mm: free_area_init: use maximal zone PFNs rather than zone sizes
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
36e66c55 77#include "page_reporting.h"
1da177e4 78
c8e251fa
CS
79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 81#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 82
72812019
LS
83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84DEFINE_PER_CPU(int, numa_node);
85EXPORT_PER_CPU_SYMBOL(numa_node);
86#endif
87
4518085e
KW
88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
7aac7898
LS
90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
91/*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
8b885f53
JY
106static DEFINE_MUTEX(pcpu_drain_mutex);
107static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
bbe5d993
OS
338static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
339static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 340static unsigned long required_kernelcore __initdata;
a5c6d650 341static unsigned long required_kernelcore_percent __initdata;
7f16f91f 342static unsigned long required_movablecore __initdata;
a5c6d650 343static unsigned long required_movablecore_percent __initdata;
bbe5d993 344static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 345static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
346
347/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
348int movable_zone;
349EXPORT_SYMBOL(movable_zone);
c713216d 350
418508c1 351#if MAX_NUMNODES > 1
b9726c26 352unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 353unsigned int nr_online_nodes __read_mostly = 1;
418508c1 354EXPORT_SYMBOL(nr_node_ids);
62bc62a8 355EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
356#endif
357
9ef9acb0
MG
358int page_group_by_mobility_disabled __read_mostly;
359
3a80a7fa 360#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
361/*
362 * During boot we initialize deferred pages on-demand, as needed, but once
363 * page_alloc_init_late() has finished, the deferred pages are all initialized,
364 * and we can permanently disable that path.
365 */
366static DEFINE_STATIC_KEY_TRUE(deferred_pages);
367
368/*
369 * Calling kasan_free_pages() only after deferred memory initialization
370 * has completed. Poisoning pages during deferred memory init will greatly
371 * lengthen the process and cause problem in large memory systems as the
372 * deferred pages initialization is done with interrupt disabled.
373 *
374 * Assuming that there will be no reference to those newly initialized
375 * pages before they are ever allocated, this should have no effect on
376 * KASAN memory tracking as the poison will be properly inserted at page
377 * allocation time. The only corner case is when pages are allocated by
378 * on-demand allocation and then freed again before the deferred pages
379 * initialization is done, but this is not likely to happen.
380 */
381static inline void kasan_free_nondeferred_pages(struct page *page, int order)
382{
383 if (!static_branch_unlikely(&deferred_pages))
384 kasan_free_pages(page, order);
385}
386
3a80a7fa 387/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 388static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 389{
ef70b6f4
MG
390 int nid = early_pfn_to_nid(pfn);
391
392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
393 return true;
394
395 return false;
396}
397
398/*
d3035be4 399 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
400 * later in the boot cycle when it can be parallelised.
401 */
d3035be4
PT
402static bool __meminit
403defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 404{
d3035be4
PT
405 static unsigned long prev_end_pfn, nr_initialised;
406
407 /*
408 * prev_end_pfn static that contains the end of previous zone
409 * No need to protect because called very early in boot before smp_init.
410 */
411 if (prev_end_pfn != end_pfn) {
412 prev_end_pfn = end_pfn;
413 nr_initialised = 0;
414 }
415
3c2c6488 416 /* Always populate low zones for address-constrained allocations */
d3035be4 417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 418 return false;
23b68cfa
WY
419
420 /*
421 * We start only with one section of pages, more pages are added as
422 * needed until the rest of deferred pages are initialized.
423 */
d3035be4 424 nr_initialised++;
23b68cfa 425 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
426 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
427 NODE_DATA(nid)->first_deferred_pfn = pfn;
428 return true;
3a80a7fa 429 }
d3035be4 430 return false;
3a80a7fa
MG
431}
432#else
3c0c12cc
WL
433#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
434
3a80a7fa
MG
435static inline bool early_page_uninitialised(unsigned long pfn)
436{
437 return false;
438}
439
d3035be4 440static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 441{
d3035be4 442 return false;
3a80a7fa
MG
443}
444#endif
445
0b423ca2
MG
446/* Return a pointer to the bitmap storing bits affecting a block of pages */
447static inline unsigned long *get_pageblock_bitmap(struct page *page,
448 unsigned long pfn)
449{
450#ifdef CONFIG_SPARSEMEM
f1eca35a 451 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
452#else
453 return page_zone(page)->pageblock_flags;
454#endif /* CONFIG_SPARSEMEM */
455}
456
457static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
458{
459#ifdef CONFIG_SPARSEMEM
460 pfn &= (PAGES_PER_SECTION-1);
461 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
462#else
463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
465#endif /* CONFIG_SPARSEMEM */
466}
467
468/**
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
472 * @end_bitidx: The last bit of interest to retrieve
473 * @mask: mask of bits that the caller is interested in
474 *
475 * Return: pageblock_bits flags
476 */
477static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
478 unsigned long pfn,
479 unsigned long end_bitidx,
480 unsigned long mask)
481{
482 unsigned long *bitmap;
483 unsigned long bitidx, word_bitidx;
484 unsigned long word;
485
486 bitmap = get_pageblock_bitmap(page, pfn);
487 bitidx = pfn_to_bitidx(page, pfn);
488 word_bitidx = bitidx / BITS_PER_LONG;
489 bitidx &= (BITS_PER_LONG-1);
490
491 word = bitmap[word_bitidx];
492 bitidx += end_bitidx;
493 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
494}
495
496unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
497 unsigned long end_bitidx,
498 unsigned long mask)
499{
500 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
501}
502
503static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
504{
505 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
506}
507
508/**
509 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
510 * @page: The page within the block of interest
511 * @flags: The flags to set
512 * @pfn: The target page frame number
513 * @end_bitidx: The last bit of interest
514 * @mask: mask of bits that the caller is interested in
515 */
516void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
517 unsigned long pfn,
518 unsigned long end_bitidx,
519 unsigned long mask)
520{
521 unsigned long *bitmap;
522 unsigned long bitidx, word_bitidx;
523 unsigned long old_word, word;
524
525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
527
528 bitmap = get_pageblock_bitmap(page, pfn);
529 bitidx = pfn_to_bitidx(page, pfn);
530 word_bitidx = bitidx / BITS_PER_LONG;
531 bitidx &= (BITS_PER_LONG-1);
532
533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534
535 bitidx += end_bitidx;
536 mask <<= (BITS_PER_LONG - bitidx - 1);
537 flags <<= (BITS_PER_LONG - bitidx - 1);
538
539 word = READ_ONCE(bitmap[word_bitidx]);
540 for (;;) {
541 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
542 if (word == old_word)
543 break;
544 word = old_word;
545 }
546}
3a80a7fa 547
ee6f509c 548void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 549{
5d0f3f72
KM
550 if (unlikely(page_group_by_mobility_disabled &&
551 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
552 migratetype = MIGRATE_UNMOVABLE;
553
b2a0ac88
MG
554 set_pageblock_flags_group(page, (unsigned long)migratetype,
555 PB_migrate, PB_migrate_end);
556}
557
13e7444b 558#ifdef CONFIG_DEBUG_VM
c6a57e19 559static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 560{
bdc8cb98
DH
561 int ret = 0;
562 unsigned seq;
563 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 564 unsigned long sp, start_pfn;
c6a57e19 565
bdc8cb98
DH
566 do {
567 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
568 start_pfn = zone->zone_start_pfn;
569 sp = zone->spanned_pages;
108bcc96 570 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
571 ret = 1;
572 } while (zone_span_seqretry(zone, seq));
573
b5e6a5a2 574 if (ret)
613813e8
DH
575 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
576 pfn, zone_to_nid(zone), zone->name,
577 start_pfn, start_pfn + sp);
b5e6a5a2 578
bdc8cb98 579 return ret;
c6a57e19
DH
580}
581
582static int page_is_consistent(struct zone *zone, struct page *page)
583{
14e07298 584 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 585 return 0;
1da177e4 586 if (zone != page_zone(page))
c6a57e19
DH
587 return 0;
588
589 return 1;
590}
591/*
592 * Temporary debugging check for pages not lying within a given zone.
593 */
d73d3c9f 594static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
595{
596 if (page_outside_zone_boundaries(zone, page))
1da177e4 597 return 1;
c6a57e19
DH
598 if (!page_is_consistent(zone, page))
599 return 1;
600
1da177e4
LT
601 return 0;
602}
13e7444b 603#else
d73d3c9f 604static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
605{
606 return 0;
607}
608#endif
609
d230dec1
KS
610static void bad_page(struct page *page, const char *reason,
611 unsigned long bad_flags)
1da177e4 612{
d936cf9b
HD
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
616
617 /*
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
620 */
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
625 }
626 if (nr_unshown) {
ff8e8116 627 pr_alert(
1e9e6365 628 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
629 nr_unshown);
630 nr_unshown = 0;
631 }
632 nr_shown = 0;
633 }
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
636
ff8e8116 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 638 current->comm, page_to_pfn(page));
ff8e8116
VB
639 __dump_page(page, reason);
640 bad_flags &= page->flags;
641 if (bad_flags)
642 pr_alert("bad because of flags: %#lx(%pGp)\n",
643 bad_flags, &bad_flags);
4e462112 644 dump_page_owner(page);
3dc14741 645
4f31888c 646 print_modules();
1da177e4 647 dump_stack();
d936cf9b 648out:
8cc3b392 649 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 650 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 651 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
652}
653
1da177e4
LT
654/*
655 * Higher-order pages are called "compound pages". They are structured thusly:
656 *
1d798ca3 657 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 658 *
1d798ca3
KS
659 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
660 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 661 *
1d798ca3
KS
662 * The first tail page's ->compound_dtor holds the offset in array of compound
663 * page destructors. See compound_page_dtors.
1da177e4 664 *
1d798ca3 665 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 666 * This usage means that zero-order pages may not be compound.
1da177e4 667 */
d98c7a09 668
9a982250 669void free_compound_page(struct page *page)
d98c7a09 670{
7ae88534 671 mem_cgroup_uncharge(page);
d85f3385 672 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
673}
674
d00181b9 675void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
676{
677 int i;
678 int nr_pages = 1 << order;
679
f1e61557 680 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
681 set_compound_order(page, order);
682 __SetPageHead(page);
683 for (i = 1; i < nr_pages; i++) {
684 struct page *p = page + i;
58a84aa9 685 set_page_count(p, 0);
1c290f64 686 p->mapping = TAIL_MAPPING;
1d798ca3 687 set_compound_head(p, page);
18229df5 688 }
53f9263b 689 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
690 if (hpage_pincount_available(page))
691 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
692}
693
c0a32fc5
SG
694#ifdef CONFIG_DEBUG_PAGEALLOC
695unsigned int _debug_guardpage_minorder;
96a2b03f 696
8e57f8ac
VB
697bool _debug_pagealloc_enabled_early __read_mostly
698 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
699EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 700DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 701EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
702
703DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 704
031bc574
JK
705static int __init early_debug_pagealloc(char *buf)
706{
8e57f8ac 707 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
708}
709early_param("debug_pagealloc", early_debug_pagealloc);
710
8e57f8ac 711void init_debug_pagealloc(void)
e30825f1 712{
031bc574
JK
713 if (!debug_pagealloc_enabled())
714 return;
715
8e57f8ac
VB
716 static_branch_enable(&_debug_pagealloc_enabled);
717
f1c1e9f7
JK
718 if (!debug_guardpage_minorder())
719 return;
720
96a2b03f 721 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
722}
723
c0a32fc5
SG
724static int __init debug_guardpage_minorder_setup(char *buf)
725{
726 unsigned long res;
727
728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 729 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
730 return 0;
731 }
732 _debug_guardpage_minorder = res;
1170532b 733 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
734 return 0;
735}
f1c1e9f7 736early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 737
acbc15a4 738static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 739 unsigned int order, int migratetype)
c0a32fc5 740{
e30825f1 741 if (!debug_guardpage_enabled())
acbc15a4
JK
742 return false;
743
744 if (order >= debug_guardpage_minorder())
745 return false;
e30825f1 746
3972f6bb 747 __SetPageGuard(page);
2847cf95
JK
748 INIT_LIST_HEAD(&page->lru);
749 set_page_private(page, order);
750 /* Guard pages are not available for any usage */
751 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
752
753 return true;
c0a32fc5
SG
754}
755
2847cf95
JK
756static inline void clear_page_guard(struct zone *zone, struct page *page,
757 unsigned int order, int migratetype)
c0a32fc5 758{
e30825f1
JK
759 if (!debug_guardpage_enabled())
760 return;
761
3972f6bb 762 __ClearPageGuard(page);
e30825f1 763
2847cf95
JK
764 set_page_private(page, 0);
765 if (!is_migrate_isolate(migratetype))
766 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
767}
768#else
acbc15a4
JK
769static inline bool set_page_guard(struct zone *zone, struct page *page,
770 unsigned int order, int migratetype) { return false; }
2847cf95
JK
771static inline void clear_page_guard(struct zone *zone, struct page *page,
772 unsigned int order, int migratetype) {}
c0a32fc5
SG
773#endif
774
7aeb09f9 775static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 776{
4c21e2f2 777 set_page_private(page, order);
676165a8 778 __SetPageBuddy(page);
1da177e4
LT
779}
780
1da177e4
LT
781/*
782 * This function checks whether a page is free && is the buddy
6e292b9b 783 * we can coalesce a page and its buddy if
13ad59df 784 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 785 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
786 * (c) a page and its buddy have the same order &&
787 * (d) a page and its buddy are in the same zone.
676165a8 788 *
6e292b9b
MW
789 * For recording whether a page is in the buddy system, we set PageBuddy.
790 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 791 *
676165a8 792 * For recording page's order, we use page_private(page).
1da177e4 793 */
fe925c0c 794static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 795 unsigned int order)
1da177e4 796{
fe925c0c 797 if (!page_is_guard(buddy) && !PageBuddy(buddy))
798 return false;
4c5018ce 799
fe925c0c 800 if (page_order(buddy) != order)
801 return false;
c0a32fc5 802
fe925c0c 803 /*
804 * zone check is done late to avoid uselessly calculating
805 * zone/node ids for pages that could never merge.
806 */
807 if (page_zone_id(page) != page_zone_id(buddy))
808 return false;
d34c5fa0 809
fe925c0c 810 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 811
fe925c0c 812 return true;
1da177e4
LT
813}
814
5e1f0f09
MG
815#ifdef CONFIG_COMPACTION
816static inline struct capture_control *task_capc(struct zone *zone)
817{
818 struct capture_control *capc = current->capture_control;
819
820 return capc &&
821 !(current->flags & PF_KTHREAD) &&
822 !capc->page &&
823 capc->cc->zone == zone &&
824 capc->cc->direct_compaction ? capc : NULL;
825}
826
827static inline bool
828compaction_capture(struct capture_control *capc, struct page *page,
829 int order, int migratetype)
830{
831 if (!capc || order != capc->cc->order)
832 return false;
833
834 /* Do not accidentally pollute CMA or isolated regions*/
835 if (is_migrate_cma(migratetype) ||
836 is_migrate_isolate(migratetype))
837 return false;
838
839 /*
840 * Do not let lower order allocations polluate a movable pageblock.
841 * This might let an unmovable request use a reclaimable pageblock
842 * and vice-versa but no more than normal fallback logic which can
843 * have trouble finding a high-order free page.
844 */
845 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
846 return false;
847
848 capc->page = page;
849 return true;
850}
851
852#else
853static inline struct capture_control *task_capc(struct zone *zone)
854{
855 return NULL;
856}
857
858static inline bool
859compaction_capture(struct capture_control *capc, struct page *page,
860 int order, int migratetype)
861{
862 return false;
863}
864#endif /* CONFIG_COMPACTION */
865
6ab01363
AD
866/* Used for pages not on another list */
867static inline void add_to_free_list(struct page *page, struct zone *zone,
868 unsigned int order, int migratetype)
869{
870 struct free_area *area = &zone->free_area[order];
871
872 list_add(&page->lru, &area->free_list[migratetype]);
873 area->nr_free++;
874}
875
876/* Used for pages not on another list */
877static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
878 unsigned int order, int migratetype)
879{
880 struct free_area *area = &zone->free_area[order];
881
882 list_add_tail(&page->lru, &area->free_list[migratetype]);
883 area->nr_free++;
884}
885
886/* Used for pages which are on another list */
887static inline void move_to_free_list(struct page *page, struct zone *zone,
888 unsigned int order, int migratetype)
889{
890 struct free_area *area = &zone->free_area[order];
891
892 list_move(&page->lru, &area->free_list[migratetype]);
893}
894
895static inline void del_page_from_free_list(struct page *page, struct zone *zone,
896 unsigned int order)
897{
36e66c55
AD
898 /* clear reported state and update reported page count */
899 if (page_reported(page))
900 __ClearPageReported(page);
901
6ab01363
AD
902 list_del(&page->lru);
903 __ClearPageBuddy(page);
904 set_page_private(page, 0);
905 zone->free_area[order].nr_free--;
906}
907
a2129f24
AD
908/*
909 * If this is not the largest possible page, check if the buddy
910 * of the next-highest order is free. If it is, it's possible
911 * that pages are being freed that will coalesce soon. In case,
912 * that is happening, add the free page to the tail of the list
913 * so it's less likely to be used soon and more likely to be merged
914 * as a higher order page
915 */
916static inline bool
917buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
918 struct page *page, unsigned int order)
919{
920 struct page *higher_page, *higher_buddy;
921 unsigned long combined_pfn;
922
923 if (order >= MAX_ORDER - 2)
924 return false;
925
926 if (!pfn_valid_within(buddy_pfn))
927 return false;
928
929 combined_pfn = buddy_pfn & pfn;
930 higher_page = page + (combined_pfn - pfn);
931 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
932 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
933
934 return pfn_valid_within(buddy_pfn) &&
935 page_is_buddy(higher_page, higher_buddy, order + 1);
936}
937
1da177e4
LT
938/*
939 * Freeing function for a buddy system allocator.
940 *
941 * The concept of a buddy system is to maintain direct-mapped table
942 * (containing bit values) for memory blocks of various "orders".
943 * The bottom level table contains the map for the smallest allocatable
944 * units of memory (here, pages), and each level above it describes
945 * pairs of units from the levels below, hence, "buddies".
946 * At a high level, all that happens here is marking the table entry
947 * at the bottom level available, and propagating the changes upward
948 * as necessary, plus some accounting needed to play nicely with other
949 * parts of the VM system.
950 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
951 * free pages of length of (1 << order) and marked with PageBuddy.
952 * Page's order is recorded in page_private(page) field.
1da177e4 953 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
954 * other. That is, if we allocate a small block, and both were
955 * free, the remainder of the region must be split into blocks.
1da177e4 956 * If a block is freed, and its buddy is also free, then this
5f63b720 957 * triggers coalescing into a block of larger size.
1da177e4 958 *
6d49e352 959 * -- nyc
1da177e4
LT
960 */
961
48db57f8 962static inline void __free_one_page(struct page *page,
dc4b0caf 963 unsigned long pfn,
ed0ae21d 964 struct zone *zone, unsigned int order,
36e66c55 965 int migratetype, bool report)
1da177e4 966{
a2129f24 967 struct capture_control *capc = task_capc(zone);
76741e77 968 unsigned long uninitialized_var(buddy_pfn);
a2129f24 969 unsigned long combined_pfn;
d9dddbf5 970 unsigned int max_order;
a2129f24
AD
971 struct page *buddy;
972 bool to_tail;
d9dddbf5
VB
973
974 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 975
d29bb978 976 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 977 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 978
ed0ae21d 979 VM_BUG_ON(migratetype == -1);
d9dddbf5 980 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 981 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 982
76741e77 983 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 984 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 985
d9dddbf5 986continue_merging:
3c605096 987 while (order < max_order - 1) {
5e1f0f09
MG
988 if (compaction_capture(capc, page, order, migratetype)) {
989 __mod_zone_freepage_state(zone, -(1 << order),
990 migratetype);
991 return;
992 }
76741e77
VB
993 buddy_pfn = __find_buddy_pfn(pfn, order);
994 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
995
996 if (!pfn_valid_within(buddy_pfn))
997 goto done_merging;
cb2b95e1 998 if (!page_is_buddy(page, buddy, order))
d9dddbf5 999 goto done_merging;
c0a32fc5
SG
1000 /*
1001 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1002 * merge with it and move up one order.
1003 */
b03641af 1004 if (page_is_guard(buddy))
2847cf95 1005 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1006 else
6ab01363 1007 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1008 combined_pfn = buddy_pfn & pfn;
1009 page = page + (combined_pfn - pfn);
1010 pfn = combined_pfn;
1da177e4
LT
1011 order++;
1012 }
d9dddbf5
VB
1013 if (max_order < MAX_ORDER) {
1014 /* If we are here, it means order is >= pageblock_order.
1015 * We want to prevent merge between freepages on isolate
1016 * pageblock and normal pageblock. Without this, pageblock
1017 * isolation could cause incorrect freepage or CMA accounting.
1018 *
1019 * We don't want to hit this code for the more frequent
1020 * low-order merging.
1021 */
1022 if (unlikely(has_isolate_pageblock(zone))) {
1023 int buddy_mt;
1024
76741e77
VB
1025 buddy_pfn = __find_buddy_pfn(pfn, order);
1026 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1027 buddy_mt = get_pageblock_migratetype(buddy);
1028
1029 if (migratetype != buddy_mt
1030 && (is_migrate_isolate(migratetype) ||
1031 is_migrate_isolate(buddy_mt)))
1032 goto done_merging;
1033 }
1034 max_order++;
1035 goto continue_merging;
1036 }
1037
1038done_merging:
1da177e4 1039 set_page_order(page, order);
6dda9d55 1040
97500a4a 1041 if (is_shuffle_order(order))
a2129f24 1042 to_tail = shuffle_pick_tail();
97500a4a 1043 else
a2129f24 1044 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1045
a2129f24 1046 if (to_tail)
6ab01363 1047 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1048 else
6ab01363 1049 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1050
1051 /* Notify page reporting subsystem of freed page */
1052 if (report)
1053 page_reporting_notify_free(order);
1da177e4
LT
1054}
1055
7bfec6f4
MG
1056/*
1057 * A bad page could be due to a number of fields. Instead of multiple branches,
1058 * try and check multiple fields with one check. The caller must do a detailed
1059 * check if necessary.
1060 */
1061static inline bool page_expected_state(struct page *page,
1062 unsigned long check_flags)
1063{
1064 if (unlikely(atomic_read(&page->_mapcount) != -1))
1065 return false;
1066
1067 if (unlikely((unsigned long)page->mapping |
1068 page_ref_count(page) |
1069#ifdef CONFIG_MEMCG
1070 (unsigned long)page->mem_cgroup |
1071#endif
1072 (page->flags & check_flags)))
1073 return false;
1074
1075 return true;
1076}
1077
bb552ac6 1078static void free_pages_check_bad(struct page *page)
1da177e4 1079{
7bfec6f4
MG
1080 const char *bad_reason;
1081 unsigned long bad_flags;
1082
7bfec6f4
MG
1083 bad_reason = NULL;
1084 bad_flags = 0;
f0b791a3 1085
53f9263b 1086 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1087 bad_reason = "nonzero mapcount";
1088 if (unlikely(page->mapping != NULL))
1089 bad_reason = "non-NULL mapping";
fe896d18 1090 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1091 bad_reason = "nonzero _refcount";
f0b791a3
DH
1092 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1093 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1094 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1095 }
9edad6ea
JW
1096#ifdef CONFIG_MEMCG
1097 if (unlikely(page->mem_cgroup))
1098 bad_reason = "page still charged to cgroup";
1099#endif
7bfec6f4 1100 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1101}
1102
1103static inline int free_pages_check(struct page *page)
1104{
da838d4f 1105 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1106 return 0;
bb552ac6
MG
1107
1108 /* Something has gone sideways, find it */
1109 free_pages_check_bad(page);
7bfec6f4 1110 return 1;
1da177e4
LT
1111}
1112
4db7548c
MG
1113static int free_tail_pages_check(struct page *head_page, struct page *page)
1114{
1115 int ret = 1;
1116
1117 /*
1118 * We rely page->lru.next never has bit 0 set, unless the page
1119 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1120 */
1121 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1122
1123 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1124 ret = 0;
1125 goto out;
1126 }
1127 switch (page - head_page) {
1128 case 1:
4da1984e 1129 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1130 if (unlikely(compound_mapcount(page))) {
1131 bad_page(page, "nonzero compound_mapcount", 0);
1132 goto out;
1133 }
1134 break;
1135 case 2:
1136 /*
1137 * the second tail page: ->mapping is
fa3015b7 1138 * deferred_list.next -- ignore value.
4db7548c
MG
1139 */
1140 break;
1141 default:
1142 if (page->mapping != TAIL_MAPPING) {
1143 bad_page(page, "corrupted mapping in tail page", 0);
1144 goto out;
1145 }
1146 break;
1147 }
1148 if (unlikely(!PageTail(page))) {
1149 bad_page(page, "PageTail not set", 0);
1150 goto out;
1151 }
1152 if (unlikely(compound_head(page) != head_page)) {
1153 bad_page(page, "compound_head not consistent", 0);
1154 goto out;
1155 }
1156 ret = 0;
1157out:
1158 page->mapping = NULL;
1159 clear_compound_head(page);
1160 return ret;
1161}
1162
6471384a
AP
1163static void kernel_init_free_pages(struct page *page, int numpages)
1164{
1165 int i;
1166
1167 for (i = 0; i < numpages; i++)
1168 clear_highpage(page + i);
1169}
1170
e2769dbd
MG
1171static __always_inline bool free_pages_prepare(struct page *page,
1172 unsigned int order, bool check_free)
4db7548c 1173{
e2769dbd 1174 int bad = 0;
4db7548c 1175
4db7548c
MG
1176 VM_BUG_ON_PAGE(PageTail(page), page);
1177
e2769dbd 1178 trace_mm_page_free(page, order);
e2769dbd
MG
1179
1180 /*
1181 * Check tail pages before head page information is cleared to
1182 * avoid checking PageCompound for order-0 pages.
1183 */
1184 if (unlikely(order)) {
1185 bool compound = PageCompound(page);
1186 int i;
1187
1188 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1189
9a73f61b
KS
1190 if (compound)
1191 ClearPageDoubleMap(page);
e2769dbd
MG
1192 for (i = 1; i < (1 << order); i++) {
1193 if (compound)
1194 bad += free_tail_pages_check(page, page + i);
1195 if (unlikely(free_pages_check(page + i))) {
1196 bad++;
1197 continue;
1198 }
1199 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1200 }
1201 }
bda807d4 1202 if (PageMappingFlags(page))
4db7548c 1203 page->mapping = NULL;
c4159a75 1204 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1205 __memcg_kmem_uncharge_page(page, order);
e2769dbd
MG
1206 if (check_free)
1207 bad += free_pages_check(page);
1208 if (bad)
1209 return false;
4db7548c 1210
e2769dbd
MG
1211 page_cpupid_reset_last(page);
1212 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1213 reset_page_owner(page, order);
4db7548c
MG
1214
1215 if (!PageHighMem(page)) {
1216 debug_check_no_locks_freed(page_address(page),
e2769dbd 1217 PAGE_SIZE << order);
4db7548c 1218 debug_check_no_obj_freed(page_address(page),
e2769dbd 1219 PAGE_SIZE << order);
4db7548c 1220 }
6471384a
AP
1221 if (want_init_on_free())
1222 kernel_init_free_pages(page, 1 << order);
1223
e2769dbd 1224 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1225 /*
1226 * arch_free_page() can make the page's contents inaccessible. s390
1227 * does this. So nothing which can access the page's contents should
1228 * happen after this.
1229 */
1230 arch_free_page(page, order);
1231
8e57f8ac 1232 if (debug_pagealloc_enabled_static())
d6332692
RE
1233 kernel_map_pages(page, 1 << order, 0);
1234
3c0c12cc 1235 kasan_free_nondeferred_pages(page, order);
4db7548c 1236
4db7548c
MG
1237 return true;
1238}
1239
e2769dbd 1240#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1241/*
1242 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1243 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1244 * moved from pcp lists to free lists.
1245 */
1246static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1247{
1248 return free_pages_prepare(page, 0, true);
1249}
1250
4462b32c 1251static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1252{
8e57f8ac 1253 if (debug_pagealloc_enabled_static())
4462b32c
VB
1254 return free_pages_check(page);
1255 else
1256 return false;
e2769dbd
MG
1257}
1258#else
4462b32c
VB
1259/*
1260 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1261 * moving from pcp lists to free list in order to reduce overhead. With
1262 * debug_pagealloc enabled, they are checked also immediately when being freed
1263 * to the pcp lists.
1264 */
e2769dbd
MG
1265static bool free_pcp_prepare(struct page *page)
1266{
8e57f8ac 1267 if (debug_pagealloc_enabled_static())
4462b32c
VB
1268 return free_pages_prepare(page, 0, true);
1269 else
1270 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1271}
1272
4db7548c
MG
1273static bool bulkfree_pcp_prepare(struct page *page)
1274{
1275 return free_pages_check(page);
1276}
1277#endif /* CONFIG_DEBUG_VM */
1278
97334162
AL
1279static inline void prefetch_buddy(struct page *page)
1280{
1281 unsigned long pfn = page_to_pfn(page);
1282 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1283 struct page *buddy = page + (buddy_pfn - pfn);
1284
1285 prefetch(buddy);
1286}
1287
1da177e4 1288/*
5f8dcc21 1289 * Frees a number of pages from the PCP lists
1da177e4 1290 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1291 * count is the number of pages to free.
1da177e4
LT
1292 *
1293 * If the zone was previously in an "all pages pinned" state then look to
1294 * see if this freeing clears that state.
1295 *
1296 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1297 * pinned" detection logic.
1298 */
5f8dcc21
MG
1299static void free_pcppages_bulk(struct zone *zone, int count,
1300 struct per_cpu_pages *pcp)
1da177e4 1301{
5f8dcc21 1302 int migratetype = 0;
a6f9edd6 1303 int batch_free = 0;
97334162 1304 int prefetch_nr = 0;
3777999d 1305 bool isolated_pageblocks;
0a5f4e5b
AL
1306 struct page *page, *tmp;
1307 LIST_HEAD(head);
f2260e6b 1308
e5b31ac2 1309 while (count) {
5f8dcc21
MG
1310 struct list_head *list;
1311
1312 /*
a6f9edd6
MG
1313 * Remove pages from lists in a round-robin fashion. A
1314 * batch_free count is maintained that is incremented when an
1315 * empty list is encountered. This is so more pages are freed
1316 * off fuller lists instead of spinning excessively around empty
1317 * lists
5f8dcc21
MG
1318 */
1319 do {
a6f9edd6 1320 batch_free++;
5f8dcc21
MG
1321 if (++migratetype == MIGRATE_PCPTYPES)
1322 migratetype = 0;
1323 list = &pcp->lists[migratetype];
1324 } while (list_empty(list));
48db57f8 1325
1d16871d
NK
1326 /* This is the only non-empty list. Free them all. */
1327 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1328 batch_free = count;
1d16871d 1329
a6f9edd6 1330 do {
a16601c5 1331 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1332 /* must delete to avoid corrupting pcp list */
a6f9edd6 1333 list_del(&page->lru);
77ba9062 1334 pcp->count--;
aa016d14 1335
4db7548c
MG
1336 if (bulkfree_pcp_prepare(page))
1337 continue;
1338
0a5f4e5b 1339 list_add_tail(&page->lru, &head);
97334162
AL
1340
1341 /*
1342 * We are going to put the page back to the global
1343 * pool, prefetch its buddy to speed up later access
1344 * under zone->lock. It is believed the overhead of
1345 * an additional test and calculating buddy_pfn here
1346 * can be offset by reduced memory latency later. To
1347 * avoid excessive prefetching due to large count, only
1348 * prefetch buddy for the first pcp->batch nr of pages.
1349 */
1350 if (prefetch_nr++ < pcp->batch)
1351 prefetch_buddy(page);
e5b31ac2 1352 } while (--count && --batch_free && !list_empty(list));
1da177e4 1353 }
0a5f4e5b
AL
1354
1355 spin_lock(&zone->lock);
1356 isolated_pageblocks = has_isolate_pageblock(zone);
1357
1358 /*
1359 * Use safe version since after __free_one_page(),
1360 * page->lru.next will not point to original list.
1361 */
1362 list_for_each_entry_safe(page, tmp, &head, lru) {
1363 int mt = get_pcppage_migratetype(page);
1364 /* MIGRATE_ISOLATE page should not go to pcplists */
1365 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1366 /* Pageblock could have been isolated meanwhile */
1367 if (unlikely(isolated_pageblocks))
1368 mt = get_pageblock_migratetype(page);
1369
36e66c55 1370 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1371 trace_mm_page_pcpu_drain(page, 0, mt);
1372 }
d34b0733 1373 spin_unlock(&zone->lock);
1da177e4
LT
1374}
1375
dc4b0caf
MG
1376static void free_one_page(struct zone *zone,
1377 struct page *page, unsigned long pfn,
7aeb09f9 1378 unsigned int order,
ed0ae21d 1379 int migratetype)
1da177e4 1380{
d34b0733 1381 spin_lock(&zone->lock);
ad53f92e
JK
1382 if (unlikely(has_isolate_pageblock(zone) ||
1383 is_migrate_isolate(migratetype))) {
1384 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1385 }
36e66c55 1386 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1387 spin_unlock(&zone->lock);
48db57f8
NP
1388}
1389
1e8ce83c 1390static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1391 unsigned long zone, int nid)
1e8ce83c 1392{
d0dc12e8 1393 mm_zero_struct_page(page);
1e8ce83c 1394 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1395 init_page_count(page);
1396 page_mapcount_reset(page);
1397 page_cpupid_reset_last(page);
2813b9c0 1398 page_kasan_tag_reset(page);
1e8ce83c 1399
1e8ce83c
RH
1400 INIT_LIST_HEAD(&page->lru);
1401#ifdef WANT_PAGE_VIRTUAL
1402 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1403 if (!is_highmem_idx(zone))
1404 set_page_address(page, __va(pfn << PAGE_SHIFT));
1405#endif
1406}
1407
7e18adb4 1408#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1409static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1410{
1411 pg_data_t *pgdat;
1412 int nid, zid;
1413
1414 if (!early_page_uninitialised(pfn))
1415 return;
1416
1417 nid = early_pfn_to_nid(pfn);
1418 pgdat = NODE_DATA(nid);
1419
1420 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1421 struct zone *zone = &pgdat->node_zones[zid];
1422
1423 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1424 break;
1425 }
d0dc12e8 1426 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1427}
1428#else
1429static inline void init_reserved_page(unsigned long pfn)
1430{
1431}
1432#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1433
92923ca3
NZ
1434/*
1435 * Initialised pages do not have PageReserved set. This function is
1436 * called for each range allocated by the bootmem allocator and
1437 * marks the pages PageReserved. The remaining valid pages are later
1438 * sent to the buddy page allocator.
