kasan: mark KASAN_VMALLOC flags as kasan_vmalloc_flags_t
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
a238ab5b 35#include <linux/ratelimit.h>
5a3135c2 36#include <linux/oom.h>
1da177e4
LT
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
97500a4a 48#include <linux/random.h>
c713216d
MG
49#include <linux/sort.h>
50#include <linux/pfn.h>
3fcfab16 51#include <linux/backing-dev.h>
933e312e 52#include <linux/fault-inject.h>
a5d76b54 53#include <linux/page-isolation.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
f920e413 61#include <linux/mmu_notifier.h>
041d3a8c 62#include <linux/migrate.h>
949f7ec5 63#include <linux/hugetlb.h>
8bd75c77 64#include <linux/sched/rt.h>
5b3cc15a 65#include <linux/sched/mm.h>
48c96a36 66#include <linux/page_owner.h>
df4e817b 67#include <linux/page_table_check.h>
0e1cc95b 68#include <linux/kthread.h>
4949148a 69#include <linux/memcontrol.h>
42c269c8 70#include <linux/ftrace.h>
d92a8cfc 71#include <linux/lockdep.h>
556b969a 72#include <linux/nmi.h>
eb414681 73#include <linux/psi.h>
e4443149 74#include <linux/padata.h>
4aab2be0 75#include <linux/khugepaged.h>
ba8f3587 76#include <linux/buffer_head.h>
5bf18281 77#include <linux/delayacct.h>
7ee3d4e8 78#include <asm/sections.h>
1da177e4 79#include <asm/tlbflush.h>
ac924c60 80#include <asm/div64.h>
1da177e4 81#include "internal.h"
e900a918 82#include "shuffle.h"
36e66c55 83#include "page_reporting.h"
1da177e4 84
f04a5d5d
DH
85/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86typedef int __bitwise fpi_t;
87
88/* No special request */
89#define FPI_NONE ((__force fpi_t)0)
90
91/*
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
98 */
99#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100
47b6a24a
DH
101/*
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
105 *
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
109 * reporting).
110 */
111#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112
2c335680
AK
113/*
114 * Don't poison memory with KASAN (only for the tag-based modes).
115 * During boot, all non-reserved memblock memory is exposed to page_alloc.
116 * Poisoning all that memory lengthens boot time, especially on systems with
117 * large amount of RAM. This flag is used to skip that poisoning.
118 * This is only done for the tag-based KASAN modes, as those are able to
119 * detect memory corruptions with the memory tags assigned by default.
120 * All memory allocated normally after boot gets poisoned as usual.
121 */
122#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
123
c8e251fa
CS
124/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 126#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 127
dbbee9d5
MG
128struct pagesets {
129 local_lock_t lock;
dbbee9d5 130};
273ba85b 131static DEFINE_PER_CPU(struct pagesets, pagesets) = {
dbbee9d5
MG
132 .lock = INIT_LOCAL_LOCK(lock),
133};
c8e251fa 134
72812019
LS
135#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136DEFINE_PER_CPU(int, numa_node);
137EXPORT_PER_CPU_SYMBOL(numa_node);
138#endif
139
4518085e
KW
140DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
141
7aac7898
LS
142#ifdef CONFIG_HAVE_MEMORYLESS_NODES
143/*
144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147 * defined in <linux/topology.h>.
148 */
149DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
150EXPORT_PER_CPU_SYMBOL(_numa_mem_);
151#endif
152
bd233f53 153/* work_structs for global per-cpu drains */
d9367bd0
WY
154struct pcpu_drain {
155 struct zone *zone;
156 struct work_struct work;
157};
8b885f53
JY
158static DEFINE_MUTEX(pcpu_drain_mutex);
159static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 160
38addce8 161#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 162volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
163EXPORT_SYMBOL(latent_entropy);
164#endif
165
1da177e4 166/*
13808910 167 * Array of node states.
1da177e4 168 */
13808910
CL
169nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 [N_POSSIBLE] = NODE_MASK_ALL,
171 [N_ONLINE] = { { [0] = 1UL } },
172#ifndef CONFIG_NUMA
173 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
174#ifdef CONFIG_HIGHMEM
175 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 176#endif
20b2f52b 177 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
178 [N_CPU] = { { [0] = 1UL } },
179#endif /* NUMA */
180};
181EXPORT_SYMBOL(node_states);
182
ca79b0c2
AK
183atomic_long_t _totalram_pages __read_mostly;
184EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 185unsigned long totalreserve_pages __read_mostly;
e48322ab 186unsigned long totalcma_pages __read_mostly;
ab8fabd4 187
74f44822 188int percpu_pagelist_high_fraction;
dcce284a 189gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
191EXPORT_SYMBOL(init_on_alloc);
192
51cba1eb 193DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
194EXPORT_SYMBOL(init_on_free);
195
04013513
VB
196static bool _init_on_alloc_enabled_early __read_mostly
197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
198static int __init early_init_on_alloc(char *buf)
199{
6471384a 200
04013513 201 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
202}
203early_param("init_on_alloc", early_init_on_alloc);
204
04013513
VB
205static bool _init_on_free_enabled_early __read_mostly
206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
207static int __init early_init_on_free(char *buf)
208{
04013513 209 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
210}
211early_param("init_on_free", early_init_on_free);
1da177e4 212
bb14c2c7
VB
213/*
214 * A cached value of the page's pageblock's migratetype, used when the page is
215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217 * Also the migratetype set in the page does not necessarily match the pcplist
218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219 * other index - this ensures that it will be put on the correct CMA freelist.
220 */
221static inline int get_pcppage_migratetype(struct page *page)
222{
223 return page->index;
224}
225
226static inline void set_pcppage_migratetype(struct page *page, int migratetype)
227{
228 page->index = migratetype;
229}
230
452aa699
RW
231#ifdef CONFIG_PM_SLEEP
232/*
233 * The following functions are used by the suspend/hibernate code to temporarily
234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
236 * they should always be called with system_transition_mutex held
237 * (gfp_allowed_mask also should only be modified with system_transition_mutex
238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239 * with that modification).
