIF_MEMDIE set
4701 */
4702 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4703 return false;
4704
cd04ae1e
MH
4705 return true;
4706}
4707
4708/*
4709 * Distinguish requests which really need access to full memory
4710 * reserves from oom victims which can live with a portion of it
4711 */
4712static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4713{
4714 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4715 return 0;
31a6c190 4716 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4717 return ALLOC_NO_WATERMARKS;
31a6c190 4718 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4719 return ALLOC_NO_WATERMARKS;
4720 if (!in_interrupt()) {
4721 if (current->flags & PF_MEMALLOC)
4722 return ALLOC_NO_WATERMARKS;
4723 else if (oom_reserves_allowed(current))
4724 return ALLOC_OOM;
4725 }
31a6c190 4726
cd04ae1e
MH
4727 return 0;
4728}
4729
4730bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4731{
4732 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4733}
4734
0a0337e0
MH
4735/*
4736 * Checks whether it makes sense to retry the reclaim to make a forward progress
4737 * for the given allocation request.
491d79ae
JW
4738 *
4739 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4740 * without success, or when we couldn't even meet the watermark if we
4741 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4742 *
4743 * Returns true if a retry is viable or false to enter the oom path.
4744 */
4745static inline bool
4746should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4747 struct alloc_context *ac, int alloc_flags,
423b452e 4748 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4749{
4750 struct zone *zone;
4751 struct zoneref *z;
15f570bf 4752 bool ret = false;
0a0337e0 4753
423b452e
VB
4754 /*
4755 * Costly allocations might have made a progress but this doesn't mean
4756 * their order will become available due to high fragmentation so
4757 * always increment the no progress counter for them
4758 */
4759 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4760 *no_progress_loops = 0;
4761 else
4762 (*no_progress_loops)++;
4763
0a0337e0
MH
4764 /*
4765 * Make sure we converge to OOM if we cannot make any progress
4766 * several times in the row.
4767 */
04c8716f
MK
4768 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4769 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4770 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4771 }
0a0337e0 4772
bca67592
MG
4773 /*
4774 * Keep reclaiming pages while there is a chance this will lead
4775 * somewhere. If none of the target zones can satisfy our allocation
4776 * request even if all reclaimable pages are considered then we are
4777 * screwed and have to go OOM.
0a0337e0 4778 */
97a225e6
JK
4779 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4780 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4781 unsigned long available;
ede37713 4782 unsigned long reclaimable;
d379f01d
MH
4783 unsigned long min_wmark = min_wmark_pages(zone);
4784 bool wmark;
0a0337e0 4785
5a1c84b4 4786 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4787 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4788
4789 /*
491d79ae
JW
4790 * Would the allocation succeed if we reclaimed all
4791 * reclaimable pages?
0a0337e0 4792 */
d379f01d 4793 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4794 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4795 trace_reclaim_retry_zone(z, order, reclaimable,
4796 available, min_wmark, *no_progress_loops, wmark);
4797 if (wmark) {
ede37713
MH
4798 /*
4799 * If we didn't make any progress and have a lot of
4800 * dirty + writeback pages then we should wait for
4801 * an IO to complete to slow down the reclaim and
4802 * prevent from pre mature OOM
4803 */
4804 if (!did_some_progress) {
11fb9989 4805 unsigned long write_pending;
ede37713 4806
5a1c84b4
MG
4807 write_pending = zone_page_state_snapshot(zone,
4808 NR_ZONE_WRITE_PENDING);
ede37713 4809
11fb9989 4810 if (2 * write_pending > reclaimable) {
ede37713
MH
4811 congestion_wait(BLK_RW_ASYNC, HZ/10);
4812 return true;
4813 }
4814 }
5a1c84b4 4815
15f570bf
MH
4816 ret = true;
4817 goto out;
0a0337e0
MH
4818 }
4819 }
4820
15f570bf
MH
4821out:
4822 /*
4823 * Memory allocation/reclaim might be called from a WQ context and the
4824 * current implementation of the WQ concurrency control doesn't
4825 * recognize that a particular WQ is congested if the worker thread is
4826 * looping without ever sleeping. Therefore we have to do a short sleep
4827 * here rather than calling cond_resched().
4828 */
4829 if (current->flags & PF_WQ_WORKER)
4830 schedule_timeout_uninterruptible(1);
4831 else
4832 cond_resched();
4833 return ret;
0a0337e0
MH
4834}
4835
902b6281
VB
4836static inline bool
4837check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4838{
4839 /*
4840 * It's possible that cpuset's mems_allowed and the nodemask from
4841 * mempolicy don't intersect. This should be normally dealt with by
4842 * policy_nodemask(), but it's possible to race with cpuset update in
4843 * such a way the check therein was true, and then it became false
4844 * before we got our cpuset_mems_cookie here.
4845 * This assumes that for all allocations, ac->nodemask can come only
4846 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4847 * when it does not intersect with the cpuset restrictions) or the
4848 * caller can deal with a violated nodemask.
4849 */
4850 if (cpusets_enabled() && ac->nodemask &&
4851 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4852 ac->nodemask = NULL;
4853 return true;
4854 }
4855
4856 /*
4857 * When updating a task's mems_allowed or mempolicy nodemask, it is
4858 * possible to race with parallel threads in such a way that our
4859 * allocation can fail while the mask is being updated. If we are about
4860 * to fail, check if the cpuset changed during allocation and if so,
4861 * retry.
4862 */
4863 if (read_mems_allowed_retry(cpuset_mems_cookie))
4864 return true;
4865
4866 return false;
4867}
4868
11e33f6a
MG
4869static inline struct page *
4870__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4871 struct alloc_context *ac)
11e33f6a 4872{
d0164adc 4873 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4874 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4875 struct page *page = NULL;
c603844b 4876 unsigned int alloc_flags;
11e33f6a 4877 unsigned long did_some_progress;
5ce9bfef 4878 enum compact_priority compact_priority;
c5d01d0d 4879 enum compact_result compact_result;
5ce9bfef
VB
4880 int compaction_retries;
4881 int no_progress_loops;
5ce9bfef 4882 unsigned int cpuset_mems_cookie;
cd04ae1e 4883 int reserve_flags;
1da177e4 4884
d0164adc
MG
4885 /*
4886 * We also sanity check to catch abuse of atomic reserves being used by
4887 * callers that are not in atomic context.
4888 */
4889 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4890 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4891 gfp_mask &= ~__GFP_ATOMIC;
4892
5ce9bfef
VB
4893retry_cpuset:
4894 compaction_retries = 0;
4895 no_progress_loops = 0;
4896 compact_priority = DEF_COMPACT_PRIORITY;
4897 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4898
4899 /*
4900 * The fast path uses conservative alloc_flags to succeed only until
4901 * kswapd needs to be woken up, and to avoid the cost of setting up
4902 * alloc_flags precisely. So we do that now.
4903 */
4904 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4905
e47483bc
VB
4906 /*
4907 * We need to recalculate the starting point for the zonelist iterator
4908 * because we might have used different nodemask in the fast path, or
4909 * there was a cpuset modification and we are retrying - otherwise we
4910 * could end up iterating over non-eligible zones endlessly.
4911 */
4912 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4913 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4914 if (!ac->preferred_zoneref->zone)
4915 goto nopage;
4916
0a79cdad 4917 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4918 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4919
4920 /*
4921 * The adjusted alloc_flags might result in immediate success, so try
4922 * that first
4923 */
4924 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4925 if (page)
4926 goto got_pg;
4927
a8161d1e
VB
4928 /*
4929 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4930 * that we have enough base pages and don't need to reclaim. For non-
4931 * movable high-order allocations, do that as well, as compaction will
4932 * try prevent permanent fragmentation by migrating from blocks of the
4933 * same migratetype.
4934 * Don't try this for allocations that are allowed to ignore
4935 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4936 */
282722b0
VB
4937 if (can_direct_reclaim &&
4938 (costly_order ||
4939 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4940 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4941 page = __alloc_pages_direct_compact(gfp_mask, order,
4942 alloc_flags, ac,
a5508cd8 4943 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4944 &compact_result);
4945 if (page)
4946 goto got_pg;
4947
cc638f32
VB
4948 /*
4949 * Checks for costly allocations with __GFP_NORETRY, which
4950 * includes some THP page fault allocations
4951 */
4952 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4953 /*
4954 * If allocating entire pageblock(s) and compaction
4955 * failed because all zones are below low watermarks
4956 * or is prohibited because it recently failed at this
3f36d866
DR
4957 * order, fail immediately unless the allocator has
4958 * requested compaction and reclaim retry.
b39d0ee2
DR
4959 *
4960 * Reclaim is
4961 * - potentially very expensive because zones are far
4962 * below their low watermarks or this is part of very
4963 * bursty high order allocations,
4964 * - not guaranteed to help because isolate_freepages()
4965 * may not iterate over freed pages as part of its
4966 * linear scan, and
4967 * - unlikely to make entire pageblocks free on its
4968 * own.
4969 */
4970 if (compact_result == COMPACT_SKIPPED ||
4971 compact_result == COMPACT_DEFERRED)
4972 goto nopage;
a8161d1e 4973
a8161d1e 4974 /*
3eb2771b
VB
4975 * Looks like reclaim/compaction is worth trying, but
4976 * sync compaction could be very expensive, so keep
25160354 4977 * using async compaction.
a8161d1e 4978 */
a5508cd8 4979 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4980 }
4981 }
23771235 4982
31a6c190 4983retry:
23771235 4984 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4985 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4986 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4987
cd04ae1e
MH
4988 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4989 if (reserve_flags)
8e3560d9 4990 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 4991
e46e7b77 4992 /*
d6a24df0
VB
4993 * Reset the nodemask and zonelist iterators if memory policies can be
4994 * ignored. These allocations are high priority and system rather than
4995 * user oriented.
e46e7b77 4996 */
cd04ae1e 4997 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4998 ac->nodemask = NULL;
e46e7b77 4999 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5000 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5001 }
5002
23771235 5003 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5004 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5005 if (page)
5006 goto got_pg;
1da177e4 5007
d0164adc 5008 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5009 if (!can_direct_reclaim)
1da177e4
LT
5010 goto nopage;
5011
9a67f648
MH
5012 /* Avoid recursion of direct reclaim */
5013 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5014 goto nopage;
5015
a8161d1e
VB
5016 /* Try direct reclaim and then allocating */
5017 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5018 &did_some_progress);
5019 if (page)
5020 goto got_pg;
5021
5022 /* Try direct compaction and then allocating */
a9263751 5023 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5024 compact_priority, &compact_result);
56de7263
MG
5025 if (page)
5026 goto got_pg;
75f30861 5027
9083905a
JW
5028 /* Do not loop if specifically requested */
5029 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5030 goto nopage;
9083905a 5031
0a0337e0
MH
5032 /*
5033 * Do not retry costly high order allocations unless they are
dcda9b04 5034 * __GFP_RETRY_MAYFAIL
0a0337e0 5035 */
dcda9b04 5036 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5037 goto nopage;
0a0337e0 5038
0a0337e0 5039 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5040 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5041 goto retry;
5042
33c2d214
MH
5043 /*
5044 * It doesn't make any sense to retry for the compaction if the order-0
5045 * reclaim is not able to make any progress because the current
5046 * implementation of the compaction depends on the sufficient amount
5047 * of free memory (see __compaction_suitable)
5048 */
5049 if (did_some_progress > 0 &&
86a294a8 5050 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5051 compact_result, &compact_priority,
d9436498 5052 &compaction_retries))
33c2d214
MH
5053 goto retry;
5054
902b6281
VB
5055
5056 /* Deal with possible cpuset update races before we start OOM killing */
5057 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5058 goto retry_cpuset;
5059
9083905a
JW
5060 /* Reclaim has failed us, start killing things */
5061 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5062 if (page)
5063 goto got_pg;
5064
9a67f648 5065 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5066 if (tsk_is_oom_victim(current) &&
8510e69c 5067 (alloc_flags & ALLOC_OOM ||
c288983d 5068 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5069 goto nopage;
5070
9083905a 5071 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5072 if (did_some_progress) {
5073 no_progress_loops = 0;
9083905a 5074 goto retry;
0a0337e0 5075 }
9083905a 5076
1da177e4 5077nopage:
902b6281
VB
5078 /* Deal with possible cpuset update races before we fail */
5079 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5080 goto retry_cpuset;
5081
9a67f648
MH
5082 /*
5083 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5084 * we always retry
5085 */
5086 if (gfp_mask & __GFP_NOFAIL) {
5087 /*
5088 * All existing users of the __GFP_NOFAIL are blockable, so warn
5089 * of any new users that actually require GFP_NOWAIT
5090 */
5091 if (WARN_ON_ONCE(!can_direct_reclaim))
5092 goto fail;
5093
5094 /*
5095 * PF_MEMALLOC request from this context is rather bizarre
5096 * because we cannot reclaim anything and only can loop waiting
5097 * for somebody to do a work for us
5098 */
5099 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5100
5101 /*
5102 * non failing costly orders are a hard requirement which we
5103 * are not prepared for much so let's warn about these users
5104 * so that we can identify them and convert them to something
5105 * else.
5106 */
5107 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5108
6c18ba7a
MH
5109 /*
5110 * Help non-failing allocations by giving them access to memory
5111 * reserves but do not use ALLOC_NO_WATERMARKS because this
5112 * could deplete whole memory reserves which would just make
5113 * the situation worse
5114 */
5115 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5116 if (page)
5117 goto got_pg;
5118
9a67f648
MH
5119 cond_resched();
5120 goto retry;
5121 }
5122fail:
a8e99259 5123 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5124 "page allocation failure: order:%u", order);
1da177e4 5125got_pg:
072bb0aa 5126 return page;
1da177e4 5127}
11e33f6a 5128
9cd75558 5129static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5130 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5131 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5132 unsigned int *alloc_flags)
11e33f6a 5133{
97a225e6 5134 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5135 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5136 ac->nodemask = nodemask;
01c0bfe0 5137 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5138
682a3385 5139 if (cpusets_enabled()) {
8e6a930b 5140 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5141 /*
5142 * When we are in the interrupt context, it is irrelevant
5143 * to the current task context. It means that any node ok.
5144 */
88dc6f20 5145 if (in_task() && !ac->nodemask)
9cd75558 5146 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5147 else
5148 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5149 }
5150
d92a8cfc
PZ
5151 fs_reclaim_acquire(gfp_mask);
5152 fs_reclaim_release(gfp_mask);
11e33f6a 5153
d0164adc 5154 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5155
5156 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5157 return false;
11e33f6a 5158
8e3560d9 5159 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5160
c9ab0c4f 5161 /* Dirty zone balancing only done in the fast path */
9cd75558 5162 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5163
e46e7b77
MG
5164 /*
5165 * The preferred zone is used for statistics but crucially it is
5166 * also used as the starting point for the zonelist iterator. It
5167 * may get reset for allocations that ignore memory policies.
5168 */
9cd75558 5169 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5170 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5171
5172 return true;
9cd75558
MG
5173}
5174
387ba26f 5175/*
0f87d9d3 5176 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5177 * @gfp: GFP flags for the allocation
5178 * @preferred_nid: The preferred NUMA node ID to allocate from
5179 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5180 * @nr_pages: The number of pages desired on the list or array
5181 * @page_list: Optional list to store the allocated pages
5182 * @page_array: Optional array to store the pages
387ba26f
MG
5183 *
5184 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5185 * allocate nr_pages quickly. Pages are added to page_list if page_list
5186 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5187 *
0f87d9d3
MG
5188 * For lists, nr_pages is the number of pages that should be allocated.
5189 *
5190 * For arrays, only NULL elements are populated with pages and nr_pages
5191 * is the maximum number of pages that will be stored in the array.
5192 *
5193 * Returns the number of pages on the list or array.
387ba26f
MG
5194 */
5195unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5196 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5197 struct list_head *page_list,
5198 struct page **page_array)
387ba26f
MG
5199{
5200 struct page *page;
5201 unsigned long flags;
5202 struct zone *zone;
5203 struct zoneref *z;
5204 struct per_cpu_pages *pcp;
5205 struct list_head *pcp_list;
5206 struct alloc_context ac;
5207 gfp_t alloc_gfp;
5208 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5209 int nr_populated = 0, nr_account = 0;
387ba26f 5210
0f87d9d3
MG
5211 /*
5212 * Skip populated array elements to determine if any pages need
5213 * to be allocated before disabling IRQs.
5214 */
b08e50dd 5215 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5216 nr_populated++;
5217
06147843
CL
5218 /* No pages requested? */
5219 if (unlikely(nr_pages <= 0))
5220 goto out;
5221
b3b64ebd
MG
5222 /* Already populated array? */
5223 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5224 goto out;
b3b64ebd 5225
8dcb3060
SB
5226 /* Bulk allocator does not support memcg accounting. */
5227 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5228 goto failed;
5229
387ba26f 5230 /* Use the single page allocator for one page. */
0f87d9d3 5231 if (nr_pages - nr_populated == 1)
387ba26f
MG
5232 goto failed;
5233
187ad460
MG
5234#ifdef CONFIG_PAGE_OWNER
5235 /*
5236 * PAGE_OWNER may recurse into the allocator to allocate space to
5237 * save the stack with pagesets.lock held. Releasing/reacquiring
5238 * removes much of the performance benefit of bulk allocation so
5239 * force the caller to allocate one page at a time as it'll have
5240 * similar performance to added complexity to the bulk allocator.
5241 */
5242 if (static_branch_unlikely(&page_owner_inited))
5243 goto failed;
5244#endif
5245
387ba26f
MG
5246 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5247 gfp &= gfp_allowed_mask;
5248 alloc_gfp = gfp;
5249 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5250 goto out;
387ba26f
MG
5251 gfp = alloc_gfp;
5252
5253 /* Find an allowed local zone that meets the low watermark. */
5254 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5255 unsigned long mark;
5256
5257 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5258 !__cpuset_zone_allowed(zone, gfp)) {
5259 continue;
5260 }
5261
5262 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5263 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5264 goto failed;
5265 }
5266
5267 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5268 if (zone_watermark_fast(zone, 0, mark,
5269 zonelist_zone_idx(ac.preferred_zoneref),
5270 alloc_flags, gfp)) {
5271 break;
5272 }
5273 }
5274
5275 /*
5276 * If there are no allowed local zones that meets the watermarks then
5277 * try to allocate a single page and reclaim if necessary.
5278 */
ce76f9a1 5279 if (unlikely(!zone))
387ba26f
MG
5280 goto failed;
5281
5282 /* Attempt the batch allocation */
dbbee9d5 5283 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5284 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5285 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5286
0f87d9d3
MG
5287 while (nr_populated < nr_pages) {
5288
5289 /* Skip existing pages */
5290 if (page_array && page_array[nr_populated]) {
5291 nr_populated++;
5292 continue;
5293 }
5294
44042b44 5295 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5296 pcp, pcp_list);
ce76f9a1 5297 if (unlikely(!page)) {
387ba26f 5298 /* Try and get at least one page */
0f87d9d3 5299 if (!nr_populated)
387ba26f
MG
5300 goto failed_irq;
5301 break;
5302 }
3e23060b 5303 nr_account++;
387ba26f
MG
5304
5305 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5306 if (page_list)
5307 list_add(&page->lru, page_list);
5308 else
5309 page_array[nr_populated] = page;
5310 nr_populated++;
387ba26f
MG
5311 }
5312
43c95bcc
MG
5313 local_unlock_irqrestore(&pagesets.lock, flags);
5314
3e23060b
MG
5315 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5316 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5317
06147843 5318out:
0f87d9d3 5319 return nr_populated;
387ba26f
MG
5320
5321failed_irq:
dbbee9d5 5322 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5323
5324failed:
5325 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5326 if (page) {
0f87d9d3
MG
5327 if (page_list)
5328 list_add(&page->lru, page_list);
5329 else
5330 page_array[nr_populated] = page;
5331 nr_populated++;
387ba26f
MG
5332 }
5333
06147843 5334 goto out;
387ba26f
MG
5335}
5336EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5337
9cd75558
MG
5338/*
5339 * This is the 'heart' of the zoned buddy allocator.