1439 */
4b50bcc7 1440void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1441{
1442 unsigned long start_pfn = PFN_DOWN(start);
1443 unsigned long end_pfn = PFN_UP(end);
1444
7e18adb4
MG
1445 for (; start_pfn < end_pfn; start_pfn++) {
1446 if (pfn_valid(start_pfn)) {
1447 struct page *page = pfn_to_page(start_pfn);
1448
1449 init_reserved_page(start_pfn);
1d798ca3
KS
1450
1451 /* Avoid false-positive PageTail() */
1452 INIT_LIST_HEAD(&page->lru);
1453
d483da5b
AD
1454 /*
1455 * no need for atomic set_bit because the struct
1456 * page is not visible yet so nobody should
1457 * access it yet.
1458 */
1459 __SetPageReserved(page);
7e18adb4
MG
1460 }
1461 }
92923ca3
NZ
1462}
1463
ec95f53a
KM
1464static void __free_pages_ok(struct page *page, unsigned int order)
1465{
d34b0733 1466 unsigned long flags;
95e34412 1467 int migratetype;
dc4b0caf 1468 unsigned long pfn = page_to_pfn(page);
ec95f53a 1469
e2769dbd 1470 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1471 return;
1472
cfc47a28 1473 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1474 local_irq_save(flags);
1475 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1476 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1477 local_irq_restore(flags);
1da177e4
LT
1478}
1479
a9cd410a 1480void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1481{
c3993076 1482 unsigned int nr_pages = 1 << order;
e2d0bd2b 1483 struct page *p = page;
c3993076 1484 unsigned int loop;
a226f6c8 1485
e2d0bd2b
YL
1486 prefetchw(p);
1487 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1488 prefetchw(p + 1);
c3993076
JW
1489 __ClearPageReserved(p);
1490 set_page_count(p, 0);
a226f6c8 1491 }
e2d0bd2b
YL
1492 __ClearPageReserved(p);
1493 set_page_count(p, 0);
c3993076 1494
9705bea5 1495 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1496 set_page_refcounted(page);
1497 __free_pages(page, order);
a226f6c8
DH
1498}
1499
3f08a302 1500#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1501
75a592a4
MG
1502static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1503
6f24fbd3
MR
1504#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1505
1506/*
1507 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1508 */
1509int __meminit __early_pfn_to_nid(unsigned long pfn,
1510 struct mminit_pfnnid_cache *state)
1511{
1512 unsigned long start_pfn, end_pfn;
1513 int nid;
1514
1515 if (state->last_start <= pfn && pfn < state->last_end)
1516 return state->last_nid;
1517
1518 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1519 if (nid != NUMA_NO_NODE) {
1520 state->last_start = start_pfn;
1521 state->last_end = end_pfn;
1522 state->last_nid = nid;
1523 }
1524
1525 return nid;
1526}
1527#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1528
75a592a4
MG
1529int __meminit early_pfn_to_nid(unsigned long pfn)
1530{
7ace9917 1531 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1532 int nid;
1533
7ace9917 1534 spin_lock(&early_pfn_lock);
75a592a4 1535 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1536 if (nid < 0)
e4568d38 1537 nid = first_online_node;
7ace9917
MG
1538 spin_unlock(&early_pfn_lock);
1539
1540 return nid;
75a592a4 1541}
3f08a302 1542#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4
MG
1543
1544#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1545/* Only safe to use early in boot when initialisation is single-threaded */
1546static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1547{
1548 int nid;
1549
56ec43d8 1550 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1551 if (nid >= 0 && nid != node)
1552 return false;
1553 return true;
1554}
1555
75a592a4 1556#else
75a592a4
MG
1557static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1558{
1559 return true;
1560}
75a592a4
MG
1561#endif
1562
1563
7c2ee349 1564void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1565 unsigned int order)
1566{
1567 if (early_page_uninitialised(pfn))
1568 return;
a9cd410a 1569 __free_pages_core(page, order);
3a80a7fa
MG
1570}
1571
7cf91a98
JK
1572/*
1573 * Check that the whole (or subset of) a pageblock given by the interval of
1574 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1575 * with the migration of free compaction scanner. The scanners then need to
1576 * use only pfn_valid_within() check for arches that allow holes within
1577 * pageblocks.
1578 *
1579 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1580 *
1581 * It's possible on some configurations to have a setup like node0 node1 node0
1582 * i.e. it's possible that all pages within a zones range of pages do not
1583 * belong to a single zone. We assume that a border between node0 and node1
1584 * can occur within a single pageblock, but not a node0 node1 node0
1585 * interleaving within a single pageblock. It is therefore sufficient to check
1586 * the first and last page of a pageblock and avoid checking each individual
1587 * page in a pageblock.
1588 */
1589struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1590 unsigned long end_pfn, struct zone *zone)
1591{
1592 struct page *start_page;
1593 struct page *end_page;
1594
1595 /* end_pfn is one past the range we are checking */
1596 end_pfn--;
1597
1598 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1599 return NULL;
1600
2d070eab
MH
1601 start_page = pfn_to_online_page(start_pfn);
1602 if (!start_page)
1603 return NULL;
7cf91a98
JK
1604
1605 if (page_zone(start_page) != zone)
1606 return NULL;
1607
1608 end_page = pfn_to_page(end_pfn);
1609
1610 /* This gives a shorter code than deriving page_zone(end_page) */
1611 if (page_zone_id(start_page) != page_zone_id(end_page))
1612 return NULL;
1613
1614 return start_page;
1615}
1616
1617void set_zone_contiguous(struct zone *zone)
1618{
1619 unsigned long block_start_pfn = zone->zone_start_pfn;
1620 unsigned long block_end_pfn;
1621
1622 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1623 for (; block_start_pfn < zone_end_pfn(zone);
1624 block_start_pfn = block_end_pfn,
1625 block_end_pfn += pageblock_nr_pages) {
1626
1627 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1628
1629 if (!__pageblock_pfn_to_page(block_start_pfn,
1630 block_end_pfn, zone))
1631 return;
e84fe99b 1632 cond_resched();
7cf91a98
JK
1633 }
1634
1635 /* We confirm that there is no hole */
1636 zone->contiguous = true;
1637}
1638
1639void clear_zone_contiguous(struct zone *zone)
1640{
1641 zone->contiguous = false;
1642}
1643
7e18adb4 1644#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1645static void __init deferred_free_range(unsigned long pfn,
1646 unsigned long nr_pages)
a4de83dd 1647{
2f47a91f
PT
1648 struct page *page;
1649 unsigned long i;
a4de83dd 1650
2f47a91f 1651 if (!nr_pages)
a4de83dd
MG
1652 return;
1653
2f47a91f
PT
1654 page = pfn_to_page(pfn);
1655
a4de83dd 1656 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1657 if (nr_pages == pageblock_nr_pages &&
1658 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1659 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1660 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1661 return;
1662 }
1663
e780149b
XQ
1664 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1665 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1666 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1667 __free_pages_core(page, 0);
e780149b 1668 }
a4de83dd
MG
1669}
1670
d3cd131d
NS
1671/* Completion tracking for deferred_init_memmap() threads */
1672static atomic_t pgdat_init_n_undone __initdata;
1673static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1674
1675static inline void __init pgdat_init_report_one_done(void)
1676{
1677 if (atomic_dec_and_test(&pgdat_init_n_undone))
1678 complete(&pgdat_init_all_done_comp);
1679}
0e1cc95b 1680
2f47a91f 1681/*
80b1f41c
PT
1682 * Returns true if page needs to be initialized or freed to buddy allocator.
1683 *
1684 * First we check if pfn is valid on architectures where it is possible to have
1685 * holes within pageblock_nr_pages. On systems where it is not possible, this
1686 * function is optimized out.
1687 *
1688 * Then, we check if a current large page is valid by only checking the validity
1689 * of the head pfn.
2f47a91f 1690 */
56ec43d8 1691static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1692{
80b1f41c
PT
1693 if (!pfn_valid_within(pfn))
1694 return false;
1695 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1696 return false;
80b1f41c
PT
1697 return true;
1698}
2f47a91f 1699
80b1f41c
PT
1700/*
1701 * Free pages to buddy allocator. Try to free aligned pages in
1702 * pageblock_nr_pages sizes.
1703 */
56ec43d8 1704static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1705 unsigned long end_pfn)
1706{
80b1f41c
PT
1707 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1708 unsigned long nr_free = 0;
2f47a91f 1709
80b1f41c 1710 for (; pfn < end_pfn; pfn++) {
56ec43d8 1711 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1712 deferred_free_range(pfn - nr_free, nr_free);
1713 nr_free = 0;
1714 } else if (!(pfn & nr_pgmask)) {
1715 deferred_free_range(pfn - nr_free, nr_free);
1716 nr_free = 1;
3a2d7fa8 1717 touch_nmi_watchdog();
80b1f41c
PT
1718 } else {
1719 nr_free++;
1720 }
1721 }
1722 /* Free the last block of pages to allocator */
1723 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1724}
1725
80b1f41c
PT
1726/*
1727 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1728 * by performing it only once every pageblock_nr_pages.
1729 * Return number of pages initialized.
1730 */
56ec43d8 1731static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1732 unsigned long pfn,
1733 unsigned long end_pfn)
2f47a91f 1734{
2f47a91f 1735 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1736 int nid = zone_to_nid(zone);
2f47a91f 1737 unsigned long nr_pages = 0;
56ec43d8 1738 int zid = zone_idx(zone);
2f47a91f 1739 struct page *page = NULL;
2f47a91f 1740
80b1f41c 1741 for (; pfn < end_pfn; pfn++) {
56ec43d8 1742 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1743 page = NULL;
2f47a91f 1744 continue;
80b1f41c 1745 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1746 page = pfn_to_page(pfn);
3a2d7fa8 1747 touch_nmi_watchdog();
80b1f41c
PT
1748 } else {
1749 page++;
2f47a91f 1750 }
d0dc12e8 1751 __init_single_page(page, pfn, zid, nid);
80b1f41c 1752 nr_pages++;
2f47a91f 1753 }
80b1f41c 1754 return (nr_pages);
2f47a91f
PT
1755}
1756
0e56acae
AD
1757/*
1758 * This function is meant to pre-load the iterator for the zone init.
1759 * Specifically it walks through the ranges until we are caught up to the
1760 * first_init_pfn value and exits there. If we never encounter the value we
1761 * return false indicating there are no valid ranges left.
1762 */
1763static bool __init
1764deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1765 unsigned long *spfn, unsigned long *epfn,
1766 unsigned long first_init_pfn)
1767{
1768 u64 j;
1769
1770 /*
1771 * Start out by walking through the ranges in this zone that have
1772 * already been initialized. We don't need to do anything with them
1773 * so we just need to flush them out of the system.
1774 */
1775 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1776 if (*epfn <= first_init_pfn)
1777 continue;
1778 if (*spfn < first_init_pfn)
1779 *spfn = first_init_pfn;
1780 *i = j;
1781 return true;
1782 }
1783
1784 return false;
1785}
1786
1787/*
1788 * Initialize and free pages. We do it in two loops: first we initialize
1789 * struct page, then free to buddy allocator, because while we are
1790 * freeing pages we can access pages that are ahead (computing buddy
1791 * page in __free_one_page()).
1792 *
1793 * In order to try and keep some memory in the cache we have the loop
1794 * broken along max page order boundaries. This way we will not cause
1795 * any issues with the buddy page computation.
1796 */
1797static unsigned long __init
1798deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1799 unsigned long *end_pfn)
1800{
1801 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1802 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1803 unsigned long nr_pages = 0;
1804 u64 j = *i;
1805
1806 /* First we loop through and initialize the page values */
1807 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1808 unsigned long t;
1809
1810 if (mo_pfn <= *start_pfn)
1811 break;
1812
1813 t = min(mo_pfn, *end_pfn);
1814 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1815
1816 if (mo_pfn < *end_pfn) {
1817 *start_pfn = mo_pfn;
1818 break;
1819 }
1820 }
1821
1822 /* Reset values and now loop through freeing pages as needed */
1823 swap(j, *i);
1824
1825 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1826 unsigned long t;
1827
1828 if (mo_pfn <= spfn)
1829 break;
1830
1831 t = min(mo_pfn, epfn);
1832 deferred_free_pages(spfn, t);
1833
1834 if (mo_pfn <= epfn)
1835 break;
1836 }
1837
1838 return nr_pages;
1839}
1840
7e18adb4 1841/* Initialise remaining memory on a node */
0e1cc95b 1842static int __init deferred_init_memmap(void *data)
7e18adb4 1843{
0e1cc95b 1844 pg_data_t *pgdat = data;
0e56acae
AD
1845 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1846 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1847 unsigned long first_init_pfn, flags;
7e18adb4 1848 unsigned long start = jiffies;
7e18adb4 1849 struct zone *zone;
0e56acae 1850 int zid;
2f47a91f 1851 u64 i;
7e18adb4 1852
3a2d7fa8
PT
1853 /* Bind memory initialisation thread to a local node if possible */
1854 if (!cpumask_empty(cpumask))
1855 set_cpus_allowed_ptr(current, cpumask);
1856
1857 pgdat_resize_lock(pgdat, &flags);
1858 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1859 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1860 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1861 pgdat_init_report_one_done();
0e1cc95b
MG
1862 return 0;
1863 }
1864
7e18adb4
MG
1865 /* Sanity check boundaries */
1866 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1867 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1868 pgdat->first_deferred_pfn = ULONG_MAX;
1869
1870 /* Only the highest zone is deferred so find it */
1871 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1872 zone = pgdat->node_zones + zid;
1873 if (first_init_pfn < zone_end_pfn(zone))
1874 break;
1875 }
0e56acae
AD
1876
1877 /* If the zone is empty somebody else may have cleared out the zone */
1878 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1879 first_init_pfn))
1880 goto zone_empty;
7e18adb4 1881
80b1f41c 1882 /*
0e56acae
AD
1883 * Initialize and free pages in MAX_ORDER sized increments so
1884 * that we can avoid introducing any issues with the buddy
1885 * allocator.
80b1f41c 1886 */
0e56acae
AD
1887 while (spfn < epfn)
1888 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1889zone_empty:
3a2d7fa8 1890 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1891
1892 /* Sanity check that the next zone really is unpopulated */
1893 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1894
837566e7
AD
1895 pr_info("node %d initialised, %lu pages in %ums\n",
1896 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1897
1898 pgdat_init_report_one_done();
0e1cc95b
MG
1899 return 0;
1900}
c9e97a19 1901
c9e97a19
PT
1902/*
1903 * If this zone has deferred pages, try to grow it by initializing enough
1904 * deferred pages to satisfy the allocation specified by order, rounded up to
1905 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1906 * of SECTION_SIZE bytes by initializing struct pages in increments of
1907 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1908 *
1909 * Return true when zone was grown, otherwise return false. We return true even
1910 * when we grow less than requested, to let the caller decide if there are
1911 * enough pages to satisfy the allocation.
1912 *
1913 * Note: We use noinline because this function is needed only during boot, and
1914 * it is called from a __ref function _deferred_grow_zone. This way we are
1915 * making sure that it is not inlined into permanent text section.
1916 */
1917static noinline bool __init
1918deferred_grow_zone(struct zone *zone, unsigned int order)
1919{
c9e97a19 1920 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1921 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1922 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1923 unsigned long spfn, epfn, flags;
1924 unsigned long nr_pages = 0;
c9e97a19
PT
1925 u64 i;
1926
1927 /* Only the last zone may have deferred pages */
1928 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1929 return false;
1930
1931 pgdat_resize_lock(pgdat, &flags);
1932
1933 /*
1934 * If deferred pages have been initialized while we were waiting for
1935 * the lock, return true, as the zone was grown. The caller will retry
1936 * this zone. We won't return to this function since the caller also
1937 * has this static branch.
1938 */
1939 if (!static_branch_unlikely(&deferred_pages)) {
1940 pgdat_resize_unlock(pgdat, &flags);
1941 return true;
1942 }
1943
1944 /*
1945 * If someone grew this zone while we were waiting for spinlock, return
1946 * true, as there might be enough pages already.
1947 */
1948 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1949 pgdat_resize_unlock(pgdat, &flags);
1950 return true;
1951 }
1952
0e56acae
AD
1953 /* If the zone is empty somebody else may have cleared out the zone */
1954 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1955 first_deferred_pfn)) {
1956 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1957 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1958 /* Retry only once. */
1959 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1960 }
1961
0e56acae
AD
1962 /*
1963 * Initialize and free pages in MAX_ORDER sized increments so
1964 * that we can avoid introducing any issues with the buddy
1965 * allocator.
1966 */
1967 while (spfn < epfn) {
1968 /* update our first deferred PFN for this section */
1969 first_deferred_pfn = spfn;
1970
1971 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1972
0e56acae
AD
1973 /* We should only stop along section boundaries */
1974 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1975 continue;
c9e97a19 1976
0e56acae 1977 /* If our quota has been met we can stop here */
c9e97a19
PT
1978 if (nr_pages >= nr_pages_needed)
1979 break;
1980 }
1981
0e56acae 1982 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1983 pgdat_resize_unlock(pgdat, &flags);
1984
1985 return nr_pages > 0;
1986}
1987
1988/*
1989 * deferred_grow_zone() is __init, but it is called from
1990 * get_page_from_freelist() during early boot until deferred_pages permanently
1991 * disables this call. This is why we have refdata wrapper to avoid warning,
1992 * and to ensure that the function body gets unloaded.
1993 */
1994static bool __ref
1995_deferred_grow_zone(struct zone *zone, unsigned int order)
1996{
1997 return deferred_grow_zone(zone, order);
1998}
1999
7cf91a98 2000#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2001
2002void __init page_alloc_init_late(void)
2003{
7cf91a98 2004 struct zone *zone;
e900a918 2005 int nid;
7cf91a98
JK
2006
2007#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2008
d3cd131d
NS
2009 /* There will be num_node_state(N_MEMORY) threads */
2010 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2011 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2012 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2013 }
2014
2015 /* Block until all are initialised */
d3cd131d 2016 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2017
3e8fc007
MG
2018 /*
2019 * The number of managed pages has changed due to the initialisation
2020 * so the pcpu batch and high limits needs to be updated or the limits
2021 * will be artificially small.
2022 */
2023 for_each_populated_zone(zone)
2024 zone_pcp_update(zone);
2025
c9e97a19
PT
2026 /*
2027 * We initialized the rest of the deferred pages. Permanently disable
2028 * on-demand struct page initialization.
2029 */
2030 static_branch_disable(&deferred_pages);
2031
4248b0da
MG
2032 /* Reinit limits that are based on free pages after the kernel is up */
2033 files_maxfiles_init();
7cf91a98 2034#endif
350e88ba 2035
3010f876
PT
2036 /* Discard memblock private memory */
2037 memblock_discard();
7cf91a98 2038
e900a918
DW
2039 for_each_node_state(nid, N_MEMORY)
2040 shuffle_free_memory(NODE_DATA(nid));
2041
7cf91a98
JK
2042 for_each_populated_zone(zone)
2043 set_zone_contiguous(zone);
7e18adb4 2044}
7e18adb4 2045
47118af0 2046#ifdef CONFIG_CMA
9cf510a5 2047/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2048void __init init_cma_reserved_pageblock(struct page *page)
2049{
2050 unsigned i = pageblock_nr_pages;
2051 struct page *p = page;
2052
2053 do {
2054 __ClearPageReserved(p);
2055 set_page_count(p, 0);
d883c6cf 2056 } while (++p, --i);
47118af0 2057
47118af0 2058 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2059
2060 if (pageblock_order >= MAX_ORDER) {
2061 i = pageblock_nr_pages;
2062 p = page;
2063 do {
2064 set_page_refcounted(p);
2065 __free_pages(p, MAX_ORDER - 1);
2066 p += MAX_ORDER_NR_PAGES;
2067 } while (i -= MAX_ORDER_NR_PAGES);
2068 } else {
2069 set_page_refcounted(page);
2070 __free_pages(page, pageblock_order);
2071 }
2072
3dcc0571 2073 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2074}
2075#endif
1da177e4
LT
2076
2077/*
2078 * The order of subdivision here is critical for the IO subsystem.
2079 * Please do not alter this order without good reasons and regression
2080 * testing. Specifically, as large blocks of memory are subdivided,
2081 * the order in which smaller blocks are delivered depends on the order
2082 * they're subdivided in this function. This is the primary factor
2083 * influencing the order in which pages are delivered to the IO
2084 * subsystem according to empirical testing, and this is also justified
2085 * by considering the behavior of a buddy system containing a single
2086 * large block of memory acted on by a series of small allocations.
2087 * This behavior is a critical factor in sglist merging's success.
2088 *
6d49e352 2089 * -- nyc
1da177e4 2090 */
085cc7d5 2091static inline void expand(struct zone *zone, struct page *page,
6ab01363 2092 int low, int high, int migratetype)
1da177e4
LT
2093{
2094 unsigned long size = 1 << high;
2095
2096 while (high > low) {
1da177e4
LT
2097 high--;
2098 size >>= 1;
309381fe 2099 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2100
acbc15a4
JK
2101 /*
2102 * Mark as guard pages (or page), that will allow to
2103 * merge back to allocator when buddy will be freed.
2104 * Corresponding page table entries will not be touched,
2105 * pages will stay not present in virtual address space
2106 */
2107 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2108 continue;
acbc15a4 2109
6ab01363 2110 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2111 set_page_order(&page[size], high);
2112 }
1da177e4
LT
2113}
2114
4e611801 2115static void check_new_page_bad(struct page *page)
1da177e4 2116{
4e611801
VB
2117 const char *bad_reason = NULL;
2118 unsigned long bad_flags = 0;
7bfec6f4 2119
53f9263b 2120 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2121 bad_reason = "nonzero mapcount";
2122 if (unlikely(page->mapping != NULL))
2123 bad_reason = "non-NULL mapping";
fe896d18 2124 if (unlikely(page_ref_count(page) != 0))
136ac591 2125 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2126 if (unlikely(page->flags & __PG_HWPOISON)) {
2127 bad_reason = "HWPoisoned (hardware-corrupted)";
2128 bad_flags = __PG_HWPOISON;
e570f56c
NH
2129 /* Don't complain about hwpoisoned pages */
2130 page_mapcount_reset(page); /* remove PageBuddy */
2131 return;
f4c18e6f 2132 }
f0b791a3
DH
2133 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2134 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2135 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2136 }
9edad6ea
JW
2137#ifdef CONFIG_MEMCG
2138 if (unlikely(page->mem_cgroup))
2139 bad_reason = "page still charged to cgroup";
2140#endif
4e611801
VB
2141 bad_page(page, bad_reason, bad_flags);
2142}
2143
2144/*
2145 * This page is about to be returned from the page allocator
2146 */
2147static inline int check_new_page(struct page *page)
2148{
2149 if (likely(page_expected_state(page,
2150 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2151 return 0;
2152
2153 check_new_page_bad(page);
2154 return 1;
2a7684a2
WF
2155}
2156
bd33ef36 2157static inline bool free_pages_prezeroed(void)
1414c7f4 2158{
6471384a
AP
2159 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2160 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2161}
2162
479f854a 2163#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2164/*
2165 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2166 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2167 * also checked when pcp lists are refilled from the free lists.
2168 */
2169static inline bool check_pcp_refill(struct page *page)
479f854a 2170{
8e57f8ac 2171 if (debug_pagealloc_enabled_static())
4462b32c
VB
2172 return check_new_page(page);
2173 else
2174 return false;
479f854a
MG
2175}
2176
4462b32c 2177static inline bool check_new_pcp(struct page *page)
479f854a
MG
2178{
2179 return check_new_page(page);
2180}
2181#else
4462b32c
VB
2182/*
2183 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2184 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2185 * enabled, they are also checked when being allocated from the pcp lists.
2186 */
2187static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2188{
2189 return check_new_page(page);
2190}
4462b32c 2191static inline bool check_new_pcp(struct page *page)
479f854a 2192{
8e57f8ac 2193 if (debug_pagealloc_enabled_static())
4462b32c
VB
2194 return check_new_page(page);
2195 else
2196 return false;
479f854a
MG
2197}
2198#endif /* CONFIG_DEBUG_VM */
2199
2200static bool check_new_pages(struct page *page, unsigned int order)
2201{
2202 int i;
2203 for (i = 0; i < (1 << order); i++) {
2204 struct page *p = page + i;
2205
2206 if (unlikely(check_new_page(p)))
2207 return true;
2208 }
2209
2210 return false;
2211}
2212
46f24fd8
JK
2213inline void post_alloc_hook(struct page *page, unsigned int order,
2214 gfp_t gfp_flags)
2215{
2216 set_page_private(page, 0);
2217 set_page_refcounted(page);
2218
2219 arch_alloc_page(page, order);
8e57f8ac 2220 if (debug_pagealloc_enabled_static())
d6332692 2221 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2222 kasan_alloc_pages(page, order);
4117992d 2223 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2224 set_page_owner(page, order, gfp_flags);
2225}
2226
479f854a 2227static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2228 unsigned int alloc_flags)
2a7684a2 2229{
46f24fd8 2230 post_alloc_hook(page, order, gfp_flags);
17cf4406 2231
6471384a
AP
2232 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2233 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2234
2235 if (order && (gfp_flags & __GFP_COMP))
2236 prep_compound_page(page, order);
2237
75379191 2238 /*
2f064f34 2239 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2240 * allocate the page. The expectation is that the caller is taking
2241 * steps that will free more memory. The caller should avoid the page
2242 * being used for !PFMEMALLOC purposes.
2243 */
2f064f34
MH
2244 if (alloc_flags & ALLOC_NO_WATERMARKS)
2245 set_page_pfmemalloc(page);
2246 else
2247 clear_page_pfmemalloc(page);
1da177e4
LT
2248}
2249
56fd56b8
MG
2250/*
2251 * Go through the free lists for the given migratetype and remove
2252 * the smallest available page from the freelists
2253 */
85ccc8fa 2254static __always_inline
728ec980 2255struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2256 int migratetype)
2257{
2258 unsigned int current_order;
b8af2941 2259 struct free_area *area;
56fd56b8
MG
2260 struct page *page;
2261
2262 /* Find a page of the appropriate size in the preferred list */
2263 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2264 area = &(zone->free_area[current_order]);
b03641af 2265 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2266 if (!page)
2267 continue;
6ab01363
AD
2268 del_page_from_free_list(page, zone, current_order);
2269 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2270 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2271 return page;
2272 }
2273
2274 return NULL;
2275}
2276
2277
b2a0ac88
MG
2278/*
2279 * This array describes the order lists are fallen back to when
2280 * the free lists for the desirable migrate type are depleted
2281 */
47118af0 2282static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2283 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2284 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2285 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2286#ifdef CONFIG_CMA
974a786e 2287 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2288#endif
194159fb 2289#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2290 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2291#endif
b2a0ac88
MG
2292};
2293
dc67647b 2294#ifdef CONFIG_CMA
85ccc8fa 2295static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2296 unsigned int order)
2297{
2298 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2299}
2300#else
2301static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2302 unsigned int order) { return NULL; }
2303#endif
2304
c361be55
MG
2305/*
2306 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2307 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2308 * boundary. If alignment is required, use move_freepages_block()
2309 */
02aa0cdd 2310static int move_freepages(struct zone *zone,
b69a7288 2311 struct page *start_page, struct page *end_page,
02aa0cdd 2312 int migratetype, int *num_movable)
c361be55
MG
2313{
2314 struct page *page;
d00181b9 2315 unsigned int order;
d100313f 2316 int pages_moved = 0;
c361be55 2317
c361be55
MG
2318 for (page = start_page; page <= end_page;) {
2319 if (!pfn_valid_within(page_to_pfn(page))) {
2320 page++;
2321 continue;
2322 }
2323
2324 if (!PageBuddy(page)) {
02aa0cdd
VB
2325 /*
2326 * We assume that pages that could be isolated for
2327 * migration are movable. But we don't actually try
2328 * isolating, as that would be expensive.
2329 */
2330 if (num_movable &&
2331 (PageLRU(page) || __PageMovable(page)))
2332 (*num_movable)++;
2333
c361be55
MG
2334 page++;
2335 continue;
2336 }
2337
cd961038
DR
2338 /* Make sure we are not inadvertently changing nodes */
2339 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2340 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2341
c361be55 2342 order = page_order(page);
6ab01363 2343 move_to_free_list(page, zone, order, migratetype);
c361be55 2344 page += 1 << order;
d100313f 2345 pages_moved += 1 << order;
c361be55
MG
2346 }
2347
d100313f 2348 return pages_moved;
c361be55
MG
2349}
2350
ee6f509c 2351int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2352 int migratetype, int *num_movable)
c361be55
MG
2353{
2354 unsigned long start_pfn, end_pfn;
2355 struct page *start_page, *end_page;
2356
4a222127
DR
2357 if (num_movable)
2358 *num_movable = 0;
2359
c361be55 2360 start_pfn = page_to_pfn(page);
d9c23400 2361 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2362 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2363 end_page = start_page + pageblock_nr_pages - 1;
2364 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2365
2366 /* Do not cross zone boundaries */
108bcc96 2367 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2368 start_page = page;
108bcc96 2369 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2370 return 0;
2371
02aa0cdd
VB
2372 return move_freepages(zone, start_page, end_page, migratetype,
2373 num_movable);
c361be55
MG
2374}
2375
2f66a68f
MG
2376static void change_pageblock_range(struct page *pageblock_page,
2377 int start_order, int migratetype)
2378{
2379 int nr_pageblocks = 1 << (start_order - pageblock_order);
2380
2381 while (nr_pageblocks--) {
2382 set_pageblock_migratetype(pageblock_page, migratetype);
2383 pageblock_page += pageblock_nr_pages;
2384 }
2385}
2386
fef903ef 2387/*
9c0415eb
VB
2388 * When we are falling back to another migratetype during allocation, try to
2389 * steal extra free pages from the same pageblocks to satisfy further
2390 * allocations, instead of polluting multiple pageblocks.
2391 *
2392 * If we are stealing a relatively large buddy page, it is likely there will
2393 * be more free pages in the pageblock, so try to steal them all. For
2394 * reclaimable and unmovable allocations, we steal regardless of page size,
2395 * as fragmentation caused by those allocations polluting movable pageblocks
2396 * is worse than movable allocations stealing from unmovable and reclaimable
2397 * pageblocks.
fef903ef 2398 */
4eb7dce6
JK
2399static bool can_steal_fallback(unsigned int order, int start_mt)
2400{
2401 /*
2402 * Leaving this order check is intended, although there is
2403 * relaxed order check in next check. The reason is that
2404 * we can actually steal whole pageblock if this condition met,
2405 * but, below check doesn't guarantee it and that is just heuristic
2406 * so could be changed anytime.
2407 */
2408 if (order >= pageblock_order)
2409 return true;
2410
2411 if (order >= pageblock_order / 2 ||
2412 start_mt == MIGRATE_RECLAIMABLE ||
2413 start_mt == MIGRATE_UNMOVABLE ||
2414 page_group_by_mobility_disabled)
2415 return true;
2416
2417 return false;
2418}
2419
1c30844d
MG
2420static inline void boost_watermark(struct zone *zone)
2421{
2422 unsigned long max_boost;
2423
2424 if (!watermark_boost_factor)
2425 return;
14f69140
HW
2426 /*
2427 * Don't bother in zones that are unlikely to produce results.
2428 * On small machines, including kdump capture kernels running
2429 * in a small area, boosting the watermark can cause an out of
2430 * memory situation immediately.
2431 */
2432 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2433 return;
1c30844d
MG
2434
2435 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2436 watermark_boost_factor, 10000);
94b3334c
MG
2437
2438 /*
2439 * high watermark may be uninitialised if fragmentation occurs
2440 * very early in boot so do not boost. We do not fall
2441 * through and boost by pageblock_nr_pages as failing
2442 * allocations that early means that reclaim is not going
2443 * to help and it may even be impossible to reclaim the
2444 * boosted watermark resulting in a hang.
2445 */
2446 if (!max_boost)
2447 return;
2448
1c30844d
MG
2449 max_boost = max(pageblock_nr_pages, max_boost);
2450
2451 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2452 max_boost);
2453}
2454
4eb7dce6
JK
2455/*
2456 * This function implements actual steal behaviour. If order is large enough,
2457 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2458 * pageblock to our migratetype and determine how many already-allocated pages
2459 * are there in the pageblock with a compatible migratetype. If at least half
2460 * of pages are free or compatible, we can change migratetype of the pageblock
2461 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2462 */
2463static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2464 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2465{
d00181b9 2466 unsigned int current_order = page_order(page);
02aa0cdd
VB
2467 int free_pages, movable_pages, alike_pages;
2468 int old_block_type;
2469
2470 old_block_type = get_pageblock_migratetype(page);
fef903ef 2471
3bc48f96
VB
2472 /*
2473 * This can happen due to races and we want to prevent broken
2474 * highatomic accounting.
2475 */
02aa0cdd 2476 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2477 goto single_page;
2478
fef903ef
SB
2479 /* Take ownership for orders >= pageblock_order */
2480 if (current_order >= pageblock_order) {
2481 change_pageblock_range(page, current_order, start_type);
3bc48f96 2482 goto single_page;
fef903ef
SB
2483 }
2484
1c30844d
MG
2485 /*
2486 * Boost watermarks to increase reclaim pressure to reduce the
2487 * likelihood of future fallbacks. Wake kswapd now as the node
2488 * may be balanced overall and kswapd will not wake naturally.
2489 */
2490 boost_watermark(zone);
2491 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2492 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2493
3bc48f96
VB
2494 /* We are not allowed to try stealing from the whole block */
2495 if (!whole_block)
2496 goto single_page;
2497
02aa0cdd
VB
2498 free_pages = move_freepages_block(zone, page, start_type,
2499 &movable_pages);
2500 /*
2501 * Determine how many pages are compatible with our allocation.