452aa699 240 */
c9e664f1
RW
241
242static gfp_t saved_gfp_mask;
243
244void pm_restore_gfp_mask(void)
452aa699 245{
55f2503c 246 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
247 if (saved_gfp_mask) {
248 gfp_allowed_mask = saved_gfp_mask;
249 saved_gfp_mask = 0;
250 }
452aa699
RW
251}
252
c9e664f1 253void pm_restrict_gfp_mask(void)
452aa699 254{
55f2503c 255 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
256 WARN_ON(saved_gfp_mask);
257 saved_gfp_mask = gfp_allowed_mask;
d0164adc 258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 259}
f90ac398
MG
260
261bool pm_suspended_storage(void)
262{
d0164adc 263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
264 return false;
265 return true;
266}
452aa699
RW
267#endif /* CONFIG_PM_SLEEP */
268
d9c23400 269#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 270unsigned int pageblock_order __read_mostly;
d9c23400
MG
271#endif
272
7fef431b
DH
273static void __free_pages_ok(struct page *page, unsigned int order,
274 fpi_t fpi_flags);
a226f6c8 275
1da177e4
LT
276/*
277 * results with 256, 32 in the lowmem_reserve sysctl:
278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279 * 1G machine -> (16M dma, 784M normal, 224M high)
280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
283 *
284 * TBD: should special case ZONE_DMA32 machines here - in those we normally
285 * don't need any ZONE_NORMAL reservation
1da177e4 286 */
d3cda233 287int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 288#ifdef CONFIG_ZONE_DMA
d3cda233 289 [ZONE_DMA] = 256,
4b51d669 290#endif
fb0e7942 291#ifdef CONFIG_ZONE_DMA32
d3cda233 292 [ZONE_DMA32] = 256,
fb0e7942 293#endif
d3cda233 294 [ZONE_NORMAL] = 32,
e53ef38d 295#ifdef CONFIG_HIGHMEM
d3cda233 296 [ZONE_HIGHMEM] = 0,
e53ef38d 297#endif
d3cda233 298 [ZONE_MOVABLE] = 0,
2f1b6248 299};
1da177e4 300
15ad7cdc 301static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 302#ifdef CONFIG_ZONE_DMA
2f1b6248 303 "DMA",
4b51d669 304#endif
fb0e7942 305#ifdef CONFIG_ZONE_DMA32
2f1b6248 306 "DMA32",
fb0e7942 307#endif
2f1b6248 308 "Normal",
e53ef38d 309#ifdef CONFIG_HIGHMEM
2a1e274a 310 "HighMem",
e53ef38d 311#endif
2a1e274a 312 "Movable",
033fbae9
DW
313#ifdef CONFIG_ZONE_DEVICE
314 "Device",
315#endif
2f1b6248
CL
316};
317
c999fbd3 318const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
319 "Unmovable",
320 "Movable",
321 "Reclaimable",
322 "HighAtomic",
323#ifdef CONFIG_CMA
324 "CMA",
325#endif
326#ifdef CONFIG_MEMORY_ISOLATION
327 "Isolate",
328#endif
329};
330
ae70eddd
AK
331compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 [NULL_COMPOUND_DTOR] = NULL,
333 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 334#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 335 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 336#endif
9a982250 337#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 339#endif
f1e61557
KS
340};
341
1da177e4 342int min_free_kbytes = 1024;
42aa83cb 343int user_min_free_kbytes = -1;
1c30844d 344int watermark_boost_factor __read_mostly = 15000;
795ae7a0 345int watermark_scale_factor = 10;
1da177e4 346
bbe5d993
OS
347static unsigned long nr_kernel_pages __initdata;
348static unsigned long nr_all_pages __initdata;
349static unsigned long dma_reserve __initdata;
1da177e4 350
bbe5d993
OS
351static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 353static unsigned long required_kernelcore __initdata;
a5c6d650 354static unsigned long required_kernelcore_percent __initdata;
7f16f91f 355static unsigned long required_movablecore __initdata;
a5c6d650 356static unsigned long required_movablecore_percent __initdata;
bbe5d993 357static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 358static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
359
360/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361int movable_zone;
362EXPORT_SYMBOL(movable_zone);
c713216d 363
418508c1 364#if MAX_NUMNODES > 1
b9726c26 365unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 366unsigned int nr_online_nodes __read_mostly = 1;
418508c1 367EXPORT_SYMBOL(nr_node_ids);
62bc62a8 368EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
369#endif
370
9ef9acb0
MG
371int page_group_by_mobility_disabled __read_mostly;
372
3a80a7fa 373#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
374/*
375 * During boot we initialize deferred pages on-demand, as needed, but once
376 * page_alloc_init_late() has finished, the deferred pages are all initialized,
377 * and we can permanently disable that path.
378 */
379static DEFINE_STATIC_KEY_TRUE(deferred_pages);
380
94ae8b83 381static inline bool deferred_pages_enabled(void)
3c0c12cc 382{
94ae8b83 383 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
384}
385
3a80a7fa 386/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 387static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 388{
ef70b6f4
MG
389 int nid = early_pfn_to_nid(pfn);
390
391 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
392 return true;
393
394 return false;
395}
396
397/*
d3035be4 398 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
399 * later in the boot cycle when it can be parallelised.
400 */
d3035be4
PT
401static bool __meminit
402defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 403{
d3035be4
PT
404 static unsigned long prev_end_pfn, nr_initialised;
405
406 /*
407 * prev_end_pfn static that contains the end of previous zone
408 * No need to protect because called very early in boot before smp_init.
