mm: count time in drain_all_pages during direct reclaim as memory pressure
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
a238ab5b 35#include <linux/ratelimit.h>
5a3135c2 36#include <linux/oom.h>
1da177e4
LT
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
97500a4a 48#include <linux/random.h>
c713216d
MG
49#include <linux/sort.h>
50#include <linux/pfn.h>
3fcfab16 51#include <linux/backing-dev.h>
933e312e 52#include <linux/fault-inject.h>
a5d76b54 53#include <linux/page-isolation.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
f920e413 61#include <linux/mmu_notifier.h>
041d3a8c 62#include <linux/migrate.h>
949f7ec5 63#include <linux/hugetlb.h>
8bd75c77 64#include <linux/sched/rt.h>
5b3cc15a 65#include <linux/sched/mm.h>
48c96a36 66#include <linux/page_owner.h>
df4e817b 67#include <linux/page_table_check.h>
0e1cc95b 68#include <linux/kthread.h>
4949148a 69#include <linux/memcontrol.h>
42c269c8 70#include <linux/ftrace.h>
d92a8cfc 71#include <linux/lockdep.h>
556b969a 72#include <linux/nmi.h>
eb414681 73#include <linux/psi.h>
e4443149 74#include <linux/padata.h>
4aab2be0 75#include <linux/khugepaged.h>
ba8f3587 76#include <linux/buffer_head.h>
5bf18281 77#include <linux/delayacct.h>
7ee3d4e8 78#include <asm/sections.h>
1da177e4 79#include <asm/tlbflush.h>
ac924c60 80#include <asm/div64.h>
1da177e4 81#include "internal.h"
e900a918 82#include "shuffle.h"
36e66c55 83#include "page_reporting.h"
1da177e4 84
f04a5d5d
DH
85/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86typedef int __bitwise fpi_t;
87
88/* No special request */
89#define FPI_NONE ((__force fpi_t)0)
90
91/*
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
98 */
99#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100
47b6a24a
DH
101/*
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
105 *
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
109 * reporting).
110 */
111#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112
2c335680
AK
113/*
114 * Don't poison memory with KASAN (only for the tag-based modes).
115 * During boot, all non-reserved memblock memory is exposed to page_alloc.
116 * Poisoning all that memory lengthens boot time, especially on systems with
117 * large amount of RAM. This flag is used to skip that poisoning.
118 * This is only done for the tag-based KASAN modes, as those are able to
119 * detect memory corruptions with the memory tags assigned by default.
120 * All memory allocated normally after boot gets poisoned as usual.
121 */
122#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
123
c8e251fa
CS
124/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 126#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 127
dbbee9d5
MG
128struct pagesets {
129 local_lock_t lock;
dbbee9d5 130};
a4812d47 131static DEFINE_PER_CPU(struct pagesets, pagesets) __maybe_unused = {
dbbee9d5
MG
132 .lock = INIT_LOCAL_LOCK(lock),
133};
c8e251fa 134
72812019
LS
135#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136DEFINE_PER_CPU(int, numa_node);
137EXPORT_PER_CPU_SYMBOL(numa_node);
138#endif
139
4518085e
KW
140DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
141
7aac7898
LS
142#ifdef CONFIG_HAVE_MEMORYLESS_NODES
143/*
144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147 * defined in <linux/topology.h>.
148 */
149DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
150EXPORT_PER_CPU_SYMBOL(_numa_mem_);
151#endif
152
bd233f53 153/* work_structs for global per-cpu drains */
d9367bd0
WY
154struct pcpu_drain {
155 struct zone *zone;
156 struct work_struct work;
157};
8b885f53
JY
158static DEFINE_MUTEX(pcpu_drain_mutex);
159static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 160
38addce8 161#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 162volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
163EXPORT_SYMBOL(latent_entropy);
164#endif
165
1da177e4 166/*
13808910 167 * Array of node states.
1da177e4 168 */
13808910
CL
169nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 [N_POSSIBLE] = NODE_MASK_ALL,
171 [N_ONLINE] = { { [0] = 1UL } },
172#ifndef CONFIG_NUMA
173 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
174#ifdef CONFIG_HIGHMEM
175 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 176#endif
20b2f52b 177 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
178 [N_CPU] = { { [0] = 1UL } },
179#endif /* NUMA */
180};
181EXPORT_SYMBOL(node_states);
182
ca79b0c2
AK
183atomic_long_t _totalram_pages __read_mostly;
184EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 185unsigned long totalreserve_pages __read_mostly;
e48322ab 186unsigned long totalcma_pages __read_mostly;
ab8fabd4 187
74f44822 188int percpu_pagelist_high_fraction;
dcce284a 189gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
191EXPORT_SYMBOL(init_on_alloc);
192
51cba1eb 193DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
194EXPORT_SYMBOL(init_on_free);
195
04013513
VB
196static bool _init_on_alloc_enabled_early __read_mostly
197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
198static int __init early_init_on_alloc(char *buf)
199{
6471384a 200
04013513 201 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
202}
203early_param("init_on_alloc", early_init_on_alloc);
204
04013513
VB
205static bool _init_on_free_enabled_early __read_mostly
206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
207static int __init early_init_on_free(char *buf)
208{
04013513 209 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
210}
211early_param("init_on_free", early_init_on_free);
1da177e4 212
bb14c2c7
VB
213/*
214 * A cached value of the page's pageblock's migratetype, used when the page is
215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217 * Also the migratetype set in the page does not necessarily match the pcplist
218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219 * other index - this ensures that it will be put on the correct CMA freelist.
220 */
221static inline int get_pcppage_migratetype(struct page *page)
222{
223 return page->index;
224}
225
226static inline void set_pcppage_migratetype(struct page *page, int migratetype)
227{
228 page->index = migratetype;
229}
230
452aa699
RW
231#ifdef CONFIG_PM_SLEEP
232/*
233 * The following functions are used by the suspend/hibernate code to temporarily
234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
236 * they should always be called with system_transition_mutex held
237 * (gfp_allowed_mask also should only be modified with system_transition_mutex
238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239 * with that modification).
452aa699 240 */
c9e664f1
RW
241
242static gfp_t saved_gfp_mask;
243
244void pm_restore_gfp_mask(void)
452aa699 245{
55f2503c 246 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
247 if (saved_gfp_mask) {
248 gfp_allowed_mask = saved_gfp_mask;
249 saved_gfp_mask = 0;
250 }
452aa699
RW
251}
252
c9e664f1 253void pm_restrict_gfp_mask(void)
452aa699 254{
55f2503c 255 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
256 WARN_ON(saved_gfp_mask);
257 saved_gfp_mask = gfp_allowed_mask;
d0164adc 258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 259}
f90ac398
MG
260
261bool pm_suspended_storage(void)
262{
d0164adc 263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
264 return false;
265 return true;
266}
452aa699
RW
267#endif /* CONFIG_PM_SLEEP */
268
d9c23400 269#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 270unsigned int pageblock_order __read_mostly;
d9c23400
MG
271#endif
272
7fef431b
DH
273static void __free_pages_ok(struct page *page, unsigned int order,
274 fpi_t fpi_flags);
a226f6c8 275
1da177e4
LT
276/*
277 * results with 256, 32 in the lowmem_reserve sysctl:
278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279 * 1G machine -> (16M dma, 784M normal, 224M high)
280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
283 *
284 * TBD: should special case ZONE_DMA32 machines here - in those we normally
285 * don't need any ZONE_NORMAL reservation
1da177e4 286 */
d3cda233 287int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 288#ifdef CONFIG_ZONE_DMA
d3cda233 289 [ZONE_DMA] = 256,
4b51d669 290#endif
fb0e7942 291#ifdef CONFIG_ZONE_DMA32
d3cda233 292 [ZONE_DMA32] = 256,
fb0e7942 293#endif
d3cda233 294 [ZONE_NORMAL] = 32,
e53ef38d 295#ifdef CONFIG_HIGHMEM
d3cda233 296 [ZONE_HIGHMEM] = 0,
e53ef38d 297#endif
d3cda233 298 [ZONE_MOVABLE] = 0,
2f1b6248 299};
1da177e4 300
15ad7cdc 301static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 302#ifdef CONFIG_ZONE_DMA
2f1b6248 303 "DMA",
4b51d669 304#endif
fb0e7942 305#ifdef CONFIG_ZONE_DMA32
2f1b6248 306 "DMA32",
fb0e7942 307#endif
2f1b6248 308 "Normal",
e53ef38d 309#ifdef CONFIG_HIGHMEM
2a1e274a 310 "HighMem",
e53ef38d 311#endif
2a1e274a 312 "Movable",
033fbae9
DW
313#ifdef CONFIG_ZONE_DEVICE
314 "Device",
315#endif
2f1b6248
CL
316};
317
c999fbd3 318const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
319 "Unmovable",
320 "Movable",
321 "Reclaimable",
322 "HighAtomic",
323#ifdef CONFIG_CMA
324 "CMA",
325#endif
326#ifdef CONFIG_MEMORY_ISOLATION
327 "Isolate",
328#endif
329};
330
ae70eddd
AK
331compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 [NULL_COMPOUND_DTOR] = NULL,
333 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 334#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 335 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 336#endif
9a982250 337#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 339#endif
f1e61557
KS
340};
341
1da177e4 342int min_free_kbytes = 1024;
42aa83cb 343int user_min_free_kbytes = -1;
1c30844d 344int watermark_boost_factor __read_mostly = 15000;
795ae7a0 345int watermark_scale_factor = 10;
1da177e4 346
bbe5d993
OS
347static unsigned long nr_kernel_pages __initdata;
348static unsigned long nr_all_pages __initdata;
349static unsigned long dma_reserve __initdata;
1da177e4 350
bbe5d993
OS
351static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 353static unsigned long required_kernelcore __initdata;
a5c6d650 354static unsigned long required_kernelcore_percent __initdata;
7f16f91f 355static unsigned long required_movablecore __initdata;
a5c6d650 356static unsigned long required_movablecore_percent __initdata;
bbe5d993 357static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 358static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
359
360/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361int movable_zone;
362EXPORT_SYMBOL(movable_zone);
c713216d 363
418508c1 364#if MAX_NUMNODES > 1
b9726c26 365unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 366unsigned int nr_online_nodes __read_mostly = 1;
418508c1 367EXPORT_SYMBOL(nr_node_ids);
62bc62a8 368EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
369#endif
370
9ef9acb0
MG
371int page_group_by_mobility_disabled __read_mostly;
372
3a80a7fa 373#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
374/*
375 * During boot we initialize deferred pages on-demand, as needed, but once
376 * page_alloc_init_late() has finished, the deferred pages are all initialized,
377 * and we can permanently disable that path.
378 */
379static DEFINE_STATIC_KEY_TRUE(deferred_pages);
380
381/*
7a3b8353 382 * Calling kasan_poison_pages() only after deferred memory initialization
3c0c12cc
WL
383 * has completed. Poisoning pages during deferred memory init will greatly
384 * lengthen the process and cause problem in large memory systems as the
385 * deferred pages initialization is done with interrupt disabled.
386 *
387 * Assuming that there will be no reference to those newly initialized
388 * pages before they are ever allocated, this should have no effect on
389 * KASAN memory tracking as the poison will be properly inserted at page
390 * allocation time. The only corner case is when pages are allocated by
391 * on-demand allocation and then freed again before the deferred pages
392 * initialization is done, but this is not likely to happen.
393 */
c275c5c6 394static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
3c0c12cc 395{
7a3b8353
PC
396 return static_branch_unlikely(&deferred_pages) ||
397 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
398 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
399 PageSkipKASanPoison(page);
3c0c12cc
WL
400}
401
3a80a7fa 402/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 403static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 404{
ef70b6f4
MG
405 int nid = early_pfn_to_nid(pfn);
406
407 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
408 return true;
409
410 return false;
411}
412
413/*
d3035be4 414 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
415 * later in the boot cycle when it can be parallelised.
416 */
d3035be4
PT
417static bool __meminit
418defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 419{
d3035be4
PT
420 static unsigned long prev_end_pfn, nr_initialised;
421
422 /*
423 * prev_end_pfn static that contains the end of previous zone
424 * No need to protect because called very early in boot before smp_init.
425 */
426 if (prev_end_pfn != end_pfn) {
427 prev_end_pfn = end_pfn;
428 nr_initialised = 0;
429 }
430
3c2c6488 431 /* Always populate low zones for address-constrained allocations */
d3035be4 432 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 433 return false;
23b68cfa 434
dc2da7b4
BH
435 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
436 return true;
23b68cfa
WY
437 /*
438 * We start only with one section of pages, more pages are added as
439 * needed until the rest of deferred pages are initialized.
440 */
d3035be4 441 nr_initialised++;
23b68cfa 442 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
443 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
444 NODE_DATA(nid)->first_deferred_pfn = pfn;
445 return true;
3a80a7fa 446 }
d3035be4 447 return false;
3a80a7fa
MG
448}
449#else
c275c5c6 450static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
2c335680 451{
7a3b8353 452 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
453 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
454 PageSkipKASanPoison(page);
2c335680 455}
3c0c12cc 456
3a80a7fa
MG
457static inline bool early_page_uninitialised(unsigned long pfn)
458{
459 return false;
460}
461
d3035be4 462static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 463{
d3035be4 464 return false;
3a80a7fa
MG
465}
466#endif
467
0b423ca2 468/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 469static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
470 unsigned long pfn)
471{
472#ifdef CONFIG_SPARSEMEM
f1eca35a 473 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
474#else
475 return page_zone(page)->pageblock_flags;
476#endif /* CONFIG_SPARSEMEM */
477}
478
ca891f41 479static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
480{
481#ifdef CONFIG_SPARSEMEM
482 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
483#else
484 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 485#endif /* CONFIG_SPARSEMEM */
399b795b 486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
487}
488
535b81e2 489static __always_inline
ca891f41 490unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 491 unsigned long pfn,
0b423ca2
MG
492 unsigned long mask)
493{
494 unsigned long *bitmap;
495 unsigned long bitidx, word_bitidx;
496 unsigned long word;
497
498 bitmap = get_pageblock_bitmap(page, pfn);
499 bitidx = pfn_to_bitidx(page, pfn);
500 word_bitidx = bitidx / BITS_PER_LONG;
501 bitidx &= (BITS_PER_LONG-1);
502
503 word = bitmap[word_bitidx];
d93d5ab9 504 return (word >> bitidx) & mask;
0b423ca2
MG
505}
506
a00cda3f
MCC
507/**
508 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509 * @page: The page within the block of interest
510 * @pfn: The target page frame number
511 * @mask: mask of bits that the caller is interested in
512 *
513 * Return: pageblock_bits flags
514 */
ca891f41
MWO
515unsigned long get_pfnblock_flags_mask(const struct page *page,
516 unsigned long pfn, unsigned long mask)
0b423ca2 517{
535b81e2 518 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
519}
520
ca891f41
MWO
521static __always_inline int get_pfnblock_migratetype(const struct page *page,
522 unsigned long pfn)
0b423ca2 523{
535b81e2 524 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
525}
526
527/**
528 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
529 * @page: The page within the block of interest
530 * @flags: The flags to set
531 * @pfn: The target page frame number
0b423ca2
MG
532 * @mask: mask of bits that the caller is interested in
533 */
534void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
535 unsigned long pfn,
0b423ca2
MG
536 unsigned long mask)
537{
538 unsigned long *bitmap;
539 unsigned long bitidx, word_bitidx;
540 unsigned long old_word, word;
541
542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 543 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
544
545 bitmap = get_pageblock_bitmap(page, pfn);
546 bitidx = pfn_to_bitidx(page, pfn);
547 word_bitidx = bitidx / BITS_PER_LONG;
548 bitidx &= (BITS_PER_LONG-1);
549
550 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
551
d93d5ab9
WY
552 mask <<= bitidx;
553 flags <<= bitidx;
0b423ca2
MG
554
555 word = READ_ONCE(bitmap[word_bitidx]);
556 for (;;) {
557 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
558 if (word == old_word)
559 break;
560 word = old_word;
561 }
562}
3a80a7fa 563
ee6f509c 564void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 565{
5d0f3f72
KM
566 if (unlikely(page_group_by_mobility_disabled &&
567 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
568 migratetype = MIGRATE_UNMOVABLE;
569
d93d5ab9 570 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 571 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
572}
573
13e7444b 574#ifdef CONFIG_DEBUG_VM
c6a57e19 575static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 576{
bdc8cb98
DH
577 int ret = 0;
578 unsigned seq;
579 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 580 unsigned long sp, start_pfn;
c6a57e19 581
bdc8cb98
DH
582 do {
583 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
584 start_pfn = zone->zone_start_pfn;
585 sp = zone->spanned_pages;
108bcc96 586 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
587 ret = 1;
588 } while (zone_span_seqretry(zone, seq));
589
b5e6a5a2 590 if (ret)
613813e8
DH
591 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
592 pfn, zone_to_nid(zone), zone->name,
593 start_pfn, start_pfn + sp);
b5e6a5a2 594
bdc8cb98 595 return ret;
c6a57e19
DH
596}
597
598static int page_is_consistent(struct zone *zone, struct page *page)
599{
1da177e4 600 if (zone != page_zone(page))
c6a57e19
DH
601 return 0;
602
603 return 1;
604}
605/*
606 * Temporary debugging check for pages not lying within a given zone.
607 */
d73d3c9f 608static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
609{
610 if (page_outside_zone_boundaries(zone, page))
1da177e4 611 return 1;
c6a57e19
DH
612 if (!page_is_consistent(zone, page))
613 return 1;
614
1da177e4
LT
615 return 0;
616}
13e7444b 617#else
d73d3c9f 618static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
619{
620 return 0;
621}
622#endif
623
82a3241a 624static void bad_page(struct page *page, const char *reason)
1da177e4 625{
d936cf9b
HD
626 static unsigned long resume;
627 static unsigned long nr_shown;
628 static unsigned long nr_unshown;
629
630 /*
631 * Allow a burst of 60 reports, then keep quiet for that minute;
632 * or allow a steady drip of one report per second.
633 */
634 if (nr_shown == 60) {
635 if (time_before(jiffies, resume)) {
636 nr_unshown++;
637 goto out;
638 }
639 if (nr_unshown) {
ff8e8116 640 pr_alert(
1e9e6365 641 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
642 nr_unshown);
643 nr_unshown = 0;
644 }
645 nr_shown = 0;
646 }
647 if (nr_shown++ == 0)
648 resume = jiffies + 60 * HZ;
649
ff8e8116 650 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 651 current->comm, page_to_pfn(page));
d2f07ec0 652 dump_page(page, reason);
3dc14741 653
4f31888c 654 print_modules();
1da177e4 655 dump_stack();
d936cf9b 656out:
8cc3b392 657 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 658 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 659 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
660}
661
44042b44
MG
662static inline unsigned int order_to_pindex(int migratetype, int order)
663{
664 int base = order;
665
666#ifdef CONFIG_TRANSPARENT_HUGEPAGE
667 if (order > PAGE_ALLOC_COSTLY_ORDER) {
668 VM_BUG_ON(order != pageblock_order);
669 base = PAGE_ALLOC_COSTLY_ORDER + 1;
670 }
671#else
672 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
673#endif
674
675 return (MIGRATE_PCPTYPES * base) + migratetype;
676}
677
678static inline int pindex_to_order(unsigned int pindex)
679{
680 int order = pindex / MIGRATE_PCPTYPES;
681
682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ea808b4e 683 if (order > PAGE_ALLOC_COSTLY_ORDER)
44042b44 684 order = pageblock_order;
44042b44
MG
685#else
686 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
687#endif
688
689 return order;
690}
691
692static inline bool pcp_allowed_order(unsigned int order)
693{
694 if (order <= PAGE_ALLOC_COSTLY_ORDER)
695 return true;
696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 if (order == pageblock_order)
698 return true;
699#endif
700 return false;
701}
702
21d02f8f
MG
703static inline void free_the_page(struct page *page, unsigned int order)
704{
44042b44
MG
705 if (pcp_allowed_order(order)) /* Via pcp? */
706 free_unref_page(page, order);
21d02f8f
MG
707 else
708 __free_pages_ok(page, order, FPI_NONE);
709}
710
1da177e4
LT
711/*
712 * Higher-order pages are called "compound pages". They are structured thusly:
713 *
1d798ca3 714 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 715 *
1d798ca3
KS
716 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
717 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 718 *
1d798ca3
KS
719 * The first tail page's ->compound_dtor holds the offset in array of compound
720 * page destructors. See compound_page_dtors.
1da177e4 721 *
1d798ca3 722 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 723 * This usage means that zero-order pages may not be compound.
1da177e4 724 */
d98c7a09 725
9a982250 726void free_compound_page(struct page *page)
d98c7a09 727{
bbc6b703 728 mem_cgroup_uncharge(page_folio(page));
44042b44 729 free_the_page(page, compound_order(page));
d98c7a09
HD
730}
731
5b24eeef
JM
732static void prep_compound_head(struct page *page, unsigned int order)
733{
734 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
735 set_compound_order(page, order);
736 atomic_set(compound_mapcount_ptr(page), -1);
737 if (hpage_pincount_available(page))
738 atomic_set(compound_pincount_ptr(page), 0);
739}
740
741static void prep_compound_tail(struct page *head, int tail_idx)
742{
743 struct page *p = head + tail_idx;
744
745 p->mapping = TAIL_MAPPING;
746 set_compound_head(p, head);
747}
748
d00181b9 749void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
750{
751 int i;
752 int nr_pages = 1 << order;
753
18229df5 754 __SetPageHead(page);
5b24eeef
JM
755 for (i = 1; i < nr_pages; i++)
756 prep_compound_tail(page, i);
1378a5ee 757
5b24eeef 758 prep_compound_head(page, order);
18229df5
AW
759}
760
c0a32fc5
SG
761#ifdef CONFIG_DEBUG_PAGEALLOC
762unsigned int _debug_guardpage_minorder;
96a2b03f 763
8e57f8ac
VB
764bool _debug_pagealloc_enabled_early __read_mostly
765 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
766EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 767DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 768EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
769
770DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 771
031bc574
JK
772static int __init early_debug_pagealloc(char *buf)
773{
8e57f8ac 774 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
775}
776early_param("debug_pagealloc", early_debug_pagealloc);
777
c0a32fc5
SG
778static int __init debug_guardpage_minorder_setup(char *buf)
779{
780 unsigned long res;
781
782 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 783 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
784 return 0;
785 }
786 _debug_guardpage_minorder = res;
1170532b 787 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
788 return 0;
789}
f1c1e9f7 790early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 791
acbc15a4 792static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 793 unsigned int order, int migratetype)
c0a32fc5 794{
e30825f1 795 if (!debug_guardpage_enabled())
acbc15a4
JK
796 return false;
797
798 if (order >= debug_guardpage_minorder())
799 return false;
e30825f1 800
3972f6bb 801 __SetPageGuard(page);
2847cf95
JK
802 INIT_LIST_HEAD(&page->lru);
803 set_page_private(page, order);
804 /* Guard pages are not available for any usage */
805 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
806
807 return true;
c0a32fc5
SG
808}
809
2847cf95
JK
810static inline void clear_page_guard(struct zone *zone, struct page *page,
811 unsigned int order, int migratetype)
c0a32fc5 812{
e30825f1
JK
813 if (!debug_guardpage_enabled())
814 return;
815
3972f6bb 816 __ClearPageGuard(page);
e30825f1 817
2847cf95
JK
818 set_page_private(page, 0);
819 if (!is_migrate_isolate(migratetype))
820 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
821}
822#else
acbc15a4
JK
823static inline bool set_page_guard(struct zone *zone, struct page *page,
824 unsigned int order, int migratetype) { return false; }
2847cf95
JK
825static inline void clear_page_guard(struct zone *zone, struct page *page,
826 unsigned int order, int migratetype) {}
c0a32fc5
SG
827#endif
828
04013513
VB
829/*
830 * Enable static keys related to various memory debugging and hardening options.
831 * Some override others, and depend on early params that are evaluated in the
832 * order of appearance. So we need to first gather the full picture of what was
833 * enabled, and then make decisions.
834 */
835void init_mem_debugging_and_hardening(void)
836{
9df65f52
ST
837 bool page_poisoning_requested = false;
838
839#ifdef CONFIG_PAGE_POISONING
840 /*
841 * Page poisoning is debug page alloc for some arches. If
842 * either of those options are enabled, enable poisoning.
843 */
844 if (page_poisoning_enabled() ||
845 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
846 debug_pagealloc_enabled())) {
847 static_branch_enable(&_page_poisoning_enabled);
848 page_poisoning_requested = true;
849 }
850#endif
851
69e5d322
ST
852 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
853 page_poisoning_requested) {
854 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
855 "will take precedence over init_on_alloc and init_on_free\n");
856 _init_on_alloc_enabled_early = false;
857 _init_on_free_enabled_early = false;
04013513
VB
858 }
859
69e5d322
ST
860 if (_init_on_alloc_enabled_early)
861 static_branch_enable(&init_on_alloc);
862 else
863 static_branch_disable(&init_on_alloc);
864
865 if (_init_on_free_enabled_early)
866 static_branch_enable(&init_on_free);
867 else
868 static_branch_disable(&init_on_free);
869
04013513
VB
870#ifdef CONFIG_DEBUG_PAGEALLOC
871 if (!debug_pagealloc_enabled())
872 return;
873
874 static_branch_enable(&_debug_pagealloc_enabled);
875
876 if (!debug_guardpage_minorder())
877 return;
878
879 static_branch_enable(&_debug_guardpage_enabled);
880#endif
881}
882
ab130f91 883static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 884{
4c21e2f2 885 set_page_private(page, order);
676165a8 886 __SetPageBuddy(page);
1da177e4
LT
887}
888
1da177e4
LT
889/*
890 * This function checks whether a page is free && is the buddy
6e292b9b 891 * we can coalesce a page and its buddy if
13ad59df 892 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 893 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
894 * (c) a page and its buddy have the same order &&
895 * (d) a page and its buddy are in the same zone.
676165a8 896 *
6e292b9b
MW
897 * For recording whether a page is in the buddy system, we set PageBuddy.
898 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 899 *
676165a8 900 * For recording page's order, we use page_private(page).
1da177e4 901 */
fe925c0c 902static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 903 unsigned int order)
1da177e4 904{
fe925c0c 905 if (!page_is_guard(buddy) && !PageBuddy(buddy))
906 return false;
4c5018ce 907
ab130f91 908 if (buddy_order(buddy) != order)
fe925c0c 909 return false;
c0a32fc5 910
fe925c0c 911 /*
912 * zone check is done late to avoid uselessly calculating
913 * zone/node ids for pages that could never merge.
914 */
915 if (page_zone_id(page) != page_zone_id(buddy))
916 return false;
d34c5fa0 917
fe925c0c 918 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 919
fe925c0c 920 return true;
1da177e4
LT
921}
922
5e1f0f09
MG
923#ifdef CONFIG_COMPACTION
924static inline struct capture_control *task_capc(struct zone *zone)
925{
926 struct capture_control *capc = current->capture_control;
927
deba0487 928 return unlikely(capc) &&
5e1f0f09
MG
929 !(current->flags & PF_KTHREAD) &&
930 !capc->page &&
deba0487 931 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
932}
933
934static inline bool
935compaction_capture(struct capture_control *capc, struct page *page,
936 int order, int migratetype)
937{
938 if (!capc || order != capc->cc->order)
939 return false;
940
941 /* Do not accidentally pollute CMA or isolated regions*/
942 if (is_migrate_cma(migratetype) ||
943 is_migrate_isolate(migratetype))
944 return false;
945
946 /*
f0953a1b 947 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
948 * This might let an unmovable request use a reclaimable pageblock
949 * and vice-versa but no more than normal fallback logic which can
950 * have trouble finding a high-order free page.
951 */
952 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
953 return false;
954
955 capc->page = page;
956 return true;
957}
958
959#else
960static inline struct capture_control *task_capc(struct zone *zone)
961{
962 return NULL;
963}
964
965static inline bool
966compaction_capture(struct capture_control *capc, struct page *page,
967 int order, int migratetype)
968{
969 return false;
970}
971#endif /* CONFIG_COMPACTION */
972
6ab01363
AD
973/* Used for pages not on another list */
974static inline void add_to_free_list(struct page *page, struct zone *zone,
975 unsigned int order, int migratetype)
976{
977 struct free_area *area = &zone->free_area[order];
978
979 list_add(&page->lru, &area->free_list[migratetype]);
980 area->nr_free++;
981}
982
983/* Used for pages not on another list */
984static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
985 unsigned int order, int migratetype)
986{
987 struct free_area *area = &zone->free_area[order];
988
989 list_add_tail(&page->lru, &area->free_list[migratetype]);
990 area->nr_free++;
991}
992
293ffa5e
DH
993/*
994 * Used for pages which are on another list. Move the pages to the tail
995 * of the list - so the moved pages won't immediately be considered for
996 * allocation again (e.g., optimization for memory onlining).
997 */
6ab01363
AD
998static inline void move_to_free_list(struct page *page, struct zone *zone,
999 unsigned int order, int migratetype)
1000{
1001 struct free_area *area = &zone->free_area[order];
1002
293ffa5e 1003 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
1004}
1005
1006static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1007 unsigned int order)
1008{
36e66c55
AD
1009 /* clear reported state and update reported page count */
1010 if (page_reported(page))
1011 __ClearPageReported(page);
1012
6ab01363
AD
1013 list_del(&page->lru);
1014 __ClearPageBuddy(page);
1015 set_page_private(page, 0);
1016 zone->free_area[order].nr_free--;
1017}
1018
a2129f24
AD
1019/*
1020 * If this is not the largest possible page, check if the buddy
1021 * of the next-highest order is free. If it is, it's possible
1022 * that pages are being freed that will coalesce soon. In case,
1023 * that is happening, add the free page to the tail of the list
1024 * so it's less likely to be used soon and more likely to be merged
1025 * as a higher order page
1026 */
1027static inline bool
1028buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1029 struct page *page, unsigned int order)
1030{
1031 struct page *higher_page, *higher_buddy;
1032 unsigned long combined_pfn;
1033
1034 if (order >= MAX_ORDER - 2)
1035 return false;
1036
a2129f24
AD
1037 combined_pfn = buddy_pfn & pfn;
1038 higher_page = page + (combined_pfn - pfn);
1039 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1040 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1041
859a85dd 1042 return page_is_buddy(higher_page, higher_buddy, order + 1);
a2129f24
AD
1043}
1044
1da177e4
LT
1045/*
1046 * Freeing function for a buddy system allocator.
1047 *
1048 * The concept of a buddy system is to maintain direct-mapped table
1049 * (containing bit values) for memory blocks of various "orders".
1050 * The bottom level table contains the map for the smallest allocatable
1051 * units of memory (here, pages), and each level above it describes
1052 * pairs of units from the levels below, hence, "buddies".
1053 * At a high level, all that happens here is marking the table entry
1054 * at the bottom level available, and propagating the changes upward
1055 * as necessary, plus some accounting needed to play nicely with other
1056 * parts of the VM system.
1057 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1058 * free pages of length of (1 << order) and marked with PageBuddy.
1059 * Page's order is recorded in page_private(page) field.
1da177e4 1060 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1061 * other. That is, if we allocate a small block, and both were
1062 * free, the remainder of the region must be split into blocks.
1da177e4 1063 * If a block is freed, and its buddy is also free, then this
5f63b720 1064 * triggers coalescing into a block of larger size.
1da177e4 1065 *
6d49e352 1066 * -- nyc
1da177e4
LT
1067 */
1068
48db57f8 1069static inline void __free_one_page(struct page *page,
dc4b0caf 1070 unsigned long pfn,
ed0ae21d 1071 struct zone *zone, unsigned int order,
f04a5d5d 1072 int migratetype, fpi_t fpi_flags)
1da177e4 1073{
a2129f24 1074 struct capture_control *capc = task_capc(zone);
b3d40a2b 1075 unsigned int max_order = pageblock_order;
3f649ab7 1076 unsigned long buddy_pfn;
a2129f24 1077 unsigned long combined_pfn;
a2129f24
AD
1078 struct page *buddy;
1079 bool to_tail;
d9dddbf5 1080
d29bb978 1081 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1082 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1083
ed0ae21d 1084 VM_BUG_ON(migratetype == -1);
d9dddbf5 1085 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1086 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1087
76741e77 1088 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1089 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1090
d9dddbf5 1091continue_merging:
7ad69832 1092 while (order < max_order) {
5e1f0f09
MG
1093 if (compaction_capture(capc, page, order, migratetype)) {
1094 __mod_zone_freepage_state(zone, -(1 << order),
1095 migratetype);
1096 return;
1097 }
76741e77
VB
1098 buddy_pfn = __find_buddy_pfn(pfn, order);
1099 buddy = page + (buddy_pfn - pfn);
13ad59df 1100
cb2b95e1 1101 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1102 goto done_merging;
c0a32fc5
SG
1103 /*
1104 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1105 * merge with it and move up one order.
1106 */
b03641af 1107 if (page_is_guard(buddy))
2847cf95 1108 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1109 else
6ab01363 1110 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1111 combined_pfn = buddy_pfn & pfn;
1112 page = page + (combined_pfn - pfn);
1113 pfn = combined_pfn;
1da177e4
LT
1114 order++;
1115 }
7ad69832 1116 if (order < MAX_ORDER - 1) {
d9dddbf5 1117 /* If we are here, it means order is >= pageblock_order.
1dd214b8
ZY
1118 * We want to prevent merge between freepages on pageblock
1119 * without fallbacks and normal pageblock. Without this,
1120 * pageblock isolation could cause incorrect freepage or CMA
1121 * accounting or HIGHATOMIC accounting.
d9dddbf5
VB
1122 *
1123 * We don't want to hit this code for the more frequent
1124 * low-order merging.
1125 */
1dd214b8 1126 int buddy_mt;
d9dddbf5 1127
1dd214b8
ZY
1128 buddy_pfn = __find_buddy_pfn(pfn, order);
1129 buddy = page + (buddy_pfn - pfn);
1130 buddy_mt = get_pageblock_migratetype(buddy);
d9dddbf5 1131
1dd214b8
ZY
1132 if (migratetype != buddy_mt
1133 && (!migratetype_is_mergeable(migratetype) ||
1134 !migratetype_is_mergeable(buddy_mt)))
1135 goto done_merging;
7ad69832 1136 max_order = order + 1;
d9dddbf5
VB
1137 goto continue_merging;
1138 }
1139
1140done_merging:
ab130f91 1141 set_buddy_order(page, order);
6dda9d55 1142
47b6a24a
DH
1143 if (fpi_flags & FPI_TO_TAIL)
1144 to_tail = true;
1145 else if (is_shuffle_order(order))
a2129f24 1146 to_tail = shuffle_pick_tail();
97500a4a 1147 else
a2129f24 1148 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1149
a2129f24 1150 if (to_tail)
6ab01363 1151 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1152 else
6ab01363 1153 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1154
1155 /* Notify page reporting subsystem of freed page */
f04a5d5d 1156 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1157 page_reporting_notify_free(order);
1da177e4
LT
1158}
1159
7bfec6f4
MG
1160/*
1161 * A bad page could be due to a number of fields. Instead of multiple branches,
1162 * try and check multiple fields with one check. The caller must do a detailed
1163 * check if necessary.
1164 */
1165static inline bool page_expected_state(struct page *page,
1166 unsigned long check_flags)
1167{
1168 if (unlikely(atomic_read(&page->_mapcount) != -1))
1169 return false;
1170
1171 if (unlikely((unsigned long)page->mapping |
1172 page_ref_count(page) |
1173#ifdef CONFIG_MEMCG
48060834 1174 page->memcg_data |
7bfec6f4
MG
1175#endif
1176 (page->flags & check_flags)))
1177 return false;
1178
1179 return true;
1180}
1181
58b7f119 1182static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1183{
82a3241a 1184 const char *bad_reason = NULL;
f0b791a3 1185
53f9263b 1186 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1187 bad_reason = "nonzero mapcount";
1188 if (unlikely(page->mapping != NULL))
1189 bad_reason = "non-NULL mapping";
fe896d18 1190 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1191 bad_reason = "nonzero _refcount";
58b7f119
WY
1192 if (unlikely(page->flags & flags)) {
1193 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1194 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1195 else
1196 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1197 }
9edad6ea 1198#ifdef CONFIG_MEMCG
48060834 1199 if (unlikely(page->memcg_data))
9edad6ea
JW
1200 bad_reason = "page still charged to cgroup";
1201#endif
58b7f119
WY
1202 return bad_reason;
1203}
1204
1205static void check_free_page_bad(struct page *page)
1206{
1207 bad_page(page,
1208 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1209}
1210
534fe5e3 1211static inline int check_free_page(struct page *page)
bb552ac6 1212{
da838d4f 1213 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1214 return 0;
bb552ac6
MG
1215
1216 /* Something has gone sideways, find it */
0d0c48a2 1217 check_free_page_bad(page);
7bfec6f4 1218 return 1;
1da177e4
LT
1219}
1220
4db7548c
MG
1221static int free_tail_pages_check(struct page *head_page, struct page *page)
1222{
1223 int ret = 1;
1224
1225 /*
1226 * We rely page->lru.next never has bit 0 set, unless the page
1227 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1228 */
1229 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1230
1231 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1232 ret = 0;
1233 goto out;
1234 }
1235 switch (page - head_page) {
1236 case 1:
4da1984e 1237 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1238 if (unlikely(compound_mapcount(page))) {
82a3241a 1239 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1240 goto out;
1241 }
1242 break;
1243 case 2:
1244 /*
1245 * the second tail page: ->mapping is
fa3015b7 1246 * deferred_list.next -- ignore value.