2502 * For movable allocation, it's the number of movable pages which
2503 * we just obtained. For other types it's a bit more tricky.
2504 */
2505 if (start_type == MIGRATE_MOVABLE) {
2506 alike_pages = movable_pages;
2507 } else {
2508 /*
2509 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2510 * to MOVABLE pageblock, consider all non-movable pages as
2511 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2512 * vice versa, be conservative since we can't distinguish the
2513 * exact migratetype of non-movable pages.
2514 */
2515 if (old_block_type == MIGRATE_MOVABLE)
2516 alike_pages = pageblock_nr_pages
2517 - (free_pages + movable_pages);
2518 else
2519 alike_pages = 0;
2520 }
2521
3bc48f96 2522 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2523 if (!free_pages)
3bc48f96 2524 goto single_page;
fef903ef 2525
02aa0cdd
VB
2526 /*
2527 * If a sufficient number of pages in the block are either free or of
2528 * comparable migratability as our allocation, claim the whole block.
2529 */
2530 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2531 page_group_by_mobility_disabled)
2532 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2533
2534 return;
2535
2536single_page:
6ab01363 2537 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2538}
2539
2149cdae
JK
2540/*
2541 * Check whether there is a suitable fallback freepage with requested order.
2542 * If only_stealable is true, this function returns fallback_mt only if
2543 * we can steal other freepages all together. This would help to reduce
2544 * fragmentation due to mixed migratetype pages in one pageblock.
2545 */
2546int find_suitable_fallback(struct free_area *area, unsigned int order,
2547 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2548{
2549 int i;
2550 int fallback_mt;
2551
2552 if (area->nr_free == 0)
2553 return -1;
2554
2555 *can_steal = false;
2556 for (i = 0;; i++) {
2557 fallback_mt = fallbacks[migratetype][i];
974a786e 2558 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2559 break;
2560
b03641af 2561 if (free_area_empty(area, fallback_mt))
4eb7dce6 2562 continue;
fef903ef 2563
4eb7dce6
JK
2564 if (can_steal_fallback(order, migratetype))
2565 *can_steal = true;
2566
2149cdae
JK
2567 if (!only_stealable)
2568 return fallback_mt;
2569
2570 if (*can_steal)
2571 return fallback_mt;
fef903ef 2572 }
4eb7dce6
JK
2573
2574 return -1;
fef903ef
SB
2575}
2576
0aaa29a5
MG
2577/*
2578 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2579 * there are no empty page blocks that contain a page with a suitable order
2580 */
2581static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2582 unsigned int alloc_order)
2583{
2584 int mt;
2585 unsigned long max_managed, flags;
2586
2587 /*
2588 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2589 * Check is race-prone but harmless.
2590 */
9705bea5 2591 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2592 if (zone->nr_reserved_highatomic >= max_managed)
2593 return;
2594
2595 spin_lock_irqsave(&zone->lock, flags);
2596
2597 /* Recheck the nr_reserved_highatomic limit under the lock */
2598 if (zone->nr_reserved_highatomic >= max_managed)
2599 goto out_unlock;
2600
2601 /* Yoink! */
2602 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2603 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2604 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2605 zone->nr_reserved_highatomic += pageblock_nr_pages;
2606 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2607 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2608 }
2609
2610out_unlock:
2611 spin_unlock_irqrestore(&zone->lock, flags);
2612}
2613
2614/*
2615 * Used when an allocation is about to fail under memory pressure. This
2616 * potentially hurts the reliability of high-order allocations when under
2617 * intense memory pressure but failed atomic allocations should be easier
2618 * to recover from than an OOM.
29fac03b
MK
2619 *
2620 * If @force is true, try to unreserve a pageblock even though highatomic
2621 * pageblock is exhausted.
0aaa29a5 2622 */
29fac03b
MK
2623static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2624 bool force)
0aaa29a5
MG
2625{
2626 struct zonelist *zonelist = ac->zonelist;
2627 unsigned long flags;
2628 struct zoneref *z;
2629 struct zone *zone;
2630 struct page *page;
2631 int order;
04c8716f 2632 bool ret;
0aaa29a5
MG
2633
2634 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2635 ac->nodemask) {
29fac03b
MK
2636 /*
2637 * Preserve at least one pageblock unless memory pressure
2638 * is really high.
2639 */
2640 if (!force && zone->nr_reserved_highatomic <=
2641 pageblock_nr_pages)
0aaa29a5
MG
2642 continue;
2643
2644 spin_lock_irqsave(&zone->lock, flags);
2645 for (order = 0; order < MAX_ORDER; order++) {
2646 struct free_area *area = &(zone->free_area[order]);
2647
b03641af 2648 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2649 if (!page)
0aaa29a5
MG
2650 continue;
2651
0aaa29a5 2652 /*
4855e4a7
MK
2653 * In page freeing path, migratetype change is racy so
2654 * we can counter several free pages in a pageblock
2655 * in this loop althoug we changed the pageblock type
2656 * from highatomic to ac->migratetype. So we should
2657 * adjust the count once.
0aaa29a5 2658 */
a6ffdc07 2659 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2660 /*
2661 * It should never happen but changes to
2662 * locking could inadvertently allow a per-cpu
2663 * drain to add pages to MIGRATE_HIGHATOMIC
2664 * while unreserving so be safe and watch for
2665 * underflows.
2666 */
2667 zone->nr_reserved_highatomic -= min(
2668 pageblock_nr_pages,
2669 zone->nr_reserved_highatomic);
2670 }
0aaa29a5
MG
2671
2672 /*
2673 * Convert to ac->migratetype and avoid the normal
2674 * pageblock stealing heuristics. Minimally, the caller
2675 * is doing the work and needs the pages. More
2676 * importantly, if the block was always converted to
2677 * MIGRATE_UNMOVABLE or another type then the number
2678 * of pageblocks that cannot be completely freed
2679 * may increase.
2680 */
2681 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2682 ret = move_freepages_block(zone, page, ac->migratetype,
2683 NULL);
29fac03b
MK
2684 if (ret) {
2685 spin_unlock_irqrestore(&zone->lock, flags);
2686 return ret;
2687 }
0aaa29a5
MG
2688 }
2689 spin_unlock_irqrestore(&zone->lock, flags);
2690 }
04c8716f
MK
2691
2692 return false;
0aaa29a5
MG
2693}
2694
3bc48f96
VB
2695/*
2696 * Try finding a free buddy page on the fallback list and put it on the free
2697 * list of requested migratetype, possibly along with other pages from the same
2698 * block, depending on fragmentation avoidance heuristics. Returns true if
2699 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2700 *
2701 * The use of signed ints for order and current_order is a deliberate
2702 * deviation from the rest of this file, to make the for loop
2703 * condition simpler.
3bc48f96 2704 */
85ccc8fa 2705static __always_inline bool
6bb15450
MG
2706__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2707 unsigned int alloc_flags)
b2a0ac88 2708{
b8af2941 2709 struct free_area *area;
b002529d 2710 int current_order;
6bb15450 2711 int min_order = order;
b2a0ac88 2712 struct page *page;
4eb7dce6
JK
2713 int fallback_mt;
2714 bool can_steal;
b2a0ac88 2715
6bb15450
MG
2716 /*
2717 * Do not steal pages from freelists belonging to other pageblocks
2718 * i.e. orders < pageblock_order. If there are no local zones free,
2719 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2720 */
2721 if (alloc_flags & ALLOC_NOFRAGMENT)
2722 min_order = pageblock_order;
2723
7a8f58f3
VB
2724 /*
2725 * Find the largest available free page in the other list. This roughly
2726 * approximates finding the pageblock with the most free pages, which
2727 * would be too costly to do exactly.
2728 */
6bb15450 2729 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2730 --current_order) {
4eb7dce6
JK
2731 area = &(zone->free_area[current_order]);
2732 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2733 start_migratetype, false, &can_steal);
4eb7dce6
JK
2734 if (fallback_mt == -1)
2735 continue;
b2a0ac88 2736
7a8f58f3
VB
2737 /*
2738 * We cannot steal all free pages from the pageblock and the
2739 * requested migratetype is movable. In that case it's better to
2740 * steal and split the smallest available page instead of the
2741 * largest available page, because even if the next movable
2742 * allocation falls back into a different pageblock than this
2743 * one, it won't cause permanent fragmentation.
2744 */
2745 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2746 && current_order > order)
2747 goto find_smallest;
b2a0ac88 2748
7a8f58f3
VB
2749 goto do_steal;
2750 }
e0fff1bd 2751
7a8f58f3 2752 return false;
e0fff1bd 2753
7a8f58f3
VB
2754find_smallest:
2755 for (current_order = order; current_order < MAX_ORDER;
2756 current_order++) {
2757 area = &(zone->free_area[current_order]);
2758 fallback_mt = find_suitable_fallback(area, current_order,
2759 start_migratetype, false, &can_steal);
2760 if (fallback_mt != -1)
2761 break;
b2a0ac88
MG
2762 }
2763
7a8f58f3
VB
2764 /*
2765 * This should not happen - we already found a suitable fallback
2766 * when looking for the largest page.
2767 */
2768 VM_BUG_ON(current_order == MAX_ORDER);
2769
2770do_steal:
b03641af 2771 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2772
1c30844d
MG
2773 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2774 can_steal);
7a8f58f3
VB
2775
2776 trace_mm_page_alloc_extfrag(page, order, current_order,
2777 start_migratetype, fallback_mt);
2778
2779 return true;
2780
b2a0ac88
MG
2781}
2782
56fd56b8 2783/*
1da177e4
LT
2784 * Do the hard work of removing an element from the buddy allocator.
2785 * Call me with the zone->lock already held.
2786 */
85ccc8fa 2787static __always_inline struct page *
6bb15450
MG
2788__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2789 unsigned int alloc_flags)
1da177e4 2790{
1da177e4
LT
2791 struct page *page;
2792
3bc48f96 2793retry:
56fd56b8 2794 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2795 if (unlikely(!page)) {
dc67647b
JK
2796 if (migratetype == MIGRATE_MOVABLE)
2797 page = __rmqueue_cma_fallback(zone, order);
2798
6bb15450
MG
2799 if (!page && __rmqueue_fallback(zone, order, migratetype,
2800 alloc_flags))
3bc48f96 2801 goto retry;
728ec980
MG
2802 }
2803
0d3d062a 2804 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2805 return page;
1da177e4
LT
2806}
2807
5f63b720 2808/*
1da177e4
LT
2809 * Obtain a specified number of elements from the buddy allocator, all under
2810 * a single hold of the lock, for efficiency. Add them to the supplied list.
2811 * Returns the number of new pages which were placed at *list.
2812 */
5f63b720 2813static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2814 unsigned long count, struct list_head *list,
6bb15450 2815 int migratetype, unsigned int alloc_flags)
1da177e4 2816{
a6de734b 2817 int i, alloced = 0;
5f63b720 2818
d34b0733 2819 spin_lock(&zone->lock);
1da177e4 2820 for (i = 0; i < count; ++i) {
6bb15450
MG
2821 struct page *page = __rmqueue(zone, order, migratetype,
2822 alloc_flags);
085cc7d5 2823 if (unlikely(page == NULL))
1da177e4 2824 break;
81eabcbe 2825
479f854a
MG
2826 if (unlikely(check_pcp_refill(page)))
2827 continue;
2828
81eabcbe 2829 /*
0fac3ba5
VB
2830 * Split buddy pages returned by expand() are received here in
2831 * physical page order. The page is added to the tail of
2832 * caller's list. From the callers perspective, the linked list
2833 * is ordered by page number under some conditions. This is
2834 * useful for IO devices that can forward direction from the
2835 * head, thus also in the physical page order. This is useful
2836 * for IO devices that can merge IO requests if the physical
2837 * pages are ordered properly.
81eabcbe 2838 */
0fac3ba5 2839 list_add_tail(&page->lru, list);
a6de734b 2840 alloced++;
bb14c2c7 2841 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2842 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2843 -(1 << order));
1da177e4 2844 }
a6de734b
MG
2845
2846 /*
2847 * i pages were removed from the buddy list even if some leak due
2848 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2849 * on i. Do not confuse with 'alloced' which is the number of
2850 * pages added to the pcp list.
2851 */
f2260e6b 2852 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2853 spin_unlock(&zone->lock);
a6de734b 2854 return alloced;
1da177e4
LT
2855}
2856
4ae7c039 2857#ifdef CONFIG_NUMA
8fce4d8e 2858/*
4037d452
CL
2859 * Called from the vmstat counter updater to drain pagesets of this
2860 * currently executing processor on remote nodes after they have
2861 * expired.
2862 *
879336c3
CL
2863 * Note that this function must be called with the thread pinned to
2864 * a single processor.
8fce4d8e 2865 */
4037d452 2866void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2867{
4ae7c039 2868 unsigned long flags;
7be12fc9 2869 int to_drain, batch;
4ae7c039 2870
4037d452 2871 local_irq_save(flags);
4db0c3c2 2872 batch = READ_ONCE(pcp->batch);
7be12fc9 2873 to_drain = min(pcp->count, batch);
77ba9062 2874 if (to_drain > 0)
2a13515c 2875 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2876 local_irq_restore(flags);
4ae7c039
CL
2877}
2878#endif
2879
9f8f2172 2880/*
93481ff0 2881 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2882 *
2883 * The processor must either be the current processor and the
2884 * thread pinned to the current processor or a processor that
2885 * is not online.
2886 */
93481ff0 2887static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2888{
c54ad30c 2889 unsigned long flags;
93481ff0
VB
2890 struct per_cpu_pageset *pset;
2891 struct per_cpu_pages *pcp;
1da177e4 2892
93481ff0
VB
2893 local_irq_save(flags);
2894 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2895
93481ff0 2896 pcp = &pset->pcp;
77ba9062 2897 if (pcp->count)
93481ff0 2898 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2899 local_irq_restore(flags);
2900}
3dfa5721 2901
93481ff0
VB
2902/*
2903 * Drain pcplists of all zones on the indicated processor.
2904 *
2905 * The processor must either be the current processor and the
2906 * thread pinned to the current processor or a processor that
2907 * is not online.
2908 */
2909static void drain_pages(unsigned int cpu)
2910{
2911 struct zone *zone;
2912
2913 for_each_populated_zone(zone) {
2914 drain_pages_zone(cpu, zone);
1da177e4
LT
2915 }
2916}
1da177e4 2917
9f8f2172
CL
2918/*
2919 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2920 *
2921 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2922 * the single zone's pages.
9f8f2172 2923 */
93481ff0 2924void drain_local_pages(struct zone *zone)
9f8f2172 2925{
93481ff0
VB
2926 int cpu = smp_processor_id();
2927
2928 if (zone)
2929 drain_pages_zone(cpu, zone);
2930 else
2931 drain_pages(cpu);
9f8f2172
CL
2932}
2933
0ccce3b9
MG
2934static void drain_local_pages_wq(struct work_struct *work)
2935{
d9367bd0
WY
2936 struct pcpu_drain *drain;
2937
2938 drain = container_of(work, struct pcpu_drain, work);
2939
a459eeb7
MH
2940 /*
2941 * drain_all_pages doesn't use proper cpu hotplug protection so
2942 * we can race with cpu offline when the WQ can move this from
2943 * a cpu pinned worker to an unbound one. We can operate on a different
2944 * cpu which is allright but we also have to make sure to not move to
2945 * a different one.
2946 */
2947 preempt_disable();
d9367bd0 2948 drain_local_pages(drain->zone);
a459eeb7 2949 preempt_enable();
0ccce3b9
MG
2950}
2951
9f8f2172 2952/*
74046494
GBY
2953 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2954 *
93481ff0
VB
2955 * When zone parameter is non-NULL, spill just the single zone's pages.
2956 *
0ccce3b9 2957 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2958 */
93481ff0 2959void drain_all_pages(struct zone *zone)
9f8f2172 2960{
74046494 2961 int cpu;
74046494
GBY
2962
2963 /*
2964 * Allocate in the BSS so we wont require allocation in
2965 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2966 */
2967 static cpumask_t cpus_with_pcps;
2968
ce612879
MH
2969 /*
2970 * Make sure nobody triggers this path before mm_percpu_wq is fully
2971 * initialized.
2972 */
2973 if (WARN_ON_ONCE(!mm_percpu_wq))
2974 return;
2975
bd233f53
MG
2976 /*
2977 * Do not drain if one is already in progress unless it's specific to
2978 * a zone. Such callers are primarily CMA and memory hotplug and need
2979 * the drain to be complete when the call returns.
2980 */
2981 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2982 if (!zone)
2983 return;
2984 mutex_lock(&pcpu_drain_mutex);
2985 }
0ccce3b9 2986
74046494
GBY
2987 /*
2988 * We don't care about racing with CPU hotplug event
2989 * as offline notification will cause the notified
2990 * cpu to drain that CPU pcps and on_each_cpu_mask
2991 * disables preemption as part of its processing
2992 */
2993 for_each_online_cpu(cpu) {
93481ff0
VB
2994 struct per_cpu_pageset *pcp;
2995 struct zone *z;
74046494 2996 bool has_pcps = false;
93481ff0
VB
2997
2998 if (zone) {
74046494 2999 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3000 if (pcp->pcp.count)
74046494 3001 has_pcps = true;
93481ff0
VB
3002 } else {
3003 for_each_populated_zone(z) {
3004 pcp = per_cpu_ptr(z->pageset, cpu);
3005 if (pcp->pcp.count) {
3006 has_pcps = true;
3007 break;
3008 }
74046494
GBY
3009 }
3010 }
93481ff0 3011
74046494
GBY
3012 if (has_pcps)
3013 cpumask_set_cpu(cpu, &cpus_with_pcps);
3014 else
3015 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3016 }
0ccce3b9 3017
bd233f53 3018 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3019 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3020
3021 drain->zone = zone;
3022 INIT_WORK(&drain->work, drain_local_pages_wq);
3023 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3024 }
bd233f53 3025 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3026 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3027
3028 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3029}
3030
296699de 3031#ifdef CONFIG_HIBERNATION
1da177e4 3032
556b969a
CY
3033/*
3034 * Touch the watchdog for every WD_PAGE_COUNT pages.
3035 */
3036#define WD_PAGE_COUNT (128*1024)
3037
1da177e4
LT
3038void mark_free_pages(struct zone *zone)
3039{
556b969a 3040 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3041 unsigned long flags;
7aeb09f9 3042 unsigned int order, t;
86760a2c 3043 struct page *page;
1da177e4 3044
8080fc03 3045 if (zone_is_empty(zone))
1da177e4
LT
3046 return;
3047
3048 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3049
108bcc96 3050 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3052 if (pfn_valid(pfn)) {
86760a2c 3053 page = pfn_to_page(pfn);
ba6b0979 3054
556b969a
CY
3055 if (!--page_count) {
3056 touch_nmi_watchdog();
3057 page_count = WD_PAGE_COUNT;
3058 }
3059
ba6b0979
JK
3060 if (page_zone(page) != zone)
3061 continue;
3062
7be98234
RW
3063 if (!swsusp_page_is_forbidden(page))
3064 swsusp_unset_page_free(page);
f623f0db 3065 }
1da177e4 3066
b2a0ac88 3067 for_each_migratetype_order(order, t) {
86760a2c
GT
3068 list_for_each_entry(page,
3069 &zone->free_area[order].free_list[t], lru) {
f623f0db 3070 unsigned long i;
1da177e4 3071
86760a2c 3072 pfn = page_to_pfn(page);
556b969a
CY
3073 for (i = 0; i < (1UL << order); i++) {
3074 if (!--page_count) {
3075 touch_nmi_watchdog();
3076 page_count = WD_PAGE_COUNT;
3077 }
7be98234 3078 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3079 }
f623f0db 3080 }
b2a0ac88 3081 }
1da177e4
LT
3082 spin_unlock_irqrestore(&zone->lock, flags);
3083}
e2c55dc8 3084#endif /* CONFIG_PM */
1da177e4 3085
2d4894b5 3086static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3087{
5f8dcc21 3088 int migratetype;
1da177e4 3089
4db7548c 3090 if (!free_pcp_prepare(page))
9cca35d4 3091 return false;
689bcebf 3092
dc4b0caf 3093 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3094 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3095 return true;
3096}
3097
2d4894b5 3098static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3099{
3100 struct zone *zone = page_zone(page);
3101 struct per_cpu_pages *pcp;
3102 int migratetype;
3103
3104 migratetype = get_pcppage_migratetype(page);
d34b0733 3105 __count_vm_event(PGFREE);
da456f14 3106
5f8dcc21
MG
3107 /*
3108 * We only track unmovable, reclaimable and movable on pcp lists.
3109 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3110 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3111 * areas back if necessary. Otherwise, we may have to free
3112 * excessively into the page allocator
3113 */
3114 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3115 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3116 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3117 return;
5f8dcc21
MG
3118 }
3119 migratetype = MIGRATE_MOVABLE;
3120 }
3121
99dcc3e5 3122 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3123 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3124 pcp->count++;
48db57f8 3125 if (pcp->count >= pcp->high) {
4db0c3c2 3126 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3127 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3128 }
9cca35d4 3129}
5f8dcc21 3130
9cca35d4
MG
3131/*
3132 * Free a 0-order page
9cca35d4 3133 */
2d4894b5 3134void free_unref_page(struct page *page)
9cca35d4
MG
3135{
3136 unsigned long flags;
3137 unsigned long pfn = page_to_pfn(page);
3138
2d4894b5 3139 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3140 return;
3141
3142 local_irq_save(flags);
2d4894b5 3143 free_unref_page_commit(page, pfn);
d34b0733 3144 local_irq_restore(flags);
1da177e4
LT
3145}
3146
cc59850e
KK
3147/*
3148 * Free a list of 0-order pages
3149 */
2d4894b5 3150void free_unref_page_list(struct list_head *list)
cc59850e
KK
3151{
3152 struct page *page, *next;
9cca35d4 3153 unsigned long flags, pfn;
c24ad77d 3154 int batch_count = 0;
9cca35d4
MG
3155
3156 /* Prepare pages for freeing */
3157 list_for_each_entry_safe(page, next, list, lru) {
3158 pfn = page_to_pfn(page);
2d4894b5 3159 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3160 list_del(&page->lru);
3161 set_page_private(page, pfn);
3162 }
cc59850e 3163
9cca35d4 3164 local_irq_save(flags);
cc59850e 3165 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3166 unsigned long pfn = page_private(page);
3167
3168 set_page_private(page, 0);
2d4894b5
MG
3169 trace_mm_page_free_batched(page);
3170 free_unref_page_commit(page, pfn);
c24ad77d
LS
3171
3172 /*
3173 * Guard against excessive IRQ disabled times when we get
3174 * a large list of pages to free.
3175 */
3176 if (++batch_count == SWAP_CLUSTER_MAX) {
3177 local_irq_restore(flags);
3178 batch_count = 0;
3179 local_irq_save(flags);
3180 }
cc59850e 3181 }
9cca35d4 3182 local_irq_restore(flags);
cc59850e
KK
3183}
3184
8dfcc9ba
NP
3185/*
3186 * split_page takes a non-compound higher-order page, and splits it into
3187 * n (1<<order) sub-pages: page[0..n]
3188 * Each sub-page must be freed individually.
3189 *
3190 * Note: this is probably too low level an operation for use in drivers.
3191 * Please consult with lkml before using this in your driver.
3192 */
3193void split_page(struct page *page, unsigned int order)
3194{
3195 int i;
3196
309381fe
SL
3197 VM_BUG_ON_PAGE(PageCompound(page), page);
3198 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3199
a9627bc5 3200 for (i = 1; i < (1 << order); i++)
7835e98b 3201 set_page_refcounted(page + i);
a9627bc5 3202 split_page_owner(page, order);
8dfcc9ba 3203}
5853ff23 3204EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3205
3c605096 3206int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3207{
748446bb
MG
3208 unsigned long watermark;
3209 struct zone *zone;
2139cbe6 3210 int mt;
748446bb
MG
3211
3212 BUG_ON(!PageBuddy(page));
3213
3214 zone = page_zone(page);
2e30abd1 3215 mt = get_pageblock_migratetype(page);
748446bb 3216
194159fb 3217 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3218 /*
3219 * Obey watermarks as if the page was being allocated. We can
3220 * emulate a high-order watermark check with a raised order-0
3221 * watermark, because we already know our high-order page
3222 * exists.
3223 */
fd1444b2 3224 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3225 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3226 return 0;
3227
8fb74b9f 3228 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3229 }
748446bb
MG
3230
3231 /* Remove page from free list */
b03641af 3232
6ab01363 3233 del_page_from_free_list(page, zone, order);
2139cbe6 3234
400bc7fd 3235 /*
3236 * Set the pageblock if the isolated page is at least half of a
3237 * pageblock
3238 */
748446bb
MG
3239 if (order >= pageblock_order - 1) {
3240 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3241 for (; page < endpage; page += pageblock_nr_pages) {
3242 int mt = get_pageblock_migratetype(page);
88ed365e 3243 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3244 && !is_migrate_highatomic(mt))
47118af0
MN
3245 set_pageblock_migratetype(page,
3246 MIGRATE_MOVABLE);
3247 }
748446bb
MG
3248 }
3249
f3a14ced 3250
8fb74b9f 3251 return 1UL << order;
1fb3f8ca
MG
3252}
3253
624f58d8
AD
3254/**
3255 * __putback_isolated_page - Return a now-isolated page back where we got it
3256 * @page: Page that was isolated
3257 * @order: Order of the isolated page
e6a0a7ad 3258 * @mt: The page's pageblock's migratetype
624f58d8
AD
3259 *
3260 * This function is meant to return a page pulled from the free lists via
3261 * __isolate_free_page back to the free lists they were pulled from.
3262 */
3263void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3264{
3265 struct zone *zone = page_zone(page);
3266
3267 /* zone lock should be held when this function is called */
3268 lockdep_assert_held(&zone->lock);
3269
3270 /* Return isolated page to tail of freelist. */
36e66c55 3271 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3272}
3273
060e7417
MG
3274/*
3275 * Update NUMA hit/miss statistics
3276 *
3277 * Must be called with interrupts disabled.
060e7417 3278 */
41b6167e 3279static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3280{
3281#ifdef CONFIG_NUMA
3a321d2a 3282 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3283
4518085e
KW
3284 /* skip numa counters update if numa stats is disabled */
3285 if (!static_branch_likely(&vm_numa_stat_key))
3286 return;
3287
c1093b74 3288 if (zone_to_nid(z) != numa_node_id())
060e7417 3289 local_stat = NUMA_OTHER;
060e7417 3290
c1093b74 3291 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3292 __inc_numa_state(z, NUMA_HIT);
2df26639 3293 else {
3a321d2a
KW
3294 __inc_numa_state(z, NUMA_MISS);
3295 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3296 }
3a321d2a 3297 __inc_numa_state(z, local_stat);
060e7417
MG
3298#endif
3299}
3300
066b2393
MG
3301/* Remove page from the per-cpu list, caller must protect the list */
3302static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3303 unsigned int alloc_flags,
453f85d4 3304 struct per_cpu_pages *pcp,
066b2393
MG
3305 struct list_head *list)
3306{
3307 struct page *page;
3308
3309 do {
3310 if (list_empty(list)) {
3311 pcp->count += rmqueue_bulk(zone, 0,
3312 pcp->batch, list,
6bb15450 3313 migratetype, alloc_flags);
066b2393
MG
3314 if (unlikely(list_empty(list)))
3315 return NULL;
3316 }
3317
453f85d4 3318 page = list_first_entry(list, struct page, lru);
066b2393
MG
3319 list_del(&page->lru);
3320 pcp->count--;
3321 } while (check_new_pcp(page));
3322
3323 return page;
3324}
3325
3326/* Lock and remove page from the per-cpu list */
3327static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3328 struct zone *zone, gfp_t gfp_flags,
3329 int migratetype, unsigned int alloc_flags)
066b2393
MG
3330{
3331 struct per_cpu_pages *pcp;
3332 struct list_head *list;
066b2393 3333 struct page *page;
d34b0733 3334 unsigned long flags;
066b2393 3335
d34b0733 3336 local_irq_save(flags);
066b2393
MG
3337 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3338 list = &pcp->lists[migratetype];
6bb15450 3339 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3340 if (page) {
1c52e6d0 3341 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3342 zone_statistics(preferred_zone, zone);
3343 }
d34b0733 3344 local_irq_restore(flags);
066b2393
MG
3345 return page;
3346}
3347
1da177e4 3348/*
75379191 3349 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3350 */
0a15c3e9 3351static inline
066b2393 3352struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3353 struct zone *zone, unsigned int order,
c603844b
MG
3354 gfp_t gfp_flags, unsigned int alloc_flags,
3355 int migratetype)
1da177e4
LT
3356{
3357 unsigned long flags;
689bcebf 3358 struct page *page;
1da177e4 3359
d34b0733 3360 if (likely(order == 0)) {
1c52e6d0
YS
3361 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3362 migratetype, alloc_flags);
066b2393
MG
3363 goto out;
3364 }
83b9355b 3365
066b2393
MG
3366 /*
3367 * We most definitely don't want callers attempting to
3368 * allocate greater than order-1 page units with __GFP_NOFAIL.
3369 */
3370 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3371 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3372
066b2393
MG
3373 do {
3374 page = NULL;
3375 if (alloc_flags & ALLOC_HARDER) {
3376 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3377 if (page)
3378 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3379 }
a74609fa 3380 if (!page)
6bb15450 3381 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3382 } while (page && check_new_pages(page, order));
3383 spin_unlock(&zone->lock);
3384 if (!page)
3385 goto failed;
3386 __mod_zone_freepage_state(zone, -(1 << order),
3387 get_pcppage_migratetype(page));
1da177e4 3388
16709d1d 3389 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3390 zone_statistics(preferred_zone, zone);
a74609fa 3391 local_irq_restore(flags);
1da177e4 3392
066b2393 3393out:
73444bc4
MG
3394 /* Separate test+clear to avoid unnecessary atomics */
3395 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3396 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3397 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3398 }
3399
066b2393 3400 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3401 return page;
a74609fa
NP
3402
3403failed:
3404 local_irq_restore(flags);
a74609fa 3405 return NULL;
1da177e4
LT
3406}
3407
933e312e
AM
3408#ifdef CONFIG_FAIL_PAGE_ALLOC
3409
b2588c4b 3410static struct {
933e312e
AM
3411 struct fault_attr attr;
3412
621a5f7a 3413 bool ignore_gfp_highmem;
71baba4b 3414 bool ignore_gfp_reclaim;
54114994 3415 u32 min_order;
933e312e
AM
3416} fail_page_alloc = {
3417 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3418 .ignore_gfp_reclaim = true,
621a5f7a 3419 .ignore_gfp_highmem = true,
54114994 3420 .min_order = 1,
933e312e
AM
3421};
3422
3423static int __init setup_fail_page_alloc(char *str)
3424{
3425 return setup_fault_attr(&fail_page_alloc.attr, str);
3426}
3427__setup("fail_page_alloc=", setup_fail_page_alloc);
3428
af3b8544 3429static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3430{
54114994 3431 if (order < fail_page_alloc.min_order)
deaf386e 3432 return false;
933e312e 3433 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3434 return false;
933e312e 3435 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3436 return false;
71baba4b
MG
3437 if (fail_page_alloc.ignore_gfp_reclaim &&
3438 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3439 return false;
933e312e
AM
3440
3441 return should_fail(&fail_page_alloc.attr, 1 << order);
3442}
3443
3444#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3445
3446static int __init fail_page_alloc_debugfs(void)
3447{
0825a6f9 3448 umode_t mode = S_IFREG | 0600;
933e312e 3449 struct dentry *dir;
933e312e 3450
dd48c085
AM
3451 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3452 &fail_page_alloc.attr);
b2588c4b 3453
d9f7979c
GKH
3454 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3455 &fail_page_alloc.ignore_gfp_reclaim);
3456 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3457 &fail_page_alloc.ignore_gfp_highmem);
3458 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3459
d9f7979c 3460 return 0;
933e312e
AM
3461}
3462
3463late_initcall(fail_page_alloc_debugfs);
3464
3465#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3466
3467#else /* CONFIG_FAIL_PAGE_ALLOC */
3468
af3b8544 3469static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3470{
deaf386e 3471 return false;
933e312e
AM
3472}
3473
3474#endif /* CONFIG_FAIL_PAGE_ALLOC */
3475
af3b8544
BP
3476static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3477{
3478 return __should_fail_alloc_page(gfp_mask, order);
3479}
3480ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3481
1da177e4 3482/*
97a16fc8
MG
3483 * Return true if free base pages are above 'mark'. For high-order checks it
3484 * will return true of the order-0 watermark is reached and there is at least
3485 * one free page of a suitable size. Checking now avoids taking the zone lock
3486 * to check in the allocation paths if no pages are free.
1da177e4 3487 */
86a294a8
MH
3488bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3489 int classzone_idx, unsigned int alloc_flags,
3490 long free_pages)
1da177e4 3491{
d23ad423 3492 long min = mark;
1da177e4 3493 int o;
cd04ae1e 3494 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3495
0aaa29a5 3496 /* free_pages may go negative - that's OK */
df0a6daa 3497 free_pages -= (1 << order) - 1;
0aaa29a5 3498
7fb1d9fc 3499 if (alloc_flags & ALLOC_HIGH)
1da177e4 3500 min -= min / 2;
0aaa29a5
MG
3501
3502 /*
3503 * If the caller does not have rights to ALLOC_HARDER then subtract
3504 * the high-atomic reserves. This will over-estimate the size of the
3505 * atomic reserve but it avoids a search.
3506 */
cd04ae1e 3507 if (likely(!alloc_harder)) {
0aaa29a5 3508 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3509 } else {
3510 /*
3511 * OOM victims can try even harder than normal ALLOC_HARDER
3512 * users on the grounds that it's definitely going to be in
3513 * the exit path shortly and free memory. Any allocation it
3514 * makes during the free path will be small and short-lived.
3515 */
3516 if (alloc_flags & ALLOC_OOM)
3517 min -= min / 2;
3518 else
3519 min -= min / 4;
3520 }
3521
e2b19197 3522
d883c6cf
JK
3523#ifdef CONFIG_CMA
3524 /* If allocation can't use CMA areas don't use free CMA pages */
3525 if (!(alloc_flags & ALLOC_CMA))
3526 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3527#endif
3528
97a16fc8
MG
3529 /*
3530 * Check watermarks for an order-0 allocation request. If these
3531 * are not met, then a high-order request also cannot go ahead
3532 * even if a suitable page happened to be free.