409 */
410 if (prev_end_pfn != end_pfn) {
411 prev_end_pfn = end_pfn;
412 nr_initialised = 0;
413 }
414
3c2c6488 415 /* Always populate low zones for address-constrained allocations */
d3035be4 416 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 417 return false;
23b68cfa 418
dc2da7b4
BH
419 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
420 return true;
23b68cfa
WY
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
d3035be4 425 nr_initialised++;
23b68cfa 426 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
3a80a7fa 430 }
d3035be4 431 return false;
3a80a7fa
MG
432}
433#else
94ae8b83 434static inline bool deferred_pages_enabled(void)
2c335680 435{
94ae8b83 436 return false;
2c335680 437}
3c0c12cc 438
3a80a7fa
MG
439static inline bool early_page_uninitialised(unsigned long pfn)
440{
441 return false;
442}
443
d3035be4 444static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 445{
d3035be4 446 return false;
3a80a7fa
MG
447}
448#endif
449
0b423ca2 450/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 451static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
452 unsigned long pfn)
453{
454#ifdef CONFIG_SPARSEMEM
f1eca35a 455 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
456#else
457 return page_zone(page)->pageblock_flags;
458#endif /* CONFIG_SPARSEMEM */
459}
460
ca891f41 461static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
462{
463#ifdef CONFIG_SPARSEMEM
464 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
465#else
466 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 467#endif /* CONFIG_SPARSEMEM */
399b795b 468 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
469}
470
535b81e2 471static __always_inline
ca891f41 472unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 473 unsigned long pfn,
0b423ca2
MG
474 unsigned long mask)
475{
476 unsigned long *bitmap;
477 unsigned long bitidx, word_bitidx;
478 unsigned long word;
479
480 bitmap = get_pageblock_bitmap(page, pfn);
481 bitidx = pfn_to_bitidx(page, pfn);
482 word_bitidx = bitidx / BITS_PER_LONG;
483 bitidx &= (BITS_PER_LONG-1);
484
485 word = bitmap[word_bitidx];
d93d5ab9 486 return (word >> bitidx) & mask;
0b423ca2
MG
487}
488
a00cda3f
MCC
489/**
490 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
491 * @page: The page within the block of interest
492 * @pfn: The target page frame number
493 * @mask: mask of bits that the caller is interested in
494 *
495 * Return: pageblock_bits flags
496 */
ca891f41
MWO
497unsigned long get_pfnblock_flags_mask(const struct page *page,
498 unsigned long pfn, unsigned long mask)
0b423ca2 499{
535b81e2 500 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
501}
502
ca891f41
MWO
503static __always_inline int get_pfnblock_migratetype(const struct page *page,
504 unsigned long pfn)
0b423ca2 505{
535b81e2 506 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
507}
508
509/**
510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511 * @page: The page within the block of interest
512 * @flags: The flags to set
513 * @pfn: The target page frame number
0b423ca2
MG
514 * @mask: mask of bits that the caller is interested in
515 */
516void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
517 unsigned long pfn,
0b423ca2
MG
518 unsigned long mask)
519{
520 unsigned long *bitmap;
521 unsigned long bitidx, word_bitidx;
522 unsigned long old_word, word;
523
524 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 525 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
526
527 bitmap = get_pageblock_bitmap(page, pfn);
528 bitidx = pfn_to_bitidx(page, pfn);
529 word_bitidx = bitidx / BITS_PER_LONG;
530 bitidx &= (BITS_PER_LONG-1);
531
532 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
533
d93d5ab9
WY
534 mask <<= bitidx;
535 flags <<= bitidx;
0b423ca2
MG
536
537 word = READ_ONCE(bitmap[word_bitidx]);
538 for (;;) {
539 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
540 if (word == old_word)
541 break;
542 word = old_word;
543 }
544}
3a80a7fa 545
ee6f509c 546void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 547{
5d0f3f72
KM
548 if (unlikely(page_group_by_mobility_disabled &&
549 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
550 migratetype = MIGRATE_UNMOVABLE;
551
d93d5ab9 552 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 553 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
554}
555
13e7444b 556#ifdef CONFIG_DEBUG_VM
c6a57e19 557static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 558{
bdc8cb98
DH
559 int ret = 0;
560 unsigned seq;
561 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 562 unsigned long sp, start_pfn;
c6a57e19 563
bdc8cb98
DH
564 do {
565 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
566 start_pfn = zone->zone_start_pfn;
567 sp = zone->spanned_pages;
108bcc96 568 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
569 ret = 1;
570 } while (zone_span_seqretry(zone, seq));
571
b5e6a5a2 572 if (ret)
613813e8
DH
573 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
574 pfn, zone_to_nid(zone), zone->name,
575 start_pfn, start_pfn + sp);
b5e6a5a2 576
bdc8cb98 577 return ret;
c6a57e19
DH
578}
579
580static int page_is_consistent(struct zone *zone, struct page *page)
581{
1da177e4 582 if (zone != page_zone(page))
c6a57e19
DH
583 return 0;
584
585 return 1;
586}
587/*
588 * Temporary debugging check for pages not lying within a given zone.
589 */
d73d3c9f 590static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
591{
592 if (page_outside_zone_boundaries(zone, page))
1da177e4 593 return 1;
c6a57e19
DH
594 if (!page_is_consistent(zone, page))
595 return 1;
596
1da177e4
LT
597 return 0;
598}
13e7444b 599#else
d73d3c9f 600static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
601{
602 return 0;
603}
604#endif
605
82a3241a 606static void bad_page(struct page *page, const char *reason)
1da177e4 607{
d936cf9b
HD
608 static unsigned long resume;
609 static unsigned long nr_shown;
610 static unsigned long nr_unshown;
611
612 /*
613 * Allow a burst of 60 reports, then keep quiet for that minute;
614 * or allow a steady drip of one report per second.
615 */
616 if (nr_shown == 60) {
617 if (time_before(jiffies, resume)) {
618 nr_unshown++;
619 goto out;
620 }
621 if (nr_unshown) {
ff8e8116 622 pr_alert(
1e9e6365 623 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
624 nr_unshown);
625 nr_unshown = 0;
626 }
627 nr_shown = 0;
628 }
629 if (nr_shown++ == 0)
630 resume = jiffies + 60 * HZ;
631
ff8e8116 632 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 633 current->comm, page_to_pfn(page));
d2f07ec0 634 dump_page(page, reason);
3dc14741 635
4f31888c 636 print_modules();
1da177e4 637 dump_stack();
d936cf9b 638out:
8cc3b392 639 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 640 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
642}
643
44042b44
MG
644static inline unsigned int order_to_pindex(int migratetype, int order)
645{
646 int base = order;
647
648#ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 if (order > PAGE_ALLOC_COSTLY_ORDER) {
650 VM_BUG_ON(order != pageblock_order);
651 base = PAGE_ALLOC_COSTLY_ORDER + 1;
652 }
653#else
654 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
655#endif
656
657 return (MIGRATE_PCPTYPES * base) + migratetype;
658}
659
660static inline int pindex_to_order(unsigned int pindex)
661{
662 int order = pindex / MIGRATE_PCPTYPES;
663
664#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ea808b4e 665 if (order > PAGE_ALLOC_COSTLY_ORDER)
44042b44 666 order = pageblock_order;
44042b44
MG
667#else
668 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
669#endif
670
671 return order;
672}
673
674static inline bool pcp_allowed_order(unsigned int order)
675{
676 if (order <= PAGE_ALLOC_COSTLY_ORDER)
677 return true;
678#ifdef CONFIG_TRANSPARENT_HUGEPAGE
679 if (order == pageblock_order)
680 return true;
681#endif
682 return false;
683}
684
21d02f8f
MG
685static inline void free_the_page(struct page *page, unsigned int order)
686{
44042b44
MG
687 if (pcp_allowed_order(order)) /* Via pcp? */
688 free_unref_page(page, order);
21d02f8f
MG
689 else
690 __free_pages_ok(page, order, FPI_NONE);
691}
692
1da177e4
LT
693/*
694 * Higher-order pages are called "compound pages". They are structured thusly:
695 *
1d798ca3 696 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 697 *
1d798ca3
KS
698 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
699 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 700 *
1d798ca3
KS
701 * The first tail page's ->compound_dtor holds the offset in array of compound
702 * page destructors. See compound_page_dtors.