5340 */
84172f4b 5341struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5342 nodemask_t *nodemask)
9cd75558
MG
5343{
5344 struct page *page;
5345 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5346 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5347 struct alloc_context ac = { };
5348
c63ae43b
MH
5349 /*
5350 * There are several places where we assume that the order value is sane
5351 * so bail out early if the request is out of bound.
5352 */
5353 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5354 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5355 return NULL;
5356 }
5357
6e5e0f28 5358 gfp &= gfp_allowed_mask;
da6df1b0
PT
5359 /*
5360 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5361 * resp. GFP_NOIO which has to be inherited for all allocation requests
5362 * from a particular context which has been marked by
8e3560d9
PT
5363 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5364 * movable zones are not used during allocation.
da6df1b0
PT
5365 */
5366 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5367 alloc_gfp = gfp;
5368 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5369 &alloc_gfp, &alloc_flags))
9cd75558
MG
5370 return NULL;
5371
6bb15450
MG
5372 /*
5373 * Forbid the first pass from falling back to types that fragment
5374 * memory until all local zones are considered.
5375 */
6e5e0f28 5376 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5377
5117f45d 5378 /* First allocation attempt */
8e6a930b 5379 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5380 if (likely(page))
5381 goto out;
11e33f6a 5382
da6df1b0 5383 alloc_gfp = gfp;
4fcb0971 5384 ac.spread_dirty_pages = false;
23f086f9 5385
4741526b
MG
5386 /*
5387 * Restore the original nodemask if it was potentially replaced with
5388 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5389 */
97ce86f9 5390 ac.nodemask = nodemask;
16096c25 5391
8e6a930b 5392 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5393
4fcb0971 5394out:
6e5e0f28
MWO
5395 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5396 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5397 __free_pages(page, order);
5398 page = NULL;
4949148a
VD
5399 }
5400
8e6a930b 5401 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5402
11e33f6a 5403 return page;
1da177e4 5404}
84172f4b 5405EXPORT_SYMBOL(__alloc_pages);
1da177e4
LT
5406
5407/*
9ea9a680
MH
5408 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5409 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5410 * you need to access high mem.
1da177e4 5411 */
920c7a5d 5412unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5413{
945a1113
AM
5414 struct page *page;
5415
9ea9a680 5416 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5417 if (!page)
5418 return 0;
5419 return (unsigned long) page_address(page);
5420}
1da177e4
LT
5421EXPORT_SYMBOL(__get_free_pages);
5422
920c7a5d 5423unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5424{
945a1113 5425 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5426}
1da177e4
LT
5427EXPORT_SYMBOL(get_zeroed_page);
5428
7f194fbb
MWO
5429/**
5430 * __free_pages - Free pages allocated with alloc_pages().
5431 * @page: The page pointer returned from alloc_pages().
5432 * @order: The order of the allocation.
5433 *
5434 * This function can free multi-page allocations that are not compound
5435 * pages. It does not check that the @order passed in matches that of
5436 * the allocation, so it is easy to leak memory. Freeing more memory
5437 * than was allocated will probably emit a warning.
5438 *
5439 * If the last reference to this page is speculative, it will be released
5440 * by put_page() which only frees the first page of a non-compound
5441 * allocation. To prevent the remaining pages from being leaked, we free
5442 * the subsequent pages here. If you want to use the page's reference
5443 * count to decide when to free the allocation, you should allocate a
5444 * compound page, and use put_page() instead of __free_pages().
5445 *
5446 * Context: May be called in interrupt context or while holding a normal
5447 * spinlock, but not in NMI context or while holding a raw spinlock.
5448 */
742aa7fb
AL
5449void __free_pages(struct page *page, unsigned int order)
5450{
5451 if (put_page_testzero(page))
5452 free_the_page(page, order);
e320d301
MWO
5453 else if (!PageHead(page))
5454 while (order-- > 0)
5455 free_the_page(page + (1 << order), order);
742aa7fb 5456}
1da177e4
LT
5457EXPORT_SYMBOL(__free_pages);
5458
920c7a5d 5459void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5460{
5461 if (addr != 0) {
725d704e 5462 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5463 __free_pages(virt_to_page((void *)addr), order);
5464 }
5465}
5466
5467EXPORT_SYMBOL(free_pages);
5468
b63ae8ca
AD
5469/*
5470 * Page Fragment:
5471 * An arbitrary-length arbitrary-offset area of memory which resides
5472 * within a 0 or higher order page. Multiple fragments within that page
5473 * are individually refcounted, in the page's reference counter.
5474 *
5475 * The page_frag functions below provide a simple allocation framework for
5476 * page fragments. This is used by the network stack and network device
5477 * drivers to provide a backing region of memory for use as either an
5478 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5479 */
2976db80
AD
5480static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5481 gfp_t gfp_mask)
b63ae8ca
AD
5482{
5483 struct page *page = NULL;
5484 gfp_t gfp = gfp_mask;
5485
5486#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5487 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5488 __GFP_NOMEMALLOC;
5489 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5490 PAGE_FRAG_CACHE_MAX_ORDER);
5491 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5492#endif
5493 if (unlikely(!page))
5494 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5495
5496 nc->va = page ? page_address(page) : NULL;
5497
5498 return page;
5499}
5500
2976db80 5501void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5502{
5503 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5504
742aa7fb
AL
5505 if (page_ref_sub_and_test(page, count))
5506 free_the_page(page, compound_order(page));
44fdffd7 5507}
2976db80 5508EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5509
b358e212
KH
5510void *page_frag_alloc_align(struct page_frag_cache *nc,
5511 unsigned int fragsz, gfp_t gfp_mask,
5512 unsigned int align_mask)
b63ae8ca
AD
5513{
5514 unsigned int size = PAGE_SIZE;
5515 struct page *page;
5516 int offset;
5517
5518 if (unlikely(!nc->va)) {
5519refill:
2976db80 5520 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5521 if (!page)
5522 return NULL;
5523
5524#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5525 /* if size can vary use size else just use PAGE_SIZE */
5526 size = nc->size;
5527#endif
5528 /* Even if we own the page, we do not use atomic_set().
5529 * This would break get_page_unless_zero() users.
5530 */
86447726 5531 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5532
5533 /* reset page count bias and offset to start of new frag */
2f064f34 5534 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5535 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5536 nc->offset = size;
5537 }
5538
5539 offset = nc->offset - fragsz;
5540 if (unlikely(offset < 0)) {
5541 page = virt_to_page(nc->va);
5542
fe896d18 5543 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5544 goto refill;
5545
d8c19014
DZ
5546 if (unlikely(nc->pfmemalloc)) {
5547 free_the_page(page, compound_order(page));
5548 goto refill;
5549 }
5550
b63ae8ca
AD
5551#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5552 /* if size can vary use size else just use PAGE_SIZE */
5553 size = nc->size;
5554#endif
5555 /* OK, page count is 0, we can safely set it */
86447726 5556 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5557
5558 /* reset page count bias and offset to start of new frag */
86447726 5559 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5560 offset = size - fragsz;
5561 }
5562
5563 nc->pagecnt_bias--;
b358e212 5564 offset &= align_mask;
b63ae8ca
AD
5565 nc->offset = offset;
5566
5567 return nc->va + offset;
5568}
b358e212 5569EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5570
5571/*
5572 * Frees a page fragment allocated out of either a compound or order 0 page.
5573 */
8c2dd3e4 5574void page_frag_free(void *addr)
b63ae8ca
AD
5575{
5576 struct page *page = virt_to_head_page(addr);
5577
742aa7fb
AL
5578 if (unlikely(put_page_testzero(page)))
5579 free_the_page(page, compound_order(page));
b63ae8ca 5580}
8c2dd3e4 5581EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5582
d00181b9
KS
5583static void *make_alloc_exact(unsigned long addr, unsigned int order,
5584 size_t size)
ee85c2e1
AK
5585{
5586 if (addr) {
5587 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5588 unsigned long used = addr + PAGE_ALIGN(size);
5589
5590 split_page(virt_to_page((void *)addr), order);
5591 while (used < alloc_end) {
5592 free_page(used);
5593 used += PAGE_SIZE;
5594 }
5595 }
5596 return (void *)addr;
5597}
5598
2be0ffe2
TT
5599/**
5600 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5601 * @size: the number of bytes to allocate
63931eb9 5602 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5603 *
5604 * This function is similar to alloc_pages(), except that it allocates the
5605 * minimum number of pages to satisfy the request. alloc_pages() can only
5606 * allocate memory in power-of-two pages.
5607 *
5608 * This function is also limited by MAX_ORDER.
5609 *
5610 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5611 *
5612 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5613 */
5614void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5615{
5616 unsigned int order = get_order(size);
5617 unsigned long addr;
5618
63931eb9
VB
5619 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5620 gfp_mask &= ~__GFP_COMP;
5621
2be0ffe2 5622 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5623 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5624}
5625EXPORT_SYMBOL(alloc_pages_exact);
5626
ee85c2e1
AK
5627/**
5628 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5629 * pages on a node.
b5e6ab58 5630 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5631 * @size: the number of bytes to allocate
63931eb9 5632 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5633 *
5634 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5635 * back.
a862f68a
MR
5636 *
5637 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5638 */
e1931811 5639void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5640{
d00181b9 5641 unsigned int order = get_order(size);
63931eb9
VB
5642 struct page *p;
5643
5644 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5645 gfp_mask &= ~__GFP_COMP;
5646
5647 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5648 if (!p)
5649 return NULL;
5650 return make_alloc_exact((unsigned long)page_address(p), order, size);
5651}
ee85c2e1 5652
2be0ffe2
TT
5653/**
5654 * free_pages_exact - release memory allocated via alloc_pages_exact()
5655 * @virt: the value returned by alloc_pages_exact.
5656 * @size: size of allocation, same value as passed to alloc_pages_exact().
5657 *
5658 * Release the memory allocated by a previous call to alloc_pages_exact.
5659 */
5660void free_pages_exact(void *virt, size_t size)
5661{
5662 unsigned long addr = (unsigned long)virt;
5663 unsigned long end = addr + PAGE_ALIGN(size);
5664
5665 while (addr < end) {
5666 free_page(addr);
5667 addr += PAGE_SIZE;
5668 }
5669}
5670EXPORT_SYMBOL(free_pages_exact);
5671
e0fb5815
ZY
5672/**
5673 * nr_free_zone_pages - count number of pages beyond high watermark
5674 * @offset: The zone index of the highest zone
5675 *
a862f68a 5676 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5677 * high watermark within all zones at or below a given zone index. For each
5678 * zone, the number of pages is calculated as:
0e056eb5 5679 *
5680 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5681 *
5682 * Return: number of pages beyond high watermark.
e0fb5815 5683 */
ebec3862 5684static unsigned long nr_free_zone_pages(int offset)
1da177e4 5685{
dd1a239f 5686 struct zoneref *z;
54a6eb5c
MG
5687 struct zone *zone;
5688
e310fd43 5689 /* Just pick one node, since fallback list is circular */
ebec3862 5690 unsigned long sum = 0;
1da177e4 5691
0e88460d 5692 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5693
54a6eb5c 5694 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5695 unsigned long size = zone_managed_pages(zone);
41858966 5696 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5697 if (size > high)
5698 sum += size - high;
1da177e4
LT
5699 }
5700
5701 return sum;
5702}
5703
e0fb5815
ZY
5704/**
5705 * nr_free_buffer_pages - count number of pages beyond high watermark
5706 *
5707 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5708 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5709 *
5710 * Return: number of pages beyond high watermark within ZONE_DMA and
5711 * ZONE_NORMAL.
1da177e4 5712 */
ebec3862 5713unsigned long nr_free_buffer_pages(void)
1da177e4 5714{
af4ca457 5715 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5716}
c2f1a551 5717EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5718
08e0f6a9 5719static inline void show_node(struct zone *zone)
1da177e4 5720{
e5adfffc 5721 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5722 printk("Node %d ", zone_to_nid(zone));
1da177e4 5723}
1da177e4 5724
d02bd27b
IR
5725long si_mem_available(void)
5726{
5727 long available;
5728 unsigned long pagecache;
5729 unsigned long wmark_low = 0;
5730 unsigned long pages[NR_LRU_LISTS];
b29940c1 5731 unsigned long reclaimable;
d02bd27b
IR
5732 struct zone *zone;
5733 int lru;
5734
5735 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5736 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5737
5738 for_each_zone(zone)
a9214443 5739 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5740
5741 /*
5742 * Estimate the amount of memory available for userspace allocations,
5743 * without causing swapping.
5744 */
c41f012a 5745 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5746
5747 /*
5748 * Not all the page cache can be freed, otherwise the system will
5749 * start swapping. Assume at least half of the page cache, or the
5750 * low watermark worth of cache, needs to stay.
5751 */
5752 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5753 pagecache -= min(pagecache / 2, wmark_low);
5754 available += pagecache;
5755
5756 /*
b29940c1
VB
5757 * Part of the reclaimable slab and other kernel memory consists of
5758 * items that are in use, and cannot be freed. Cap this estimate at the
5759 * low watermark.
d02bd27b 5760 */
d42f3245
RG
5761 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5762 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5763 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5764
d02bd27b
IR
5765 if (available < 0)
5766 available = 0;
5767 return available;
5768}
5769EXPORT_SYMBOL_GPL(si_mem_available);
5770
1da177e4
LT
5771void si_meminfo(struct sysinfo *val)
5772{
ca79b0c2 5773 val->totalram = totalram_pages();
11fb9989 5774 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5775 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5776 val->bufferram = nr_blockdev_pages();
ca79b0c2 5777 val->totalhigh = totalhigh_pages();
1da177e4 5778 val->freehigh = nr_free_highpages();
1da177e4
LT
5779 val->mem_unit = PAGE_SIZE;
5780}
5781
5782EXPORT_SYMBOL(si_meminfo);
5783
5784#ifdef CONFIG_NUMA
5785void si_meminfo_node(struct sysinfo *val, int nid)
5786{
cdd91a77
JL
5787 int zone_type; /* needs to be signed */
5788 unsigned long managed_pages = 0;
fc2bd799
JK
5789 unsigned long managed_highpages = 0;
5790 unsigned long free_highpages = 0;
1da177e4
LT
5791 pg_data_t *pgdat = NODE_DATA(nid);
5792
cdd91a77 5793 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5794 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5795 val->totalram = managed_pages;
11fb9989 5796 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5797 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5798#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5799 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5800 struct zone *zone = &pgdat->node_zones[zone_type];
5801
5802 if (is_highmem(zone)) {
9705bea5 5803 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5804 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5805 }
5806 }
5807 val->totalhigh = managed_highpages;
5808 val->freehigh = free_highpages;
98d2b0eb 5809#else
fc2bd799
JK
5810 val->totalhigh = managed_highpages;
5811 val->freehigh = free_highpages;
98d2b0eb 5812#endif
1da177e4
LT
5813 val->mem_unit = PAGE_SIZE;
5814}
5815#endif
5816
ddd588b5 5817/*
7bf02ea2
DR
5818 * Determine whether the node should be displayed or not, depending on whether
5819 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5820 */
9af744d7 5821static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5822{
ddd588b5 5823 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5824 return false;
ddd588b5 5825
9af744d7
MH
5826 /*
5827 * no node mask - aka implicit memory numa policy. Do not bother with
5828 * the synchronization - read_mems_allowed_begin - because we do not
5829 * have to be precise here.
5830 */
5831 if (!nodemask)
5832 nodemask = &cpuset_current_mems_allowed;
5833
5834 return !node_isset(nid, *nodemask);
ddd588b5
DR
5835}
5836
1da177e4
LT
5837#define K(x) ((x) << (PAGE_SHIFT-10))
5838
377e4f16
RV
5839static void show_migration_types(unsigned char type)
5840{
5841 static const char types[MIGRATE_TYPES] = {
5842 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5843 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5844 [MIGRATE_RECLAIMABLE] = 'E',
5845 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5846#ifdef CONFIG_CMA
5847 [MIGRATE_CMA] = 'C',
5848#endif
194159fb 5849#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5850 [MIGRATE_ISOLATE] = 'I',
194159fb 5851#endif
377e4f16
RV
5852 };
5853 char tmp[MIGRATE_TYPES + 1];
5854 char *p = tmp;
5855 int i;
5856
5857 for (i = 0; i < MIGRATE_TYPES; i++) {
5858 if (type & (1 << i))
5859 *p++ = types[i];
5860 }
5861
5862 *p = '\0';
1f84a18f 5863 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5864}
5865
1da177e4
LT
5866/*
5867 * Show free area list (used inside shift_scroll-lock stuff)
5868 * We also calculate the percentage fragmentation. We do this by counting the
5869 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5870 *
5871 * Bits in @filter:
5872 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5873 * cpuset.