3533 */
3534 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3535 return false;
1da177e4 3536
97a16fc8
MG
3537 /* If this is an order-0 request then the watermark is fine */
3538 if (!order)
3539 return true;
3540
3541 /* For a high-order request, check at least one suitable page is free */
3542 for (o = order; o < MAX_ORDER; o++) {
3543 struct free_area *area = &z->free_area[o];
3544 int mt;
3545
3546 if (!area->nr_free)
3547 continue;
3548
97a16fc8 3549 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3550 if (!free_area_empty(area, mt))
97a16fc8
MG
3551 return true;
3552 }
3553
3554#ifdef CONFIG_CMA
d883c6cf 3555 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3556 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3557 return true;
d883c6cf 3558 }
97a16fc8 3559#endif
76089d00 3560 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3561 return true;
1da177e4 3562 }
97a16fc8 3563 return false;
88f5acf8
MG
3564}
3565
7aeb09f9 3566bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3567 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3568{
3569 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3570 zone_page_state(z, NR_FREE_PAGES));
3571}
3572
48ee5f36
MG
3573static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3574 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3575{
3576 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3577 long cma_pages = 0;
3578
3579#ifdef CONFIG_CMA
3580 /* If allocation can't use CMA areas don't use free CMA pages */
3581 if (!(alloc_flags & ALLOC_CMA))
3582 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3583#endif
48ee5f36
MG
3584
3585 /*
3586 * Fast check for order-0 only. If this fails then the reserves
3587 * need to be calculated. There is a corner case where the check
3588 * passes but only the high-order atomic reserve are free. If
3589 * the caller is !atomic then it'll uselessly search the free
3590 * list. That corner case is then slower but it is harmless.
3591 */
d883c6cf 3592 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3593 return true;
3594
3595 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3596 free_pages);
3597}
3598
7aeb09f9 3599bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3600 unsigned long mark, int classzone_idx)
88f5acf8
MG
3601{
3602 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3603
3604 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3605 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3606
e2b19197 3607 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3608 free_pages);
1da177e4
LT
3609}
3610
9276b1bc 3611#ifdef CONFIG_NUMA
957f822a
DR
3612static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3613{
e02dc017 3614 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3615 node_reclaim_distance;
957f822a 3616}
9276b1bc 3617#else /* CONFIG_NUMA */
957f822a
DR
3618static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3619{
3620 return true;
3621}
9276b1bc
PJ
3622#endif /* CONFIG_NUMA */
3623
6bb15450
MG
3624/*
3625 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3626 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3627 * premature use of a lower zone may cause lowmem pressure problems that
3628 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3629 * probably too small. It only makes sense to spread allocations to avoid
3630 * fragmentation between the Normal and DMA32 zones.
3631 */
3632static inline unsigned int
0a79cdad 3633alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3634{
736838e9 3635 unsigned int alloc_flags;
0a79cdad 3636
736838e9
MN
3637 /*
3638 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3639 * to save a branch.
3640 */
3641 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3642
3643#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3644 if (!zone)
3645 return alloc_flags;
3646
6bb15450 3647 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3648 return alloc_flags;
6bb15450
MG
3649
3650 /*
3651 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3652 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3653 * on UMA that if Normal is populated then so is DMA32.
3654 */
3655 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3656 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3657 return alloc_flags;
6bb15450 3658
8118b82e 3659 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3660#endif /* CONFIG_ZONE_DMA32 */
3661 return alloc_flags;
6bb15450 3662}
6bb15450 3663
7fb1d9fc 3664/*
0798e519 3665 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3666 * a page.
3667 */
3668static struct page *
a9263751
VB
3669get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3670 const struct alloc_context *ac)
753ee728 3671{
6bb15450 3672 struct zoneref *z;
5117f45d 3673 struct zone *zone;
3b8c0be4 3674 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3675 bool no_fallback;
3b8c0be4 3676
6bb15450 3677retry:
7fb1d9fc 3678 /*
9276b1bc 3679 * Scan zonelist, looking for a zone with enough free.
344736f2 3680 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3681 */
6bb15450
MG
3682 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3683 z = ac->preferred_zoneref;
c33d6c06 3684 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3685 ac->nodemask) {
be06af00 3686 struct page *page;
e085dbc5
JW
3687 unsigned long mark;
3688
664eedde
MG
3689 if (cpusets_enabled() &&
3690 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3691 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3692 continue;
a756cf59
JW
3693 /*
3694 * When allocating a page cache page for writing, we
281e3726
MG
3695 * want to get it from a node that is within its dirty
3696 * limit, such that no single node holds more than its
a756cf59 3697 * proportional share of globally allowed dirty pages.
281e3726 3698 * The dirty limits take into account the node's
a756cf59
JW
3699 * lowmem reserves and high watermark so that kswapd
3700 * should be able to balance it without having to
3701 * write pages from its LRU list.
3702 *
a756cf59 3703 * XXX: For now, allow allocations to potentially
281e3726 3704 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3705 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3706 * which is important when on a NUMA setup the allowed
281e3726 3707 * nodes are together not big enough to reach the
a756cf59 3708 * global limit. The proper fix for these situations
281e3726 3709 * will require awareness of nodes in the
a756cf59
JW
3710 * dirty-throttling and the flusher threads.
3711 */
3b8c0be4
MG
3712 if (ac->spread_dirty_pages) {
3713 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3714 continue;
3715
3716 if (!node_dirty_ok(zone->zone_pgdat)) {
3717 last_pgdat_dirty_limit = zone->zone_pgdat;
3718 continue;
3719 }
3720 }
7fb1d9fc 3721
6bb15450
MG
3722 if (no_fallback && nr_online_nodes > 1 &&
3723 zone != ac->preferred_zoneref->zone) {
3724 int local_nid;
3725
3726 /*
3727 * If moving to a remote node, retry but allow
3728 * fragmenting fallbacks. Locality is more important
3729 * than fragmentation avoidance.
3730 */
3731 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3732 if (zone_to_nid(zone) != local_nid) {
3733 alloc_flags &= ~ALLOC_NOFRAGMENT;
3734 goto retry;
3735 }
3736 }
3737
a9214443 3738 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3739 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3740 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3741 int ret;
3742
c9e97a19
PT
3743#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3744 /*
3745 * Watermark failed for this zone, but see if we can
3746 * grow this zone if it contains deferred pages.
3747 */
3748 if (static_branch_unlikely(&deferred_pages)) {
3749 if (_deferred_grow_zone(zone, order))
3750 goto try_this_zone;
3751 }
3752#endif
5dab2911
MG
3753 /* Checked here to keep the fast path fast */
3754 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3755 if (alloc_flags & ALLOC_NO_WATERMARKS)
3756 goto try_this_zone;
3757
a5f5f91d 3758 if (node_reclaim_mode == 0 ||
c33d6c06 3759 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3760 continue;
3761
a5f5f91d 3762 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3763 switch (ret) {
a5f5f91d 3764 case NODE_RECLAIM_NOSCAN:
fa5e084e 3765 /* did not scan */
cd38b115 3766 continue;
a5f5f91d 3767 case NODE_RECLAIM_FULL:
fa5e084e 3768 /* scanned but unreclaimable */
cd38b115 3769 continue;
fa5e084e
MG
3770 default:
3771 /* did we reclaim enough */
fed2719e 3772 if (zone_watermark_ok(zone, order, mark,
93ea9964 3773 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3774 goto try_this_zone;
3775
fed2719e 3776 continue;
0798e519 3777 }
7fb1d9fc
RS
3778 }
3779
fa5e084e 3780try_this_zone:
066b2393 3781 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3782 gfp_mask, alloc_flags, ac->migratetype);
75379191 3783 if (page) {
479f854a 3784 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3785
3786 /*
3787 * If this is a high-order atomic allocation then check
3788 * if the pageblock should be reserved for the future
3789 */
3790 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3791 reserve_highatomic_pageblock(page, zone, order);
3792
75379191 3793 return page;
c9e97a19
PT
3794 } else {
3795#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3796 /* Try again if zone has deferred pages */
3797 if (static_branch_unlikely(&deferred_pages)) {
3798 if (_deferred_grow_zone(zone, order))
3799 goto try_this_zone;
3800 }
3801#endif
75379191 3802 }
54a6eb5c 3803 }
9276b1bc 3804
6bb15450
MG
3805 /*
3806 * It's possible on a UMA machine to get through all zones that are
3807 * fragmented. If avoiding fragmentation, reset and try again.
3808 */
3809 if (no_fallback) {
3810 alloc_flags &= ~ALLOC_NOFRAGMENT;
3811 goto retry;
3812 }
3813
4ffeaf35 3814 return NULL;
753ee728
MH
3815}
3816
9af744d7 3817static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3818{
a238ab5b 3819 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3820
3821 /*
3822 * This documents exceptions given to allocations in certain
3823 * contexts that are allowed to allocate outside current's set
3824 * of allowed nodes.
3825 */
3826 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3827 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3828 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3829 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3830 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3831 filter &= ~SHOW_MEM_FILTER_NODES;
3832
9af744d7 3833 show_mem(filter, nodemask);
aa187507
MH
3834}
3835
a8e99259 3836void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3837{
3838 struct va_format vaf;
3839 va_list args;
1be334e5 3840 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3841
0f7896f1 3842 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3843 return;
3844
7877cdcc
MH
3845 va_start(args, fmt);
3846 vaf.fmt = fmt;
3847 vaf.va = &args;
ef8444ea 3848 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3849 current->comm, &vaf, gfp_mask, &gfp_mask,
3850 nodemask_pr_args(nodemask));
7877cdcc 3851 va_end(args);
3ee9a4f0 3852
a8e99259 3853 cpuset_print_current_mems_allowed();
ef8444ea 3854 pr_cont("\n");
a238ab5b 3855 dump_stack();
685dbf6f 3856 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3857}
3858
6c18ba7a
MH
3859static inline struct page *
3860__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3861 unsigned int alloc_flags,
3862 const struct alloc_context *ac)
3863{
3864 struct page *page;
3865
3866 page = get_page_from_freelist(gfp_mask, order,
3867 alloc_flags|ALLOC_CPUSET, ac);
3868 /*
3869 * fallback to ignore cpuset restriction if our nodes
3870 * are depleted
3871 */
3872 if (!page)
3873 page = get_page_from_freelist(gfp_mask, order,
3874 alloc_flags, ac);
3875
3876 return page;
3877}
3878
11e33f6a
MG
3879static inline struct page *
3880__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3881 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3882{
6e0fc46d
DR
3883 struct oom_control oc = {
3884 .zonelist = ac->zonelist,
3885 .nodemask = ac->nodemask,
2a966b77 3886 .memcg = NULL,
6e0fc46d
DR
3887 .gfp_mask = gfp_mask,
3888 .order = order,
6e0fc46d 3889 };
11e33f6a
MG
3890 struct page *page;
3891
9879de73
JW
3892 *did_some_progress = 0;
3893
9879de73 3894 /*
dc56401f
JW
3895 * Acquire the oom lock. If that fails, somebody else is
3896 * making progress for us.
9879de73 3897 */
dc56401f 3898 if (!mutex_trylock(&oom_lock)) {
9879de73 3899 *did_some_progress = 1;
11e33f6a 3900 schedule_timeout_uninterruptible(1);
1da177e4
LT
3901 return NULL;
3902 }
6b1de916 3903
11e33f6a
MG
3904 /*
3905 * Go through the zonelist yet one more time, keep very high watermark
3906 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3907 * we're still under heavy pressure. But make sure that this reclaim
3908 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3909 * allocation which will never fail due to oom_lock already held.
11e33f6a 3910 */
e746bf73
TH
3911 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3912 ~__GFP_DIRECT_RECLAIM, order,
3913 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3914 if (page)
11e33f6a
MG
3915 goto out;
3916
06ad276a
MH
3917 /* Coredumps can quickly deplete all memory reserves */
3918 if (current->flags & PF_DUMPCORE)
3919 goto out;
3920 /* The OOM killer will not help higher order allocs */
3921 if (order > PAGE_ALLOC_COSTLY_ORDER)
3922 goto out;
dcda9b04
MH
3923 /*
3924 * We have already exhausted all our reclaim opportunities without any
3925 * success so it is time to admit defeat. We will skip the OOM killer
3926 * because it is very likely that the caller has a more reasonable
3927 * fallback than shooting a random task.
3928 */
3929 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3930 goto out;
06ad276a
MH
3931 /* The OOM killer does not needlessly kill tasks for lowmem */
3932 if (ac->high_zoneidx < ZONE_NORMAL)
3933 goto out;
3934 if (pm_suspended_storage())
3935 goto out;
3936 /*
3937 * XXX: GFP_NOFS allocations should rather fail than rely on
3938 * other request to make a forward progress.
3939 * We are in an unfortunate situation where out_of_memory cannot
3940 * do much for this context but let's try it to at least get
3941 * access to memory reserved if the current task is killed (see
3942 * out_of_memory). Once filesystems are ready to handle allocation
3943 * failures more gracefully we should just bail out here.
3944 */
3945
3946 /* The OOM killer may not free memory on a specific node */
3947 if (gfp_mask & __GFP_THISNODE)
3948 goto out;
3da88fb3 3949
3c2c6488 3950 /* Exhausted what can be done so it's blame time */
5020e285 3951 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3952 *did_some_progress = 1;
5020e285 3953
6c18ba7a
MH
3954 /*
3955 * Help non-failing allocations by giving them access to memory
3956 * reserves
3957 */
3958 if (gfp_mask & __GFP_NOFAIL)
3959 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3960 ALLOC_NO_WATERMARKS, ac);
5020e285 3961 }
11e33f6a 3962out:
dc56401f 3963 mutex_unlock(&oom_lock);
11e33f6a
MG
3964 return page;
3965}
3966
33c2d214
MH
3967/*
3968 * Maximum number of compaction retries wit a progress before OOM
3969 * killer is consider as the only way to move forward.
3970 */
3971#define MAX_COMPACT_RETRIES 16
3972
56de7263
MG
3973#ifdef CONFIG_COMPACTION
3974/* Try memory compaction for high-order allocations before reclaim */
3975static struct page *
3976__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3977 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3978 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3979{
5e1f0f09 3980 struct page *page = NULL;
eb414681 3981 unsigned long pflags;
499118e9 3982 unsigned int noreclaim_flag;
53853e2d
VB
3983
3984 if (!order)
66199712 3985 return NULL;
66199712 3986
eb414681 3987 psi_memstall_enter(&pflags);
499118e9 3988 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3989
c5d01d0d 3990 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3991 prio, &page);
eb414681 3992
499118e9 3993 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3994 psi_memstall_leave(&pflags);
56de7263 3995
98dd3b48
VB
3996 /*
3997 * At least in one zone compaction wasn't deferred or skipped, so let's
3998 * count a compaction stall
3999 */
4000 count_vm_event(COMPACTSTALL);
8fb74b9f 4001
5e1f0f09
MG
4002 /* Prep a captured page if available */
4003 if (page)
4004 prep_new_page(page, order, gfp_mask, alloc_flags);
4005
4006 /* Try get a page from the freelist if available */
4007 if (!page)
4008 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4009
98dd3b48
VB
4010 if (page) {
4011 struct zone *zone = page_zone(page);
53853e2d 4012
98dd3b48
VB
4013 zone->compact_blockskip_flush = false;
4014 compaction_defer_reset(zone, order, true);
4015 count_vm_event(COMPACTSUCCESS);
4016 return page;
4017 }
56de7263 4018
98dd3b48
VB
4019 /*
4020 * It's bad if compaction run occurs and fails. The most likely reason
4021 * is that pages exist, but not enough to satisfy watermarks.
4022 */
4023 count_vm_event(COMPACTFAIL);
66199712 4024
98dd3b48 4025 cond_resched();
56de7263
MG
4026
4027 return NULL;
4028}
33c2d214 4029
3250845d
VB
4030static inline bool
4031should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4032 enum compact_result compact_result,
4033 enum compact_priority *compact_priority,
d9436498 4034 int *compaction_retries)
3250845d
VB
4035{
4036 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4037 int min_priority;
65190cff
MH
4038 bool ret = false;
4039 int retries = *compaction_retries;
4040 enum compact_priority priority = *compact_priority;
3250845d
VB
4041
4042 if (!order)
4043 return false;
4044
d9436498
VB
4045 if (compaction_made_progress(compact_result))
4046 (*compaction_retries)++;
4047
3250845d
VB
4048 /*
4049 * compaction considers all the zone as desperately out of memory
4050 * so it doesn't really make much sense to retry except when the
4051 * failure could be caused by insufficient priority
4052 */
d9436498
VB
4053 if (compaction_failed(compact_result))
4054 goto check_priority;
3250845d 4055
49433085
VB
4056 /*
4057 * compaction was skipped because there are not enough order-0 pages
4058 * to work with, so we retry only if it looks like reclaim can help.
4059 */
4060 if (compaction_needs_reclaim(compact_result)) {
4061 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4062 goto out;
4063 }
4064
3250845d
VB
4065 /*
4066 * make sure the compaction wasn't deferred or didn't bail out early
4067 * due to locks contention before we declare that we should give up.
49433085
VB
4068 * But the next retry should use a higher priority if allowed, so
4069 * we don't just keep bailing out endlessly.
3250845d 4070 */
65190cff 4071 if (compaction_withdrawn(compact_result)) {
49433085 4072 goto check_priority;
65190cff 4073 }
3250845d
VB
4074
4075 /*
dcda9b04 4076 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4077 * costly ones because they are de facto nofail and invoke OOM
4078 * killer to move on while costly can fail and users are ready
4079 * to cope with that. 1/4 retries is rather arbitrary but we
4080 * would need much more detailed feedback from compaction to
4081 * make a better decision.
4082 */
4083 if (order > PAGE_ALLOC_COSTLY_ORDER)
4084 max_retries /= 4;
65190cff
MH
4085 if (*compaction_retries <= max_retries) {
4086 ret = true;
4087 goto out;
4088 }
3250845d 4089
d9436498
VB
4090 /*
4091 * Make sure there are attempts at the highest priority if we exhausted
4092 * all retries or failed at the lower priorities.
4093 */
4094check_priority:
c2033b00
VB
4095 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4096 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4097
c2033b00 4098 if (*compact_priority > min_priority) {
d9436498
VB
4099 (*compact_priority)--;
4100 *compaction_retries = 0;
65190cff 4101 ret = true;
d9436498 4102 }
65190cff
MH
4103out:
4104 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4105 return ret;
3250845d 4106}
56de7263
MG
4107#else
4108static inline struct page *
4109__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4110 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4111 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4112{
33c2d214 4113 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4114 return NULL;
4115}
33c2d214
MH
4116
4117static inline bool
86a294a8
MH
4118should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4119 enum compact_result compact_result,
a5508cd8 4120 enum compact_priority *compact_priority,
d9436498 4121 int *compaction_retries)
33c2d214 4122{
31e49bfd
MH
4123 struct zone *zone;
4124 struct zoneref *z;
4125
4126 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4127 return false;
4128
4129 /*
4130 * There are setups with compaction disabled which would prefer to loop
4131 * inside the allocator rather than hit the oom killer prematurely.
4132 * Let's give them a good hope and keep retrying while the order-0
4133 * watermarks are OK.
4134 */
4135 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4136 ac->nodemask) {
4137 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4138 ac_classzone_idx(ac), alloc_flags))
4139 return true;
4140 }
33c2d214
MH
4141 return false;
4142}
3250845d 4143#endif /* CONFIG_COMPACTION */
56de7263 4144
d92a8cfc 4145#ifdef CONFIG_LOCKDEP
93781325 4146static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4147 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4148
4149static bool __need_fs_reclaim(gfp_t gfp_mask)
4150{
4151 gfp_mask = current_gfp_context(gfp_mask);
4152
4153 /* no reclaim without waiting on it */
4154 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4155 return false;
4156
4157 /* this guy won't enter reclaim */
2e517d68 4158 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4159 return false;
4160
4161 /* We're only interested __GFP_FS allocations for now */
4162 if (!(gfp_mask & __GFP_FS))
4163 return false;
4164
4165 if (gfp_mask & __GFP_NOLOCKDEP)
4166 return false;
4167
4168 return true;
4169}
4170
93781325
OS
4171void __fs_reclaim_acquire(void)
4172{
4173 lock_map_acquire(&__fs_reclaim_map);
4174}
4175
4176void __fs_reclaim_release(void)
4177{
4178 lock_map_release(&__fs_reclaim_map);
4179}
4180
d92a8cfc
PZ
4181void fs_reclaim_acquire(gfp_t gfp_mask)
4182{
4183 if (__need_fs_reclaim(gfp_mask))
93781325 4184 __fs_reclaim_acquire();
d92a8cfc
PZ
4185}
4186EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4187
4188void fs_reclaim_release(gfp_t gfp_mask)
4189{
4190 if (__need_fs_reclaim(gfp_mask))
93781325 4191 __fs_reclaim_release();
d92a8cfc
PZ
4192}
4193EXPORT_SYMBOL_GPL(fs_reclaim_release);
4194#endif
4195
bba90710
MS
4196/* Perform direct synchronous page reclaim */
4197static int
a9263751
VB
4198__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4199 const struct alloc_context *ac)
11e33f6a 4200{
bba90710 4201 int progress;
499118e9 4202 unsigned int noreclaim_flag;
eb414681 4203 unsigned long pflags;
11e33f6a
MG
4204
4205 cond_resched();
4206
4207 /* We now go into synchronous reclaim */
4208 cpuset_memory_pressure_bump();
eb414681 4209 psi_memstall_enter(&pflags);
d92a8cfc 4210 fs_reclaim_acquire(gfp_mask);
93781325 4211 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4212
a9263751
VB
4213 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4214 ac->nodemask);
11e33f6a 4215
499118e9 4216 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4217 fs_reclaim_release(gfp_mask);
eb414681 4218 psi_memstall_leave(&pflags);
11e33f6a
MG
4219
4220 cond_resched();
4221
bba90710
MS
4222 return progress;
4223}
4224
4225/* The really slow allocator path where we enter direct reclaim */
4226static inline struct page *
4227__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4228 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4229 unsigned long *did_some_progress)
bba90710
MS
4230{
4231 struct page *page = NULL;
4232 bool drained = false;
4233
a9263751 4234 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4235 if (unlikely(!(*did_some_progress)))
4236 return NULL;
11e33f6a 4237
9ee493ce 4238retry:
31a6c190 4239 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4240
4241 /*
4242 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4243 * pages are pinned on the per-cpu lists or in high alloc reserves.
4244 * Shrink them them and try again
9ee493ce
MG
4245 */
4246 if (!page && !drained) {
29fac03b 4247 unreserve_highatomic_pageblock(ac, false);
93481ff0 4248 drain_all_pages(NULL);
9ee493ce
MG
4249 drained = true;
4250 goto retry;
4251 }
4252
11e33f6a
MG
4253 return page;
4254}
4255
5ecd9d40
DR
4256static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4257 const struct alloc_context *ac)
3a025760
JW
4258{
4259 struct zoneref *z;
4260 struct zone *zone;
e1a55637 4261 pg_data_t *last_pgdat = NULL;
5ecd9d40 4262 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4263
5ecd9d40
DR
4264 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4265 ac->nodemask) {
e1a55637 4266 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4267 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4268 last_pgdat = zone->zone_pgdat;
4269 }
3a025760
JW
4270}
4271
c603844b 4272static inline unsigned int
341ce06f
PZ
4273gfp_to_alloc_flags(gfp_t gfp_mask)
4274{
c603844b 4275 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4276
736838e9
MN
4277 /*
4278 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4279 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4280 * to save two branches.
4281 */
e6223a3b 4282 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4283 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4284
341ce06f
PZ
4285 /*
4286 * The caller may dip into page reserves a bit more if the caller
4287 * cannot run direct reclaim, or if the caller has realtime scheduling
4288 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4289 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4290 */
736838e9
MN
4291 alloc_flags |= (__force int)
4292 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4293
d0164adc 4294 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4295 /*
b104a35d
DR
4296 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4297 * if it can't schedule.
5c3240d9 4298 */
b104a35d 4299 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4300 alloc_flags |= ALLOC_HARDER;
523b9458 4301 /*
b104a35d 4302 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4303 * comment for __cpuset_node_allowed().
523b9458 4304 */
341ce06f 4305 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4306 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4307 alloc_flags |= ALLOC_HARDER;
4308
d883c6cf
JK
4309#ifdef CONFIG_CMA
4310 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4311 alloc_flags |= ALLOC_CMA;
4312#endif
341ce06f
PZ
4313 return alloc_flags;
4314}
4315
cd04ae1e 4316static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4317{
cd04ae1e
MH
4318 if (!tsk_is_oom_victim(tsk))
4319 return false;
4320
4321 /*
4322 * !MMU doesn't have oom reaper so give access to memory reserves
4323 * only to the thread with TIF_MEMDIE set
4324 */
4325 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4326 return false;
4327
cd04ae1e
MH
4328 return true;
4329}
4330
4331/*
4332 * Distinguish requests which really need access to full memory
4333 * reserves from oom victims which can live with a portion of it
4334 */
4335static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4336{
4337 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4338 return 0;
31a6c190 4339 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4340 return ALLOC_NO_WATERMARKS;
31a6c190 4341 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4342 return ALLOC_NO_WATERMARKS;
4343 if (!in_interrupt()) {
4344 if (current->flags & PF_MEMALLOC)
4345 return ALLOC_NO_WATERMARKS;
4346 else if (oom_reserves_allowed(current))
4347 return ALLOC_OOM;
4348 }
31a6c190 4349
cd04ae1e
MH
4350 return 0;
4351}
4352
4353bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4354{
4355 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4356}
4357
0a0337e0
MH
4358/*
4359 * Checks whether it makes sense to retry the reclaim to make a forward progress
4360 * for the given allocation request.
491d79ae
JW
4361 *
4362 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4363 * without success, or when we couldn't even meet the watermark if we
4364 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4365 *
4366 * Returns true if a retry is viable or false to enter the oom path.
4367 */
4368static inline bool
4369should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4370 struct alloc_context *ac, int alloc_flags,
423b452e 4371 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4372{
4373 struct zone *zone;
4374 struct zoneref *z;
15f570bf 4375 bool ret = false;
0a0337e0 4376
423b452e
VB
4377 /*
4378 * Costly allocations might have made a progress but this doesn't mean
4379 * their order will become available due to high fragmentation so
4380 * always increment the no progress counter for them
4381 */
4382 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4383 *no_progress_loops = 0;
4384 else
4385 (*no_progress_loops)++;
4386
0a0337e0
MH
4387 /*
4388 * Make sure we converge to OOM if we cannot make any progress
4389 * several times in the row.
4390 */
04c8716f
MK
4391 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4392 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4393 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4394 }
0a0337e0 4395
bca67592
MG
4396 /*
4397 * Keep reclaiming pages while there is a chance this will lead
4398 * somewhere. If none of the target zones can satisfy our allocation
4399 * request even if all reclaimable pages are considered then we are
4400 * screwed and have to go OOM.
0a0337e0
MH
4401 */
4402 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4403 ac->nodemask) {
4404 unsigned long available;
ede37713 4405 unsigned long reclaimable;
d379f01d
MH
4406 unsigned long min_wmark = min_wmark_pages(zone);
4407 bool wmark;
0a0337e0 4408
5a1c84b4 4409 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4410 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4411
4412 /*
491d79ae
JW
4413 * Would the allocation succeed if we reclaimed all
4414 * reclaimable pages?
0a0337e0 4415 */
d379f01d
MH
4416 wmark = __zone_watermark_ok(zone, order, min_wmark,
4417 ac_classzone_idx(ac), alloc_flags, available);
4418 trace_reclaim_retry_zone(z, order, reclaimable,
4419 available, min_wmark, *no_progress_loops, wmark);
4420 if (wmark) {
ede37713
MH
4421 /*
4422 * If we didn't make any progress and have a lot of
4423 * dirty + writeback pages then we should wait for
4424 * an IO to complete to slow down the reclaim and
4425 * prevent from pre mature OOM
4426 */
4427 if (!did_some_progress) {
11fb9989 4428 unsigned long write_pending;
ede37713 4429
5a1c84b4
MG
4430 write_pending = zone_page_state_snapshot(zone,
4431 NR_ZONE_WRITE_PENDING);
ede37713 4432
11fb9989 4433 if (2 * write_pending > reclaimable) {
ede37713
MH
4434 congestion_wait(BLK_RW_ASYNC, HZ/10);
4435 return true;
4436 }
4437 }
5a1c84b4 4438
15f570bf
MH
4439 ret = true;
4440 goto out;
0a0337e0
MH
4441 }
4442 }
4443
15f570bf
MH
4444out:
4445 /*
4446 * Memory allocation/reclaim might be called from a WQ context and the
4447 * current implementation of the WQ concurrency control doesn't
4448 * recognize that a particular WQ is congested if the worker thread is
4449 * looping without ever sleeping. Therefore we have to do a short sleep
4450 * here rather than calling cond_resched().
4451 */
4452 if (current->flags & PF_WQ_WORKER)
4453 schedule_timeout_uninterruptible(1);
4454 else
4455 cond_resched();
4456 return ret;
0a0337e0
MH
4457}
4458
902b6281
VB
4459static inline bool
4460check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4461{
4462 /*
4463 * It's possible that cpuset's mems_allowed and the nodemask from
4464 * mempolicy don't intersect. This should be normally dealt with by
4465 * policy_nodemask(), but it's possible to race with cpuset update in
4466 * such a way the check therein was true, and then it became false
4467 * before we got our cpuset_mems_cookie here.
4468 * This assumes that for all allocations, ac->nodemask can come only
4469 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4470 * when it does not intersect with the cpuset restrictions) or the
4471 * caller can deal with a violated nodemask.
4472 */
4473 if (cpusets_enabled() && ac->nodemask &&
4474 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4475 ac->nodemask = NULL;
4476 return true;
4477 }
4478
4479 /*
4480 * When updating a task's mems_allowed or mempolicy nodemask, it is
4481 * possible to race with parallel threads in such a way that our
4482 * allocation can fail while the mask is being updated. If we are about
4483 * to fail, check if the cpuset changed during allocation and if so,
4484 * retry.
4485 */
4486 if (read_mems_allowed_retry(cpuset_mems_cookie))
4487 return true;
4488
4489 return false;
4490}
4491
11e33f6a
MG
4492static inline struct page *
4493__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4494 struct alloc_context *ac)
11e33f6a 4495{
d0164adc 4496 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4497 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4498 struct page *page = NULL;
c603844b 4499 unsigned int alloc_flags;
11e33f6a 4500 unsigned long did_some_progress;
5ce9bfef 4501 enum compact_priority compact_priority;
c5d01d0d 4502 enum compact_result compact_result;
5ce9bfef
VB
4503 int compaction_retries;
4504 int no_progress_loops;
5ce9bfef 4505 unsigned int cpuset_mems_cookie;
cd04ae1e 4506 int reserve_flags;
1da177e4 4507
d0164adc
MG
4508 /*
4509 * We also sanity check to catch abuse of atomic reserves being used by
4510 * callers that are not in atomic context.
4511 */
4512 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4513 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4514 gfp_mask &= ~__GFP_ATOMIC;
4515
5ce9bfef
VB
4516retry_cpuset:
4517 compaction_retries = 0;
4518 no_progress_loops = 0;
4519 compact_priority = DEF_COMPACT_PRIORITY;
4520 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4521
4522 /*
4523 * The fast path uses conservative alloc_flags to succeed only until
4524 * kswapd needs to be woken up, and to avoid the cost of setting up
4525 * alloc_flags precisely. So we do that now.
4526 */
4527 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4528
e47483bc
VB
4529 /*
4530 * We need to recalculate the starting point for the zonelist iterator
4531 * because we might have used different nodemask in the fast path, or
4532 * there was a cpuset modification and we are retrying - otherwise we
4533 * could end up iterating over non-eligible zones endlessly.
4534 */
4535 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4536 ac->high_zoneidx, ac->nodemask);
4537 if (!ac->preferred_zoneref->zone)
4538 goto nopage;
4539
0a79cdad 4540 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4541 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4542
4543 /*
4544 * The adjusted alloc_flags might result in immediate success, so try
4545 * that first
4546 */
4547 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4548 if (page)
4549 goto got_pg;
4550
a8161d1e
VB
4551 /*
4552 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4553 * that we have enough base pages and don't need to reclaim. For non-
4554 * movable high-order allocations, do that as well, as compaction will
4555 * try prevent permanent fragmentation by migrating from blocks of the
4556 * same migratetype.
4557 * Don't try this for allocations that are allowed to ignore
4558 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4559 */
282722b0
VB
4560 if (can_direct_reclaim &&
4561 (costly_order ||
4562 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4563 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4564 page = __alloc_pages_direct_compact(gfp_mask, order,
4565 alloc_flags, ac,
a5508cd8 4566 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4567 &compact_result);
4568 if (page)
4569 goto got_pg;
4570
cc638f32
VB
4571 /*
4572 * Checks for costly allocations with __GFP_NORETRY, which
4573 * includes some THP page fault allocations
4574 */
4575 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4576 /*
4577 * If allocating entire pageblock(s) and compaction
4578 * failed because all zones are below low watermarks
4579 * or is prohibited because it recently failed at this
3f36d866
DR
4580 * order, fail immediately unless the allocator has
4581 * requested compaction and reclaim retry.
b39d0ee2
DR
4582 *
4583 * Reclaim is
4584 * - potentially very expensive because zones are far
4585 * below their low watermarks or this is part of very
4586 * bursty high order allocations,
4587 * - not guaranteed to help because isolate_freepages()
4588 * may not iterate over freed pages as part of its
4589 * linear scan, and
4590 * - unlikely to make entire pageblocks free on its
4591 * own.