1da177e4 703 *
1d798ca3 704 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 705 * This usage means that zero-order pages may not be compound.
1da177e4 706 */
d98c7a09 707
9a982250 708void free_compound_page(struct page *page)
d98c7a09 709{
bbc6b703 710 mem_cgroup_uncharge(page_folio(page));
44042b44 711 free_the_page(page, compound_order(page));
d98c7a09
HD
712}
713
5b24eeef
JM
714static void prep_compound_head(struct page *page, unsigned int order)
715{
716 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717 set_compound_order(page, order);
718 atomic_set(compound_mapcount_ptr(page), -1);
5232c63f 719 atomic_set(compound_pincount_ptr(page), 0);
5b24eeef
JM
720}
721
722static void prep_compound_tail(struct page *head, int tail_idx)
723{
724 struct page *p = head + tail_idx;
725
726 p->mapping = TAIL_MAPPING;
727 set_compound_head(p, head);
728}
729
d00181b9 730void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
731{
732 int i;
733 int nr_pages = 1 << order;
734
18229df5 735 __SetPageHead(page);
5b24eeef
JM
736 for (i = 1; i < nr_pages; i++)
737 prep_compound_tail(page, i);
1378a5ee 738
5b24eeef 739 prep_compound_head(page, order);
18229df5
AW
740}
741
c0a32fc5
SG
742#ifdef CONFIG_DEBUG_PAGEALLOC
743unsigned int _debug_guardpage_minorder;
96a2b03f 744
8e57f8ac
VB
745bool _debug_pagealloc_enabled_early __read_mostly
746 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
747EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 748DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 749EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
750
751DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 752
031bc574
JK
753static int __init early_debug_pagealloc(char *buf)
754{
8e57f8ac 755 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
756}
757early_param("debug_pagealloc", early_debug_pagealloc);
758
c0a32fc5
SG
759static int __init debug_guardpage_minorder_setup(char *buf)
760{
761 unsigned long res;
762
763 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 764 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
765 return 0;
766 }
767 _debug_guardpage_minorder = res;
1170532b 768 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
769 return 0;
770}
f1c1e9f7 771early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 772
acbc15a4 773static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 774 unsigned int order, int migratetype)
c0a32fc5 775{
e30825f1 776 if (!debug_guardpage_enabled())
acbc15a4
JK
777 return false;
778
779 if (order >= debug_guardpage_minorder())
780 return false;
e30825f1 781
3972f6bb 782 __SetPageGuard(page);
2847cf95
JK
783 INIT_LIST_HEAD(&page->lru);
784 set_page_private(page, order);
785 /* Guard pages are not available for any usage */
786 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
787
788 return true;
c0a32fc5
SG
789}
790
2847cf95
JK
791static inline void clear_page_guard(struct zone *zone, struct page *page,
792 unsigned int order, int migratetype)
c0a32fc5 793{
e30825f1
JK
794 if (!debug_guardpage_enabled())
795 return;
796
3972f6bb 797 __ClearPageGuard(page);
e30825f1 798
2847cf95
JK
799 set_page_private(page, 0);
800 if (!is_migrate_isolate(migratetype))
801 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
802}
803#else
acbc15a4
JK
804static inline bool set_page_guard(struct zone *zone, struct page *page,
805 unsigned int order, int migratetype) { return false; }
2847cf95
JK
806static inline void clear_page_guard(struct zone *zone, struct page *page,
807 unsigned int order, int migratetype) {}
c0a32fc5
SG
808#endif
809
04013513
VB
810/*
811 * Enable static keys related to various memory debugging and hardening options.
812 * Some override others, and depend on early params that are evaluated in the
813 * order of appearance. So we need to first gather the full picture of what was
814 * enabled, and then make decisions.
815 */
816void init_mem_debugging_and_hardening(void)
817{
9df65f52
ST
818 bool page_poisoning_requested = false;
819
820#ifdef CONFIG_PAGE_POISONING
821 /*
822 * Page poisoning is debug page alloc for some arches. If
823 * either of those options are enabled, enable poisoning.
824 */
825 if (page_poisoning_enabled() ||
826 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
827 debug_pagealloc_enabled())) {
828 static_branch_enable(&_page_poisoning_enabled);
829 page_poisoning_requested = true;
830 }
831#endif
832
69e5d322
ST
833 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
834 page_poisoning_requested) {
835 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
836 "will take precedence over init_on_alloc and init_on_free\n");
837 _init_on_alloc_enabled_early = false;
838 _init_on_free_enabled_early = false;
04013513
VB
839 }
840
69e5d322
ST
841 if (_init_on_alloc_enabled_early)
842 static_branch_enable(&init_on_alloc);
843 else
844 static_branch_disable(&init_on_alloc);
845
846 if (_init_on_free_enabled_early)
847 static_branch_enable(&init_on_free);
848 else
849 static_branch_disable(&init_on_free);
850
04013513
VB
851#ifdef CONFIG_DEBUG_PAGEALLOC
852 if (!debug_pagealloc_enabled())
853 return;
854
855 static_branch_enable(&_debug_pagealloc_enabled);
856
857 if (!debug_guardpage_minorder())
858 return;
859
860 static_branch_enable(&_debug_guardpage_enabled);
861#endif
862}
863
ab130f91 864static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 865{
4c21e2f2 866 set_page_private(page, order);
676165a8 867 __SetPageBuddy(page);
1da177e4
LT
868}
869
5e1f0f09
MG
870#ifdef CONFIG_COMPACTION
871static inline struct capture_control *task_capc(struct zone *zone)
872{
873 struct capture_control *capc = current->capture_control;
874
deba0487 875 return unlikely(capc) &&
5e1f0f09
MG
876 !(current->flags & PF_KTHREAD) &&
877 !capc->page &&
deba0487 878 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
879}
880
881static inline bool
882compaction_capture(struct capture_control *capc, struct page *page,
883 int order, int migratetype)
884{
885 if (!capc || order != capc->cc->order)
886 return false;
887
888 /* Do not accidentally pollute CMA or isolated regions*/
889 if (is_migrate_cma(migratetype) ||
890 is_migrate_isolate(migratetype))
891 return false;
892
893 /*
f0953a1b 894 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
895 * This might let an unmovable request use a reclaimable pageblock
896 * and vice-versa but no more than normal fallback logic which can
897 * have trouble finding a high-order free page.