1da177e4 5874 */
9af744d7 5875void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5876{
d1bfcdb8 5877 unsigned long free_pcp = 0;
c7241913 5878 int cpu;
1da177e4 5879 struct zone *zone;
599d0c95 5880 pg_data_t *pgdat;
1da177e4 5881
ee99c71c 5882 for_each_populated_zone(zone) {
9af744d7 5883 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5884 continue;
d1bfcdb8 5885
761b0677 5886 for_each_online_cpu(cpu)
28f836b6 5887 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5888 }
5889
a731286d
KM
5890 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5891 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5892 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5893 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5894 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5895 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5896 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5897 global_node_page_state(NR_ACTIVE_ANON),
5898 global_node_page_state(NR_INACTIVE_ANON),
5899 global_node_page_state(NR_ISOLATED_ANON),
5900 global_node_page_state(NR_ACTIVE_FILE),
5901 global_node_page_state(NR_INACTIVE_FILE),
5902 global_node_page_state(NR_ISOLATED_FILE),
5903 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5904 global_node_page_state(NR_FILE_DIRTY),
5905 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5906 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5907 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5908 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5909 global_node_page_state(NR_SHMEM),
f0c0c115 5910 global_node_page_state(NR_PAGETABLE),
c41f012a 5911 global_zone_page_state(NR_BOUNCE),
eb2169ce 5912 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5913 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5914 free_pcp,
c41f012a 5915 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5916
599d0c95 5917 for_each_online_pgdat(pgdat) {
9af744d7 5918 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5919 continue;
5920
599d0c95
MG
5921 printk("Node %d"
5922 " active_anon:%lukB"
5923 " inactive_anon:%lukB"
5924 " active_file:%lukB"
5925 " inactive_file:%lukB"
5926 " unevictable:%lukB"
5927 " isolated(anon):%lukB"
5928 " isolated(file):%lukB"
50658e2e 5929 " mapped:%lukB"
11fb9989
MG
5930 " dirty:%lukB"
5931 " writeback:%lukB"
5932 " shmem:%lukB"
5933#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5934 " shmem_thp: %lukB"
5935 " shmem_pmdmapped: %lukB"
5936 " anon_thp: %lukB"
5937#endif
5938 " writeback_tmp:%lukB"
991e7673
SB
5939 " kernel_stack:%lukB"
5940#ifdef CONFIG_SHADOW_CALL_STACK
5941 " shadow_call_stack:%lukB"
5942#endif
f0c0c115 5943 " pagetables:%lukB"
599d0c95
MG
5944 " all_unreclaimable? %s"
5945 "\n",
5946 pgdat->node_id,
5947 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5948 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5949 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5950 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5951 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5952 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5953 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5954 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5955 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5956 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5957 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5958#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5959 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5960 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5961 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5962#endif
11fb9989 5963 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5964 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5965#ifdef CONFIG_SHADOW_CALL_STACK
5966 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5967#endif
f0c0c115 5968 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5969 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5970 "yes" : "no");
599d0c95
MG
5971 }
5972
ee99c71c 5973 for_each_populated_zone(zone) {
1da177e4
LT
5974 int i;
5975
9af744d7 5976 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5977 continue;
d1bfcdb8
KK
5978
5979 free_pcp = 0;
5980 for_each_online_cpu(cpu)
28f836b6 5981 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 5982
1da177e4 5983 show_node(zone);
1f84a18f
JP
5984 printk(KERN_CONT
5985 "%s"
1da177e4
LT
5986 " free:%lukB"
5987 " min:%lukB"
5988 " low:%lukB"
5989 " high:%lukB"
e47b346a 5990 " reserved_highatomic:%luKB"
71c799f4
MK
5991 " active_anon:%lukB"
5992 " inactive_anon:%lukB"
5993 " active_file:%lukB"
5994 " inactive_file:%lukB"
5995 " unevictable:%lukB"
5a1c84b4 5996 " writepending:%lukB"
1da177e4 5997 " present:%lukB"
9feedc9d 5998 " managed:%lukB"
4a0aa73f 5999 " mlocked:%lukB"
4a0aa73f 6000 " bounce:%lukB"
d1bfcdb8
KK
6001 " free_pcp:%lukB"
6002 " local_pcp:%ukB"
d1ce749a 6003 " free_cma:%lukB"
1da177e4
LT
6004 "\n",
6005 zone->name,
88f5acf8 6006 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
6007 K(min_wmark_pages(zone)),
6008 K(low_wmark_pages(zone)),
6009 K(high_wmark_pages(zone)),
e47b346a 6010 K(zone->nr_reserved_highatomic),
71c799f4
MK
6011 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6012 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6013 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6014 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6015 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6016 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6017 K(zone->present_pages),
9705bea5 6018 K(zone_managed_pages(zone)),
4a0aa73f 6019 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6020 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6021 K(free_pcp),
28f836b6 6022 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6023 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6024 printk("lowmem_reserve[]:");
6025 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6026 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6027 printk(KERN_CONT "\n");
1da177e4
LT
6028 }
6029
ee99c71c 6030 for_each_populated_zone(zone) {
d00181b9
KS
6031 unsigned int order;
6032 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6033 unsigned char types[MAX_ORDER];
1da177e4 6034
9af744d7 6035 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6036 continue;
1da177e4 6037 show_node(zone);
1f84a18f 6038 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6039
6040 spin_lock_irqsave(&zone->lock, flags);
6041 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6042 struct free_area *area = &zone->free_area[order];
6043 int type;
6044
6045 nr[order] = area->nr_free;
8f9de51a 6046 total += nr[order] << order;
377e4f16
RV
6047
6048 types[order] = 0;
6049 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6050 if (!free_area_empty(area, type))
377e4f16
RV
6051 types[order] |= 1 << type;
6052 }
1da177e4
LT
6053 }
6054 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6055 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6056 printk(KERN_CONT "%lu*%lukB ",
6057 nr[order], K(1UL) << order);
377e4f16
RV
6058 if (nr[order])
6059 show_migration_types(types[order]);
6060 }
1f84a18f 6061 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6062 }
6063
949f7ec5
DR
6064 hugetlb_show_meminfo();
6065
11fb9989 6066 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6067
1da177e4
LT
6068 show_swap_cache_info();
6069}
6070
19770b32
MG
6071static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6072{
6073 zoneref->zone = zone;
6074 zoneref->zone_idx = zone_idx(zone);
6075}
6076
1da177e4
LT
6077/*
6078 * Builds allocation fallback zone lists.
1a93205b
CL
6079 *
6080 * Add all populated zones of a node to the zonelist.
1da177e4 6081 */
9d3be21b 6082static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6083{
1a93205b 6084 struct zone *zone;
bc732f1d 6085 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6086 int nr_zones = 0;
02a68a5e
CL
6087
6088 do {
2f6726e5 6089 zone_type--;
070f8032 6090 zone = pgdat->node_zones + zone_type;
6aa303de 6091 if (managed_zone(zone)) {
9d3be21b 6092 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6093 check_highest_zone(zone_type);
1da177e4 6094 }
2f6726e5 6095 } while (zone_type);
bc732f1d 6096
070f8032 6097 return nr_zones;
1da177e4
LT
6098}
6099
6100#ifdef CONFIG_NUMA
f0c0b2b8
KH
6101
6102static int __parse_numa_zonelist_order(char *s)
6103{
c9bff3ee 6104 /*
f0953a1b 6105 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6106 * out to be just not useful. Let's keep the warning in place
6107 * if somebody still use the cmd line parameter so that we do
6108 * not fail it silently
6109 */
6110 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6111 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6112 return -EINVAL;
6113 }
6114 return 0;
6115}
6116
c9bff3ee
MH
6117char numa_zonelist_order[] = "Node";
6118
f0c0b2b8
KH
6119/*
6120 * sysctl handler for numa_zonelist_order
6121 */
cccad5b9 6122int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6123 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6124{
32927393
CH
6125 if (write)
6126 return __parse_numa_zonelist_order(buffer);
6127 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6128}
6129
6130
62bc62a8 6131#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
6132static int node_load[MAX_NUMNODES];
6133
1da177e4 6134/**
4dc3b16b 6135 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6136 * @node: node whose fallback list we're appending
6137 * @used_node_mask: nodemask_t of already used nodes
6138 *
6139 * We use a number of factors to determine which is the next node that should
6140 * appear on a given node's fallback list. The node should not have appeared
6141 * already in @node's fallback list, and it should be the next closest node
6142 * according to the distance array (which contains arbitrary distance values
6143 * from each node to each node in the system), and should also prefer nodes
6144 * with no CPUs, since presumably they'll have very little allocation pressure
6145 * on them otherwise.
a862f68a
MR
6146 *
6147 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6148 */
79c28a41 6149int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6150{
4cf808eb 6151 int n, val;
1da177e4 6152 int min_val = INT_MAX;
00ef2d2f 6153 int best_node = NUMA_NO_NODE;
1da177e4 6154
4cf808eb
LT
6155 /* Use the local node if we haven't already */
6156 if (!node_isset(node, *used_node_mask)) {
6157 node_set(node, *used_node_mask);
6158 return node;
6159 }
1da177e4 6160
4b0ef1fe 6161 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6162
6163 /* Don't want a node to appear more than once */
6164 if (node_isset(n, *used_node_mask))
6165 continue;
6166
1da177e4
LT
6167 /* Use the distance array to find the distance */
6168 val = node_distance(node, n);
6169
4cf808eb
LT
6170 /* Penalize nodes under us ("prefer the next node") */
6171 val += (n < node);
6172
1da177e4 6173 /* Give preference to headless and unused nodes */
b630749f 6174 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6175 val += PENALTY_FOR_NODE_WITH_CPUS;
6176
6177 /* Slight preference for less loaded node */
6178 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6179 val += node_load[n];
6180
6181 if (val < min_val) {
6182 min_val = val;
6183 best_node = n;
6184 }
6185 }
6186
6187 if (best_node >= 0)
6188 node_set(best_node, *used_node_mask);
6189
6190 return best_node;
6191}
6192
f0c0b2b8
KH
6193
6194/*
6195 * Build zonelists ordered by node and zones within node.
6196 * This results in maximum locality--normal zone overflows into local
6197 * DMA zone, if any--but risks exhausting DMA zone.
6198 */
9d3be21b
MH
6199static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6200 unsigned nr_nodes)
1da177e4 6201{
9d3be21b
MH
6202 struct zoneref *zonerefs;
6203 int i;
6204
6205 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6206
6207 for (i = 0; i < nr_nodes; i++) {
6208 int nr_zones;
6209
6210 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6211
9d3be21b
MH
6212 nr_zones = build_zonerefs_node(node, zonerefs);
6213 zonerefs += nr_zones;
6214 }
6215 zonerefs->zone = NULL;
6216 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6217}
6218
523b9458
CL
6219/*
6220 * Build gfp_thisnode zonelists
6221 */
6222static void build_thisnode_zonelists(pg_data_t *pgdat)
6223{
9d3be21b
MH
6224 struct zoneref *zonerefs;
6225 int nr_zones;
523b9458 6226
9d3be21b
MH
6227 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6228 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6229 zonerefs += nr_zones;
6230 zonerefs->zone = NULL;
6231 zonerefs->zone_idx = 0;
523b9458
CL
6232}
6233
f0c0b2b8
KH
6234/*
6235 * Build zonelists ordered by zone and nodes within zones.
6236 * This results in conserving DMA zone[s] until all Normal memory is
6237 * exhausted, but results in overflowing to remote node while memory
6238 * may still exist in local DMA zone.
6239 */
f0c0b2b8 6240
f0c0b2b8
KH
6241static void build_zonelists(pg_data_t *pgdat)
6242{
9d3be21b
MH
6243 static int node_order[MAX_NUMNODES];
6244 int node, load, nr_nodes = 0;
d0ddf49b 6245 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6246 int local_node, prev_node;
1da177e4
LT
6247
6248 /* NUMA-aware ordering of nodes */
6249 local_node = pgdat->node_id;
62bc62a8 6250 load = nr_online_nodes;
1da177e4 6251 prev_node = local_node;
f0c0b2b8 6252
f0c0b2b8 6253 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6254 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6255 /*
6256 * We don't want to pressure a particular node.
6257 * So adding penalty to the first node in same
6258 * distance group to make it round-robin.
6259 */
957f822a
DR
6260 if (node_distance(local_node, node) !=
6261 node_distance(local_node, prev_node))
f0c0b2b8
KH
6262 node_load[node] = load;
6263
9d3be21b 6264 node_order[nr_nodes++] = node;
1da177e4
LT
6265 prev_node = node;
6266 load--;
1da177e4 6267 }
523b9458 6268
9d3be21b 6269 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6270 build_thisnode_zonelists(pgdat);
1da177e4
LT
6271}
6272
7aac7898
LS
6273#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6274/*
6275 * Return node id of node used for "local" allocations.
6276 * I.e., first node id of first zone in arg node's generic zonelist.
6277 * Used for initializing percpu 'numa_mem', which is used primarily
6278 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6279 */
6280int local_memory_node(int node)
6281{
c33d6c06 6282 struct zoneref *z;
7aac7898 6283
c33d6c06 6284 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6285 gfp_zone(GFP_KERNEL),
c33d6c06 6286 NULL);
c1093b74 6287 return zone_to_nid(z->zone);
7aac7898
LS
6288}
6289#endif
f0c0b2b8 6290
6423aa81
JK
6291static void setup_min_unmapped_ratio(void);
6292static void setup_min_slab_ratio(void);
1da177e4
LT
6293#else /* CONFIG_NUMA */
6294
f0c0b2b8 6295static void build_zonelists(pg_data_t *pgdat)
1da177e4 6296{
19655d34 6297 int node, local_node;
9d3be21b
MH
6298 struct zoneref *zonerefs;
6299 int nr_zones;
1da177e4
LT
6300
6301 local_node = pgdat->node_id;
1da177e4 6302
9d3be21b
MH
6303 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6304 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6305 zonerefs += nr_zones;
1da177e4 6306
54a6eb5c
MG
6307 /*
6308 * Now we build the zonelist so that it contains the zones
6309 * of all the other nodes.
6310 * We don't want to pressure a particular node, so when
6311 * building the zones for node N, we make sure that the
6312 * zones coming right after the local ones are those from
6313 * node N+1 (modulo N)
6314 */
6315 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6316 if (!node_online(node))
6317 continue;
9d3be21b
MH
6318 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6319 zonerefs += nr_zones;
1da177e4 6320 }
54a6eb5c
MG
6321 for (node = 0; node < local_node; node++) {
6322 if (!node_online(node))
6323 continue;
9d3be21b
MH
6324 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6325 zonerefs += nr_zones;
54a6eb5c
MG
6326 }
6327
9d3be21b
MH
6328 zonerefs->zone = NULL;
6329 zonerefs->zone_idx = 0;
1da177e4
LT
6330}
6331
6332#endif /* CONFIG_NUMA */
6333
99dcc3e5
CL
6334/*
6335 * Boot pageset table. One per cpu which is going to be used for all
6336 * zones and all nodes. The parameters will be set in such a way
6337 * that an item put on a list will immediately be handed over to
6338 * the buddy list. This is safe since pageset manipulation is done
6339 * with interrupts disabled.
6340 *
6341 * The boot_pagesets must be kept even after bootup is complete for
6342 * unused processors and/or zones. They do play a role for bootstrapping
6343 * hotplugged processors.
6344 *
6345 * zoneinfo_show() and maybe other functions do
6346 * not check if the processor is online before following the pageset pointer.
6347 * Other parts of the kernel may not check if the zone is available.
6348 */
28f836b6 6349static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6350/* These effectively disable the pcplists in the boot pageset completely */
6351#define BOOT_PAGESET_HIGH 0
6352#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6353static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6354static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
385386cf 6355static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6356
11cd8638 6357static void __build_all_zonelists(void *data)
1da177e4 6358{
6811378e 6359 int nid;
afb6ebb3 6360 int __maybe_unused cpu;
9adb62a5 6361 pg_data_t *self = data;
b93e0f32
MH
6362 static DEFINE_SPINLOCK(lock);
6363
6364 spin_lock(&lock);
9276b1bc 6365
7f9cfb31
BL
6366#ifdef CONFIG_NUMA
6367 memset(node_load, 0, sizeof(node_load));
6368#endif
9adb62a5 6369
c1152583
WY
6370 /*
6371 * This node is hotadded and no memory is yet present. So just
6372 * building zonelists is fine - no need to touch other nodes.
6373 */
9adb62a5
JL
6374 if (self && !node_online(self->node_id)) {
6375 build_zonelists(self);
c1152583
WY
6376 } else {
6377 for_each_online_node(nid) {
6378 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6379
c1152583
WY
6380 build_zonelists(pgdat);
6381 }
99dcc3e5 6382
7aac7898
LS
6383#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6384 /*
6385 * We now know the "local memory node" for each node--
6386 * i.e., the node of the first zone in the generic zonelist.
6387 * Set up numa_mem percpu variable for on-line cpus. During
6388 * boot, only the boot cpu should be on-line; we'll init the
6389 * secondary cpus' numa_mem as they come on-line. During
6390 * node/memory hotplug, we'll fixup all on-line cpus.
6391 */
d9c9a0b9 6392 for_each_online_cpu(cpu)
7aac7898 6393 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6394#endif
d9c9a0b9 6395 }
b93e0f32
MH
6396
6397 spin_unlock(&lock);
6811378e
YG
6398}
6399
061f67bc
RV
6400static noinline void __init
6401build_all_zonelists_init(void)
6402{
afb6ebb3
MH
6403 int cpu;
6404
061f67bc 6405 __build_all_zonelists(NULL);
afb6ebb3
MH
6406
6407 /*
6408 * Initialize the boot_pagesets that are going to be used
6409 * for bootstrapping processors. The real pagesets for
6410 * each zone will be allocated later when the per cpu
6411 * allocator is available.
6412 *
6413 * boot_pagesets are used also for bootstrapping offline
6414 * cpus if the system is already booted because the pagesets
6415 * are needed to initialize allocators on a specific cpu too.
6416 * F.e. the percpu allocator needs the page allocator which
6417 * needs the percpu allocator in order to allocate its pagesets
6418 * (a chicken-egg dilemma).
6419 */
6420 for_each_possible_cpu(cpu)
28f836b6 6421 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6422
061f67bc
RV
6423 mminit_verify_zonelist();
6424 cpuset_init_current_mems_allowed();
6425}
6426
4eaf3f64 6427/*
4eaf3f64 6428 * unless system_state == SYSTEM_BOOTING.
061f67bc 6429 *
72675e13 6430 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6431 * [protected by SYSTEM_BOOTING].
4eaf3f64 6432 */
72675e13 6433void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6434{
0a18e607
DH
6435 unsigned long vm_total_pages;
6436
6811378e 6437 if (system_state == SYSTEM_BOOTING) {
061f67bc 6438 build_all_zonelists_init();
6811378e 6439 } else {
11cd8638 6440 __build_all_zonelists(pgdat);
6811378e
YG
6441 /* cpuset refresh routine should be here */
6442 }
56b9413b
DH
6443 /* Get the number of free pages beyond high watermark in all zones. */
6444 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6445 /*
6446 * Disable grouping by mobility if the number of pages in the
6447 * system is too low to allow the mechanism to work. It would be
6448 * more accurate, but expensive to check per-zone. This check is
6449 * made on memory-hotadd so a system can start with mobility
6450 * disabled and enable it later
6451 */
d9c23400 6452 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6453 page_group_by_mobility_disabled = 1;
6454 else
6455 page_group_by_mobility_disabled = 0;
6456
ce0725f7 6457 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6458 nr_online_nodes,
756a025f
JP
6459 page_group_by_mobility_disabled ? "off" : "on",
6460 vm_total_pages);
f0c0b2b8 6461#ifdef CONFIG_NUMA
f88dfff5 6462 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6463#endif
1da177e4
LT
6464}
6465
a9a9e77f
PT
6466/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6467static bool __meminit
6468overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6469{
a9a9e77f
PT
6470 static struct memblock_region *r;
6471
6472 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6473 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6474 for_each_mem_region(r) {
a9a9e77f
PT
6475 if (*pfn < memblock_region_memory_end_pfn(r))
6476 break;
6477 }
6478 }
6479 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6480 memblock_is_mirror(r)) {
6481 *pfn = memblock_region_memory_end_pfn(r);
6482 return true;
6483 }
6484 }
a9a9e77f
PT
6485 return false;
6486}
6487
1da177e4
LT
6488/*
6489 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6490 * up by memblock_free_all() once the early boot process is
1da177e4 6491 * done. Non-atomic initialization, single-pass.
d882c006
DH
6492 *
6493 * All aligned pageblocks are initialized to the specified migratetype
6494 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6495 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6496 */
ab28cb6e 6497void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6498 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6499 enum meminit_context context,
6500 struct vmem_altmap *altmap, int migratetype)
1da177e4 6501{
a9a9e77f 6502 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6503 struct page *page;
1da177e4 6504
22b31eec
HD
6505 if (highest_memmap_pfn < end_pfn - 1)
6506 highest_memmap_pfn = end_pfn - 1;
6507
966cf44f 6508#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6509 /*
6510 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6511 * memory. We limit the total number of pages to initialize to just
6512 * those that might contain the memory mapping. We will defer the
6513 * ZONE_DEVICE page initialization until after we have released
6514 * the hotplug lock.