4592 */
4593 if (compact_result == COMPACT_SKIPPED ||
4594 compact_result == COMPACT_DEFERRED)
4595 goto nopage;
a8161d1e 4596
a8161d1e 4597 /*
3eb2771b
VB
4598 * Looks like reclaim/compaction is worth trying, but
4599 * sync compaction could be very expensive, so keep
25160354 4600 * using async compaction.
a8161d1e 4601 */
a5508cd8 4602 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4603 }
4604 }
23771235 4605
31a6c190 4606retry:
23771235 4607 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4608 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4609 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4610
cd04ae1e
MH
4611 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4612 if (reserve_flags)
4613 alloc_flags = reserve_flags;
23771235 4614
e46e7b77 4615 /*
d6a24df0
VB
4616 * Reset the nodemask and zonelist iterators if memory policies can be
4617 * ignored. These allocations are high priority and system rather than
4618 * user oriented.
e46e7b77 4619 */
cd04ae1e 4620 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4621 ac->nodemask = NULL;
e46e7b77
MG
4622 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4623 ac->high_zoneidx, ac->nodemask);
4624 }
4625
23771235 4626 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4627 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4628 if (page)
4629 goto got_pg;
1da177e4 4630
d0164adc 4631 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4632 if (!can_direct_reclaim)
1da177e4
LT
4633 goto nopage;
4634
9a67f648
MH
4635 /* Avoid recursion of direct reclaim */
4636 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4637 goto nopage;
4638
a8161d1e
VB
4639 /* Try direct reclaim and then allocating */
4640 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4641 &did_some_progress);
4642 if (page)
4643 goto got_pg;
4644
4645 /* Try direct compaction and then allocating */
a9263751 4646 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4647 compact_priority, &compact_result);
56de7263
MG
4648 if (page)
4649 goto got_pg;
75f30861 4650
9083905a
JW
4651 /* Do not loop if specifically requested */
4652 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4653 goto nopage;
9083905a 4654
0a0337e0
MH
4655 /*
4656 * Do not retry costly high order allocations unless they are
dcda9b04 4657 * __GFP_RETRY_MAYFAIL
0a0337e0 4658 */
dcda9b04 4659 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4660 goto nopage;
0a0337e0 4661
0a0337e0 4662 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4663 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4664 goto retry;
4665
33c2d214
MH
4666 /*
4667 * It doesn't make any sense to retry for the compaction if the order-0
4668 * reclaim is not able to make any progress because the current
4669 * implementation of the compaction depends on the sufficient amount
4670 * of free memory (see __compaction_suitable)
4671 */
4672 if (did_some_progress > 0 &&
86a294a8 4673 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4674 compact_result, &compact_priority,
d9436498 4675 &compaction_retries))
33c2d214
MH
4676 goto retry;
4677
902b6281
VB
4678
4679 /* Deal with possible cpuset update races before we start OOM killing */
4680 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4681 goto retry_cpuset;
4682
9083905a
JW
4683 /* Reclaim has failed us, start killing things */
4684 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4685 if (page)
4686 goto got_pg;
4687
9a67f648 4688 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4689 if (tsk_is_oom_victim(current) &&
4690 (alloc_flags == ALLOC_OOM ||
c288983d 4691 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4692 goto nopage;
4693
9083905a 4694 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4695 if (did_some_progress) {
4696 no_progress_loops = 0;
9083905a 4697 goto retry;
0a0337e0 4698 }
9083905a 4699
1da177e4 4700nopage:
902b6281
VB
4701 /* Deal with possible cpuset update races before we fail */
4702 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4703 goto retry_cpuset;
4704
9a67f648
MH
4705 /*
4706 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4707 * we always retry
4708 */
4709 if (gfp_mask & __GFP_NOFAIL) {
4710 /*
4711 * All existing users of the __GFP_NOFAIL are blockable, so warn
4712 * of any new users that actually require GFP_NOWAIT
4713 */
4714 if (WARN_ON_ONCE(!can_direct_reclaim))
4715 goto fail;
4716
4717 /*
4718 * PF_MEMALLOC request from this context is rather bizarre
4719 * because we cannot reclaim anything and only can loop waiting
4720 * for somebody to do a work for us
4721 */
4722 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4723
4724 /*
4725 * non failing costly orders are a hard requirement which we
4726 * are not prepared for much so let's warn about these users
4727 * so that we can identify them and convert them to something
4728 * else.
4729 */
4730 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4731
6c18ba7a
MH
4732 /*
4733 * Help non-failing allocations by giving them access to memory
4734 * reserves but do not use ALLOC_NO_WATERMARKS because this
4735 * could deplete whole memory reserves which would just make
4736 * the situation worse
4737 */
4738 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4739 if (page)
4740 goto got_pg;
4741
9a67f648
MH
4742 cond_resched();
4743 goto retry;
4744 }
4745fail:
a8e99259 4746 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4747 "page allocation failure: order:%u", order);
1da177e4 4748got_pg:
072bb0aa 4749 return page;
1da177e4 4750}
11e33f6a 4751
9cd75558 4752static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4753 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4754 struct alloc_context *ac, gfp_t *alloc_mask,
4755 unsigned int *alloc_flags)
11e33f6a 4756{
9cd75558 4757 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4758 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4759 ac->nodemask = nodemask;
4760 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4761
682a3385 4762 if (cpusets_enabled()) {
9cd75558 4763 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4764 if (!ac->nodemask)
4765 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4766 else
4767 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4768 }
4769
d92a8cfc
PZ
4770 fs_reclaim_acquire(gfp_mask);
4771 fs_reclaim_release(gfp_mask);
11e33f6a 4772
d0164adc 4773 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4774
4775 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4776 return false;
11e33f6a 4777
d883c6cf
JK
4778 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4779 *alloc_flags |= ALLOC_CMA;
4780
9cd75558
MG
4781 return true;
4782}
21bb9bd1 4783
9cd75558 4784/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4785static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4786{
c9ab0c4f 4787 /* Dirty zone balancing only done in the fast path */
9cd75558 4788 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4789
e46e7b77
MG
4790 /*
4791 * The preferred zone is used for statistics but crucially it is
4792 * also used as the starting point for the zonelist iterator. It
4793 * may get reset for allocations that ignore memory policies.
4794 */
9cd75558
MG
4795 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4796 ac->high_zoneidx, ac->nodemask);
4797}
4798
4799/*
4800 * This is the 'heart' of the zoned buddy allocator.
4801 */
4802struct page *
04ec6264
VB
4803__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4804 nodemask_t *nodemask)
9cd75558
MG
4805{
4806 struct page *page;
4807 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4808 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4809 struct alloc_context ac = { };
4810
c63ae43b
MH
4811 /*
4812 * There are several places where we assume that the order value is sane
4813 * so bail out early if the request is out of bound.
4814 */
4815 if (unlikely(order >= MAX_ORDER)) {
4816 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4817 return NULL;
4818 }
4819
9cd75558 4820 gfp_mask &= gfp_allowed_mask;
f19360f0 4821 alloc_mask = gfp_mask;
04ec6264 4822 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4823 return NULL;
4824
a380b40a 4825 finalise_ac(gfp_mask, &ac);
5bb1b169 4826
6bb15450
MG
4827 /*
4828 * Forbid the first pass from falling back to types that fragment
4829 * memory until all local zones are considered.
4830 */
0a79cdad 4831 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4832
5117f45d 4833 /* First allocation attempt */
a9263751 4834 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4835 if (likely(page))
4836 goto out;
11e33f6a 4837
4fcb0971 4838 /*
7dea19f9
MH
4839 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4840 * resp. GFP_NOIO which has to be inherited for all allocation requests
4841 * from a particular context which has been marked by
4842 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4843 */
7dea19f9 4844 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4845 ac.spread_dirty_pages = false;
23f086f9 4846
4741526b
MG
4847 /*
4848 * Restore the original nodemask if it was potentially replaced with
4849 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4850 */
97ce86f9 4851 ac.nodemask = nodemask;
16096c25 4852
4fcb0971 4853 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4854
4fcb0971 4855out:
c4159a75 4856 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4857 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4858 __free_pages(page, order);
4859 page = NULL;
4949148a
VD
4860 }
4861
4fcb0971
MG
4862 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4863
11e33f6a 4864 return page;
1da177e4 4865}
d239171e 4866EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4867
4868/*
9ea9a680
MH
4869 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4870 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4871 * you need to access high mem.
1da177e4 4872 */
920c7a5d 4873unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4874{
945a1113
AM
4875 struct page *page;
4876
9ea9a680 4877 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4878 if (!page)
4879 return 0;
4880 return (unsigned long) page_address(page);
4881}
1da177e4
LT
4882EXPORT_SYMBOL(__get_free_pages);
4883
920c7a5d 4884unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4885{
945a1113 4886 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4887}
1da177e4
LT
4888EXPORT_SYMBOL(get_zeroed_page);
4889
742aa7fb 4890static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4891{
742aa7fb
AL
4892 if (order == 0) /* Via pcp? */
4893 free_unref_page(page);
4894 else
4895 __free_pages_ok(page, order);
1da177e4
LT
4896}
4897
742aa7fb
AL
4898void __free_pages(struct page *page, unsigned int order)
4899{
4900 if (put_page_testzero(page))
4901 free_the_page(page, order);
4902}
1da177e4
LT
4903EXPORT_SYMBOL(__free_pages);
4904
920c7a5d 4905void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4906{
4907 if (addr != 0) {
725d704e 4908 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4909 __free_pages(virt_to_page((void *)addr), order);
4910 }
4911}
4912
4913EXPORT_SYMBOL(free_pages);
4914
b63ae8ca
AD
4915/*
4916 * Page Fragment:
4917 * An arbitrary-length arbitrary-offset area of memory which resides
4918 * within a 0 or higher order page. Multiple fragments within that page
4919 * are individually refcounted, in the page's reference counter.
4920 *
4921 * The page_frag functions below provide a simple allocation framework for
4922 * page fragments. This is used by the network stack and network device
4923 * drivers to provide a backing region of memory for use as either an
4924 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4925 */
2976db80
AD
4926static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4927 gfp_t gfp_mask)
b63ae8ca
AD
4928{
4929 struct page *page = NULL;
4930 gfp_t gfp = gfp_mask;
4931
4932#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4933 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4934 __GFP_NOMEMALLOC;
4935 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4936 PAGE_FRAG_CACHE_MAX_ORDER);
4937 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4938#endif
4939 if (unlikely(!page))
4940 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4941
4942 nc->va = page ? page_address(page) : NULL;
4943
4944 return page;
4945}
4946
2976db80 4947void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4948{
4949 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4950
742aa7fb
AL
4951 if (page_ref_sub_and_test(page, count))
4952 free_the_page(page, compound_order(page));
44fdffd7 4953}
2976db80 4954EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4955
8c2dd3e4
AD
4956void *page_frag_alloc(struct page_frag_cache *nc,
4957 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4958{
4959 unsigned int size = PAGE_SIZE;
4960 struct page *page;
4961 int offset;
4962
4963 if (unlikely(!nc->va)) {
4964refill:
2976db80 4965 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4966 if (!page)
4967 return NULL;
4968
4969#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4970 /* if size can vary use size else just use PAGE_SIZE */
4971 size = nc->size;
4972#endif
4973 /* Even if we own the page, we do not use atomic_set().
4974 * This would break get_page_unless_zero() users.
4975 */
86447726 4976 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4977
4978 /* reset page count bias and offset to start of new frag */
2f064f34 4979 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4980 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4981 nc->offset = size;
4982 }
4983
4984 offset = nc->offset - fragsz;
4985 if (unlikely(offset < 0)) {
4986 page = virt_to_page(nc->va);
4987
fe896d18 4988 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4989 goto refill;
4990
4991#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4992 /* if size can vary use size else just use PAGE_SIZE */
4993 size = nc->size;
4994#endif
4995 /* OK, page count is 0, we can safely set it */
86447726 4996 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4997
4998 /* reset page count bias and offset to start of new frag */
86447726 4999 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5000 offset = size - fragsz;
5001 }
5002
5003 nc->pagecnt_bias--;
5004 nc->offset = offset;
5005
5006 return nc->va + offset;
5007}
8c2dd3e4 5008EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5009
5010/*
5011 * Frees a page fragment allocated out of either a compound or order 0 page.
5012 */
8c2dd3e4 5013void page_frag_free(void *addr)
b63ae8ca
AD
5014{
5015 struct page *page = virt_to_head_page(addr);
5016
742aa7fb
AL
5017 if (unlikely(put_page_testzero(page)))
5018 free_the_page(page, compound_order(page));
b63ae8ca 5019}
8c2dd3e4 5020EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5021
d00181b9
KS
5022static void *make_alloc_exact(unsigned long addr, unsigned int order,
5023 size_t size)
ee85c2e1
AK
5024{
5025 if (addr) {
5026 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5027 unsigned long used = addr + PAGE_ALIGN(size);
5028
5029 split_page(virt_to_page((void *)addr), order);
5030 while (used < alloc_end) {
5031 free_page(used);
5032 used += PAGE_SIZE;
5033 }
5034 }
5035 return (void *)addr;
5036}
5037
2be0ffe2
TT
5038/**
5039 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5040 * @size: the number of bytes to allocate
63931eb9 5041 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5042 *
5043 * This function is similar to alloc_pages(), except that it allocates the
5044 * minimum number of pages to satisfy the request. alloc_pages() can only
5045 * allocate memory in power-of-two pages.
5046 *
5047 * This function is also limited by MAX_ORDER.
5048 *
5049 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5050 *
5051 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5052 */
5053void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5054{
5055 unsigned int order = get_order(size);
5056 unsigned long addr;
5057
63931eb9
VB
5058 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5059 gfp_mask &= ~__GFP_COMP;
5060
2be0ffe2 5061 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5062 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5063}
5064EXPORT_SYMBOL(alloc_pages_exact);
5065
ee85c2e1
AK
5066/**
5067 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5068 * pages on a node.
b5e6ab58 5069 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5070 * @size: the number of bytes to allocate
63931eb9 5071 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5072 *
5073 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5074 * back.
a862f68a
MR
5075 *
5076 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5077 */
e1931811 5078void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5079{
d00181b9 5080 unsigned int order = get_order(size);
63931eb9
VB
5081 struct page *p;
5082
5083 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5084 gfp_mask &= ~__GFP_COMP;
5085
5086 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5087 if (!p)
5088 return NULL;
5089 return make_alloc_exact((unsigned long)page_address(p), order, size);
5090}
ee85c2e1 5091
2be0ffe2
TT
5092/**
5093 * free_pages_exact - release memory allocated via alloc_pages_exact()
5094 * @virt: the value returned by alloc_pages_exact.
5095 * @size: size of allocation, same value as passed to alloc_pages_exact().
5096 *
5097 * Release the memory allocated by a previous call to alloc_pages_exact.
5098 */
5099void free_pages_exact(void *virt, size_t size)
5100{
5101 unsigned long addr = (unsigned long)virt;
5102 unsigned long end = addr + PAGE_ALIGN(size);
5103
5104 while (addr < end) {
5105 free_page(addr);
5106 addr += PAGE_SIZE;
5107 }
5108}
5109EXPORT_SYMBOL(free_pages_exact);
5110
e0fb5815
ZY
5111/**
5112 * nr_free_zone_pages - count number of pages beyond high watermark
5113 * @offset: The zone index of the highest zone
5114 *
a862f68a 5115 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5116 * high watermark within all zones at or below a given zone index. For each
5117 * zone, the number of pages is calculated as:
0e056eb5 5118 *
5119 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5120 *
5121 * Return: number of pages beyond high watermark.
e0fb5815 5122 */
ebec3862 5123static unsigned long nr_free_zone_pages(int offset)
1da177e4 5124{
dd1a239f 5125 struct zoneref *z;
54a6eb5c
MG
5126 struct zone *zone;
5127
e310fd43 5128 /* Just pick one node, since fallback list is circular */
ebec3862 5129 unsigned long sum = 0;
1da177e4 5130
0e88460d 5131 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5132
54a6eb5c 5133 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5134 unsigned long size = zone_managed_pages(zone);
41858966 5135 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5136 if (size > high)
5137 sum += size - high;
1da177e4
LT
5138 }
5139
5140 return sum;
5141}
5142
e0fb5815
ZY
5143/**
5144 * nr_free_buffer_pages - count number of pages beyond high watermark
5145 *
5146 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5147 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5148 *
5149 * Return: number of pages beyond high watermark within ZONE_DMA and
5150 * ZONE_NORMAL.
1da177e4 5151 */
ebec3862 5152unsigned long nr_free_buffer_pages(void)
1da177e4 5153{
af4ca457 5154 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5155}
c2f1a551 5156EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5157
e0fb5815
ZY
5158/**
5159 * nr_free_pagecache_pages - count number of pages beyond high watermark
5160 *
5161 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5162 * high watermark within all zones.
a862f68a
MR
5163 *
5164 * Return: number of pages beyond high watermark within all zones.
1da177e4 5165 */
ebec3862 5166unsigned long nr_free_pagecache_pages(void)
1da177e4 5167{
2a1e274a 5168 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5169}
08e0f6a9
CL
5170
5171static inline void show_node(struct zone *zone)
1da177e4 5172{
e5adfffc 5173 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5174 printk("Node %d ", zone_to_nid(zone));
1da177e4 5175}
1da177e4 5176
d02bd27b
IR
5177long si_mem_available(void)
5178{
5179 long available;
5180 unsigned long pagecache;
5181 unsigned long wmark_low = 0;
5182 unsigned long pages[NR_LRU_LISTS];
b29940c1 5183 unsigned long reclaimable;
d02bd27b
IR
5184 struct zone *zone;
5185 int lru;
5186
5187 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5188 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5189
5190 for_each_zone(zone)
a9214443 5191 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5192
5193 /*
5194 * Estimate the amount of memory available for userspace allocations,
5195 * without causing swapping.
5196 */
c41f012a 5197 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5198
5199 /*
5200 * Not all the page cache can be freed, otherwise the system will
5201 * start swapping. Assume at least half of the page cache, or the
5202 * low watermark worth of cache, needs to stay.
5203 */
5204 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5205 pagecache -= min(pagecache / 2, wmark_low);
5206 available += pagecache;
5207
5208 /*
b29940c1
VB
5209 * Part of the reclaimable slab and other kernel memory consists of
5210 * items that are in use, and cannot be freed. Cap this estimate at the
5211 * low watermark.
d02bd27b 5212 */
b29940c1
VB
5213 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5214 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5215 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5216
d02bd27b
IR
5217 if (available < 0)
5218 available = 0;
5219 return available;
5220}
5221EXPORT_SYMBOL_GPL(si_mem_available);
5222
1da177e4
LT
5223void si_meminfo(struct sysinfo *val)
5224{
ca79b0c2 5225 val->totalram = totalram_pages();
11fb9989 5226 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5227 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5228 val->bufferram = nr_blockdev_pages();
ca79b0c2 5229 val->totalhigh = totalhigh_pages();
1da177e4 5230 val->freehigh = nr_free_highpages();
1da177e4
LT
5231 val->mem_unit = PAGE_SIZE;
5232}
5233
5234EXPORT_SYMBOL(si_meminfo);
5235
5236#ifdef CONFIG_NUMA
5237void si_meminfo_node(struct sysinfo *val, int nid)
5238{
cdd91a77
JL
5239 int zone_type; /* needs to be signed */
5240 unsigned long managed_pages = 0;
fc2bd799
JK
5241 unsigned long managed_highpages = 0;
5242 unsigned long free_highpages = 0;
1da177e4
LT
5243 pg_data_t *pgdat = NODE_DATA(nid);
5244
cdd91a77 5245 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5246 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5247 val->totalram = managed_pages;
11fb9989 5248 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5249 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5250#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5251 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5252 struct zone *zone = &pgdat->node_zones[zone_type];
5253
5254 if (is_highmem(zone)) {
9705bea5 5255 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5256 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5257 }
5258 }
5259 val->totalhigh = managed_highpages;
5260 val->freehigh = free_highpages;
98d2b0eb 5261#else
fc2bd799
JK
5262 val->totalhigh = managed_highpages;
5263 val->freehigh = free_highpages;
98d2b0eb 5264#endif
1da177e4
LT
5265 val->mem_unit = PAGE_SIZE;
5266}
5267#endif
5268
ddd588b5 5269/*
7bf02ea2
DR
5270 * Determine whether the node should be displayed or not, depending on whether
5271 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5272 */
9af744d7 5273static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5274{
ddd588b5 5275 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5276 return false;
ddd588b5 5277
9af744d7
MH
5278 /*
5279 * no node mask - aka implicit memory numa policy. Do not bother with
5280 * the synchronization - read_mems_allowed_begin - because we do not
5281 * have to be precise here.
5282 */
5283 if (!nodemask)
5284 nodemask = &cpuset_current_mems_allowed;
5285
5286 return !node_isset(nid, *nodemask);
ddd588b5
DR
5287}
5288
1da177e4
LT
5289#define K(x) ((x) << (PAGE_SHIFT-10))
5290
377e4f16
RV
5291static void show_migration_types(unsigned char type)
5292{
5293 static const char types[MIGRATE_TYPES] = {
5294 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5295 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5296 [MIGRATE_RECLAIMABLE] = 'E',
5297 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5298#ifdef CONFIG_CMA
5299 [MIGRATE_CMA] = 'C',
5300#endif
194159fb 5301#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5302 [MIGRATE_ISOLATE] = 'I',
194159fb 5303#endif
377e4f16
RV
5304 };
5305 char tmp[MIGRATE_TYPES + 1];
5306 char *p = tmp;
5307 int i;
5308
5309 for (i = 0; i < MIGRATE_TYPES; i++) {
5310 if (type & (1 << i))
5311 *p++ = types[i];
5312 }
5313
5314 *p = '\0';
1f84a18f 5315 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5316}
5317
1da177e4
LT
5318/*
5319 * Show free area list (used inside shift_scroll-lock stuff)
5320 * We also calculate the percentage fragmentation. We do this by counting the
5321 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5322 *
5323 * Bits in @filter:
5324 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5325 * cpuset.
1da177e4 5326 */
9af744d7 5327void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5328{
d1bfcdb8 5329 unsigned long free_pcp = 0;
c7241913 5330 int cpu;
1da177e4 5331 struct zone *zone;
599d0c95 5332 pg_data_t *pgdat;
1da177e4 5333
ee99c71c 5334 for_each_populated_zone(zone) {
9af744d7 5335 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5336 continue;
d1bfcdb8 5337
761b0677
KK
5338 for_each_online_cpu(cpu)
5339 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5340 }
5341
a731286d
KM
5342 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5343 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5344 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5345 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5346 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5347 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5348 global_node_page_state(NR_ACTIVE_ANON),
5349 global_node_page_state(NR_INACTIVE_ANON),
5350 global_node_page_state(NR_ISOLATED_ANON),
5351 global_node_page_state(NR_ACTIVE_FILE),
5352 global_node_page_state(NR_INACTIVE_FILE),
5353 global_node_page_state(NR_ISOLATED_FILE),
5354 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5355 global_node_page_state(NR_FILE_DIRTY),
5356 global_node_page_state(NR_WRITEBACK),
d507e2eb
JW
5357 global_node_page_state(NR_SLAB_RECLAIMABLE),
5358 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5359 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5360 global_node_page_state(NR_SHMEM),
c41f012a
MH
5361 global_zone_page_state(NR_PAGETABLE),
5362 global_zone_page_state(NR_BOUNCE),
5363 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5364 free_pcp,
c41f012a 5365 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5366
599d0c95 5367 for_each_online_pgdat(pgdat) {
9af744d7 5368 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5369 continue;
5370
599d0c95
MG
5371 printk("Node %d"
5372 " active_anon:%lukB"
5373 " inactive_anon:%lukB"
5374 " active_file:%lukB"
5375 " inactive_file:%lukB"
5376 " unevictable:%lukB"
5377 " isolated(anon):%lukB"
5378 " isolated(file):%lukB"
50658e2e 5379 " mapped:%lukB"
11fb9989
MG
5380 " dirty:%lukB"
5381 " writeback:%lukB"
5382 " shmem:%lukB"
5383#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5384 " shmem_thp: %lukB"
5385 " shmem_pmdmapped: %lukB"
5386 " anon_thp: %lukB"
5387#endif
5388 " writeback_tmp:%lukB"
599d0c95
MG
5389 " all_unreclaimable? %s"
5390 "\n",
5391 pgdat->node_id,
5392 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5393 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5394 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5395 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5396 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5397 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5398 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5399 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5400 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5401 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5402 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5403#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5404 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5405 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5406 * HPAGE_PMD_NR),
5407 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5408#endif
11fb9989 5409 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
c73322d0
JW
5410 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5411 "yes" : "no");
599d0c95
MG
5412 }
5413
ee99c71c 5414 for_each_populated_zone(zone) {
1da177e4
LT
5415 int i;
5416
9af744d7 5417 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5418 continue;
d1bfcdb8
KK
5419
5420 free_pcp = 0;
5421 for_each_online_cpu(cpu)
5422 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5423
1da177e4 5424 show_node(zone);
1f84a18f
JP
5425 printk(KERN_CONT
5426 "%s"
1da177e4
LT
5427 " free:%lukB"
5428 " min:%lukB"
5429 " low:%lukB"
5430 " high:%lukB"
e47b346a 5431 " reserved_highatomic:%luKB"
71c799f4
MK
5432 " active_anon:%lukB"
5433 " inactive_anon:%lukB"
5434 " active_file:%lukB"
5435 " inactive_file:%lukB"
5436 " unevictable:%lukB"
5a1c84b4 5437 " writepending:%lukB"
1da177e4 5438 " present:%lukB"
9feedc9d 5439 " managed:%lukB"
4a0aa73f 5440 " mlocked:%lukB"
c6a7f572 5441 " kernel_stack:%lukB"
628d06a4
ST
5442#ifdef CONFIG_SHADOW_CALL_STACK
5443 " shadow_call_stack:%lukB"
5444#endif
4a0aa73f 5445 " pagetables:%lukB"
4a0aa73f 5446 " bounce:%lukB"
d1bfcdb8
KK
5447 " free_pcp:%lukB"
5448 " local_pcp:%ukB"
d1ce749a 5449 " free_cma:%lukB"
1da177e4
LT
5450 "\n",
5451 zone->name,
88f5acf8 5452 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5453 K(min_wmark_pages(zone)),
5454 K(low_wmark_pages(zone)),
5455 K(high_wmark_pages(zone)),
e47b346a 5456 K(zone->nr_reserved_highatomic),
71c799f4
MK
5457 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5458 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5459 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5460 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5461 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5462 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5463 K(zone->present_pages),
9705bea5 5464 K(zone_managed_pages(zone)),
4a0aa73f 5465 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5466 zone_page_state(zone, NR_KERNEL_STACK_KB),
628d06a4
ST
5467#ifdef CONFIG_SHADOW_CALL_STACK
5468 zone_page_state(zone, NR_KERNEL_SCS_KB),
5469#endif
4a0aa73f 5470 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5471 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5472 K(free_pcp),
5473 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5474 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5475 printk("lowmem_reserve[]:");
5476 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5477 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5478 printk(KERN_CONT "\n");
1da177e4
LT
5479 }
5480
ee99c71c 5481 for_each_populated_zone(zone) {
d00181b9
KS
5482 unsigned int order;
5483 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5484 unsigned char types[MAX_ORDER];
1da177e4 5485
9af744d7 5486 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5487 continue;
1da177e4 5488 show_node(zone);
1f84a18f 5489 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5490
5491 spin_lock_irqsave(&zone->lock, flags);
5492 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5493 struct free_area *area = &zone->free_area[order];
5494 int type;
5495
5496 nr[order] = area->nr_free;
8f9de51a 5497 total += nr[order] << order;
377e4f16
RV
5498
5499 types[order] = 0;
5500 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5501 if (!free_area_empty(area, type))
377e4f16
RV
5502 types[order] |= 1 << type;
5503 }
1da177e4
LT
5504 }
5505 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5506 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5507 printk(KERN_CONT "%lu*%lukB ",
5508 nr[order], K(1UL) << order);
377e4f16
RV
5509 if (nr[order])
5510 show_migration_types(types[order]);
5511 }
1f84a18f 5512 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5513 }
5514
949f7ec5
DR
5515 hugetlb_show_meminfo();
5516
11fb9989 5517 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5518
1da177e4
LT
5519 show_swap_cache_info();
5520}
5521
19770b32
MG
5522static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5523{
5524 zoneref->zone = zone;
5525 zoneref->zone_idx = zone_idx(zone);
5526}
5527
1da177e4
LT
5528/*
5529 * Builds allocation fallback zone lists.
1a93205b
CL
5530 *
5531 * Add all populated zones of a node to the zonelist.
1da177e4 5532 */
9d3be21b 5533static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5534{
1a93205b 5535 struct zone *zone;
bc732f1d 5536 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5537 int nr_zones = 0;
02a68a5e
CL
5538
5539 do {
2f6726e5 5540 zone_type--;
070f8032 5541 zone = pgdat->node_zones + zone_type;
6aa303de 5542 if (managed_zone(zone)) {
9d3be21b 5543 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5544 check_highest_zone(zone_type);
1da177e4 5545 }
2f6726e5 5546 } while (zone_type);
bc732f1d 5547
070f8032 5548 return nr_zones;
1da177e4
LT
5549}
5550
5551#ifdef CONFIG_NUMA
f0c0b2b8
KH
5552
5553static int __parse_numa_zonelist_order(char *s)
5554{
c9bff3ee
MH
5555 /*
5556 * We used to support different zonlists modes but they turned
5557 * out to be just not useful. Let's keep the warning in place
5558 * if somebody still use the cmd line parameter so that we do
5559 * not fail it silently
5560 */
5561 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5562 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5563 return -EINVAL;
5564 }
5565 return 0;
5566}
5567
5568static __init int setup_numa_zonelist_order(char *s)
5569{
ecb256f8
VL
5570 if (!s)
5571 return 0;
5572
c9bff3ee 5573 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5574}
5575early_param("numa_zonelist_order", setup_numa_zonelist_order);
5576
c9bff3ee
MH
5577char numa_zonelist_order[] = "Node";
5578
f0c0b2b8
KH
5579/*
5580 * sysctl handler for numa_zonelist_order
5581 */
cccad5b9 5582int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5583 void __user *buffer, size_t *length,
f0c0b2b8
KH
5584 loff_t *ppos)
5585{
c9bff3ee 5586 char *str;
f0c0b2b8
KH
5587 int ret;
5588
c9bff3ee
MH
5589 if (!write)
5590 return proc_dostring(table, write, buffer, length, ppos);
5591 str = memdup_user_nul(buffer, 16);
5592 if (IS_ERR(str))
5593 return PTR_ERR(str);
dacbde09 5594
c9bff3ee
MH
5595 ret = __parse_numa_zonelist_order(str);
5596 kfree(str);
443c6f14 5597 return ret;
f0c0b2b8
KH
5598}
5599
5600
62bc62a8 5601#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5602static int node_load[MAX_NUMNODES];
5603
1da177e4 5604/**
4dc3b16b 5605 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5606 * @node: node whose fallback list we're appending
5607 * @used_node_mask: nodemask_t of already used nodes
5608 *
5609 * We use a number of factors to determine which is the next node that should
5610 * appear on a given node's fallback list. The node should not have appeared
5611 * already in @node's fallback list, and it should be the next closest node
5612 * according to the distance array (which contains arbitrary distance values
5613 * from each node to each node in the system), and should also prefer nodes
5614 * with no CPUs, since presumably they'll have very little allocation pressure
5615 * on them otherwise.
a862f68a
MR
5616 *
5617 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5618 */
f0c0b2b8 5619static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5620{
4cf808eb 5621 int n, val;
1da177e4 5622 int min_val = INT_MAX;
00ef2d2f 5623 int best_node = NUMA_NO_NODE;
a70f7302 5624 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5625
4cf808eb
LT
5626 /* Use the local node if we haven't already */
5627 if (!node_isset(node, *used_node_mask)) {
5628 node_set(node, *used_node_mask);
5629 return node;
5630 }
1da177e4 5631
4b0ef1fe 5632 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5633
5634 /* Don't want a node to appear more than once */
5635 if (node_isset(n, *used_node_mask))
5636 continue;
5637
1da177e4
LT
5638 /* Use the distance array to find the distance */
5639 val = node_distance(node, n);
5640
4cf808eb
LT
5641 /* Penalize nodes under us ("prefer the next node") */
5642 val += (n < node);
5643
1da177e4 5644 /* Give preference to headless and unused nodes */
a70f7302
RR
5645 tmp = cpumask_of_node(n);
5646 if (!cpumask_empty(tmp))
1da177e4
LT
5647 val += PENALTY_FOR_NODE_WITH_CPUS;
5648
5649 /* Slight preference for less loaded node */
5650 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5651 val += node_load[n];
5652
5653 if (val < min_val) {
5654 min_val = val;
5655 best_node = n;
5656 }
5657 }
5658
5659 if (best_node >= 0)
5660 node_set(best_node, *used_node_mask);
5661
5662 return best_node;
5663}
5664
f0c0b2b8
KH
5665
5666/*
5667 * Build zonelists ordered by node and zones within node.
5668 * This results in maximum locality--normal zone overflows into local
5669 * DMA zone, if any--but risks exhausting DMA zone.
5670 */
9d3be21b
MH
5671static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5672 unsigned nr_nodes)
1da177e4 5673{
9d3be21b
MH
5674 struct zoneref *zonerefs;
5675 int i;
5676
5677 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5678
5679 for (i = 0; i < nr_nodes; i++) {
5680 int nr_zones;
5681
5682 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5683
9d3be21b
MH
5684 nr_zones = build_zonerefs_node(node, zonerefs);
5685 zonerefs += nr_zones;
5686 }
5687 zonerefs->zone = NULL;
5688 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5689}
5690
523b9458
CL
5691/*
5692 * Build gfp_thisnode zonelists
5693 */
5694static void build_thisnode_zonelists(pg_data_t *pgdat)
5695{
9d3be21b
MH
5696 struct zoneref *zonerefs;
5697 int nr_zones;
523b9458 5698
9d3be21b
MH
5699 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5700 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5701 zonerefs += nr_zones;
5702 zonerefs->zone = NULL;
5703 zonerefs->zone_idx = 0;
523b9458
CL
5704}
5705
f0c0b2b8
KH
5706/*
5707 * Build zonelists ordered by zone and nodes within zones.
5708 * This results in conserving DMA zone[s] until all Normal memory is
5709 * exhausted, but results in overflowing to remote node while memory
5710 * may still exist in local DMA zone.