4db7548c
MG
1247 */
1248 break;
1249 default:
1250 if (page->mapping != TAIL_MAPPING) {
82a3241a 1251 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1252 goto out;
1253 }
1254 break;
1255 }
1256 if (unlikely(!PageTail(page))) {
82a3241a 1257 bad_page(page, "PageTail not set");
4db7548c
MG
1258 goto out;
1259 }
1260 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1261 bad_page(page, "compound_head not consistent");
4db7548c
MG
1262 goto out;
1263 }
1264 ret = 0;
1265out:
1266 page->mapping = NULL;
1267 clear_compound_head(page);
1268 return ret;
1269}
1270
013bb59d 1271static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
6471384a
AP
1272{
1273 int i;
1274
013bb59d
PC
1275 if (zero_tags) {
1276 for (i = 0; i < numpages; i++)
1277 tag_clear_highpage(page + i);
1278 return;
1279 }
1280
9e15afa5
QC
1281 /* s390's use of memset() could override KASAN redzones. */
1282 kasan_disable_current();
aa1ef4d7 1283 for (i = 0; i < numpages; i++) {
acb35b17 1284 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1285 page_kasan_tag_reset(page + i);
6471384a 1286 clear_highpage(page + i);
acb35b17 1287 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1288 }
9e15afa5 1289 kasan_enable_current();
6471384a
AP
1290}
1291
e2769dbd 1292static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1293 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1294{
e2769dbd 1295 int bad = 0;
c275c5c6 1296 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
4db7548c 1297
4db7548c
MG
1298 VM_BUG_ON_PAGE(PageTail(page), page);
1299
e2769dbd 1300 trace_mm_page_free(page, order);
e2769dbd 1301
79f5f8fa
OS
1302 if (unlikely(PageHWPoison(page)) && !order) {
1303 /*
1304 * Do not let hwpoison pages hit pcplists/buddy
1305 * Untie memcg state and reset page's owner
1306 */
18b2db3b 1307 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1308 __memcg_kmem_uncharge_page(page, order);
1309 reset_page_owner(page, order);
df4e817b 1310 page_table_check_free(page, order);
79f5f8fa
OS
1311 return false;
1312 }
1313
e2769dbd
MG
1314 /*
1315 * Check tail pages before head page information is cleared to
1316 * avoid checking PageCompound for order-0 pages.
1317 */
1318 if (unlikely(order)) {
1319 bool compound = PageCompound(page);
1320 int i;
1321
1322 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1323
eac96c3e 1324 if (compound) {
9a73f61b 1325 ClearPageDoubleMap(page);
eac96c3e
YS
1326 ClearPageHasHWPoisoned(page);
1327 }
e2769dbd
MG
1328 for (i = 1; i < (1 << order); i++) {
1329 if (compound)
1330 bad += free_tail_pages_check(page, page + i);
534fe5e3 1331 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1332 bad++;
1333 continue;
1334 }
1335 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1336 }
1337 }
bda807d4 1338 if (PageMappingFlags(page))
4db7548c 1339 page->mapping = NULL;
18b2db3b 1340 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1341 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1342 if (check_free)
534fe5e3 1343 bad += check_free_page(page);
e2769dbd
MG
1344 if (bad)
1345 return false;
4db7548c 1346
e2769dbd
MG
1347 page_cpupid_reset_last(page);
1348 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1349 reset_page_owner(page, order);
df4e817b 1350 page_table_check_free(page, order);
4db7548c
MG
1351
1352 if (!PageHighMem(page)) {
1353 debug_check_no_locks_freed(page_address(page),
e2769dbd 1354 PAGE_SIZE << order);
4db7548c 1355 debug_check_no_obj_freed(page_address(page),
e2769dbd 1356 PAGE_SIZE << order);
4db7548c 1357 }
6471384a 1358
8db26a3d
VB
1359 kernel_poison_pages(page, 1 << order);
1360
f9d79e8d 1361 /*
1bb5eab3
AK
1362 * As memory initialization might be integrated into KASAN,
1363 * kasan_free_pages and kernel_init_free_pages must be
1364 * kept together to avoid discrepancies in behavior.
1365 *
f9d79e8d
AK
1366 * With hardware tag-based KASAN, memory tags must be set before the
1367 * page becomes unavailable via debug_pagealloc or arch_free_page.
1368 */
7a3b8353
PC
1369 if (kasan_has_integrated_init()) {
1370 if (!skip_kasan_poison)
1371 kasan_free_pages(page, order);
1372 } else {
1373 bool init = want_init_on_free();
1374
1375 if (init)
013bb59d 1376 kernel_init_free_pages(page, 1 << order, false);
7a3b8353
PC
1377 if (!skip_kasan_poison)
1378 kasan_poison_pages(page, order, init);
1379 }
f9d79e8d 1380
234fdce8
QC
1381 /*
1382 * arch_free_page() can make the page's contents inaccessible. s390
1383 * does this. So nothing which can access the page's contents should
1384 * happen after this.
1385 */
1386 arch_free_page(page, order);
1387
77bc7fd6 1388 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1389
4db7548c
MG
1390 return true;
1391}
1392
e2769dbd 1393#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1394/*
1395 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1396 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1397 * moved from pcp lists to free lists.
1398 */
44042b44 1399static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1400{
44042b44 1401 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1402}
1403
4462b32c 1404static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1405{
8e57f8ac 1406 if (debug_pagealloc_enabled_static())
534fe5e3 1407 return check_free_page(page);
4462b32c
VB
1408 else
1409 return false;
e2769dbd
MG
1410}
1411#else
4462b32c
VB
1412/*
1413 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1414 * moving from pcp lists to free list in order to reduce overhead. With
1415 * debug_pagealloc enabled, they are checked also immediately when being freed
1416 * to the pcp lists.
1417 */
44042b44 1418static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1419{
8e57f8ac 1420 if (debug_pagealloc_enabled_static())
44042b44 1421 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1422 else
44042b44 1423 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1424}
1425
4db7548c
MG
1426static bool bulkfree_pcp_prepare(struct page *page)
1427{
534fe5e3 1428 return check_free_page(page);
4db7548c
MG
1429}
1430#endif /* CONFIG_DEBUG_VM */
1431
1da177e4 1432/*
5f8dcc21 1433 * Frees a number of pages from the PCP lists
7cba630b 1434 * Assumes all pages on list are in same zone.
207f36ee 1435 * count is the number of pages to free.
1da177e4 1436 */
5f8dcc21 1437static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1438 struct per_cpu_pages *pcp,
1439 int pindex)
1da177e4 1440{
35b6d770
MG
1441 int min_pindex = 0;
1442 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1443 unsigned int order;
3777999d 1444 bool isolated_pageblocks;
8b10b465 1445 struct page *page;
f2260e6b 1446
88e8ac11
CTR
1447 /*
1448 * Ensure proper count is passed which otherwise would stuck in the
1449 * below while (list_empty(list)) loop.
1450 */
1451 count = min(pcp->count, count);
d61372bc
MG
1452
1453 /* Ensure requested pindex is drained first. */
1454 pindex = pindex - 1;
1455
8b10b465
MG
1456 /*
1457 * local_lock_irq held so equivalent to spin_lock_irqsave for
1458 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1459 */
1460 spin_lock(&zone->lock);
1461 isolated_pageblocks = has_isolate_pageblock(zone);
1462
44042b44 1463 while (count > 0) {
5f8dcc21 1464 struct list_head *list;
fd56eef2 1465 int nr_pages;
5f8dcc21 1466
fd56eef2 1467 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1468 do {
35b6d770
MG
1469 if (++pindex > max_pindex)
1470 pindex = min_pindex;
44042b44 1471 list = &pcp->lists[pindex];
35b6d770
MG
1472 if (!list_empty(list))
1473 break;
1474
1475 if (pindex == max_pindex)
1476 max_pindex--;
1477 if (pindex == min_pindex)
1478 min_pindex++;
1479 } while (1);
48db57f8 1480
44042b44 1481 order = pindex_to_order(pindex);
fd56eef2 1482 nr_pages = 1 << order;
44042b44 1483 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1484 do {
8b10b465
MG
1485 int mt;
1486
a16601c5 1487 page = list_last_entry(list, struct page, lru);
8b10b465
MG
1488 mt = get_pcppage_migratetype(page);
1489
0a5f4e5b 1490 /* must delete to avoid corrupting pcp list */
a6f9edd6 1491 list_del(&page->lru);
fd56eef2
MG
1492 count -= nr_pages;
1493 pcp->count -= nr_pages;
aa016d14 1494
4db7548c
MG
1495 if (bulkfree_pcp_prepare(page))
1496 continue;
1497
8b10b465
MG
1498 /* MIGRATE_ISOLATE page should not go to pcplists */
1499 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1500 /* Pageblock could have been isolated meanwhile */
1501 if (unlikely(isolated_pageblocks))
1502 mt = get_pageblock_migratetype(page);
0a5f4e5b 1503
8b10b465
MG
1504 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1505 trace_mm_page_pcpu_drain(page, order, mt);
1506 } while (count > 0 && !list_empty(list));
0a5f4e5b 1507 }
8b10b465 1508
d34b0733 1509 spin_unlock(&zone->lock);
1da177e4
LT
1510}
1511
dc4b0caf
MG
1512static void free_one_page(struct zone *zone,
1513 struct page *page, unsigned long pfn,
7aeb09f9 1514 unsigned int order,
7fef431b 1515 int migratetype, fpi_t fpi_flags)
1da177e4 1516{
df1acc85
MG
1517 unsigned long flags;
1518
1519 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1520 if (unlikely(has_isolate_pageblock(zone) ||
1521 is_migrate_isolate(migratetype))) {
1522 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1523 }
7fef431b 1524 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1525 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1526}
1527
1e8ce83c 1528static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1529 unsigned long zone, int nid)
1e8ce83c 1530{
d0dc12e8 1531 mm_zero_struct_page(page);
1e8ce83c 1532 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1533 init_page_count(page);
1534 page_mapcount_reset(page);
1535 page_cpupid_reset_last(page);
2813b9c0 1536 page_kasan_tag_reset(page);
1e8ce83c 1537
1e8ce83c
RH
1538 INIT_LIST_HEAD(&page->lru);
1539#ifdef WANT_PAGE_VIRTUAL
1540 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1541 if (!is_highmem_idx(zone))
1542 set_page_address(page, __va(pfn << PAGE_SHIFT));
1543#endif
1544}
1545
7e18adb4 1546#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1547static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1548{
1549 pg_data_t *pgdat;
1550 int nid, zid;
1551
1552 if (!early_page_uninitialised(pfn))
1553 return;
1554
1555 nid = early_pfn_to_nid(pfn);
1556 pgdat = NODE_DATA(nid);
1557
1558 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1559 struct zone *zone = &pgdat->node_zones[zid];
1560
86fb05b9 1561 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1562 break;
1563 }
d0dc12e8 1564 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1565}
1566#else
1567static inline void init_reserved_page(unsigned long pfn)
1568{
1569}
1570#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1571
92923ca3
NZ
1572/*
1573 * Initialised pages do not have PageReserved set. This function is
1574 * called for each range allocated by the bootmem allocator and
1575 * marks the pages PageReserved. The remaining valid pages are later
1576 * sent to the buddy page allocator.
1577 */
4b50bcc7 1578void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1579{
1580 unsigned long start_pfn = PFN_DOWN(start);
1581 unsigned long end_pfn = PFN_UP(end);
1582
7e18adb4
MG
1583 for (; start_pfn < end_pfn; start_pfn++) {
1584 if (pfn_valid(start_pfn)) {
1585 struct page *page = pfn_to_page(start_pfn);
1586
1587 init_reserved_page(start_pfn);
1d798ca3
KS
1588
1589 /* Avoid false-positive PageTail() */
1590 INIT_LIST_HEAD(&page->lru);
1591
d483da5b
AD
1592 /*
1593 * no need for atomic set_bit because the struct
1594 * page is not visible yet so nobody should
1595 * access it yet.
1596 */
1597 __SetPageReserved(page);
7e18adb4
MG
1598 }
1599 }
92923ca3
NZ
1600}
1601
7fef431b
DH
1602static void __free_pages_ok(struct page *page, unsigned int order,
1603 fpi_t fpi_flags)
ec95f53a 1604{
d34b0733 1605 unsigned long flags;
95e34412 1606 int migratetype;
dc4b0caf 1607 unsigned long pfn = page_to_pfn(page);
56f0e661 1608 struct zone *zone = page_zone(page);
ec95f53a 1609
2c335680 1610 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1611 return;
1612
cfc47a28 1613 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1614
56f0e661 1615 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1616 if (unlikely(has_isolate_pageblock(zone) ||
1617 is_migrate_isolate(migratetype))) {
1618 migratetype = get_pfnblock_migratetype(page, pfn);
1619 }
1620 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1621 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1622
d34b0733 1623 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1624}
1625
a9cd410a 1626void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1627{
c3993076 1628 unsigned int nr_pages = 1 << order;
e2d0bd2b 1629 struct page *p = page;
c3993076 1630 unsigned int loop;
a226f6c8 1631
7fef431b
DH
1632 /*
1633 * When initializing the memmap, __init_single_page() sets the refcount
1634 * of all pages to 1 ("allocated"/"not free"). We have to set the
1635 * refcount of all involved pages to 0.
1636 */
e2d0bd2b
YL
1637 prefetchw(p);
1638 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1639 prefetchw(p + 1);
c3993076
JW
1640 __ClearPageReserved(p);
1641 set_page_count(p, 0);
a226f6c8 1642 }
e2d0bd2b
YL
1643 __ClearPageReserved(p);
1644 set_page_count(p, 0);
c3993076 1645
9705bea5 1646 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1647
1648 /*
1649 * Bypass PCP and place fresh pages right to the tail, primarily
1650 * relevant for memory onlining.
1651 */
2c335680 1652 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1653}
1654
a9ee6cf5 1655#ifdef CONFIG_NUMA
7ace9917 1656
03e92a5e
MR
1657/*
1658 * During memory init memblocks map pfns to nids. The search is expensive and
1659 * this caches recent lookups. The implementation of __early_pfn_to_nid
1660 * treats start/end as pfns.
1661 */
1662struct mminit_pfnnid_cache {
1663 unsigned long last_start;
1664 unsigned long last_end;
1665 int last_nid;
1666};
75a592a4 1667
03e92a5e 1668static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1669
1670/*
1671 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1672 */
03e92a5e 1673static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1674 struct mminit_pfnnid_cache *state)
75a592a4 1675{
6f24fbd3 1676 unsigned long start_pfn, end_pfn;
75a592a4
MG
1677 int nid;
1678
6f24fbd3
MR
1679 if (state->last_start <= pfn && pfn < state->last_end)
1680 return state->last_nid;
1681
1682 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1683 if (nid != NUMA_NO_NODE) {
1684 state->last_start = start_pfn;
1685 state->last_end = end_pfn;
1686 state->last_nid = nid;
1687 }
7ace9917
MG
1688
1689 return nid;
75a592a4 1690}
75a592a4 1691
75a592a4 1692int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1693{
7ace9917 1694 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1695 int nid;
1696
7ace9917 1697 spin_lock(&early_pfn_lock);
56ec43d8 1698 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1699 if (nid < 0)
e4568d38 1700 nid = first_online_node;
7ace9917 1701 spin_unlock(&early_pfn_lock);
75a592a4 1702
7ace9917 1703 return nid;
75a592a4 1704}
a9ee6cf5 1705#endif /* CONFIG_NUMA */
75a592a4 1706
7c2ee349 1707void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1708 unsigned int order)
1709{
1710 if (early_page_uninitialised(pfn))
1711 return;
a9cd410a 1712 __free_pages_core(page, order);
3a80a7fa
MG
1713}
1714
7cf91a98
JK
1715/*
1716 * Check that the whole (or subset of) a pageblock given by the interval of
1717 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1718 * with the migration of free compaction scanner.
7cf91a98
JK
1719 *
1720 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1721 *
1722 * It's possible on some configurations to have a setup like node0 node1 node0
1723 * i.e. it's possible that all pages within a zones range of pages do not
1724 * belong to a single zone. We assume that a border between node0 and node1
1725 * can occur within a single pageblock, but not a node0 node1 node0
1726 * interleaving within a single pageblock. It is therefore sufficient to check
1727 * the first and last page of a pageblock and avoid checking each individual
1728 * page in a pageblock.
1729 */
1730struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1731 unsigned long end_pfn, struct zone *zone)
1732{
1733 struct page *start_page;
1734 struct page *end_page;
1735
1736 /* end_pfn is one past the range we are checking */
1737 end_pfn--;
1738
1739 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1740 return NULL;
1741
2d070eab
MH
1742 start_page = pfn_to_online_page(start_pfn);
1743 if (!start_page)
1744 return NULL;
7cf91a98
JK
1745
1746 if (page_zone(start_page) != zone)
1747 return NULL;
1748
1749 end_page = pfn_to_page(end_pfn);
1750
1751 /* This gives a shorter code than deriving page_zone(end_page) */
1752 if (page_zone_id(start_page) != page_zone_id(end_page))
1753 return NULL;
1754
1755 return start_page;
1756}
1757
1758void set_zone_contiguous(struct zone *zone)
1759{
1760 unsigned long block_start_pfn = zone->zone_start_pfn;
1761 unsigned long block_end_pfn;
1762
1763 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1764 for (; block_start_pfn < zone_end_pfn(zone);
1765 block_start_pfn = block_end_pfn,
1766 block_end_pfn += pageblock_nr_pages) {
1767
1768 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1769
1770 if (!__pageblock_pfn_to_page(block_start_pfn,
1771 block_end_pfn, zone))
1772 return;
e84fe99b 1773 cond_resched();
7cf91a98
JK
1774 }
1775
1776 /* We confirm that there is no hole */
1777 zone->contiguous = true;
1778}
1779
1780void clear_zone_contiguous(struct zone *zone)
1781{
1782 zone->contiguous = false;
1783}
1784
7e18adb4 1785#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1786static void __init deferred_free_range(unsigned long pfn,
1787 unsigned long nr_pages)
a4de83dd 1788{
2f47a91f
PT
1789 struct page *page;
1790 unsigned long i;
a4de83dd 1791
2f47a91f 1792 if (!nr_pages)
a4de83dd
MG
1793 return;
1794
2f47a91f
PT
1795 page = pfn_to_page(pfn);
1796
a4de83dd 1797 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1798 if (nr_pages == pageblock_nr_pages &&
1799 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1800 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1801 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1802 return;
1803 }
1804
e780149b
XQ
1805 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1806 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1807 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1808 __free_pages_core(page, 0);
e780149b 1809 }
a4de83dd
MG
1810}
1811
d3cd131d
NS
1812/* Completion tracking for deferred_init_memmap() threads */
1813static atomic_t pgdat_init_n_undone __initdata;
1814static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1815
1816static inline void __init pgdat_init_report_one_done(void)
1817{
1818 if (atomic_dec_and_test(&pgdat_init_n_undone))
1819 complete(&pgdat_init_all_done_comp);
1820}
0e1cc95b 1821
2f47a91f 1822/*
80b1f41c
PT
1823 * Returns true if page needs to be initialized or freed to buddy allocator.
1824 *
1825 * First we check if pfn is valid on architectures where it is possible to have
1826 * holes within pageblock_nr_pages. On systems where it is not possible, this
1827 * function is optimized out.
1828 *
1829 * Then, we check if a current large page is valid by only checking the validity
1830 * of the head pfn.
2f47a91f 1831 */
56ec43d8 1832static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1833{
80b1f41c
PT
1834 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1835 return false;
80b1f41c
PT
1836 return true;
1837}
2f47a91f 1838
80b1f41c
PT
1839/*
1840 * Free pages to buddy allocator. Try to free aligned pages in
1841 * pageblock_nr_pages sizes.
1842 */
56ec43d8 1843static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1844 unsigned long end_pfn)
1845{
80b1f41c
PT
1846 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1847 unsigned long nr_free = 0;
2f47a91f 1848
80b1f41c 1849 for (; pfn < end_pfn; pfn++) {
56ec43d8 1850 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1851 deferred_free_range(pfn - nr_free, nr_free);
1852 nr_free = 0;
1853 } else if (!(pfn & nr_pgmask)) {
1854 deferred_free_range(pfn - nr_free, nr_free);
1855 nr_free = 1;
80b1f41c
PT
1856 } else {
1857 nr_free++;
1858 }
1859 }
1860 /* Free the last block of pages to allocator */
1861 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1862}
1863
80b1f41c
PT
1864/*
1865 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1866 * by performing it only once every pageblock_nr_pages.
1867 * Return number of pages initialized.
1868 */
56ec43d8 1869static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1870 unsigned long pfn,
1871 unsigned long end_pfn)
2f47a91f 1872{
2f47a91f 1873 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1874 int nid = zone_to_nid(zone);
2f47a91f 1875 unsigned long nr_pages = 0;
56ec43d8 1876 int zid = zone_idx(zone);
2f47a91f 1877 struct page *page = NULL;
2f47a91f 1878
80b1f41c 1879 for (; pfn < end_pfn; pfn++) {
56ec43d8 1880 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1881 page = NULL;
2f47a91f 1882 continue;
80b1f41c 1883 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1884 page = pfn_to_page(pfn);
80b1f41c
PT
1885 } else {
1886 page++;
2f47a91f 1887 }
d0dc12e8 1888 __init_single_page(page, pfn, zid, nid);
80b1f41c 1889 nr_pages++;
2f47a91f 1890 }
80b1f41c 1891 return (nr_pages);
2f47a91f
PT
1892}
1893
0e56acae
AD
1894/*
1895 * This function is meant to pre-load the iterator for the zone init.
1896 * Specifically it walks through the ranges until we are caught up to the
1897 * first_init_pfn value and exits there. If we never encounter the value we
1898 * return false indicating there are no valid ranges left.
1899 */
1900static bool __init
1901deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1902 unsigned long *spfn, unsigned long *epfn,
1903 unsigned long first_init_pfn)
1904{
1905 u64 j;
1906
1907 /*
1908 * Start out by walking through the ranges in this zone that have
1909 * already been initialized. We don't need to do anything with them
1910 * so we just need to flush them out of the system.
1911 */
1912 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1913 if (*epfn <= first_init_pfn)
1914 continue;
1915 if (*spfn < first_init_pfn)
1916 *spfn = first_init_pfn;
1917 *i = j;
1918 return true;
1919 }
1920
1921 return false;
1922}
1923
1924/*
1925 * Initialize and free pages. We do it in two loops: first we initialize
1926 * struct page, then free to buddy allocator, because while we are
1927 * freeing pages we can access pages that are ahead (computing buddy
1928 * page in __free_one_page()).
1929 *
1930 * In order to try and keep some memory in the cache we have the loop
1931 * broken along max page order boundaries. This way we will not cause
1932 * any issues with the buddy page computation.
1933 */
1934static unsigned long __init
1935deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1936 unsigned long *end_pfn)
1937{
1938 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1939 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1940 unsigned long nr_pages = 0;
1941 u64 j = *i;
1942
1943 /* First we loop through and initialize the page values */
1944 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1945 unsigned long t;
1946
1947 if (mo_pfn <= *start_pfn)
1948 break;
1949
1950 t = min(mo_pfn, *end_pfn);
1951 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1952
1953 if (mo_pfn < *end_pfn) {
1954 *start_pfn = mo_pfn;
1955 break;
1956 }
1957 }
1958
1959 /* Reset values and now loop through freeing pages as needed */
1960 swap(j, *i);
1961
1962 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1963 unsigned long t;
1964
1965 if (mo_pfn <= spfn)
1966 break;
1967
1968 t = min(mo_pfn, epfn);
1969 deferred_free_pages(spfn, t);
1970
1971 if (mo_pfn <= epfn)
1972 break;
1973 }
1974
1975 return nr_pages;
1976}
1977
e4443149
DJ
1978static void __init
1979deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1980 void *arg)
1981{
1982 unsigned long spfn, epfn;
1983 struct zone *zone = arg;
1984 u64 i;
1985
1986 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1987
1988 /*
1989 * Initialize and free pages in MAX_ORDER sized increments so that we
1990 * can avoid introducing any issues with the buddy allocator.
1991 */
1992 while (spfn < end_pfn) {
1993 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1994 cond_resched();
1995 }
1996}
1997
ecd09650
DJ
1998/* An arch may override for more concurrency. */
1999__weak int __init
2000deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2001{
2002 return 1;
2003}
2004
7e18adb4 2005/* Initialise remaining memory on a node */
0e1cc95b 2006static int __init deferred_init_memmap(void *data)
7e18adb4 2007{
0e1cc95b 2008 pg_data_t *pgdat = data;
0e56acae 2009 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2010 unsigned long spfn = 0, epfn = 0;
0e56acae 2011 unsigned long first_init_pfn, flags;
7e18adb4 2012 unsigned long start = jiffies;
7e18adb4 2013 struct zone *zone;
e4443149 2014 int zid, max_threads;
2f47a91f 2015 u64 i;
7e18adb4 2016
3a2d7fa8
PT
2017 /* Bind memory initialisation thread to a local node if possible */
2018 if (!cpumask_empty(cpumask))
2019 set_cpus_allowed_ptr(current, cpumask);
2020
2021 pgdat_resize_lock(pgdat, &flags);
2022 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2023 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2024 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2025 pgdat_init_report_one_done();
0e1cc95b
MG
2026 return 0;
2027 }
2028
7e18adb4
MG
2029 /* Sanity check boundaries */
2030 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2031 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2032 pgdat->first_deferred_pfn = ULONG_MAX;
2033
3d060856
PT
2034 /*
2035 * Once we unlock here, the zone cannot be grown anymore, thus if an
2036 * interrupt thread must allocate this early in boot, zone must be
2037 * pre-grown prior to start of deferred page initialization.
2038 */
2039 pgdat_resize_unlock(pgdat, &flags);
2040
7e18adb4
MG
2041 /* Only the highest zone is deferred so find it */
2042 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2043 zone = pgdat->node_zones + zid;
2044 if (first_init_pfn < zone_end_pfn(zone))
2045 break;
2046 }
0e56acae
AD
2047
2048 /* If the zone is empty somebody else may have cleared out the zone */
2049 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2050 first_init_pfn))
2051 goto zone_empty;
7e18adb4 2052
ecd09650 2053 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2054
117003c3 2055 while (spfn < epfn) {
e4443149
DJ
2056 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2057 struct padata_mt_job job = {
2058 .thread_fn = deferred_init_memmap_chunk,
2059 .fn_arg = zone,
2060 .start = spfn,
2061 .size = epfn_align - spfn,
2062 .align = PAGES_PER_SECTION,
2063 .min_chunk = PAGES_PER_SECTION,
2064 .max_threads = max_threads,
2065 };
2066
2067 padata_do_multithreaded(&job);
2068 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2069 epfn_align);
117003c3 2070 }
0e56acae 2071zone_empty:
7e18adb4
MG
2072 /* Sanity check that the next zone really is unpopulated */
2073 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2074
89c7c402
DJ
2075 pr_info("node %d deferred pages initialised in %ums\n",
2076 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2077
2078 pgdat_init_report_one_done();
0e1cc95b
MG
2079 return 0;
2080}
c9e97a19 2081
c9e97a19
PT
2082/*
2083 * If this zone has deferred pages, try to grow it by initializing enough
2084 * deferred pages to satisfy the allocation specified by order, rounded up to
2085 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2086 * of SECTION_SIZE bytes by initializing struct pages in increments of
2087 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2088 *
2089 * Return true when zone was grown, otherwise return false. We return true even
2090 * when we grow less than requested, to let the caller decide if there are
2091 * enough pages to satisfy the allocation.
2092 *
2093 * Note: We use noinline because this function is needed only during boot, and
2094 * it is called from a __ref function _deferred_grow_zone. This way we are
2095 * making sure that it is not inlined into permanent text section.
2096 */
2097static noinline bool __init
2098deferred_grow_zone(struct zone *zone, unsigned int order)
2099{
c9e97a19 2100 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2101 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2102 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2103 unsigned long spfn, epfn, flags;
2104 unsigned long nr_pages = 0;
c9e97a19
PT
2105 u64 i;
2106
2107 /* Only the last zone may have deferred pages */
2108 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2109 return false;
2110
2111 pgdat_resize_lock(pgdat, &flags);
2112
c9e97a19
PT
2113 /*
2114 * If someone grew this zone while we were waiting for spinlock, return
2115 * true, as there might be enough pages already.
2116 */
2117 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2118 pgdat_resize_unlock(pgdat, &flags);
2119 return true;
2120 }
2121
0e56acae
AD
2122 /* If the zone is empty somebody else may have cleared out the zone */
2123 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2124 first_deferred_pfn)) {
2125 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2126 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2127 /* Retry only once. */
2128 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2129 }
2130
0e56acae
AD
2131 /*
2132 * Initialize and free pages in MAX_ORDER sized increments so
2133 * that we can avoid introducing any issues with the buddy
2134 * allocator.
2135 */
2136 while (spfn < epfn) {
2137 /* update our first deferred PFN for this section */
2138 first_deferred_pfn = spfn;
2139
2140 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2141 touch_nmi_watchdog();
c9e97a19 2142
0e56acae
AD
2143 /* We should only stop along section boundaries */
2144 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2145 continue;
c9e97a19 2146
0e56acae 2147 /* If our quota has been met we can stop here */
c9e97a19
PT
2148 if (nr_pages >= nr_pages_needed)
2149 break;
2150 }
2151
0e56acae 2152 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2153 pgdat_resize_unlock(pgdat, &flags);
2154
2155 return nr_pages > 0;
2156}
2157
2158/*
2159 * deferred_grow_zone() is __init, but it is called from
2160 * get_page_from_freelist() during early boot until deferred_pages permanently
2161 * disables this call. This is why we have refdata wrapper to avoid warning,
2162 * and to ensure that the function body gets unloaded.
2163 */
2164static bool __ref
2165_deferred_grow_zone(struct zone *zone, unsigned int order)
2166{
2167 return deferred_grow_zone(zone, order);
2168}
2169
7cf91a98 2170#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2171
2172void __init page_alloc_init_late(void)
2173{
7cf91a98 2174 struct zone *zone;
e900a918 2175 int nid;
7cf91a98
JK
2176
2177#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2178
d3cd131d
NS
2179 /* There will be num_node_state(N_MEMORY) threads */
2180 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2181 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2182 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2183 }
2184
2185 /* Block until all are initialised */
d3cd131d 2186 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2187
c9e97a19
PT
2188 /*
2189 * We initialized the rest of the deferred pages. Permanently disable
2190 * on-demand struct page initialization.
2191 */
2192 static_branch_disable(&deferred_pages);
2193
4248b0da
MG
2194 /* Reinit limits that are based on free pages after the kernel is up */
2195 files_maxfiles_init();
7cf91a98 2196#endif
350e88ba 2197
ba8f3587
LF
2198 buffer_init();
2199
3010f876
PT
2200 /* Discard memblock private memory */
2201 memblock_discard();
7cf91a98 2202
e900a918
DW
2203 for_each_node_state(nid, N_MEMORY)
2204 shuffle_free_memory(NODE_DATA(nid));
2205
7cf91a98
JK
2206 for_each_populated_zone(zone)
2207 set_zone_contiguous(zone);
7e18adb4 2208}
7e18adb4 2209
47118af0 2210#ifdef CONFIG_CMA
9cf510a5 2211/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2212void __init init_cma_reserved_pageblock(struct page *page)
2213{
2214 unsigned i = pageblock_nr_pages;
2215 struct page *p = page;
2216
2217 do {
2218 __ClearPageReserved(p);
2219 set_page_count(p, 0);
d883c6cf 2220 } while (++p, --i);
47118af0 2221
47118af0 2222 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2223 set_page_refcounted(page);
2224 __free_pages(page, pageblock_order);
dc78327c 2225
3dcc0571 2226 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2227 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2228}
2229#endif
1da177e4
LT
2230
2231/*
2232 * The order of subdivision here is critical for the IO subsystem.
2233 * Please do not alter this order without good reasons and regression
2234 * testing. Specifically, as large blocks of memory are subdivided,
2235 * the order in which smaller blocks are delivered depends on the order
2236 * they're subdivided in this function. This is the primary factor
2237 * influencing the order in which pages are delivered to the IO
2238 * subsystem according to empirical testing, and this is also justified
2239 * by considering the behavior of a buddy system containing a single
2240 * large block of memory acted on by a series of small allocations.
2241 * This behavior is a critical factor in sglist merging's success.
2242 *
6d49e352 2243 * -- nyc
1da177e4 2244 */
085cc7d5 2245static inline void expand(struct zone *zone, struct page *page,
6ab01363 2246 int low, int high, int migratetype)
1da177e4
LT
2247{
2248 unsigned long size = 1 << high;
2249
2250 while (high > low) {
1da177e4
LT
2251 high--;
2252 size >>= 1;
309381fe 2253 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2254
acbc15a4
JK
2255 /*
2256 * Mark as guard pages (or page), that will allow to
2257 * merge back to allocator when buddy will be freed.
2258 * Corresponding page table entries will not be touched,
2259 * pages will stay not present in virtual address space
2260 */
2261 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2262 continue;
acbc15a4 2263
6ab01363 2264 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2265 set_buddy_order(&page[size], high);
1da177e4 2266 }
1da177e4
LT
2267}
2268
4e611801 2269static void check_new_page_bad(struct page *page)
1da177e4 2270{
f4c18e6f 2271 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2272 /* Don't complain about hwpoisoned pages */
2273 page_mapcount_reset(page); /* remove PageBuddy */
2274 return;
f4c18e6f 2275 }
58b7f119
WY
2276
2277 bad_page(page,
2278 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2279}
2280
2281/*
2282 * This page is about to be returned from the page allocator
2283 */
2284static inline int check_new_page(struct page *page)
2285{
2286 if (likely(page_expected_state(page,
2287 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2288 return 0;
2289
2290 check_new_page_bad(page);
2291 return 1;
2a7684a2
WF
2292}
2293
479f854a 2294#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2295/*
2296 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2297 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2298 * also checked when pcp lists are refilled from the free lists.
2299 */
2300static inline bool check_pcp_refill(struct page *page)
479f854a 2301{
8e57f8ac 2302 if (debug_pagealloc_enabled_static())
4462b32c
VB
2303 return check_new_page(page);
2304 else
2305 return false;
479f854a
MG
2306}
2307
4462b32c 2308static inline bool check_new_pcp(struct page *page)
479f854a
MG
2309{
2310 return check_new_page(page);
2311}
2312#else
4462b32c
VB
2313/*
2314 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2315 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2316 * enabled, they are also checked when being allocated from the pcp lists.
2317 */
2318static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2319{
2320 return check_new_page(page);
2321}
4462b32c 2322static inline bool check_new_pcp(struct page *page)
479f854a 2323{
8e57f8ac 2324 if (debug_pagealloc_enabled_static())
4462b32c
VB
2325 return check_new_page(page);
2326 else
2327 return false;
479f854a
MG
2328}
2329#endif /* CONFIG_DEBUG_VM */
2330
2331static bool check_new_pages(struct page *page, unsigned int order)
2332{
2333 int i;
2334 for (i = 0; i < (1 << order); i++) {
2335 struct page *p = page + i;
2336
2337 if (unlikely(check_new_page(p)))
2338 return true;
2339 }
2340
2341 return false;
2342}
2343
46f24fd8
JK
2344inline void post_alloc_hook(struct page *page, unsigned int order,
2345 gfp_t gfp_flags)
2346{
2347 set_page_private(page, 0);
2348 set_page_refcounted(page);
2349
2350 arch_alloc_page(page, order);
77bc7fd6 2351 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2352
2353 /*
2354 * Page unpoisoning must happen before memory initialization.
2355 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2356 * allocations and the page unpoisoning code will complain.
2357 */
8db26a3d 2358 kernel_unpoison_pages(page, 1 << order);
862b6dee 2359
1bb5eab3
AK
2360 /*
2361 * As memory initialization might be integrated into KASAN,
2362 * kasan_alloc_pages and kernel_init_free_pages must be
2363 * kept together to avoid discrepancies in behavior.
2364 */
7a3b8353
PC
2365 if (kasan_has_integrated_init()) {
2366 kasan_alloc_pages(page, order, gfp_flags);
2367 } else {
2368 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2369
2370 kasan_unpoison_pages(page, order, init);
2371 if (init)
013bb59d
PC
2372 kernel_init_free_pages(page, 1 << order,
2373 gfp_flags & __GFP_ZEROTAGS);
7a3b8353 2374 }
1bb5eab3
AK
2375
2376 set_page_owner(page, order, gfp_flags);
df4e817b 2377 page_table_check_alloc(page, order);
46f24fd8
JK
2378}
2379
479f854a 2380static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2381 unsigned int alloc_flags)
2a7684a2 2382{
46f24fd8 2383 post_alloc_hook(page, order, gfp_flags);
17cf4406 2384
17cf4406
NP
2385 if (order && (gfp_flags & __GFP_COMP))
2386 prep_compound_page(page, order);
2387
75379191 2388 /*
2f064f34 2389 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2390 * allocate the page. The expectation is that the caller is taking
2391 * steps that will free more memory. The caller should avoid the page
2392 * being used for !PFMEMALLOC purposes.
2393 */
2f064f34
MH
2394 if (alloc_flags & ALLOC_NO_WATERMARKS)
2395 set_page_pfmemalloc(page);
2396 else
2397 clear_page_pfmemalloc(page);
1da177e4
LT
2398}
2399
56fd56b8
MG
2400/*
2401 * Go through the free lists for the given migratetype and remove
2402 * the smallest available page from the freelists
2403 */
85ccc8fa 2404static __always_inline
728ec980 2405struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2406 int migratetype)
2407{
2408 unsigned int current_order;
b8af2941 2409 struct free_area *area;
56fd56b8
MG
2410 struct page *page;
2411
2412 /* Find a page of the appropriate size in the preferred list */
2413 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2414 area = &(zone->free_area[current_order]);
b03641af 2415 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2416 if (!page)
2417 continue;
6ab01363
AD
2418 del_page_from_free_list(page, zone, current_order);
2419 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2420 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2421 return page;
2422 }
2423
2424 return NULL;
2425}
2426
2427
b2a0ac88
MG
2428/*
2429 * This array describes the order lists are fallen back to when
2430 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2431 *
2432 * The other migratetypes do not have fallbacks.
b2a0ac88 2433 */
da415663 2434static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2435 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2436 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2437 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2438};
2439
dc67647b 2440#ifdef CONFIG_CMA
85ccc8fa 2441static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2442 unsigned int order)
2443{
2444 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2445}
2446#else
2447static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2448 unsigned int order) { return NULL; }
2449#endif
2450
c361be55 2451/*
293ffa5e 2452 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2453 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2454 * boundary. If alignment is required, use move_freepages_block()
2455 */
02aa0cdd 2456static int move_freepages(struct zone *zone,
39ddb991 2457 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2458 int migratetype, int *num_movable)
c361be55
MG
2459{
2460 struct page *page;
39ddb991 2461 unsigned long pfn;
d00181b9 2462 unsigned int order;
d100313f 2463 int pages_moved = 0;
c361be55 2464
39ddb991 2465 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2466 page = pfn_to_page(pfn);
c361be55 2467 if (!PageBuddy(page)) {
02aa0cdd
VB
2468 /*
2469 * We assume that pages that could be isolated for
2470 * migration are movable. But we don't actually try
2471 * isolating, as that would be expensive.