4b94ffdc 6515 */
966cf44f
AD
6516 if (zone == ZONE_DEVICE) {
6517 if (!altmap)
6518 return;
6519
6520 if (start_pfn == altmap->base_pfn)
6521 start_pfn += altmap->reserve;
6522 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6523 }
6524#endif
4b94ffdc 6525
948c436e 6526 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6527 /*
b72d0ffb
AM
6528 * There can be holes in boot-time mem_map[]s handed to this
6529 * function. They do not exist on hotplugged memory.
a2f3aa02 6530 */
c1d0da83 6531 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6532 if (overlap_memmap_init(zone, &pfn))
6533 continue;
dc2da7b4 6534 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6535 break;
a2f3aa02 6536 }
ac5d2539 6537
d0dc12e8
PT
6538 page = pfn_to_page(pfn);
6539 __init_single_page(page, pfn, zone, nid);
c1d0da83 6540 if (context == MEMINIT_HOTPLUG)
d483da5b 6541 __SetPageReserved(page);
d0dc12e8 6542
ac5d2539 6543 /*
d882c006
DH
6544 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6545 * such that unmovable allocations won't be scattered all
6546 * over the place during system boot.
ac5d2539 6547 */
4eb29bd9 6548 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6549 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6550 cond_resched();
ac5d2539 6551 }
948c436e 6552 pfn++;
1da177e4
LT
6553 }
6554}
6555
966cf44f
AD
6556#ifdef CONFIG_ZONE_DEVICE
6557void __ref memmap_init_zone_device(struct zone *zone,
6558 unsigned long start_pfn,
1f8d75c1 6559 unsigned long nr_pages,
966cf44f
AD
6560 struct dev_pagemap *pgmap)
6561{
1f8d75c1 6562 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6563 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6564 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6565 unsigned long zone_idx = zone_idx(zone);
6566 unsigned long start = jiffies;
6567 int nid = pgdat->node_id;
6568
46d945ae 6569 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6570 return;
6571
6572 /*
122e093c 6573 * The call to memmap_init should have already taken care
966cf44f
AD
6574 * of the pages reserved for the memmap, so we can just jump to
6575 * the end of that region and start processing the device pages.
6576 */
514caf23 6577 if (altmap) {
966cf44f 6578 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6579 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6580 }
6581
6582 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6583 struct page *page = pfn_to_page(pfn);
6584
6585 __init_single_page(page, pfn, zone_idx, nid);
6586
6587 /*
6588 * Mark page reserved as it will need to wait for onlining
6589 * phase for it to be fully associated with a zone.
6590 *
6591 * We can use the non-atomic __set_bit operation for setting
6592 * the flag as we are still initializing the pages.
6593 */
6594 __SetPageReserved(page);
6595
6596 /*
8a164fef
CH
6597 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6598 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6599 * ever freed or placed on a driver-private list.
966cf44f
AD
6600 */
6601 page->pgmap = pgmap;
8a164fef 6602 page->zone_device_data = NULL;
966cf44f
AD
6603
6604 /*
6605 * Mark the block movable so that blocks are reserved for
6606 * movable at startup. This will force kernel allocations
6607 * to reserve their blocks rather than leaking throughout
6608 * the address space during boot when many long-lived
6609 * kernel allocations are made.
6610 *
c1d0da83 6611 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6612 * because this is done early in section_activate()
966cf44f 6613 */
4eb29bd9 6614 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6615 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6616 cond_resched();
6617 }
6618 }
6619
fdc029b1 6620 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6621 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6622}
6623
6624#endif
1e548deb 6625static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6626{
7aeb09f9 6627 unsigned int order, t;
b2a0ac88
MG
6628 for_each_migratetype_order(order, t) {
6629 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6630 zone->free_area[order].nr_free = 0;
6631 }
6632}
6633
0740a50b
MR
6634/*
6635 * Only struct pages that correspond to ranges defined by memblock.memory
6636 * are zeroed and initialized by going through __init_single_page() during
122e093c 6637 * memmap_init_zone_range().
0740a50b
MR
6638 *
6639 * But, there could be struct pages that correspond to holes in
6640 * memblock.memory. This can happen because of the following reasons:
6641 * - physical memory bank size is not necessarily the exact multiple of the
6642 * arbitrary section size
6643 * - early reserved memory may not be listed in memblock.memory
6644 * - memory layouts defined with memmap= kernel parameter may not align
6645 * nicely with memmap sections
6646 *
6647 * Explicitly initialize those struct pages so that:
6648 * - PG_Reserved is set
6649 * - zone and node links point to zone and node that span the page if the
6650 * hole is in the middle of a zone
6651 * - zone and node links point to adjacent zone/node if the hole falls on
6652 * the zone boundary; the pages in such holes will be prepended to the
6653 * zone/node above the hole except for the trailing pages in the last
6654 * section that will be appended to the zone/node below.
6655 */
122e093c
MR
6656static void __init init_unavailable_range(unsigned long spfn,
6657 unsigned long epfn,
6658 int zone, int node)
0740a50b
MR
6659{
6660 unsigned long pfn;
6661 u64 pgcnt = 0;
6662
6663 for (pfn = spfn; pfn < epfn; pfn++) {
6664 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6665 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6666 + pageblock_nr_pages - 1;
6667 continue;
6668 }
6669 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6670 __SetPageReserved(pfn_to_page(pfn));
6671 pgcnt++;
6672 }
6673
122e093c
MR
6674 if (pgcnt)
6675 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6676 node, zone_names[zone], pgcnt);
0740a50b 6677}
0740a50b 6678
122e093c
MR
6679static void __init memmap_init_zone_range(struct zone *zone,
6680 unsigned long start_pfn,
6681 unsigned long end_pfn,
6682 unsigned long *hole_pfn)
dfb3ccd0 6683{
3256ff83
BH
6684 unsigned long zone_start_pfn = zone->zone_start_pfn;
6685 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6686 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6687
6688 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6689 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6690
6691 if (start_pfn >= end_pfn)
6692 return;
6693
6694 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6695 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6696
6697 if (*hole_pfn < start_pfn)
6698 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6699
6700 *hole_pfn = end_pfn;
6701}
6702
6703static void __init memmap_init(void)
6704{
73a6e474 6705 unsigned long start_pfn, end_pfn;
122e093c 6706 unsigned long hole_pfn = 0;
b346075f 6707 int i, j, zone_id = 0, nid;
73a6e474 6708
122e093c
MR
6709 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6710 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6711
122e093c
MR
6712 for (j = 0; j < MAX_NR_ZONES; j++) {
6713 struct zone *zone = node->node_zones + j;
0740a50b 6714
122e093c
MR
6715 if (!populated_zone(zone))
6716 continue;
0740a50b 6717
122e093c
MR
6718 memmap_init_zone_range(zone, start_pfn, end_pfn,
6719 &hole_pfn);
6720 zone_id = j;
6721 }
73a6e474 6722 }
0740a50b
MR
6723
6724#ifdef CONFIG_SPARSEMEM
6725 /*
122e093c
MR
6726 * Initialize the memory map for hole in the range [memory_end,
6727 * section_end].
6728 * Append the pages in this hole to the highest zone in the last
6729 * node.
6730 * The call to init_unavailable_range() is outside the ifdef to
6731 * silence the compiler warining about zone_id set but not used;
6732 * for FLATMEM it is a nop anyway
0740a50b 6733 */
122e093c 6734 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6735 if (hole_pfn < end_pfn)
0740a50b 6736#endif
122e093c 6737 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6738}
1da177e4 6739
c803b3c8
MR
6740void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6741 phys_addr_t min_addr, int nid, bool exact_nid)
6742{
6743 void *ptr;
6744
6745 if (exact_nid)
6746 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6747 MEMBLOCK_ALLOC_ACCESSIBLE,
6748 nid);
6749 else
6750 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6751 MEMBLOCK_ALLOC_ACCESSIBLE,
6752 nid);
6753
6754 if (ptr && size > 0)
6755 page_init_poison(ptr, size);
6756
6757 return ptr;
6758}
6759
7cd2b0a3 6760static int zone_batchsize(struct zone *zone)
e7c8d5c9 6761{
3a6be87f 6762#ifdef CONFIG_MMU
e7c8d5c9
CL
6763 int batch;
6764
6765 /*
b92ca18e
MG
6766 * The number of pages to batch allocate is either ~0.1%
6767 * of the zone or 1MB, whichever is smaller. The batch
6768 * size is striking a balance between allocation latency
6769 * and zone lock contention.
e7c8d5c9 6770 */
b92ca18e 6771 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6772 batch /= 4; /* We effectively *= 4 below */
6773 if (batch < 1)
6774 batch = 1;
6775
6776 /*
0ceaacc9
NP
6777 * Clamp the batch to a 2^n - 1 value. Having a power
6778 * of 2 value was found to be more likely to have
6779 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6780 *
0ceaacc9
NP
6781 * For example if 2 tasks are alternately allocating
6782 * batches of pages, one task can end up with a lot
6783 * of pages of one half of the possible page colors
6784 * and the other with pages of the other colors.
e7c8d5c9 6785 */
9155203a 6786 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6787
e7c8d5c9 6788 return batch;
3a6be87f
DH
6789
6790#else
6791 /* The deferral and batching of frees should be suppressed under NOMMU
6792 * conditions.
6793 *
6794 * The problem is that NOMMU needs to be able to allocate large chunks
6795 * of contiguous memory as there's no hardware page translation to
6796 * assemble apparent contiguous memory from discontiguous pages.
6797 *
6798 * Queueing large contiguous runs of pages for batching, however,
6799 * causes the pages to actually be freed in smaller chunks. As there
6800 * can be a significant delay between the individual batches being
6801 * recycled, this leads to the once large chunks of space being
6802 * fragmented and becoming unavailable for high-order allocations.
6803 */
6804 return 0;
6805#endif
e7c8d5c9
CL
6806}
6807
04f8cfea 6808static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6809{
6810#ifdef CONFIG_MMU
6811 int high;
203c06ee 6812 int nr_split_cpus;
74f44822
MG
6813 unsigned long total_pages;
6814
6815 if (!percpu_pagelist_high_fraction) {
6816 /*
6817 * By default, the high value of the pcp is based on the zone
6818 * low watermark so that if they are full then background
6819 * reclaim will not be started prematurely.
6820 */
6821 total_pages = low_wmark_pages(zone);
6822 } else {
6823 /*
6824 * If percpu_pagelist_high_fraction is configured, the high
6825 * value is based on a fraction of the managed pages in the
6826 * zone.
6827 */
6828 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6829 }
b92ca18e
MG
6830
6831 /*
74f44822
MG
6832 * Split the high value across all online CPUs local to the zone. Note
6833 * that early in boot that CPUs may not be online yet and that during
6834 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6835 * onlined. For memory nodes that have no CPUs, split pcp->high across
6836 * all online CPUs to mitigate the risk that reclaim is triggered
6837 * prematurely due to pages stored on pcp lists.
b92ca18e 6838 */
203c06ee
MG
6839 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6840 if (!nr_split_cpus)
6841 nr_split_cpus = num_online_cpus();
6842 high = total_pages / nr_split_cpus;
b92ca18e
MG
6843
6844 /*
6845 * Ensure high is at least batch*4. The multiple is based on the
6846 * historical relationship between high and batch.
6847 */
6848 high = max(high, batch << 2);
6849
6850 return high;
6851#else
6852 return 0;
6853#endif
6854}
6855
8d7a8fa9 6856/*
5c3ad2eb
VB
6857 * pcp->high and pcp->batch values are related and generally batch is lower
6858 * than high. They are also related to pcp->count such that count is lower
6859 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6860 *
5c3ad2eb
VB
6861 * However, guaranteeing these relations at all times would require e.g. write
6862 * barriers here but also careful usage of read barriers at the read side, and
6863 * thus be prone to error and bad for performance. Thus the update only prevents
6864 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6865 * can cope with those fields changing asynchronously, and fully trust only the
6866 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6867 *
6868 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6869 * outside of boot time (or some other assurance that no concurrent updaters
6870 * exist).
6871 */
6872static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6873 unsigned long batch)
6874{
5c3ad2eb
VB
6875 WRITE_ONCE(pcp->batch, batch);
6876 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6877}
6878
28f836b6 6879static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6880{
44042b44 6881 int pindex;
2caaad41 6882
28f836b6
MG
6883 memset(pcp, 0, sizeof(*pcp));
6884 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6885
44042b44
MG
6886 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6887 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 6888
69a8396a
VB
6889 /*
6890 * Set batch and high values safe for a boot pageset. A true percpu
6891 * pageset's initialization will update them subsequently. Here we don't
6892 * need to be as careful as pageset_update() as nobody can access the
6893 * pageset yet.
6894 */
952eaf81
VB
6895 pcp->high = BOOT_PAGESET_HIGH;
6896 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6897 pcp->free_factor = 0;
88c90dbc
CS
6898}
6899
3b1f3658 6900static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6901 unsigned long batch)
6902{
28f836b6 6903 struct per_cpu_pages *pcp;
ec6e8c7e
VB
6904 int cpu;
6905
6906 for_each_possible_cpu(cpu) {
28f836b6
MG
6907 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6908 pageset_update(pcp, high, batch);
ec6e8c7e
VB
6909 }
6910}
6911
8ad4b1fb 6912/*
0a8b4f1d 6913 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 6914 * zone based on the zone's size.
8ad4b1fb 6915 */
04f8cfea 6916static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 6917{
b92ca18e 6918 int new_high, new_batch;
7115ac6e 6919
b92ca18e 6920 new_batch = max(1, zone_batchsize(zone));
04f8cfea 6921 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 6922
952eaf81
VB
6923 if (zone->pageset_high == new_high &&
6924 zone->pageset_batch == new_batch)
6925 return;
6926
6927 zone->pageset_high = new_high;
6928 zone->pageset_batch = new_batch;
6929
ec6e8c7e 6930 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6931}
6932
72675e13 6933void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6934{
6935 int cpu;
0a8b4f1d 6936
28f836b6
MG
6937 /* Size may be 0 on !SMP && !NUMA */
6938 if (sizeof(struct per_cpu_zonestat) > 0)
6939 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6940
6941 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 6942 for_each_possible_cpu(cpu) {
28f836b6
MG
6943 struct per_cpu_pages *pcp;
6944 struct per_cpu_zonestat *pzstats;
6945
6946 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6947 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6948 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
6949 }
6950
04f8cfea 6951 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
6952}
6953
2caaad41 6954/*
99dcc3e5
CL
6955 * Allocate per cpu pagesets and initialize them.
6956 * Before this call only boot pagesets were available.
e7c8d5c9 6957 */
99dcc3e5 6958void __init setup_per_cpu_pageset(void)
e7c8d5c9 6959{
b4911ea2 6960 struct pglist_data *pgdat;
99dcc3e5 6961 struct zone *zone;
b418a0f9 6962 int __maybe_unused cpu;
e7c8d5c9 6963
319774e2
WF
6964 for_each_populated_zone(zone)
6965 setup_zone_pageset(zone);
b4911ea2 6966
b418a0f9
SD
6967#ifdef CONFIG_NUMA
6968 /*
6969 * Unpopulated zones continue using the boot pagesets.
6970 * The numa stats for these pagesets need to be reset.
6971 * Otherwise, they will end up skewing the stats of
6972 * the nodes these zones are associated with.
6973 */
6974 for_each_possible_cpu(cpu) {
28f836b6 6975 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
6976 memset(pzstats->vm_numa_event, 0,
6977 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
6978 }
6979#endif
6980
b4911ea2
MG
6981 for_each_online_pgdat(pgdat)
6982 pgdat->per_cpu_nodestats =
6983 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6984}
6985
c09b4240 6986static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6987{
99dcc3e5
CL
6988 /*
6989 * per cpu subsystem is not up at this point. The following code
6990 * relies on the ability of the linker to provide the
6991 * offset of a (static) per cpu variable into the per cpu area.
6992 */
28f836b6
MG
6993 zone->per_cpu_pageset = &boot_pageset;
6994 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
6995 zone->pageset_high = BOOT_PAGESET_HIGH;
6996 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6997
b38a8725 6998 if (populated_zone(zone))
9660ecaa
HK
6999 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7000 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7001}
7002
dc0bbf3b 7003void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7004 unsigned long zone_start_pfn,
b171e409 7005 unsigned long size)
ed8ece2e
DH
7006{
7007 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7008 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7009
8f416836
WY
7010 if (zone_idx > pgdat->nr_zones)
7011 pgdat->nr_zones = zone_idx;
ed8ece2e 7012
ed8ece2e
DH
7013 zone->zone_start_pfn = zone_start_pfn;
7014
708614e6
MG
7015 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7016 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7017 pgdat->node_id,
7018 (unsigned long)zone_idx(zone),
7019 zone_start_pfn, (zone_start_pfn + size));
7020
1e548deb 7021 zone_init_free_lists(zone);
9dcb8b68 7022 zone->initialized = 1;
ed8ece2e
DH
7023}
7024
c713216d
MG
7025/**
7026 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7027 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7028 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7029 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7030 *
7031 * It returns the start and end page frame of a node based on information
7d018176 7032 * provided by memblock_set_node(). If called for a node
c713216d 7033 * with no available memory, a warning is printed and the start and end
88ca3b94 7034 * PFNs will be 0.