5711 */
f0c0b2b8 5712
f0c0b2b8
KH
5713static void build_zonelists(pg_data_t *pgdat)
5714{
9d3be21b
MH
5715 static int node_order[MAX_NUMNODES];
5716 int node, load, nr_nodes = 0;
1da177e4 5717 nodemask_t used_mask;
f0c0b2b8 5718 int local_node, prev_node;
1da177e4
LT
5719
5720 /* NUMA-aware ordering of nodes */
5721 local_node = pgdat->node_id;
62bc62a8 5722 load = nr_online_nodes;
1da177e4
LT
5723 prev_node = local_node;
5724 nodes_clear(used_mask);
f0c0b2b8 5725
f0c0b2b8 5726 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5727 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5728 /*
5729 * We don't want to pressure a particular node.
5730 * So adding penalty to the first node in same
5731 * distance group to make it round-robin.
5732 */
957f822a
DR
5733 if (node_distance(local_node, node) !=
5734 node_distance(local_node, prev_node))
f0c0b2b8
KH
5735 node_load[node] = load;
5736
9d3be21b 5737 node_order[nr_nodes++] = node;
1da177e4
LT
5738 prev_node = node;
5739 load--;
1da177e4 5740 }
523b9458 5741
9d3be21b 5742 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5743 build_thisnode_zonelists(pgdat);
1da177e4
LT
5744}
5745
7aac7898
LS
5746#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5747/*
5748 * Return node id of node used for "local" allocations.
5749 * I.e., first node id of first zone in arg node's generic zonelist.
5750 * Used for initializing percpu 'numa_mem', which is used primarily
5751 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5752 */
5753int local_memory_node(int node)
5754{
c33d6c06 5755 struct zoneref *z;
7aac7898 5756
c33d6c06 5757 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5758 gfp_zone(GFP_KERNEL),
c33d6c06 5759 NULL);
c1093b74 5760 return zone_to_nid(z->zone);
7aac7898
LS
5761}
5762#endif
f0c0b2b8 5763
6423aa81
JK
5764static void setup_min_unmapped_ratio(void);
5765static void setup_min_slab_ratio(void);
1da177e4
LT
5766#else /* CONFIG_NUMA */
5767
f0c0b2b8 5768static void build_zonelists(pg_data_t *pgdat)
1da177e4 5769{
19655d34 5770 int node, local_node;
9d3be21b
MH
5771 struct zoneref *zonerefs;
5772 int nr_zones;
1da177e4
LT
5773
5774 local_node = pgdat->node_id;
1da177e4 5775
9d3be21b
MH
5776 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5777 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5778 zonerefs += nr_zones;
1da177e4 5779
54a6eb5c
MG
5780 /*
5781 * Now we build the zonelist so that it contains the zones
5782 * of all the other nodes.
5783 * We don't want to pressure a particular node, so when
5784 * building the zones for node N, we make sure that the
5785 * zones coming right after the local ones are those from
5786 * node N+1 (modulo N)
5787 */
5788 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5789 if (!node_online(node))
5790 continue;
9d3be21b
MH
5791 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5792 zonerefs += nr_zones;
1da177e4 5793 }
54a6eb5c
MG
5794 for (node = 0; node < local_node; node++) {
5795 if (!node_online(node))
5796 continue;
9d3be21b
MH
5797 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5798 zonerefs += nr_zones;
54a6eb5c
MG
5799 }
5800
9d3be21b
MH
5801 zonerefs->zone = NULL;
5802 zonerefs->zone_idx = 0;
1da177e4
LT
5803}
5804
5805#endif /* CONFIG_NUMA */
5806
99dcc3e5
CL
5807/*
5808 * Boot pageset table. One per cpu which is going to be used for all
5809 * zones and all nodes. The parameters will be set in such a way
5810 * that an item put on a list will immediately be handed over to
5811 * the buddy list. This is safe since pageset manipulation is done
5812 * with interrupts disabled.
5813 *
5814 * The boot_pagesets must be kept even after bootup is complete for
5815 * unused processors and/or zones. They do play a role for bootstrapping
5816 * hotplugged processors.
5817 *
5818 * zoneinfo_show() and maybe other functions do
5819 * not check if the processor is online before following the pageset pointer.
5820 * Other parts of the kernel may not check if the zone is available.
5821 */
5822static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5823static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5824static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5825
11cd8638 5826static void __build_all_zonelists(void *data)
1da177e4 5827{
6811378e 5828 int nid;
afb6ebb3 5829 int __maybe_unused cpu;
9adb62a5 5830 pg_data_t *self = data;
b93e0f32
MH
5831 static DEFINE_SPINLOCK(lock);
5832
5833 spin_lock(&lock);
9276b1bc 5834
7f9cfb31
BL
5835#ifdef CONFIG_NUMA
5836 memset(node_load, 0, sizeof(node_load));
5837#endif
9adb62a5 5838
c1152583
WY
5839 /*
5840 * This node is hotadded and no memory is yet present. So just
5841 * building zonelists is fine - no need to touch other nodes.
5842 */
9adb62a5
JL
5843 if (self && !node_online(self->node_id)) {
5844 build_zonelists(self);
c1152583
WY
5845 } else {
5846 for_each_online_node(nid) {
5847 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5848
c1152583
WY
5849 build_zonelists(pgdat);
5850 }
99dcc3e5 5851
7aac7898
LS
5852#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5853 /*
5854 * We now know the "local memory node" for each node--
5855 * i.e., the node of the first zone in the generic zonelist.
5856 * Set up numa_mem percpu variable for on-line cpus. During
5857 * boot, only the boot cpu should be on-line; we'll init the
5858 * secondary cpus' numa_mem as they come on-line. During
5859 * node/memory hotplug, we'll fixup all on-line cpus.
5860 */
d9c9a0b9 5861 for_each_online_cpu(cpu)
7aac7898 5862 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5863#endif
d9c9a0b9 5864 }
b93e0f32
MH
5865
5866 spin_unlock(&lock);
6811378e
YG
5867}
5868
061f67bc
RV
5869static noinline void __init
5870build_all_zonelists_init(void)
5871{
afb6ebb3
MH
5872 int cpu;
5873
061f67bc 5874 __build_all_zonelists(NULL);
afb6ebb3
MH
5875
5876 /*
5877 * Initialize the boot_pagesets that are going to be used
5878 * for bootstrapping processors. The real pagesets for
5879 * each zone will be allocated later when the per cpu
5880 * allocator is available.
5881 *
5882 * boot_pagesets are used also for bootstrapping offline
5883 * cpus if the system is already booted because the pagesets
5884 * are needed to initialize allocators on a specific cpu too.
5885 * F.e. the percpu allocator needs the page allocator which
5886 * needs the percpu allocator in order to allocate its pagesets
5887 * (a chicken-egg dilemma).
5888 */
5889 for_each_possible_cpu(cpu)
5890 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5891
061f67bc
RV
5892 mminit_verify_zonelist();
5893 cpuset_init_current_mems_allowed();
5894}
5895
4eaf3f64 5896/*
4eaf3f64 5897 * unless system_state == SYSTEM_BOOTING.
061f67bc 5898 *
72675e13 5899 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5900 * [protected by SYSTEM_BOOTING].
4eaf3f64 5901 */
72675e13 5902void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5903{
5904 if (system_state == SYSTEM_BOOTING) {
061f67bc 5905 build_all_zonelists_init();
6811378e 5906 } else {
11cd8638 5907 __build_all_zonelists(pgdat);
6811378e
YG
5908 /* cpuset refresh routine should be here */
5909 }
bd1e22b8 5910 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5911 /*
5912 * Disable grouping by mobility if the number of pages in the
5913 * system is too low to allow the mechanism to work. It would be
5914 * more accurate, but expensive to check per-zone. This check is
5915 * made on memory-hotadd so a system can start with mobility
5916 * disabled and enable it later
5917 */
d9c23400 5918 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5919 page_group_by_mobility_disabled = 1;
5920 else
5921 page_group_by_mobility_disabled = 0;
5922
ce0725f7 5923 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5924 nr_online_nodes,
756a025f
JP
5925 page_group_by_mobility_disabled ? "off" : "on",
5926 vm_total_pages);
f0c0b2b8 5927#ifdef CONFIG_NUMA
f88dfff5 5928 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5929#endif
1da177e4
LT
5930}
5931
a9a9e77f
PT
5932/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5933static bool __meminit
5934overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5935{
a9a9e77f
PT
5936 static struct memblock_region *r;
5937
5938 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5939 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5940 for_each_memblock(memory, r) {
5941 if (*pfn < memblock_region_memory_end_pfn(r))
5942 break;
5943 }
5944 }
5945 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5946 memblock_is_mirror(r)) {
5947 *pfn = memblock_region_memory_end_pfn(r);
5948 return true;
5949 }
5950 }
a9a9e77f
PT
5951 return false;
5952}
5953
3f135355
KS
5954#ifdef CONFIG_SPARSEMEM
5955/* Skip PFNs that belong to non-present sections */
5956static inline __meminit unsigned long next_pfn(unsigned long pfn)
5957{
4c605881 5958 const unsigned long section_nr = pfn_to_section_nr(++pfn);
3f135355 5959
3f135355
KS
5960 if (present_section_nr(section_nr))
5961 return pfn;
4c605881 5962 return section_nr_to_pfn(next_present_section_nr(section_nr));
3f135355
KS
5963}
5964#else
5965static inline __meminit unsigned long next_pfn(unsigned long pfn)
5966{
5967 return pfn++;
5968}
5969#endif
5970
1da177e4
LT
5971/*
5972 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5973 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5974 * done. Non-atomic initialization, single-pass.
5975 */
c09b4240 5976void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5977 unsigned long start_pfn, enum memmap_context context,
5978 struct vmem_altmap *altmap)
1da177e4 5979{
a9a9e77f 5980 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5981 struct page *page;
1da177e4 5982
22b31eec
HD
5983 if (highest_memmap_pfn < end_pfn - 1)
5984 highest_memmap_pfn = end_pfn - 1;
5985
966cf44f 5986#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5987 /*
5988 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5989 * memory. We limit the total number of pages to initialize to just
5990 * those that might contain the memory mapping. We will defer the
5991 * ZONE_DEVICE page initialization until after we have released
5992 * the hotplug lock.
4b94ffdc 5993 */
966cf44f
AD
5994 if (zone == ZONE_DEVICE) {
5995 if (!altmap)
5996 return;
5997
5998 if (start_pfn == altmap->base_pfn)
5999 start_pfn += altmap->reserve;
6000 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6001 }
6002#endif
4b94ffdc 6003
948c436e 6004 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6005 /*
b72d0ffb
AM
6006 * There can be holes in boot-time mem_map[]s handed to this
6007 * function. They do not exist on hotplugged memory.
a2f3aa02 6008 */
a9a9e77f 6009 if (context == MEMMAP_EARLY) {
3f135355 6010 if (!early_pfn_valid(pfn)) {
948c436e 6011 pfn = next_pfn(pfn);
b72d0ffb 6012 continue;
3f135355 6013 }
948c436e
DH
6014 if (!early_pfn_in_nid(pfn, nid)) {
6015 pfn++;
a9a9e77f 6016 continue;
948c436e 6017 }
a9a9e77f
PT
6018 if (overlap_memmap_init(zone, &pfn))
6019 continue;
6020 if (defer_init(nid, pfn, end_pfn))
6021 break;
a2f3aa02 6022 }
ac5d2539 6023
d0dc12e8
PT
6024 page = pfn_to_page(pfn);
6025 __init_single_page(page, pfn, zone, nid);
6026 if (context == MEMMAP_HOTPLUG)
d483da5b 6027 __SetPageReserved(page);
d0dc12e8 6028
ac5d2539
MG
6029 /*
6030 * Mark the block movable so that blocks are reserved for
6031 * movable at startup. This will force kernel allocations
6032 * to reserve their blocks rather than leaking throughout
6033 * the address space during boot when many long-lived
974a786e 6034 * kernel allocations are made.
ac5d2539
MG
6035 *
6036 * bitmap is created for zone's valid pfn range. but memmap
6037 * can be created for invalid pages (for alignment)
6038 * check here not to call set_pageblock_migratetype() against
6039 * pfn out of zone.
6040 */
6041 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6042 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6043 cond_resched();
ac5d2539 6044 }
948c436e 6045 pfn++;
1da177e4
LT
6046 }
6047}
6048
966cf44f
AD
6049#ifdef CONFIG_ZONE_DEVICE
6050void __ref memmap_init_zone_device(struct zone *zone,
6051 unsigned long start_pfn,
1f8d75c1 6052 unsigned long nr_pages,
966cf44f
AD
6053 struct dev_pagemap *pgmap)
6054{
1f8d75c1 6055 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6056 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6057 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6058 unsigned long zone_idx = zone_idx(zone);
6059 unsigned long start = jiffies;
6060 int nid = pgdat->node_id;
6061
46d945ae 6062 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6063 return;
6064
6065 /*
6066 * The call to memmap_init_zone should have already taken care
6067 * of the pages reserved for the memmap, so we can just jump to
6068 * the end of that region and start processing the device pages.
6069 */
514caf23 6070 if (altmap) {
966cf44f 6071 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6072 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6073 }
6074
6075 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6076 struct page *page = pfn_to_page(pfn);
6077
6078 __init_single_page(page, pfn, zone_idx, nid);
6079
6080 /*
6081 * Mark page reserved as it will need to wait for onlining
6082 * phase for it to be fully associated with a zone.
6083 *
6084 * We can use the non-atomic __set_bit operation for setting
6085 * the flag as we are still initializing the pages.
6086 */
6087 __SetPageReserved(page);
6088
6089 /*
8a164fef
CH
6090 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6091 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6092 * ever freed or placed on a driver-private list.
966cf44f
AD
6093 */
6094 page->pgmap = pgmap;
8a164fef 6095 page->zone_device_data = NULL;
966cf44f
AD
6096
6097 /*
6098 * Mark the block movable so that blocks are reserved for
6099 * movable at startup. This will force kernel allocations
6100 * to reserve their blocks rather than leaking throughout
6101 * the address space during boot when many long-lived
6102 * kernel allocations are made.
6103 *
6104 * bitmap is created for zone's valid pfn range. but memmap
6105 * can be created for invalid pages (for alignment)
6106 * check here not to call set_pageblock_migratetype() against
6107 * pfn out of zone.
6108 *
6109 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6110 * because this is done early in section_activate()
966cf44f
AD
6111 */
6112 if (!(pfn & (pageblock_nr_pages - 1))) {
6113 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6114 cond_resched();
6115 }
6116 }
6117
fdc029b1 6118 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6119 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6120}
6121
6122#endif
1e548deb 6123static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6124{
7aeb09f9 6125 unsigned int order, t;
b2a0ac88
MG
6126 for_each_migratetype_order(order, t) {
6127 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6128 zone->free_area[order].nr_free = 0;
6129 }
6130}
6131
dfb3ccd0
PT
6132void __meminit __weak memmap_init(unsigned long size, int nid,
6133 unsigned long zone, unsigned long start_pfn)
6134{
6135 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6136}
1da177e4 6137
7cd2b0a3 6138static int zone_batchsize(struct zone *zone)
e7c8d5c9 6139{
3a6be87f 6140#ifdef CONFIG_MMU
e7c8d5c9
CL
6141 int batch;
6142
6143 /*
6144 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6145 * size of the zone.
e7c8d5c9 6146 */
9705bea5 6147 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6148 /* But no more than a meg. */
6149 if (batch * PAGE_SIZE > 1024 * 1024)
6150 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6151 batch /= 4; /* We effectively *= 4 below */
6152 if (batch < 1)
6153 batch = 1;
6154
6155 /*
0ceaacc9
NP
6156 * Clamp the batch to a 2^n - 1 value. Having a power
6157 * of 2 value was found to be more likely to have
6158 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6159 *
0ceaacc9
NP
6160 * For example if 2 tasks are alternately allocating
6161 * batches of pages, one task can end up with a lot
6162 * of pages of one half of the possible page colors
6163 * and the other with pages of the other colors.
e7c8d5c9 6164 */
9155203a 6165 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6166
e7c8d5c9 6167 return batch;
3a6be87f
DH
6168
6169#else
6170 /* The deferral and batching of frees should be suppressed under NOMMU
6171 * conditions.
6172 *
6173 * The problem is that NOMMU needs to be able to allocate large chunks
6174 * of contiguous memory as there's no hardware page translation to
6175 * assemble apparent contiguous memory from discontiguous pages.
6176 *
6177 * Queueing large contiguous runs of pages for batching, however,
6178 * causes the pages to actually be freed in smaller chunks. As there
6179 * can be a significant delay between the individual batches being
6180 * recycled, this leads to the once large chunks of space being
6181 * fragmented and becoming unavailable for high-order allocations.
6182 */
6183 return 0;
6184#endif
e7c8d5c9
CL
6185}
6186
8d7a8fa9
CS
6187/*
6188 * pcp->high and pcp->batch values are related and dependent on one another:
6189 * ->batch must never be higher then ->high.
6190 * The following function updates them in a safe manner without read side
6191 * locking.
6192 *
6193 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6194 * those fields changing asynchronously (acording the the above rule).
6195 *
6196 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6197 * outside of boot time (or some other assurance that no concurrent updaters
6198 * exist).
6199 */
6200static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6201 unsigned long batch)
6202{
6203 /* start with a fail safe value for batch */
6204 pcp->batch = 1;
6205 smp_wmb();
6206
6207 /* Update high, then batch, in order */
6208 pcp->high = high;
6209 smp_wmb();
6210
6211 pcp->batch = batch;
6212}
6213
3664033c 6214/* a companion to pageset_set_high() */
4008bab7
CS
6215static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6216{
8d7a8fa9 6217 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6218}
6219
88c90dbc 6220static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6221{
6222 struct per_cpu_pages *pcp;
5f8dcc21 6223 int migratetype;
2caaad41 6224
1c6fe946
MD
6225 memset(p, 0, sizeof(*p));
6226
3dfa5721 6227 pcp = &p->pcp;
5f8dcc21
MG
6228 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6229 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6230}
6231
88c90dbc
CS
6232static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6233{
6234 pageset_init(p);
6235 pageset_set_batch(p, batch);
6236}
6237
8ad4b1fb 6238/*
3664033c 6239 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6240 * to the value high for the pageset p.
6241 */
3664033c 6242static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6243 unsigned long high)
6244{
8d7a8fa9
CS
6245 unsigned long batch = max(1UL, high / 4);
6246 if ((high / 4) > (PAGE_SHIFT * 8))
6247 batch = PAGE_SHIFT * 8;
8ad4b1fb 6248
8d7a8fa9 6249 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6250}
6251
7cd2b0a3
DR
6252static void pageset_set_high_and_batch(struct zone *zone,
6253 struct per_cpu_pageset *pcp)
56cef2b8 6254{
56cef2b8 6255 if (percpu_pagelist_fraction)
3664033c 6256 pageset_set_high(pcp,
9705bea5 6257 (zone_managed_pages(zone) /
56cef2b8
CS
6258 percpu_pagelist_fraction));
6259 else
6260 pageset_set_batch(pcp, zone_batchsize(zone));
6261}
6262
169f6c19
CS
6263static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6264{
6265 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6266
6267 pageset_init(pcp);
6268 pageset_set_high_and_batch(zone, pcp);
6269}
6270
72675e13 6271void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6272{
6273 int cpu;
319774e2 6274 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6275 for_each_possible_cpu(cpu)
6276 zone_pageset_init(zone, cpu);
319774e2
WF
6277}
6278
2caaad41 6279/*
99dcc3e5
CL
6280 * Allocate per cpu pagesets and initialize them.
6281 * Before this call only boot pagesets were available.
e7c8d5c9 6282 */
99dcc3e5 6283void __init setup_per_cpu_pageset(void)
e7c8d5c9 6284{
b4911ea2 6285 struct pglist_data *pgdat;
99dcc3e5 6286 struct zone *zone;
e7c8d5c9 6287
319774e2
WF
6288 for_each_populated_zone(zone)
6289 setup_zone_pageset(zone);
b4911ea2
MG
6290
6291 for_each_online_pgdat(pgdat)
6292 pgdat->per_cpu_nodestats =
6293 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6294}
6295
c09b4240 6296static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6297{
99dcc3e5
CL
6298 /*
6299 * per cpu subsystem is not up at this point. The following code
6300 * relies on the ability of the linker to provide the
6301 * offset of a (static) per cpu variable into the per cpu area.
6302 */
6303 zone->pageset = &boot_pageset;
ed8ece2e 6304
b38a8725 6305 if (populated_zone(zone))
99dcc3e5
CL
6306 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6307 zone->name, zone->present_pages,
6308 zone_batchsize(zone));
ed8ece2e
DH
6309}
6310
dc0bbf3b 6311void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6312 unsigned long zone_start_pfn,
b171e409 6313 unsigned long size)
ed8ece2e
DH
6314{
6315 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6316 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6317
8f416836
WY
6318 if (zone_idx > pgdat->nr_zones)
6319 pgdat->nr_zones = zone_idx;
ed8ece2e 6320
ed8ece2e
DH
6321 zone->zone_start_pfn = zone_start_pfn;
6322
708614e6
MG
6323 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6324 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6325 pgdat->node_id,
6326 (unsigned long)zone_idx(zone),
6327 zone_start_pfn, (zone_start_pfn + size));
6328
1e548deb 6329 zone_init_free_lists(zone);
9dcb8b68 6330 zone->initialized = 1;
ed8ece2e
DH
6331}
6332
c713216d 6333/**
6782832e 6334 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6335 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6336 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6337 *
7d018176
ZZ
6338 * If an architecture guarantees that all ranges registered contain no holes
6339 * and may be freed, this this function may be used instead of calling
6340 * memblock_free_early_nid() manually.
c713216d 6341 */
c13291a5 6342void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6343{
c13291a5
TH
6344 unsigned long start_pfn, end_pfn;
6345 int i, this_nid;
edbe7d23 6346
c13291a5
TH
6347 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6348 start_pfn = min(start_pfn, max_low_pfn);
6349 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6350
c13291a5 6351 if (start_pfn < end_pfn)
6782832e
SS
6352 memblock_free_early_nid(PFN_PHYS(start_pfn),
6353 (end_pfn - start_pfn) << PAGE_SHIFT,
6354 this_nid);
edbe7d23 6355 }
edbe7d23 6356}
edbe7d23 6357
c713216d
MG
6358/**
6359 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6360 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6361 *
7d018176
ZZ
6362 * If an architecture guarantees that all ranges registered contain no holes and may
6363 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6364 */
6365void __init sparse_memory_present_with_active_regions(int nid)
6366{
c13291a5
TH
6367 unsigned long start_pfn, end_pfn;
6368 int i, this_nid;
c713216d 6369
c13291a5
TH
6370 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6371 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6372}
6373
6374/**
6375 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6376 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6377 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6378 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6379 *
6380 * It returns the start and end page frame of a node based on information
7d018176 6381 * provided by memblock_set_node(). If called for a node
c713216d 6382 * with no available memory, a warning is printed and the start and end
88ca3b94 6383 * PFNs will be 0.
c713216d 6384 */
bbe5d993 6385void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6386 unsigned long *start_pfn, unsigned long *end_pfn)
6387{
c13291a5 6388 unsigned long this_start_pfn, this_end_pfn;
c713216d 6389 int i;
c13291a5 6390
c713216d
MG
6391 *start_pfn = -1UL;
6392 *end_pfn = 0;
6393
c13291a5
TH
6394 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6395 *start_pfn = min(*start_pfn, this_start_pfn);
6396 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6397 }
6398
633c0666 6399 if (*start_pfn == -1UL)
c713216d 6400 *start_pfn = 0;
c713216d
MG
6401}
6402
2a1e274a
MG
6403/*
6404 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6405 * assumption is made that zones within a node are ordered in monotonic
6406 * increasing memory addresses so that the "highest" populated zone is used
6407 */
b69a7288 6408static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6409{
6410 int zone_index;
6411 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6412 if (zone_index == ZONE_MOVABLE)
6413 continue;
6414
6415 if (arch_zone_highest_possible_pfn[zone_index] >
6416 arch_zone_lowest_possible_pfn[zone_index])
6417 break;
6418 }
6419
6420 VM_BUG_ON(zone_index == -1);
6421 movable_zone = zone_index;
6422}
6423
6424/*
6425 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6426 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6427 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6428 * in each node depending on the size of each node and how evenly kernelcore
6429 * is distributed. This helper function adjusts the zone ranges
6430 * provided by the architecture for a given node by using the end of the
6431 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6432 * zones within a node are in order of monotonic increases memory addresses
6433 */
bbe5d993 6434static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6435 unsigned long zone_type,
6436 unsigned long node_start_pfn,
6437 unsigned long node_end_pfn,
6438 unsigned long *zone_start_pfn,
6439 unsigned long *zone_end_pfn)
6440{
6441 /* Only adjust if ZONE_MOVABLE is on this node */
6442 if (zone_movable_pfn[nid]) {
6443 /* Size ZONE_MOVABLE */
6444 if (zone_type == ZONE_MOVABLE) {
6445 *zone_start_pfn = zone_movable_pfn[nid];
6446 *zone_end_pfn = min(node_end_pfn,
6447 arch_zone_highest_possible_pfn[movable_zone]);
6448
e506b996
XQ
6449 /* Adjust for ZONE_MOVABLE starting within this range */
6450 } else if (!mirrored_kernelcore &&
6451 *zone_start_pfn < zone_movable_pfn[nid] &&
6452 *zone_end_pfn > zone_movable_pfn[nid]) {
6453 *zone_end_pfn = zone_movable_pfn[nid];
6454
2a1e274a
MG
6455 /* Check if this whole range is within ZONE_MOVABLE */
6456 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6457 *zone_start_pfn = *zone_end_pfn;
6458 }
6459}
6460
c713216d
MG
6461/*
6462 * Return the number of pages a zone spans in a node, including holes
6463 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6464 */
bbe5d993 6465static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6466 unsigned long zone_type,
7960aedd
ZY
6467 unsigned long node_start_pfn,
6468 unsigned long node_end_pfn,
d91749c1
TI
6469 unsigned long *zone_start_pfn,
6470 unsigned long *zone_end_pfn,
c713216d
MG
6471 unsigned long *ignored)
6472{
299c83dc
LF
6473 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6474 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6475 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6476 if (!node_start_pfn && !node_end_pfn)
6477 return 0;
6478
7960aedd 6479 /* Get the start and end of the zone */
299c83dc
LF
6480 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6481 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6482 adjust_zone_range_for_zone_movable(nid, zone_type,
6483 node_start_pfn, node_end_pfn,
d91749c1 6484 zone_start_pfn, zone_end_pfn);
c713216d
MG
6485
6486 /* Check that this node has pages within the zone's required range */
d91749c1 6487 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6488 return 0;
6489
6490 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6491 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6492 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6493
6494 /* Return the spanned pages */
d91749c1 6495 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6496}
6497
6498/*
6499 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6500 * then all holes in the requested range will be accounted for.
c713216d 6501 */
bbe5d993 6502unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6503 unsigned long range_start_pfn,
6504 unsigned long range_end_pfn)
6505{
96e907d1
TH
6506 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6507 unsigned long start_pfn, end_pfn;
6508 int i;
c713216d 6509
96e907d1
TH
6510 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6511 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6512 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6513 nr_absent -= end_pfn - start_pfn;
c713216d 6514 }
96e907d1 6515 return nr_absent;
c713216d
MG
6516}
6517
6518/**
6519 * absent_pages_in_range - Return number of page frames in holes within a range
6520 * @start_pfn: The start PFN to start searching for holes
6521 * @end_pfn: The end PFN to stop searching for holes
6522 *
a862f68a 6523 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6524 */
6525unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6526 unsigned long end_pfn)
6527{
6528 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6529}
6530
6531/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6532static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6533 unsigned long zone_type,
7960aedd
ZY
6534 unsigned long node_start_pfn,
6535 unsigned long node_end_pfn,
c713216d
MG
6536 unsigned long *ignored)
6537{
96e907d1
TH
6538 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6539 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6540 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6541 unsigned long nr_absent;
9c7cd687 6542
b5685e92 6543 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6544 if (!node_start_pfn && !node_end_pfn)
6545 return 0;
6546
96e907d1
TH
6547 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6548 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6549
2a1e274a
MG
6550 adjust_zone_range_for_zone_movable(nid, zone_type,
6551 node_start_pfn, node_end_pfn,
6552 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6553 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6554
6555 /*
6556 * ZONE_MOVABLE handling.
6557 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6558 * and vice versa.
6559 */
e506b996
XQ
6560 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6561 unsigned long start_pfn, end_pfn;
6562 struct memblock_region *r;
6563
6564 for_each_memblock(memory, r) {
6565 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6566 zone_start_pfn, zone_end_pfn);
6567 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6568 zone_start_pfn, zone_end_pfn);
6569
6570 if (zone_type == ZONE_MOVABLE &&
6571 memblock_is_mirror(r))
6572 nr_absent += end_pfn - start_pfn;
6573
6574 if (zone_type == ZONE_NORMAL &&
6575 !memblock_is_mirror(r))
6576 nr_absent += end_pfn - start_pfn;
342332e6
TI
6577 }
6578 }
6579
6580 return nr_absent;
c713216d 6581}
0e0b864e 6582
3f08a302 6583static inline unsigned long __init compat_zone_spanned_pages_in_node(int nid,
c713216d 6584 unsigned long zone_type,
7960aedd
ZY
6585 unsigned long node_start_pfn,
6586 unsigned long node_end_pfn,
d91749c1
TI
6587 unsigned long *zone_start_pfn,
6588 unsigned long *zone_end_pfn,
c713216d
MG
6589 unsigned long *zones_size)
6590{
d91749c1
TI
6591 unsigned int zone;
6592
6593 *zone_start_pfn = node_start_pfn;
6594 for (zone = 0; zone < zone_type; zone++)
6595 *zone_start_pfn += zones_size[zone];
6596
6597 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6598
c713216d
MG
6599 return zones_size[zone_type];
6600}
6601
3f08a302 6602static inline unsigned long __init compat_zone_absent_pages_in_node(int nid,
c713216d 6603 unsigned long zone_type,
7960aedd
ZY
6604 unsigned long node_start_pfn,
6605 unsigned long node_end_pfn,
c713216d
MG
6606 unsigned long *zholes_size)
6607{
6608 if (!zholes_size)
6609 return 0;
6610
6611 return zholes_size[zone_type];
6612}
20e6926d 6613
bbe5d993 6614static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6615 unsigned long node_start_pfn,
6616 unsigned long node_end_pfn,
6617 unsigned long *zones_size,
3f08a302
MR
6618 unsigned long *zholes_size,
6619 bool compat)
c713216d 6620{
febd5949 6621 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6622 enum zone_type i;
6623
febd5949
GZ
6624 for (i = 0; i < MAX_NR_ZONES; i++) {
6625 struct zone *zone = pgdat->node_zones + i;
d91749c1 6626 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6627 unsigned long spanned, absent;
febd5949 6628 unsigned long size, real_size;
c713216d 6629
3f08a302
MR
6630 if (compat) {
6631 spanned = compat_zone_spanned_pages_in_node(
6632 pgdat->node_id, i,
6633 node_start_pfn,
6634 node_end_pfn,
6635 &zone_start_pfn,
6636 &zone_end_pfn,
6637 zones_size);
6638 absent = compat_zone_absent_pages_in_node(
6639 pgdat->node_id, i,
6640 node_start_pfn,
6641 node_end_pfn,
6642 zholes_size);
6643 } else {
6644 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6645 node_start_pfn,
6646 node_end_pfn,
6647 &zone_start_pfn,
6648 &zone_end_pfn,
6649 zones_size);
6650 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6651 node_start_pfn,
6652 node_end_pfn,
6653 zholes_size);
6654 }
6655
6656 size = spanned;
6657 real_size = size - absent;
6658
d91749c1
TI
6659 if (size)
6660 zone->zone_start_pfn = zone_start_pfn;
6661 else
6662 zone->zone_start_pfn = 0;
febd5949
GZ
6663 zone->spanned_pages = size;
6664 zone->present_pages = real_size;
6665
6666 totalpages += size;
6667 realtotalpages += real_size;
6668 }
6669
6670 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6671 pgdat->node_present_pages = realtotalpages;
6672 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6673 realtotalpages);
6674}
6675
835c134e
MG
6676#ifndef CONFIG_SPARSEMEM
6677/*
6678 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6679 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6680 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6681 * round what is now in bits to nearest long in bits, then return it in
6682 * bytes.