2472 */
2473 if (num_movable &&
2474 (PageLRU(page) || __PageMovable(page)))
2475 (*num_movable)++;
39ddb991 2476 pfn++;
c361be55
MG
2477 continue;
2478 }
2479
cd961038
DR
2480 /* Make sure we are not inadvertently changing nodes */
2481 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2482 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2483
ab130f91 2484 order = buddy_order(page);
6ab01363 2485 move_to_free_list(page, zone, order, migratetype);
39ddb991 2486 pfn += 1 << order;
d100313f 2487 pages_moved += 1 << order;
c361be55
MG
2488 }
2489
d100313f 2490 return pages_moved;
c361be55
MG
2491}
2492
ee6f509c 2493int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2494 int migratetype, int *num_movable)
c361be55 2495{
39ddb991 2496 unsigned long start_pfn, end_pfn, pfn;
c361be55 2497
4a222127
DR
2498 if (num_movable)
2499 *num_movable = 0;
2500
39ddb991
KW
2501 pfn = page_to_pfn(page);
2502 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2503 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2504
2505 /* Do not cross zone boundaries */
108bcc96 2506 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2507 start_pfn = pfn;
108bcc96 2508 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2509 return 0;
2510
39ddb991 2511 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2512 num_movable);
c361be55
MG
2513}
2514
2f66a68f
MG
2515static void change_pageblock_range(struct page *pageblock_page,
2516 int start_order, int migratetype)
2517{
2518 int nr_pageblocks = 1 << (start_order - pageblock_order);
2519
2520 while (nr_pageblocks--) {
2521 set_pageblock_migratetype(pageblock_page, migratetype);
2522 pageblock_page += pageblock_nr_pages;
2523 }
2524}
2525
fef903ef 2526/*
9c0415eb
VB
2527 * When we are falling back to another migratetype during allocation, try to
2528 * steal extra free pages from the same pageblocks to satisfy further
2529 * allocations, instead of polluting multiple pageblocks.
2530 *
2531 * If we are stealing a relatively large buddy page, it is likely there will
2532 * be more free pages in the pageblock, so try to steal them all. For
2533 * reclaimable and unmovable allocations, we steal regardless of page size,
2534 * as fragmentation caused by those allocations polluting movable pageblocks
2535 * is worse than movable allocations stealing from unmovable and reclaimable
2536 * pageblocks.
fef903ef 2537 */
4eb7dce6
JK
2538static bool can_steal_fallback(unsigned int order, int start_mt)
2539{
2540 /*
2541 * Leaving this order check is intended, although there is
2542 * relaxed order check in next check. The reason is that
2543 * we can actually steal whole pageblock if this condition met,
2544 * but, below check doesn't guarantee it and that is just heuristic
2545 * so could be changed anytime.
2546 */
2547 if (order >= pageblock_order)
2548 return true;
2549
2550 if (order >= pageblock_order / 2 ||
2551 start_mt == MIGRATE_RECLAIMABLE ||
2552 start_mt == MIGRATE_UNMOVABLE ||
2553 page_group_by_mobility_disabled)
2554 return true;
2555
2556 return false;
2557}
2558
597c8920 2559static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2560{
2561 unsigned long max_boost;
2562
2563 if (!watermark_boost_factor)
597c8920 2564 return false;
14f69140
HW
2565 /*
2566 * Don't bother in zones that are unlikely to produce results.
2567 * On small machines, including kdump capture kernels running
2568 * in a small area, boosting the watermark can cause an out of
2569 * memory situation immediately.
2570 */
2571 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2572 return false;
1c30844d
MG
2573
2574 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2575 watermark_boost_factor, 10000);
94b3334c
MG
2576
2577 /*
2578 * high watermark may be uninitialised if fragmentation occurs
2579 * very early in boot so do not boost. We do not fall
2580 * through and boost by pageblock_nr_pages as failing
2581 * allocations that early means that reclaim is not going
2582 * to help and it may even be impossible to reclaim the
2583 * boosted watermark resulting in a hang.
2584 */
2585 if (!max_boost)
597c8920 2586 return false;
94b3334c 2587
1c30844d
MG
2588 max_boost = max(pageblock_nr_pages, max_boost);
2589
2590 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2591 max_boost);
597c8920
JW
2592
2593 return true;
1c30844d
MG
2594}
2595
4eb7dce6
JK
2596/*
2597 * This function implements actual steal behaviour. If order is large enough,
2598 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2599 * pageblock to our migratetype and determine how many already-allocated pages
2600 * are there in the pageblock with a compatible migratetype. If at least half
2601 * of pages are free or compatible, we can change migratetype of the pageblock
2602 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2603 */
2604static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2605 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2606{
ab130f91 2607 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2608 int free_pages, movable_pages, alike_pages;
2609 int old_block_type;
2610
2611 old_block_type = get_pageblock_migratetype(page);
fef903ef 2612
3bc48f96
VB
2613 /*
2614 * This can happen due to races and we want to prevent broken
2615 * highatomic accounting.
2616 */
02aa0cdd 2617 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2618 goto single_page;
2619
fef903ef
SB
2620 /* Take ownership for orders >= pageblock_order */
2621 if (current_order >= pageblock_order) {
2622 change_pageblock_range(page, current_order, start_type);
3bc48f96 2623 goto single_page;
fef903ef
SB
2624 }
2625
1c30844d
MG
2626 /*
2627 * Boost watermarks to increase reclaim pressure to reduce the
2628 * likelihood of future fallbacks. Wake kswapd now as the node
2629 * may be balanced overall and kswapd will not wake naturally.
2630 */
597c8920 2631 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2632 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2633
3bc48f96
VB
2634 /* We are not allowed to try stealing from the whole block */
2635 if (!whole_block)
2636 goto single_page;
2637
02aa0cdd
VB
2638 free_pages = move_freepages_block(zone, page, start_type,
2639 &movable_pages);
2640 /*
2641 * Determine how many pages are compatible with our allocation.
2642 * For movable allocation, it's the number of movable pages which
2643 * we just obtained. For other types it's a bit more tricky.
2644 */
2645 if (start_type == MIGRATE_MOVABLE) {
2646 alike_pages = movable_pages;
2647 } else {
2648 /*
2649 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2650 * to MOVABLE pageblock, consider all non-movable pages as
2651 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2652 * vice versa, be conservative since we can't distinguish the
2653 * exact migratetype of non-movable pages.
2654 */
2655 if (old_block_type == MIGRATE_MOVABLE)
2656 alike_pages = pageblock_nr_pages
2657 - (free_pages + movable_pages);
2658 else
2659 alike_pages = 0;
2660 }
2661
3bc48f96 2662 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2663 if (!free_pages)
3bc48f96 2664 goto single_page;
fef903ef 2665
02aa0cdd
VB
2666 /*
2667 * If a sufficient number of pages in the block are either free or of
2668 * comparable migratability as our allocation, claim the whole block.
2669 */
2670 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2671 page_group_by_mobility_disabled)
2672 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2673
2674 return;
2675
2676single_page:
6ab01363 2677 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2678}
2679
2149cdae
JK
2680/*
2681 * Check whether there is a suitable fallback freepage with requested order.
2682 * If only_stealable is true, this function returns fallback_mt only if
2683 * we can steal other freepages all together. This would help to reduce
2684 * fragmentation due to mixed migratetype pages in one pageblock.
2685 */
2686int find_suitable_fallback(struct free_area *area, unsigned int order,
2687 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2688{
2689 int i;
2690 int fallback_mt;
2691
2692 if (area->nr_free == 0)
2693 return -1;
2694
2695 *can_steal = false;
2696 for (i = 0;; i++) {
2697 fallback_mt = fallbacks[migratetype][i];
974a786e 2698 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2699 break;
2700
b03641af 2701 if (free_area_empty(area, fallback_mt))
4eb7dce6 2702 continue;
fef903ef 2703
4eb7dce6
JK
2704 if (can_steal_fallback(order, migratetype))
2705 *can_steal = true;
2706
2149cdae
JK
2707 if (!only_stealable)
2708 return fallback_mt;
2709
2710 if (*can_steal)
2711 return fallback_mt;
fef903ef 2712 }
4eb7dce6
JK
2713
2714 return -1;
fef903ef
SB
2715}
2716
0aaa29a5
MG
2717/*
2718 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2719 * there are no empty page blocks that contain a page with a suitable order
2720 */
2721static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2722 unsigned int alloc_order)
2723{
2724 int mt;
2725 unsigned long max_managed, flags;
2726
2727 /*
2728 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2729 * Check is race-prone but harmless.
2730 */
9705bea5 2731 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2732 if (zone->nr_reserved_highatomic >= max_managed)
2733 return;
2734
2735 spin_lock_irqsave(&zone->lock, flags);
2736
2737 /* Recheck the nr_reserved_highatomic limit under the lock */
2738 if (zone->nr_reserved_highatomic >= max_managed)
2739 goto out_unlock;
2740
2741 /* Yoink! */
2742 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2743 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2744 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2745 zone->nr_reserved_highatomic += pageblock_nr_pages;
2746 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2747 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2748 }
2749
2750out_unlock:
2751 spin_unlock_irqrestore(&zone->lock, flags);
2752}
2753
2754/*
2755 * Used when an allocation is about to fail under memory pressure. This
2756 * potentially hurts the reliability of high-order allocations when under
2757 * intense memory pressure but failed atomic allocations should be easier
2758 * to recover from than an OOM.
29fac03b
MK
2759 *
2760 * If @force is true, try to unreserve a pageblock even though highatomic
2761 * pageblock is exhausted.
0aaa29a5 2762 */
29fac03b
MK
2763static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2764 bool force)
0aaa29a5
MG
2765{
2766 struct zonelist *zonelist = ac->zonelist;
2767 unsigned long flags;
2768 struct zoneref *z;
2769 struct zone *zone;
2770 struct page *page;
2771 int order;
04c8716f 2772 bool ret;
0aaa29a5 2773
97a225e6 2774 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2775 ac->nodemask) {
29fac03b
MK
2776 /*
2777 * Preserve at least one pageblock unless memory pressure
2778 * is really high.
2779 */
2780 if (!force && zone->nr_reserved_highatomic <=
2781 pageblock_nr_pages)
0aaa29a5
MG
2782 continue;
2783
2784 spin_lock_irqsave(&zone->lock, flags);
2785 for (order = 0; order < MAX_ORDER; order++) {
2786 struct free_area *area = &(zone->free_area[order]);
2787
b03641af 2788 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2789 if (!page)
0aaa29a5
MG
2790 continue;
2791
0aaa29a5 2792 /*
4855e4a7
MK
2793 * In page freeing path, migratetype change is racy so
2794 * we can counter several free pages in a pageblock
f0953a1b 2795 * in this loop although we changed the pageblock type
4855e4a7
MK
2796 * from highatomic to ac->migratetype. So we should
2797 * adjust the count once.
0aaa29a5 2798 */
a6ffdc07 2799 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2800 /*
2801 * It should never happen but changes to
2802 * locking could inadvertently allow a per-cpu
2803 * drain to add pages to MIGRATE_HIGHATOMIC
2804 * while unreserving so be safe and watch for
2805 * underflows.
2806 */
2807 zone->nr_reserved_highatomic -= min(
2808 pageblock_nr_pages,
2809 zone->nr_reserved_highatomic);
2810 }
0aaa29a5
MG
2811
2812 /*
2813 * Convert to ac->migratetype and avoid the normal
2814 * pageblock stealing heuristics. Minimally, the caller
2815 * is doing the work and needs the pages. More
2816 * importantly, if the block was always converted to
2817 * MIGRATE_UNMOVABLE or another type then the number
2818 * of pageblocks that cannot be completely freed
2819 * may increase.
2820 */
2821 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2822 ret = move_freepages_block(zone, page, ac->migratetype,
2823 NULL);
29fac03b
MK
2824 if (ret) {
2825 spin_unlock_irqrestore(&zone->lock, flags);
2826 return ret;
2827 }
0aaa29a5
MG
2828 }
2829 spin_unlock_irqrestore(&zone->lock, flags);
2830 }
04c8716f
MK
2831
2832 return false;
0aaa29a5
MG
2833}
2834
3bc48f96
VB
2835/*
2836 * Try finding a free buddy page on the fallback list and put it on the free
2837 * list of requested migratetype, possibly along with other pages from the same
2838 * block, depending on fragmentation avoidance heuristics. Returns true if
2839 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2840 *
2841 * The use of signed ints for order and current_order is a deliberate
2842 * deviation from the rest of this file, to make the for loop
2843 * condition simpler.
3bc48f96 2844 */
85ccc8fa 2845static __always_inline bool
6bb15450
MG
2846__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2847 unsigned int alloc_flags)
b2a0ac88 2848{
b8af2941 2849 struct free_area *area;
b002529d 2850 int current_order;
6bb15450 2851 int min_order = order;
b2a0ac88 2852 struct page *page;
4eb7dce6
JK
2853 int fallback_mt;
2854 bool can_steal;
b2a0ac88 2855
6bb15450
MG
2856 /*
2857 * Do not steal pages from freelists belonging to other pageblocks
2858 * i.e. orders < pageblock_order. If there are no local zones free,
2859 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2860 */
2861 if (alloc_flags & ALLOC_NOFRAGMENT)
2862 min_order = pageblock_order;
2863
7a8f58f3
VB
2864 /*
2865 * Find the largest available free page in the other list. This roughly
2866 * approximates finding the pageblock with the most free pages, which
2867 * would be too costly to do exactly.
2868 */
6bb15450 2869 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2870 --current_order) {
4eb7dce6
JK
2871 area = &(zone->free_area[current_order]);
2872 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2873 start_migratetype, false, &can_steal);
4eb7dce6
JK
2874 if (fallback_mt == -1)
2875 continue;
b2a0ac88 2876
7a8f58f3
VB
2877 /*
2878 * We cannot steal all free pages from the pageblock and the
2879 * requested migratetype is movable. In that case it's better to
2880 * steal and split the smallest available page instead of the
2881 * largest available page, because even if the next movable
2882 * allocation falls back into a different pageblock than this
2883 * one, it won't cause permanent fragmentation.
2884 */
2885 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2886 && current_order > order)
2887 goto find_smallest;
b2a0ac88 2888
7a8f58f3
VB
2889 goto do_steal;
2890 }
e0fff1bd 2891
7a8f58f3 2892 return false;
e0fff1bd 2893
7a8f58f3
VB
2894find_smallest:
2895 for (current_order = order; current_order < MAX_ORDER;
2896 current_order++) {
2897 area = &(zone->free_area[current_order]);
2898 fallback_mt = find_suitable_fallback(area, current_order,
2899 start_migratetype, false, &can_steal);
2900 if (fallback_mt != -1)
2901 break;
b2a0ac88
MG
2902 }
2903
7a8f58f3
VB
2904 /*
2905 * This should not happen - we already found a suitable fallback
2906 * when looking for the largest page.
2907 */
2908 VM_BUG_ON(current_order == MAX_ORDER);
2909
2910do_steal:
b03641af 2911 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2912
1c30844d
MG
2913 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2914 can_steal);
7a8f58f3
VB
2915
2916 trace_mm_page_alloc_extfrag(page, order, current_order,
2917 start_migratetype, fallback_mt);
2918
2919 return true;
2920
b2a0ac88
MG
2921}
2922
56fd56b8 2923/*
1da177e4
LT
2924 * Do the hard work of removing an element from the buddy allocator.
2925 * Call me with the zone->lock already held.
2926 */
85ccc8fa 2927static __always_inline struct page *
6bb15450
MG
2928__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2929 unsigned int alloc_flags)
1da177e4 2930{
1da177e4
LT
2931 struct page *page;
2932
ce8f86ee
H
2933 if (IS_ENABLED(CONFIG_CMA)) {
2934 /*
2935 * Balance movable allocations between regular and CMA areas by
2936 * allocating from CMA when over half of the zone's free memory
2937 * is in the CMA area.
2938 */
2939 if (alloc_flags & ALLOC_CMA &&
2940 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2941 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2942 page = __rmqueue_cma_fallback(zone, order);
2943 if (page)
2944 goto out;
2945 }
16867664 2946 }
3bc48f96 2947retry:
56fd56b8 2948 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2949 if (unlikely(!page)) {
8510e69c 2950 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2951 page = __rmqueue_cma_fallback(zone, order);
2952
6bb15450
MG
2953 if (!page && __rmqueue_fallback(zone, order, migratetype,
2954 alloc_flags))
3bc48f96 2955 goto retry;
728ec980 2956 }
ce8f86ee
H
2957out:
2958 if (page)
2959 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2960 return page;
1da177e4
LT
2961}
2962
5f63b720 2963/*
1da177e4
LT
2964 * Obtain a specified number of elements from the buddy allocator, all under
2965 * a single hold of the lock, for efficiency. Add them to the supplied list.
2966 * Returns the number of new pages which were placed at *list.
2967 */
5f63b720 2968static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2969 unsigned long count, struct list_head *list,
6bb15450 2970 int migratetype, unsigned int alloc_flags)
1da177e4 2971{
cb66bede 2972 int i, allocated = 0;
5f63b720 2973
dbbee9d5
MG
2974 /*
2975 * local_lock_irq held so equivalent to spin_lock_irqsave for
2976 * both PREEMPT_RT and non-PREEMPT_RT configurations.
2977 */
d34b0733 2978 spin_lock(&zone->lock);
1da177e4 2979 for (i = 0; i < count; ++i) {
6bb15450
MG
2980 struct page *page = __rmqueue(zone, order, migratetype,
2981 alloc_flags);
085cc7d5 2982 if (unlikely(page == NULL))
1da177e4 2983 break;
81eabcbe 2984
479f854a
MG
2985 if (unlikely(check_pcp_refill(page)))
2986 continue;
2987
81eabcbe 2988 /*
0fac3ba5
VB
2989 * Split buddy pages returned by expand() are received here in
2990 * physical page order. The page is added to the tail of
2991 * caller's list. From the callers perspective, the linked list
2992 * is ordered by page number under some conditions. This is
2993 * useful for IO devices that can forward direction from the
2994 * head, thus also in the physical page order. This is useful
2995 * for IO devices that can merge IO requests if the physical
2996 * pages are ordered properly.
81eabcbe 2997 */
0fac3ba5 2998 list_add_tail(&page->lru, list);
cb66bede 2999 allocated++;
bb14c2c7 3000 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3001 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3002 -(1 << order));
1da177e4 3003 }
a6de734b
MG
3004
3005 /*
3006 * i pages were removed from the buddy list even if some leak due
3007 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3008 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3009 * pages added to the pcp list.
3010 */
f2260e6b 3011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3012 spin_unlock(&zone->lock);
cb66bede 3013 return allocated;
1da177e4
LT
3014}
3015
4ae7c039 3016#ifdef CONFIG_NUMA
8fce4d8e 3017/*
4037d452
CL
3018 * Called from the vmstat counter updater to drain pagesets of this
3019 * currently executing processor on remote nodes after they have
3020 * expired.
3021 *
879336c3
CL
3022 * Note that this function must be called with the thread pinned to
3023 * a single processor.
8fce4d8e 3024 */
4037d452 3025void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3026{
4ae7c039 3027 unsigned long flags;
7be12fc9 3028 int to_drain, batch;
4ae7c039 3029
dbbee9d5 3030 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3031 batch = READ_ONCE(pcp->batch);
7be12fc9 3032 to_drain = min(pcp->count, batch);
77ba9062 3033 if (to_drain > 0)
fd56eef2 3034 free_pcppages_bulk(zone, to_drain, pcp, 0);
dbbee9d5 3035 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3036}
3037#endif
3038
9f8f2172 3039/*
93481ff0 3040 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3041 *
3042 * The processor must either be the current processor and the
3043 * thread pinned to the current processor or a processor that
3044 * is not online.
3045 */
93481ff0 3046static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3047{
c54ad30c 3048 unsigned long flags;
93481ff0 3049 struct per_cpu_pages *pcp;
1da177e4 3050
dbbee9d5 3051 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3052
28f836b6 3053 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3054 if (pcp->count)
fd56eef2 3055 free_pcppages_bulk(zone, pcp->count, pcp, 0);
28f836b6 3056
dbbee9d5 3057 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3058}
3dfa5721 3059
93481ff0
VB
3060/*
3061 * Drain pcplists of all zones on the indicated processor.
3062 *
3063 * The processor must either be the current processor and the
3064 * thread pinned to the current processor or a processor that
3065 * is not online.
3066 */
3067static void drain_pages(unsigned int cpu)
3068{
3069 struct zone *zone;
3070
3071 for_each_populated_zone(zone) {
3072 drain_pages_zone(cpu, zone);
1da177e4
LT
3073 }
3074}
1da177e4 3075
9f8f2172
CL
3076/*
3077 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3078 *
3079 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3080 * the single zone's pages.
9f8f2172 3081 */
93481ff0 3082void drain_local_pages(struct zone *zone)
9f8f2172 3083{
93481ff0
VB
3084 int cpu = smp_processor_id();
3085
3086 if (zone)
3087 drain_pages_zone(cpu, zone);
3088 else
3089 drain_pages(cpu);
9f8f2172
CL
3090}
3091
0ccce3b9
MG
3092static void drain_local_pages_wq(struct work_struct *work)
3093{
d9367bd0
WY
3094 struct pcpu_drain *drain;
3095
3096 drain = container_of(work, struct pcpu_drain, work);
3097
a459eeb7
MH
3098 /*
3099 * drain_all_pages doesn't use proper cpu hotplug protection so
3100 * we can race with cpu offline when the WQ can move this from
3101 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3102 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3103 * a different one.
3104 */
9c25cbfc 3105 migrate_disable();
d9367bd0 3106 drain_local_pages(drain->zone);
9c25cbfc 3107 migrate_enable();
0ccce3b9
MG
3108}
3109
9f8f2172 3110/*
ec6e8c7e
VB
3111 * The implementation of drain_all_pages(), exposing an extra parameter to
3112 * drain on all cpus.
93481ff0 3113 *
ec6e8c7e
VB
3114 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3115 * not empty. The check for non-emptiness can however race with a free to
3116 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3117 * that need the guarantee that every CPU has drained can disable the
3118 * optimizing racy check.
9f8f2172 3119 */
3b1f3658 3120static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3121{
74046494 3122 int cpu;
74046494
GBY
3123
3124 /*
041711ce 3125 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3126 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3127 */
3128 static cpumask_t cpus_with_pcps;
3129
ce612879
MH
3130 /*
3131 * Make sure nobody triggers this path before mm_percpu_wq is fully
3132 * initialized.
3133 */
3134 if (WARN_ON_ONCE(!mm_percpu_wq))
3135 return;
3136
bd233f53
MG
3137 /*
3138 * Do not drain if one is already in progress unless it's specific to
3139 * a zone. Such callers are primarily CMA and memory hotplug and need
3140 * the drain to be complete when the call returns.
3141 */
3142 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3143 if (!zone)
3144 return;
3145 mutex_lock(&pcpu_drain_mutex);
3146 }
0ccce3b9 3147
74046494
GBY
3148 /*
3149 * We don't care about racing with CPU hotplug event
3150 * as offline notification will cause the notified
3151 * cpu to drain that CPU pcps and on_each_cpu_mask
3152 * disables preemption as part of its processing
3153 */
3154 for_each_online_cpu(cpu) {
28f836b6 3155 struct per_cpu_pages *pcp;
93481ff0 3156 struct zone *z;
74046494 3157 bool has_pcps = false;
93481ff0 3158
ec6e8c7e
VB
3159 if (force_all_cpus) {
3160 /*
3161 * The pcp.count check is racy, some callers need a
3162 * guarantee that no cpu is missed.
3163 */
3164 has_pcps = true;
3165 } else if (zone) {
28f836b6
MG
3166 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3167 if (pcp->count)
74046494 3168 has_pcps = true;
93481ff0
VB
3169 } else {
3170 for_each_populated_zone(z) {
28f836b6
MG
3171 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3172 if (pcp->count) {
93481ff0
VB
3173 has_pcps = true;
3174 break;
3175 }
74046494
GBY
3176 }
3177 }
93481ff0 3178
74046494
GBY
3179 if (has_pcps)
3180 cpumask_set_cpu(cpu, &cpus_with_pcps);
3181 else
3182 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3183 }
0ccce3b9 3184
bd233f53 3185 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3186 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3187
3188 drain->zone = zone;
3189 INIT_WORK(&drain->work, drain_local_pages_wq);
3190 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3191 }
bd233f53 3192 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3193 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3194
3195 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3196}
3197
ec6e8c7e
VB
3198/*
3199 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3200 *
3201 * When zone parameter is non-NULL, spill just the single zone's pages.
3202 *
3203 * Note that this can be extremely slow as the draining happens in a workqueue.
3204 */
3205void drain_all_pages(struct zone *zone)
3206{
3207 __drain_all_pages(zone, false);
3208}
3209
296699de 3210#ifdef CONFIG_HIBERNATION
1da177e4 3211
556b969a
CY
3212/*
3213 * Touch the watchdog for every WD_PAGE_COUNT pages.
3214 */
3215#define WD_PAGE_COUNT (128*1024)
3216
1da177e4
LT
3217void mark_free_pages(struct zone *zone)
3218{
556b969a 3219 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3220 unsigned long flags;
7aeb09f9 3221 unsigned int order, t;
86760a2c 3222 struct page *page;
1da177e4 3223
8080fc03 3224 if (zone_is_empty(zone))
1da177e4
LT
3225 return;
3226
3227 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3228
108bcc96 3229 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3230 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3231 if (pfn_valid(pfn)) {
86760a2c 3232 page = pfn_to_page(pfn);
ba6b0979 3233
556b969a
CY
3234 if (!--page_count) {
3235 touch_nmi_watchdog();
3236 page_count = WD_PAGE_COUNT;
3237 }
3238
ba6b0979
JK
3239 if (page_zone(page) != zone)
3240 continue;
3241
7be98234
RW
3242 if (!swsusp_page_is_forbidden(page))
3243 swsusp_unset_page_free(page);
f623f0db 3244 }
1da177e4 3245
b2a0ac88 3246 for_each_migratetype_order(order, t) {
86760a2c
GT
3247 list_for_each_entry(page,
3248 &zone->free_area[order].free_list[t], lru) {
f623f0db 3249 unsigned long i;
1da177e4 3250
86760a2c 3251 pfn = page_to_pfn(page);
556b969a
CY
3252 for (i = 0; i < (1UL << order); i++) {
3253 if (!--page_count) {
3254 touch_nmi_watchdog();
3255 page_count = WD_PAGE_COUNT;
3256 }
7be98234 3257 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3258 }
f623f0db 3259 }
b2a0ac88 3260 }
1da177e4
LT
3261 spin_unlock_irqrestore(&zone->lock, flags);
3262}
e2c55dc8 3263#endif /* CONFIG_PM */
1da177e4 3264
44042b44
MG
3265static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3266 unsigned int order)
1da177e4 3267{
5f8dcc21 3268 int migratetype;
1da177e4 3269
44042b44 3270 if (!free_pcp_prepare(page, order))
9cca35d4 3271 return false;
689bcebf 3272
dc4b0caf 3273 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3274 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3275 return true;
3276}
3277
f26b3fa0
MG
3278static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3279 bool free_high)
3b12e7e9
MG
3280{
3281 int min_nr_free, max_nr_free;
3282
f26b3fa0
MG
3283 /* Free everything if batch freeing high-order pages. */
3284 if (unlikely(free_high))
3285 return pcp->count;
3286
3b12e7e9
MG
3287 /* Check for PCP disabled or boot pageset */
3288 if (unlikely(high < batch))
3289 return 1;
3290
3291 /* Leave at least pcp->batch pages on the list */
3292 min_nr_free = batch;
3293 max_nr_free = high - batch;
3294
3295 /*
3296 * Double the number of pages freed each time there is subsequent
3297 * freeing of pages without any allocation.
3298 */
3299 batch <<= pcp->free_factor;
3300 if (batch < max_nr_free)
3301 pcp->free_factor++;
3302 batch = clamp(batch, min_nr_free, max_nr_free);
3303
3304 return batch;
3305}
3306
f26b3fa0
MG
3307static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3308 bool free_high)
c49c2c47
MG
3309{
3310 int high = READ_ONCE(pcp->high);
3311
f26b3fa0 3312 if (unlikely(!high || free_high))
c49c2c47
MG
3313 return 0;
3314
3315 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3316 return high;
3317
3318 /*
3319 * If reclaim is active, limit the number of pages that can be
3320 * stored on pcp lists
3321 */
3322 return min(READ_ONCE(pcp->batch) << 2, high);
3323}
3324
56651377
NSJ
3325static void free_unref_page_commit(struct page *page, int migratetype,
3326 unsigned int order)
9cca35d4
MG
3327{
3328 struct zone *zone = page_zone(page);
3329 struct per_cpu_pages *pcp;
3b12e7e9 3330 int high;
44042b44 3331 int pindex;
f26b3fa0 3332 bool free_high;
9cca35d4 3333
d34b0733 3334 __count_vm_event(PGFREE);
28f836b6 3335 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3336 pindex = order_to_pindex(migratetype, order);
3337 list_add(&page->lru, &pcp->lists[pindex]);
3338 pcp->count += 1 << order;
f26b3fa0
MG
3339
3340 /*
3341 * As high-order pages other than THP's stored on PCP can contribute
3342 * to fragmentation, limit the number stored when PCP is heavily
3343 * freeing without allocation. The remainder after bulk freeing
3344 * stops will be drained from vmstat refresh context.
3345 */
3346 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3347
3348 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3349 if (pcp->count >= high) {
3350 int batch = READ_ONCE(pcp->batch);
3351
f26b3fa0 3352 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3353 }
9cca35d4 3354}
5f8dcc21 3355
9cca35d4 3356/*
44042b44 3357 * Free a pcp page
9cca35d4 3358 */
44042b44 3359void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3360{
3361 unsigned long flags;
3362 unsigned long pfn = page_to_pfn(page);
df1acc85 3363 int migratetype;
9cca35d4 3364
44042b44 3365 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3366 return;
da456f14 3367
5f8dcc21
MG
3368 /*
3369 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3370 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3371 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3372 * areas back if necessary. Otherwise, we may have to free
3373 * excessively into the page allocator
3374 */
df1acc85
MG
3375 migratetype = get_pcppage_migratetype(page);
3376 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3377 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3378 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3379 return;
5f8dcc21
MG
3380 }
3381 migratetype = MIGRATE_MOVABLE;
3382 }
3383
dbbee9d5 3384 local_lock_irqsave(&pagesets.lock, flags);
56651377 3385 free_unref_page_commit(page, migratetype, order);
dbbee9d5 3386 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3387}
3388
cc59850e
KK
3389/*
3390 * Free a list of 0-order pages
3391 */
2d4894b5 3392void free_unref_page_list(struct list_head *list)
cc59850e
KK
3393{
3394 struct page *page, *next;
56651377 3395 unsigned long flags;
c24ad77d 3396 int batch_count = 0;
df1acc85 3397 int migratetype;
9cca35d4
MG
3398
3399 /* Prepare pages for freeing */
3400 list_for_each_entry_safe(page, next, list, lru) {
56651377 3401 unsigned long pfn = page_to_pfn(page);
053cfda1 3402 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3403 list_del(&page->lru);
053cfda1
ML
3404 continue;
3405 }
df1acc85
MG
3406
3407 /*
3408 * Free isolated pages directly to the allocator, see
3409 * comment in free_unref_page.
3410 */
3411 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3412 if (unlikely(is_migrate_isolate(migratetype))) {
3413 list_del(&page->lru);
3414 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3415 continue;
df1acc85 3416 }
9cca35d4 3417 }
cc59850e 3418
dbbee9d5 3419 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3420 list_for_each_entry_safe(page, next, list, lru) {
47aef601
DB
3421 /*
3422 * Non-isolated types over MIGRATE_PCPTYPES get added
3423 * to the MIGRATE_MOVABLE pcp list.
3424 */
df1acc85 3425 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3426 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3427 migratetype = MIGRATE_MOVABLE;
3428
2d4894b5 3429 trace_mm_page_free_batched(page);
56651377 3430 free_unref_page_commit(page, migratetype, 0);
c24ad77d
LS
3431
3432 /*
3433 * Guard against excessive IRQ disabled times when we get
3434 * a large list of pages to free.
3435 */
3436 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3437 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3438 batch_count = 0;
dbbee9d5 3439 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3440 }
cc59850e 3441 }
dbbee9d5 3442 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3443}
3444
8dfcc9ba
NP
3445/*
3446 * split_page takes a non-compound higher-order page, and splits it into
3447 * n (1<<order) sub-pages: page[0..n]
3448 * Each sub-page must be freed individually.
3449 *
3450 * Note: this is probably too low level an operation for use in drivers.
3451 * Please consult with lkml before using this in your driver.
3452 */
3453void split_page(struct page *page, unsigned int order)
3454{
3455 int i;
3456
309381fe
SL
3457 VM_BUG_ON_PAGE(PageCompound(page), page);
3458 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3459
a9627bc5 3460 for (i = 1; i < (1 << order); i++)
7835e98b 3461 set_page_refcounted(page + i);
8fb156c9 3462 split_page_owner(page, 1 << order);
e1baddf8 3463 split_page_memcg(page, 1 << order);
8dfcc9ba 3464}
5853ff23 3465EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3466
3c605096 3467int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3468{
748446bb
MG
3469 unsigned long watermark;
3470 struct zone *zone;
2139cbe6 3471 int mt;
748446bb
MG
3472
3473 BUG_ON(!PageBuddy(page));
3474
3475 zone = page_zone(page);
2e30abd1 3476 mt = get_pageblock_migratetype(page);
748446bb 3477
194159fb 3478 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3479 /*
3480 * Obey watermarks as if the page was being allocated. We can
3481 * emulate a high-order watermark check with a raised order-0
3482 * watermark, because we already know our high-order page
3483 * exists.
3484 */
fd1444b2 3485 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3486 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3487 return 0;
3488
8fb74b9f 3489 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3490 }
748446bb
MG
3491
3492 /* Remove page from free list */
b03641af 3493
6ab01363 3494 del_page_from_free_list(page, zone, order);
2139cbe6 3495
400bc7fd 3496 /*
3497 * Set the pageblock if the isolated page is at least half of a
3498 * pageblock
3499 */
748446bb
MG
3500 if (order >= pageblock_order - 1) {
3501 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3502 for (; page < endpage; page += pageblock_nr_pages) {
3503 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3504 /*
3505 * Only change normal pageblocks (i.e., they can merge
3506 * with others)
3507 */
3508 if (migratetype_is_mergeable(mt))
47118af0
MN
3509 set_pageblock_migratetype(page,
3510 MIGRATE_MOVABLE);
3511 }
748446bb
MG
3512 }
3513
f3a14ced 3514
8fb74b9f 3515 return 1UL << order;
1fb3f8ca
MG
3516}
3517
624f58d8
AD
3518/**
3519 * __putback_isolated_page - Return a now-isolated page back where we got it
3520 * @page: Page that was isolated
3521 * @order: Order of the isolated page
e6a0a7ad 3522 * @mt: The page's pageblock's migratetype
624f58d8
AD
3523 *
3524 * This function is meant to return a page pulled from the free lists via
3525 * __isolate_free_page back to the free lists they were pulled from.
3526 */
3527void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3528{
3529 struct zone *zone = page_zone(page);
3530
3531 /* zone lock should be held when this function is called */
3532 lockdep_assert_held(&zone->lock);
3533
3534 /* Return isolated page to tail of freelist. */
f04a5d5d 3535 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3536 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3537}
3538
060e7417
MG
3539/*
3540 * Update NUMA hit/miss statistics
3541 *
3542 * Must be called with interrupts disabled.
060e7417 3543 */
3e23060b
MG
3544static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3545 long nr_account)
060e7417
MG
3546{
3547#ifdef CONFIG_NUMA
3a321d2a 3548 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3549
4518085e
KW
3550 /* skip numa counters update if numa stats is disabled */
3551 if (!static_branch_likely(&vm_numa_stat_key))
3552 return;
3553
c1093b74 3554 if (zone_to_nid(z) != numa_node_id())
060e7417 3555 local_stat = NUMA_OTHER;
060e7417 3556
c1093b74 3557 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3558 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3559 else {
3e23060b
MG
3560 __count_numa_events(z, NUMA_MISS, nr_account);
3561 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3562 }
3e23060b 3563 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3564#endif
3565}
3566
066b2393 3567/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3568static inline
44042b44
MG
3569struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3570 int migratetype,
6bb15450 3571 unsigned int alloc_flags,
453f85d4 3572 struct per_cpu_pages *pcp,
066b2393
MG
3573 struct list_head *list)
3574{
3575 struct page *page;
3576
3577 do {
3578 if (list_empty(list)) {
44042b44
MG
3579 int batch = READ_ONCE(pcp->batch);
3580 int alloced;
3581
3582 /*
3583 * Scale batch relative to order if batch implies
3584 * free pages can be stored on the PCP. Batch can
3585 * be 1 for small zones or for boot pagesets which
3586 * should never store free pages as the pages may
3587 * belong to arbitrary zones.