c713216d 7035 */
bbe5d993 7036void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7037 unsigned long *start_pfn, unsigned long *end_pfn)
7038{
c13291a5 7039 unsigned long this_start_pfn, this_end_pfn;
c713216d 7040 int i;
c13291a5 7041
c713216d
MG
7042 *start_pfn = -1UL;
7043 *end_pfn = 0;
7044
c13291a5
TH
7045 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7046 *start_pfn = min(*start_pfn, this_start_pfn);
7047 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7048 }
7049
633c0666 7050 if (*start_pfn == -1UL)
c713216d 7051 *start_pfn = 0;
c713216d
MG
7052}
7053
2a1e274a
MG
7054/*
7055 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7056 * assumption is made that zones within a node are ordered in monotonic
7057 * increasing memory addresses so that the "highest" populated zone is used
7058 */
b69a7288 7059static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7060{
7061 int zone_index;
7062 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7063 if (zone_index == ZONE_MOVABLE)
7064 continue;
7065
7066 if (arch_zone_highest_possible_pfn[zone_index] >
7067 arch_zone_lowest_possible_pfn[zone_index])
7068 break;
7069 }
7070
7071 VM_BUG_ON(zone_index == -1);
7072 movable_zone = zone_index;
7073}
7074
7075/*
7076 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7077 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7078 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7079 * in each node depending on the size of each node and how evenly kernelcore
7080 * is distributed. This helper function adjusts the zone ranges
7081 * provided by the architecture for a given node by using the end of the
7082 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7083 * zones within a node are in order of monotonic increases memory addresses
7084 */
bbe5d993 7085static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7086 unsigned long zone_type,
7087 unsigned long node_start_pfn,
7088 unsigned long node_end_pfn,
7089 unsigned long *zone_start_pfn,
7090 unsigned long *zone_end_pfn)
7091{
7092 /* Only adjust if ZONE_MOVABLE is on this node */
7093 if (zone_movable_pfn[nid]) {
7094 /* Size ZONE_MOVABLE */
7095 if (zone_type == ZONE_MOVABLE) {
7096 *zone_start_pfn = zone_movable_pfn[nid];
7097 *zone_end_pfn = min(node_end_pfn,
7098 arch_zone_highest_possible_pfn[movable_zone]);
7099
e506b996
XQ
7100 /* Adjust for ZONE_MOVABLE starting within this range */
7101 } else if (!mirrored_kernelcore &&
7102 *zone_start_pfn < zone_movable_pfn[nid] &&
7103 *zone_end_pfn > zone_movable_pfn[nid]) {
7104 *zone_end_pfn = zone_movable_pfn[nid];
7105
2a1e274a
MG
7106 /* Check if this whole range is within ZONE_MOVABLE */
7107 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7108 *zone_start_pfn = *zone_end_pfn;
7109 }
7110}
7111
c713216d
MG
7112/*
7113 * Return the number of pages a zone spans in a node, including holes
7114 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7115 */
bbe5d993 7116static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7117 unsigned long zone_type,
7960aedd
ZY
7118 unsigned long node_start_pfn,
7119 unsigned long node_end_pfn,
d91749c1 7120 unsigned long *zone_start_pfn,
854e8848 7121 unsigned long *zone_end_pfn)
c713216d 7122{
299c83dc
LF
7123 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7124 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7125 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7126 if (!node_start_pfn && !node_end_pfn)
7127 return 0;
7128
7960aedd 7129 /* Get the start and end of the zone */
299c83dc
LF
7130 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7131 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7132 adjust_zone_range_for_zone_movable(nid, zone_type,
7133 node_start_pfn, node_end_pfn,
d91749c1 7134 zone_start_pfn, zone_end_pfn);
c713216d
MG
7135
7136 /* Check that this node has pages within the zone's required range */
d91749c1 7137 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7138 return 0;
7139
7140 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7141 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7142 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7143
7144 /* Return the spanned pages */
d91749c1 7145 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7146}
7147
7148/*
7149 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7150 * then all holes in the requested range will be accounted for.
c713216d 7151 */
bbe5d993 7152unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7153 unsigned long range_start_pfn,
7154 unsigned long range_end_pfn)
7155{
96e907d1
TH
7156 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7157 unsigned long start_pfn, end_pfn;
7158 int i;
c713216d 7159
96e907d1
TH
7160 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7161 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7162 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7163 nr_absent -= end_pfn - start_pfn;
c713216d 7164 }
96e907d1 7165 return nr_absent;
c713216d
MG
7166}
7167
7168/**
7169 * absent_pages_in_range - Return number of page frames in holes within a range
7170 * @start_pfn: The start PFN to start searching for holes
7171 * @end_pfn: The end PFN to stop searching for holes
7172 *
a862f68a 7173 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7174 */
7175unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7176 unsigned long end_pfn)
7177{
7178 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7179}
7180
7181/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7182static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7183 unsigned long zone_type,
7960aedd 7184 unsigned long node_start_pfn,
854e8848 7185 unsigned long node_end_pfn)
c713216d 7186{
96e907d1
TH
7187 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7188 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7189 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7190 unsigned long nr_absent;
9c7cd687 7191
b5685e92 7192 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7193 if (!node_start_pfn && !node_end_pfn)
7194 return 0;
7195
96e907d1
TH
7196 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7197 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7198
2a1e274a
MG
7199 adjust_zone_range_for_zone_movable(nid, zone_type,
7200 node_start_pfn, node_end_pfn,
7201 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7202 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7203
7204 /*
7205 * ZONE_MOVABLE handling.
7206 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7207 * and vice versa.
7208 */
e506b996
XQ
7209 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7210 unsigned long start_pfn, end_pfn;
7211 struct memblock_region *r;
7212
cc6de168 7213 for_each_mem_region(r) {
e506b996
XQ
7214 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7215 zone_start_pfn, zone_end_pfn);
7216 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7217 zone_start_pfn, zone_end_pfn);
7218
7219 if (zone_type == ZONE_MOVABLE &&
7220 memblock_is_mirror(r))
7221 nr_absent += end_pfn - start_pfn;
7222
7223 if (zone_type == ZONE_NORMAL &&
7224 !memblock_is_mirror(r))
7225 nr_absent += end_pfn - start_pfn;
342332e6
TI
7226 }
7227 }
7228
7229 return nr_absent;
c713216d 7230}
0e0b864e 7231
bbe5d993 7232static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7233 unsigned long node_start_pfn,
854e8848 7234 unsigned long node_end_pfn)
c713216d 7235{
febd5949 7236 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7237 enum zone_type i;
7238
febd5949
GZ
7239 for (i = 0; i < MAX_NR_ZONES; i++) {
7240 struct zone *zone = pgdat->node_zones + i;
d91749c1 7241 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7242 unsigned long spanned, absent;
febd5949 7243 unsigned long size, real_size;
c713216d 7244
854e8848
MR
7245 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7246 node_start_pfn,
7247 node_end_pfn,
7248 &zone_start_pfn,
7249 &zone_end_pfn);
7250 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7251 node_start_pfn,
7252 node_end_pfn);
3f08a302
MR
7253
7254 size = spanned;
7255 real_size = size - absent;
7256
d91749c1
TI
7257 if (size)
7258 zone->zone_start_pfn = zone_start_pfn;
7259 else
7260 zone->zone_start_pfn = 0;
febd5949
GZ
7261 zone->spanned_pages = size;
7262 zone->present_pages = real_size;
4b097002
DH
7263#if defined(CONFIG_MEMORY_HOTPLUG)
7264 zone->present_early_pages = real_size;
7265#endif
febd5949
GZ
7266
7267 totalpages += size;
7268 realtotalpages += real_size;
7269 }
7270
7271 pgdat->node_spanned_pages = totalpages;
c713216d 7272 pgdat->node_present_pages = realtotalpages;
9660ecaa 7273 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7274}
7275
835c134e
MG
7276#ifndef CONFIG_SPARSEMEM
7277/*
7278 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7279 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7280 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7281 * round what is now in bits to nearest long in bits, then return it in
7282 * bytes.
7283 */
7c45512d 7284static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7285{
7286 unsigned long usemapsize;
7287
7c45512d 7288 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7289 usemapsize = roundup(zonesize, pageblock_nr_pages);
7290 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7291 usemapsize *= NR_PAGEBLOCK_BITS;
7292 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7293
7294 return usemapsize / 8;
7295}
7296
7010a6ec 7297static void __ref setup_usemap(struct zone *zone)
835c134e 7298{
7010a6ec
BH
7299 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7300 zone->spanned_pages);
835c134e 7301 zone->pageblock_flags = NULL;
23a7052a 7302 if (usemapsize) {
6782832e 7303 zone->pageblock_flags =
26fb3dae 7304 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7305 zone_to_nid(zone));
23a7052a
MR
7306 if (!zone->pageblock_flags)
7307 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7308 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7309 }
835c134e
MG
7310}
7311#else
7010a6ec 7312static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7313#endif /* CONFIG_SPARSEMEM */
7314
d9c23400 7315#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7316
d9c23400 7317/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7318void __init set_pageblock_order(void)
d9c23400 7319{
955c1cd7
AM
7320 unsigned int order;
7321
d9c23400
MG
7322 /* Check that pageblock_nr_pages has not already been setup */
7323 if (pageblock_order)
7324 return;
7325
955c1cd7
AM
7326 if (HPAGE_SHIFT > PAGE_SHIFT)
7327 order = HUGETLB_PAGE_ORDER;
7328 else
7329 order = MAX_ORDER - 1;
7330
d9c23400
MG
7331 /*
7332 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7333 * This value may be variable depending on boot parameters on IA64 and
7334 * powerpc.
d9c23400
MG
7335 */
7336 pageblock_order = order;
7337}
7338#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7339
ba72cb8c
MG
7340/*
7341 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7342 * is unused as pageblock_order is set at compile-time. See
7343 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7344 * the kernel config
ba72cb8c 7345 */
03e85f9d 7346void __init set_pageblock_order(void)
ba72cb8c 7347{
ba72cb8c 7348}
d9c23400
MG
7349
7350#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7351
03e85f9d 7352static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7353 unsigned long present_pages)
01cefaef
JL
7354{
7355 unsigned long pages = spanned_pages;
7356
7357 /*
7358 * Provide a more accurate estimation if there are holes within
7359 * the zone and SPARSEMEM is in use. If there are holes within the
7360 * zone, each populated memory region may cost us one or two extra
7361 * memmap pages due to alignment because memmap pages for each
89d790ab 7362 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7363 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7364 */
7365 if (spanned_pages > present_pages + (present_pages >> 4) &&
7366 IS_ENABLED(CONFIG_SPARSEMEM))
7367 pages = present_pages;
7368
7369 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7370}
7371
ace1db39
OS
7372#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7373static void pgdat_init_split_queue(struct pglist_data *pgdat)
7374{
364c1eeb
YS
7375 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7376
7377 spin_lock_init(&ds_queue->split_queue_lock);
7378 INIT_LIST_HEAD(&ds_queue->split_queue);
7379 ds_queue->split_queue_len = 0;
ace1db39
OS
7380}
7381#else
7382static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7383#endif
7384
7385#ifdef CONFIG_COMPACTION
7386static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7387{
7388 init_waitqueue_head(&pgdat->kcompactd_wait);
7389}
7390#else
7391static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7392#endif
7393
03e85f9d 7394static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7395{
208d54e5 7396 pgdat_resize_init(pgdat);
ace1db39 7397
ace1db39
OS
7398 pgdat_init_split_queue(pgdat);
7399 pgdat_init_kcompactd(pgdat);
7400
1da177e4 7401 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7402 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7403
eefa864b 7404 pgdat_page_ext_init(pgdat);
867e5e1d 7405 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7406}
7407
7408static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7409 unsigned long remaining_pages)
7410{
9705bea5 7411 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7412 zone_set_nid(zone, nid);
7413 zone->name = zone_names[idx];
7414 zone->zone_pgdat = NODE_DATA(nid);
7415 spin_lock_init(&zone->lock);
7416 zone_seqlock_init(zone);
7417 zone_pcp_init(zone);
7418}
7419
7420/*
7421 * Set up the zone data structures
7422 * - init pgdat internals
7423 * - init all zones belonging to this node
7424 *
7425 * NOTE: this function is only called during memory hotplug
7426 */
7427#ifdef CONFIG_MEMORY_HOTPLUG
7428void __ref free_area_init_core_hotplug(int nid)
7429{
7430 enum zone_type z;
7431 pg_data_t *pgdat = NODE_DATA(nid);
7432
7433 pgdat_init_internals(pgdat);
7434 for (z = 0; z < MAX_NR_ZONES; z++)
7435 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7436}
7437#endif
7438
7439/*
7440 * Set up the zone data structures:
7441 * - mark all pages reserved
7442 * - mark all memory queues empty
7443 * - clear the memory bitmaps
7444 *
7445 * NOTE: pgdat should get zeroed by caller.
7446 * NOTE: this function is only called during early init.
7447 */
7448static void __init free_area_init_core(struct pglist_data *pgdat)
7449{
7450 enum zone_type j;
7451 int nid = pgdat->node_id;
5f63b720 7452
03e85f9d 7453 pgdat_init_internals(pgdat);
385386cf
JW
7454 pgdat->per_cpu_nodestats = &boot_nodestats;
7455
1da177e4
LT
7456 for (j = 0; j < MAX_NR_ZONES; j++) {
7457 struct zone *zone = pgdat->node_zones + j;
e6943859 7458 unsigned long size, freesize, memmap_pages;
1da177e4 7459
febd5949 7460 size = zone->spanned_pages;
e6943859 7461 freesize = zone->present_pages;
1da177e4 7462
0e0b864e 7463 /*
9feedc9d 7464 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7465 * is used by this zone for memmap. This affects the watermark
7466 * and per-cpu initialisations
7467 */
e6943859 7468 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7469 if (!is_highmem_idx(j)) {
7470 if (freesize >= memmap_pages) {
7471 freesize -= memmap_pages;
7472 if (memmap_pages)
9660ecaa
HK
7473 pr_debug(" %s zone: %lu pages used for memmap\n",
7474 zone_names[j], memmap_pages);
ba914f48 7475 } else
e47aa905 7476 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7477 zone_names[j], memmap_pages, freesize);
7478 }
0e0b864e 7479
6267276f 7480 /* Account for reserved pages */
9feedc9d
JL
7481 if (j == 0 && freesize > dma_reserve) {
7482 freesize -= dma_reserve;
9660ecaa 7483 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7484 }
7485
98d2b0eb 7486 if (!is_highmem_idx(j))
9feedc9d 7487 nr_kernel_pages += freesize;
01cefaef
JL
7488 /* Charge for highmem memmap if there are enough kernel pages */
7489 else if (nr_kernel_pages > memmap_pages * 2)
7490 nr_kernel_pages -= memmap_pages;
9feedc9d 7491 nr_all_pages += freesize;
1da177e4 7492
9feedc9d
JL
7493 /*
7494 * Set an approximate value for lowmem here, it will be adjusted
7495 * when the bootmem allocator frees pages into the buddy system.
7496 * And all highmem pages will be managed by the buddy system.
7497 */
03e85f9d 7498 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7499
d883c6cf 7500 if (!size)
1da177e4
LT
7501 continue;
7502
955c1cd7 7503 set_pageblock_order();
7010a6ec 7504 setup_usemap(zone);
9699ee7b 7505 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7506 }
7507}
7508
43b02ba9 7509#ifdef CONFIG_FLATMEM
3b446da6 7510static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7511{
b0aeba74 7512 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7513 unsigned long __maybe_unused offset = 0;
7514
1da177e4
LT
7515 /* Skip empty nodes */
7516 if (!pgdat->node_spanned_pages)
7517 return;
7518
b0aeba74
TL
7519 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7520 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7521 /* ia64 gets its own node_mem_map, before this, without bootmem */
7522 if (!pgdat->node_mem_map) {
b0aeba74 7523 unsigned long size, end;
d41dee36
AW
7524 struct page *map;
7525
e984bb43
BP
7526 /*
7527 * The zone's endpoints aren't required to be MAX_ORDER
7528 * aligned but the node_mem_map endpoints must be in order
7529 * for the buddy allocator to function correctly.
7530 */
108bcc96 7531 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7532 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7533 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7534 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7535 pgdat->node_id, false);
23a7052a
MR
7536 if (!map)
7537 panic("Failed to allocate %ld bytes for node %d memory map\n",
7538 size, pgdat->node_id);
a1c34a3b 7539 pgdat->node_mem_map = map + offset;
1da177e4 7540 }
0cd842f9
OS
7541 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7542 __func__, pgdat->node_id, (unsigned long)pgdat,
7543 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7544#ifndef CONFIG_NUMA
1da177e4
LT
7545 /*
7546 * With no DISCONTIG, the global mem_map is just set as node 0's
7547 */
c713216d 7548 if (pgdat == NODE_DATA(0)) {
1da177e4 7549 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7550 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7551 mem_map -= offset;
c713216d 7552 }
1da177e4
LT
7553#endif
7554}
0cd842f9 7555#else
3b446da6 7556static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7557#endif /* CONFIG_FLATMEM */
1da177e4 7558
0188dc98
OS
7559#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7560static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7561{
0188dc98
OS
7562 pgdat->first_deferred_pfn = ULONG_MAX;
7563}
7564#else
7565static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7566#endif
7567
854e8848 7568static void __init free_area_init_node(int nid)
1da177e4 7569{
9109fb7b 7570 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7571 unsigned long start_pfn = 0;
7572 unsigned long end_pfn = 0;
9109fb7b 7573
88fdf75d 7574 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7575 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7576
854e8848 7577 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7578
1da177e4 7579 pgdat->node_id = nid;
854e8848 7580 pgdat->node_start_pfn = start_pfn;
75ef7184 7581 pgdat->per_cpu_nodestats = NULL;
854e8848 7582
8d29e18a 7583 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7584 (u64)start_pfn << PAGE_SHIFT,
7585 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7586 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7587
7588 alloc_node_mem_map(pgdat);
0188dc98 7589 pgdat_set_deferred_range(pgdat);
1da177e4 7590
7f3eb55b 7591 free_area_init_core(pgdat);
1da177e4
LT
7592}
7593
bc9331a1 7594void __init free_area_init_memoryless_node(int nid)
3f08a302 7595{
854e8848 7596 free_area_init_node(nid);
3f08a302
MR
7597}
7598
418508c1
MS
7599#if MAX_NUMNODES > 1
7600/*
7601 * Figure out the number of possible node ids.
7602 */
f9872caf 7603void __init setup_nr_node_ids(void)
418508c1 7604{
904a9553 7605 unsigned int highest;
418508c1 7606
904a9553 7607 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7608 nr_node_ids = highest + 1;
7609}
418508c1
MS
7610#endif
7611
1e01979c
TH
7612/**
7613 * node_map_pfn_alignment - determine the maximum internode alignment
7614 *
7615 * This function should be called after node map is populated and sorted.
7616 * It calculates the maximum power of two alignment which can distinguish
7617 * all the nodes.
7618 *
7619 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7620 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7621 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7622 * shifted, 1GiB is enough and this function will indicate so.
7623 *
7624 * This is used to test whether pfn -> nid mapping of the chosen memory
7625 * model has fine enough granularity to avoid incorrect mapping for the
7626 * populated node map.
7627 *
a862f68a 7628 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7629 * requirement (single node).
7630 */
7631unsigned long __init node_map_pfn_alignment(void)
7632{
7633 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7634 unsigned long start, end, mask;
98fa15f3 7635 int last_nid = NUMA_NO_NODE;
c13291a5 7636 int i, nid;
1e01979c 7637
c13291a5 7638 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7639 if (!start || last_nid < 0 || last_nid == nid) {
7640 last_nid = nid;
7641 last_end = end;
7642 continue;
7643 }
7644
7645 /*
7646 * Start with a mask granular enough to pin-point to the
7647 * start pfn and tick off bits one-by-one until it becomes
7648 * too coarse to separate the current node from the last.
7649 */
7650 mask = ~((1 << __ffs(start)) - 1);
7651 while (mask && last_end <= (start & (mask << 1)))
7652 mask <<= 1;
7653
7654 /* accumulate all internode masks */
7655 accl_mask |= mask;
7656 }
7657
7658 /* convert mask to number of pages */
7659 return ~accl_mask + 1;
7660}
7661
c713216d
MG
7662/**
7663 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7664 *
a862f68a 7665 * Return: the minimum PFN based on information provided via
7d018176 7666 * memblock_set_node().
c713216d
MG
7667 */
7668unsigned long __init find_min_pfn_with_active_regions(void)
7669{
8a1b25fe 7670 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7671}
7672
37b07e41
LS
7673/*
7674 * early_calculate_totalpages()
7675 * Sum pages in active regions for movable zone.