6683 */
7c45512d 6684static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6685{
6686 unsigned long usemapsize;
6687
7c45512d 6688 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6689 usemapsize = roundup(zonesize, pageblock_nr_pages);
6690 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6691 usemapsize *= NR_PAGEBLOCK_BITS;
6692 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6693
6694 return usemapsize / 8;
6695}
6696
7cc2a959 6697static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6698 struct zone *zone,
6699 unsigned long zone_start_pfn,
6700 unsigned long zonesize)
835c134e 6701{
7c45512d 6702 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6703 zone->pageblock_flags = NULL;
23a7052a 6704 if (usemapsize) {
6782832e 6705 zone->pageblock_flags =
26fb3dae
MR
6706 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6707 pgdat->node_id);
23a7052a
MR
6708 if (!zone->pageblock_flags)
6709 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6710 usemapsize, zone->name, pgdat->node_id);
6711 }
835c134e
MG
6712}
6713#else
7c45512d
LT
6714static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6715 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6716#endif /* CONFIG_SPARSEMEM */
6717
d9c23400 6718#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6719
d9c23400 6720/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6721void __init set_pageblock_order(void)
d9c23400 6722{
955c1cd7
AM
6723 unsigned int order;
6724
d9c23400
MG
6725 /* Check that pageblock_nr_pages has not already been setup */
6726 if (pageblock_order)
6727 return;
6728
955c1cd7
AM
6729 if (HPAGE_SHIFT > PAGE_SHIFT)
6730 order = HUGETLB_PAGE_ORDER;
6731 else
6732 order = MAX_ORDER - 1;
6733
d9c23400
MG
6734 /*
6735 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6736 * This value may be variable depending on boot parameters on IA64 and
6737 * powerpc.
d9c23400
MG
6738 */
6739 pageblock_order = order;
6740}
6741#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6742
ba72cb8c
MG
6743/*
6744 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6745 * is unused as pageblock_order is set at compile-time. See
6746 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6747 * the kernel config
ba72cb8c 6748 */
03e85f9d 6749void __init set_pageblock_order(void)
ba72cb8c 6750{
ba72cb8c 6751}
d9c23400
MG
6752
6753#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6754
03e85f9d 6755static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6756 unsigned long present_pages)
01cefaef
JL
6757{
6758 unsigned long pages = spanned_pages;
6759
6760 /*
6761 * Provide a more accurate estimation if there are holes within
6762 * the zone and SPARSEMEM is in use. If there are holes within the
6763 * zone, each populated memory region may cost us one or two extra
6764 * memmap pages due to alignment because memmap pages for each
89d790ab 6765 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6766 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6767 */
6768 if (spanned_pages > present_pages + (present_pages >> 4) &&
6769 IS_ENABLED(CONFIG_SPARSEMEM))
6770 pages = present_pages;
6771
6772 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6773}
6774
ace1db39
OS
6775#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6776static void pgdat_init_split_queue(struct pglist_data *pgdat)
6777{
364c1eeb
YS
6778 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6779
6780 spin_lock_init(&ds_queue->split_queue_lock);
6781 INIT_LIST_HEAD(&ds_queue->split_queue);
6782 ds_queue->split_queue_len = 0;
ace1db39
OS
6783}
6784#else
6785static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6786#endif
6787
6788#ifdef CONFIG_COMPACTION
6789static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6790{
6791 init_waitqueue_head(&pgdat->kcompactd_wait);
6792}
6793#else
6794static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6795#endif
6796
03e85f9d 6797static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6798{
208d54e5 6799 pgdat_resize_init(pgdat);
ace1db39 6800
ace1db39
OS
6801 pgdat_init_split_queue(pgdat);
6802 pgdat_init_kcompactd(pgdat);
6803
1da177e4 6804 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6805 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6806
eefa864b 6807 pgdat_page_ext_init(pgdat);
a52633d8 6808 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6809 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6810}
6811
6812static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6813 unsigned long remaining_pages)
6814{
9705bea5 6815 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6816 zone_set_nid(zone, nid);
6817 zone->name = zone_names[idx];
6818 zone->zone_pgdat = NODE_DATA(nid);
6819 spin_lock_init(&zone->lock);
6820 zone_seqlock_init(zone);
6821 zone_pcp_init(zone);
6822}
6823
6824/*
6825 * Set up the zone data structures
6826 * - init pgdat internals
6827 * - init all zones belonging to this node
6828 *
6829 * NOTE: this function is only called during memory hotplug
6830 */
6831#ifdef CONFIG_MEMORY_HOTPLUG
6832void __ref free_area_init_core_hotplug(int nid)
6833{
6834 enum zone_type z;
6835 pg_data_t *pgdat = NODE_DATA(nid);
6836
6837 pgdat_init_internals(pgdat);
6838 for (z = 0; z < MAX_NR_ZONES; z++)
6839 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6840}
6841#endif
6842
6843/*
6844 * Set up the zone data structures:
6845 * - mark all pages reserved
6846 * - mark all memory queues empty
6847 * - clear the memory bitmaps
6848 *
6849 * NOTE: pgdat should get zeroed by caller.
6850 * NOTE: this function is only called during early init.
6851 */
6852static void __init free_area_init_core(struct pglist_data *pgdat)
6853{
6854 enum zone_type j;
6855 int nid = pgdat->node_id;
5f63b720 6856
03e85f9d 6857 pgdat_init_internals(pgdat);
385386cf
JW
6858 pgdat->per_cpu_nodestats = &boot_nodestats;
6859
1da177e4
LT
6860 for (j = 0; j < MAX_NR_ZONES; j++) {
6861 struct zone *zone = pgdat->node_zones + j;
e6943859 6862 unsigned long size, freesize, memmap_pages;
d91749c1 6863 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6864
febd5949 6865 size = zone->spanned_pages;
e6943859 6866 freesize = zone->present_pages;
1da177e4 6867
0e0b864e 6868 /*
9feedc9d 6869 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6870 * is used by this zone for memmap. This affects the watermark
6871 * and per-cpu initialisations
6872 */
e6943859 6873 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6874 if (!is_highmem_idx(j)) {
6875 if (freesize >= memmap_pages) {
6876 freesize -= memmap_pages;
6877 if (memmap_pages)
6878 printk(KERN_DEBUG
6879 " %s zone: %lu pages used for memmap\n",
6880 zone_names[j], memmap_pages);
6881 } else
1170532b 6882 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6883 zone_names[j], memmap_pages, freesize);
6884 }
0e0b864e 6885
6267276f 6886 /* Account for reserved pages */
9feedc9d
JL
6887 if (j == 0 && freesize > dma_reserve) {
6888 freesize -= dma_reserve;
d903ef9f 6889 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6890 zone_names[0], dma_reserve);
0e0b864e
MG
6891 }
6892
98d2b0eb 6893 if (!is_highmem_idx(j))
9feedc9d 6894 nr_kernel_pages += freesize;
01cefaef
JL
6895 /* Charge for highmem memmap if there are enough kernel pages */
6896 else if (nr_kernel_pages > memmap_pages * 2)
6897 nr_kernel_pages -= memmap_pages;
9feedc9d 6898 nr_all_pages += freesize;
1da177e4 6899
9feedc9d
JL
6900 /*
6901 * Set an approximate value for lowmem here, it will be adjusted
6902 * when the bootmem allocator frees pages into the buddy system.
6903 * And all highmem pages will be managed by the buddy system.
6904 */
03e85f9d 6905 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6906
d883c6cf 6907 if (!size)
1da177e4
LT
6908 continue;
6909
955c1cd7 6910 set_pageblock_order();
d883c6cf
JK
6911 setup_usemap(pgdat, zone, zone_start_pfn, size);
6912 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6913 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6914 }
6915}
6916
0cd842f9 6917#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6918static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6919{
b0aeba74 6920 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6921 unsigned long __maybe_unused offset = 0;
6922
1da177e4
LT
6923 /* Skip empty nodes */
6924 if (!pgdat->node_spanned_pages)
6925 return;
6926
b0aeba74
TL
6927 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6928 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6929 /* ia64 gets its own node_mem_map, before this, without bootmem */
6930 if (!pgdat->node_mem_map) {
b0aeba74 6931 unsigned long size, end;
d41dee36
AW
6932 struct page *map;
6933
e984bb43
BP
6934 /*
6935 * The zone's endpoints aren't required to be MAX_ORDER
6936 * aligned but the node_mem_map endpoints must be in order
6937 * for the buddy allocator to function correctly.
6938 */
108bcc96 6939 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6940 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6941 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6942 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6943 pgdat->node_id);
23a7052a
MR
6944 if (!map)
6945 panic("Failed to allocate %ld bytes for node %d memory map\n",
6946 size, pgdat->node_id);
a1c34a3b 6947 pgdat->node_mem_map = map + offset;
1da177e4 6948 }
0cd842f9
OS
6949 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6950 __func__, pgdat->node_id, (unsigned long)pgdat,
6951 (unsigned long)pgdat->node_mem_map);
12d810c1 6952#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6953 /*
6954 * With no DISCONTIG, the global mem_map is just set as node 0's
6955 */
c713216d 6956 if (pgdat == NODE_DATA(0)) {
1da177e4 6957 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6958 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6959 mem_map -= offset;
c713216d 6960 }
1da177e4
LT
6961#endif
6962}
0cd842f9
OS
6963#else
6964static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6965#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6966
0188dc98
OS
6967#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6968static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6969{
0188dc98
OS
6970 pgdat->first_deferred_pfn = ULONG_MAX;
6971}
6972#else
6973static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6974#endif
6975
3f08a302
MR
6976static void __init __free_area_init_node(int nid, unsigned long *zones_size,
6977 unsigned long node_start_pfn,
6978 unsigned long *zholes_size,
6979 bool compat)
1da177e4 6980{
9109fb7b 6981 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6982 unsigned long start_pfn = 0;
6983 unsigned long end_pfn = 0;
9109fb7b 6984
88fdf75d 6985 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6986 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6987
1da177e4
LT
6988 pgdat->node_id = nid;
6989 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6990 pgdat->per_cpu_nodestats = NULL;
3f08a302
MR
6991 if (!compat) {
6992 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6993 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6994 (u64)start_pfn << PAGE_SHIFT,
6995 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6996 } else {
6997 start_pfn = node_start_pfn;
6998 }
7960aedd 6999 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
3f08a302 7000 zones_size, zholes_size, compat);
1da177e4
LT
7001
7002 alloc_node_mem_map(pgdat);
0188dc98 7003 pgdat_set_deferred_range(pgdat);
1da177e4 7004
7f3eb55b 7005 free_area_init_core(pgdat);
1da177e4
LT
7006}
7007
3f08a302
MR
7008void __init free_area_init_node(int nid, unsigned long *zones_size,
7009 unsigned long node_start_pfn,
7010 unsigned long *zholes_size)
7011{
7012 __free_area_init_node(nid, zones_size, node_start_pfn, zholes_size,
7013 true);
7014}
7015
aca52c39 7016#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 7017/*
4b094b78
DH
7018 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7019 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 7020 */
4b094b78 7021static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
7022{
7023 unsigned long pfn;
7024 u64 pgcnt = 0;
7025
7026 for (pfn = spfn; pfn < epfn; pfn++) {
7027 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7028 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7029 + pageblock_nr_pages - 1;
7030 continue;
7031 }
4b094b78
DH
7032 /*
7033 * Use a fake node/zone (0) for now. Some of these pages
7034 * (in memblock.reserved but not in memblock.memory) will
7035 * get re-initialized via reserve_bootmem_region() later.
7036 */
7037 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7038 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7039 pgcnt++;
7040 }
7041
7042 return pgcnt;
7043}
7044
a4a3ede2
PT
7045/*
7046 * Only struct pages that are backed by physical memory are zeroed and
7047 * initialized by going through __init_single_page(). But, there are some
7048 * struct pages which are reserved in memblock allocator and their fields
7049 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 7050 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
7051 *
7052 * This function also addresses a similar issue where struct pages are left
7053 * uninitialized because the physical address range is not covered by
7054 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
7055 * layout is manually configured via memmap=, or when the highest physical
7056 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7057 */
4b094b78 7058static void __init init_unavailable_mem(void)
a4a3ede2
PT
7059{
7060 phys_addr_t start, end;
a4a3ede2 7061 u64 i, pgcnt;
907ec5fc 7062 phys_addr_t next = 0;
a4a3ede2
PT
7063
7064 /*
907ec5fc 7065 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7066 */
7067 pgcnt = 0;
907ec5fc
NH
7068 for_each_mem_range(i, &memblock.memory, NULL,
7069 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 7070 if (next < start)
4b094b78
DH
7071 pgcnt += init_unavailable_range(PFN_DOWN(next),
7072 PFN_UP(start));
907ec5fc
NH
7073 next = end;
7074 }
e822969c
DH
7075
7076 /*
7077 * Early sections always have a fully populated memmap for the whole
7078 * section - see pfn_valid(). If the last section has holes at the
7079 * end and that section is marked "online", the memmap will be
7080 * considered initialized. Make sure that memmap has a well defined
7081 * state.
7082 */
4b094b78
DH
7083 pgcnt += init_unavailable_range(PFN_DOWN(next),
7084 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7085
a4a3ede2
PT
7086 /*
7087 * Struct pages that do not have backing memory. This could be because
7088 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7089 */
7090 if (pgcnt)
907ec5fc 7091 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7092}
4b094b78
DH
7093#else
7094static inline void __init init_unavailable_mem(void)
7095{
7096}
aca52c39 7097#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7098
418508c1
MS
7099#if MAX_NUMNODES > 1
7100/*
7101 * Figure out the number of possible node ids.
7102 */
f9872caf 7103void __init setup_nr_node_ids(void)
418508c1 7104{
904a9553 7105 unsigned int highest;
418508c1 7106
904a9553 7107 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7108 nr_node_ids = highest + 1;
7109}
418508c1
MS
7110#endif
7111
1e01979c
TH
7112/**
7113 * node_map_pfn_alignment - determine the maximum internode alignment
7114 *
7115 * This function should be called after node map is populated and sorted.
7116 * It calculates the maximum power of two alignment which can distinguish
7117 * all the nodes.
7118 *
7119 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7120 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7121 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7122 * shifted, 1GiB is enough and this function will indicate so.
7123 *
7124 * This is used to test whether pfn -> nid mapping of the chosen memory
7125 * model has fine enough granularity to avoid incorrect mapping for the
7126 * populated node map.
7127 *
a862f68a 7128 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7129 * requirement (single node).
7130 */
7131unsigned long __init node_map_pfn_alignment(void)
7132{
7133 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7134 unsigned long start, end, mask;
98fa15f3 7135 int last_nid = NUMA_NO_NODE;
c13291a5 7136 int i, nid;
1e01979c 7137
c13291a5 7138 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7139 if (!start || last_nid < 0 || last_nid == nid) {
7140 last_nid = nid;
7141 last_end = end;
7142 continue;
7143 }
7144
7145 /*
7146 * Start with a mask granular enough to pin-point to the
7147 * start pfn and tick off bits one-by-one until it becomes
7148 * too coarse to separate the current node from the last.
7149 */
7150 mask = ~((1 << __ffs(start)) - 1);
7151 while (mask && last_end <= (start & (mask << 1)))
7152 mask <<= 1;
7153
7154 /* accumulate all internode masks */
7155 accl_mask |= mask;
7156 }
7157
7158 /* convert mask to number of pages */
7159 return ~accl_mask + 1;
7160}
7161
a6af2bc3 7162/* Find the lowest pfn for a node */
b69a7288 7163static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7164{
a6af2bc3 7165 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7166 unsigned long start_pfn;
7167 int i;
1abbfb41 7168
c13291a5
TH
7169 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7170 min_pfn = min(min_pfn, start_pfn);
c713216d 7171
a6af2bc3 7172 if (min_pfn == ULONG_MAX) {
1170532b 7173 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7174 return 0;
7175 }
7176
7177 return min_pfn;
c713216d
MG
7178}
7179
7180/**
7181 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7182 *
a862f68a 7183 * Return: the minimum PFN based on information provided via
7d018176 7184 * memblock_set_node().
c713216d
MG
7185 */
7186unsigned long __init find_min_pfn_with_active_regions(void)
7187{
7188 return find_min_pfn_for_node(MAX_NUMNODES);
7189}
7190
37b07e41
LS
7191/*
7192 * early_calculate_totalpages()
7193 * Sum pages in active regions for movable zone.
4b0ef1fe 7194 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7195 */
484f51f8 7196static unsigned long __init early_calculate_totalpages(void)
7e63efef 7197{
7e63efef 7198 unsigned long totalpages = 0;
c13291a5
TH
7199 unsigned long start_pfn, end_pfn;
7200 int i, nid;
7201
7202 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7203 unsigned long pages = end_pfn - start_pfn;
7e63efef 7204
37b07e41
LS
7205 totalpages += pages;
7206 if (pages)
4b0ef1fe 7207 node_set_state(nid, N_MEMORY);
37b07e41 7208 }
b8af2941 7209 return totalpages;
7e63efef
MG
7210}
7211
2a1e274a
MG
7212/*
7213 * Find the PFN the Movable zone begins in each node. Kernel memory
7214 * is spread evenly between nodes as long as the nodes have enough
7215 * memory. When they don't, some nodes will have more kernelcore than
7216 * others
7217 */
b224ef85 7218static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7219{
7220 int i, nid;
7221 unsigned long usable_startpfn;
7222 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7223 /* save the state before borrow the nodemask */
4b0ef1fe 7224 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7225 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7226 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7227 struct memblock_region *r;
b2f3eebe
TC
7228
7229 /* Need to find movable_zone earlier when movable_node is specified. */
7230 find_usable_zone_for_movable();
7231
7232 /*
7233 * If movable_node is specified, ignore kernelcore and movablecore
7234 * options.
7235 */
7236 if (movable_node_is_enabled()) {
136199f0
EM
7237 for_each_memblock(memory, r) {
7238 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7239 continue;
7240
d622abf7 7241 nid = memblock_get_region_node(r);
b2f3eebe 7242
136199f0 7243 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7244 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7245 min(usable_startpfn, zone_movable_pfn[nid]) :
7246 usable_startpfn;
7247 }
7248
7249 goto out2;
7250 }
2a1e274a 7251
342332e6
TI
7252 /*
7253 * If kernelcore=mirror is specified, ignore movablecore option
7254 */
7255 if (mirrored_kernelcore) {
7256 bool mem_below_4gb_not_mirrored = false;
7257
7258 for_each_memblock(memory, r) {
7259 if (memblock_is_mirror(r))
7260 continue;
7261
d622abf7 7262 nid = memblock_get_region_node(r);
342332e6
TI
7263
7264 usable_startpfn = memblock_region_memory_base_pfn(r);
7265
7266 if (usable_startpfn < 0x100000) {
7267 mem_below_4gb_not_mirrored = true;
7268 continue;
7269 }
7270
7271 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7272 min(usable_startpfn, zone_movable_pfn[nid]) :
7273 usable_startpfn;
7274 }
7275
7276 if (mem_below_4gb_not_mirrored)
7277 pr_warn("This configuration results in unmirrored kernel memory.");
7278
7279 goto out2;
7280 }
7281
7e63efef 7282 /*
a5c6d650
DR
7283 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7284 * amount of necessary memory.
7285 */
7286 if (required_kernelcore_percent)
7287 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7288 10000UL;
7289 if (required_movablecore_percent)
7290 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7291 10000UL;
7292
7293 /*
7294 * If movablecore= was specified, calculate what size of
7e63efef
MG
7295 * kernelcore that corresponds so that memory usable for
7296 * any allocation type is evenly spread. If both kernelcore
7297 * and movablecore are specified, then the value of kernelcore
7298 * will be used for required_kernelcore if it's greater than
7299 * what movablecore would have allowed.
7300 */
7301 if (required_movablecore) {
7e63efef
MG
7302 unsigned long corepages;
7303
7304 /*
7305 * Round-up so that ZONE_MOVABLE is at least as large as what
7306 * was requested by the user
7307 */
7308 required_movablecore =
7309 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7310 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7311 corepages = totalpages - required_movablecore;
7312
7313 required_kernelcore = max(required_kernelcore, corepages);
7314 }
7315
bde304bd
XQ
7316 /*
7317 * If kernelcore was not specified or kernelcore size is larger
7318 * than totalpages, there is no ZONE_MOVABLE.
7319 */
7320 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7321 goto out;
2a1e274a
MG
7322
7323 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7324 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7325
7326restart:
7327 /* Spread kernelcore memory as evenly as possible throughout nodes */
7328 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7329 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7330 unsigned long start_pfn, end_pfn;
7331
2a1e274a
MG
7332 /*
7333 * Recalculate kernelcore_node if the division per node
7334 * now exceeds what is necessary to satisfy the requested
7335 * amount of memory for the kernel
7336 */
7337 if (required_kernelcore < kernelcore_node)
7338 kernelcore_node = required_kernelcore / usable_nodes;
7339
7340 /*
7341 * As the map is walked, we track how much memory is usable
7342 * by the kernel using kernelcore_remaining. When it is
7343 * 0, the rest of the node is usable by ZONE_MOVABLE
7344 */
7345 kernelcore_remaining = kernelcore_node;
7346
7347 /* Go through each range of PFNs within this node */
c13291a5 7348 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7349 unsigned long size_pages;
7350
c13291a5 7351 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7352 if (start_pfn >= end_pfn)
7353 continue;
7354
7355 /* Account for what is only usable for kernelcore */
7356 if (start_pfn < usable_startpfn) {
7357 unsigned long kernel_pages;
7358 kernel_pages = min(end_pfn, usable_startpfn)
7359 - start_pfn;
7360
7361 kernelcore_remaining -= min(kernel_pages,
7362 kernelcore_remaining);
7363 required_kernelcore -= min(kernel_pages,
7364 required_kernelcore);
7365
7366 /* Continue if range is now fully accounted */
7367 if (end_pfn <= usable_startpfn) {
7368
7369 /*
7370 * Push zone_movable_pfn to the end so
7371 * that if we have to rebalance
7372 * kernelcore across nodes, we will
7373 * not double account here
7374 */
7375 zone_movable_pfn[nid] = end_pfn;
7376 continue;
7377 }
7378 start_pfn = usable_startpfn;
7379 }
7380
7381 /*
7382 * The usable PFN range for ZONE_MOVABLE is from
7383 * start_pfn->end_pfn. Calculate size_pages as the
7384 * number of pages used as kernelcore
7385 */
7386 size_pages = end_pfn - start_pfn;
7387 if (size_pages > kernelcore_remaining)
7388 size_pages = kernelcore_remaining;
7389 zone_movable_pfn[nid] = start_pfn + size_pages;
7390
7391 /*
7392 * Some kernelcore has been met, update counts and
7393 * break if the kernelcore for this node has been
b8af2941 7394 * satisfied
2a1e274a
MG
7395 */
7396 required_kernelcore -= min(required_kernelcore,
7397 size_pages);
7398 kernelcore_remaining -= size_pages;
7399 if (!kernelcore_remaining)
7400 break;
7401 }
7402 }
7403
7404 /*
7405 * If there is still required_kernelcore, we do another pass with one
7406 * less node in the count. This will push zone_movable_pfn[nid] further
7407 * along on the nodes that still have memory until kernelcore is
b8af2941 7408 * satisfied
2a1e274a
MG
7409 */
7410 usable_nodes--;
7411 if (usable_nodes && required_kernelcore > usable_nodes)
7412 goto restart;
7413
b2f3eebe 7414out2:
2a1e274a
MG
7415 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7416 for (nid = 0; nid < MAX_NUMNODES; nid++)
7417 zone_movable_pfn[nid] =
7418 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7419
20e6926d 7420out:
66918dcd 7421 /* restore the node_state */
4b0ef1fe 7422 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7423}
7424
4b0ef1fe
LJ
7425/* Any regular or high memory on that node ? */
7426static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7427{
37b07e41
LS
7428 enum zone_type zone_type;
7429
4b0ef1fe 7430 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7431 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7432 if (populated_zone(zone)) {
7b0e0c0e
OS
7433 if (IS_ENABLED(CONFIG_HIGHMEM))
7434 node_set_state(nid, N_HIGH_MEMORY);
7435 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7436 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7437 break;
7438 }
37b07e41 7439 }
37b07e41
LS
7440}
7441
c713216d
MG
7442/**
7443 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7444 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7445 *
7446 * This will call free_area_init_node() for each active node in the system.
7d018176 7447 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7448 * zone in each node and their holes is calculated. If the maximum PFN
7449 * between two adjacent zones match, it is assumed that the zone is empty.
7450 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7451 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7452 * starts where the previous one ended. For example, ZONE_DMA32 starts
7453 * at arch_max_dma_pfn.
7454 */
7455void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7456{
c13291a5
TH
7457 unsigned long start_pfn, end_pfn;
7458 int i, nid;
a6af2bc3 7459
c713216d
MG
7460 /* Record where the zone boundaries are */
7461 memset(arch_zone_lowest_possible_pfn, 0,
7462 sizeof(arch_zone_lowest_possible_pfn));
7463 memset(arch_zone_highest_possible_pfn, 0,
7464 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7465
7466 start_pfn = find_min_pfn_with_active_regions();
7467
7468 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7469 if (i == ZONE_MOVABLE)
7470 continue;
90cae1fe
OH
7471
7472 end_pfn = max(max_zone_pfn[i], start_pfn);
7473 arch_zone_lowest_possible_pfn[i] = start_pfn;
7474 arch_zone_highest_possible_pfn[i] = end_pfn;
7475
7476 start_pfn = end_pfn;
c713216d 7477 }
2a1e274a
MG
7478
7479 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7480 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7481 find_zone_movable_pfns_for_nodes();
c713216d 7482
c713216d 7483 /* Print out the zone ranges */
f88dfff5 7484 pr_info("Zone ranges:\n");
2a1e274a
MG
7485 for (i = 0; i < MAX_NR_ZONES; i++) {
7486 if (i == ZONE_MOVABLE)
7487 continue;
f88dfff5 7488 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7489 if (arch_zone_lowest_possible_pfn[i] ==
7490 arch_zone_highest_possible_pfn[i])
f88dfff5 7491 pr_cont("empty\n");
72f0ba02 7492 else
8d29e18a
JG
7493 pr_cont("[mem %#018Lx-%#018Lx]\n",
7494 (u64)arch_zone_lowest_possible_pfn[i]
7495 << PAGE_SHIFT,
7496 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7497 << PAGE_SHIFT) - 1);
2a1e274a
MG
7498 }
7499
7500 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7501 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7502 for (i = 0; i < MAX_NUMNODES; i++) {
7503 if (zone_movable_pfn[i])
8d29e18a
JG
7504 pr_info(" Node %d: %#018Lx\n", i,
7505 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7506 }
c713216d 7507
f46edbd1
DW
7508 /*
7509 * Print out the early node map, and initialize the
7510 * subsection-map relative to active online memory ranges to
7511 * enable future "sub-section" extensions of the memory map.
7512 */
f88dfff5 7513 pr_info("Early memory node ranges\n");
f46edbd1 7514 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7515 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7516 (u64)start_pfn << PAGE_SHIFT,
7517 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7518 subsection_map_init(start_pfn, end_pfn - start_pfn);
7519 }
c713216d
MG
7520
7521 /* Initialise every node */
708614e6 7522 mminit_verify_pageflags_layout();
8ef82866 7523 setup_nr_node_ids();
4b094b78 7524 init_unavailable_mem();
c713216d
MG
7525 for_each_online_node(nid) {
7526 pg_data_t *pgdat = NODE_DATA(nid);
3f08a302
MR
7527 __free_area_init_node(nid, NULL,
7528 find_min_pfn_for_node(nid), NULL, false);
37b07e41
LS
7529
7530 /* Any memory on that node */
7531 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7532 node_set_state(nid, N_MEMORY);
7533 check_for_memory(pgdat, nid);
c713216d
MG
7534 }
7535}
2a1e274a 7536
a5c6d650
DR
7537static int __init cmdline_parse_core(char *p, unsigned long *core,
7538 unsigned long *percent)
2a1e274a
MG
7539{
7540 unsigned long long coremem;
a5c6d650
DR
7541 char *endptr;
7542
2a1e274a
MG
7543 if (!p)
7544 return -EINVAL;
7545
a5c6d650
DR
7546 /* Value may be a percentage of total memory, otherwise bytes */
7547 coremem = simple_strtoull(p, &endptr, 0);
7548 if (*endptr == '%') {
7549 /* Paranoid check for percent values greater than 100 */
7550 WARN_ON(coremem > 100);
2a1e274a 7551
a5c6d650
DR
7552 *percent = coremem;
7553 } else {
7554 coremem = memparse(p, &p);
7555 /* Paranoid check that UL is enough for the coremem value */
7556 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7557
a5c6d650
DR
7558 *core = coremem >> PAGE_SHIFT;
7559 *percent = 0UL;
7560 }
2a1e274a
MG
7561 return 0;
7562}
ed7ed365 7563
7e63efef
MG
7564/*
7565 * kernelcore=size sets the amount of memory for use for allocations that
7566 * cannot be reclaimed or migrated.
7567 */
7568static int __init cmdline_parse_kernelcore(char *p)
7569{
342332e6
TI
7570 /* parse kernelcore=mirror */
7571 if (parse_option_str(p, "mirror")) {
7572 mirrored_kernelcore = true;
7573 return 0;
7574 }
7575
a5c6d650
DR
7576 return cmdline_parse_core(p, &required_kernelcore,
7577 &required_kernelcore_percent);
7e63efef
MG
7578}
7579
7580/*
7581 * movablecore=size sets the amount of memory for use for allocations that
7582 * can be reclaimed or migrated.
7583 */
7584static int __init cmdline_parse_movablecore(char *p)
7585{
a5c6d650
DR
7586 return cmdline_parse_core(p, &required_movablecore,
7587 &required_movablecore_percent);
7e63efef
MG
7588}
7589
ed7ed365 7590early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7591early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7592
c3d5f5f0
JL
7593void adjust_managed_page_count(struct page *page, long count)
7594{
9705bea5 7595 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7596 totalram_pages_add(count);
3dcc0571
JL
7597#ifdef CONFIG_HIGHMEM
7598 if (PageHighMem(page))
ca79b0c2 7599 totalhigh_pages_add(count);
3dcc0571 7600#endif
c3d5f5f0 7601}
3dcc0571 7602EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7603
e5cb113f 7604unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7605{
11199692
JL
7606 void *pos;
7607 unsigned long pages = 0;
69afade7 7608
11199692
JL
7609 start = (void *)PAGE_ALIGN((unsigned long)start);
7610 end = (void *)((unsigned long)end & PAGE_MASK);
7611 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7612 struct page *page = virt_to_page(pos);
7613 void *direct_map_addr;
7614
7615 /*
7616 * 'direct_map_addr' might be different from 'pos'
7617 * because some architectures' virt_to_page()
7618 * work with aliases. Getting the direct map
7619 * address ensures that we get a _writeable_
7620 * alias for the memset().
7621 */
7622 direct_map_addr = page_address(page);
dbe67df4 7623 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7624 memset(direct_map_addr, poison, PAGE_SIZE);
7625
7626 free_reserved_page(page);
69afade7
JL
7627 }
7628
7629 if (pages && s)
adb1fe9a
JP
7630 pr_info("Freeing %s memory: %ldK\n",
7631 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7632
7633 return pages;
7634}
7635
cfa11e08
JL
7636#ifdef CONFIG_HIGHMEM
7637void free_highmem_page(struct page *page)
7638{
7639 __free_reserved_page(page);
ca79b0c2 7640 totalram_pages_inc();
9705bea5 7641 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7642 totalhigh_pages_inc();
cfa11e08
JL
7643}
7644#endif
7645
7ee3d4e8
JL
7646
7647void __init mem_init_print_info(const char *str)
7648{
7649 unsigned long physpages, codesize, datasize, rosize, bss_size;
7650 unsigned long init_code_size, init_data_size;
7651
7652 physpages = get_num_physpages();
7653 codesize = _etext - _stext;
7654 datasize = _edata - _sdata;
7655 rosize = __end_rodata - __start_rodata;
7656 bss_size = __bss_stop - __bss_start;
7657 init_data_size = __init_end - __init_begin;
7658 init_code_size = _einittext - _sinittext;
7659
7660 /*
7661 * Detect special cases and adjust section sizes accordingly:
7662 * 1) .init.* may be embedded into .data sections
7663 * 2) .init.text.* may be out of [__init_begin, __init_end],
7664 * please refer to arch/tile/kernel/vmlinux.lds.S.
7665 * 3) .rodata.* may be embedded into .text or .data sections.
7666 */
7667#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7668 do { \
7669 if (start <= pos && pos < end && size > adj) \
7670 size -= adj; \
7671 } while (0)
7ee3d4e8
JL
7672
7673 adj_init_size(__init_begin, __init_end, init_data_size,
7674 _sinittext, init_code_size);
7675 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7676 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7677 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7678 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7679
7680#undef adj_init_size
7681
756a025f 7682 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7683#ifdef CONFIG_HIGHMEM
756a025f 7684 ", %luK highmem"
7ee3d4e8 7685#endif
756a025f
JP
7686 "%s%s)\n",
7687 nr_free_pages() << (PAGE_SHIFT - 10),
7688 physpages << (PAGE_SHIFT - 10),
7689 codesize >> 10, datasize >> 10, rosize >> 10,
7690 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7691 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7692 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7693#ifdef CONFIG_HIGHMEM
ca79b0c2 7694 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7695#endif
756a025f 7696 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7697}
7698
0e0b864e 7699/**
88ca3b94
RD
7700 * set_dma_reserve - set the specified number of pages reserved in the first zone
7701 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7702 *
013110a7 7703 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7704 * In the DMA zone, a significant percentage may be consumed by kernel image
7705 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7706 * function may optionally be used to account for unfreeable pages in the
7707 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7708 * smaller per-cpu batchsize.
0e0b864e
MG
7709 */
7710void __init set_dma_reserve(unsigned long new_dma_reserve)
7711{
7712 dma_reserve = new_dma_reserve;
7713}
7714
fa3354e4 7715void __init free_area_init(unsigned long *max_zone_pfn)
1da177e4 7716{
4b094b78 7717 init_unavailable_mem();
fa3354e4 7718 free_area_init_nodes(max_zone_pfn);
1da177e4 7719}
1da177e4 7720
005fd4bb 7721static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7722{
1da177e4 7723
005fd4bb
SAS
7724 lru_add_drain_cpu(cpu);
7725 drain_pages(cpu);
9f8f2172 7726
005fd4bb
SAS
7727 /*
7728 * Spill the event counters of the dead processor
7729 * into the current processors event counters.
7730 * This artificially elevates the count of the current
7731 * processor.
7732 */
7733 vm_events_fold_cpu(cpu);
9f8f2172 7734
005fd4bb
SAS
7735 /*
7736 * Zero the differential counters of the dead processor
7737 * so that the vm statistics are consistent.
7738 *
7739 * This is only okay since the processor is dead and cannot
7740 * race with what we are doing.
7741 */
7742 cpu_vm_stats_fold(cpu);
7743 return 0;
1da177e4 7744}
1da177e4 7745
e03a5125
NP
7746#ifdef CONFIG_NUMA
7747int hashdist = HASHDIST_DEFAULT;
7748
7749static int __init set_hashdist(char *str)
7750{
7751 if (!str)
7752 return 0;
7753 hashdist = simple_strtoul(str, &str, 0);
7754 return 1;
7755}
7756__setup("hashdist=", set_hashdist);
7757#endif
7758
1da177e4
LT
7759void __init page_alloc_init(void)
7760{
005fd4bb
SAS
7761 int ret;
7762
e03a5125
NP
7763#ifdef CONFIG_NUMA
7764 if (num_node_state(N_MEMORY) == 1)
7765 hashdist = 0;
7766#endif
7767
005fd4bb
SAS
7768 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7769 "mm/page_alloc:dead", NULL,
7770 page_alloc_cpu_dead);
7771 WARN_ON(ret < 0);
1da177e4
LT
7772}
7773
cb45b0e9 7774/*
34b10060 7775 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7776 * or min_free_kbytes changes.