898 */
899 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
900 return false;
901
902 capc->page = page;
903 return true;
904}
905
906#else
907static inline struct capture_control *task_capc(struct zone *zone)
908{
909 return NULL;
910}
911
912static inline bool
913compaction_capture(struct capture_control *capc, struct page *page,
914 int order, int migratetype)
915{
916 return false;
917}
918#endif /* CONFIG_COMPACTION */
919
6ab01363
AD
920/* Used for pages not on another list */
921static inline void add_to_free_list(struct page *page, struct zone *zone,
922 unsigned int order, int migratetype)
923{
924 struct free_area *area = &zone->free_area[order];
925
926 list_add(&page->lru, &area->free_list[migratetype]);
927 area->nr_free++;
928}
929
930/* Used for pages not on another list */
931static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
932 unsigned int order, int migratetype)
933{
934 struct free_area *area = &zone->free_area[order];
935
936 list_add_tail(&page->lru, &area->free_list[migratetype]);
937 area->nr_free++;
938}
939
293ffa5e
DH
940/*
941 * Used for pages which are on another list. Move the pages to the tail
942 * of the list - so the moved pages won't immediately be considered for
943 * allocation again (e.g., optimization for memory onlining).
944 */
6ab01363
AD
945static inline void move_to_free_list(struct page *page, struct zone *zone,
946 unsigned int order, int migratetype)
947{
948 struct free_area *area = &zone->free_area[order];
949
293ffa5e 950 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
951}
952
953static inline void del_page_from_free_list(struct page *page, struct zone *zone,
954 unsigned int order)
955{
36e66c55
AD
956 /* clear reported state and update reported page count */
957 if (page_reported(page))
958 __ClearPageReported(page);
959
6ab01363
AD
960 list_del(&page->lru);
961 __ClearPageBuddy(page);
962 set_page_private(page, 0);
963 zone->free_area[order].nr_free--;
964}
965
a2129f24
AD
966/*
967 * If this is not the largest possible page, check if the buddy
968 * of the next-highest order is free. If it is, it's possible
969 * that pages are being freed that will coalesce soon. In case,
970 * that is happening, add the free page to the tail of the list
971 * so it's less likely to be used soon and more likely to be merged
972 * as a higher order page
973 */
974static inline bool
975buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
976 struct page *page, unsigned int order)
977{
8170ac47
ZY
978 unsigned long higher_page_pfn;
979 struct page *higher_page;
a2129f24
AD
980
981 if (order >= MAX_ORDER - 2)
982 return false;
983
8170ac47
ZY
984 higher_page_pfn = buddy_pfn & pfn;
985 higher_page = page + (higher_page_pfn - pfn);
a2129f24 986
8170ac47
ZY
987 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
988 NULL) != NULL;
a2129f24
AD
989}
990
1da177e4
LT
991/*
992 * Freeing function for a buddy system allocator.
993 *
994 * The concept of a buddy system is to maintain direct-mapped table
995 * (containing bit values) for memory blocks of various "orders".
996 * The bottom level table contains the map for the smallest allocatable
997 * units of memory (here, pages), and each level above it describes
998 * pairs of units from the levels below, hence, "buddies".
999 * At a high level, all that happens here is marking the table entry
1000 * at the bottom level available, and propagating the changes upward
1001 * as necessary, plus some accounting needed to play nicely with other
1002 * parts of the VM system.
1003 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1004 * free pages of length of (1 << order) and marked with PageBuddy.
1005 * Page's order is recorded in page_private(page) field.
1da177e4 1006 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1007 * other. That is, if we allocate a small block, and both were
1008 * free, the remainder of the region must be split into blocks.
1da177e4 1009 * If a block is freed, and its buddy is also free, then this
5f63b720 1010 * triggers coalescing into a block of larger size.
1da177e4 1011 *
6d49e352 1012 * -- nyc
1da177e4
LT
1013 */
1014
48db57f8 1015static inline void __free_one_page(struct page *page,
dc4b0caf 1016 unsigned long pfn,
ed0ae21d 1017 struct zone *zone, unsigned int order,
f04a5d5d 1018 int migratetype, fpi_t fpi_flags)
1da177e4 1019{
a2129f24 1020 struct capture_control *capc = task_capc(zone);
3f649ab7 1021 unsigned long buddy_pfn;
a2129f24 1022 unsigned long combined_pfn;
a2129f24
AD
1023 struct page *buddy;
1024 bool to_tail;
d9dddbf5 1025
d29bb978 1026 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1027 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1028
ed0ae21d 1029 VM_BUG_ON(migratetype == -1);
d9dddbf5 1030 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1031 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1032
76741e77 1033 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1034 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1035
bb0e28eb 1036 while (order < MAX_ORDER - 1) {
5e1f0f09
MG
1037 if (compaction_capture(capc, page, order, migratetype)) {
1038 __mod_zone_freepage_state(zone, -(1 << order),
1039 migratetype);
1040 return;
1041 }
13ad59df 1042
8170ac47
ZY
1043 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1044 if (!buddy)
d9dddbf5 1045 goto done_merging;
bb0e28eb
ZY
1046
1047 if (unlikely(order >= pageblock_order)) {
1048 /*
1049 * We want to prevent merge between freepages on pageblock
1050 * without fallbacks and normal pageblock. Without this,
1051 * pageblock isolation could cause incorrect freepage or CMA
1052 * accounting or HIGHATOMIC accounting.