4b0ef1fe 7676 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7677 */
484f51f8 7678static unsigned long __init early_calculate_totalpages(void)
7e63efef 7679{
7e63efef 7680 unsigned long totalpages = 0;
c13291a5
TH
7681 unsigned long start_pfn, end_pfn;
7682 int i, nid;
7683
7684 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7685 unsigned long pages = end_pfn - start_pfn;
7e63efef 7686
37b07e41
LS
7687 totalpages += pages;
7688 if (pages)
4b0ef1fe 7689 node_set_state(nid, N_MEMORY);
37b07e41 7690 }
b8af2941 7691 return totalpages;
7e63efef
MG
7692}
7693
2a1e274a
MG
7694/*
7695 * Find the PFN the Movable zone begins in each node. Kernel memory
7696 * is spread evenly between nodes as long as the nodes have enough
7697 * memory. When they don't, some nodes will have more kernelcore than
7698 * others
7699 */
b224ef85 7700static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7701{
7702 int i, nid;
7703 unsigned long usable_startpfn;
7704 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7705 /* save the state before borrow the nodemask */
4b0ef1fe 7706 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7707 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7708 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7709 struct memblock_region *r;
b2f3eebe
TC
7710
7711 /* Need to find movable_zone earlier when movable_node is specified. */
7712 find_usable_zone_for_movable();
7713
7714 /*
7715 * If movable_node is specified, ignore kernelcore and movablecore
7716 * options.
7717 */
7718 if (movable_node_is_enabled()) {
cc6de168 7719 for_each_mem_region(r) {
136199f0 7720 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7721 continue;
7722
d622abf7 7723 nid = memblock_get_region_node(r);
b2f3eebe 7724
136199f0 7725 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7726 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7727 min(usable_startpfn, zone_movable_pfn[nid]) :
7728 usable_startpfn;
7729 }
7730
7731 goto out2;
7732 }
2a1e274a 7733
342332e6
TI
7734 /*
7735 * If kernelcore=mirror is specified, ignore movablecore option
7736 */
7737 if (mirrored_kernelcore) {
7738 bool mem_below_4gb_not_mirrored = false;
7739
cc6de168 7740 for_each_mem_region(r) {
342332e6
TI
7741 if (memblock_is_mirror(r))
7742 continue;
7743
d622abf7 7744 nid = memblock_get_region_node(r);
342332e6
TI
7745
7746 usable_startpfn = memblock_region_memory_base_pfn(r);
7747
7748 if (usable_startpfn < 0x100000) {
7749 mem_below_4gb_not_mirrored = true;
7750 continue;
7751 }
7752
7753 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7754 min(usable_startpfn, zone_movable_pfn[nid]) :
7755 usable_startpfn;
7756 }
7757
7758 if (mem_below_4gb_not_mirrored)
633bf2fe 7759 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7760
7761 goto out2;
7762 }
7763
7e63efef 7764 /*
a5c6d650
DR
7765 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7766 * amount of necessary memory.
7767 */
7768 if (required_kernelcore_percent)
7769 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7770 10000UL;
7771 if (required_movablecore_percent)
7772 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7773 10000UL;
7774
7775 /*
7776 * If movablecore= was specified, calculate what size of
7e63efef
MG
7777 * kernelcore that corresponds so that memory usable for
7778 * any allocation type is evenly spread. If both kernelcore
7779 * and movablecore are specified, then the value of kernelcore
7780 * will be used for required_kernelcore if it's greater than
7781 * what movablecore would have allowed.
7782 */
7783 if (required_movablecore) {
7e63efef
MG
7784 unsigned long corepages;
7785
7786 /*
7787 * Round-up so that ZONE_MOVABLE is at least as large as what
7788 * was requested by the user
7789 */
7790 required_movablecore =
7791 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7792 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7793 corepages = totalpages - required_movablecore;
7794
7795 required_kernelcore = max(required_kernelcore, corepages);
7796 }
7797
bde304bd
XQ
7798 /*
7799 * If kernelcore was not specified or kernelcore size is larger
7800 * than totalpages, there is no ZONE_MOVABLE.
7801 */
7802 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7803 goto out;
2a1e274a
MG
7804
7805 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7806 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7807
7808restart:
7809 /* Spread kernelcore memory as evenly as possible throughout nodes */
7810 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7811 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7812 unsigned long start_pfn, end_pfn;
7813
2a1e274a
MG
7814 /*
7815 * Recalculate kernelcore_node if the division per node
7816 * now exceeds what is necessary to satisfy the requested
7817 * amount of memory for the kernel
7818 */
7819 if (required_kernelcore < kernelcore_node)
7820 kernelcore_node = required_kernelcore / usable_nodes;
7821
7822 /*
7823 * As the map is walked, we track how much memory is usable
7824 * by the kernel using kernelcore_remaining. When it is
7825 * 0, the rest of the node is usable by ZONE_MOVABLE
7826 */
7827 kernelcore_remaining = kernelcore_node;
7828
7829 /* Go through each range of PFNs within this node */
c13291a5 7830 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7831 unsigned long size_pages;
7832
c13291a5 7833 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7834 if (start_pfn >= end_pfn)
7835 continue;
7836
7837 /* Account for what is only usable for kernelcore */
7838 if (start_pfn < usable_startpfn) {
7839 unsigned long kernel_pages;
7840 kernel_pages = min(end_pfn, usable_startpfn)
7841 - start_pfn;
7842
7843 kernelcore_remaining -= min(kernel_pages,
7844 kernelcore_remaining);
7845 required_kernelcore -= min(kernel_pages,
7846 required_kernelcore);
7847
7848 /* Continue if range is now fully accounted */
7849 if (end_pfn <= usable_startpfn) {
7850
7851 /*
7852 * Push zone_movable_pfn to the end so
7853 * that if we have to rebalance
7854 * kernelcore across nodes, we will
7855 * not double account here
7856 */
7857 zone_movable_pfn[nid] = end_pfn;
7858 continue;
7859 }
7860 start_pfn = usable_startpfn;
7861 }
7862
7863 /*
7864 * The usable PFN range for ZONE_MOVABLE is from
7865 * start_pfn->end_pfn. Calculate size_pages as the
7866 * number of pages used as kernelcore
7867 */
7868 size_pages = end_pfn - start_pfn;
7869 if (size_pages > kernelcore_remaining)
7870 size_pages = kernelcore_remaining;
7871 zone_movable_pfn[nid] = start_pfn + size_pages;
7872
7873 /*
7874 * Some kernelcore has been met, update counts and
7875 * break if the kernelcore for this node has been
b8af2941 7876 * satisfied
2a1e274a
MG
7877 */
7878 required_kernelcore -= min(required_kernelcore,
7879 size_pages);
7880 kernelcore_remaining -= size_pages;
7881 if (!kernelcore_remaining)
7882 break;
7883 }
7884 }
7885
7886 /*
7887 * If there is still required_kernelcore, we do another pass with one
7888 * less node in the count. This will push zone_movable_pfn[nid] further
7889 * along on the nodes that still have memory until kernelcore is
b8af2941 7890 * satisfied
2a1e274a
MG
7891 */
7892 usable_nodes--;
7893 if (usable_nodes && required_kernelcore > usable_nodes)
7894 goto restart;
7895
b2f3eebe 7896out2:
2a1e274a
MG
7897 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7898 for (nid = 0; nid < MAX_NUMNODES; nid++)
7899 zone_movable_pfn[nid] =
7900 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7901
20e6926d 7902out:
66918dcd 7903 /* restore the node_state */
4b0ef1fe 7904 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7905}
7906
4b0ef1fe
LJ
7907/* Any regular or high memory on that node ? */
7908static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7909{
37b07e41
LS
7910 enum zone_type zone_type;
7911
4b0ef1fe 7912 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7913 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7914 if (populated_zone(zone)) {
7b0e0c0e
OS
7915 if (IS_ENABLED(CONFIG_HIGHMEM))
7916 node_set_state(nid, N_HIGH_MEMORY);
7917 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7918 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7919 break;
7920 }
37b07e41 7921 }
37b07e41
LS
7922}
7923
51930df5 7924/*
f0953a1b 7925 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
7926 * such cases we allow max_zone_pfn sorted in the descending order
7927 */
7928bool __weak arch_has_descending_max_zone_pfns(void)
7929{
7930 return false;
7931}
7932
c713216d 7933/**
9691a071 7934 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7935 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7936 *
7937 * This will call free_area_init_node() for each active node in the system.
7d018176 7938 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7939 * zone in each node and their holes is calculated. If the maximum PFN
7940 * between two adjacent zones match, it is assumed that the zone is empty.
7941 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7942 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7943 * starts where the previous one ended. For example, ZONE_DMA32 starts
7944 * at arch_max_dma_pfn.
7945 */
9691a071 7946void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7947{
c13291a5 7948 unsigned long start_pfn, end_pfn;
51930df5
MR
7949 int i, nid, zone;
7950 bool descending;
a6af2bc3 7951
c713216d
MG
7952 /* Record where the zone boundaries are */
7953 memset(arch_zone_lowest_possible_pfn, 0,
7954 sizeof(arch_zone_lowest_possible_pfn));
7955 memset(arch_zone_highest_possible_pfn, 0,
7956 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7957
7958 start_pfn = find_min_pfn_with_active_regions();
51930df5 7959 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7960
7961 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7962 if (descending)
7963 zone = MAX_NR_ZONES - i - 1;
7964 else
7965 zone = i;
7966
7967 if (zone == ZONE_MOVABLE)
2a1e274a 7968 continue;
90cae1fe 7969
51930df5
MR
7970 end_pfn = max(max_zone_pfn[zone], start_pfn);
7971 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7972 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7973
7974 start_pfn = end_pfn;
c713216d 7975 }
2a1e274a
MG
7976
7977 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7978 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7979 find_zone_movable_pfns_for_nodes();
c713216d 7980
c713216d 7981 /* Print out the zone ranges */
f88dfff5 7982 pr_info("Zone ranges:\n");
2a1e274a
MG
7983 for (i = 0; i < MAX_NR_ZONES; i++) {
7984 if (i == ZONE_MOVABLE)
7985 continue;
f88dfff5 7986 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7987 if (arch_zone_lowest_possible_pfn[i] ==
7988 arch_zone_highest_possible_pfn[i])
f88dfff5 7989 pr_cont("empty\n");
72f0ba02 7990 else
8d29e18a
JG
7991 pr_cont("[mem %#018Lx-%#018Lx]\n",
7992 (u64)arch_zone_lowest_possible_pfn[i]
7993 << PAGE_SHIFT,
7994 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7995 << PAGE_SHIFT) - 1);
2a1e274a
MG
7996 }
7997
7998 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7999 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8000 for (i = 0; i < MAX_NUMNODES; i++) {
8001 if (zone_movable_pfn[i])
8d29e18a
JG
8002 pr_info(" Node %d: %#018Lx\n", i,
8003 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8004 }
c713216d 8005
f46edbd1
DW
8006 /*
8007 * Print out the early node map, and initialize the
8008 * subsection-map relative to active online memory ranges to
8009 * enable future "sub-section" extensions of the memory map.
8010 */
f88dfff5 8011 pr_info("Early memory node ranges\n");
f46edbd1 8012 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8013 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8014 (u64)start_pfn << PAGE_SHIFT,
8015 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8016 subsection_map_init(start_pfn, end_pfn - start_pfn);
8017 }
c713216d
MG
8018
8019 /* Initialise every node */
708614e6 8020 mminit_verify_pageflags_layout();
8ef82866 8021 setup_nr_node_ids();
c713216d
MG
8022 for_each_online_node(nid) {
8023 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 8024 free_area_init_node(nid);
37b07e41
LS
8025
8026 /* Any memory on that node */
8027 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8028 node_set_state(nid, N_MEMORY);
8029 check_for_memory(pgdat, nid);
c713216d 8030 }
122e093c
MR
8031
8032 memmap_init();
c713216d 8033}
2a1e274a 8034
a5c6d650
DR
8035static int __init cmdline_parse_core(char *p, unsigned long *core,
8036 unsigned long *percent)
2a1e274a
MG
8037{
8038 unsigned long long coremem;
a5c6d650
DR
8039 char *endptr;
8040
2a1e274a
MG
8041 if (!p)
8042 return -EINVAL;
8043
a5c6d650
DR
8044 /* Value may be a percentage of total memory, otherwise bytes */
8045 coremem = simple_strtoull(p, &endptr, 0);
8046 if (*endptr == '%') {
8047 /* Paranoid check for percent values greater than 100 */
8048 WARN_ON(coremem > 100);
2a1e274a 8049
a5c6d650
DR
8050 *percent = coremem;
8051 } else {
8052 coremem = memparse(p, &p);
8053 /* Paranoid check that UL is enough for the coremem value */
8054 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8055
a5c6d650
DR
8056 *core = coremem >> PAGE_SHIFT;
8057 *percent = 0UL;
8058 }
2a1e274a
MG
8059 return 0;
8060}
ed7ed365 8061
7e63efef
MG
8062/*
8063 * kernelcore=size sets the amount of memory for use for allocations that
8064 * cannot be reclaimed or migrated.
8065 */
8066static int __init cmdline_parse_kernelcore(char *p)
8067{
342332e6
TI
8068 /* parse kernelcore=mirror */
8069 if (parse_option_str(p, "mirror")) {
8070 mirrored_kernelcore = true;
8071 return 0;
8072 }
8073
a5c6d650
DR
8074 return cmdline_parse_core(p, &required_kernelcore,
8075 &required_kernelcore_percent);
7e63efef
MG
8076}
8077
8078/*
8079 * movablecore=size sets the amount of memory for use for allocations that
8080 * can be reclaimed or migrated.
8081 */
8082static int __init cmdline_parse_movablecore(char *p)
8083{
a5c6d650
DR
8084 return cmdline_parse_core(p, &required_movablecore,
8085 &required_movablecore_percent);
7e63efef
MG
8086}
8087
ed7ed365 8088early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8089early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8090
c3d5f5f0
JL
8091void adjust_managed_page_count(struct page *page, long count)
8092{
9705bea5 8093 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8094 totalram_pages_add(count);
3dcc0571
JL
8095#ifdef CONFIG_HIGHMEM
8096 if (PageHighMem(page))
ca79b0c2 8097 totalhigh_pages_add(count);
3dcc0571 8098#endif
c3d5f5f0 8099}
3dcc0571 8100EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8101
e5cb113f 8102unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8103{
11199692
JL
8104 void *pos;
8105 unsigned long pages = 0;
69afade7 8106
11199692
JL
8107 start = (void *)PAGE_ALIGN((unsigned long)start);
8108 end = (void *)((unsigned long)end & PAGE_MASK);
8109 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8110 struct page *page = virt_to_page(pos);
8111 void *direct_map_addr;
8112
8113 /*
8114 * 'direct_map_addr' might be different from 'pos'
8115 * because some architectures' virt_to_page()
8116 * work with aliases. Getting the direct map
8117 * address ensures that we get a _writeable_
8118 * alias for the memset().
8119 */
8120 direct_map_addr = page_address(page);
c746170d
VF
8121 /*
8122 * Perform a kasan-unchecked memset() since this memory
8123 * has not been initialized.
8124 */
8125 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8126 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8127 memset(direct_map_addr, poison, PAGE_SIZE);
8128
8129 free_reserved_page(page);
69afade7
JL
8130 }
8131
8132 if (pages && s)
ff7ed9e4 8133 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8134
8135 return pages;
8136}
8137
1f9d03c5 8138void __init mem_init_print_info(void)
7ee3d4e8
JL
8139{
8140 unsigned long physpages, codesize, datasize, rosize, bss_size;
8141 unsigned long init_code_size, init_data_size;
8142
8143 physpages = get_num_physpages();
8144 codesize = _etext - _stext;
8145 datasize = _edata - _sdata;
8146 rosize = __end_rodata - __start_rodata;
8147 bss_size = __bss_stop - __bss_start;
8148 init_data_size = __init_end - __init_begin;
8149 init_code_size = _einittext - _sinittext;
8150
8151 /*
8152 * Detect special cases and adjust section sizes accordingly:
8153 * 1) .init.* may be embedded into .data sections
8154 * 2) .init.text.* may be out of [__init_begin, __init_end],
8155 * please refer to arch/tile/kernel/vmlinux.lds.S.
8156 * 3) .rodata.* may be embedded into .text or .data sections.
8157 */
8158#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
8159 do { \
8160 if (start <= pos && pos < end && size > adj) \
8161 size -= adj; \
8162 } while (0)
7ee3d4e8
JL
8163
8164 adj_init_size(__init_begin, __init_end, init_data_size,
8165 _sinittext, init_code_size);
8166 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8167 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8168 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8169 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8170
8171#undef adj_init_size
8172
756a025f 8173 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8174#ifdef CONFIG_HIGHMEM
756a025f 8175 ", %luK highmem"
7ee3d4e8 8176#endif
1f9d03c5 8177 ")\n",
ff7ed9e4 8178 K(nr_free_pages()), K(physpages),
756a025f
JP
8179 codesize >> 10, datasize >> 10, rosize >> 10,
8180 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ff7ed9e4
ML
8181 K(physpages - totalram_pages() - totalcma_pages),
8182 K(totalcma_pages)
7ee3d4e8 8183#ifdef CONFIG_HIGHMEM
ff7ed9e4 8184 , K(totalhigh_pages())
7ee3d4e8 8185#endif
1f9d03c5 8186 );
7ee3d4e8
JL
8187}
8188
0e0b864e 8189/**
88ca3b94
RD
8190 * set_dma_reserve - set the specified number of pages reserved in the first zone
8191 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8192 *
013110a7 8193 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8194 * In the DMA zone, a significant percentage may be consumed by kernel image
8195 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8196 * function may optionally be used to account for unfreeable pages in the
8197 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8198 * smaller per-cpu batchsize.
0e0b864e
MG
8199 */
8200void __init set_dma_reserve(unsigned long new_dma_reserve)
8201{
8202 dma_reserve = new_dma_reserve;
8203}
8204
005fd4bb 8205static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8206{
04f8cfea 8207 struct zone *zone;
1da177e4 8208
005fd4bb
SAS
8209 lru_add_drain_cpu(cpu);
8210 drain_pages(cpu);
9f8f2172 8211
005fd4bb
SAS
8212 /*
8213 * Spill the event counters of the dead processor
8214 * into the current processors event counters.
8215 * This artificially elevates the count of the current
8216 * processor.
8217 */
8218 vm_events_fold_cpu(cpu);
9f8f2172 8219
005fd4bb
SAS
8220 /*
8221 * Zero the differential counters of the dead processor
8222 * so that the vm statistics are consistent.
8223 *
8224 * This is only okay since the processor is dead and cannot
8225 * race with what we are doing.