3588 */
3589 if (batch > 1)
3590 batch = max(batch >> order, 2);
3591 alloced = rmqueue_bulk(zone, order,
3592 batch, list,
6bb15450 3593 migratetype, alloc_flags);
44042b44
MG
3594
3595 pcp->count += alloced << order;
066b2393
MG
3596 if (unlikely(list_empty(list)))
3597 return NULL;
3598 }
3599
453f85d4 3600 page = list_first_entry(list, struct page, lru);
066b2393 3601 list_del(&page->lru);
44042b44 3602 pcp->count -= 1 << order;
066b2393
MG
3603 } while (check_new_pcp(page));
3604
3605 return page;
3606}
3607
3608/* Lock and remove page from the per-cpu list */
3609static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3610 struct zone *zone, unsigned int order,
3611 gfp_t gfp_flags, int migratetype,
3612 unsigned int alloc_flags)
066b2393
MG
3613{
3614 struct per_cpu_pages *pcp;
3615 struct list_head *list;
066b2393 3616 struct page *page;
d34b0733 3617 unsigned long flags;
066b2393 3618
dbbee9d5 3619 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3620
3621 /*
3622 * On allocation, reduce the number of pages that are batch freed.
3623 * See nr_pcp_free() where free_factor is increased for subsequent
3624 * frees.
3625 */
28f836b6 3626 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3627 pcp->free_factor >>= 1;
44042b44
MG
3628 list = &pcp->lists[order_to_pindex(migratetype, order)];
3629 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3630 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3631 if (page) {
1c52e6d0 3632 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3633 zone_statistics(preferred_zone, zone, 1);
066b2393 3634 }
066b2393
MG
3635 return page;
3636}
3637
1da177e4 3638/*
75379191 3639 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3640 */
0a15c3e9 3641static inline
066b2393 3642struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3643 struct zone *zone, unsigned int order,
c603844b
MG
3644 gfp_t gfp_flags, unsigned int alloc_flags,
3645 int migratetype)
1da177e4
LT
3646{
3647 unsigned long flags;
689bcebf 3648 struct page *page;
1da177e4 3649
44042b44 3650 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3651 /*
3652 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3653 * we need to skip it when CMA area isn't allowed.
3654 */
3655 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3656 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3657 page = rmqueue_pcplist(preferred_zone, zone, order,
3658 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3659 goto out;
3660 }
066b2393 3661 }
83b9355b 3662
066b2393
MG
3663 /*
3664 * We most definitely don't want callers attempting to
3665 * allocate greater than order-1 page units with __GFP_NOFAIL.
3666 */
3667 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3668 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3669
066b2393
MG
3670 do {
3671 page = NULL;
1d91df85
JK
3672 /*
3673 * order-0 request can reach here when the pcplist is skipped
3674 * due to non-CMA allocation context. HIGHATOMIC area is
3675 * reserved for high-order atomic allocation, so order-0
3676 * request should skip it.
3677 */
3678 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3679 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3680 if (page)
3681 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3682 }
a74609fa 3683 if (!page)
6bb15450 3684 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393 3685 } while (page && check_new_pages(page, order));
066b2393
MG
3686 if (!page)
3687 goto failed;
43c95bcc 3688
066b2393
MG
3689 __mod_zone_freepage_state(zone, -(1 << order),
3690 get_pcppage_migratetype(page));
43c95bcc 3691 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 3692
16709d1d 3693 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3694 zone_statistics(preferred_zone, zone, 1);
1da177e4 3695
066b2393 3696out:
73444bc4
MG
3697 /* Separate test+clear to avoid unnecessary atomics */
3698 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3699 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3700 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3701 }
3702
066b2393 3703 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3704 return page;
a74609fa
NP
3705
3706failed:
43c95bcc 3707 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3708 return NULL;
1da177e4
LT
3709}
3710
933e312e
AM
3711#ifdef CONFIG_FAIL_PAGE_ALLOC
3712
b2588c4b 3713static struct {
933e312e
AM
3714 struct fault_attr attr;
3715
621a5f7a 3716 bool ignore_gfp_highmem;
71baba4b 3717 bool ignore_gfp_reclaim;
54114994 3718 u32 min_order;
933e312e
AM
3719} fail_page_alloc = {
3720 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3721 .ignore_gfp_reclaim = true,
621a5f7a 3722 .ignore_gfp_highmem = true,
54114994 3723 .min_order = 1,
933e312e
AM
3724};
3725
3726static int __init setup_fail_page_alloc(char *str)
3727{
3728 return setup_fault_attr(&fail_page_alloc.attr, str);
3729}
3730__setup("fail_page_alloc=", setup_fail_page_alloc);
3731
af3b8544 3732static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3733{
54114994 3734 if (order < fail_page_alloc.min_order)
deaf386e 3735 return false;
933e312e 3736 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3737 return false;
933e312e 3738 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3739 return false;
71baba4b
MG
3740 if (fail_page_alloc.ignore_gfp_reclaim &&
3741 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3742 return false;
933e312e
AM
3743
3744 return should_fail(&fail_page_alloc.attr, 1 << order);
3745}
3746
3747#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3748
3749static int __init fail_page_alloc_debugfs(void)
3750{
0825a6f9 3751 umode_t mode = S_IFREG | 0600;
933e312e 3752 struct dentry *dir;
933e312e 3753
dd48c085
AM
3754 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3755 &fail_page_alloc.attr);
b2588c4b 3756
d9f7979c
GKH
3757 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3758 &fail_page_alloc.ignore_gfp_reclaim);
3759 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3760 &fail_page_alloc.ignore_gfp_highmem);
3761 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3762
d9f7979c 3763 return 0;
933e312e
AM
3764}
3765
3766late_initcall(fail_page_alloc_debugfs);
3767
3768#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3769
3770#else /* CONFIG_FAIL_PAGE_ALLOC */
3771
af3b8544 3772static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3773{
deaf386e 3774 return false;
933e312e
AM
3775}
3776
3777#endif /* CONFIG_FAIL_PAGE_ALLOC */
3778
54aa3866 3779noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3780{
3781 return __should_fail_alloc_page(gfp_mask, order);
3782}
3783ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3784
f27ce0e1
JK
3785static inline long __zone_watermark_unusable_free(struct zone *z,
3786 unsigned int order, unsigned int alloc_flags)
3787{
3788 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3789 long unusable_free = (1 << order) - 1;
3790
3791 /*
3792 * If the caller does not have rights to ALLOC_HARDER then subtract
3793 * the high-atomic reserves. This will over-estimate the size of the
3794 * atomic reserve but it avoids a search.
3795 */
3796 if (likely(!alloc_harder))
3797 unusable_free += z->nr_reserved_highatomic;
3798
3799#ifdef CONFIG_CMA
3800 /* If allocation can't use CMA areas don't use free CMA pages */
3801 if (!(alloc_flags & ALLOC_CMA))
3802 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3803#endif
3804
3805 return unusable_free;
3806}
3807
1da177e4 3808/*
97a16fc8
MG
3809 * Return true if free base pages are above 'mark'. For high-order checks it
3810 * will return true of the order-0 watermark is reached and there is at least
3811 * one free page of a suitable size. Checking now avoids taking the zone lock
3812 * to check in the allocation paths if no pages are free.
1da177e4 3813 */
86a294a8 3814bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3815 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3816 long free_pages)
1da177e4 3817{
d23ad423 3818 long min = mark;
1da177e4 3819 int o;
cd04ae1e 3820 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3821
0aaa29a5 3822 /* free_pages may go negative - that's OK */
f27ce0e1 3823 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3824
7fb1d9fc 3825 if (alloc_flags & ALLOC_HIGH)
1da177e4 3826 min -= min / 2;
0aaa29a5 3827
f27ce0e1 3828 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3829 /*
3830 * OOM victims can try even harder than normal ALLOC_HARDER
3831 * users on the grounds that it's definitely going to be in
3832 * the exit path shortly and free memory. Any allocation it
3833 * makes during the free path will be small and short-lived.
3834 */
3835 if (alloc_flags & ALLOC_OOM)
3836 min -= min / 2;
3837 else
3838 min -= min / 4;
3839 }
3840
97a16fc8
MG
3841 /*
3842 * Check watermarks for an order-0 allocation request. If these
3843 * are not met, then a high-order request also cannot go ahead
3844 * even if a suitable page happened to be free.
3845 */
97a225e6 3846 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3847 return false;
1da177e4 3848
97a16fc8
MG
3849 /* If this is an order-0 request then the watermark is fine */
3850 if (!order)
3851 return true;
3852
3853 /* For a high-order request, check at least one suitable page is free */
3854 for (o = order; o < MAX_ORDER; o++) {
3855 struct free_area *area = &z->free_area[o];
3856 int mt;
3857
3858 if (!area->nr_free)
3859 continue;
3860
97a16fc8 3861 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3862 if (!free_area_empty(area, mt))
97a16fc8
MG
3863 return true;
3864 }
3865
3866#ifdef CONFIG_CMA
d883c6cf 3867 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3868 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3869 return true;
d883c6cf 3870 }
97a16fc8 3871#endif
76089d00 3872 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3873 return true;
1da177e4 3874 }
97a16fc8 3875 return false;
88f5acf8
MG
3876}
3877
7aeb09f9 3878bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3879 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3880{
97a225e6 3881 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3882 zone_page_state(z, NR_FREE_PAGES));
3883}
3884
48ee5f36 3885static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3886 unsigned long mark, int highest_zoneidx,
f80b08fc 3887 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3888{
f27ce0e1 3889 long free_pages;
d883c6cf 3890
f27ce0e1 3891 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3892
3893 /*
3894 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3895 * need to be calculated.
48ee5f36 3896 */
f27ce0e1
JK
3897 if (!order) {
3898 long fast_free;
3899
3900 fast_free = free_pages;
3901 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3902 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3903 return true;
3904 }
48ee5f36 3905
f80b08fc
CTR
3906 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3907 free_pages))
3908 return true;
3909 /*
3910 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3911 * when checking the min watermark. The min watermark is the
3912 * point where boosting is ignored so that kswapd is woken up
3913 * when below the low watermark.
3914 */
3915 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3916 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3917 mark = z->_watermark[WMARK_MIN];
3918 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3919 alloc_flags, free_pages);
3920 }
3921
3922 return false;
48ee5f36
MG
3923}
3924
7aeb09f9 3925bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3926 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3927{
3928 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3929
3930 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3931 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3932
97a225e6 3933 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3934 free_pages);
1da177e4
LT
3935}
3936
9276b1bc 3937#ifdef CONFIG_NUMA
61bb6cd2
GU
3938int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3939
957f822a
DR
3940static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3941{
e02dc017 3942 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3943 node_reclaim_distance;
957f822a 3944}
9276b1bc 3945#else /* CONFIG_NUMA */
957f822a
DR
3946static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3947{
3948 return true;
3949}
9276b1bc
PJ
3950#endif /* CONFIG_NUMA */
3951
6bb15450
MG
3952/*
3953 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3954 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3955 * premature use of a lower zone may cause lowmem pressure problems that
3956 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3957 * probably too small. It only makes sense to spread allocations to avoid
3958 * fragmentation between the Normal and DMA32 zones.
3959 */
3960static inline unsigned int
0a79cdad 3961alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3962{
736838e9 3963 unsigned int alloc_flags;
0a79cdad 3964
736838e9
MN
3965 /*
3966 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3967 * to save a branch.
3968 */
3969 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3970
3971#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3972 if (!zone)
3973 return alloc_flags;
3974
6bb15450 3975 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3976 return alloc_flags;
6bb15450
MG
3977
3978 /*
3979 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3980 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3981 * on UMA that if Normal is populated then so is DMA32.
3982 */
3983 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3984 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3985 return alloc_flags;
6bb15450 3986
8118b82e 3987 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3988#endif /* CONFIG_ZONE_DMA32 */
3989 return alloc_flags;
6bb15450 3990}
6bb15450 3991
8e3560d9
PT
3992/* Must be called after current_gfp_context() which can change gfp_mask */
3993static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3994 unsigned int alloc_flags)
8510e69c
JK
3995{
3996#ifdef CONFIG_CMA
8e3560d9 3997 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 3998 alloc_flags |= ALLOC_CMA;
8510e69c
JK
3999#endif
4000 return alloc_flags;
4001}
4002
7fb1d9fc 4003/*
0798e519 4004 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4005 * a page.
4006 */
4007static struct page *
a9263751
VB
4008get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4009 const struct alloc_context *ac)
753ee728 4010{
6bb15450 4011 struct zoneref *z;
5117f45d 4012 struct zone *zone;
3b8c0be4 4013 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 4014 bool no_fallback;
3b8c0be4 4015
6bb15450 4016retry:
7fb1d9fc 4017 /*
9276b1bc 4018 * Scan zonelist, looking for a zone with enough free.
344736f2 4019 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4020 */
6bb15450
MG
4021 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4022 z = ac->preferred_zoneref;
30d8ec73
MN
4023 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4024 ac->nodemask) {
be06af00 4025 struct page *page;
e085dbc5
JW
4026 unsigned long mark;
4027
664eedde
MG
4028 if (cpusets_enabled() &&
4029 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4030 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4031 continue;
a756cf59
JW
4032 /*
4033 * When allocating a page cache page for writing, we
281e3726
MG
4034 * want to get it from a node that is within its dirty
4035 * limit, such that no single node holds more than its
a756cf59 4036 * proportional share of globally allowed dirty pages.
281e3726 4037 * The dirty limits take into account the node's
a756cf59
JW
4038 * lowmem reserves and high watermark so that kswapd
4039 * should be able to balance it without having to
4040 * write pages from its LRU list.
4041 *
a756cf59 4042 * XXX: For now, allow allocations to potentially
281e3726 4043 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4044 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4045 * which is important when on a NUMA setup the allowed
281e3726 4046 * nodes are together not big enough to reach the
a756cf59 4047 * global limit. The proper fix for these situations
281e3726 4048 * will require awareness of nodes in the
a756cf59
JW
4049 * dirty-throttling and the flusher threads.
4050 */
3b8c0be4
MG
4051 if (ac->spread_dirty_pages) {
4052 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4053 continue;
4054
4055 if (!node_dirty_ok(zone->zone_pgdat)) {
4056 last_pgdat_dirty_limit = zone->zone_pgdat;
4057 continue;
4058 }
4059 }
7fb1d9fc 4060
6bb15450
MG
4061 if (no_fallback && nr_online_nodes > 1 &&
4062 zone != ac->preferred_zoneref->zone) {
4063 int local_nid;
4064
4065 /*
4066 * If moving to a remote node, retry but allow
4067 * fragmenting fallbacks. Locality is more important
4068 * than fragmentation avoidance.
4069 */
4070 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4071 if (zone_to_nid(zone) != local_nid) {
4072 alloc_flags &= ~ALLOC_NOFRAGMENT;
4073 goto retry;
4074 }
4075 }
4076
a9214443 4077 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4078 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4079 ac->highest_zoneidx, alloc_flags,
4080 gfp_mask)) {
fa5e084e
MG
4081 int ret;
4082
c9e97a19
PT
4083#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4084 /*
4085 * Watermark failed for this zone, but see if we can
4086 * grow this zone if it contains deferred pages.
4087 */
4088 if (static_branch_unlikely(&deferred_pages)) {
4089 if (_deferred_grow_zone(zone, order))
4090 goto try_this_zone;
4091 }
4092#endif
5dab2911
MG
4093 /* Checked here to keep the fast path fast */
4094 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4095 if (alloc_flags & ALLOC_NO_WATERMARKS)
4096 goto try_this_zone;
4097
202e35db 4098 if (!node_reclaim_enabled() ||
c33d6c06 4099 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4100 continue;
4101
a5f5f91d 4102 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4103 switch (ret) {
a5f5f91d 4104 case NODE_RECLAIM_NOSCAN:
fa5e084e 4105 /* did not scan */
cd38b115 4106 continue;
a5f5f91d 4107 case NODE_RECLAIM_FULL:
fa5e084e 4108 /* scanned but unreclaimable */
cd38b115 4109 continue;
fa5e084e
MG
4110 default:
4111 /* did we reclaim enough */
fed2719e 4112 if (zone_watermark_ok(zone, order, mark,
97a225e6 4113 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4114 goto try_this_zone;
4115
fed2719e 4116 continue;
0798e519 4117 }
7fb1d9fc
RS
4118 }
4119
fa5e084e 4120try_this_zone:
066b2393 4121 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4122 gfp_mask, alloc_flags, ac->migratetype);
75379191 4123 if (page) {
479f854a 4124 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4125
4126 /*
4127 * If this is a high-order atomic allocation then check
4128 * if the pageblock should be reserved for the future
4129 */
4130 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4131 reserve_highatomic_pageblock(page, zone, order);
4132
75379191 4133 return page;
c9e97a19
PT
4134 } else {
4135#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4136 /* Try again if zone has deferred pages */
4137 if (static_branch_unlikely(&deferred_pages)) {
4138 if (_deferred_grow_zone(zone, order))
4139 goto try_this_zone;
4140 }
4141#endif
75379191 4142 }
54a6eb5c 4143 }
9276b1bc 4144
6bb15450
MG
4145 /*
4146 * It's possible on a UMA machine to get through all zones that are
4147 * fragmented. If avoiding fragmentation, reset and try again.
4148 */
4149 if (no_fallback) {
4150 alloc_flags &= ~ALLOC_NOFRAGMENT;
4151 goto retry;
4152 }
4153
4ffeaf35 4154 return NULL;
753ee728
MH
4155}
4156
9af744d7 4157static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4158{
a238ab5b 4159 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4160
4161 /*
4162 * This documents exceptions given to allocations in certain
4163 * contexts that are allowed to allocate outside current's set
4164 * of allowed nodes.
4165 */
4166 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4167 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4168 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4169 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4170 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4171 filter &= ~SHOW_MEM_FILTER_NODES;
4172
9af744d7 4173 show_mem(filter, nodemask);
aa187507
MH
4174}
4175
a8e99259 4176void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4177{
4178 struct va_format vaf;
4179 va_list args;
1be334e5 4180 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4181
c4dc63f0
BH
4182 if ((gfp_mask & __GFP_NOWARN) ||
4183 !__ratelimit(&nopage_rs) ||
4184 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4185 return;
4186
7877cdcc
MH
4187 va_start(args, fmt);
4188 vaf.fmt = fmt;
4189 vaf.va = &args;
ef8444ea 4190 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4191 current->comm, &vaf, gfp_mask, &gfp_mask,
4192 nodemask_pr_args(nodemask));
7877cdcc 4193 va_end(args);
3ee9a4f0 4194
a8e99259 4195 cpuset_print_current_mems_allowed();
ef8444ea 4196 pr_cont("\n");
a238ab5b 4197 dump_stack();
685dbf6f 4198 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4199}
4200
6c18ba7a
MH
4201static inline struct page *
4202__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4203 unsigned int alloc_flags,
4204 const struct alloc_context *ac)
4205{
4206 struct page *page;
4207
4208 page = get_page_from_freelist(gfp_mask, order,
4209 alloc_flags|ALLOC_CPUSET, ac);
4210 /*
4211 * fallback to ignore cpuset restriction if our nodes
4212 * are depleted
4213 */
4214 if (!page)
4215 page = get_page_from_freelist(gfp_mask, order,
4216 alloc_flags, ac);
4217
4218 return page;
4219}
4220
11e33f6a
MG
4221static inline struct page *
4222__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4223 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4224{
6e0fc46d
DR
4225 struct oom_control oc = {
4226 .zonelist = ac->zonelist,
4227 .nodemask = ac->nodemask,
2a966b77 4228 .memcg = NULL,
6e0fc46d
DR
4229 .gfp_mask = gfp_mask,
4230 .order = order,
6e0fc46d 4231 };
11e33f6a
MG
4232 struct page *page;
4233
9879de73
JW
4234 *did_some_progress = 0;
4235
9879de73 4236 /*
dc56401f
JW
4237 * Acquire the oom lock. If that fails, somebody else is
4238 * making progress for us.
9879de73 4239 */
dc56401f 4240 if (!mutex_trylock(&oom_lock)) {
9879de73 4241 *did_some_progress = 1;
11e33f6a 4242 schedule_timeout_uninterruptible(1);
1da177e4
LT
4243 return NULL;
4244 }
6b1de916 4245
11e33f6a
MG
4246 /*
4247 * Go through the zonelist yet one more time, keep very high watermark
4248 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4249 * we're still under heavy pressure. But make sure that this reclaim
4250 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4251 * allocation which will never fail due to oom_lock already held.
11e33f6a 4252 */
e746bf73
TH
4253 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4254 ~__GFP_DIRECT_RECLAIM, order,
4255 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4256 if (page)
11e33f6a
MG
4257 goto out;
4258
06ad276a
MH
4259 /* Coredumps can quickly deplete all memory reserves */
4260 if (current->flags & PF_DUMPCORE)
4261 goto out;
4262 /* The OOM killer will not help higher order allocs */
4263 if (order > PAGE_ALLOC_COSTLY_ORDER)
4264 goto out;
dcda9b04
MH
4265 /*
4266 * We have already exhausted all our reclaim opportunities without any
4267 * success so it is time to admit defeat. We will skip the OOM killer
4268 * because it is very likely that the caller has a more reasonable
4269 * fallback than shooting a random task.
cfb4a541
MN
4270 *
4271 * The OOM killer may not free memory on a specific node.
dcda9b04 4272 */
cfb4a541 4273 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4274 goto out;
06ad276a 4275 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4276 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4277 goto out;
4278 if (pm_suspended_storage())
4279 goto out;
4280 /*
4281 * XXX: GFP_NOFS allocations should rather fail than rely on
4282 * other request to make a forward progress.
4283 * We are in an unfortunate situation where out_of_memory cannot
4284 * do much for this context but let's try it to at least get
4285 * access to memory reserved if the current task is killed (see
4286 * out_of_memory). Once filesystems are ready to handle allocation
4287 * failures more gracefully we should just bail out here.
4288 */
4289
3c2c6488 4290 /* Exhausted what can be done so it's blame time */
5020e285 4291 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4292 *did_some_progress = 1;
5020e285 4293
6c18ba7a
MH
4294 /*
4295 * Help non-failing allocations by giving them access to memory
4296 * reserves
4297 */
4298 if (gfp_mask & __GFP_NOFAIL)
4299 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4300 ALLOC_NO_WATERMARKS, ac);
5020e285 4301 }
11e33f6a 4302out:
dc56401f 4303 mutex_unlock(&oom_lock);
11e33f6a
MG
4304 return page;
4305}
4306
33c2d214 4307/*
baf2f90b 4308 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4309 * killer is consider as the only way to move forward.
4310 */
4311#define MAX_COMPACT_RETRIES 16
4312
56de7263
MG
4313#ifdef CONFIG_COMPACTION
4314/* Try memory compaction for high-order allocations before reclaim */
4315static struct page *
4316__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4317 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4318 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4319{
5e1f0f09 4320 struct page *page = NULL;
eb414681 4321 unsigned long pflags;
499118e9 4322 unsigned int noreclaim_flag;
53853e2d
VB
4323
4324 if (!order)
66199712 4325 return NULL;
66199712 4326
eb414681 4327 psi_memstall_enter(&pflags);
5bf18281 4328 delayacct_compact_start();
499118e9 4329 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4330
c5d01d0d 4331 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4332 prio, &page);
eb414681 4333
499118e9 4334 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4335 psi_memstall_leave(&pflags);
5bf18281 4336 delayacct_compact_end();
56de7263 4337
06dac2f4
CTR
4338 if (*compact_result == COMPACT_SKIPPED)
4339 return NULL;
98dd3b48
VB
4340 /*
4341 * At least in one zone compaction wasn't deferred or skipped, so let's
4342 * count a compaction stall
4343 */
4344 count_vm_event(COMPACTSTALL);
8fb74b9f 4345
5e1f0f09
MG
4346 /* Prep a captured page if available */
4347 if (page)
4348 prep_new_page(page, order, gfp_mask, alloc_flags);
4349
4350 /* Try get a page from the freelist if available */
4351 if (!page)
4352 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4353
98dd3b48
VB
4354 if (page) {
4355 struct zone *zone = page_zone(page);
53853e2d 4356
98dd3b48
VB
4357 zone->compact_blockskip_flush = false;
4358 compaction_defer_reset(zone, order, true);
4359 count_vm_event(COMPACTSUCCESS);
4360 return page;
4361 }
56de7263 4362
98dd3b48
VB
4363 /*
4364 * It's bad if compaction run occurs and fails. The most likely reason
4365 * is that pages exist, but not enough to satisfy watermarks.
4366 */
4367 count_vm_event(COMPACTFAIL);
66199712 4368
98dd3b48 4369 cond_resched();
56de7263
MG
4370
4371 return NULL;
4372}
33c2d214 4373
3250845d
VB
4374static inline bool
4375should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4376 enum compact_result compact_result,
4377 enum compact_priority *compact_priority,
d9436498 4378 int *compaction_retries)
3250845d
VB
4379{
4380 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4381 int min_priority;
65190cff
MH
4382 bool ret = false;
4383 int retries = *compaction_retries;
4384 enum compact_priority priority = *compact_priority;
3250845d
VB
4385
4386 if (!order)
4387 return false;
4388
691d9497
AT
4389 if (fatal_signal_pending(current))
4390 return false;
4391
d9436498
VB
4392 if (compaction_made_progress(compact_result))
4393 (*compaction_retries)++;
4394
3250845d
VB
4395 /*
4396 * compaction considers all the zone as desperately out of memory
4397 * so it doesn't really make much sense to retry except when the
4398 * failure could be caused by insufficient priority
4399 */
d9436498
VB
4400 if (compaction_failed(compact_result))
4401 goto check_priority;
3250845d 4402
49433085
VB
4403 /*
4404 * compaction was skipped because there are not enough order-0 pages
4405 * to work with, so we retry only if it looks like reclaim can help.
4406 */
4407 if (compaction_needs_reclaim(compact_result)) {
4408 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4409 goto out;
4410 }
4411
3250845d
VB
4412 /*
4413 * make sure the compaction wasn't deferred or didn't bail out early
4414 * due to locks contention before we declare that we should give up.
49433085
VB
4415 * But the next retry should use a higher priority if allowed, so
4416 * we don't just keep bailing out endlessly.
3250845d 4417 */
65190cff 4418 if (compaction_withdrawn(compact_result)) {
49433085 4419 goto check_priority;
65190cff 4420 }
3250845d
VB
4421
4422 /*
dcda9b04 4423 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4424 * costly ones because they are de facto nofail and invoke OOM
4425 * killer to move on while costly can fail and users are ready
4426 * to cope with that. 1/4 retries is rather arbitrary but we
4427 * would need much more detailed feedback from compaction to
4428 * make a better decision.
4429 */
4430 if (order > PAGE_ALLOC_COSTLY_ORDER)
4431 max_retries /= 4;
65190cff
MH
4432 if (*compaction_retries <= max_retries) {
4433 ret = true;
4434 goto out;
4435 }
3250845d 4436
d9436498
VB
4437 /*
4438 * Make sure there are attempts at the highest priority if we exhausted
4439 * all retries or failed at the lower priorities.
4440 */
4441check_priority:
c2033b00
VB
4442 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4443 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4444
c2033b00 4445 if (*compact_priority > min_priority) {
d9436498
VB
4446 (*compact_priority)--;
4447 *compaction_retries = 0;
65190cff 4448 ret = true;
d9436498 4449 }
65190cff
MH
4450out:
4451 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4452 return ret;
3250845d 4453}
56de7263
MG
4454#else
4455static inline struct page *
4456__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4457 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4458 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4459{
33c2d214 4460 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4461 return NULL;
4462}
33c2d214
MH
4463
4464static inline bool
86a294a8
MH
4465should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4466 enum compact_result compact_result,
a5508cd8 4467 enum compact_priority *compact_priority,
d9436498 4468 int *compaction_retries)
33c2d214 4469{
31e49bfd
MH
4470 struct zone *zone;
4471 struct zoneref *z;
4472
4473 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4474 return false;
4475
4476 /*
4477 * There are setups with compaction disabled which would prefer to loop
4478 * inside the allocator rather than hit the oom killer prematurely.
4479 * Let's give them a good hope and keep retrying while the order-0
4480 * watermarks are OK.
4481 */
97a225e6
JK
4482 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4483 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4484 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4485 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4486 return true;
4487 }
33c2d214
MH
4488 return false;
4489}
3250845d 4490#endif /* CONFIG_COMPACTION */
56de7263 4491
d92a8cfc 4492#ifdef CONFIG_LOCKDEP
93781325 4493static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4494 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4495
f920e413 4496static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4497{
d92a8cfc
PZ
4498 /* no reclaim without waiting on it */
4499 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4500 return false;
4501
4502 /* this guy won't enter reclaim */
2e517d68 4503 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4504 return false;
4505
d92a8cfc
PZ
4506 if (gfp_mask & __GFP_NOLOCKDEP)
4507 return false;
4508
4509 return true;
4510}
4511
4f3eaf45 4512void __fs_reclaim_acquire(unsigned long ip)
93781325 4513{
4f3eaf45 4514 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4515}
4516
4f3eaf45 4517void __fs_reclaim_release(unsigned long ip)
93781325 4518{
4f3eaf45 4519 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4520}
4521
d92a8cfc
PZ
4522void fs_reclaim_acquire(gfp_t gfp_mask)
4523{
f920e413
DV
4524 gfp_mask = current_gfp_context(gfp_mask);
4525
4526 if (__need_reclaim(gfp_mask)) {
4527 if (gfp_mask & __GFP_FS)
4f3eaf45 4528 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4529
4530#ifdef CONFIG_MMU_NOTIFIER
4531 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4532 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4533#endif
4534
4535 }
d92a8cfc
PZ
4536}
4537EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4538
4539void fs_reclaim_release(gfp_t gfp_mask)
4540{
f920e413
DV
4541 gfp_mask = current_gfp_context(gfp_mask);
4542
4543 if (__need_reclaim(gfp_mask)) {
4544 if (gfp_mask & __GFP_FS)
4f3eaf45 4545 __fs_reclaim_release(_RET_IP_);
f920e413 4546 }
d92a8cfc
PZ
4547}
4548EXPORT_SYMBOL_GPL(fs_reclaim_release);
4549#endif
4550
bba90710 4551/* Perform direct synchronous page reclaim */
2187e17b 4552static unsigned long
a9263751
VB
4553__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4554 const struct alloc_context *ac)
11e33f6a 4555{
499118e9 4556 unsigned int noreclaim_flag;
fa7fc75f 4557 unsigned long progress;
11e33f6a
MG
4558
4559 cond_resched();
4560
4561 /* We now go into synchronous reclaim */
4562 cpuset_memory_pressure_bump();
d92a8cfc 4563 fs_reclaim_acquire(gfp_mask);
93781325 4564 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4565
a9263751
VB
4566 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4567 ac->nodemask);
11e33f6a 4568
499118e9 4569 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4570 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4571
4572 cond_resched();
4573
bba90710
MS
4574 return progress;
4575}
4576
4577/* The really slow allocator path where we enter direct reclaim */
4578static inline struct page *
4579__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4580 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4581 unsigned long *did_some_progress)
bba90710
MS
4582{
4583 struct page *page = NULL;
fa7fc75f 4584 unsigned long pflags;
bba90710
MS
4585 bool drained = false;
4586
fa7fc75f 4587 psi_memstall_enter(&pflags);
a9263751 4588 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4589 if (unlikely(!(*did_some_progress)))
fa7fc75f 4590 goto out;
11e33f6a 4591
9ee493ce 4592retry:
31a6c190 4593 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4594
4595 /*
4596 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4597 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4598 * Shrink them and try again
9ee493ce
MG
4599 */
4600 if (!page && !drained) {
29fac03b 4601 unreserve_highatomic_pageblock(ac, false);
93481ff0 4602 drain_all_pages(NULL);
9ee493ce
MG
4603 drained = true;
4604 goto retry;
4605 }
fa7fc75f
SB
4606out:
4607 psi_memstall_leave(&pflags);
9ee493ce 4608
11e33f6a
MG
4609 return page;
4610}
4611
5ecd9d40
DR
4612static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4613 const struct alloc_context *ac)
3a025760
JW
4614{
4615 struct zoneref *z;
4616 struct zone *zone;
e1a55637 4617 pg_data_t *last_pgdat = NULL;
97a225e6 4618 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4619
97a225e6 4620 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4621 ac->nodemask) {
e1a55637 4622 if (last_pgdat != zone->zone_pgdat)
97a225e6 4623 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4624 last_pgdat = zone->zone_pgdat;
4625 }
3a025760
JW
4626}
4627
c603844b 4628static inline unsigned int
341ce06f
PZ
4629gfp_to_alloc_flags(gfp_t gfp_mask)
4630{
c603844b 4631 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4632
736838e9
MN
4633 /*
4634 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4635 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4636 * to save two branches.
4637 */
e6223a3b 4638 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4639 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4640
341ce06f
PZ
4641 /*
4642 * The caller may dip into page reserves a bit more if the caller
4643 * cannot run direct reclaim, or if the caller has realtime scheduling
4644 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4645 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4646 */
736838e9
MN
4647 alloc_flags |= (__force int)
4648 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4649
d0164adc 4650 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4651 /*
b104a35d
DR
4652 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4653 * if it can't schedule.
5c3240d9 4654 */
b104a35d 4655 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4656 alloc_flags |= ALLOC_HARDER;
523b9458 4657 /*
b104a35d 4658 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4659 * comment for __cpuset_node_allowed().
523b9458 4660 */
341ce06f 4661 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4662 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4663 alloc_flags |= ALLOC_HARDER;
4664
8e3560d9 4665 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4666
341ce06f
PZ
4667 return alloc_flags;
4668}
4669
cd04ae1e 4670static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4671{
cd04ae1e
MH
4672 if (!tsk_is_oom_victim(tsk))
4673 return false;
4674
4675 /*
4676 * !MMU doesn't have oom reaper so give access to memory reserves
4677 * only to the thread with TIF_MEMDIE set
4678 */
4679 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4680 return false;
4681
cd04ae1e
MH
4682 return true;
4683}
4684
4685/*
4686 * Distinguish requests which really need access to full memory
4687 * reserves from oom victims which can live with a portion of it
4688 */
4689static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4690{
4691 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4692 return 0;
31a6c190 4693 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4694 return ALLOC_NO_WATERMARKS;
31a6c190 4695 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4696 return ALLOC_NO_WATERMARKS;
4697 if (!in_interrupt()) {
4698 if (current->flags & PF_MEMALLOC)
4699 return ALLOC_NO_WATERMARKS;
4700 else if (oom_reserves_allowed(current))
4701 return ALLOC_OOM;
4702 }
31a6c190 4703
cd04ae1e
MH
4704 return 0;
4705}
4706
4707bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4708{
4709 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4710}
4711
0a0337e0
MH
4712/*
4713 * Checks whether it makes sense to retry the reclaim to make a forward progress
4714 * for the given allocation request.
491d79ae
JW
4715 *
4716 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4717 * without success, or when we couldn't even meet the watermark if we
4718 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4719 *
4720 * Returns true if a retry is viable or false to enter the oom path.
4721 */
4722static inline bool
4723should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4724 struct alloc_context *ac, int alloc_flags,
423b452e 4725 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4726{
4727 struct zone *zone;
4728 struct zoneref *z;
15f570bf 4729 bool ret = false;
0a0337e0 4730
423b452e
VB
4731 /*
4732 * Costly allocations might have made a progress but this doesn't mean
4733 * their order will become available due to high fragmentation so
4734 * always increment the no progress counter for them
4735 */
4736 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4737 *no_progress_loops = 0;
4738 else
4739 (*no_progress_loops)++;
4740
0a0337e0
MH
4741 /*
4742 * Make sure we converge to OOM if we cannot make any progress
4743 * several times in the row.
4744 */
04c8716f
MK
4745 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4746 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4747 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4748 }
0a0337e0 4749
bca67592
MG
4750 /*
4751 * Keep reclaiming pages while there is a chance this will lead
4752 * somewhere. If none of the target zones can satisfy our allocation
4753 * request even if all reclaimable pages are considered then we are
4754 * screwed and have to go OOM.
0a0337e0 4755 */
97a225e6
JK
4756 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4757 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4758 unsigned long available;
ede37713 4759 unsigned long reclaimable;
d379f01d
MH
4760 unsigned long min_wmark = min_wmark_pages(zone);
4761 bool wmark;
0a0337e0 4762
5a1c84b4 4763 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4764 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4765
4766 /*
491d79ae
JW
4767 * Would the allocation succeed if we reclaimed all
4768 * reclaimable pages?
0a0337e0 4769 */
d379f01d 4770 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4771 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4772 trace_reclaim_retry_zone(z, order, reclaimable,
4773 available, min_wmark, *no_progress_loops, wmark);
4774 if (wmark) {
15f570bf 4775 ret = true;
132b0d21 4776 break;
0a0337e0
MH
4777 }
4778 }
4779
15f570bf
MH
4780 /*
4781 * Memory allocation/reclaim might be called from a WQ context and the
4782 * current implementation of the WQ concurrency control doesn't
4783 * recognize that a particular WQ is congested if the worker thread is
4784 * looping without ever sleeping. Therefore we have to do a short sleep
4785 * here rather than calling cond_resched().
4786 */
4787 if (current->flags & PF_WQ_WORKER)
4788 schedule_timeout_uninterruptible(1);
4789 else
4790 cond_resched();
4791 return ret;
0a0337e0
MH
4792}
4793
902b6281
VB
4794static inline bool
4795check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4796{
4797 /*
4798 * It's possible that cpuset's mems_allowed and the nodemask from
4799 * mempolicy don't intersect. This should be normally dealt with by
4800 * policy_nodemask(), but it's possible to race with cpuset update in
4801 * such a way the check therein was true, and then it became false
4802 * before we got our cpuset_mems_cookie here.