1053 */
1054 int buddy_mt = get_pageblock_migratetype(buddy);
1055
1056 if (migratetype != buddy_mt
1057 && (!migratetype_is_mergeable(migratetype) ||
1058 !migratetype_is_mergeable(buddy_mt)))
1059 goto done_merging;
1060 }
1061
c0a32fc5
SG
1062 /*
1063 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1064 * merge with it and move up one order.
1065 */
b03641af 1066 if (page_is_guard(buddy))
2847cf95 1067 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1068 else
6ab01363 1069 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1070 combined_pfn = buddy_pfn & pfn;
1071 page = page + (combined_pfn - pfn);
1072 pfn = combined_pfn;
1da177e4
LT
1073 order++;
1074 }
d9dddbf5
VB
1075
1076done_merging:
ab130f91 1077 set_buddy_order(page, order);
6dda9d55 1078
47b6a24a
DH
1079 if (fpi_flags & FPI_TO_TAIL)
1080 to_tail = true;
1081 else if (is_shuffle_order(order))
a2129f24 1082 to_tail = shuffle_pick_tail();
97500a4a 1083 else
a2129f24 1084 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1085
a2129f24 1086 if (to_tail)
6ab01363 1087 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1088 else
6ab01363 1089 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1090
1091 /* Notify page reporting subsystem of freed page */
f04a5d5d 1092 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1093 page_reporting_notify_free(order);
1da177e4
LT
1094}
1095
7bfec6f4
MG
1096/*
1097 * A bad page could be due to a number of fields. Instead of multiple branches,
1098 * try and check multiple fields with one check. The caller must do a detailed
1099 * check if necessary.
1100 */
1101static inline bool page_expected_state(struct page *page,
1102 unsigned long check_flags)
1103{
1104 if (unlikely(atomic_read(&page->_mapcount) != -1))
1105 return false;
1106
1107 if (unlikely((unsigned long)page->mapping |
1108 page_ref_count(page) |
1109#ifdef CONFIG_MEMCG
48060834 1110 page->memcg_data |
7bfec6f4
MG
1111#endif
1112 (page->flags & check_flags)))
1113 return false;
1114
1115 return true;
1116}
1117
58b7f119 1118static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1119{
82a3241a 1120 const char *bad_reason = NULL;
f0b791a3 1121
53f9263b 1122 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1123 bad_reason = "nonzero mapcount";
1124 if (unlikely(page->mapping != NULL))
1125 bad_reason = "non-NULL mapping";
fe896d18 1126 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1127 bad_reason = "nonzero _refcount";
58b7f119
WY
1128 if (unlikely(page->flags & flags)) {
1129 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1130 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1131 else
1132 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1133 }
9edad6ea 1134#ifdef CONFIG_MEMCG
48060834 1135 if (unlikely(page->memcg_data))
9edad6ea
JW
1136 bad_reason = "page still charged to cgroup";
1137#endif
58b7f119
WY
1138 return bad_reason;
1139}
1140
1141static void check_free_page_bad(struct page *page)
1142{
1143 bad_page(page,
1144 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1145}
1146
534fe5e3 1147static inline int check_free_page(struct page *page)
bb552ac6 1148{
da838d4f 1149 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1150 return 0;
bb552ac6
MG
1151
1152 /* Something has gone sideways, find it */
0d0c48a2 1153 check_free_page_bad(page);
7bfec6f4 1154 return 1;
1da177e4
LT
1155}
1156
4db7548c
MG
1157static int free_tail_pages_check(struct page *head_page, struct page *page)
1158{
1159 int ret = 1;
1160
1161 /*
1162 * We rely page->lru.next never has bit 0 set, unless the page
1163 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1164 */
1165 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1166
1167 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1168 ret = 0;
1169 goto out;
1170 }
1171 switch (page - head_page) {
1172 case 1:
4da1984e 1173 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1174 if (unlikely(compound_mapcount(page))) {
82a3241a 1175 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1176 goto out;
1177 }
1178 break;
1179 case 2:
1180 /*
1181 * the second tail page: ->mapping is
fa3015b7 1182 * deferred_list.next -- ignore value.
4db7548c
MG
1183 */
1184 break;
1185 default:
1186 if (page->mapping != TAIL_MAPPING) {
82a3241a 1187 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1188 goto out;
1189 }
1190 break;
1191 }
1192 if (unlikely(!PageTail(page))) {
82a3241a 1193 bad_page(page, "PageTail not set");
4db7548c
MG
1194 goto out;
1195 }
1196 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1197 bad_page(page, "compound_head not consistent");
4db7548c
MG
1198 goto out;
1199 }
1200 ret = 0;
1201out:
1202 page->mapping = NULL;
1203 clear_compound_head(page);
1204 return ret;
1205}
1206
94ae8b83
AK
1207/*
1208 * Skip KASAN memory poisoning when either:
1209 *
1210 * 1. Deferred memory initialization has not yet completed,
1211 * see the explanation below.
1212 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1213 * see the comment next to it.
1214 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1215 * see the comment next to it.
1216 *
1217 * Poisoning pages during deferred memory init will greatly lengthen the
1218 * process and cause problem in large memory systems as the deferred pages
1219 * initialization is done with interrupt disabled.
1220 *
1221 * Assuming that there will be no reference to those newly initialized
1222 * pages before they are ever allocated, this should have no effect on
1223 * KASAN memory tracking as the poison will be properly inserted at page
1224 * allocation time. The only corner case is when pages are allocated by
1225 * on-demand allocation and then freed again before the deferred pages
1226 * initialization is done, but this is not likely to happen.