8226 */
8227 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8228
8229 for_each_populated_zone(zone)
8230 zone_pcp_update(zone, 0);
8231
8232 return 0;
8233}
8234
8235static int page_alloc_cpu_online(unsigned int cpu)
8236{
8237 struct zone *zone;
8238
8239 for_each_populated_zone(zone)
8240 zone_pcp_update(zone, 1);
005fd4bb 8241 return 0;
1da177e4 8242}
1da177e4 8243
e03a5125
NP
8244#ifdef CONFIG_NUMA
8245int hashdist = HASHDIST_DEFAULT;
8246
8247static int __init set_hashdist(char *str)
8248{
8249 if (!str)
8250 return 0;
8251 hashdist = simple_strtoul(str, &str, 0);
8252 return 1;
8253}
8254__setup("hashdist=", set_hashdist);
8255#endif
8256
1da177e4
LT
8257void __init page_alloc_init(void)
8258{
005fd4bb
SAS
8259 int ret;
8260
e03a5125
NP
8261#ifdef CONFIG_NUMA
8262 if (num_node_state(N_MEMORY) == 1)
8263 hashdist = 0;
8264#endif
8265
04f8cfea
MG
8266 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8267 "mm/page_alloc:pcp",
8268 page_alloc_cpu_online,
005fd4bb
SAS
8269 page_alloc_cpu_dead);
8270 WARN_ON(ret < 0);
1da177e4
LT
8271}
8272
cb45b0e9 8273/*
34b10060 8274 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8275 * or min_free_kbytes changes.
8276 */
8277static void calculate_totalreserve_pages(void)
8278{
8279 struct pglist_data *pgdat;
8280 unsigned long reserve_pages = 0;
2f6726e5 8281 enum zone_type i, j;
cb45b0e9
HA
8282
8283 for_each_online_pgdat(pgdat) {
281e3726
MG
8284
8285 pgdat->totalreserve_pages = 0;
8286
cb45b0e9
HA
8287 for (i = 0; i < MAX_NR_ZONES; i++) {
8288 struct zone *zone = pgdat->node_zones + i;
3484b2de 8289 long max = 0;
9705bea5 8290 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8291
8292 /* Find valid and maximum lowmem_reserve in the zone */
8293 for (j = i; j < MAX_NR_ZONES; j++) {
8294 if (zone->lowmem_reserve[j] > max)
8295 max = zone->lowmem_reserve[j];
8296 }
8297
41858966
MG
8298 /* we treat the high watermark as reserved pages. */
8299 max += high_wmark_pages(zone);
cb45b0e9 8300
3d6357de
AK
8301 if (max > managed_pages)
8302 max = managed_pages;
a8d01437 8303
281e3726 8304 pgdat->totalreserve_pages += max;
a8d01437 8305
cb45b0e9
HA
8306 reserve_pages += max;
8307 }
8308 }
8309 totalreserve_pages = reserve_pages;
8310}
8311
1da177e4
LT
8312/*
8313 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8314 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8315 * has a correct pages reserved value, so an adequate number of
8316 * pages are left in the zone after a successful __alloc_pages().
8317 */
8318static void setup_per_zone_lowmem_reserve(void)
8319{
8320 struct pglist_data *pgdat;
470c61d7 8321 enum zone_type i, j;
1da177e4 8322
ec936fc5 8323 for_each_online_pgdat(pgdat) {
470c61d7
LS
8324 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8325 struct zone *zone = &pgdat->node_zones[i];
8326 int ratio = sysctl_lowmem_reserve_ratio[i];
8327 bool clear = !ratio || !zone_managed_pages(zone);
8328 unsigned long managed_pages = 0;
8329
8330 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8331 struct zone *upper_zone = &pgdat->node_zones[j];
8332
8333 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8334
f7ec1044
LS
8335 if (clear)
8336 zone->lowmem_reserve[j] = 0;
8337 else
470c61d7 8338 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8339 }
8340 }
8341 }
cb45b0e9
HA
8342
8343 /* update totalreserve_pages */
8344 calculate_totalreserve_pages();
1da177e4
LT
8345}
8346
cfd3da1e 8347static void __setup_per_zone_wmarks(void)
1da177e4
LT
8348{
8349 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8350 unsigned long lowmem_pages = 0;
8351 struct zone *zone;
8352 unsigned long flags;
8353
8354 /* Calculate total number of !ZONE_HIGHMEM pages */
8355 for_each_zone(zone) {
8356 if (!is_highmem(zone))
9705bea5 8357 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8358 }
8359
8360 for_each_zone(zone) {
ac924c60
AM
8361 u64 tmp;
8362
1125b4e3 8363 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8364 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8365 do_div(tmp, lowmem_pages);
1da177e4
LT
8366 if (is_highmem(zone)) {
8367 /*
669ed175
NP
8368 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8369 * need highmem pages, so cap pages_min to a small
8370 * value here.
8371 *
41858966 8372 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8373 * deltas control async page reclaim, and so should
669ed175 8374 * not be capped for highmem.
1da177e4 8375 */
90ae8d67 8376 unsigned long min_pages;
1da177e4 8377
9705bea5 8378 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8379 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8380 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8381 } else {
669ed175
NP
8382 /*
8383 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8384 * proportionate to the zone's size.
8385 */
a9214443 8386 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8387 }
8388
795ae7a0
JW
8389 /*
8390 * Set the kswapd watermarks distance according to the
8391 * scale factor in proportion to available memory, but
8392 * ensure a minimum size on small systems.
8393 */
8394 tmp = max_t(u64, tmp >> 2,
9705bea5 8395 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8396 watermark_scale_factor, 10000));
8397
aa092591 8398 zone->watermark_boost = 0;
a9214443
MG
8399 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8400 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 8401
1125b4e3 8402 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8403 }
cb45b0e9
HA
8404
8405 /* update totalreserve_pages */
8406 calculate_totalreserve_pages();
1da177e4
LT
8407}
8408
cfd3da1e
MG
8409/**
8410 * setup_per_zone_wmarks - called when min_free_kbytes changes
8411 * or when memory is hot-{added|removed}
8412 *
8413 * Ensures that the watermark[min,low,high] values for each zone are set
8414 * correctly with respect to min_free_kbytes.
8415 */
8416void setup_per_zone_wmarks(void)
8417{
b92ca18e 8418 struct zone *zone;
b93e0f32
MH
8419 static DEFINE_SPINLOCK(lock);
8420
8421 spin_lock(&lock);
cfd3da1e 8422 __setup_per_zone_wmarks();
b93e0f32 8423 spin_unlock(&lock);
b92ca18e
MG
8424
8425 /*
8426 * The watermark size have changed so update the pcpu batch
8427 * and high limits or the limits may be inappropriate.
8428 */
8429 for_each_zone(zone)
04f8cfea 8430 zone_pcp_update(zone, 0);
cfd3da1e
MG
8431}
8432
1da177e4
LT
8433/*
8434 * Initialise min_free_kbytes.
8435 *
8436 * For small machines we want it small (128k min). For large machines
8beeae86 8437 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8438 * bandwidth does not increase linearly with machine size. We use
8439 *
b8af2941 8440 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8441 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8442 *
8443 * which yields
8444 *
8445 * 16MB: 512k
8446 * 32MB: 724k
8447 * 64MB: 1024k
8448 * 128MB: 1448k
8449 * 256MB: 2048k
8450 * 512MB: 2896k
8451 * 1024MB: 4096k
8452 * 2048MB: 5792k
8453 * 4096MB: 8192k
8454 * 8192MB: 11584k
8455 * 16384MB: 16384k
8456 */
1b79acc9 8457int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8458{
8459 unsigned long lowmem_kbytes;
5f12733e 8460 int new_min_free_kbytes;
1da177e4
LT
8461
8462 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8463 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8464
8465 if (new_min_free_kbytes > user_min_free_kbytes) {
8466 min_free_kbytes = new_min_free_kbytes;
8467 if (min_free_kbytes < 128)
8468 min_free_kbytes = 128;
ee8eb9a5
JS
8469 if (min_free_kbytes > 262144)
8470 min_free_kbytes = 262144;
5f12733e
MH
8471 } else {
8472 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8473 new_min_free_kbytes, user_min_free_kbytes);
8474 }
bc75d33f 8475 setup_per_zone_wmarks();
a6cccdc3 8476 refresh_zone_stat_thresholds();
1da177e4 8477 setup_per_zone_lowmem_reserve();
6423aa81
JK
8478
8479#ifdef CONFIG_NUMA
8480 setup_min_unmapped_ratio();
8481 setup_min_slab_ratio();
8482#endif
8483
4aab2be0
VB
8484 khugepaged_min_free_kbytes_update();
8485
1da177e4
LT
8486 return 0;
8487}
e08d3fdf 8488postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8489
8490/*
b8af2941 8491 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8492 * that we can call two helper functions whenever min_free_kbytes
8493 * changes.
8494 */
cccad5b9 8495int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8496 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8497{
da8c757b
HP
8498 int rc;
8499
8500 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8501 if (rc)
8502 return rc;
8503
5f12733e
MH
8504 if (write) {
8505 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8506 setup_per_zone_wmarks();
5f12733e 8507 }
1da177e4
LT
8508 return 0;
8509}
8510
795ae7a0 8511int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8512 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8513{
8514 int rc;
8515
8516 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8517 if (rc)
8518 return rc;
8519
8520 if (write)
8521 setup_per_zone_wmarks();
8522
8523 return 0;
8524}
8525
9614634f 8526#ifdef CONFIG_NUMA
6423aa81 8527static void setup_min_unmapped_ratio(void)
9614634f 8528{
6423aa81 8529 pg_data_t *pgdat;
9614634f 8530 struct zone *zone;
9614634f 8531
a5f5f91d 8532 for_each_online_pgdat(pgdat)
81cbcbc2 8533 pgdat->min_unmapped_pages = 0;
a5f5f91d 8534
9614634f 8535 for_each_zone(zone)
9705bea5
AK
8536 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8537 sysctl_min_unmapped_ratio) / 100;
9614634f 8538}
0ff38490 8539
6423aa81
JK
8540
8541int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8542 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8543{
0ff38490
CL
8544 int rc;
8545
8d65af78 8546 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8547 if (rc)
8548 return rc;
8549
6423aa81
JK
8550 setup_min_unmapped_ratio();
8551
8552 return 0;
8553}
8554
8555static void setup_min_slab_ratio(void)
8556{
8557 pg_data_t *pgdat;
8558 struct zone *zone;
8559
a5f5f91d
MG
8560 for_each_online_pgdat(pgdat)
8561 pgdat->min_slab_pages = 0;
8562
0ff38490 8563 for_each_zone(zone)
9705bea5
AK
8564 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8565 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8566}
8567
8568int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8569 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8570{
8571 int rc;
8572
8573 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8574 if (rc)
8575 return rc;
8576
8577 setup_min_slab_ratio();
8578
0ff38490
CL
8579 return 0;
8580}
9614634f
CL
8581#endif
8582
1da177e4
LT
8583/*
8584 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8585 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8586 * whenever sysctl_lowmem_reserve_ratio changes.
8587 *
8588 * The reserve ratio obviously has absolutely no relation with the
41858966 8589 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8590 * if in function of the boot time zone sizes.
8591 */
cccad5b9 8592int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8593 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8594{
86aaf255
BH
8595 int i;
8596
8d65af78 8597 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8598
8599 for (i = 0; i < MAX_NR_ZONES; i++) {
8600 if (sysctl_lowmem_reserve_ratio[i] < 1)
8601 sysctl_lowmem_reserve_ratio[i] = 0;
8602 }
8603
1da177e4
LT
8604 setup_per_zone_lowmem_reserve();
8605 return 0;
8606}
8607
8ad4b1fb 8608/*
74f44822
MG
8609 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8610 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8611 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8612 */
74f44822
MG
8613int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8614 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8615{
8616 struct zone *zone;
74f44822 8617 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8618 int ret;
8619
7cd2b0a3 8620 mutex_lock(&pcp_batch_high_lock);
74f44822 8621 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8622
8d65af78 8623 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8624 if (!write || ret < 0)
8625 goto out;
8626
8627 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8628 if (percpu_pagelist_high_fraction &&
8629 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8630 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8631 ret = -EINVAL;
8632 goto out;
8633 }
8634
8635 /* No change? */
74f44822 8636 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8637 goto out;
c8e251fa 8638
cb1ef534 8639 for_each_populated_zone(zone)
74f44822 8640 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8641out:
c8e251fa 8642 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8643 return ret;
8ad4b1fb
RS
8644}
8645
f6f34b43
SD
8646#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8647/*
8648 * Returns the number of pages that arch has reserved but
8649 * is not known to alloc_large_system_hash().
8650 */
8651static unsigned long __init arch_reserved_kernel_pages(void)
8652{
8653 return 0;
8654}
8655#endif
8656
9017217b
PT
8657/*
8658 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8659 * machines. As memory size is increased the scale is also increased but at
8660 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8661 * quadruples the scale is increased by one, which means the size of hash table
8662 * only doubles, instead of quadrupling as well.
8663 * Because 32-bit systems cannot have large physical memory, where this scaling
8664 * makes sense, it is disabled on such platforms.
8665 */
8666#if __BITS_PER_LONG > 32
8667#define ADAPT_SCALE_BASE (64ul << 30)
8668#define ADAPT_SCALE_SHIFT 2
8669#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8670#endif
8671
1da177e4
LT
8672/*
8673 * allocate a large system hash table from bootmem
8674 * - it is assumed that the hash table must contain an exact power-of-2
8675 * quantity of entries
8676 * - limit is the number of hash buckets, not the total allocation size
8677 */
8678void *__init alloc_large_system_hash(const char *tablename,
8679 unsigned long bucketsize,
8680 unsigned long numentries,
8681 int scale,
8682 int flags,
8683 unsigned int *_hash_shift,
8684 unsigned int *_hash_mask,
31fe62b9
TB
8685 unsigned long low_limit,
8686 unsigned long high_limit)
1da177e4 8687{
31fe62b9 8688 unsigned long long max = high_limit;
1da177e4
LT
8689 unsigned long log2qty, size;
8690 void *table = NULL;
3749a8f0 8691 gfp_t gfp_flags;
ec11408a 8692 bool virt;
121e6f32 8693 bool huge;
1da177e4
LT
8694
8695 /* allow the kernel cmdline to have a say */
8696 if (!numentries) {
8697 /* round applicable memory size up to nearest megabyte */
04903664 8698 numentries = nr_kernel_pages;
f6f34b43 8699 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8700
8701 /* It isn't necessary when PAGE_SIZE >= 1MB */
8702 if (PAGE_SHIFT < 20)
8703 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8704
9017217b
PT
8705#if __BITS_PER_LONG > 32
8706 if (!high_limit) {
8707 unsigned long adapt;
8708
8709 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8710 adapt <<= ADAPT_SCALE_SHIFT)
8711 scale++;
8712 }
8713#endif
8714
1da177e4
LT
8715 /* limit to 1 bucket per 2^scale bytes of low memory */
8716 if (scale > PAGE_SHIFT)
8717 numentries >>= (scale - PAGE_SHIFT);
8718 else
8719 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8720
8721 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8722 if (unlikely(flags & HASH_SMALL)) {
8723 /* Makes no sense without HASH_EARLY */
8724 WARN_ON(!(flags & HASH_EARLY));
8725 if (!(numentries >> *_hash_shift)) {
8726 numentries = 1UL << *_hash_shift;
8727 BUG_ON(!numentries);
8728 }
8729 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8730 numentries = PAGE_SIZE / bucketsize;
1da177e4 8731 }
6e692ed3 8732 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8733
8734 /* limit allocation size to 1/16 total memory by default */
8735 if (max == 0) {
8736 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8737 do_div(max, bucketsize);
8738 }
074b8517 8739 max = min(max, 0x80000000ULL);
1da177e4 8740
31fe62b9
TB
8741 if (numentries < low_limit)
8742 numentries = low_limit;
1da177e4
LT
8743 if (numentries > max)
8744 numentries = max;
8745
f0d1b0b3 8746 log2qty = ilog2(numentries);
1da177e4 8747
3749a8f0 8748 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8749 do {
ec11408a 8750 virt = false;
1da177e4 8751 size = bucketsize << log2qty;
ea1f5f37
PT
8752 if (flags & HASH_EARLY) {
8753 if (flags & HASH_ZERO)
26fb3dae 8754 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8755 else
7e1c4e27
MR
8756 table = memblock_alloc_raw(size,
8757 SMP_CACHE_BYTES);
ec11408a 8758 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8759 table = __vmalloc(size, gfp_flags);
ec11408a 8760 virt = true;
084f7e23
ED
8761 if (table)
8762 huge = is_vm_area_hugepages(table);
ea1f5f37 8763 } else {
1037b83b
ED
8764 /*
8765 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8766 * some pages at the end of hash table which
8767 * alloc_pages_exact() automatically does
1037b83b 8768 */
ec11408a
NP
8769 table = alloc_pages_exact(size, gfp_flags);
8770 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8771 }
8772 } while (!table && size > PAGE_SIZE && --log2qty);
8773
8774 if (!table)
8775 panic("Failed to allocate %s hash table\n", tablename);
8776
ec11408a
NP
8777 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8778 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8779 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8780
8781 if (_hash_shift)
8782 *_hash_shift = log2qty;
8783 if (_hash_mask)
8784 *_hash_mask = (1 << log2qty) - 1;
8785
8786 return table;
8787}
a117e66e 8788
a5d76b54 8789/*
80934513 8790 * This function checks whether pageblock includes unmovable pages or not.
80934513 8791 *
b8af2941 8792 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8793 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8794 * check without lock_page also may miss some movable non-lru pages at
8795 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8796 *
8797 * Returns a page without holding a reference. If the caller wants to
047b9967 8798 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8799 * cannot get removed (e.g., via memory unplug) concurrently.
8800 *
a5d76b54 8801 */
4a55c047
QC
8802struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8803 int migratetype, int flags)
49ac8255 8804{
1a9f2191
QC
8805 unsigned long iter = 0;
8806 unsigned long pfn = page_to_pfn(page);
6a654e36 8807 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8808
1a9f2191
QC
8809 if (is_migrate_cma_page(page)) {
8810 /*
8811 * CMA allocations (alloc_contig_range) really need to mark
8812 * isolate CMA pageblocks even when they are not movable in fact
8813 * so consider them movable here.
8814 */
8815 if (is_migrate_cma(migratetype))
4a55c047 8816 return NULL;
1a9f2191 8817
3d680bdf 8818 return page;
1a9f2191 8819 }
4da2ce25 8820
6a654e36 8821 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8822 page = pfn_to_page(pfn + iter);
c8721bbb 8823
c9c510dc
DH
8824 /*
8825 * Both, bootmem allocations and memory holes are marked
8826 * PG_reserved and are unmovable. We can even have unmovable
8827 * allocations inside ZONE_MOVABLE, for example when
8828 * specifying "movablecore".
8829 */
d7ab3672 8830 if (PageReserved(page))
3d680bdf 8831 return page;
d7ab3672 8832
9d789999
MH
8833 /*
8834 * If the zone is movable and we have ruled out all reserved
8835 * pages then it should be reasonably safe to assume the rest
8836 * is movable.
8837 */
8838 if (zone_idx(zone) == ZONE_MOVABLE)
8839 continue;
8840
c8721bbb
NH
8841 /*
8842 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8843 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8844 * We need not scan over tail pages because we don't
c8721bbb
NH
8845 * handle each tail page individually in migration.
8846 */
1da2f328 8847 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8848 struct page *head = compound_head(page);
8849 unsigned int skip_pages;
464c7ffb 8850
1da2f328
RR
8851 if (PageHuge(page)) {
8852 if (!hugepage_migration_supported(page_hstate(head)))
8853 return page;
8854 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8855 return page;
1da2f328 8856 }
464c7ffb 8857
d8c6546b 8858 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8859 iter += skip_pages - 1;
c8721bbb
NH
8860 continue;
8861 }
8862
97d255c8
MK
8863 /*
8864 * We can't use page_count without pin a page
8865 * because another CPU can free compound page.