4803 * This assumes that for all allocations, ac->nodemask can come only
4804 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4805 * when it does not intersect with the cpuset restrictions) or the
4806 * caller can deal with a violated nodemask.
4807 */
4808 if (cpusets_enabled() && ac->nodemask &&
4809 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4810 ac->nodemask = NULL;
4811 return true;
4812 }
4813
4814 /*
4815 * When updating a task's mems_allowed or mempolicy nodemask, it is
4816 * possible to race with parallel threads in such a way that our
4817 * allocation can fail while the mask is being updated. If we are about
4818 * to fail, check if the cpuset changed during allocation and if so,
4819 * retry.
4820 */
4821 if (read_mems_allowed_retry(cpuset_mems_cookie))
4822 return true;
4823
4824 return false;
4825}
4826
11e33f6a
MG
4827static inline struct page *
4828__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4829 struct alloc_context *ac)
11e33f6a 4830{
d0164adc 4831 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4832 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4833 struct page *page = NULL;
c603844b 4834 unsigned int alloc_flags;
11e33f6a 4835 unsigned long did_some_progress;
5ce9bfef 4836 enum compact_priority compact_priority;
c5d01d0d 4837 enum compact_result compact_result;
5ce9bfef
VB
4838 int compaction_retries;
4839 int no_progress_loops;
5ce9bfef 4840 unsigned int cpuset_mems_cookie;
cd04ae1e 4841 int reserve_flags;
1da177e4 4842
d0164adc
MG
4843 /*
4844 * We also sanity check to catch abuse of atomic reserves being used by
4845 * callers that are not in atomic context.
4846 */
4847 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4848 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4849 gfp_mask &= ~__GFP_ATOMIC;
4850
5ce9bfef
VB
4851retry_cpuset:
4852 compaction_retries = 0;
4853 no_progress_loops = 0;
4854 compact_priority = DEF_COMPACT_PRIORITY;
4855 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4856
4857 /*
4858 * The fast path uses conservative alloc_flags to succeed only until
4859 * kswapd needs to be woken up, and to avoid the cost of setting up
4860 * alloc_flags precisely. So we do that now.
4861 */
4862 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4863
e47483bc
VB
4864 /*
4865 * We need to recalculate the starting point for the zonelist iterator
4866 * because we might have used different nodemask in the fast path, or
4867 * there was a cpuset modification and we are retrying - otherwise we
4868 * could end up iterating over non-eligible zones endlessly.
4869 */
4870 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4871 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4872 if (!ac->preferred_zoneref->zone)
4873 goto nopage;
4874
8ca1b5a4
FT
4875 /*
4876 * Check for insane configurations where the cpuset doesn't contain
4877 * any suitable zone to satisfy the request - e.g. non-movable
4878 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4879 */
4880 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4881 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4882 ac->highest_zoneidx,
4883 &cpuset_current_mems_allowed);
4884 if (!z->zone)
4885 goto nopage;
4886 }
4887
0a79cdad 4888 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4889 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4890
4891 /*
4892 * The adjusted alloc_flags might result in immediate success, so try
4893 * that first
4894 */
4895 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4896 if (page)
4897 goto got_pg;
4898
a8161d1e
VB
4899 /*
4900 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4901 * that we have enough base pages and don't need to reclaim. For non-
4902 * movable high-order allocations, do that as well, as compaction will
4903 * try prevent permanent fragmentation by migrating from blocks of the
4904 * same migratetype.
4905 * Don't try this for allocations that are allowed to ignore
4906 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4907 */
282722b0
VB
4908 if (can_direct_reclaim &&
4909 (costly_order ||
4910 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4911 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4912 page = __alloc_pages_direct_compact(gfp_mask, order,
4913 alloc_flags, ac,
a5508cd8 4914 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4915 &compact_result);
4916 if (page)
4917 goto got_pg;
4918
cc638f32
VB
4919 /*
4920 * Checks for costly allocations with __GFP_NORETRY, which
4921 * includes some THP page fault allocations
4922 */
4923 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4924 /*
4925 * If allocating entire pageblock(s) and compaction
4926 * failed because all zones are below low watermarks
4927 * or is prohibited because it recently failed at this
3f36d866
DR
4928 * order, fail immediately unless the allocator has
4929 * requested compaction and reclaim retry.
b39d0ee2
DR
4930 *
4931 * Reclaim is
4932 * - potentially very expensive because zones are far
4933 * below their low watermarks or this is part of very
4934 * bursty high order allocations,
4935 * - not guaranteed to help because isolate_freepages()
4936 * may not iterate over freed pages as part of its
4937 * linear scan, and
4938 * - unlikely to make entire pageblocks free on its
4939 * own.
4940 */
4941 if (compact_result == COMPACT_SKIPPED ||
4942 compact_result == COMPACT_DEFERRED)
4943 goto nopage;
a8161d1e 4944
a8161d1e 4945 /*
3eb2771b
VB
4946 * Looks like reclaim/compaction is worth trying, but
4947 * sync compaction could be very expensive, so keep
25160354 4948 * using async compaction.
a8161d1e 4949 */
a5508cd8 4950 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4951 }
4952 }
23771235 4953
31a6c190 4954retry:
23771235 4955 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4956 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4957 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4958
cd04ae1e
MH
4959 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4960 if (reserve_flags)
8e3560d9 4961 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 4962
e46e7b77 4963 /*
d6a24df0
VB
4964 * Reset the nodemask and zonelist iterators if memory policies can be
4965 * ignored. These allocations are high priority and system rather than
4966 * user oriented.
e46e7b77 4967 */
cd04ae1e 4968 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4969 ac->nodemask = NULL;
e46e7b77 4970 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4971 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4972 }
4973
23771235 4974 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4975 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4976 if (page)
4977 goto got_pg;
1da177e4 4978
d0164adc 4979 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4980 if (!can_direct_reclaim)
1da177e4
LT
4981 goto nopage;
4982
9a67f648
MH
4983 /* Avoid recursion of direct reclaim */
4984 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4985 goto nopage;
4986
a8161d1e
VB
4987 /* Try direct reclaim and then allocating */
4988 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4989 &did_some_progress);
4990 if (page)
4991 goto got_pg;
4992
4993 /* Try direct compaction and then allocating */
a9263751 4994 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4995 compact_priority, &compact_result);
56de7263
MG
4996 if (page)
4997 goto got_pg;
75f30861 4998
9083905a
JW
4999 /* Do not loop if specifically requested */
5000 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5001 goto nopage;
9083905a 5002
0a0337e0
MH
5003 /*
5004 * Do not retry costly high order allocations unless they are
dcda9b04 5005 * __GFP_RETRY_MAYFAIL
0a0337e0 5006 */
dcda9b04 5007 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5008 goto nopage;
0a0337e0 5009
0a0337e0 5010 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5011 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5012 goto retry;
5013
33c2d214
MH
5014 /*
5015 * It doesn't make any sense to retry for the compaction if the order-0
5016 * reclaim is not able to make any progress because the current
5017 * implementation of the compaction depends on the sufficient amount
5018 * of free memory (see __compaction_suitable)
5019 */
5020 if (did_some_progress > 0 &&
86a294a8 5021 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5022 compact_result, &compact_priority,
d9436498 5023 &compaction_retries))
33c2d214
MH
5024 goto retry;
5025
902b6281
VB
5026
5027 /* Deal with possible cpuset update races before we start OOM killing */
5028 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5029 goto retry_cpuset;
5030
9083905a
JW
5031 /* Reclaim has failed us, start killing things */
5032 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5033 if (page)
5034 goto got_pg;
5035
9a67f648 5036 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5037 if (tsk_is_oom_victim(current) &&
8510e69c 5038 (alloc_flags & ALLOC_OOM ||
c288983d 5039 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5040 goto nopage;
5041
9083905a 5042 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5043 if (did_some_progress) {
5044 no_progress_loops = 0;
9083905a 5045 goto retry;
0a0337e0 5046 }
9083905a 5047
1da177e4 5048nopage:
902b6281
VB
5049 /* Deal with possible cpuset update races before we fail */
5050 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5051 goto retry_cpuset;
5052
9a67f648
MH
5053 /*
5054 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5055 * we always retry
5056 */
5057 if (gfp_mask & __GFP_NOFAIL) {
5058 /*
5059 * All existing users of the __GFP_NOFAIL are blockable, so warn
5060 * of any new users that actually require GFP_NOWAIT
5061 */
5062 if (WARN_ON_ONCE(!can_direct_reclaim))
5063 goto fail;
5064
5065 /*
5066 * PF_MEMALLOC request from this context is rather bizarre
5067 * because we cannot reclaim anything and only can loop waiting
5068 * for somebody to do a work for us
5069 */
5070 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5071
5072 /*
5073 * non failing costly orders are a hard requirement which we
5074 * are not prepared for much so let's warn about these users
5075 * so that we can identify them and convert them to something
5076 * else.
5077 */
5078 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5079
6c18ba7a
MH
5080 /*
5081 * Help non-failing allocations by giving them access to memory
5082 * reserves but do not use ALLOC_NO_WATERMARKS because this
5083 * could deplete whole memory reserves which would just make
5084 * the situation worse
5085 */
5086 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5087 if (page)
5088 goto got_pg;
5089
9a67f648
MH
5090 cond_resched();
5091 goto retry;
5092 }
5093fail:
a8e99259 5094 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5095 "page allocation failure: order:%u", order);
1da177e4 5096got_pg:
072bb0aa 5097 return page;
1da177e4 5098}
11e33f6a 5099
9cd75558 5100static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5101 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5102 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5103 unsigned int *alloc_flags)
11e33f6a 5104{
97a225e6 5105 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5106 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5107 ac->nodemask = nodemask;
01c0bfe0 5108 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5109
682a3385 5110 if (cpusets_enabled()) {
8e6a930b 5111 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5112 /*
5113 * When we are in the interrupt context, it is irrelevant
5114 * to the current task context. It means that any node ok.
5115 */
88dc6f20 5116 if (in_task() && !ac->nodemask)
9cd75558 5117 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5118 else
5119 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5120 }
5121
d92a8cfc
PZ
5122 fs_reclaim_acquire(gfp_mask);
5123 fs_reclaim_release(gfp_mask);
11e33f6a 5124
d0164adc 5125 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5126
5127 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5128 return false;
11e33f6a 5129
8e3560d9 5130 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5131
c9ab0c4f 5132 /* Dirty zone balancing only done in the fast path */
9cd75558 5133 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5134
e46e7b77
MG
5135 /*
5136 * The preferred zone is used for statistics but crucially it is
5137 * also used as the starting point for the zonelist iterator. It
5138 * may get reset for allocations that ignore memory policies.
5139 */
9cd75558 5140 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5141 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5142
5143 return true;
9cd75558
MG
5144}
5145
387ba26f 5146/*
0f87d9d3 5147 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5148 * @gfp: GFP flags for the allocation
5149 * @preferred_nid: The preferred NUMA node ID to allocate from
5150 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5151 * @nr_pages: The number of pages desired on the list or array
5152 * @page_list: Optional list to store the allocated pages
5153 * @page_array: Optional array to store the pages
387ba26f
MG
5154 *
5155 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5156 * allocate nr_pages quickly. Pages are added to page_list if page_list
5157 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5158 *
0f87d9d3
MG
5159 * For lists, nr_pages is the number of pages that should be allocated.
5160 *
5161 * For arrays, only NULL elements are populated with pages and nr_pages
5162 * is the maximum number of pages that will be stored in the array.
5163 *
5164 * Returns the number of pages on the list or array.
387ba26f
MG
5165 */
5166unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5167 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5168 struct list_head *page_list,
5169 struct page **page_array)
387ba26f
MG
5170{
5171 struct page *page;
5172 unsigned long flags;
5173 struct zone *zone;
5174 struct zoneref *z;
5175 struct per_cpu_pages *pcp;
5176 struct list_head *pcp_list;
5177 struct alloc_context ac;
5178 gfp_t alloc_gfp;
5179 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5180 int nr_populated = 0, nr_account = 0;
387ba26f 5181
0f87d9d3
MG
5182 /*
5183 * Skip populated array elements to determine if any pages need
5184 * to be allocated before disabling IRQs.
5185 */
b08e50dd 5186 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5187 nr_populated++;
5188
06147843
CL
5189 /* No pages requested? */
5190 if (unlikely(nr_pages <= 0))
5191 goto out;
5192
b3b64ebd
MG
5193 /* Already populated array? */
5194 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5195 goto out;
b3b64ebd 5196
8dcb3060
SB
5197 /* Bulk allocator does not support memcg accounting. */
5198 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5199 goto failed;
5200
387ba26f 5201 /* Use the single page allocator for one page. */
0f87d9d3 5202 if (nr_pages - nr_populated == 1)
387ba26f
MG
5203 goto failed;
5204
187ad460
MG
5205#ifdef CONFIG_PAGE_OWNER
5206 /*
5207 * PAGE_OWNER may recurse into the allocator to allocate space to
5208 * save the stack with pagesets.lock held. Releasing/reacquiring
5209 * removes much of the performance benefit of bulk allocation so
5210 * force the caller to allocate one page at a time as it'll have
5211 * similar performance to added complexity to the bulk allocator.
5212 */
5213 if (static_branch_unlikely(&page_owner_inited))
5214 goto failed;
5215#endif
5216
387ba26f
MG
5217 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5218 gfp &= gfp_allowed_mask;
5219 alloc_gfp = gfp;
5220 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5221 goto out;
387ba26f
MG
5222 gfp = alloc_gfp;
5223
5224 /* Find an allowed local zone that meets the low watermark. */
5225 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5226 unsigned long mark;
5227
5228 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5229 !__cpuset_zone_allowed(zone, gfp)) {
5230 continue;
5231 }
5232
5233 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5234 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5235 goto failed;
5236 }
5237
5238 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5239 if (zone_watermark_fast(zone, 0, mark,
5240 zonelist_zone_idx(ac.preferred_zoneref),
5241 alloc_flags, gfp)) {
5242 break;
5243 }
5244 }
5245
5246 /*
5247 * If there are no allowed local zones that meets the watermarks then
5248 * try to allocate a single page and reclaim if necessary.
5249 */
ce76f9a1 5250 if (unlikely(!zone))
387ba26f
MG
5251 goto failed;
5252
5253 /* Attempt the batch allocation */
dbbee9d5 5254 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5255 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5256 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5257
0f87d9d3
MG
5258 while (nr_populated < nr_pages) {
5259
5260 /* Skip existing pages */
5261 if (page_array && page_array[nr_populated]) {
5262 nr_populated++;
5263 continue;
5264 }
5265
44042b44 5266 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5267 pcp, pcp_list);
ce76f9a1 5268 if (unlikely(!page)) {
387ba26f 5269 /* Try and get at least one page */
0f87d9d3 5270 if (!nr_populated)
387ba26f
MG
5271 goto failed_irq;
5272 break;
5273 }
3e23060b 5274 nr_account++;
387ba26f
MG
5275
5276 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5277 if (page_list)
5278 list_add(&page->lru, page_list);
5279 else
5280 page_array[nr_populated] = page;
5281 nr_populated++;
387ba26f
MG
5282 }
5283
43c95bcc
MG
5284 local_unlock_irqrestore(&pagesets.lock, flags);
5285
3e23060b
MG
5286 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5287 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5288
06147843 5289out:
0f87d9d3 5290 return nr_populated;
387ba26f
MG
5291
5292failed_irq:
dbbee9d5 5293 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5294
5295failed:
5296 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5297 if (page) {
0f87d9d3
MG
5298 if (page_list)
5299 list_add(&page->lru, page_list);
5300 else
5301 page_array[nr_populated] = page;
5302 nr_populated++;
387ba26f
MG
5303 }
5304
06147843 5305 goto out;
387ba26f
MG
5306}
5307EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5308
9cd75558
MG
5309/*
5310 * This is the 'heart' of the zoned buddy allocator.
5311 */
84172f4b 5312struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5313 nodemask_t *nodemask)
9cd75558
MG
5314{
5315 struct page *page;
5316 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5317 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5318 struct alloc_context ac = { };
5319
c63ae43b
MH
5320 /*
5321 * There are several places where we assume that the order value is sane
5322 * so bail out early if the request is out of bound.
5323 */
5324 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5325 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5326 return NULL;
5327 }
5328
6e5e0f28 5329 gfp &= gfp_allowed_mask;
da6df1b0
PT
5330 /*
5331 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5332 * resp. GFP_NOIO which has to be inherited for all allocation requests
5333 * from a particular context which has been marked by
8e3560d9
PT
5334 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5335 * movable zones are not used during allocation.
da6df1b0
PT
5336 */
5337 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5338 alloc_gfp = gfp;
5339 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5340 &alloc_gfp, &alloc_flags))
9cd75558
MG
5341 return NULL;
5342
6bb15450
MG
5343 /*
5344 * Forbid the first pass from falling back to types that fragment
5345 * memory until all local zones are considered.
5346 */
6e5e0f28 5347 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5348
5117f45d 5349 /* First allocation attempt */
8e6a930b 5350 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5351 if (likely(page))
5352 goto out;
11e33f6a 5353
da6df1b0 5354 alloc_gfp = gfp;
4fcb0971 5355 ac.spread_dirty_pages = false;
23f086f9 5356
4741526b
MG
5357 /*
5358 * Restore the original nodemask if it was potentially replaced with
5359 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5360 */
97ce86f9 5361 ac.nodemask = nodemask;
16096c25 5362
8e6a930b 5363 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5364
4fcb0971 5365out:
6e5e0f28
MWO
5366 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5367 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5368 __free_pages(page, order);
5369 page = NULL;
4949148a
VD
5370 }
5371
8e6a930b 5372 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5373
11e33f6a 5374 return page;
1da177e4 5375}
84172f4b 5376EXPORT_SYMBOL(__alloc_pages);
1da177e4 5377
cc09cb13
MWO
5378struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5379 nodemask_t *nodemask)
5380{
5381 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5382 preferred_nid, nodemask);
5383
5384 if (page && order > 1)
5385 prep_transhuge_page(page);
5386 return (struct folio *)page;
5387}
5388EXPORT_SYMBOL(__folio_alloc);
5389
1da177e4 5390/*
9ea9a680
MH
5391 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5392 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5393 * you need to access high mem.
1da177e4 5394 */
920c7a5d 5395unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5396{
945a1113
AM
5397 struct page *page;
5398
9ea9a680 5399 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5400 if (!page)
5401 return 0;
5402 return (unsigned long) page_address(page);
5403}
1da177e4
LT
5404EXPORT_SYMBOL(__get_free_pages);
5405
920c7a5d 5406unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5407{
945a1113 5408 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5409}
1da177e4
LT
5410EXPORT_SYMBOL(get_zeroed_page);
5411
7f194fbb
MWO
5412/**
5413 * __free_pages - Free pages allocated with alloc_pages().
5414 * @page: The page pointer returned from alloc_pages().
5415 * @order: The order of the allocation.
5416 *
5417 * This function can free multi-page allocations that are not compound
5418 * pages. It does not check that the @order passed in matches that of
5419 * the allocation, so it is easy to leak memory. Freeing more memory
5420 * than was allocated will probably emit a warning.
5421 *
5422 * If the last reference to this page is speculative, it will be released
5423 * by put_page() which only frees the first page of a non-compound
5424 * allocation. To prevent the remaining pages from being leaked, we free
5425 * the subsequent pages here. If you want to use the page's reference
5426 * count to decide when to free the allocation, you should allocate a
5427 * compound page, and use put_page() instead of __free_pages().
5428 *
5429 * Context: May be called in interrupt context or while holding a normal
5430 * spinlock, but not in NMI context or while holding a raw spinlock.
5431 */
742aa7fb
AL
5432void __free_pages(struct page *page, unsigned int order)
5433{
5434 if (put_page_testzero(page))
5435 free_the_page(page, order);
e320d301
MWO
5436 else if (!PageHead(page))
5437 while (order-- > 0)
5438 free_the_page(page + (1 << order), order);
742aa7fb 5439}
1da177e4
LT
5440EXPORT_SYMBOL(__free_pages);
5441
920c7a5d 5442void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5443{
5444 if (addr != 0) {
725d704e 5445 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5446 __free_pages(virt_to_page((void *)addr), order);
5447 }
5448}
5449
5450EXPORT_SYMBOL(free_pages);
5451
b63ae8ca
AD
5452/*
5453 * Page Fragment:
5454 * An arbitrary-length arbitrary-offset area of memory which resides
5455 * within a 0 or higher order page. Multiple fragments within that page
5456 * are individually refcounted, in the page's reference counter.
5457 *
5458 * The page_frag functions below provide a simple allocation framework for
5459 * page fragments. This is used by the network stack and network device
5460 * drivers to provide a backing region of memory for use as either an
5461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5462 */
2976db80
AD
5463static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5464 gfp_t gfp_mask)
b63ae8ca
AD
5465{
5466 struct page *page = NULL;
5467 gfp_t gfp = gfp_mask;
5468
5469#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5470 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5471 __GFP_NOMEMALLOC;
5472 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5473 PAGE_FRAG_CACHE_MAX_ORDER);
5474 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5475#endif
5476 if (unlikely(!page))
5477 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5478
5479 nc->va = page ? page_address(page) : NULL;
5480
5481 return page;
5482}
5483
2976db80 5484void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5485{
5486 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5487
742aa7fb
AL
5488 if (page_ref_sub_and_test(page, count))
5489 free_the_page(page, compound_order(page));
44fdffd7 5490}
2976db80 5491EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5492
b358e212
KH
5493void *page_frag_alloc_align(struct page_frag_cache *nc,
5494 unsigned int fragsz, gfp_t gfp_mask,
5495 unsigned int align_mask)
b63ae8ca
AD
5496{
5497 unsigned int size = PAGE_SIZE;
5498 struct page *page;
5499 int offset;
5500
5501 if (unlikely(!nc->va)) {
5502refill:
2976db80 5503 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5504 if (!page)
5505 return NULL;
5506
5507#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5508 /* if size can vary use size else just use PAGE_SIZE */
5509 size = nc->size;
5510#endif
5511 /* Even if we own the page, we do not use atomic_set().
5512 * This would break get_page_unless_zero() users.
5513 */
86447726 5514 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5515
5516 /* reset page count bias and offset to start of new frag */
2f064f34 5517 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5518 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5519 nc->offset = size;
5520 }
5521
5522 offset = nc->offset - fragsz;
5523 if (unlikely(offset < 0)) {
5524 page = virt_to_page(nc->va);
5525
fe896d18 5526 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5527 goto refill;
5528
d8c19014
DZ
5529 if (unlikely(nc->pfmemalloc)) {
5530 free_the_page(page, compound_order(page));
5531 goto refill;
5532 }
5533
b63ae8ca
AD
5534#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5535 /* if size can vary use size else just use PAGE_SIZE */
5536 size = nc->size;
5537#endif
5538 /* OK, page count is 0, we can safely set it */
86447726 5539 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5540
5541 /* reset page count bias and offset to start of new frag */
86447726 5542 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5543 offset = size - fragsz;
5544 }
5545
5546 nc->pagecnt_bias--;
b358e212 5547 offset &= align_mask;
b63ae8ca
AD
5548 nc->offset = offset;
5549
5550 return nc->va + offset;
5551}
b358e212 5552EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5553
5554/*
5555 * Frees a page fragment allocated out of either a compound or order 0 page.
5556 */
8c2dd3e4 5557void page_frag_free(void *addr)
b63ae8ca
AD
5558{
5559 struct page *page = virt_to_head_page(addr);
5560
742aa7fb
AL
5561 if (unlikely(put_page_testzero(page)))
5562 free_the_page(page, compound_order(page));
b63ae8ca 5563}
8c2dd3e4 5564EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5565
d00181b9
KS
5566static void *make_alloc_exact(unsigned long addr, unsigned int order,
5567 size_t size)
ee85c2e1
AK
5568{
5569 if (addr) {
5570 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5571 unsigned long used = addr + PAGE_ALIGN(size);
5572
5573 split_page(virt_to_page((void *)addr), order);
5574 while (used < alloc_end) {
5575 free_page(used);
5576 used += PAGE_SIZE;
5577 }
5578 }
5579 return (void *)addr;
5580}
5581
2be0ffe2
TT
5582/**
5583 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5584 * @size: the number of bytes to allocate
63931eb9 5585 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5586 *
5587 * This function is similar to alloc_pages(), except that it allocates the
5588 * minimum number of pages to satisfy the request. alloc_pages() can only
5589 * allocate memory in power-of-two pages.
5590 *
5591 * This function is also limited by MAX_ORDER.
5592 *
5593 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5594 *
5595 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5596 */
5597void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5598{
5599 unsigned int order = get_order(size);
5600 unsigned long addr;
5601
ba7f1b9e
ML
5602 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5603 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5604
2be0ffe2 5605 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5606 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5607}
5608EXPORT_SYMBOL(alloc_pages_exact);
5609
ee85c2e1
AK
5610/**
5611 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5612 * pages on a node.
b5e6ab58 5613 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5614 * @size: the number of bytes to allocate
63931eb9 5615 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5616 *
5617 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5618 * back.
a862f68a
MR
5619 *
5620 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5621 */
e1931811 5622void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5623{
d00181b9 5624 unsigned int order = get_order(size);
63931eb9
VB
5625 struct page *p;
5626
ba7f1b9e
ML
5627 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5628 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5629
5630 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5631 if (!p)
5632 return NULL;
5633 return make_alloc_exact((unsigned long)page_address(p), order, size);
5634}
ee85c2e1 5635
2be0ffe2
TT
5636/**
5637 * free_pages_exact - release memory allocated via alloc_pages_exact()
5638 * @virt: the value returned by alloc_pages_exact.
5639 * @size: size of allocation, same value as passed to alloc_pages_exact().
5640 *
5641 * Release the memory allocated by a previous call to alloc_pages_exact.
5642 */
5643void free_pages_exact(void *virt, size_t size)
5644{
5645 unsigned long addr = (unsigned long)virt;
5646 unsigned long end = addr + PAGE_ALIGN(size);
5647
5648 while (addr < end) {
5649 free_page(addr);
5650 addr += PAGE_SIZE;
5651 }
5652}
5653EXPORT_SYMBOL(free_pages_exact);
5654
e0fb5815
ZY
5655/**
5656 * nr_free_zone_pages - count number of pages beyond high watermark
5657 * @offset: The zone index of the highest zone
5658 *
a862f68a 5659 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5660 * high watermark within all zones at or below a given zone index. For each
5661 * zone, the number of pages is calculated as:
0e056eb5 5662 *
5663 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5664 *
5665 * Return: number of pages beyond high watermark.
e0fb5815 5666 */
ebec3862 5667static unsigned long nr_free_zone_pages(int offset)
1da177e4 5668{
dd1a239f 5669 struct zoneref *z;
54a6eb5c
MG
5670 struct zone *zone;
5671
e310fd43 5672 /* Just pick one node, since fallback list is circular */
ebec3862 5673 unsigned long sum = 0;
1da177e4 5674
0e88460d 5675 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5676
54a6eb5c 5677 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5678 unsigned long size = zone_managed_pages(zone);
41858966 5679 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5680 if (size > high)
5681 sum += size - high;
1da177e4
LT
5682 }
5683
5684 return sum;
5685}
5686
e0fb5815
ZY
5687/**
5688 * nr_free_buffer_pages - count number of pages beyond high watermark
5689 *
5690 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5691 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5692 *
5693 * Return: number of pages beyond high watermark within ZONE_DMA and
5694 * ZONE_NORMAL.
1da177e4 5695 */
ebec3862 5696unsigned long nr_free_buffer_pages(void)
1da177e4 5697{
af4ca457 5698 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5699}
c2f1a551 5700EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5701
08e0f6a9 5702static inline void show_node(struct zone *zone)
1da177e4 5703{
e5adfffc 5704 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5705 printk("Node %d ", zone_to_nid(zone));
1da177e4 5706}
1da177e4 5707
d02bd27b
IR
5708long si_mem_available(void)
5709{
5710 long available;
5711 unsigned long pagecache;
5712 unsigned long wmark_low = 0;
5713 unsigned long pages[NR_LRU_LISTS];
b29940c1 5714 unsigned long reclaimable;
d02bd27b
IR
5715 struct zone *zone;
5716 int lru;
5717
5718 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5719 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5720
5721 for_each_zone(zone)
a9214443 5722 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5723
5724 /*
5725 * Estimate the amount of memory available for userspace allocations,
5726 * without causing swapping.
5727 */
c41f012a 5728 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5729
5730 /*
5731 * Not all the page cache can be freed, otherwise the system will
5732 * start swapping. Assume at least half of the page cache, or the
5733 * low watermark worth of cache, needs to stay.
5734 */
5735 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5736 pagecache -= min(pagecache / 2, wmark_low);
5737 available += pagecache;
5738
5739 /*
b29940c1
VB
5740 * Part of the reclaimable slab and other kernel memory consists of
5741 * items that are in use, and cannot be freed. Cap this estimate at the
5742 * low watermark.
d02bd27b 5743 */
d42f3245
RG
5744 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5745 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5746 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5747
d02bd27b
IR
5748 if (available < 0)
5749 available = 0;
5750 return available;
5751}
5752EXPORT_SYMBOL_GPL(si_mem_available);
5753
1da177e4
LT
5754void si_meminfo(struct sysinfo *val)
5755{
ca79b0c2 5756 val->totalram = totalram_pages();
11fb9989 5757 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5758 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5759 val->bufferram = nr_blockdev_pages();
ca79b0c2 5760 val->totalhigh = totalhigh_pages();
1da177e4 5761 val->freehigh = nr_free_highpages();
1da177e4
LT
5762 val->mem_unit = PAGE_SIZE;
5763}
5764
5765EXPORT_SYMBOL(si_meminfo);
5766
5767#ifdef CONFIG_NUMA
5768void si_meminfo_node(struct sysinfo *val, int nid)
5769{
cdd91a77
JL
5770 int zone_type; /* needs to be signed */
5771 unsigned long managed_pages = 0;
fc2bd799
JK
5772 unsigned long managed_highpages = 0;
5773 unsigned long free_highpages = 0;
1da177e4
LT
5774 pg_data_t *pgdat = NODE_DATA(nid);
5775
cdd91a77 5776 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5777 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5778 val->totalram = managed_pages;
11fb9989 5779 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5780 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5781#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5782 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5783 struct zone *zone = &pgdat->node_zones[zone_type];
5784
5785 if (is_highmem(zone)) {
9705bea5 5786 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5787 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5788 }
5789 }
5790 val->totalhigh = managed_highpages;
5791 val->freehigh = free_highpages;
98d2b0eb 5792#else
fc2bd799
JK
5793 val->totalhigh = managed_highpages;
5794 val->freehigh = free_highpages;
98d2b0eb 5795#endif
1da177e4
LT
5796 val->mem_unit = PAGE_SIZE;
5797}
5798#endif
5799
ddd588b5 5800/*
7bf02ea2
DR
5801 * Determine whether the node should be displayed or not, depending on whether
5802 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5803 */
9af744d7 5804static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5805{
ddd588b5 5806 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5807 return false;
ddd588b5 5808
9af744d7
MH
5809 /*
5810 * no node mask - aka implicit memory numa policy. Do not bother with
5811 * the synchronization - read_mems_allowed_begin - because we do not
5812 * have to be precise here.
5813 */
5814 if (!nodemask)
5815 nodemask = &cpuset_current_mems_allowed;
5816
5817 return !node_isset(nid, *nodemask);
ddd588b5
DR
5818}
5819
1da177e4
LT
5820#define K(x) ((x) << (PAGE_SHIFT-10))
5821
377e4f16
RV
5822static void show_migration_types(unsigned char type)
5823{
5824 static const char types[MIGRATE_TYPES] = {
5825 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5826 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5827 [MIGRATE_RECLAIMABLE] = 'E',
5828 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5829#ifdef CONFIG_CMA
5830 [MIGRATE_CMA] = 'C',
5831#endif
194159fb 5832#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5833 [MIGRATE_ISOLATE] = 'I',
194159fb 5834#endif
377e4f16
RV
5835 };
5836 char tmp[MIGRATE_TYPES + 1];
5837 char *p = tmp;
5838 int i;
5839
5840 for (i = 0; i < MIGRATE_TYPES; i++) {
5841 if (type & (1 << i))
5842 *p++ = types[i];
5843 }
5844
5845 *p = '\0';
1f84a18f 5846 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5847}
5848
1da177e4
LT
5849/*
5850 * Show free area list (used inside shift_scroll-lock stuff)
5851 * We also calculate the percentage fragmentation. We do this by counting the
5852 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5853 *
5854 * Bits in @filter:
5855 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5856 * cpuset.
1da177e4 5857 */
9af744d7 5858void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5859{
d1bfcdb8 5860 unsigned long free_pcp = 0;
c7241913 5861 int cpu;
1da177e4 5862 struct zone *zone;
599d0c95 5863 pg_data_t *pgdat;
1da177e4 5864
ee99c71c 5865 for_each_populated_zone(zone) {
9af744d7 5866 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5867 continue;
d1bfcdb8 5868
761b0677 5869 for_each_online_cpu(cpu)
28f836b6 5870 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5871 }
5872
a731286d
KM
5873 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5874 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5875 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5876 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5877 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5878 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5879 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5880 global_node_page_state(NR_ACTIVE_ANON),
5881 global_node_page_state(NR_INACTIVE_ANON),
5882 global_node_page_state(NR_ISOLATED_ANON),
5883 global_node_page_state(NR_ACTIVE_FILE),
5884 global_node_page_state(NR_INACTIVE_FILE),
5885 global_node_page_state(NR_ISOLATED_FILE),
5886 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5887 global_node_page_state(NR_FILE_DIRTY),
5888 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5889 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5890 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5891 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5892 global_node_page_state(NR_SHMEM),
f0c0c115 5893 global_node_page_state(NR_PAGETABLE),
c41f012a 5894 global_zone_page_state(NR_BOUNCE),
eb2169ce 5895 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5896 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5897 free_pcp,
c41f012a 5898 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5899
599d0c95 5900 for_each_online_pgdat(pgdat) {
9af744d7 5901 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5902 continue;
5903
599d0c95
MG
5904 printk("Node %d"
5905 " active_anon:%lukB"
5906 " inactive_anon:%lukB"
5907 " active_file:%lukB"
5908 " inactive_file:%lukB"
5909 " unevictable:%lukB"
5910 " isolated(anon):%lukB"
5911 " isolated(file):%lukB"
50658e2e 5912 " mapped:%lukB"
11fb9989
MG
5913 " dirty:%lukB"
5914 " writeback:%lukB"
5915 " shmem:%lukB"
5916#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5917 " shmem_thp: %lukB"
5918 " shmem_pmdmapped: %lukB"
5919 " anon_thp: %lukB"
5920#endif
5921 " writeback_tmp:%lukB"
991e7673
SB
5922 " kernel_stack:%lukB"
5923#ifdef CONFIG_SHADOW_CALL_STACK
5924 " shadow_call_stack:%lukB"
5925#endif
f0c0c115 5926 " pagetables:%lukB"
599d0c95
MG
5927 " all_unreclaimable? %s"
5928 "\n",
5929 pgdat->node_id,
5930 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5931 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5932 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5933 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5934 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5935 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5936 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5937 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5938 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5939 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5940 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5941#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5942 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5943 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5944 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5945#endif
11fb9989 5946 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5947 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5948#ifdef CONFIG_SHADOW_CALL_STACK
5949 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5950#endif
f0c0c115 5951 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5952 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5953 "yes" : "no");
599d0c95
MG
5954 }
5955
ee99c71c 5956 for_each_populated_zone(zone) {
1da177e4
LT
5957 int i;
5958
9af744d7 5959 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5960 continue;
d1bfcdb8
KK
5961
5962 free_pcp = 0;
5963 for_each_online_cpu(cpu)
28f836b6 5964 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 5965
1da177e4 5966 show_node(zone);
1f84a18f
JP
5967 printk(KERN_CONT
5968 "%s"
1da177e4 5969 " free:%lukB"
a6ea8b5b 5970 " boost:%lukB"
1da177e4
LT
5971 " min:%lukB"
5972 " low:%lukB"
5973 " high:%lukB"
e47b346a 5974 " reserved_highatomic:%luKB"
71c799f4
MK
5975 " active_anon:%lukB"
5976 " inactive_anon:%lukB"
5977 " active_file:%lukB"
5978 " inactive_file:%lukB"
5979 " unevictable:%lukB"
5a1c84b4 5980 " writepending:%lukB"
1da177e4 5981 " present:%lukB"
9feedc9d 5982 " managed:%lukB"
4a0aa73f 5983 " mlocked:%lukB"
4a0aa73f 5984 " bounce:%lukB"
d1bfcdb8
KK
5985 " free_pcp:%lukB"
5986 " local_pcp:%ukB"
d1ce749a 5987 " free_cma:%lukB"
1da177e4
LT
5988 "\n",
5989 zone->name,
88f5acf8 5990 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 5991 K(zone->watermark_boost),
41858966
MG
5992 K(min_wmark_pages(zone)),
5993 K(low_wmark_pages(zone)),
5994 K(high_wmark_pages(zone)),
e47b346a 5995 K(zone->nr_reserved_highatomic),
71c799f4
MK
5996 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5997 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5998 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5999 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6000 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6001 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6002 K(zone->present_pages),
9705bea5 6003 K(zone_managed_pages(zone)),
4a0aa73f 6004 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6005 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6006 K(free_pcp),
28f836b6 6007 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6008 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6009 printk("lowmem_reserve[]:");
6010 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6011 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6012 printk(KERN_CONT "\n");
1da177e4
LT
6013 }
6014
ee99c71c 6015 for_each_populated_zone(zone) {
d00181b9
KS
6016 unsigned int order;
6017 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6018 unsigned char types[MAX_ORDER];
1da177e4 6019
9af744d7 6020 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6021 continue;
1da177e4 6022 show_node(zone);
1f84a18f 6023 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6024
6025 spin_lock_irqsave(&zone->lock, flags);
6026 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6027 struct free_area *area = &zone->free_area[order];
6028 int type;
6029
6030 nr[order] = area->nr_free;
8f9de51a 6031 total += nr[order] << order;
377e4f16
RV
6032
6033 types[order] = 0;
6034 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6035 if (!free_area_empty(area, type))
377e4f16
RV
6036 types[order] |= 1 << type;
6037 }
1da177e4
LT
6038 }
6039 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6040 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6041 printk(KERN_CONT "%lu*%lukB ",
6042 nr[order], K(1UL) << order);
377e4f16
RV
6043 if (nr[order])
6044 show_migration_types(types[order]);
6045 }
1f84a18f 6046 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6047 }
6048
949f7ec5
DR
6049 hugetlb_show_meminfo();
6050
11fb9989 6051 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6052
1da177e4
LT
6053 show_swap_cache_info();
6054}
6055
19770b32
MG
6056static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6057{
6058 zoneref->zone = zone;
6059 zoneref->zone_idx = zone_idx(zone);
6060}
6061
1da177e4
LT
6062/*
6063 * Builds allocation fallback zone lists.