1227 */
1228static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1229{
1230 return deferred_pages_enabled() ||
1231 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1232 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1233 PageSkipKASanPoison(page);
1234}
1235
5b2c0713 1236static void kernel_init_free_pages(struct page *page, int numpages)
6471384a
AP
1237{
1238 int i;
1239
9e15afa5
QC
1240 /* s390's use of memset() could override KASAN redzones. */
1241 kasan_disable_current();
aa1ef4d7 1242 for (i = 0; i < numpages; i++) {
acb35b17 1243 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1244 page_kasan_tag_reset(page + i);
6471384a 1245 clear_highpage(page + i);
acb35b17 1246 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1247 }
9e15afa5 1248 kasan_enable_current();
6471384a
AP
1249}
1250
e2769dbd 1251static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1252 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1253{
e2769dbd 1254 int bad = 0;
c3525330 1255 bool init = want_init_on_free();
4db7548c 1256
4db7548c
MG
1257 VM_BUG_ON_PAGE(PageTail(page), page);
1258
e2769dbd 1259 trace_mm_page_free(page, order);
e2769dbd 1260
79f5f8fa
OS
1261 if (unlikely(PageHWPoison(page)) && !order) {
1262 /*
1263 * Do not let hwpoison pages hit pcplists/buddy
1264 * Untie memcg state and reset page's owner
1265 */
18b2db3b 1266 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1267 __memcg_kmem_uncharge_page(page, order);
1268 reset_page_owner(page, order);
df4e817b 1269 page_table_check_free(page, order);
79f5f8fa
OS
1270 return false;
1271 }
1272
e2769dbd
MG
1273 /*
1274 * Check tail pages before head page information is cleared to
1275 * avoid checking PageCompound for order-0 pages.
1276 */
1277 if (unlikely(order)) {
1278 bool compound = PageCompound(page);
1279 int i;
1280
1281 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1282
eac96c3e 1283 if (compound) {
9a73f61b 1284 ClearPageDoubleMap(page);
eac96c3e
YS
1285 ClearPageHasHWPoisoned(page);
1286 }
e2769dbd
MG
1287 for (i = 1; i < (1 << order); i++) {
1288 if (compound)
1289 bad += free_tail_pages_check(page, page + i);
534fe5e3 1290 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1291 bad++;
1292 continue;
1293 }
1294 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1295 }
1296 }
bda807d4 1297 if (PageMappingFlags(page))
4db7548c 1298 page->mapping = NULL;
18b2db3b 1299 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1300 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1301 if (check_free)
534fe5e3 1302 bad += check_free_page(page);
e2769dbd
MG
1303 if (bad)
1304 return false;
4db7548c 1305
e2769dbd
MG
1306 page_cpupid_reset_last(page);
1307 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1308 reset_page_owner(page, order);
df4e817b 1309 page_table_check_free(page, order);
4db7548c
MG
1310
1311 if (!PageHighMem(page)) {
1312 debug_check_no_locks_freed(page_address(page),
e2769dbd 1313 PAGE_SIZE << order);
4db7548c 1314 debug_check_no_obj_freed(page_address(page),
e2769dbd 1315 PAGE_SIZE << order);
4db7548c 1316 }
6471384a 1317
8db26a3d
VB
1318 kernel_poison_pages(page, 1 << order);
1319
f9d79e8d 1320 /*
1bb5eab3 1321 * As memory initialization might be integrated into KASAN,
7c13c163 1322 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1323 * kept together to avoid discrepancies in behavior.
1324 *
f9d79e8d
AK
1325 * With hardware tag-based KASAN, memory tags must be set before the
1326 * page becomes unavailable via debug_pagealloc or arch_free_page.
1327 */
487a32ec 1328 if (!should_skip_kasan_poison(page, fpi_flags)) {
c3525330 1329 kasan_poison_pages(page, order, init);
f9d79e8d 1330
db8a0477
AK
1331 /* Memory is already initialized if KASAN did it internally. */
1332 if (kasan_has_integrated_init())
1333 init = false;
1334 }
1335 if (init)
1336 kernel_init_free_pages(page, 1 << order);
1337
234fdce8
QC
1338 /*
1339 * arch_free_page() can make the page's contents inaccessible. s390
1340 * does this. So nothing which can access the page's contents should
1341 * happen after this.
1342 */
1343 arch_free_page(page, order);
1344
77bc7fd6 1345 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1346
4db7548c
MG
1347 return true;
1348}
1349
e2769dbd 1350#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1351/*
1352 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1353 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1354 * moved from pcp lists to free lists.
1355 */
44042b44 1356static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1357{
44042b44 1358 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1359}
1360
4462b32c 1361static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1362{
8e57f8ac 1363 if (debug_pagealloc_enabled_static())
534fe5e3 1364 return check_free_page(page);
4462b32c
VB
1365 else
1366 return false;
e2769dbd
MG
1367}
1368#else
4462b32c
VB
1369/*
1370 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1371 * moving from pcp lists to free list in order to reduce overhead. With
1372 * debug_pagealloc enabled, they are checked also immediately when being freed
1373 * to the pcp lists.
1374 */
44042b44 1375static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1376{
8e57f8ac 1377 if (debug_pagealloc_enabled_static())
44042b44 1378 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1379 else
44042b44 1380 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1381}
1382
4db7548c
MG
1383static bool bulkfree_pcp_prepare(struct page *page)
1384{
534fe5e3 1385 return check_free_page(page);
4db7548c
MG
1386}
1387#endif /* CONFIG_DEBUG_VM */
1388
1da177e4 1389/*
5f8dcc21 1390 * Frees a number of pages from the PCP lists
7cba630b 1391 * Assumes all pages on list are in same zone.
207f36ee 1392 * count is the number of pages to free.
1da177e4 1393 */
5f8dcc21 1394static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1395 struct per_cpu_pages *pcp,
1396 int pindex)
1da177e4 1397{
35b6d770
MG
1398 int min_pindex = 0;
1399 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1400 unsigned int order;
3777999d 1401 bool isolated_pageblocks;
8b10b465 1402 struct page *page;
f2260e6b 1403
88e8ac11
CTR
1404 /*
1405 * Ensure proper count is passed which otherwise would stuck in the
1406 * below while (list_empty(list)) loop.