7777 */
7778static void calculate_totalreserve_pages(void)
7779{
7780 struct pglist_data *pgdat;
7781 unsigned long reserve_pages = 0;
2f6726e5 7782 enum zone_type i, j;
cb45b0e9
HA
7783
7784 for_each_online_pgdat(pgdat) {
281e3726
MG
7785
7786 pgdat->totalreserve_pages = 0;
7787
cb45b0e9
HA
7788 for (i = 0; i < MAX_NR_ZONES; i++) {
7789 struct zone *zone = pgdat->node_zones + i;
3484b2de 7790 long max = 0;
9705bea5 7791 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7792
7793 /* Find valid and maximum lowmem_reserve in the zone */
7794 for (j = i; j < MAX_NR_ZONES; j++) {
7795 if (zone->lowmem_reserve[j] > max)
7796 max = zone->lowmem_reserve[j];
7797 }
7798
41858966
MG
7799 /* we treat the high watermark as reserved pages. */
7800 max += high_wmark_pages(zone);
cb45b0e9 7801
3d6357de
AK
7802 if (max > managed_pages)
7803 max = managed_pages;
a8d01437 7804
281e3726 7805 pgdat->totalreserve_pages += max;
a8d01437 7806
cb45b0e9
HA
7807 reserve_pages += max;
7808 }
7809 }
7810 totalreserve_pages = reserve_pages;
7811}
7812
1da177e4
LT
7813/*
7814 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7815 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7816 * has a correct pages reserved value, so an adequate number of
7817 * pages are left in the zone after a successful __alloc_pages().
7818 */
7819static void setup_per_zone_lowmem_reserve(void)
7820{
7821 struct pglist_data *pgdat;
2f6726e5 7822 enum zone_type j, idx;
1da177e4 7823
ec936fc5 7824 for_each_online_pgdat(pgdat) {
1da177e4
LT
7825 for (j = 0; j < MAX_NR_ZONES; j++) {
7826 struct zone *zone = pgdat->node_zones + j;
9705bea5 7827 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7828
7829 zone->lowmem_reserve[j] = 0;
7830
2f6726e5
CL
7831 idx = j;
7832 while (idx) {
1da177e4
LT
7833 struct zone *lower_zone;
7834
2f6726e5 7835 idx--;
1da177e4 7836 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7837
7838 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7839 sysctl_lowmem_reserve_ratio[idx] = 0;
7840 lower_zone->lowmem_reserve[j] = 0;
7841 } else {
7842 lower_zone->lowmem_reserve[j] =
7843 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7844 }
9705bea5 7845 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7846 }
7847 }
7848 }
cb45b0e9
HA
7849
7850 /* update totalreserve_pages */
7851 calculate_totalreserve_pages();
1da177e4
LT
7852}
7853
cfd3da1e 7854static void __setup_per_zone_wmarks(void)
1da177e4
LT
7855{
7856 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7857 unsigned long lowmem_pages = 0;
7858 struct zone *zone;
7859 unsigned long flags;
7860
7861 /* Calculate total number of !ZONE_HIGHMEM pages */
7862 for_each_zone(zone) {
7863 if (!is_highmem(zone))
9705bea5 7864 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7865 }
7866
7867 for_each_zone(zone) {
ac924c60
AM
7868 u64 tmp;
7869
1125b4e3 7870 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7871 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7872 do_div(tmp, lowmem_pages);
1da177e4
LT
7873 if (is_highmem(zone)) {
7874 /*
669ed175
NP
7875 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7876 * need highmem pages, so cap pages_min to a small
7877 * value here.
7878 *
41858966 7879 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7880 * deltas control async page reclaim, and so should
669ed175 7881 * not be capped for highmem.
1da177e4 7882 */
90ae8d67 7883 unsigned long min_pages;
1da177e4 7884
9705bea5 7885 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7886 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7887 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7888 } else {
669ed175
NP
7889 /*
7890 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7891 * proportionate to the zone's size.
7892 */
a9214443 7893 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7894 }
7895
795ae7a0
JW
7896 /*
7897 * Set the kswapd watermarks distance according to the
7898 * scale factor in proportion to available memory, but
7899 * ensure a minimum size on small systems.
7900 */
7901 tmp = max_t(u64, tmp >> 2,
9705bea5 7902 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7903 watermark_scale_factor, 10000));
7904
a9214443
MG
7905 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7906 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7907 zone->watermark_boost = 0;
49f223a9 7908
1125b4e3 7909 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7910 }
cb45b0e9
HA
7911
7912 /* update totalreserve_pages */
7913 calculate_totalreserve_pages();
1da177e4
LT
7914}
7915
cfd3da1e
MG
7916/**
7917 * setup_per_zone_wmarks - called when min_free_kbytes changes
7918 * or when memory is hot-{added|removed}
7919 *
7920 * Ensures that the watermark[min,low,high] values for each zone are set
7921 * correctly with respect to min_free_kbytes.
7922 */
7923void setup_per_zone_wmarks(void)
7924{
b93e0f32
MH
7925 static DEFINE_SPINLOCK(lock);
7926
7927 spin_lock(&lock);
cfd3da1e 7928 __setup_per_zone_wmarks();
b93e0f32 7929 spin_unlock(&lock);
cfd3da1e
MG
7930}
7931
1da177e4
LT
7932/*
7933 * Initialise min_free_kbytes.
7934 *
7935 * For small machines we want it small (128k min). For large machines
7936 * we want it large (64MB max). But it is not linear, because network
7937 * bandwidth does not increase linearly with machine size. We use
7938 *
b8af2941 7939 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7940 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7941 *
7942 * which yields
7943 *
7944 * 16MB: 512k
7945 * 32MB: 724k
7946 * 64MB: 1024k
7947 * 128MB: 1448k
7948 * 256MB: 2048k
7949 * 512MB: 2896k
7950 * 1024MB: 4096k
7951 * 2048MB: 5792k
7952 * 4096MB: 8192k
7953 * 8192MB: 11584k
7954 * 16384MB: 16384k
7955 */
1b79acc9 7956int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7957{
7958 unsigned long lowmem_kbytes;
5f12733e 7959 int new_min_free_kbytes;
1da177e4
LT
7960
7961 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7962 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7963
7964 if (new_min_free_kbytes > user_min_free_kbytes) {
7965 min_free_kbytes = new_min_free_kbytes;
7966 if (min_free_kbytes < 128)
7967 min_free_kbytes = 128;
ee8eb9a5
JS
7968 if (min_free_kbytes > 262144)
7969 min_free_kbytes = 262144;
5f12733e
MH
7970 } else {
7971 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7972 new_min_free_kbytes, user_min_free_kbytes);
7973 }
bc75d33f 7974 setup_per_zone_wmarks();
a6cccdc3 7975 refresh_zone_stat_thresholds();
1da177e4 7976 setup_per_zone_lowmem_reserve();
6423aa81
JK
7977
7978#ifdef CONFIG_NUMA
7979 setup_min_unmapped_ratio();
7980 setup_min_slab_ratio();
7981#endif
7982
1da177e4
LT
7983 return 0;
7984}
bc22af74 7985core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7986
7987/*
b8af2941 7988 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7989 * that we can call two helper functions whenever min_free_kbytes
7990 * changes.
7991 */
cccad5b9 7992int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7993 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7994{
da8c757b
HP
7995 int rc;
7996
7997 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7998 if (rc)
7999 return rc;
8000
5f12733e
MH
8001 if (write) {
8002 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8003 setup_per_zone_wmarks();
5f12733e 8004 }
1da177e4
LT
8005 return 0;
8006}
8007
1c30844d
MG
8008int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
8009 void __user *buffer, size_t *length, loff_t *ppos)
8010{
8011 int rc;
8012
8013 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8014 if (rc)
8015 return rc;
8016
8017 return 0;
8018}
8019
795ae7a0
JW
8020int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8021 void __user *buffer, size_t *length, loff_t *ppos)
8022{
8023 int rc;
8024
8025 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8026 if (rc)
8027 return rc;
8028
8029 if (write)
8030 setup_per_zone_wmarks();
8031
8032 return 0;
8033}
8034
9614634f 8035#ifdef CONFIG_NUMA
6423aa81 8036static void setup_min_unmapped_ratio(void)
9614634f 8037{
6423aa81 8038 pg_data_t *pgdat;
9614634f 8039 struct zone *zone;
9614634f 8040
a5f5f91d 8041 for_each_online_pgdat(pgdat)
81cbcbc2 8042 pgdat->min_unmapped_pages = 0;
a5f5f91d 8043
9614634f 8044 for_each_zone(zone)
9705bea5
AK
8045 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8046 sysctl_min_unmapped_ratio) / 100;
9614634f 8047}
0ff38490 8048
6423aa81
JK
8049
8050int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8051 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 8052{
0ff38490
CL
8053 int rc;
8054
8d65af78 8055 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8056 if (rc)
8057 return rc;
8058
6423aa81
JK
8059 setup_min_unmapped_ratio();
8060
8061 return 0;
8062}
8063
8064static void setup_min_slab_ratio(void)
8065{
8066 pg_data_t *pgdat;
8067 struct zone *zone;
8068
a5f5f91d
MG
8069 for_each_online_pgdat(pgdat)
8070 pgdat->min_slab_pages = 0;
8071
0ff38490 8072 for_each_zone(zone)
9705bea5
AK
8073 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8074 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8075}
8076
8077int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8078 void __user *buffer, size_t *length, loff_t *ppos)
8079{
8080 int rc;
8081
8082 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8083 if (rc)
8084 return rc;
8085
8086 setup_min_slab_ratio();
8087
0ff38490
CL
8088 return 0;
8089}
9614634f
CL
8090#endif
8091
1da177e4
LT
8092/*
8093 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8094 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8095 * whenever sysctl_lowmem_reserve_ratio changes.
8096 *
8097 * The reserve ratio obviously has absolutely no relation with the
41858966 8098 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8099 * if in function of the boot time zone sizes.
8100 */
cccad5b9 8101int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8102 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 8103{
8d65af78 8104 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
8105 setup_per_zone_lowmem_reserve();
8106 return 0;
8107}
8108
cb1ef534
MG
8109static void __zone_pcp_update(struct zone *zone)
8110{
8111 unsigned int cpu;
8112
8113 for_each_possible_cpu(cpu)
8114 pageset_set_high_and_batch(zone,
8115 per_cpu_ptr(zone->pageset, cpu));
8116}
8117
8ad4b1fb
RS
8118/*
8119 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8120 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8121 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8122 */
cccad5b9 8123int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8124 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8125{
8126 struct zone *zone;
7cd2b0a3 8127 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8128 int ret;
8129
7cd2b0a3
DR
8130 mutex_lock(&pcp_batch_high_lock);
8131 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8132
8d65af78 8133 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8134 if (!write || ret < 0)
8135 goto out;
8136
8137 /* Sanity checking to avoid pcp imbalance */
8138 if (percpu_pagelist_fraction &&
8139 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8140 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8141 ret = -EINVAL;
8142 goto out;
8143 }
8144
8145 /* No change? */
8146 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8147 goto out;
c8e251fa 8148
cb1ef534
MG
8149 for_each_populated_zone(zone)
8150 __zone_pcp_update(zone);
7cd2b0a3 8151out:
c8e251fa 8152 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8153 return ret;
8ad4b1fb
RS
8154}
8155
f6f34b43
SD
8156#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8157/*
8158 * Returns the number of pages that arch has reserved but
8159 * is not known to alloc_large_system_hash().
8160 */
8161static unsigned long __init arch_reserved_kernel_pages(void)
8162{
8163 return 0;
8164}
8165#endif
8166
9017217b
PT
8167/*
8168 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8169 * machines. As memory size is increased the scale is also increased but at
8170 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8171 * quadruples the scale is increased by one, which means the size of hash table
8172 * only doubles, instead of quadrupling as well.
8173 * Because 32-bit systems cannot have large physical memory, where this scaling
8174 * makes sense, it is disabled on such platforms.
8175 */
8176#if __BITS_PER_LONG > 32
8177#define ADAPT_SCALE_BASE (64ul << 30)
8178#define ADAPT_SCALE_SHIFT 2
8179#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8180#endif
8181
1da177e4
LT
8182/*
8183 * allocate a large system hash table from bootmem
8184 * - it is assumed that the hash table must contain an exact power-of-2
8185 * quantity of entries
8186 * - limit is the number of hash buckets, not the total allocation size
8187 */
8188void *__init alloc_large_system_hash(const char *tablename,
8189 unsigned long bucketsize,
8190 unsigned long numentries,
8191 int scale,
8192 int flags,
8193 unsigned int *_hash_shift,
8194 unsigned int *_hash_mask,
31fe62b9
TB
8195 unsigned long low_limit,
8196 unsigned long high_limit)
1da177e4 8197{
31fe62b9 8198 unsigned long long max = high_limit;
1da177e4
LT
8199 unsigned long log2qty, size;
8200 void *table = NULL;
3749a8f0 8201 gfp_t gfp_flags;
ec11408a 8202 bool virt;
1da177e4
LT
8203
8204 /* allow the kernel cmdline to have a say */
8205 if (!numentries) {
8206 /* round applicable memory size up to nearest megabyte */
04903664 8207 numentries = nr_kernel_pages;
f6f34b43 8208 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8209
8210 /* It isn't necessary when PAGE_SIZE >= 1MB */
8211 if (PAGE_SHIFT < 20)
8212 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8213
9017217b
PT
8214#if __BITS_PER_LONG > 32
8215 if (!high_limit) {
8216 unsigned long adapt;
8217
8218 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8219 adapt <<= ADAPT_SCALE_SHIFT)
8220 scale++;
8221 }
8222#endif
8223
1da177e4
LT
8224 /* limit to 1 bucket per 2^scale bytes of low memory */
8225 if (scale > PAGE_SHIFT)
8226 numentries >>= (scale - PAGE_SHIFT);
8227 else
8228 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8229
8230 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8231 if (unlikely(flags & HASH_SMALL)) {
8232 /* Makes no sense without HASH_EARLY */
8233 WARN_ON(!(flags & HASH_EARLY));
8234 if (!(numentries >> *_hash_shift)) {
8235 numentries = 1UL << *_hash_shift;
8236 BUG_ON(!numentries);
8237 }
8238 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8239 numentries = PAGE_SIZE / bucketsize;
1da177e4 8240 }
6e692ed3 8241 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8242
8243 /* limit allocation size to 1/16 total memory by default */
8244 if (max == 0) {
8245 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8246 do_div(max, bucketsize);
8247 }
074b8517 8248 max = min(max, 0x80000000ULL);
1da177e4 8249
31fe62b9
TB
8250 if (numentries < low_limit)
8251 numentries = low_limit;
1da177e4
LT
8252 if (numentries > max)
8253 numentries = max;
8254
f0d1b0b3 8255 log2qty = ilog2(numentries);
1da177e4 8256
3749a8f0 8257 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8258 do {
ec11408a 8259 virt = false;
1da177e4 8260 size = bucketsize << log2qty;
ea1f5f37
PT
8261 if (flags & HASH_EARLY) {
8262 if (flags & HASH_ZERO)
26fb3dae 8263 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8264 else
7e1c4e27
MR
8265 table = memblock_alloc_raw(size,
8266 SMP_CACHE_BYTES);
ec11408a 8267 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8268 table = __vmalloc(size, gfp_flags);
ec11408a 8269 virt = true;
ea1f5f37 8270 } else {
1037b83b
ED
8271 /*
8272 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8273 * some pages at the end of hash table which
8274 * alloc_pages_exact() automatically does
1037b83b 8275 */
ec11408a
NP
8276 table = alloc_pages_exact(size, gfp_flags);
8277 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8278 }
8279 } while (!table && size > PAGE_SIZE && --log2qty);
8280
8281 if (!table)
8282 panic("Failed to allocate %s hash table\n", tablename);
8283
ec11408a
NP
8284 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8285 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8286 virt ? "vmalloc" : "linear");
1da177e4
LT
8287
8288 if (_hash_shift)
8289 *_hash_shift = log2qty;
8290 if (_hash_mask)
8291 *_hash_mask = (1 << log2qty) - 1;
8292
8293 return table;
8294}
a117e66e 8295
a5d76b54 8296/*
80934513 8297 * This function checks whether pageblock includes unmovable pages or not.
80934513 8298 *
b8af2941 8299 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8300 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8301 * check without lock_page also may miss some movable non-lru pages at
8302 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8303 *
8304 * Returns a page without holding a reference. If the caller wants to
8305 * dereference that page (e.g., dumping), it has to make sure that that it
8306 * cannot get removed (e.g., via memory unplug) concurrently.
8307 *
a5d76b54 8308 */
4a55c047
QC
8309struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8310 int migratetype, int flags)
49ac8255 8311{
1a9f2191
QC
8312 unsigned long iter = 0;
8313 unsigned long pfn = page_to_pfn(page);
47118af0 8314
49ac8255 8315 /*
15c30bc0
MH
8316 * TODO we could make this much more efficient by not checking every
8317 * page in the range if we know all of them are in MOVABLE_ZONE and
8318 * that the movable zone guarantees that pages are migratable but
8319 * the later is not the case right now unfortunatelly. E.g. movablecore
8320 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8321 */
49ac8255 8322
1a9f2191
QC
8323 if (is_migrate_cma_page(page)) {
8324 /*
8325 * CMA allocations (alloc_contig_range) really need to mark
8326 * isolate CMA pageblocks even when they are not movable in fact
8327 * so consider them movable here.
8328 */
8329 if (is_migrate_cma(migratetype))
4a55c047 8330 return NULL;
1a9f2191 8331
3d680bdf 8332 return page;
1a9f2191 8333 }
4da2ce25 8334
fe4c86c9
DH
8335 for (; iter < pageblock_nr_pages; iter++) {
8336 if (!pfn_valid_within(pfn + iter))
49ac8255 8337 continue;
29723fcc 8338
fe4c86c9 8339 page = pfn_to_page(pfn + iter);
c8721bbb 8340
d7ab3672 8341 if (PageReserved(page))
3d680bdf 8342 return page;
d7ab3672 8343
9d789999
MH
8344 /*
8345 * If the zone is movable and we have ruled out all reserved
8346 * pages then it should be reasonably safe to assume the rest
8347 * is movable.
8348 */
8349 if (zone_idx(zone) == ZONE_MOVABLE)
8350 continue;
8351
c8721bbb
NH
8352 /*
8353 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8354 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8355 * We need not scan over tail pages because we don't
c8721bbb
NH
8356 * handle each tail page individually in migration.
8357 */
1da2f328 8358 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8359 struct page *head = compound_head(page);
8360 unsigned int skip_pages;
464c7ffb 8361
1da2f328
RR
8362 if (PageHuge(page)) {
8363 if (!hugepage_migration_supported(page_hstate(head)))
8364 return page;
8365 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8366 return page;
1da2f328 8367 }
464c7ffb 8368
d8c6546b 8369 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8370 iter += skip_pages - 1;
c8721bbb
NH
8371 continue;
8372 }
8373
97d255c8
MK
8374 /*
8375 * We can't use page_count without pin a page
8376 * because another CPU can free compound page.
8377 * This check already skips compound tails of THP
0139aa7b 8378 * because their page->_refcount is zero at all time.
97d255c8 8379 */
fe896d18 8380 if (!page_ref_count(page)) {
49ac8255
KH
8381 if (PageBuddy(page))
8382 iter += (1 << page_order(page)) - 1;
8383 continue;
8384 }
97d255c8 8385
b023f468
WC
8386 /*
8387 * The HWPoisoned page may be not in buddy system, and
8388 * page_count() is not 0.
8389 */
756d25be 8390 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8391 continue;
8392
fe4c86c9 8393 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8394 continue;
8395
49ac8255 8396 /*
6b4f7799
JW
8397 * If there are RECLAIMABLE pages, we need to check
8398 * it. But now, memory offline itself doesn't call
8399 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8400 */
8401 /*
8402 * If the page is not RAM, page_count()should be 0.
8403 * we don't need more check. This is an _used_ not-movable page.
8404 *
8405 * The problematic thing here is PG_reserved pages. PG_reserved
8406 * is set to both of a memory hole page and a _used_ kernel
8407 * page at boot.
8408 */
3d680bdf 8409 return page;
49ac8255 8410 }
4a55c047 8411 return NULL;
49ac8255
KH
8412}
8413
8df995f6 8414#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8415static unsigned long pfn_max_align_down(unsigned long pfn)
8416{
8417 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8418 pageblock_nr_pages) - 1);
8419}
8420
8421static unsigned long pfn_max_align_up(unsigned long pfn)
8422{
8423 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8424 pageblock_nr_pages));
8425}
8426
041d3a8c 8427/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8428static int __alloc_contig_migrate_range(struct compact_control *cc,
8429 unsigned long start, unsigned long end)
041d3a8c
MN
8430{
8431 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8432 unsigned long nr_reclaimed;
041d3a8c
MN
8433 unsigned long pfn = start;
8434 unsigned int tries = 0;
8435 int ret = 0;
8436
be49a6e1 8437 migrate_prep();
041d3a8c 8438
bb13ffeb 8439 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8440 if (fatal_signal_pending(current)) {
8441 ret = -EINTR;
8442 break;
8443 }
8444
bb13ffeb
MG
8445 if (list_empty(&cc->migratepages)) {
8446 cc->nr_migratepages = 0;
edc2ca61 8447 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8448 if (!pfn) {
8449 ret = -EINTR;
8450 break;
8451 }
8452 tries = 0;
8453 } else if (++tries == 5) {
8454 ret = ret < 0 ? ret : -EBUSY;
8455 break;
8456 }
8457
beb51eaa
MK
8458 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8459 &cc->migratepages);
8460 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8461
9c620e2b 8462 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8463 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8464 }
2a6f5124
SP
8465 if (ret < 0) {
8466 putback_movable_pages(&cc->migratepages);
8467 return ret;
8468 }
8469 return 0;
041d3a8c
MN
8470}
8471
8472/**
8473 * alloc_contig_range() -- tries to allocate given range of pages
8474 * @start: start PFN to allocate
8475 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8476 * @migratetype: migratetype of the underlaying pageblocks (either
8477 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8478 * in range must have the same migratetype and it must
8479 * be either of the two.
ca96b625 8480 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8481 *
8482 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8483 * aligned. The PFN range must belong to a single zone.
041d3a8c 8484 *
2c7452a0
MK
8485 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8486 * pageblocks in the range. Once isolated, the pageblocks should not
8487 * be modified by others.
041d3a8c 8488 *
a862f68a 8489 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8490 * pages which PFN is in [start, end) are allocated for the caller and
8491 * need to be freed with free_contig_range().
8492 */
0815f3d8 8493int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8494 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8495{
041d3a8c 8496 unsigned long outer_start, outer_end;
d00181b9
KS
8497 unsigned int order;
8498 int ret = 0;
041d3a8c 8499
bb13ffeb
MG
8500 struct compact_control cc = {
8501 .nr_migratepages = 0,
8502 .order = -1,
8503 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8504 .mode = MIGRATE_SYNC,
bb13ffeb 8505 .ignore_skip_hint = true,
2583d671 8506 .no_set_skip_hint = true,
7dea19f9 8507 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8508 .alloc_contig = true,
bb13ffeb
MG
8509 };
8510 INIT_LIST_HEAD(&cc.migratepages);
8511
041d3a8c
MN
8512 /*
8513 * What we do here is we mark all pageblocks in range as
8514 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8515 * have different sizes, and due to the way page allocator
8516 * work, we align the range to biggest of the two pages so
8517 * that page allocator won't try to merge buddies from
8518 * different pageblocks and change MIGRATE_ISOLATE to some
8519 * other migration type.
8520 *
8521 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8522 * migrate the pages from an unaligned range (ie. pages that
8523 * we are interested in). This will put all the pages in
8524 * range back to page allocator as MIGRATE_ISOLATE.
8525 *
8526 * When this is done, we take the pages in range from page
8527 * allocator removing them from the buddy system. This way
8528 * page allocator will never consider using them.
8529 *
8530 * This lets us mark the pageblocks back as
8531 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8532 * aligned range but not in the unaligned, original range are
8533 * put back to page allocator so that buddy can use them.
8534 */
8535
8536 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8537 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8538 if (ret < 0)
86a595f9 8539 return ret;
041d3a8c 8540
8ef5849f
JK
8541 /*
8542 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8543 * So, just fall through. test_pages_isolated() has a tracepoint
8544 * which will report the busy page.
8545 *
8546 * It is possible that busy pages could become available before
8547 * the call to test_pages_isolated, and the range will actually be
8548 * allocated. So, if we fall through be sure to clear ret so that
8549 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8550 */
bb13ffeb 8551 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8552 if (ret && ret != -EBUSY)
041d3a8c 8553 goto done;
63cd4489 8554 ret =0;
041d3a8c
MN
8555
8556 /*
8557 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8558 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8559 * more, all pages in [start, end) are free in page allocator.
8560 * What we are going to do is to allocate all pages from
8561 * [start, end) (that is remove them from page allocator).
8562 *
8563 * The only problem is that pages at the beginning and at the
8564 * end of interesting range may be not aligned with pages that
8565 * page allocator holds, ie. they can be part of higher order
8566 * pages. Because of this, we reserve the bigger range and
8567 * once this is done free the pages we are not interested in.
8568 *
8569 * We don't have to hold zone->lock here because the pages are
8570 * isolated thus they won't get removed from buddy.
8571 */
8572
8573 lru_add_drain_all();
041d3a8c
MN
8574
8575 order = 0;
8576 outer_start = start;
8577 while (!PageBuddy(pfn_to_page(outer_start))) {
8578 if (++order >= MAX_ORDER) {
8ef5849f
JK
8579 outer_start = start;
8580 break;
041d3a8c
MN
8581 }
8582 outer_start &= ~0UL << order;
8583 }
8584
8ef5849f
JK
8585 if (outer_start != start) {
8586 order = page_order(pfn_to_page(outer_start));
8587
8588 /*
8589 * outer_start page could be small order buddy page and
8590 * it doesn't include start page. Adjust outer_start
8591 * in this case to report failed page properly
8592 * on tracepoint in test_pages_isolated()
8593 */
8594 if (outer_start + (1UL << order) <= start)
8595 outer_start = start;
8596 }
8597
041d3a8c 8598 /* Make sure the range is really isolated. */
756d25be 8599 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8600 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8601 __func__, outer_start, end);
041d3a8c
MN
8602 ret = -EBUSY;
8603 goto done;
8604 }
8605
49f223a9 8606 /* Grab isolated pages from freelists. */
bb13ffeb 8607 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8608 if (!outer_end) {
8609 ret = -EBUSY;
8610 goto done;
8611 }
8612
8613 /* Free head and tail (if any) */
8614 if (start != outer_start)
8615 free_contig_range(outer_start, start - outer_start);
8616 if (end != outer_end)
8617 free_contig_range(end, outer_end - end);
8618
8619done:
8620 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8621 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8622 return ret;
8623}
5e27a2df
AK
8624
8625static int __alloc_contig_pages(unsigned long start_pfn,
8626 unsigned long nr_pages, gfp_t gfp_mask)
8627{
8628 unsigned long end_pfn = start_pfn + nr_pages;
8629
8630 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8631 gfp_mask);
8632}
8633
8634static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8635 unsigned long nr_pages)
8636{
8637 unsigned long i, end_pfn = start_pfn + nr_pages;
8638 struct page *page;
8639
8640 for (i = start_pfn; i < end_pfn; i++) {
8641 page = pfn_to_online_page(i);
8642 if (!page)
8643 return false;
8644
8645 if (page_zone(page) != z)
8646 return false;
8647
8648 if (PageReserved(page))
8649 return false;
8650
8651 if (page_count(page) > 0)
8652 return false;
8653
8654 if (PageHuge(page))
8655 return false;
8656 }
8657 return true;
8658}
8659
8660static bool zone_spans_last_pfn(const struct zone *zone,
8661 unsigned long start_pfn, unsigned long nr_pages)
8662{
8663 unsigned long last_pfn = start_pfn + nr_pages - 1;
8664
8665 return zone_spans_pfn(zone, last_pfn);
8666}
8667
8668/**
8669 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8670 * @nr_pages: Number of contiguous pages to allocate
8671 * @gfp_mask: GFP mask to limit search and used during compaction
8672 * @nid: Target node
8673 * @nodemask: Mask for other possible nodes
8674 *
8675 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8676 * on an applicable zonelist to find a contiguous pfn range which can then be
8677 * tried for allocation with alloc_contig_range(). This routine is intended
8678 * for allocation requests which can not be fulfilled with the buddy allocator.
8679 *
8680 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8681 * power of two then the alignment is guaranteed to be to the given nr_pages
8682 * (e.g. 1GB request would be aligned to 1GB).
8683 *
8684 * Allocated pages can be freed with free_contig_range() or by manually calling
8685 * __free_page() on each allocated page.
8686 *
8687 * Return: pointer to contiguous pages on success, or NULL if not successful.
8688 */
8689struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8690 int nid, nodemask_t *nodemask)
8691{
8692 unsigned long ret, pfn, flags;
8693 struct zonelist *zonelist;
8694 struct zone *zone;
8695 struct zoneref *z;
8696
8697 zonelist = node_zonelist(nid, gfp_mask);
8698 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8699 gfp_zone(gfp_mask), nodemask) {
8700 spin_lock_irqsave(&zone->lock, flags);
8701
8702 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8703 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8704 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8705 /*
8706 * We release the zone lock here because
8707 * alloc_contig_range() will also lock the zone
8708 * at some point. If there's an allocation
8709 * spinning on this lock, it may win the race
8710 * and cause alloc_contig_range() to fail...
8711 */
8712 spin_unlock_irqrestore(&zone->lock, flags);
8713 ret = __alloc_contig_pages(pfn, nr_pages,
8714 gfp_mask);
8715 if (!ret)
8716 return pfn_to_page(pfn);
8717 spin_lock_irqsave(&zone->lock, flags);
8718 }
8719 pfn += nr_pages;
8720 }
8721 spin_unlock_irqrestore(&zone->lock, flags);
8722 }
8723 return NULL;
8724}
4eb0716e 8725#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8726
4eb0716e 8727void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8728{
bcc2b02f
MS
8729 unsigned int count = 0;
8730
8731 for (; nr_pages--; pfn++) {
8732 struct page *page = pfn_to_page(pfn);
8733
8734 count += page_count(page) != 1;
8735 __free_page(page);
8736 }
8737 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8738}
041d3a8c 8739
0a647f38
CS
8740/*
8741 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8742 * page high values need to be recalulated.
8743 */
4ed7e022
JL
8744void __meminit zone_pcp_update(struct zone *zone)
8745{
c8e251fa 8746 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8747 __zone_pcp_update(zone);
c8e251fa 8748 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8749}
4ed7e022 8750
340175b7
JL
8751void zone_pcp_reset(struct zone *zone)
8752{
8753 unsigned long flags;
5a883813
MK
8754 int cpu;
8755 struct per_cpu_pageset *pset;
340175b7
JL
8756
8757 /* avoid races with drain_pages() */
8758 local_irq_save(flags);
8759 if (zone->pageset != &boot_pageset) {
5a883813
MK
8760 for_each_online_cpu(cpu) {
8761 pset = per_cpu_ptr(zone->pageset, cpu);
8762 drain_zonestat(zone, pset);
8763 }
340175b7
JL
8764 free_percpu(zone->pageset);
8765 zone->pageset = &boot_pageset;
8766 }
8767 local_irq_restore(flags);
8768}
8769
6dcd73d7 8770#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8771/*
b9eb6319
JK
8772 * All pages in the range must be in a single zone and isolated
8773 * before calling this.
0c0e6195 8774 */
5557c766 8775unsigned long
0c0e6195
KH
8776__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8777{
8778 struct page *page;
8779 struct zone *zone;
0ee5f4f3 8780 unsigned int order;
0c0e6195
KH
8781 unsigned long pfn;
8782 unsigned long flags;
5557c766
MH
8783 unsigned long offlined_pages = 0;
8784
0c0e6195
KH
8785 /* find the first valid pfn */
8786 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8787 if (pfn_valid(pfn))
8788 break;
8789 if (pfn == end_pfn)
5557c766
MH
8790 return offlined_pages;
8791
2d070eab 8792 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8793 zone = page_zone(pfn_to_page(pfn));
8794 spin_lock_irqsave(&zone->lock, flags);
8795 pfn = start_pfn;
8796 while (pfn < end_pfn) {
8797 if (!pfn_valid(pfn)) {
8798 pfn++;
8799 continue;
8800 }
8801 page = pfn_to_page(pfn);
b023f468
WC
8802 /*
8803 * The HWPoisoned page may be not in buddy system, and
8804 * page_count() is not 0.
8805 */
8806 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8807 pfn++;
5557c766 8808 offlined_pages++;
b023f468
WC
8809 continue;
8810 }
8811
0c0e6195
KH
8812 BUG_ON(page_count(page));
8813 BUG_ON(!PageBuddy(page));
8814 order = page_order(page);
5557c766 8815 offlined_pages += 1 << order;
6ab01363 8816 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8817 pfn += (1 << order);
8818 }
8819 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8820
8821 return offlined_pages;
0c0e6195
KH
8822}
8823#endif
8d22ba1b 8824
8d22ba1b
WF
8825bool is_free_buddy_page(struct page *page)
8826{
8827 struct zone *zone = page_zone(page);
8828 unsigned long pfn = page_to_pfn(page);
8829 unsigned long flags;
7aeb09f9 8830 unsigned int order;
8d22ba1b
WF
8831
8832 spin_lock_irqsave(&zone->lock, flags);
8833 for (order = 0; order < MAX_ORDER; order++) {
8834 struct page *page_head = page - (pfn & ((1 << order) - 1));
8835
8836 if (PageBuddy(page_head) && page_order(page_head) >= order)
8837 break;
8838 }
8839 spin_unlock_irqrestore(&zone->lock, flags);
8840
8841 return order < MAX_ORDER;
8842}
d4ae9916
NH
8843
8844#ifdef CONFIG_MEMORY_FAILURE
8845/*
8846 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8847 * test is performed under the zone lock to prevent a race against page
8848 * allocation.
8849 */
8850bool set_hwpoison_free_buddy_page(struct page *page)
8851{
8852 struct zone *zone = page_zone(page);
8853 unsigned long pfn = page_to_pfn(page);
8854 unsigned long flags;
8855 unsigned int order;
8856 bool hwpoisoned = false;
8857
8858 spin_lock_irqsave(&zone->lock, flags);
8859 for (order = 0; order < MAX_ORDER; order++) {
8860 struct page *page_head = page - (pfn & ((1 << order) - 1));
8861
8862 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8863 if (!TestSetPageHWPoison(page))
8864 hwpoisoned = true;
8865 break;
8866 }
8867 }
8868 spin_unlock_irqrestore(&zone->lock, flags);
8869
8870 return hwpoisoned;
8871}
8872#endif