1a93205b
CL
6064 *
6065 * Add all populated zones of a node to the zonelist.
1da177e4 6066 */
9d3be21b 6067static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6068{
1a93205b 6069 struct zone *zone;
bc732f1d 6070 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6071 int nr_zones = 0;
02a68a5e
CL
6072
6073 do {
2f6726e5 6074 zone_type--;
070f8032 6075 zone = pgdat->node_zones + zone_type;
6aa303de 6076 if (managed_zone(zone)) {
9d3be21b 6077 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6078 check_highest_zone(zone_type);
1da177e4 6079 }
2f6726e5 6080 } while (zone_type);
bc732f1d 6081
070f8032 6082 return nr_zones;
1da177e4
LT
6083}
6084
6085#ifdef CONFIG_NUMA
f0c0b2b8
KH
6086
6087static int __parse_numa_zonelist_order(char *s)
6088{
c9bff3ee 6089 /*
f0953a1b 6090 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6091 * out to be just not useful. Let's keep the warning in place
6092 * if somebody still use the cmd line parameter so that we do
6093 * not fail it silently
6094 */
6095 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6096 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6097 return -EINVAL;
6098 }
6099 return 0;
6100}
6101
c9bff3ee
MH
6102char numa_zonelist_order[] = "Node";
6103
f0c0b2b8
KH
6104/*
6105 * sysctl handler for numa_zonelist_order
6106 */
cccad5b9 6107int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6108 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6109{
32927393
CH
6110 if (write)
6111 return __parse_numa_zonelist_order(buffer);
6112 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6113}
6114
6115
62bc62a8 6116#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
6117static int node_load[MAX_NUMNODES];
6118
1da177e4 6119/**
4dc3b16b 6120 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6121 * @node: node whose fallback list we're appending
6122 * @used_node_mask: nodemask_t of already used nodes
6123 *
6124 * We use a number of factors to determine which is the next node that should
6125 * appear on a given node's fallback list. The node should not have appeared
6126 * already in @node's fallback list, and it should be the next closest node
6127 * according to the distance array (which contains arbitrary distance values
6128 * from each node to each node in the system), and should also prefer nodes
6129 * with no CPUs, since presumably they'll have very little allocation pressure
6130 * on them otherwise.
a862f68a
MR
6131 *
6132 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6133 */
79c28a41 6134int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6135{
4cf808eb 6136 int n, val;
1da177e4 6137 int min_val = INT_MAX;
00ef2d2f 6138 int best_node = NUMA_NO_NODE;
1da177e4 6139
4cf808eb
LT
6140 /* Use the local node if we haven't already */
6141 if (!node_isset(node, *used_node_mask)) {
6142 node_set(node, *used_node_mask);
6143 return node;
6144 }
1da177e4 6145
4b0ef1fe 6146 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6147
6148 /* Don't want a node to appear more than once */
6149 if (node_isset(n, *used_node_mask))
6150 continue;
6151
1da177e4
LT
6152 /* Use the distance array to find the distance */
6153 val = node_distance(node, n);
6154
4cf808eb
LT
6155 /* Penalize nodes under us ("prefer the next node") */
6156 val += (n < node);
6157
1da177e4 6158 /* Give preference to headless and unused nodes */
b630749f 6159 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6160 val += PENALTY_FOR_NODE_WITH_CPUS;
6161
6162 /* Slight preference for less loaded node */
6163 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6164 val += node_load[n];
6165
6166 if (val < min_val) {
6167 min_val = val;
6168 best_node = n;
6169 }
6170 }
6171
6172 if (best_node >= 0)
6173 node_set(best_node, *used_node_mask);
6174
6175 return best_node;
6176}
6177
f0c0b2b8
KH
6178
6179/*
6180 * Build zonelists ordered by node and zones within node.
6181 * This results in maximum locality--normal zone overflows into local
6182 * DMA zone, if any--but risks exhausting DMA zone.
6183 */
9d3be21b
MH
6184static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6185 unsigned nr_nodes)
1da177e4 6186{
9d3be21b
MH
6187 struct zoneref *zonerefs;
6188 int i;
6189
6190 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6191
6192 for (i = 0; i < nr_nodes; i++) {
6193 int nr_zones;
6194
6195 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6196
9d3be21b
MH
6197 nr_zones = build_zonerefs_node(node, zonerefs);
6198 zonerefs += nr_zones;
6199 }
6200 zonerefs->zone = NULL;
6201 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6202}
6203
523b9458
CL
6204/*
6205 * Build gfp_thisnode zonelists
6206 */
6207static void build_thisnode_zonelists(pg_data_t *pgdat)
6208{
9d3be21b
MH
6209 struct zoneref *zonerefs;
6210 int nr_zones;
523b9458 6211
9d3be21b
MH
6212 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6213 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6214 zonerefs += nr_zones;
6215 zonerefs->zone = NULL;
6216 zonerefs->zone_idx = 0;
523b9458
CL
6217}
6218
f0c0b2b8
KH
6219/*
6220 * Build zonelists ordered by zone and nodes within zones.
6221 * This results in conserving DMA zone[s] until all Normal memory is
6222 * exhausted, but results in overflowing to remote node while memory
6223 * may still exist in local DMA zone.
6224 */
f0c0b2b8 6225
f0c0b2b8
KH
6226static void build_zonelists(pg_data_t *pgdat)
6227{
9d3be21b
MH
6228 static int node_order[MAX_NUMNODES];
6229 int node, load, nr_nodes = 0;
d0ddf49b 6230 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6231 int local_node, prev_node;
1da177e4
LT
6232
6233 /* NUMA-aware ordering of nodes */
6234 local_node = pgdat->node_id;
62bc62a8 6235 load = nr_online_nodes;
1da177e4 6236 prev_node = local_node;
f0c0b2b8 6237
f0c0b2b8 6238 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6239 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6240 /*
6241 * We don't want to pressure a particular node.
6242 * So adding penalty to the first node in same
6243 * distance group to make it round-robin.
6244 */
957f822a
DR
6245 if (node_distance(local_node, node) !=
6246 node_distance(local_node, prev_node))
54d032ce 6247 node_load[node] += load;
f0c0b2b8 6248
9d3be21b 6249 node_order[nr_nodes++] = node;
1da177e4
LT
6250 prev_node = node;
6251 load--;
1da177e4 6252 }
523b9458 6253
9d3be21b 6254 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6255 build_thisnode_zonelists(pgdat);
6cf25392
BR
6256 pr_info("Fallback order for Node %d: ", local_node);
6257 for (node = 0; node < nr_nodes; node++)
6258 pr_cont("%d ", node_order[node]);
6259 pr_cont("\n");
1da177e4
LT
6260}
6261
7aac7898
LS
6262#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6263/*
6264 * Return node id of node used for "local" allocations.
6265 * I.e., first node id of first zone in arg node's generic zonelist.
6266 * Used for initializing percpu 'numa_mem', which is used primarily
6267 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6268 */
6269int local_memory_node(int node)
6270{
c33d6c06 6271 struct zoneref *z;
7aac7898 6272
c33d6c06 6273 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6274 gfp_zone(GFP_KERNEL),
c33d6c06 6275 NULL);
c1093b74 6276 return zone_to_nid(z->zone);
7aac7898
LS
6277}
6278#endif
f0c0b2b8 6279
6423aa81
JK
6280static void setup_min_unmapped_ratio(void);
6281static void setup_min_slab_ratio(void);
1da177e4
LT
6282#else /* CONFIG_NUMA */
6283
f0c0b2b8 6284static void build_zonelists(pg_data_t *pgdat)
1da177e4 6285{
19655d34 6286 int node, local_node;
9d3be21b
MH
6287 struct zoneref *zonerefs;
6288 int nr_zones;
1da177e4
LT
6289
6290 local_node = pgdat->node_id;
1da177e4 6291
9d3be21b
MH
6292 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6293 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6294 zonerefs += nr_zones;
1da177e4 6295
54a6eb5c
MG
6296 /*
6297 * Now we build the zonelist so that it contains the zones
6298 * of all the other nodes.
6299 * We don't want to pressure a particular node, so when
6300 * building the zones for node N, we make sure that the
6301 * zones coming right after the local ones are those from
6302 * node N+1 (modulo N)
6303 */
6304 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6305 if (!node_online(node))
6306 continue;
9d3be21b
MH
6307 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6308 zonerefs += nr_zones;
1da177e4 6309 }
54a6eb5c
MG
6310 for (node = 0; node < local_node; node++) {
6311 if (!node_online(node))
6312 continue;
9d3be21b
MH
6313 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6314 zonerefs += nr_zones;
54a6eb5c
MG
6315 }
6316
9d3be21b
MH
6317 zonerefs->zone = NULL;
6318 zonerefs->zone_idx = 0;
1da177e4
LT
6319}
6320
6321#endif /* CONFIG_NUMA */
6322
99dcc3e5
CL
6323/*
6324 * Boot pageset table. One per cpu which is going to be used for all
6325 * zones and all nodes. The parameters will be set in such a way
6326 * that an item put on a list will immediately be handed over to
6327 * the buddy list. This is safe since pageset manipulation is done
6328 * with interrupts disabled.
6329 *
6330 * The boot_pagesets must be kept even after bootup is complete for
6331 * unused processors and/or zones. They do play a role for bootstrapping
6332 * hotplugged processors.
6333 *
6334 * zoneinfo_show() and maybe other functions do
6335 * not check if the processor is online before following the pageset pointer.
6336 * Other parts of the kernel may not check if the zone is available.
6337 */
28f836b6 6338static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6339/* These effectively disable the pcplists in the boot pageset completely */
6340#define BOOT_PAGESET_HIGH 0
6341#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6342static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6343static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
385386cf 6344static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6345
11cd8638 6346static void __build_all_zonelists(void *data)
1da177e4 6347{
6811378e 6348 int nid;
afb6ebb3 6349 int __maybe_unused cpu;
9adb62a5 6350 pg_data_t *self = data;
b93e0f32
MH
6351 static DEFINE_SPINLOCK(lock);
6352
6353 spin_lock(&lock);
9276b1bc 6354
7f9cfb31
BL
6355#ifdef CONFIG_NUMA
6356 memset(node_load, 0, sizeof(node_load));
6357#endif
9adb62a5 6358
c1152583
WY
6359 /*
6360 * This node is hotadded and no memory is yet present. So just
6361 * building zonelists is fine - no need to touch other nodes.
6362 */
9adb62a5
JL
6363 if (self && !node_online(self->node_id)) {
6364 build_zonelists(self);
c1152583
WY
6365 } else {
6366 for_each_online_node(nid) {
6367 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6368
c1152583
WY
6369 build_zonelists(pgdat);
6370 }
99dcc3e5 6371
7aac7898
LS
6372#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6373 /*
6374 * We now know the "local memory node" for each node--
6375 * i.e., the node of the first zone in the generic zonelist.
6376 * Set up numa_mem percpu variable for on-line cpus. During
6377 * boot, only the boot cpu should be on-line; we'll init the
6378 * secondary cpus' numa_mem as they come on-line. During
6379 * node/memory hotplug, we'll fixup all on-line cpus.
6380 */
d9c9a0b9 6381 for_each_online_cpu(cpu)
7aac7898 6382 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6383#endif
d9c9a0b9 6384 }
b93e0f32
MH
6385
6386 spin_unlock(&lock);
6811378e
YG
6387}
6388
061f67bc
RV
6389static noinline void __init
6390build_all_zonelists_init(void)
6391{
afb6ebb3
MH
6392 int cpu;
6393
061f67bc 6394 __build_all_zonelists(NULL);
afb6ebb3
MH
6395
6396 /*
6397 * Initialize the boot_pagesets that are going to be used
6398 * for bootstrapping processors. The real pagesets for
6399 * each zone will be allocated later when the per cpu
6400 * allocator is available.
6401 *
6402 * boot_pagesets are used also for bootstrapping offline
6403 * cpus if the system is already booted because the pagesets
6404 * are needed to initialize allocators on a specific cpu too.
6405 * F.e. the percpu allocator needs the page allocator which
6406 * needs the percpu allocator in order to allocate its pagesets
6407 * (a chicken-egg dilemma).
6408 */
6409 for_each_possible_cpu(cpu)
28f836b6 6410 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6411
061f67bc
RV
6412 mminit_verify_zonelist();
6413 cpuset_init_current_mems_allowed();
6414}
6415
4eaf3f64 6416/*
4eaf3f64 6417 * unless system_state == SYSTEM_BOOTING.
061f67bc 6418 *
72675e13 6419 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6420 * [protected by SYSTEM_BOOTING].
4eaf3f64 6421 */
72675e13 6422void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6423{
0a18e607
DH
6424 unsigned long vm_total_pages;
6425
6811378e 6426 if (system_state == SYSTEM_BOOTING) {
061f67bc 6427 build_all_zonelists_init();
6811378e 6428 } else {
11cd8638 6429 __build_all_zonelists(pgdat);
6811378e
YG
6430 /* cpuset refresh routine should be here */
6431 }
56b9413b
DH
6432 /* Get the number of free pages beyond high watermark in all zones. */
6433 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6434 /*
6435 * Disable grouping by mobility if the number of pages in the
6436 * system is too low to allow the mechanism to work. It would be
6437 * more accurate, but expensive to check per-zone. This check is
6438 * made on memory-hotadd so a system can start with mobility
6439 * disabled and enable it later
6440 */
d9c23400 6441 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6442 page_group_by_mobility_disabled = 1;
6443 else
6444 page_group_by_mobility_disabled = 0;
6445
ce0725f7 6446 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6447 nr_online_nodes,
756a025f
JP
6448 page_group_by_mobility_disabled ? "off" : "on",
6449 vm_total_pages);
f0c0b2b8 6450#ifdef CONFIG_NUMA
f88dfff5 6451 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6452#endif
1da177e4
LT
6453}
6454
a9a9e77f
PT
6455/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6456static bool __meminit
6457overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6458{
a9a9e77f
PT
6459 static struct memblock_region *r;
6460
6461 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6462 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6463 for_each_mem_region(r) {
a9a9e77f
PT
6464 if (*pfn < memblock_region_memory_end_pfn(r))
6465 break;
6466 }
6467 }
6468 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6469 memblock_is_mirror(r)) {
6470 *pfn = memblock_region_memory_end_pfn(r);
6471 return true;
6472 }
6473 }
a9a9e77f
PT
6474 return false;
6475}
6476
1da177e4
LT
6477/*
6478 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6479 * up by memblock_free_all() once the early boot process is
1da177e4 6480 * done. Non-atomic initialization, single-pass.
d882c006
DH
6481 *
6482 * All aligned pageblocks are initialized to the specified migratetype
6483 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6484 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6485 */
ab28cb6e 6486void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6487 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6488 enum meminit_context context,
6489 struct vmem_altmap *altmap, int migratetype)
1da177e4 6490{
a9a9e77f 6491 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6492 struct page *page;
1da177e4 6493
22b31eec
HD
6494 if (highest_memmap_pfn < end_pfn - 1)
6495 highest_memmap_pfn = end_pfn - 1;
6496
966cf44f 6497#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6498 /*
6499 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6500 * memory. We limit the total number of pages to initialize to just
6501 * those that might contain the memory mapping. We will defer the
6502 * ZONE_DEVICE page initialization until after we have released
6503 * the hotplug lock.
4b94ffdc 6504 */
966cf44f
AD
6505 if (zone == ZONE_DEVICE) {
6506 if (!altmap)
6507 return;
6508
6509 if (start_pfn == altmap->base_pfn)
6510 start_pfn += altmap->reserve;
6511 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6512 }
6513#endif
4b94ffdc 6514
948c436e 6515 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6516 /*
b72d0ffb
AM
6517 * There can be holes in boot-time mem_map[]s handed to this
6518 * function. They do not exist on hotplugged memory.
a2f3aa02 6519 */
c1d0da83 6520 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6521 if (overlap_memmap_init(zone, &pfn))
6522 continue;
dc2da7b4 6523 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6524 break;
a2f3aa02 6525 }
ac5d2539 6526
d0dc12e8
PT
6527 page = pfn_to_page(pfn);
6528 __init_single_page(page, pfn, zone, nid);
c1d0da83 6529 if (context == MEMINIT_HOTPLUG)
d483da5b 6530 __SetPageReserved(page);
d0dc12e8 6531
ac5d2539 6532 /*
d882c006
DH
6533 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6534 * such that unmovable allocations won't be scattered all
6535 * over the place during system boot.
ac5d2539 6536 */
4eb29bd9 6537 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6538 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6539 cond_resched();
ac5d2539 6540 }
948c436e 6541 pfn++;
1da177e4
LT
6542 }
6543}
6544
966cf44f 6545#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6546static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6547 unsigned long zone_idx, int nid,
6548 struct dev_pagemap *pgmap)
6549{
6550
6551 __init_single_page(page, pfn, zone_idx, nid);
6552
6553 /*
6554 * Mark page reserved as it will need to wait for onlining
6555 * phase for it to be fully associated with a zone.
6556 *
6557 * We can use the non-atomic __set_bit operation for setting
6558 * the flag as we are still initializing the pages.
6559 */
6560 __SetPageReserved(page);
6561
6562 /*
6563 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6564 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6565 * ever freed or placed on a driver-private list.
6566 */
6567 page->pgmap = pgmap;
6568 page->zone_device_data = NULL;
6569
6570 /*
6571 * Mark the block movable so that blocks are reserved for
6572 * movable at startup. This will force kernel allocations
6573 * to reserve their blocks rather than leaking throughout
6574 * the address space during boot when many long-lived
6575 * kernel allocations are made.
6576 *
6577 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6578 * because this is done early in section_activate()
6579 */
6580 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6581 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6582 cond_resched();
6583 }
6584}
6585
c4386bd8
JM
6586static void __ref memmap_init_compound(struct page *head,
6587 unsigned long head_pfn,
6588 unsigned long zone_idx, int nid,
6589 struct dev_pagemap *pgmap,
6590 unsigned long nr_pages)
6591{
6592 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6593 unsigned int order = pgmap->vmemmap_shift;
6594
6595 __SetPageHead(head);
6596 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6597 struct page *page = pfn_to_page(pfn);
6598
6599 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6600 prep_compound_tail(head, pfn - head_pfn);
6601 set_page_count(page, 0);
6602
6603 /*
6604 * The first tail page stores compound_mapcount_ptr() and
6605 * compound_order() and the second tail page stores
6606 * compound_pincount_ptr(). Call prep_compound_head() after
6607 * the first and second tail pages have been initialized to
6608 * not have the data overwritten.
6609 */
6610 if (pfn == head_pfn + 2)
6611 prep_compound_head(head, order);
6612 }
6613}
6614
966cf44f
AD
6615void __ref memmap_init_zone_device(struct zone *zone,
6616 unsigned long start_pfn,
1f8d75c1 6617 unsigned long nr_pages,
966cf44f
AD
6618 struct dev_pagemap *pgmap)
6619{
1f8d75c1 6620 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6621 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6622 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6623 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6624 unsigned long zone_idx = zone_idx(zone);
6625 unsigned long start = jiffies;
6626 int nid = pgdat->node_id;
6627
46d945ae 6628 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6629 return;
6630
6631 /*
122e093c 6632 * The call to memmap_init should have already taken care
966cf44f
AD
6633 * of the pages reserved for the memmap, so we can just jump to
6634 * the end of that region and start processing the device pages.
6635 */
514caf23 6636 if (altmap) {
966cf44f 6637 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6638 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6639 }
6640
c4386bd8 6641 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6642 struct page *page = pfn_to_page(pfn);
6643
46487e00 6644 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6645
6646 if (pfns_per_compound == 1)
6647 continue;
6648
6649 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6650 pfns_per_compound);
966cf44f
AD
6651 }
6652
fdc029b1 6653 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6654 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6655}
6656
6657#endif
1e548deb 6658static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6659{
7aeb09f9 6660 unsigned int order, t;
b2a0ac88
MG
6661 for_each_migratetype_order(order, t) {
6662 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6663 zone->free_area[order].nr_free = 0;
6664 }
6665}
6666
0740a50b
MR
6667/*
6668 * Only struct pages that correspond to ranges defined by memblock.memory
6669 * are zeroed and initialized by going through __init_single_page() during
122e093c 6670 * memmap_init_zone_range().
0740a50b
MR
6671 *
6672 * But, there could be struct pages that correspond to holes in
6673 * memblock.memory. This can happen because of the following reasons:
6674 * - physical memory bank size is not necessarily the exact multiple of the
6675 * arbitrary section size
6676 * - early reserved memory may not be listed in memblock.memory
6677 * - memory layouts defined with memmap= kernel parameter may not align
6678 * nicely with memmap sections
6679 *
6680 * Explicitly initialize those struct pages so that:
6681 * - PG_Reserved is set
6682 * - zone and node links point to zone and node that span the page if the
6683 * hole is in the middle of a zone
6684 * - zone and node links point to adjacent zone/node if the hole falls on
6685 * the zone boundary; the pages in such holes will be prepended to the
6686 * zone/node above the hole except for the trailing pages in the last
6687 * section that will be appended to the zone/node below.
6688 */
122e093c
MR
6689static void __init init_unavailable_range(unsigned long spfn,
6690 unsigned long epfn,
6691 int zone, int node)
0740a50b
MR
6692{
6693 unsigned long pfn;
6694 u64 pgcnt = 0;
6695
6696 for (pfn = spfn; pfn < epfn; pfn++) {
6697 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6698 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6699 + pageblock_nr_pages - 1;
6700 continue;
6701 }
6702 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6703 __SetPageReserved(pfn_to_page(pfn));
6704 pgcnt++;
6705 }
6706
122e093c
MR
6707 if (pgcnt)
6708 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6709 node, zone_names[zone], pgcnt);
0740a50b 6710}
0740a50b 6711
122e093c
MR
6712static void __init memmap_init_zone_range(struct zone *zone,
6713 unsigned long start_pfn,
6714 unsigned long end_pfn,
6715 unsigned long *hole_pfn)
dfb3ccd0 6716{
3256ff83
BH
6717 unsigned long zone_start_pfn = zone->zone_start_pfn;
6718 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6719 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6720
6721 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6722 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6723
6724 if (start_pfn >= end_pfn)
6725 return;
6726
6727 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6728 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6729
6730 if (*hole_pfn < start_pfn)
6731 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6732
6733 *hole_pfn = end_pfn;
6734}
6735
6736static void __init memmap_init(void)
6737{
73a6e474 6738 unsigned long start_pfn, end_pfn;
122e093c 6739 unsigned long hole_pfn = 0;
b346075f 6740 int i, j, zone_id = 0, nid;
73a6e474 6741
122e093c
MR
6742 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6743 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6744
122e093c
MR
6745 for (j = 0; j < MAX_NR_ZONES; j++) {
6746 struct zone *zone = node->node_zones + j;
0740a50b 6747
122e093c
MR
6748 if (!populated_zone(zone))
6749 continue;
0740a50b 6750
122e093c
MR
6751 memmap_init_zone_range(zone, start_pfn, end_pfn,
6752 &hole_pfn);
6753 zone_id = j;
6754 }
73a6e474 6755 }
0740a50b
MR
6756
6757#ifdef CONFIG_SPARSEMEM
6758 /*
122e093c
MR
6759 * Initialize the memory map for hole in the range [memory_end,
6760 * section_end].
6761 * Append the pages in this hole to the highest zone in the last
6762 * node.
6763 * The call to init_unavailable_range() is outside the ifdef to
6764 * silence the compiler warining about zone_id set but not used;
6765 * for FLATMEM it is a nop anyway
0740a50b 6766 */
122e093c 6767 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6768 if (hole_pfn < end_pfn)
0740a50b 6769#endif
122e093c 6770 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6771}
1da177e4 6772
c803b3c8
MR
6773void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6774 phys_addr_t min_addr, int nid, bool exact_nid)
6775{
6776 void *ptr;
6777
6778 if (exact_nid)
6779 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6780 MEMBLOCK_ALLOC_ACCESSIBLE,
6781 nid);
6782 else
6783 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6784 MEMBLOCK_ALLOC_ACCESSIBLE,
6785 nid);
6786
6787 if (ptr && size > 0)
6788 page_init_poison(ptr, size);
6789
6790 return ptr;
6791}
6792
7cd2b0a3 6793static int zone_batchsize(struct zone *zone)
e7c8d5c9 6794{
3a6be87f 6795#ifdef CONFIG_MMU
e7c8d5c9
CL
6796 int batch;
6797
6798 /*
b92ca18e
MG
6799 * The number of pages to batch allocate is either ~0.1%
6800 * of the zone or 1MB, whichever is smaller. The batch
6801 * size is striking a balance between allocation latency
6802 * and zone lock contention.
e7c8d5c9 6803 */
b92ca18e 6804 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6805 batch /= 4; /* We effectively *= 4 below */
6806 if (batch < 1)
6807 batch = 1;
6808
6809 /*
0ceaacc9
NP
6810 * Clamp the batch to a 2^n - 1 value. Having a power
6811 * of 2 value was found to be more likely to have
6812 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6813 *
0ceaacc9
NP
6814 * For example if 2 tasks are alternately allocating
6815 * batches of pages, one task can end up with a lot
6816 * of pages of one half of the possible page colors
6817 * and the other with pages of the other colors.
e7c8d5c9 6818 */
9155203a 6819 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6820
e7c8d5c9 6821 return batch;
3a6be87f
DH
6822
6823#else
6824 /* The deferral and batching of frees should be suppressed under NOMMU
6825 * conditions.
6826 *
6827 * The problem is that NOMMU needs to be able to allocate large chunks
6828 * of contiguous memory as there's no hardware page translation to
6829 * assemble apparent contiguous memory from discontiguous pages.
6830 *
6831 * Queueing large contiguous runs of pages for batching, however,
6832 * causes the pages to actually be freed in smaller chunks. As there
6833 * can be a significant delay between the individual batches being
6834 * recycled, this leads to the once large chunks of space being
6835 * fragmented and becoming unavailable for high-order allocations.
6836 */
6837 return 0;
6838#endif
e7c8d5c9
CL
6839}
6840
04f8cfea 6841static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6842{
6843#ifdef CONFIG_MMU
6844 int high;
203c06ee 6845 int nr_split_cpus;
74f44822
MG
6846 unsigned long total_pages;
6847
6848 if (!percpu_pagelist_high_fraction) {
6849 /*
6850 * By default, the high value of the pcp is based on the zone
6851 * low watermark so that if they are full then background
6852 * reclaim will not be started prematurely.
6853 */
6854 total_pages = low_wmark_pages(zone);
6855 } else {
6856 /*
6857 * If percpu_pagelist_high_fraction is configured, the high
6858 * value is based on a fraction of the managed pages in the
6859 * zone.
6860 */
6861 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6862 }
b92ca18e
MG
6863
6864 /*
74f44822
MG
6865 * Split the high value across all online CPUs local to the zone. Note
6866 * that early in boot that CPUs may not be online yet and that during
6867 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6868 * onlined. For memory nodes that have no CPUs, split pcp->high across
6869 * all online CPUs to mitigate the risk that reclaim is triggered
6870 * prematurely due to pages stored on pcp lists.
b92ca18e 6871 */
203c06ee
MG
6872 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6873 if (!nr_split_cpus)
6874 nr_split_cpus = num_online_cpus();
6875 high = total_pages / nr_split_cpus;
b92ca18e
MG
6876
6877 /*
6878 * Ensure high is at least batch*4. The multiple is based on the
6879 * historical relationship between high and batch.
6880 */
6881 high = max(high, batch << 2);
6882
6883 return high;
6884#else
6885 return 0;
6886#endif
6887}
6888
8d7a8fa9 6889/*
5c3ad2eb
VB
6890 * pcp->high and pcp->batch values are related and generally batch is lower
6891 * than high. They are also related to pcp->count such that count is lower
6892 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6893 *
5c3ad2eb
VB
6894 * However, guaranteeing these relations at all times would require e.g. write
6895 * barriers here but also careful usage of read barriers at the read side, and
6896 * thus be prone to error and bad for performance. Thus the update only prevents
6897 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6898 * can cope with those fields changing asynchronously, and fully trust only the
6899 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6900 *
6901 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6902 * outside of boot time (or some other assurance that no concurrent updaters
6903 * exist).
6904 */
6905static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6906 unsigned long batch)
6907{
5c3ad2eb
VB
6908 WRITE_ONCE(pcp->batch, batch);
6909 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6910}
6911
28f836b6 6912static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6913{
44042b44 6914 int pindex;
2caaad41 6915
28f836b6
MG
6916 memset(pcp, 0, sizeof(*pcp));
6917 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6918
44042b44
MG
6919 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6920 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 6921
69a8396a
VB
6922 /*
6923 * Set batch and high values safe for a boot pageset. A true percpu
6924 * pageset's initialization will update them subsequently. Here we don't
6925 * need to be as careful as pageset_update() as nobody can access the
6926 * pageset yet.
6927 */
952eaf81
VB
6928 pcp->high = BOOT_PAGESET_HIGH;
6929 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6930 pcp->free_factor = 0;
88c90dbc
CS
6931}
6932
3b1f3658 6933static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6934 unsigned long batch)
6935{
28f836b6 6936 struct per_cpu_pages *pcp;
ec6e8c7e
VB
6937 int cpu;
6938
6939 for_each_possible_cpu(cpu) {
28f836b6
MG
6940 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6941 pageset_update(pcp, high, batch);
ec6e8c7e
VB
6942 }
6943}
6944
8ad4b1fb 6945/*
0a8b4f1d 6946 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 6947 * zone based on the zone's size.
8ad4b1fb 6948 */
04f8cfea 6949static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 6950{
b92ca18e 6951 int new_high, new_batch;
7115ac6e 6952
b92ca18e 6953 new_batch = max(1, zone_batchsize(zone));
04f8cfea 6954 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 6955
952eaf81
VB
6956 if (zone->pageset_high == new_high &&
6957 zone->pageset_batch == new_batch)
6958 return;
6959
6960 zone->pageset_high = new_high;
6961 zone->pageset_batch = new_batch;
6962
ec6e8c7e 6963 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6964}
6965
72675e13 6966void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6967{
6968 int cpu;
0a8b4f1d 6969
28f836b6
MG
6970 /* Size may be 0 on !SMP && !NUMA */
6971 if (sizeof(struct per_cpu_zonestat) > 0)
6972 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6973
6974 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 6975 for_each_possible_cpu(cpu) {
28f836b6
MG
6976 struct per_cpu_pages *pcp;
6977 struct per_cpu_zonestat *pzstats;
6978
6979 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6980 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6981 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
6982 }
6983
04f8cfea 6984 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
6985}
6986
2caaad41 6987/*
99dcc3e5
CL
6988 * Allocate per cpu pagesets and initialize them.
6989 * Before this call only boot pagesets were available.
e7c8d5c9 6990 */
99dcc3e5 6991void __init setup_per_cpu_pageset(void)
e7c8d5c9 6992{
b4911ea2 6993 struct pglist_data *pgdat;
99dcc3e5 6994 struct zone *zone;
b418a0f9 6995 int __maybe_unused cpu;
e7c8d5c9 6996
319774e2
WF
6997 for_each_populated_zone(zone)
6998 setup_zone_pageset(zone);
b4911ea2 6999
b418a0f9
SD
7000#ifdef CONFIG_NUMA
7001 /*
7002 * Unpopulated zones continue using the boot pagesets.
7003 * The numa stats for these pagesets need to be reset.
7004 * Otherwise, they will end up skewing the stats of
7005 * the nodes these zones are associated with.
7006 */
7007 for_each_possible_cpu(cpu) {
28f836b6 7008 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7009 memset(pzstats->vm_numa_event, 0,
7010 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7011 }
7012#endif
7013
b4911ea2
MG
7014 for_each_online_pgdat(pgdat)
7015 pgdat->per_cpu_nodestats =
7016 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7017}
7018
c09b4240 7019static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7020{
99dcc3e5
CL
7021 /*
7022 * per cpu subsystem is not up at this point. The following code
7023 * relies on the ability of the linker to provide the
7024 * offset of a (static) per cpu variable into the per cpu area.
7025 */
28f836b6
MG
7026 zone->per_cpu_pageset = &boot_pageset;
7027 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7028 zone->pageset_high = BOOT_PAGESET_HIGH;
7029 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7030
b38a8725 7031 if (populated_zone(zone))
9660ecaa
HK
7032 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7033 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7034}
7035
dc0bbf3b 7036void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7037 unsigned long zone_start_pfn,
b171e409 7038 unsigned long size)
ed8ece2e
DH
7039{
7040 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7041 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7042
8f416836
WY
7043 if (zone_idx > pgdat->nr_zones)
7044 pgdat->nr_zones = zone_idx;
ed8ece2e 7045
ed8ece2e
DH
7046 zone->zone_start_pfn = zone_start_pfn;
7047
708614e6
MG
7048 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7049 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7050 pgdat->node_id,
7051 (unsigned long)zone_idx(zone),
7052 zone_start_pfn, (zone_start_pfn + size));
7053
1e548deb 7054 zone_init_free_lists(zone);
9dcb8b68 7055 zone->initialized = 1;
ed8ece2e
DH
7056}
7057
c713216d
MG
7058/**
7059 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7060 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7061 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7062 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7063 *
7064 * It returns the start and end page frame of a node based on information
7d018176 7065 * provided by memblock_set_node(). If called for a node
c713216d 7066 * with no available memory, a warning is printed and the start and end
88ca3b94 7067 * PFNs will be 0.
c713216d 7068 */
bbe5d993 7069void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7070 unsigned long *start_pfn, unsigned long *end_pfn)
7071{
c13291a5 7072 unsigned long this_start_pfn, this_end_pfn;
c713216d 7073 int i;
c13291a5 7074
c713216d
MG
7075 *start_pfn = -1UL;
7076 *end_pfn = 0;
7077
c13291a5
TH
7078 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7079 *start_pfn = min(*start_pfn, this_start_pfn);
7080 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7081 }
7082
633c0666 7083 if (*start_pfn == -1UL)
c713216d 7084 *start_pfn = 0;
c713216d
MG
7085}
7086
2a1e274a
MG
7087/*
7088 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7089 * assumption is made that zones within a node are ordered in monotonic
7090 * increasing memory addresses so that the "highest" populated zone is used
7091 */
b69a7288 7092static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7093{
7094 int zone_index;
7095 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7096 if (zone_index == ZONE_MOVABLE)
7097 continue;
7098
7099 if (arch_zone_highest_possible_pfn[zone_index] >
7100 arch_zone_lowest_possible_pfn[zone_index])
7101 break;
7102 }
7103
7104 VM_BUG_ON(zone_index == -1);
7105 movable_zone = zone_index;
7106}
7107
7108/*
7109 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7110 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7111 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7112 * in each node depending on the size of each node and how evenly kernelcore
7113 * is distributed. This helper function adjusts the zone ranges
7114 * provided by the architecture for a given node by using the end of the
7115 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7116 * zones within a node are in order of monotonic increases memory addresses
7117 */
bbe5d993 7118static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7119 unsigned long zone_type,
7120 unsigned long node_start_pfn,
7121 unsigned long node_end_pfn,
7122 unsigned long *zone_start_pfn,
7123 unsigned long *zone_end_pfn)
7124{
7125 /* Only adjust if ZONE_MOVABLE is on this node */
7126 if (zone_movable_pfn[nid]) {
7127 /* Size ZONE_MOVABLE */
7128 if (zone_type == ZONE_MOVABLE) {
7129 *zone_start_pfn = zone_movable_pfn[nid];
7130 *zone_end_pfn = min(node_end_pfn,
7131 arch_zone_highest_possible_pfn[movable_zone]);
7132
e506b996
XQ
7133 /* Adjust for ZONE_MOVABLE starting within this range */
7134 } else if (!mirrored_kernelcore &&
7135 *zone_start_pfn < zone_movable_pfn[nid] &&
7136 *zone_end_pfn > zone_movable_pfn[nid]) {
7137 *zone_end_pfn = zone_movable_pfn[nid];
7138
2a1e274a
MG
7139 /* Check if this whole range is within ZONE_MOVABLE */
7140 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7141 *zone_start_pfn = *zone_end_pfn;
7142 }
7143}
7144
c713216d
MG
7145/*
7146 * Return the number of pages a zone spans in a node, including holes
7147 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7148 */
bbe5d993 7149static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7150 unsigned long zone_type,
7960aedd
ZY
7151 unsigned long node_start_pfn,
7152 unsigned long node_end_pfn,
d91749c1 7153 unsigned long *zone_start_pfn,
854e8848 7154 unsigned long *zone_end_pfn)
c713216d 7155{
299c83dc
LF
7156 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7157 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7158 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7159 if (!node_start_pfn && !node_end_pfn)
7160 return 0;
7161
7960aedd 7162 /* Get the start and end of the zone */
299c83dc
LF
7163 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7164 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7165 adjust_zone_range_for_zone_movable(nid, zone_type,
7166 node_start_pfn, node_end_pfn,
d91749c1 7167 zone_start_pfn, zone_end_pfn);
c713216d
MG
7168
7169 /* Check that this node has pages within the zone's required range */
d91749c1 7170 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7171 return 0;
7172
7173 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7174 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7175 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7176
7177 /* Return the spanned pages */
d91749c1 7178 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7179}
7180
7181/*
7182 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7183 * then all holes in the requested range will be accounted for.
c713216d 7184 */
bbe5d993 7185unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7186 unsigned long range_start_pfn,
7187 unsigned long range_end_pfn)
7188{
96e907d1
TH
7189 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7190 unsigned long start_pfn, end_pfn;
7191 int i;
c713216d 7192
96e907d1
TH
7193 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7194 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7195 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7196 nr_absent -= end_pfn - start_pfn;
c713216d 7197 }
96e907d1 7198 return nr_absent;
c713216d
MG
7199}
7200
7201/**
7202 * absent_pages_in_range - Return number of page frames in holes within a range
7203 * @start_pfn: The start PFN to start searching for holes
7204 * @end_pfn: The end PFN to stop searching for holes
7205 *
a862f68a 7206 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7207 */
7208unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7209 unsigned long end_pfn)
7210{
7211 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7212}
7213
7214/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7215static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7216 unsigned long zone_type,
7960aedd 7217 unsigned long node_start_pfn,
854e8848 7218 unsigned long node_end_pfn)
c713216d 7219{
96e907d1
TH
7220 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7221 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7222 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7223 unsigned long nr_absent;
9c7cd687 7224
b5685e92 7225 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7226 if (!node_start_pfn && !node_end_pfn)
7227 return 0;
7228
96e907d1
TH
7229 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7230 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7231
2a1e274a
MG
7232 adjust_zone_range_for_zone_movable(nid, zone_type,
7233 node_start_pfn, node_end_pfn,
7234 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7235 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7236
7237 /*
7238 * ZONE_MOVABLE handling.