8866 * This check already skips compound tails of THP
0139aa7b 8867 * because their page->_refcount is zero at all time.
97d255c8 8868 */
fe896d18 8869 if (!page_ref_count(page)) {
49ac8255 8870 if (PageBuddy(page))
ab130f91 8871 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8872 continue;
8873 }
97d255c8 8874
b023f468
WC
8875 /*
8876 * The HWPoisoned page may be not in buddy system, and
8877 * page_count() is not 0.
8878 */
756d25be 8879 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8880 continue;
8881
aa218795
DH
8882 /*
8883 * We treat all PageOffline() pages as movable when offlining
8884 * to give drivers a chance to decrement their reference count
8885 * in MEM_GOING_OFFLINE in order to indicate that these pages
8886 * can be offlined as there are no direct references anymore.
8887 * For actually unmovable PageOffline() where the driver does
8888 * not support this, we will fail later when trying to actually
8889 * move these pages that still have a reference count > 0.
8890 * (false negatives in this function only)
8891 */
8892 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8893 continue;
8894
fe4c86c9 8895 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8896 continue;
8897
49ac8255 8898 /*
6b4f7799
JW
8899 * If there are RECLAIMABLE pages, we need to check
8900 * it. But now, memory offline itself doesn't call
8901 * shrink_node_slabs() and it still to be fixed.
49ac8255 8902 */
3d680bdf 8903 return page;
49ac8255 8904 }
4a55c047 8905 return NULL;
49ac8255
KH
8906}
8907
8df995f6 8908#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8909static unsigned long pfn_max_align_down(unsigned long pfn)
8910{
8911 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8912 pageblock_nr_pages) - 1);
8913}
8914
8915static unsigned long pfn_max_align_up(unsigned long pfn)
8916{
8917 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8918 pageblock_nr_pages));
8919}
8920
a1394bdd
MK
8921#if defined(CONFIG_DYNAMIC_DEBUG) || \
8922 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8923/* Usage: See admin-guide/dynamic-debug-howto.rst */
8924static void alloc_contig_dump_pages(struct list_head *page_list)
8925{
8926 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8927
8928 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8929 struct page *page;
8930
8931 dump_stack();
8932 list_for_each_entry(page, page_list, lru)
8933 dump_page(page, "migration failure");
8934 }
8935}
8936#else
8937static inline void alloc_contig_dump_pages(struct list_head *page_list)
8938{
8939}
8940#endif
8941
041d3a8c 8942/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8943static int __alloc_contig_migrate_range(struct compact_control *cc,
8944 unsigned long start, unsigned long end)
041d3a8c
MN
8945{
8946 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8947 unsigned int nr_reclaimed;
041d3a8c
MN
8948 unsigned long pfn = start;
8949 unsigned int tries = 0;
8950 int ret = 0;
8b94e0b8
JK
8951 struct migration_target_control mtc = {
8952 .nid = zone_to_nid(cc->zone),
8953 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8954 };
041d3a8c 8955
361a2a22 8956 lru_cache_disable();
041d3a8c 8957
bb13ffeb 8958 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8959 if (fatal_signal_pending(current)) {
8960 ret = -EINTR;
8961 break;
8962 }
8963
bb13ffeb
MG
8964 if (list_empty(&cc->migratepages)) {
8965 cc->nr_migratepages = 0;
c2ad7a1f
OS
8966 ret = isolate_migratepages_range(cc, pfn, end);
8967 if (ret && ret != -EAGAIN)
041d3a8c 8968 break;
c2ad7a1f 8969 pfn = cc->migrate_pfn;
041d3a8c
MN
8970 tries = 0;
8971 } else if (++tries == 5) {
c8e28b47 8972 ret = -EBUSY;
041d3a8c
MN
8973 break;
8974 }
8975
beb51eaa
MK
8976 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8977 &cc->migratepages);
8978 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8979
8b94e0b8 8980 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 8981 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
8982
8983 /*
8984 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8985 * to retry again over this error, so do the same here.
8986 */
8987 if (ret == -ENOMEM)
8988 break;
041d3a8c 8989 }
d479960e 8990
361a2a22 8991 lru_cache_enable();
2a6f5124 8992 if (ret < 0) {
151e084a
MK
8993 if (ret == -EBUSY)
8994 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
8995 putback_movable_pages(&cc->migratepages);
8996 return ret;
8997 }
8998 return 0;
041d3a8c
MN
8999}
9000
9001/**
9002 * alloc_contig_range() -- tries to allocate given range of pages
9003 * @start: start PFN to allocate
9004 * @end: one-past-the-last PFN to allocate
f0953a1b 9005 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9006 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9007 * in range must have the same migratetype and it must
9008 * be either of the two.
ca96b625 9009 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
9010 *
9011 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 9012 * aligned. The PFN range must belong to a single zone.
041d3a8c 9013 *
2c7452a0
MK
9014 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9015 * pageblocks in the range. Once isolated, the pageblocks should not
9016 * be modified by others.
041d3a8c 9017 *
a862f68a 9018 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9019 * pages which PFN is in [start, end) are allocated for the caller and
9020 * need to be freed with free_contig_range().
9021 */
0815f3d8 9022int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9023 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9024{
041d3a8c 9025 unsigned long outer_start, outer_end;
d00181b9
KS
9026 unsigned int order;
9027 int ret = 0;
041d3a8c 9028
bb13ffeb
MG
9029 struct compact_control cc = {
9030 .nr_migratepages = 0,
9031 .order = -1,
9032 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9033 .mode = MIGRATE_SYNC,
bb13ffeb 9034 .ignore_skip_hint = true,
2583d671 9035 .no_set_skip_hint = true,
7dea19f9 9036 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9037 .alloc_contig = true,
bb13ffeb
MG
9038 };
9039 INIT_LIST_HEAD(&cc.migratepages);
9040
041d3a8c
MN
9041 /*
9042 * What we do here is we mark all pageblocks in range as
9043 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9044 * have different sizes, and due to the way page allocator
9045 * work, we align the range to biggest of the two pages so
9046 * that page allocator won't try to merge buddies from
9047 * different pageblocks and change MIGRATE_ISOLATE to some
9048 * other migration type.
9049 *
9050 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9051 * migrate the pages from an unaligned range (ie. pages that
9052 * we are interested in). This will put all the pages in
9053 * range back to page allocator as MIGRATE_ISOLATE.
9054 *
9055 * When this is done, we take the pages in range from page
9056 * allocator removing them from the buddy system. This way
9057 * page allocator will never consider using them.
9058 *
9059 * This lets us mark the pageblocks back as
9060 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9061 * aligned range but not in the unaligned, original range are
9062 * put back to page allocator so that buddy can use them.
9063 */
9064
9065 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 9066 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 9067 if (ret)
86a595f9 9068 return ret;
041d3a8c 9069
7612921f
VB
9070 drain_all_pages(cc.zone);
9071
8ef5849f
JK
9072 /*
9073 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9074 * So, just fall through. test_pages_isolated() has a tracepoint
9075 * which will report the busy page.
9076 *
9077 * It is possible that busy pages could become available before
9078 * the call to test_pages_isolated, and the range will actually be
9079 * allocated. So, if we fall through be sure to clear ret so that
9080 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9081 */
bb13ffeb 9082 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9083 if (ret && ret != -EBUSY)
041d3a8c 9084 goto done;
68d68ff6 9085 ret = 0;
041d3a8c
MN
9086
9087 /*
9088 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9089 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9090 * more, all pages in [start, end) are free in page allocator.
9091 * What we are going to do is to allocate all pages from
9092 * [start, end) (that is remove them from page allocator).
9093 *
9094 * The only problem is that pages at the beginning and at the
9095 * end of interesting range may be not aligned with pages that
9096 * page allocator holds, ie. they can be part of higher order
9097 * pages. Because of this, we reserve the bigger range and
9098 * once this is done free the pages we are not interested in.
9099 *
9100 * We don't have to hold zone->lock here because the pages are
9101 * isolated thus they won't get removed from buddy.
9102 */
9103
041d3a8c
MN
9104 order = 0;
9105 outer_start = start;
9106 while (!PageBuddy(pfn_to_page(outer_start))) {
9107 if (++order >= MAX_ORDER) {
8ef5849f
JK
9108 outer_start = start;
9109 break;
041d3a8c
MN
9110 }
9111 outer_start &= ~0UL << order;
9112 }
9113
8ef5849f 9114 if (outer_start != start) {
ab130f91 9115 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9116
9117 /*
9118 * outer_start page could be small order buddy page and
9119 * it doesn't include start page. Adjust outer_start
9120 * in this case to report failed page properly
9121 * on tracepoint in test_pages_isolated()
9122 */
9123 if (outer_start + (1UL << order) <= start)
9124 outer_start = start;
9125 }
9126
041d3a8c 9127 /* Make sure the range is really isolated. */
756d25be 9128 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9129 ret = -EBUSY;
9130 goto done;
9131 }
9132
49f223a9 9133 /* Grab isolated pages from freelists. */
bb13ffeb 9134 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9135 if (!outer_end) {
9136 ret = -EBUSY;
9137 goto done;
9138 }
9139
9140 /* Free head and tail (if any) */
9141 if (start != outer_start)
9142 free_contig_range(outer_start, start - outer_start);
9143 if (end != outer_end)
9144 free_contig_range(end, outer_end - end);
9145
9146done:
9147 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 9148 pfn_max_align_up(end), migratetype);
041d3a8c
MN
9149 return ret;
9150}
255f5985 9151EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9152
9153static int __alloc_contig_pages(unsigned long start_pfn,
9154 unsigned long nr_pages, gfp_t gfp_mask)
9155{
9156 unsigned long end_pfn = start_pfn + nr_pages;
9157
9158 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9159 gfp_mask);
9160}
9161
9162static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9163 unsigned long nr_pages)
9164{
9165 unsigned long i, end_pfn = start_pfn + nr_pages;
9166 struct page *page;
9167
9168 for (i = start_pfn; i < end_pfn; i++) {
9169 page = pfn_to_online_page(i);
9170 if (!page)
9171 return false;
9172
9173 if (page_zone(page) != z)
9174 return false;
9175
9176 if (PageReserved(page))
9177 return false;
5e27a2df
AK
9178 }
9179 return true;
9180}
9181
9182static bool zone_spans_last_pfn(const struct zone *zone,
9183 unsigned long start_pfn, unsigned long nr_pages)
9184{
9185 unsigned long last_pfn = start_pfn + nr_pages - 1;
9186
9187 return zone_spans_pfn(zone, last_pfn);
9188}
9189
9190/**
9191 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9192 * @nr_pages: Number of contiguous pages to allocate
9193 * @gfp_mask: GFP mask to limit search and used during compaction
9194 * @nid: Target node
9195 * @nodemask: Mask for other possible nodes
9196 *
9197 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9198 * on an applicable zonelist to find a contiguous pfn range which can then be
9199 * tried for allocation with alloc_contig_range(). This routine is intended
9200 * for allocation requests which can not be fulfilled with the buddy allocator.
9201 *
9202 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9203 * power of two then the alignment is guaranteed to be to the given nr_pages
9204 * (e.g. 1GB request would be aligned to 1GB).
9205 *
9206 * Allocated pages can be freed with free_contig_range() or by manually calling
9207 * __free_page() on each allocated page.
9208 *
9209 * Return: pointer to contiguous pages on success, or NULL if not successful.
9210 */
9211struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9212 int nid, nodemask_t *nodemask)
9213{
9214 unsigned long ret, pfn, flags;
9215 struct zonelist *zonelist;
9216 struct zone *zone;
9217 struct zoneref *z;
9218
9219 zonelist = node_zonelist(nid, gfp_mask);
9220 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9221 gfp_zone(gfp_mask), nodemask) {
9222 spin_lock_irqsave(&zone->lock, flags);
9223
9224 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9225 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9226 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9227 /*
9228 * We release the zone lock here because
9229 * alloc_contig_range() will also lock the zone
9230 * at some point. If there's an allocation
9231 * spinning on this lock, it may win the race
9232 * and cause alloc_contig_range() to fail...
9233 */
9234 spin_unlock_irqrestore(&zone->lock, flags);
9235 ret = __alloc_contig_pages(pfn, nr_pages,
9236 gfp_mask);
9237 if (!ret)
9238 return pfn_to_page(pfn);
9239 spin_lock_irqsave(&zone->lock, flags);
9240 }
9241 pfn += nr_pages;
9242 }
9243 spin_unlock_irqrestore(&zone->lock, flags);
9244 }
9245 return NULL;
9246}
4eb0716e 9247#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9248
78fa5150 9249void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9250{
78fa5150 9251 unsigned long count = 0;
bcc2b02f
MS
9252
9253 for (; nr_pages--; pfn++) {
9254 struct page *page = pfn_to_page(pfn);
9255
9256 count += page_count(page) != 1;
9257 __free_page(page);
9258 }
78fa5150 9259 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9260}
255f5985 9261EXPORT_SYMBOL(free_contig_range);
041d3a8c 9262
0a647f38
CS
9263/*
9264 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9265 * page high values need to be recalculated.
0a647f38 9266 */
04f8cfea 9267void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9268{
c8e251fa 9269 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9270 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9271 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9272}
4ed7e022 9273
ec6e8c7e
VB
9274/*
9275 * Effectively disable pcplists for the zone by setting the high limit to 0
9276 * and draining all cpus. A concurrent page freeing on another CPU that's about
9277 * to put the page on pcplist will either finish before the drain and the page
9278 * will be drained, or observe the new high limit and skip the pcplist.
9279 *
9280 * Must be paired with a call to zone_pcp_enable().
9281 */
9282void zone_pcp_disable(struct zone *zone)
9283{
9284 mutex_lock(&pcp_batch_high_lock);
9285 __zone_set_pageset_high_and_batch(zone, 0, 1);
9286 __drain_all_pages(zone, true);
9287}
9288
9289void zone_pcp_enable(struct zone *zone)
9290{
9291 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9292 mutex_unlock(&pcp_batch_high_lock);
9293}
9294
340175b7
JL
9295void zone_pcp_reset(struct zone *zone)
9296{
5a883813 9297 int cpu;
28f836b6 9298 struct per_cpu_zonestat *pzstats;
340175b7 9299
28f836b6 9300 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9301 for_each_online_cpu(cpu) {
28f836b6
MG
9302 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9303 drain_zonestat(zone, pzstats);
5a883813 9304 }
28f836b6
MG
9305 free_percpu(zone->per_cpu_pageset);
9306 free_percpu(zone->per_cpu_zonestats);
9307 zone->per_cpu_pageset = &boot_pageset;
9308 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9309 }
340175b7
JL
9310}
9311
6dcd73d7 9312#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9313/*
257bea71
DH
9314 * All pages in the range must be in a single zone, must not contain holes,
9315 * must span full sections, and must be isolated before calling this function.
0c0e6195 9316 */
257bea71 9317void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9318{
257bea71 9319 unsigned long pfn = start_pfn;
0c0e6195
KH
9320 struct page *page;
9321 struct zone *zone;
0ee5f4f3 9322 unsigned int order;
0c0e6195 9323 unsigned long flags;
5557c766 9324
2d070eab 9325 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9326 zone = page_zone(pfn_to_page(pfn));
9327 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9328 while (pfn < end_pfn) {
0c0e6195 9329 page = pfn_to_page(pfn);
b023f468
WC
9330 /*
9331 * The HWPoisoned page may be not in buddy system, and
9332 * page_count() is not 0.
9333 */
9334 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9335 pfn++;
b023f468
WC
9336 continue;
9337 }
aa218795
DH
9338 /*
9339 * At this point all remaining PageOffline() pages have a
9340 * reference count of 0 and can simply be skipped.
9341 */
9342 if (PageOffline(page)) {
9343 BUG_ON(page_count(page));
9344 BUG_ON(PageBuddy(page));
9345 pfn++;
aa218795
DH
9346 continue;
9347 }
b023f468 9348
0c0e6195
KH
9349 BUG_ON(page_count(page));
9350 BUG_ON(!PageBuddy(page));
ab130f91 9351 order = buddy_order(page);
6ab01363 9352 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9353 pfn += (1 << order);
9354 }
9355 spin_unlock_irqrestore(&zone->lock, flags);
9356}
9357#endif
8d22ba1b 9358
8d22ba1b
WF
9359bool is_free_buddy_page(struct page *page)
9360{
9361 struct zone *zone = page_zone(page);
9362 unsigned long pfn = page_to_pfn(page);
9363 unsigned long flags;
7aeb09f9 9364 unsigned int order;
8d22ba1b
WF
9365
9366 spin_lock_irqsave(&zone->lock, flags);
9367 for (order = 0; order < MAX_ORDER; order++) {
9368 struct page *page_head = page - (pfn & ((1 << order) - 1));
9369
ab130f91 9370 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
9371 break;
9372 }
9373 spin_unlock_irqrestore(&zone->lock, flags);
9374
9375 return order < MAX_ORDER;
9376}
d4ae9916
NH
9377
9378#ifdef CONFIG_MEMORY_FAILURE
9379/*
06be6ff3
OS
9380 * Break down a higher-order page in sub-pages, and keep our target out of
9381 * buddy allocator.
d4ae9916 9382 */
06be6ff3
OS
9383static void break_down_buddy_pages(struct zone *zone, struct page *page,
9384 struct page *target, int low, int high,
9385 int migratetype)
9386{
9387 unsigned long size = 1 << high;
9388 struct page *current_buddy, *next_page;
9389
9390 while (high > low) {
9391 high--;
9392 size >>= 1;
9393
9394 if (target >= &page[size]) {
9395 next_page = page + size;
9396 current_buddy = page;
9397 } else {
9398 next_page = page;
9399 current_buddy = page + size;
9400 }
9401
9402 if (set_page_guard(zone, current_buddy, high, migratetype))
9403 continue;
9404
9405 if (current_buddy != target) {
9406 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9407 set_buddy_order(current_buddy, high);
06be6ff3
OS
9408 page = next_page;
9409 }
9410 }
9411}
9412
9413/*
9414 * Take a page that will be marked as poisoned off the buddy allocator.
9415 */
9416bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9417{
9418 struct zone *zone = page_zone(page);
9419 unsigned long pfn = page_to_pfn(page);
9420 unsigned long flags;
9421 unsigned int order;
06be6ff3 9422 bool ret = false;
d4ae9916
NH
9423
9424 spin_lock_irqsave(&zone->lock, flags);
9425 for (order = 0; order < MAX_ORDER; order++) {
9426 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9427 int page_order = buddy_order(page_head);
d4ae9916 9428
ab130f91 9429 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9430 unsigned long pfn_head = page_to_pfn(page_head);
9431 int migratetype = get_pfnblock_migratetype(page_head,
9432 pfn_head);
9433
ab130f91 9434 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9435 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9436 page_order, migratetype);
bac9c6fa
DH
9437 if (!is_migrate_isolate(migratetype))
9438 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9439 ret = true;
d4ae9916
NH
9440 break;
9441 }
06be6ff3
OS
9442 if (page_count(page_head) > 0)
9443 break;
d4ae9916
NH
9444 }
9445 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9446 return ret;
d4ae9916
NH
9447}
9448#endif