7239 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7240 * and vice versa.
7241 */
e506b996
XQ
7242 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7243 unsigned long start_pfn, end_pfn;
7244 struct memblock_region *r;
7245
cc6de168 7246 for_each_mem_region(r) {
e506b996
XQ
7247 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7248 zone_start_pfn, zone_end_pfn);
7249 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7250 zone_start_pfn, zone_end_pfn);
7251
7252 if (zone_type == ZONE_MOVABLE &&
7253 memblock_is_mirror(r))
7254 nr_absent += end_pfn - start_pfn;
7255
7256 if (zone_type == ZONE_NORMAL &&
7257 !memblock_is_mirror(r))
7258 nr_absent += end_pfn - start_pfn;
342332e6
TI
7259 }
7260 }
7261
7262 return nr_absent;
c713216d 7263}
0e0b864e 7264
bbe5d993 7265static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7266 unsigned long node_start_pfn,
854e8848 7267 unsigned long node_end_pfn)
c713216d 7268{
febd5949 7269 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7270 enum zone_type i;
7271
febd5949
GZ
7272 for (i = 0; i < MAX_NR_ZONES; i++) {
7273 struct zone *zone = pgdat->node_zones + i;
d91749c1 7274 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7275 unsigned long spanned, absent;
febd5949 7276 unsigned long size, real_size;
c713216d 7277
854e8848
MR
7278 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7279 node_start_pfn,
7280 node_end_pfn,
7281 &zone_start_pfn,
7282 &zone_end_pfn);
7283 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7284 node_start_pfn,
7285 node_end_pfn);
3f08a302
MR
7286
7287 size = spanned;
7288 real_size = size - absent;
7289
d91749c1
TI
7290 if (size)
7291 zone->zone_start_pfn = zone_start_pfn;
7292 else
7293 zone->zone_start_pfn = 0;
febd5949
GZ
7294 zone->spanned_pages = size;
7295 zone->present_pages = real_size;
4b097002
DH
7296#if defined(CONFIG_MEMORY_HOTPLUG)
7297 zone->present_early_pages = real_size;
7298#endif
febd5949
GZ
7299
7300 totalpages += size;
7301 realtotalpages += real_size;
7302 }
7303
7304 pgdat->node_spanned_pages = totalpages;
c713216d 7305 pgdat->node_present_pages = realtotalpages;
9660ecaa 7306 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7307}
7308
835c134e
MG
7309#ifndef CONFIG_SPARSEMEM
7310/*
7311 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7312 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7313 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7314 * round what is now in bits to nearest long in bits, then return it in
7315 * bytes.
7316 */
7c45512d 7317static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7318{
7319 unsigned long usemapsize;
7320
7c45512d 7321 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7322 usemapsize = roundup(zonesize, pageblock_nr_pages);
7323 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7324 usemapsize *= NR_PAGEBLOCK_BITS;
7325 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7326
7327 return usemapsize / 8;
7328}
7329
7010a6ec 7330static void __ref setup_usemap(struct zone *zone)
835c134e 7331{
7010a6ec
BH
7332 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7333 zone->spanned_pages);
835c134e 7334 zone->pageblock_flags = NULL;
23a7052a 7335 if (usemapsize) {
6782832e 7336 zone->pageblock_flags =
26fb3dae 7337 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7338 zone_to_nid(zone));
23a7052a
MR
7339 if (!zone->pageblock_flags)
7340 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7341 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7342 }
835c134e
MG
7343}
7344#else
7010a6ec 7345static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7346#endif /* CONFIG_SPARSEMEM */
7347
d9c23400 7348#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7349
d9c23400 7350/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7351void __init set_pageblock_order(void)
d9c23400 7352{
b3d40a2b 7353 unsigned int order = MAX_ORDER - 1;
955c1cd7 7354
d9c23400
MG
7355 /* Check that pageblock_nr_pages has not already been setup */
7356 if (pageblock_order)
7357 return;
7358
b3d40a2b
DH
7359 /* Don't let pageblocks exceed the maximum allocation granularity. */
7360 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7361 order = HUGETLB_PAGE_ORDER;
955c1cd7 7362
d9c23400
MG
7363 /*
7364 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7365 * This value may be variable depending on boot parameters on IA64 and
7366 * powerpc.
d9c23400
MG
7367 */
7368 pageblock_order = order;
7369}
7370#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7371
ba72cb8c
MG
7372/*
7373 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7374 * is unused as pageblock_order is set at compile-time. See
7375 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7376 * the kernel config
ba72cb8c 7377 */
03e85f9d 7378void __init set_pageblock_order(void)
ba72cb8c 7379{
ba72cb8c 7380}
d9c23400
MG
7381
7382#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7383
03e85f9d 7384static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7385 unsigned long present_pages)
01cefaef
JL
7386{
7387 unsigned long pages = spanned_pages;
7388
7389 /*
7390 * Provide a more accurate estimation if there are holes within
7391 * the zone and SPARSEMEM is in use. If there are holes within the
7392 * zone, each populated memory region may cost us one or two extra
7393 * memmap pages due to alignment because memmap pages for each
89d790ab 7394 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7395 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7396 */
7397 if (spanned_pages > present_pages + (present_pages >> 4) &&
7398 IS_ENABLED(CONFIG_SPARSEMEM))
7399 pages = present_pages;
7400
7401 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7402}
7403
ace1db39
OS
7404#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7405static void pgdat_init_split_queue(struct pglist_data *pgdat)
7406{
364c1eeb
YS
7407 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7408
7409 spin_lock_init(&ds_queue->split_queue_lock);
7410 INIT_LIST_HEAD(&ds_queue->split_queue);
7411 ds_queue->split_queue_len = 0;
ace1db39
OS
7412}
7413#else
7414static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7415#endif
7416
7417#ifdef CONFIG_COMPACTION
7418static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7419{
7420 init_waitqueue_head(&pgdat->kcompactd_wait);
7421}
7422#else
7423static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7424#endif
7425
03e85f9d 7426static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7427{
8cd7c588
MG
7428 int i;
7429
208d54e5 7430 pgdat_resize_init(pgdat);
ace1db39 7431
ace1db39
OS
7432 pgdat_init_split_queue(pgdat);
7433 pgdat_init_kcompactd(pgdat);
7434
1da177e4 7435 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7436 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7437
8cd7c588
MG
7438 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7439 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7440
eefa864b 7441 pgdat_page_ext_init(pgdat);
867e5e1d 7442 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7443}
7444
7445static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7446 unsigned long remaining_pages)
7447{
9705bea5 7448 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7449 zone_set_nid(zone, nid);
7450 zone->name = zone_names[idx];
7451 zone->zone_pgdat = NODE_DATA(nid);
7452 spin_lock_init(&zone->lock);
7453 zone_seqlock_init(zone);
7454 zone_pcp_init(zone);
7455}
7456
7457/*
7458 * Set up the zone data structures
7459 * - init pgdat internals
7460 * - init all zones belonging to this node
7461 *
7462 * NOTE: this function is only called during memory hotplug
7463 */
7464#ifdef CONFIG_MEMORY_HOTPLUG
7465void __ref free_area_init_core_hotplug(int nid)
7466{
7467 enum zone_type z;
7468 pg_data_t *pgdat = NODE_DATA(nid);
7469
7470 pgdat_init_internals(pgdat);
7471 for (z = 0; z < MAX_NR_ZONES; z++)
7472 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7473}
7474#endif
7475
7476/*
7477 * Set up the zone data structures:
7478 * - mark all pages reserved
7479 * - mark all memory queues empty
7480 * - clear the memory bitmaps
7481 *
7482 * NOTE: pgdat should get zeroed by caller.
7483 * NOTE: this function is only called during early init.
7484 */
7485static void __init free_area_init_core(struct pglist_data *pgdat)
7486{
7487 enum zone_type j;
7488 int nid = pgdat->node_id;
5f63b720 7489
03e85f9d 7490 pgdat_init_internals(pgdat);
385386cf
JW
7491 pgdat->per_cpu_nodestats = &boot_nodestats;
7492
1da177e4
LT
7493 for (j = 0; j < MAX_NR_ZONES; j++) {
7494 struct zone *zone = pgdat->node_zones + j;
e6943859 7495 unsigned long size, freesize, memmap_pages;
1da177e4 7496
febd5949 7497 size = zone->spanned_pages;
e6943859 7498 freesize = zone->present_pages;
1da177e4 7499
0e0b864e 7500 /*
9feedc9d 7501 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7502 * is used by this zone for memmap. This affects the watermark
7503 * and per-cpu initialisations
7504 */
e6943859 7505 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7506 if (!is_highmem_idx(j)) {
7507 if (freesize >= memmap_pages) {
7508 freesize -= memmap_pages;
7509 if (memmap_pages)
9660ecaa
HK
7510 pr_debug(" %s zone: %lu pages used for memmap\n",
7511 zone_names[j], memmap_pages);
ba914f48 7512 } else
e47aa905 7513 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7514 zone_names[j], memmap_pages, freesize);
7515 }
0e0b864e 7516
6267276f 7517 /* Account for reserved pages */
9feedc9d
JL
7518 if (j == 0 && freesize > dma_reserve) {
7519 freesize -= dma_reserve;
9660ecaa 7520 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7521 }
7522
98d2b0eb 7523 if (!is_highmem_idx(j))
9feedc9d 7524 nr_kernel_pages += freesize;
01cefaef
JL
7525 /* Charge for highmem memmap if there are enough kernel pages */
7526 else if (nr_kernel_pages > memmap_pages * 2)
7527 nr_kernel_pages -= memmap_pages;
9feedc9d 7528 nr_all_pages += freesize;
1da177e4 7529
9feedc9d
JL
7530 /*
7531 * Set an approximate value for lowmem here, it will be adjusted
7532 * when the bootmem allocator frees pages into the buddy system.
7533 * And all highmem pages will be managed by the buddy system.
7534 */
03e85f9d 7535 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7536
d883c6cf 7537 if (!size)
1da177e4
LT
7538 continue;
7539
955c1cd7 7540 set_pageblock_order();
7010a6ec 7541 setup_usemap(zone);
9699ee7b 7542 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7543 }
7544}
7545
43b02ba9 7546#ifdef CONFIG_FLATMEM
3b446da6 7547static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7548{
b0aeba74 7549 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7550 unsigned long __maybe_unused offset = 0;
7551
1da177e4
LT
7552 /* Skip empty nodes */
7553 if (!pgdat->node_spanned_pages)
7554 return;
7555
b0aeba74
TL
7556 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7557 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7558 /* ia64 gets its own node_mem_map, before this, without bootmem */
7559 if (!pgdat->node_mem_map) {
b0aeba74 7560 unsigned long size, end;
d41dee36
AW
7561 struct page *map;
7562
e984bb43
BP
7563 /*
7564 * The zone's endpoints aren't required to be MAX_ORDER
7565 * aligned but the node_mem_map endpoints must be in order
7566 * for the buddy allocator to function correctly.
7567 */
108bcc96 7568 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7569 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7570 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7571 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7572 pgdat->node_id, false);
23a7052a
MR
7573 if (!map)
7574 panic("Failed to allocate %ld bytes for node %d memory map\n",
7575 size, pgdat->node_id);
a1c34a3b 7576 pgdat->node_mem_map = map + offset;
1da177e4 7577 }
0cd842f9
OS
7578 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7579 __func__, pgdat->node_id, (unsigned long)pgdat,
7580 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7581#ifndef CONFIG_NUMA
1da177e4
LT
7582 /*
7583 * With no DISCONTIG, the global mem_map is just set as node 0's
7584 */
c713216d 7585 if (pgdat == NODE_DATA(0)) {
1da177e4 7586 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7587 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7588 mem_map -= offset;
c713216d 7589 }
1da177e4
LT
7590#endif
7591}
0cd842f9 7592#else
3b446da6 7593static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7594#endif /* CONFIG_FLATMEM */
1da177e4 7595
0188dc98
OS
7596#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7597static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7598{
0188dc98
OS
7599 pgdat->first_deferred_pfn = ULONG_MAX;
7600}
7601#else
7602static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7603#endif
7604
854e8848 7605static void __init free_area_init_node(int nid)
1da177e4 7606{
9109fb7b 7607 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7608 unsigned long start_pfn = 0;
7609 unsigned long end_pfn = 0;
9109fb7b 7610
88fdf75d 7611 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7612 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7613
854e8848 7614 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7615
1da177e4 7616 pgdat->node_id = nid;
854e8848 7617 pgdat->node_start_pfn = start_pfn;
75ef7184 7618 pgdat->per_cpu_nodestats = NULL;
854e8848 7619
8d29e18a 7620 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7621 (u64)start_pfn << PAGE_SHIFT,
7622 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7623 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7624
7625 alloc_node_mem_map(pgdat);
0188dc98 7626 pgdat_set_deferred_range(pgdat);
1da177e4 7627
7f3eb55b 7628 free_area_init_core(pgdat);
1da177e4
LT
7629}
7630
1ca75fa7 7631static void __init free_area_init_memoryless_node(int nid)
3f08a302 7632{
854e8848 7633 free_area_init_node(nid);
3f08a302
MR
7634}
7635
418508c1
MS
7636#if MAX_NUMNODES > 1
7637/*
7638 * Figure out the number of possible node ids.
7639 */
f9872caf 7640void __init setup_nr_node_ids(void)
418508c1 7641{
904a9553 7642 unsigned int highest;
418508c1 7643
904a9553 7644 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7645 nr_node_ids = highest + 1;
7646}
418508c1
MS
7647#endif
7648
1e01979c
TH
7649/**
7650 * node_map_pfn_alignment - determine the maximum internode alignment
7651 *
7652 * This function should be called after node map is populated and sorted.
7653 * It calculates the maximum power of two alignment which can distinguish
7654 * all the nodes.
7655 *
7656 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7657 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7658 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7659 * shifted, 1GiB is enough and this function will indicate so.
7660 *
7661 * This is used to test whether pfn -> nid mapping of the chosen memory
7662 * model has fine enough granularity to avoid incorrect mapping for the
7663 * populated node map.
7664 *
a862f68a 7665 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7666 * requirement (single node).
7667 */
7668unsigned long __init node_map_pfn_alignment(void)
7669{
7670 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7671 unsigned long start, end, mask;
98fa15f3 7672 int last_nid = NUMA_NO_NODE;
c13291a5 7673 int i, nid;
1e01979c 7674
c13291a5 7675 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7676 if (!start || last_nid < 0 || last_nid == nid) {
7677 last_nid = nid;
7678 last_end = end;
7679 continue;
7680 }
7681
7682 /*
7683 * Start with a mask granular enough to pin-point to the
7684 * start pfn and tick off bits one-by-one until it becomes
7685 * too coarse to separate the current node from the last.
7686 */
7687 mask = ~((1 << __ffs(start)) - 1);
7688 while (mask && last_end <= (start & (mask << 1)))
7689 mask <<= 1;
7690
7691 /* accumulate all internode masks */
7692 accl_mask |= mask;
7693 }
7694
7695 /* convert mask to number of pages */
7696 return ~accl_mask + 1;
7697}
7698
c713216d
MG
7699/**
7700 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7701 *
a862f68a 7702 * Return: the minimum PFN based on information provided via
7d018176 7703 * memblock_set_node().
c713216d
MG
7704 */
7705unsigned long __init find_min_pfn_with_active_regions(void)
7706{
8a1b25fe 7707 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7708}
7709
37b07e41
LS
7710/*
7711 * early_calculate_totalpages()
7712 * Sum pages in active regions for movable zone.
4b0ef1fe 7713 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7714 */
484f51f8 7715static unsigned long __init early_calculate_totalpages(void)
7e63efef 7716{
7e63efef 7717 unsigned long totalpages = 0;
c13291a5
TH
7718 unsigned long start_pfn, end_pfn;
7719 int i, nid;
7720
7721 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7722 unsigned long pages = end_pfn - start_pfn;
7e63efef 7723
37b07e41
LS
7724 totalpages += pages;
7725 if (pages)
4b0ef1fe 7726 node_set_state(nid, N_MEMORY);
37b07e41 7727 }
b8af2941 7728 return totalpages;
7e63efef
MG
7729}
7730
2a1e274a
MG
7731/*
7732 * Find the PFN the Movable zone begins in each node. Kernel memory
7733 * is spread evenly between nodes as long as the nodes have enough
7734 * memory. When they don't, some nodes will have more kernelcore than
7735 * others
7736 */
b224ef85 7737static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7738{
7739 int i, nid;
7740 unsigned long usable_startpfn;
7741 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7742 /* save the state before borrow the nodemask */
4b0ef1fe 7743 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7744 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7745 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7746 struct memblock_region *r;
b2f3eebe
TC
7747
7748 /* Need to find movable_zone earlier when movable_node is specified. */
7749 find_usable_zone_for_movable();
7750
7751 /*
7752 * If movable_node is specified, ignore kernelcore and movablecore
7753 * options.
7754 */
7755 if (movable_node_is_enabled()) {
cc6de168 7756 for_each_mem_region(r) {
136199f0 7757 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7758 continue;
7759
d622abf7 7760 nid = memblock_get_region_node(r);
b2f3eebe 7761
136199f0 7762 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7763 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7764 min(usable_startpfn, zone_movable_pfn[nid]) :
7765 usable_startpfn;
7766 }
7767
7768 goto out2;
7769 }
2a1e274a 7770
342332e6
TI
7771 /*
7772 * If kernelcore=mirror is specified, ignore movablecore option
7773 */
7774 if (mirrored_kernelcore) {
7775 bool mem_below_4gb_not_mirrored = false;
7776
cc6de168 7777 for_each_mem_region(r) {
342332e6
TI
7778 if (memblock_is_mirror(r))
7779 continue;
7780
d622abf7 7781 nid = memblock_get_region_node(r);
342332e6
TI
7782
7783 usable_startpfn = memblock_region_memory_base_pfn(r);
7784
7785 if (usable_startpfn < 0x100000) {
7786 mem_below_4gb_not_mirrored = true;
7787 continue;
7788 }
7789
7790 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7791 min(usable_startpfn, zone_movable_pfn[nid]) :
7792 usable_startpfn;
7793 }
7794
7795 if (mem_below_4gb_not_mirrored)
633bf2fe 7796 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7797
7798 goto out2;
7799 }
7800
7e63efef 7801 /*
a5c6d650
DR
7802 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7803 * amount of necessary memory.
7804 */
7805 if (required_kernelcore_percent)
7806 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7807 10000UL;
7808 if (required_movablecore_percent)
7809 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7810 10000UL;
7811
7812 /*
7813 * If movablecore= was specified, calculate what size of
7e63efef
MG
7814 * kernelcore that corresponds so that memory usable for
7815 * any allocation type is evenly spread. If both kernelcore
7816 * and movablecore are specified, then the value of kernelcore
7817 * will be used for required_kernelcore if it's greater than
7818 * what movablecore would have allowed.
7819 */
7820 if (required_movablecore) {
7e63efef
MG
7821 unsigned long corepages;
7822
7823 /*
7824 * Round-up so that ZONE_MOVABLE is at least as large as what
7825 * was requested by the user
7826 */
7827 required_movablecore =
7828 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7829 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7830 corepages = totalpages - required_movablecore;
7831
7832 required_kernelcore = max(required_kernelcore, corepages);
7833 }
7834
bde304bd
XQ
7835 /*
7836 * If kernelcore was not specified or kernelcore size is larger
7837 * than totalpages, there is no ZONE_MOVABLE.
7838 */
7839 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7840 goto out;
2a1e274a
MG
7841
7842 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7843 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7844
7845restart:
7846 /* Spread kernelcore memory as evenly as possible throughout nodes */
7847 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7848 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7849 unsigned long start_pfn, end_pfn;
7850
2a1e274a
MG
7851 /*
7852 * Recalculate kernelcore_node if the division per node
7853 * now exceeds what is necessary to satisfy the requested
7854 * amount of memory for the kernel
7855 */
7856 if (required_kernelcore < kernelcore_node)
7857 kernelcore_node = required_kernelcore / usable_nodes;
7858
7859 /*
7860 * As the map is walked, we track how much memory is usable
7861 * by the kernel using kernelcore_remaining. When it is
7862 * 0, the rest of the node is usable by ZONE_MOVABLE
7863 */
7864 kernelcore_remaining = kernelcore_node;
7865
7866 /* Go through each range of PFNs within this node */
c13291a5 7867 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7868 unsigned long size_pages;
7869
c13291a5 7870 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7871 if (start_pfn >= end_pfn)
7872 continue;
7873
7874 /* Account for what is only usable for kernelcore */
7875 if (start_pfn < usable_startpfn) {
7876 unsigned long kernel_pages;
7877 kernel_pages = min(end_pfn, usable_startpfn)
7878 - start_pfn;
7879
7880 kernelcore_remaining -= min(kernel_pages,
7881 kernelcore_remaining);
7882 required_kernelcore -= min(kernel_pages,
7883 required_kernelcore);
7884
7885 /* Continue if range is now fully accounted */
7886 if (end_pfn <= usable_startpfn) {
7887
7888 /*
7889 * Push zone_movable_pfn to the end so
7890 * that if we have to rebalance
7891 * kernelcore across nodes, we will
7892 * not double account here
7893 */
7894 zone_movable_pfn[nid] = end_pfn;
7895 continue;
7896 }
7897 start_pfn = usable_startpfn;
7898 }
7899
7900 /*
7901 * The usable PFN range for ZONE_MOVABLE is from
7902 * start_pfn->end_pfn. Calculate size_pages as the
7903 * number of pages used as kernelcore
7904 */
7905 size_pages = end_pfn - start_pfn;
7906 if (size_pages > kernelcore_remaining)
7907 size_pages = kernelcore_remaining;
7908 zone_movable_pfn[nid] = start_pfn + size_pages;
7909
7910 /*
7911 * Some kernelcore has been met, update counts and
7912 * break if the kernelcore for this node has been
b8af2941 7913 * satisfied
2a1e274a
MG
7914 */
7915 required_kernelcore -= min(required_kernelcore,
7916 size_pages);
7917 kernelcore_remaining -= size_pages;
7918 if (!kernelcore_remaining)
7919 break;
7920 }
7921 }
7922
7923 /*
7924 * If there is still required_kernelcore, we do another pass with one
7925 * less node in the count. This will push zone_movable_pfn[nid] further
7926 * along on the nodes that still have memory until kernelcore is
b8af2941 7927 * satisfied
2a1e274a
MG
7928 */
7929 usable_nodes--;
7930 if (usable_nodes && required_kernelcore > usable_nodes)
7931 goto restart;
7932
b2f3eebe 7933out2:
2a1e274a 7934 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
7935 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7936 unsigned long start_pfn, end_pfn;
7937
2a1e274a
MG
7938 zone_movable_pfn[nid] =
7939 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7940
ddbc84f3
AP
7941 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7942 if (zone_movable_pfn[nid] >= end_pfn)
7943 zone_movable_pfn[nid] = 0;
7944 }
7945
20e6926d 7946out:
66918dcd 7947 /* restore the node_state */
4b0ef1fe 7948 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7949}
7950
4b0ef1fe
LJ
7951/* Any regular or high memory on that node ? */
7952static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7953{
37b07e41
LS
7954 enum zone_type zone_type;
7955
4b0ef1fe 7956 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7957 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7958 if (populated_zone(zone)) {
7b0e0c0e
OS
7959 if (IS_ENABLED(CONFIG_HIGHMEM))
7960 node_set_state(nid, N_HIGH_MEMORY);
7961 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7962 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7963 break;
7964 }
37b07e41 7965 }
37b07e41
LS
7966}
7967
51930df5 7968/*
f0953a1b 7969 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
7970 * such cases we allow max_zone_pfn sorted in the descending order
7971 */
7972bool __weak arch_has_descending_max_zone_pfns(void)
7973{
7974 return false;
7975}
7976
c713216d 7977/**
9691a071 7978 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7979 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7980 *
7981 * This will call free_area_init_node() for each active node in the system.
7d018176 7982 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7983 * zone in each node and their holes is calculated. If the maximum PFN
7984 * between two adjacent zones match, it is assumed that the zone is empty.
7985 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7986 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7987 * starts where the previous one ended. For example, ZONE_DMA32 starts
7988 * at arch_max_dma_pfn.
7989 */
9691a071 7990void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7991{
c13291a5 7992 unsigned long start_pfn, end_pfn;
51930df5
MR
7993 int i, nid, zone;
7994 bool descending;
a6af2bc3 7995
c713216d
MG
7996 /* Record where the zone boundaries are */
7997 memset(arch_zone_lowest_possible_pfn, 0,
7998 sizeof(arch_zone_lowest_possible_pfn));
7999 memset(arch_zone_highest_possible_pfn, 0,
8000 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
8001
8002 start_pfn = find_min_pfn_with_active_regions();
51930df5 8003 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8004
8005 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8006 if (descending)
8007 zone = MAX_NR_ZONES - i - 1;
8008 else
8009 zone = i;
8010
8011 if (zone == ZONE_MOVABLE)
2a1e274a 8012 continue;
90cae1fe 8013
51930df5
MR
8014 end_pfn = max(max_zone_pfn[zone], start_pfn);
8015 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8016 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8017
8018 start_pfn = end_pfn;
c713216d 8019 }
2a1e274a
MG
8020
8021 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8022 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8023 find_zone_movable_pfns_for_nodes();
c713216d 8024
c713216d 8025 /* Print out the zone ranges */
f88dfff5 8026 pr_info("Zone ranges:\n");
2a1e274a
MG
8027 for (i = 0; i < MAX_NR_ZONES; i++) {
8028 if (i == ZONE_MOVABLE)
8029 continue;
f88dfff5 8030 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8031 if (arch_zone_lowest_possible_pfn[i] ==
8032 arch_zone_highest_possible_pfn[i])
f88dfff5 8033 pr_cont("empty\n");
72f0ba02 8034 else
8d29e18a
JG
8035 pr_cont("[mem %#018Lx-%#018Lx]\n",
8036 (u64)arch_zone_lowest_possible_pfn[i]
8037 << PAGE_SHIFT,
8038 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8039 << PAGE_SHIFT) - 1);
2a1e274a
MG
8040 }
8041
8042 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8043 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8044 for (i = 0; i < MAX_NUMNODES; i++) {
8045 if (zone_movable_pfn[i])
8d29e18a
JG
8046 pr_info(" Node %d: %#018Lx\n", i,
8047 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8048 }
c713216d 8049
f46edbd1
DW
8050 /*
8051 * Print out the early node map, and initialize the
8052 * subsection-map relative to active online memory ranges to
8053 * enable future "sub-section" extensions of the memory map.
8054 */
f88dfff5 8055 pr_info("Early memory node ranges\n");
f46edbd1 8056 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8057 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8058 (u64)start_pfn << PAGE_SHIFT,
8059 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8060 subsection_map_init(start_pfn, end_pfn - start_pfn);
8061 }
c713216d
MG
8062
8063 /* Initialise every node */
708614e6 8064 mminit_verify_pageflags_layout();
8ef82866 8065 setup_nr_node_ids();
c713216d
MG
8066 for_each_online_node(nid) {
8067 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 8068 free_area_init_node(nid);
37b07e41
LS
8069
8070 /* Any memory on that node */
8071 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8072 node_set_state(nid, N_MEMORY);
8073 check_for_memory(pgdat, nid);
c713216d 8074 }
122e093c
MR
8075
8076 memmap_init();
c713216d 8077}
2a1e274a 8078
a5c6d650
DR
8079static int __init cmdline_parse_core(char *p, unsigned long *core,
8080 unsigned long *percent)
2a1e274a
MG
8081{
8082 unsigned long long coremem;
a5c6d650
DR
8083 char *endptr;
8084
2a1e274a
MG
8085 if (!p)
8086 return -EINVAL;
8087
a5c6d650
DR
8088 /* Value may be a percentage of total memory, otherwise bytes */
8089 coremem = simple_strtoull(p, &endptr, 0);
8090 if (*endptr == '%') {
8091 /* Paranoid check for percent values greater than 100 */
8092 WARN_ON(coremem > 100);
2a1e274a 8093
a5c6d650
DR
8094 *percent = coremem;
8095 } else {
8096 coremem = memparse(p, &p);
8097 /* Paranoid check that UL is enough for the coremem value */
8098 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8099
a5c6d650
DR
8100 *core = coremem >> PAGE_SHIFT;
8101 *percent = 0UL;
8102 }
2a1e274a
MG
8103 return 0;
8104}
ed7ed365 8105
7e63efef
MG
8106/*
8107 * kernelcore=size sets the amount of memory for use for allocations that
8108 * cannot be reclaimed or migrated.
8109 */
8110static int __init cmdline_parse_kernelcore(char *p)
8111{
342332e6
TI
8112 /* parse kernelcore=mirror */
8113 if (parse_option_str(p, "mirror")) {
8114 mirrored_kernelcore = true;
8115 return 0;
8116 }
8117
a5c6d650
DR
8118 return cmdline_parse_core(p, &required_kernelcore,
8119 &required_kernelcore_percent);
7e63efef
MG
8120}
8121
8122/*
8123 * movablecore=size sets the amount of memory for use for allocations that
8124 * can be reclaimed or migrated.
8125 */
8126static int __init cmdline_parse_movablecore(char *p)
8127{
a5c6d650
DR
8128 return cmdline_parse_core(p, &required_movablecore,
8129 &required_movablecore_percent);
7e63efef
MG
8130}
8131
ed7ed365 8132early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8133early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8134
c3d5f5f0
JL
8135void adjust_managed_page_count(struct page *page, long count)
8136{
9705bea5 8137 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8138 totalram_pages_add(count);
3dcc0571
JL
8139#ifdef CONFIG_HIGHMEM
8140 if (PageHighMem(page))
ca79b0c2 8141 totalhigh_pages_add(count);
3dcc0571 8142#endif
c3d5f5f0 8143}
3dcc0571 8144EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8145
e5cb113f 8146unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8147{
11199692
JL
8148 void *pos;
8149 unsigned long pages = 0;
69afade7 8150
11199692
JL
8151 start = (void *)PAGE_ALIGN((unsigned long)start);
8152 end = (void *)((unsigned long)end & PAGE_MASK);
8153 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8154 struct page *page = virt_to_page(pos);
8155 void *direct_map_addr;
8156
8157 /*
8158 * 'direct_map_addr' might be different from 'pos'
8159 * because some architectures' virt_to_page()
8160 * work with aliases. Getting the direct map
8161 * address ensures that we get a _writeable_
8162 * alias for the memset().
8163 */
8164 direct_map_addr = page_address(page);
c746170d
VF
8165 /*
8166 * Perform a kasan-unchecked memset() since this memory
8167 * has not been initialized.
8168 */
8169 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8170 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8171 memset(direct_map_addr, poison, PAGE_SIZE);
8172
8173 free_reserved_page(page);
69afade7
JL
8174 }
8175
8176 if (pages && s)
ff7ed9e4 8177 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8178
8179 return pages;
8180}
8181
1f9d03c5 8182void __init mem_init_print_info(void)
7ee3d4e8
JL
8183{
8184 unsigned long physpages, codesize, datasize, rosize, bss_size;
8185 unsigned long init_code_size, init_data_size;
8186
8187 physpages = get_num_physpages();
8188 codesize = _etext - _stext;
8189 datasize = _edata - _sdata;
8190 rosize = __end_rodata - __start_rodata;
8191 bss_size = __bss_stop - __bss_start;
8192 init_data_size = __init_end - __init_begin;
8193 init_code_size = _einittext - _sinittext;
8194
8195 /*
8196 * Detect special cases and adjust section sizes accordingly:
8197 * 1) .init.* may be embedded into .data sections
8198 * 2) .init.text.* may be out of [__init_begin, __init_end],
8199 * please refer to arch/tile/kernel/vmlinux.lds.S.
8200 * 3) .rodata.* may be embedded into .text or .data sections.
8201 */
8202#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8203 do { \
ca831f29 8204 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8205 size -= adj; \
8206 } while (0)
7ee3d4e8
JL
8207
8208 adj_init_size(__init_begin, __init_end, init_data_size,
8209 _sinittext, init_code_size);
8210 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8211 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8212 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8213 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8214
8215#undef adj_init_size
8216
756a025f 8217 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8218#ifdef CONFIG_HIGHMEM
756a025f 8219 ", %luK highmem"
7ee3d4e8 8220#endif
1f9d03c5 8221 ")\n",
ff7ed9e4 8222 K(nr_free_pages()), K(physpages),
756a025f
JP
8223 codesize >> 10, datasize >> 10, rosize >> 10,
8224 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ff7ed9e4
ML
8225 K(physpages - totalram_pages() - totalcma_pages),
8226 K(totalcma_pages)
7ee3d4e8 8227#ifdef CONFIG_HIGHMEM
ff7ed9e4 8228 , K(totalhigh_pages())
7ee3d4e8 8229#endif
1f9d03c5 8230 );
7ee3d4e8
JL
8231}
8232
0e0b864e 8233/**
88ca3b94
RD
8234 * set_dma_reserve - set the specified number of pages reserved in the first zone
8235 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8236 *
013110a7 8237 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8238 * In the DMA zone, a significant percentage may be consumed by kernel image
8239 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8240 * function may optionally be used to account for unfreeable pages in the
8241 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8242 * smaller per-cpu batchsize.
0e0b864e
MG
8243 */
8244void __init set_dma_reserve(unsigned long new_dma_reserve)
8245{
8246 dma_reserve = new_dma_reserve;
8247}
8248
005fd4bb 8249static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8250{
04f8cfea 8251 struct zone *zone;
1da177e4 8252
005fd4bb
SAS
8253 lru_add_drain_cpu(cpu);
8254 drain_pages(cpu);
9f8f2172 8255
005fd4bb
SAS
8256 /*
8257 * Spill the event counters of the dead processor
8258 * into the current processors event counters.
8259 * This artificially elevates the count of the current
8260 * processor.
8261 */
8262 vm_events_fold_cpu(cpu);
9f8f2172 8263
005fd4bb
SAS
8264 /*
8265 * Zero the differential counters of the dead processor
8266 * so that the vm statistics are consistent.
8267 *
8268 * This is only okay since the processor is dead and cannot
8269 * race with what we are doing.
8270 */
8271 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8272
8273 for_each_populated_zone(zone)
8274 zone_pcp_update(zone, 0);
8275
8276 return 0;
8277}
8278
8279static int page_alloc_cpu_online(unsigned int cpu)
8280{
8281 struct zone *zone;
8282
8283 for_each_populated_zone(zone)
8284 zone_pcp_update(zone, 1);
005fd4bb 8285 return 0;
1da177e4 8286}
1da177e4 8287
e03a5125
NP
8288#ifdef CONFIG_NUMA
8289int hashdist = HASHDIST_DEFAULT;
8290
8291static int __init set_hashdist(char *str)
8292{
8293 if (!str)
8294 return 0;
8295 hashdist = simple_strtoul(str, &str, 0);
8296 return 1;
8297}
8298__setup("hashdist=", set_hashdist);
8299#endif
8300
1da177e4
LT
8301void __init page_alloc_init(void)
8302{
005fd4bb
SAS
8303 int ret;
8304
e03a5125
NP
8305#ifdef CONFIG_NUMA
8306 if (num_node_state(N_MEMORY) == 1)
8307 hashdist = 0;
8308#endif
8309
04f8cfea
MG
8310 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8311 "mm/page_alloc:pcp",
8312 page_alloc_cpu_online,
005fd4bb
SAS
8313 page_alloc_cpu_dead);
8314 WARN_ON(ret < 0);
1da177e4
LT
8315}
8316
cb45b0e9 8317/*
34b10060 8318 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8319 * or min_free_kbytes changes.
8320 */
8321static void calculate_totalreserve_pages(void)
8322{
8323 struct pglist_data *pgdat;
8324 unsigned long reserve_pages = 0;
2f6726e5 8325 enum zone_type i, j;
cb45b0e9
HA
8326
8327 for_each_online_pgdat(pgdat) {
281e3726
MG
8328
8329 pgdat->totalreserve_pages = 0;
8330
cb45b0e9
HA
8331 for (i = 0; i < MAX_NR_ZONES; i++) {
8332 struct zone *zone = pgdat->node_zones + i;
3484b2de 8333 long max = 0;
9705bea5 8334 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8335
8336 /* Find valid and maximum lowmem_reserve in the zone */
8337 for (j = i; j < MAX_NR_ZONES; j++) {
8338 if (zone->lowmem_reserve[j] > max)
8339 max = zone->lowmem_reserve[j];
8340 }
8341
41858966
MG
8342 /* we treat the high watermark as reserved pages. */
8343 max += high_wmark_pages(zone);
cb45b0e9 8344
3d6357de
AK
8345 if (max > managed_pages)
8346 max = managed_pages;
a8d01437 8347
281e3726 8348 pgdat->totalreserve_pages += max;
a8d01437 8349
cb45b0e9
HA
8350 reserve_pages += max;
8351 }
8352 }
8353 totalreserve_pages = reserve_pages;
8354}
8355
1da177e4
LT
8356/*
8357 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8358 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8359 * has a correct pages reserved value, so an adequate number of
8360 * pages are left in the zone after a successful __alloc_pages().
8361 */
8362static void setup_per_zone_lowmem_reserve(void)
8363{
8364 struct pglist_data *pgdat;
470c61d7 8365 enum zone_type i, j;
1da177e4 8366
ec936fc5 8367 for_each_online_pgdat(pgdat) {
470c61d7
LS
8368 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8369 struct zone *zone = &pgdat->node_zones[i];
8370 int ratio = sysctl_lowmem_reserve_ratio[i];
8371 bool clear = !ratio || !zone_managed_pages(zone);
8372 unsigned long managed_pages = 0;
8373
8374 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8375 struct zone *upper_zone = &pgdat->node_zones[j];
8376
8377 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8378
f7ec1044
LS
8379 if (clear)
8380 zone->lowmem_reserve[j] = 0;
8381 else
470c61d7 8382 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8383 }
8384 }
8385 }
cb45b0e9
HA
8386
8387 /* update totalreserve_pages */
8388 calculate_totalreserve_pages();
1da177e4
LT
8389}
8390
cfd3da1e 8391static void __setup_per_zone_wmarks(void)
1da177e4
LT
8392{
8393 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8394 unsigned long lowmem_pages = 0;
8395 struct zone *zone;
8396 unsigned long flags;
8397
8398 /* Calculate total number of !ZONE_HIGHMEM pages */
8399 for_each_zone(zone) {
8400 if (!is_highmem(zone))
9705bea5 8401 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8402 }
8403
8404 for_each_zone(zone) {
ac924c60
AM
8405 u64 tmp;
8406
1125b4e3 8407 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8408 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8409 do_div(tmp, lowmem_pages);
1da177e4
LT
8410 if (is_highmem(zone)) {
8411 /*
669ed175
NP
8412 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8413 * need highmem pages, so cap pages_min to a small
8414 * value here.
8415 *
41858966 8416 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8417 * deltas control async page reclaim, and so should
669ed175 8418 * not be capped for highmem.
1da177e4 8419 */
90ae8d67 8420 unsigned long min_pages;
1da177e4 8421
9705bea5 8422 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8423 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8424 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8425 } else {
669ed175
NP
8426 /*
8427 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8428 * proportionate to the zone's size.
8429 */
a9214443 8430 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8431 }
8432
795ae7a0
JW
8433 /*
8434 * Set the kswapd watermarks distance according to the
8435 * scale factor in proportion to available memory, but
8436 * ensure a minimum size on small systems.
8437 */
8438 tmp = max_t(u64, tmp >> 2,
9705bea5 8439 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8440 watermark_scale_factor, 10000));
8441
aa092591 8442 zone->watermark_boost = 0;
a9214443
MG
8443 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8444 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 8445
1125b4e3 8446 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8447 }
cb45b0e9
HA
8448
8449 /* update totalreserve_pages */
8450 calculate_totalreserve_pages();
1da177e4
LT
8451}
8452
cfd3da1e
MG
8453/**
8454 * setup_per_zone_wmarks - called when min_free_kbytes changes
8455 * or when memory is hot-{added|removed}
8456 *
8457 * Ensures that the watermark[min,low,high] values for each zone are set
8458 * correctly with respect to min_free_kbytes.
8459 */
8460void setup_per_zone_wmarks(void)
8461{
b92ca18e 8462 struct zone *zone;
b93e0f32
MH
8463 static DEFINE_SPINLOCK(lock);
8464
8465 spin_lock(&lock);
cfd3da1e 8466 __setup_per_zone_wmarks();
b93e0f32 8467 spin_unlock(&lock);
b92ca18e
MG
8468
8469 /*
8470 * The watermark size have changed so update the pcpu batch
8471 * and high limits or the limits may be inappropriate.
8472 */
8473 for_each_zone(zone)
04f8cfea 8474 zone_pcp_update(zone, 0);
cfd3da1e
MG
8475}
8476
1da177e4
LT
8477/*
8478 * Initialise min_free_kbytes.
8479 *
8480 * For small machines we want it small (128k min). For large machines
8beeae86 8481 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8482 * bandwidth does not increase linearly with machine size. We use
8483 *
b8af2941 8484 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8485 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8486 *
8487 * which yields
8488 *
8489 * 16MB: 512k
8490 * 32MB: 724k
8491 * 64MB: 1024k
8492 * 128MB: 1448k
8493 * 256MB: 2048k
8494 * 512MB: 2896k
8495 * 1024MB: 4096k
8496 * 2048MB: 5792k
8497 * 4096MB: 8192k
8498 * 8192MB: 11584k
8499 * 16384MB: 16384k
8500 */
bd3400ea 8501void calculate_min_free_kbytes(void)
1da177e4
LT
8502{
8503 unsigned long lowmem_kbytes;
5f12733e 8504 int new_min_free_kbytes;
1da177e4
LT
8505
8506 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8507 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8508
59d336bd
WS
8509 if (new_min_free_kbytes > user_min_free_kbytes)
8510 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8511 else
5f12733e
MH
8512 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8513 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8514
bd3400ea
LF
8515}
8516
8517int __meminit init_per_zone_wmark_min(void)
8518{
8519 calculate_min_free_kbytes();
bc75d33f 8520 setup_per_zone_wmarks();
a6cccdc3 8521 refresh_zone_stat_thresholds();
1da177e4 8522 setup_per_zone_lowmem_reserve();
6423aa81
JK
8523
8524#ifdef CONFIG_NUMA
8525 setup_min_unmapped_ratio();
8526 setup_min_slab_ratio();
8527#endif
8528
4aab2be0
VB
8529 khugepaged_min_free_kbytes_update();
8530
1da177e4
LT
8531 return 0;
8532}
e08d3fdf 8533postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8534
8535/*
b8af2941 8536 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8537 * that we can call two helper functions whenever min_free_kbytes
8538 * changes.
8539 */
cccad5b9 8540int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8541 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8542{
da8c757b
HP
8543 int rc;
8544
8545 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8546 if (rc)
8547 return rc;
8548
5f12733e
MH
8549 if (write) {
8550 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8551 setup_per_zone_wmarks();
5f12733e 8552 }
1da177e4
LT
8553 return 0;
8554}
8555
795ae7a0 8556int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8557 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8558{
8559 int rc;
8560
8561 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8562 if (rc)
8563 return rc;
8564
8565 if (write)
8566 setup_per_zone_wmarks();
8567
8568 return 0;
8569}
8570
9614634f 8571#ifdef CONFIG_NUMA
6423aa81 8572static void setup_min_unmapped_ratio(void)
9614634f 8573{
6423aa81 8574 pg_data_t *pgdat;
9614634f 8575 struct zone *zone;
9614634f 8576
a5f5f91d 8577 for_each_online_pgdat(pgdat)
81cbcbc2 8578 pgdat->min_unmapped_pages = 0;
a5f5f91d 8579
9614634f 8580 for_each_zone(zone)
9705bea5
AK
8581 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8582 sysctl_min_unmapped_ratio) / 100;
9614634f 8583}
0ff38490 8584
6423aa81
JK
8585
8586int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8587 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8588{
0ff38490
CL
8589 int rc;
8590
8d65af78 8591 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8592 if (rc)
8593 return rc;
8594
6423aa81
JK
8595 setup_min_unmapped_ratio();
8596
8597 return 0;
8598}
8599
8600static void setup_min_slab_ratio(void)
8601{
8602 pg_data_t *pgdat;
8603 struct zone *zone;
8604
a5f5f91d
MG
8605 for_each_online_pgdat(pgdat)
8606 pgdat->min_slab_pages = 0;
8607
0ff38490 8608 for_each_zone(zone)
9705bea5
AK
8609 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8610 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8611}
8612
8613int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8614 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8615{
8616 int rc;
8617
8618 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8619 if (rc)
8620 return rc;
8621
8622 setup_min_slab_ratio();
8623
0ff38490
CL
8624 return 0;
8625}
9614634f
CL
8626#endif
8627
1da177e4
LT
8628/*
8629 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8630 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8631 * whenever sysctl_lowmem_reserve_ratio changes.
8632 *
8633 * The reserve ratio obviously has absolutely no relation with the
41858966 8634 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8635 * if in function of the boot time zone sizes.
8636 */
cccad5b9 8637int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8638 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8639{
86aaf255
BH
8640 int i;
8641
8d65af78 8642 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8643
8644 for (i = 0; i < MAX_NR_ZONES; i++) {
8645 if (sysctl_lowmem_reserve_ratio[i] < 1)
8646 sysctl_lowmem_reserve_ratio[i] = 0;
8647 }
8648
1da177e4
LT
8649 setup_per_zone_lowmem_reserve();
8650 return 0;
8651}
8652
8ad4b1fb 8653/*
74f44822
MG
8654 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8655 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8656 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8657 */
74f44822
MG
8658int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8659 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8660{
8661 struct zone *zone;
74f44822 8662 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8663 int ret;
8664
7cd2b0a3 8665 mutex_lock(&pcp_batch_high_lock);
74f44822 8666 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8667
8d65af78 8668 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8669 if (!write || ret < 0)
8670 goto out;
8671
8672 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8673 if (percpu_pagelist_high_fraction &&
8674 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8675 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8676 ret = -EINVAL;
8677 goto out;
8678 }
8679
8680 /* No change? */
74f44822 8681 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8682 goto out;
c8e251fa 8683
cb1ef534 8684 for_each_populated_zone(zone)
74f44822 8685 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8686out:
c8e251fa 8687 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8688 return ret;
8ad4b1fb
RS
8689}
8690
f6f34b43
SD
8691#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8692/*
8693 * Returns the number of pages that arch has reserved but
8694 * is not known to alloc_large_system_hash().
8695 */
8696static unsigned long __init arch_reserved_kernel_pages(void)
8697{
8698 return 0;
8699}
8700#endif
8701
9017217b
PT
8702/*
8703 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8704 * machines. As memory size is increased the scale is also increased but at
8705 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8706 * quadruples the scale is increased by one, which means the size of hash table
8707 * only doubles, instead of quadrupling as well.
8708 * Because 32-bit systems cannot have large physical memory, where this scaling
8709 * makes sense, it is disabled on such platforms.
8710 */
8711#if __BITS_PER_LONG > 32
8712#define ADAPT_SCALE_BASE (64ul << 30)
8713#define ADAPT_SCALE_SHIFT 2
8714#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8715#endif
8716
1da177e4
LT
8717/*
8718 * allocate a large system hash table from bootmem
8719 * - it is assumed that the hash table must contain an exact power-of-2
8720 * quantity of entries
8721 * - limit is the number of hash buckets, not the total allocation size
8722 */
8723void *__init alloc_large_system_hash(const char *tablename,
8724 unsigned long bucketsize,
8725 unsigned long numentries,
8726 int scale,
8727 int flags,
8728 unsigned int *_hash_shift,
8729 unsigned int *_hash_mask,
31fe62b9
TB
8730 unsigned long low_limit,
8731 unsigned long high_limit)
1da177e4 8732{
31fe62b9 8733 unsigned long long max = high_limit;
1da177e4
LT
8734 unsigned long log2qty, size;
8735 void *table = NULL;
3749a8f0 8736 gfp_t gfp_flags;
ec11408a 8737 bool virt;
121e6f32 8738 bool huge;
1da177e4
LT
8739
8740 /* allow the kernel cmdline to have a say */
8741 if (!numentries) {
8742 /* round applicable memory size up to nearest megabyte */
04903664 8743 numentries = nr_kernel_pages;
f6f34b43 8744 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8745
8746 /* It isn't necessary when PAGE_SIZE >= 1MB */
8747 if (PAGE_SHIFT < 20)
8748 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8749
9017217b
PT
8750#if __BITS_PER_LONG > 32
8751 if (!high_limit) {
8752 unsigned long adapt;
8753
8754 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8755 adapt <<= ADAPT_SCALE_SHIFT)
8756 scale++;
8757 }
8758#endif
8759
1da177e4
LT
8760 /* limit to 1 bucket per 2^scale bytes of low memory */
8761 if (scale > PAGE_SHIFT)
8762 numentries >>= (scale - PAGE_SHIFT);
8763 else
8764 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8765
8766 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8767 if (unlikely(flags & HASH_SMALL)) {
8768 /* Makes no sense without HASH_EARLY */
8769 WARN_ON(!(flags & HASH_EARLY));
8770 if (!(numentries >> *_hash_shift)) {
8771 numentries = 1UL << *_hash_shift;
8772 BUG_ON(!numentries);
8773 }
8774 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8775 numentries = PAGE_SIZE / bucketsize;
1da177e4 8776 }
6e692ed3 8777 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8778
8779 /* limit allocation size to 1/16 total memory by default */
8780 if (max == 0) {
8781 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8782 do_div(max, bucketsize);
8783 }
074b8517 8784 max = min(max, 0x80000000ULL);
1da177e4 8785
31fe62b9
TB
8786 if (numentries < low_limit)
8787 numentries = low_limit;
1da177e4
LT
8788 if (numentries > max)
8789 numentries = max;
8790
f0d1b0b3 8791 log2qty = ilog2(numentries);
1da177e4 8792
3749a8f0 8793 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8794 do {
ec11408a 8795 virt = false;
1da177e4 8796 size = bucketsize << log2qty;
ea1f5f37
PT
8797 if (flags & HASH_EARLY) {
8798 if (flags & HASH_ZERO)
26fb3dae 8799 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8800 else
7e1c4e27
MR
8801 table = memblock_alloc_raw(size,
8802 SMP_CACHE_BYTES);
ec11408a 8803 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8804 table = __vmalloc(size, gfp_flags);
ec11408a 8805 virt = true;
084f7e23
ED
8806 if (table)
8807 huge = is_vm_area_hugepages(table);
ea1f5f37 8808 } else {
1037b83b
ED
8809 /*
8810 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8811 * some pages at the end of hash table which
8812 * alloc_pages_exact() automatically does
1037b83b 8813 */
ec11408a
NP
8814 table = alloc_pages_exact(size, gfp_flags);
8815 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8816 }
8817 } while (!table && size > PAGE_SIZE && --log2qty);
8818
8819 if (!table)
8820 panic("Failed to allocate %s hash table\n", tablename);
8821
ec11408a
NP
8822 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8823 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8824 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8825
8826 if (_hash_shift)
8827 *_hash_shift = log2qty;
8828 if (_hash_mask)
8829 *_hash_mask = (1 << log2qty) - 1;
8830
8831 return table;
8832}
a117e66e 8833
a5d76b54 8834/*
80934513 8835 * This function checks whether pageblock includes unmovable pages or not.
80934513 8836 *
b8af2941 8837 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8838 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8839 * check without lock_page also may miss some movable non-lru pages at
8840 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8841 *
8842 * Returns a page without holding a reference. If the caller wants to
047b9967 8843 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8844 * cannot get removed (e.g., via memory unplug) concurrently.
8845 *
a5d76b54 8846 */
4a55c047
QC
8847struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8848 int migratetype, int flags)
49ac8255 8849{
1a9f2191
QC
8850 unsigned long iter = 0;
8851 unsigned long pfn = page_to_pfn(page);
6a654e36 8852 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8853
1a9f2191
QC
8854 if (is_migrate_cma_page(page)) {
8855 /*
8856 * CMA allocations (alloc_contig_range) really need to mark
8857 * isolate CMA pageblocks even when they are not movable in fact
8858 * so consider them movable here.
8859 */
8860 if (is_migrate_cma(migratetype))
4a55c047 8861 return NULL;
1a9f2191 8862
3d680bdf 8863 return page;
1a9f2191 8864 }
4da2ce25 8865
6a654e36 8866 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8867 page = pfn_to_page(pfn + iter);
c8721bbb 8868
c9c510dc
DH
8869 /*
8870 * Both, bootmem allocations and memory holes are marked
8871 * PG_reserved and are unmovable. We can even have unmovable
8872 * allocations inside ZONE_MOVABLE, for example when
8873 * specifying "movablecore".
8874 */
d7ab3672 8875 if (PageReserved(page))
3d680bdf 8876 return page;
d7ab3672 8877
9d789999
MH
8878 /*
8879 * If the zone is movable and we have ruled out all reserved
8880 * pages then it should be reasonably safe to assume the rest
8881 * is movable.
8882 */
8883 if (zone_idx(zone) == ZONE_MOVABLE)
8884 continue;
8885
c8721bbb
NH
8886 /*
8887 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8888 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8889 * We need not scan over tail pages because we don't
c8721bbb
NH
8890 * handle each tail page individually in migration.
8891 */
1da2f328 8892 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8893 struct page *head = compound_head(page);
8894 unsigned int skip_pages;
464c7ffb 8895
1da2f328
RR
8896 if (PageHuge(page)) {
8897 if (!hugepage_migration_supported(page_hstate(head)))
8898 return page;
8899 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8900 return page;
1da2f328 8901 }
464c7ffb 8902
d8c6546b 8903 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8904 iter += skip_pages - 1;
c8721bbb
NH
8905 continue;
8906 }
8907
97d255c8
MK
8908 /*
8909 * We can't use page_count without pin a page
8910 * because another CPU can free compound page.
8911 * This check already skips compound tails of THP
0139aa7b 8912 * because their page->_refcount is zero at all time.
97d255c8 8913 */
fe896d18 8914 if (!page_ref_count(page)) {
49ac8255 8915 if (PageBuddy(page))
ab130f91 8916 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8917 continue;
8918 }
97d255c8 8919
b023f468
WC
8920 /*
8921 * The HWPoisoned page may be not in buddy system, and
8922 * page_count() is not 0.
8923 */
756d25be 8924 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8925 continue;
8926
aa218795
DH
8927 /*
8928 * We treat all PageOffline() pages as movable when offlining
8929 * to give drivers a chance to decrement their reference count
8930 * in MEM_GOING_OFFLINE in order to indicate that these pages
8931 * can be offlined as there are no direct references anymore.
8932 * For actually unmovable PageOffline() where the driver does
8933 * not support this, we will fail later when trying to actually
8934 * move these pages that still have a reference count > 0.
8935 * (false negatives in this function only)
8936 */
8937 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8938 continue;
8939
fe4c86c9 8940 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8941 continue;
8942
49ac8255 8943 /*
6b4f7799
JW
8944 * If there are RECLAIMABLE pages, we need to check
8945 * it. But now, memory offline itself doesn't call
8946 * shrink_node_slabs() and it still to be fixed.
49ac8255 8947 */
3d680bdf 8948 return page;
49ac8255 8949 }
4a55c047 8950 return NULL;
49ac8255
KH
8951}
8952
8df995f6 8953#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8954static unsigned long pfn_max_align_down(unsigned long pfn)
8955{
b3d40a2b 8956 return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
041d3a8c
MN
8957}
8958
8959static unsigned long pfn_max_align_up(unsigned long pfn)
8960{
b3d40a2b 8961 return ALIGN(pfn, MAX_ORDER_NR_PAGES);
041d3a8c
MN
8962}
8963
a1394bdd
MK
8964#if defined(CONFIG_DYNAMIC_DEBUG) || \
8965 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8966/* Usage: See admin-guide/dynamic-debug-howto.rst */
8967static void alloc_contig_dump_pages(struct list_head *page_list)
8968{
8969 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8970
8971 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8972 struct page *page;
8973
8974 dump_stack();
8975 list_for_each_entry(page, page_list, lru)
8976 dump_page(page, "migration failure");
8977 }
8978}
8979#else
8980static inline void alloc_contig_dump_pages(struct list_head *page_list)
8981{
8982}
8983#endif
8984
041d3a8c 8985/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8986static int __alloc_contig_migrate_range(struct compact_control *cc,
8987 unsigned long start, unsigned long end)
041d3a8c
MN
8988{
8989 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8990 unsigned int nr_reclaimed;
041d3a8c
MN
8991 unsigned long pfn = start;
8992 unsigned int tries = 0;
8993 int ret = 0;
8b94e0b8
JK
8994 struct migration_target_control mtc = {
8995 .nid = zone_to_nid(cc->zone),
8996 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8997 };
041d3a8c 8998
361a2a22 8999 lru_cache_disable();
041d3a8c 9000
bb13ffeb 9001 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
9002 if (fatal_signal_pending(current)) {
9003 ret = -EINTR;
9004 break;
9005 }
9006
bb13ffeb
MG
9007 if (list_empty(&cc->migratepages)) {
9008 cc->nr_migratepages = 0;
c2ad7a1f
OS
9009 ret = isolate_migratepages_range(cc, pfn, end);
9010 if (ret && ret != -EAGAIN)
041d3a8c 9011 break;
c2ad7a1f 9012 pfn = cc->migrate_pfn;
041d3a8c
MN
9013 tries = 0;
9014 } else if (++tries == 5) {
c8e28b47 9015 ret = -EBUSY;
041d3a8c
MN
9016 break;
9017 }
9018
beb51eaa
MK
9019 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9020 &cc->migratepages);
9021 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9022
8b94e0b8 9023 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9024 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9025
9026 /*
9027 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9028 * to retry again over this error, so do the same here.
9029 */
9030 if (ret == -ENOMEM)
9031 break;
041d3a8c 9032 }
d479960e 9033
361a2a22 9034 lru_cache_enable();
2a6f5124 9035 if (ret < 0) {
151e084a
MK
9036 if (ret == -EBUSY)
9037 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9038 putback_movable_pages(&cc->migratepages);
9039 return ret;
9040 }
9041 return 0;
041d3a8c
MN
9042}
9043
9044/**
9045 * alloc_contig_range() -- tries to allocate given range of pages
9046 * @start: start PFN to allocate
9047 * @end: one-past-the-last PFN to allocate
f0953a1b 9048 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9049 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9050 * in range must have the same migratetype and it must
9051 * be either of the two.
ca96b625 9052 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
9053 *
9054 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 9055 * aligned. The PFN range must belong to a single zone.
041d3a8c 9056 *
2c7452a0
MK
9057 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9058 * pageblocks in the range. Once isolated, the pageblocks should not
9059 * be modified by others.
041d3a8c 9060 *
a862f68a 9061 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9062 * pages which PFN is in [start, end) are allocated for the caller and
9063 * need to be freed with free_contig_range().
9064 */
0815f3d8 9065int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9066 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9067{
041d3a8c 9068 unsigned long outer_start, outer_end;
d00181b9
KS
9069 unsigned int order;
9070 int ret = 0;
041d3a8c 9071
bb13ffeb
MG
9072 struct compact_control cc = {
9073 .nr_migratepages = 0,
9074 .order = -1,
9075 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9076 .mode = MIGRATE_SYNC,
bb13ffeb 9077 .ignore_skip_hint = true,
2583d671 9078 .no_set_skip_hint = true,
7dea19f9 9079 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9080 .alloc_contig = true,
bb13ffeb
MG
9081 };
9082 INIT_LIST_HEAD(&cc.migratepages);
9083
041d3a8c
MN
9084 /*
9085 * What we do here is we mark all pageblocks in range as
9086 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9087 * have different sizes, and due to the way page allocator
9088 * work, we align the range to biggest of the two pages so
9089 * that page allocator won't try to merge buddies from
9090 * different pageblocks and change MIGRATE_ISOLATE to some
9091 * other migration type.
9092 *
9093 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9094 * migrate the pages from an unaligned range (ie. pages that
9095 * we are interested in). This will put all the pages in
9096 * range back to page allocator as MIGRATE_ISOLATE.
9097 *
9098 * When this is done, we take the pages in range from page
9099 * allocator removing them from the buddy system. This way
9100 * page allocator will never consider using them.
9101 *
9102 * This lets us mark the pageblocks back as
9103 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9104 * aligned range but not in the unaligned, original range are
9105 * put back to page allocator so that buddy can use them.
9106 */
9107
9108 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 9109 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 9110 if (ret)
86a595f9 9111 return ret;
041d3a8c 9112
7612921f
VB
9113 drain_all_pages(cc.zone);
9114
8ef5849f
JK
9115 /*
9116 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9117 * So, just fall through. test_pages_isolated() has a tracepoint
9118 * which will report the busy page.
9119 *
9120 * It is possible that busy pages could become available before
9121 * the call to test_pages_isolated, and the range will actually be
9122 * allocated. So, if we fall through be sure to clear ret so that
9123 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9124 */
bb13ffeb 9125 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9126 if (ret && ret != -EBUSY)
041d3a8c 9127 goto done;
68d68ff6 9128 ret = 0;
041d3a8c
MN
9129
9130 /*
9131 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9132 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9133 * more, all pages in [start, end) are free in page allocator.
9134 * What we are going to do is to allocate all pages from
9135 * [start, end) (that is remove them from page allocator).
9136 *
9137 * The only problem is that pages at the beginning and at the
9138 * end of interesting range may be not aligned with pages that
9139 * page allocator holds, ie. they can be part of higher order
9140 * pages. Because of this, we reserve the bigger range and
9141 * once this is done free the pages we are not interested in.
9142 *
9143 * We don't have to hold zone->lock here because the pages are
9144 * isolated thus they won't get removed from buddy.
9145 */
9146
041d3a8c
MN
9147 order = 0;
9148 outer_start = start;
9149 while (!PageBuddy(pfn_to_page(outer_start))) {
9150 if (++order >= MAX_ORDER) {
8ef5849f
JK
9151 outer_start = start;
9152 break;
041d3a8c
MN
9153 }
9154 outer_start &= ~0UL << order;
9155 }
9156
8ef5849f 9157 if (outer_start != start) {
ab130f91 9158 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9159
9160 /*
9161 * outer_start page could be small order buddy page and
9162 * it doesn't include start page. Adjust outer_start
9163 * in this case to report failed page properly
9164 * on tracepoint in test_pages_isolated()
9165 */
9166 if (outer_start + (1UL << order) <= start)
9167 outer_start = start;
9168 }
9169
041d3a8c 9170 /* Make sure the range is really isolated. */
756d25be 9171 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9172 ret = -EBUSY;
9173 goto done;
9174 }
9175
49f223a9 9176 /* Grab isolated pages from freelists. */
bb13ffeb 9177 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9178 if (!outer_end) {
9179 ret = -EBUSY;
9180 goto done;
9181 }
9182
9183 /* Free head and tail (if any) */
9184 if (start != outer_start)
9185 free_contig_range(outer_start, start - outer_start);
9186 if (end != outer_end)
9187 free_contig_range(end, outer_end - end);
9188
9189done:
9190 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 9191 pfn_max_align_up(end), migratetype);
041d3a8c
MN
9192 return ret;
9193}
255f5985 9194EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9195
9196static int __alloc_contig_pages(unsigned long start_pfn,
9197 unsigned long nr_pages, gfp_t gfp_mask)
9198{
9199 unsigned long end_pfn = start_pfn + nr_pages;
9200
9201 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9202 gfp_mask);
9203}
9204
9205static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9206 unsigned long nr_pages)
9207{
9208 unsigned long i, end_pfn = start_pfn + nr_pages;
9209 struct page *page;
9210
9211 for (i = start_pfn; i < end_pfn; i++) {
9212 page = pfn_to_online_page(i);
9213 if (!page)
9214 return false;
9215
9216 if (page_zone(page) != z)
9217 return false;
9218
9219 if (PageReserved(page))
9220 return false;
5e27a2df
AK
9221 }
9222 return true;
9223}
9224
9225static bool zone_spans_last_pfn(const struct zone *zone,
9226 unsigned long start_pfn, unsigned long nr_pages)
9227{
9228 unsigned long last_pfn = start_pfn + nr_pages - 1;
9229
9230 return zone_spans_pfn(zone, last_pfn);
9231}
9232
9233/**
9234 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9235 * @nr_pages: Number of contiguous pages to allocate
9236 * @gfp_mask: GFP mask to limit search and used during compaction
9237 * @nid: Target node
9238 * @nodemask: Mask for other possible nodes
9239 *
9240 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9241 * on an applicable zonelist to find a contiguous pfn range which can then be
9242 * tried for allocation with alloc_contig_range(). This routine is intended
9243 * for allocation requests which can not be fulfilled with the buddy allocator.
9244 *
9245 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9246 * power of two, then allocated range is also guaranteed to be aligned to same
9247 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9248 *
9249 * Allocated pages can be freed with free_contig_range() or by manually calling
9250 * __free_page() on each allocated page.
9251 *
9252 * Return: pointer to contiguous pages on success, or NULL if not successful.
9253 */
9254struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9255 int nid, nodemask_t *nodemask)
9256{
9257 unsigned long ret, pfn, flags;
9258 struct zonelist *zonelist;
9259 struct zone *zone;
9260 struct zoneref *z;
9261
9262 zonelist = node_zonelist(nid, gfp_mask);
9263 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9264 gfp_zone(gfp_mask), nodemask) {
9265 spin_lock_irqsave(&zone->lock, flags);
9266
9267 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9268 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9269 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9270 /*
9271 * We release the zone lock here because
9272 * alloc_contig_range() will also lock the zone
9273 * at some point. If there's an allocation
9274 * spinning on this lock, it may win the race
9275 * and cause alloc_contig_range() to fail...
9276 */
9277 spin_unlock_irqrestore(&zone->lock, flags);
9278 ret = __alloc_contig_pages(pfn, nr_pages,
9279 gfp_mask);
9280 if (!ret)
9281 return pfn_to_page(pfn);
9282 spin_lock_irqsave(&zone->lock, flags);
9283 }
9284 pfn += nr_pages;
9285 }
9286 spin_unlock_irqrestore(&zone->lock, flags);
9287 }
9288 return NULL;
9289}
4eb0716e 9290#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9291
78fa5150 9292void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9293{
78fa5150 9294 unsigned long count = 0;
bcc2b02f
MS
9295
9296 for (; nr_pages--; pfn++) {
9297 struct page *page = pfn_to_page(pfn);
9298
9299 count += page_count(page) != 1;
9300 __free_page(page);
9301 }
78fa5150 9302 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9303}
255f5985 9304EXPORT_SYMBOL(free_contig_range);
041d3a8c 9305
0a647f38
CS
9306/*
9307 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9308 * page high values need to be recalculated.
0a647f38 9309 */
04f8cfea 9310void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9311{
c8e251fa 9312 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9313 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9314 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9315}
4ed7e022 9316
ec6e8c7e
VB
9317/*
9318 * Effectively disable pcplists for the zone by setting the high limit to 0
9319 * and draining all cpus. A concurrent page freeing on another CPU that's about
9320 * to put the page on pcplist will either finish before the drain and the page
9321 * will be drained, or observe the new high limit and skip the pcplist.
9322 *
9323 * Must be paired with a call to zone_pcp_enable().
9324 */
9325void zone_pcp_disable(struct zone *zone)
9326{
9327 mutex_lock(&pcp_batch_high_lock);
9328 __zone_set_pageset_high_and_batch(zone, 0, 1);
9329 __drain_all_pages(zone, true);
9330}
9331
9332void zone_pcp_enable(struct zone *zone)
9333{
9334 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9335 mutex_unlock(&pcp_batch_high_lock);
9336}
9337
340175b7
JL
9338void zone_pcp_reset(struct zone *zone)
9339{
5a883813 9340 int cpu;
28f836b6 9341 struct per_cpu_zonestat *pzstats;
340175b7 9342
28f836b6 9343 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9344 for_each_online_cpu(cpu) {
28f836b6
MG
9345 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9346 drain_zonestat(zone, pzstats);
5a883813 9347 }
28f836b6
MG
9348 free_percpu(zone->per_cpu_pageset);
9349 free_percpu(zone->per_cpu_zonestats);
9350 zone->per_cpu_pageset = &boot_pageset;
9351 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9352 }
340175b7
JL
9353}
9354
6dcd73d7 9355#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9356/*
257bea71
DH
9357 * All pages in the range must be in a single zone, must not contain holes,
9358 * must span full sections, and must be isolated before calling this function.
0c0e6195 9359 */
257bea71 9360void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9361{
257bea71 9362 unsigned long pfn = start_pfn;
0c0e6195
KH
9363 struct page *page;
9364 struct zone *zone;
0ee5f4f3 9365 unsigned int order;
0c0e6195 9366 unsigned long flags;
5557c766 9367
2d070eab 9368 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9369 zone = page_zone(pfn_to_page(pfn));
9370 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9371 while (pfn < end_pfn) {
0c0e6195 9372 page = pfn_to_page(pfn);
b023f468
WC
9373 /*
9374 * The HWPoisoned page may be not in buddy system, and
9375 * page_count() is not 0.
9376 */
9377 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9378 pfn++;
b023f468
WC
9379 continue;
9380 }
aa218795
DH
9381 /*
9382 * At this point all remaining PageOffline() pages have a
9383 * reference count of 0 and can simply be skipped.
9384 */
9385 if (PageOffline(page)) {
9386 BUG_ON(page_count(page));
9387 BUG_ON(PageBuddy(page));
9388 pfn++;
aa218795
DH
9389 continue;
9390 }
b023f468 9391
0c0e6195
KH
9392 BUG_ON(page_count(page));
9393 BUG_ON(!PageBuddy(page));
ab130f91 9394 order = buddy_order(page);
6ab01363 9395 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9396 pfn += (1 << order);
9397 }
9398 spin_unlock_irqrestore(&zone->lock, flags);
9399}
9400#endif
8d22ba1b 9401
8446b59b
ED
9402/*
9403 * This function returns a stable result only if called under zone lock.
9404 */
8d22ba1b
WF
9405bool is_free_buddy_page(struct page *page)
9406{
8d22ba1b 9407 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9408 unsigned int order;
8d22ba1b 9409
8d22ba1b
WF
9410 for (order = 0; order < MAX_ORDER; order++) {
9411 struct page *page_head = page - (pfn & ((1 << order) - 1));
9412
8446b59b
ED
9413 if (PageBuddy(page_head) &&
9414 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9415 break;
9416 }
8d22ba1b
WF
9417
9418 return order < MAX_ORDER;
9419}
d4ae9916
NH
9420
9421#ifdef CONFIG_MEMORY_FAILURE
9422/*
06be6ff3
OS
9423 * Break down a higher-order page in sub-pages, and keep our target out of
9424 * buddy allocator.
d4ae9916 9425 */
06be6ff3
OS
9426static void break_down_buddy_pages(struct zone *zone, struct page *page,
9427 struct page *target, int low, int high,
9428 int migratetype)
9429{
9430 unsigned long size = 1 << high;
9431 struct page *current_buddy, *next_page;
9432
9433 while (high > low) {
9434 high--;
9435 size >>= 1;
9436
9437 if (target >= &page[size]) {
9438 next_page = page + size;
9439 current_buddy = page;
9440 } else {
9441 next_page = page;
9442 current_buddy = page + size;
9443 }
9444
9445 if (set_page_guard(zone, current_buddy, high, migratetype))
9446 continue;
9447
9448 if (current_buddy != target) {
9449 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9450 set_buddy_order(current_buddy, high);
06be6ff3
OS
9451 page = next_page;
9452 }
9453 }
9454}
9455
9456/*
9457 * Take a page that will be marked as poisoned off the buddy allocator.
9458 */
9459bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9460{
9461 struct zone *zone = page_zone(page);
9462 unsigned long pfn = page_to_pfn(page);
9463 unsigned long flags;
9464 unsigned int order;
06be6ff3 9465 bool ret = false;
d4ae9916
NH
9466
9467 spin_lock_irqsave(&zone->lock, flags);
9468 for (order = 0; order < MAX_ORDER; order++) {
9469 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9470 int page_order = buddy_order(page_head);
d4ae9916 9471
ab130f91 9472 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9473 unsigned long pfn_head = page_to_pfn(page_head);
9474 int migratetype = get_pfnblock_migratetype(page_head,
9475 pfn_head);
9476
ab130f91 9477 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9478 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9479 page_order, migratetype);
bf181c58 9480 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9481 if (!is_migrate_isolate(migratetype))
9482 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9483 ret = true;
d4ae9916
NH
9484 break;
9485 }
06be6ff3
OS
9486 if (page_count(page_head) > 0)
9487 break;
d4ae9916
NH
9488 }
9489 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9490 return ret;
d4ae9916 9491}
bf181c58
NH
9492
9493/*
9494 * Cancel takeoff done by take_page_off_buddy().
9495 */
9496bool put_page_back_buddy(struct page *page)
9497{
9498 struct zone *zone = page_zone(page);
9499 unsigned long pfn = page_to_pfn(page);
9500 unsigned long flags;
9501 int migratetype = get_pfnblock_migratetype(page, pfn);
9502 bool ret = false;
9503
9504 spin_lock_irqsave(&zone->lock, flags);
9505 if (put_page_testzero(page)) {
9506 ClearPageHWPoisonTakenOff(page);
9507 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9508 if (TestClearPageHWPoison(page)) {
9509 num_poisoned_pages_dec();
9510 ret = true;
9511 }
9512 }
9513 spin_unlock_irqrestore(&zone->lock, flags);
9514
9515 return ret;
9516}
d4ae9916 9517#endif
62b31070
BH
9518
9519#ifdef CONFIG_ZONE_DMA
9520bool has_managed_dma(void)
9521{
9522 struct pglist_data *pgdat;
9523
9524 for_each_online_pgdat(pgdat) {
9525 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9526
9527 if (managed_zone(zone))
9528 return true;
9529 }
9530 return false;
9531}
9532#endif /* CONFIG_ZONE_DMA */