1407 */
1408 count = min(pcp->count, count);
d61372bc
MG
1409
1410 /* Ensure requested pindex is drained first. */
1411 pindex = pindex - 1;
1412
8b10b465
MG
1413 /*
1414 * local_lock_irq held so equivalent to spin_lock_irqsave for
1415 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1416 */
1417 spin_lock(&zone->lock);
1418 isolated_pageblocks = has_isolate_pageblock(zone);
1419
44042b44 1420 while (count > 0) {
5f8dcc21 1421 struct list_head *list;
fd56eef2 1422 int nr_pages;
5f8dcc21 1423
fd56eef2 1424 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1425 do {
35b6d770
MG
1426 if (++pindex > max_pindex)
1427 pindex = min_pindex;
44042b44 1428 list = &pcp->lists[pindex];
35b6d770
MG
1429 if (!list_empty(list))
1430 break;
1431
1432 if (pindex == max_pindex)
1433 max_pindex--;
1434 if (pindex == min_pindex)
1435 min_pindex++;
1436 } while (1);
48db57f8 1437
44042b44 1438 order = pindex_to_order(pindex);
fd56eef2 1439 nr_pages = 1 << order;
44042b44 1440 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1441 do {
8b10b465
MG
1442 int mt;
1443
a16601c5 1444 page = list_last_entry(list, struct page, lru);
8b10b465
MG
1445 mt = get_pcppage_migratetype(page);
1446
0a5f4e5b 1447 /* must delete to avoid corrupting pcp list */
a6f9edd6 1448 list_del(&page->lru);
fd56eef2
MG
1449 count -= nr_pages;
1450 pcp->count -= nr_pages;
aa016d14 1451
4db7548c
MG
1452 if (bulkfree_pcp_prepare(page))
1453 continue;
1454
8b10b465
MG
1455 /* MIGRATE_ISOLATE page should not go to pcplists */
1456 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1457 /* Pageblock could have been isolated meanwhile */
1458 if (unlikely(isolated_pageblocks))
1459 mt = get_pageblock_migratetype(page);
0a5f4e5b 1460
8b10b465
MG
1461 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1462 trace_mm_page_pcpu_drain(page, order, mt);
1463 } while (count > 0 && !list_empty(list));
0a5f4e5b 1464 }
8b10b465 1465
d34b0733 1466 spin_unlock(&zone->lock);
1da177e4
LT
1467}
1468
dc4b0caf
MG
1469static void free_one_page(struct zone *zone,
1470 struct page *page, unsigned long pfn,
7aeb09f9 1471 unsigned int order,
7fef431b 1472 int migratetype, fpi_t fpi_flags)
1da177e4 1473{
df1acc85
MG
1474 unsigned long flags;
1475
1476 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1477 if (unlikely(has_isolate_pageblock(zone) ||
1478 is_migrate_isolate(migratetype))) {
1479 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1480 }
7fef431b 1481 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1482 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1483}
1484
1e8ce83c 1485static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1486 unsigned long zone, int nid)
1e8ce83c 1487{
d0dc12e8 1488 mm_zero_struct_page(page);
1e8ce83c 1489 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1490 init_page_count(page);
1491 page_mapcount_reset(page);
1492 page_cpupid_reset_last(page);
2813b9c0 1493 page_kasan_tag_reset(page);
1e8ce83c 1494
1e8ce83c
RH
1495 INIT_LIST_HEAD(&page->lru);
1496#ifdef WANT_PAGE_VIRTUAL
1497 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1498 if (!is_highmem_idx(zone))
1499 set_page_address(page, __va(pfn << PAGE_SHIFT));
1500#endif
1501}
1502
7e18adb4 1503#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1504static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1505{
1506 pg_data_t *pgdat;
1507 int nid, zid;
1508
1509 if (!early_page_uninitialised(pfn))
1510 return;
1511
1512 nid = early_pfn_to_nid(pfn);
1513 pgdat = NODE_DATA(nid);
1514
1515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1516 struct zone *zone = &pgdat->node_zones[zid];
1517
86fb05b9 1518 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1519 break;
1520 }
d0dc12e8 1521 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1522}
1523#else
1524static inline void init_reserved_page(unsigned long pfn)
1525{
1526}
1527#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1528
92923ca3
NZ
1529/*
1530 * Initialised pages do not have PageReserved set. This function is
1531 * called for each range allocated by the bootmem allocator and
1532 * marks the pages PageReserved. The remaining valid pages are later
1533 * sent to the buddy page allocator.
1534 */
4b50bcc7 1535void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1536{
1537 unsigned long start_pfn = PFN_DOWN(start);
1538 unsigned long end_pfn = PFN_UP(end);
1539
7e18adb4
MG
1540 for (; start_pfn < end_pfn; start_pfn++) {
1541 if (pfn_valid(start_pfn)) {
1542 struct page *page = pfn_to_page(start_pfn);
1543
1544 init_reserved_page(start_pfn);
1d798ca3
KS
1545
1546 /* Avoid false-positive PageTail() */
1547 INIT_LIST_HEAD(&page->lru);
1548
d483da5b
AD
1549 /*
1550 * no need for atomic set_bit because the struct
1551 * page is not visible yet so nobody should
1552 * access it yet.
1553 */
1554 __SetPageReserved(page);
7e18adb4
MG
1555 }
1556 }
92923ca3
NZ
1557}
1558
7fef431b
DH
1559static void __free_pages_ok(struct page *page, unsigned int order,
1560 fpi_t fpi_flags)
ec95f53a 1561{
d34b0733 1562 unsigned long flags;
95e34412 1563 int migratetype;
dc4b0caf 1564 unsigned long pfn = page_to_pfn(page);
56f0e661 1565 struct zone *zone = page_zone(page);
ec95f53a 1566
2c335680 1567 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1568 return;
1569
cfc47a28 1570 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1571
56f0e661 1572 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1573 if (unlikely(has_isolate_pageblock(zone) ||
1574 is_migrate_isolate(migratetype))) {
1575 migratetype = get_pfnblock_migratetype(page, pfn);
1576 }
1577 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1578 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1579
d34b0733 1580 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1581}
1582
a9cd410a 1583void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1584{
c3993076 1585 unsigned int nr_pages = 1 << order;
e2d0bd2b 1586 struct page *p = page;
c3993076 1587 unsigned int loop;
a226f6c8 1588
7fef431b
DH
1589 /*
1590 * When initializing the memmap, __init_single_page() sets the refcount
1591 * of all pages to 1 ("allocated"/"not free"). We have to set the
1592 * refcount of all involved pages to 0.
1593 */
e2d0bd2b
YL
1594 prefetchw(p);
1595 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1596 prefetchw(p + 1);
c3993076
JW
1597 __ClearPageReserved(p);
1598 set_page_count(p, 0);
a226f6c8 1599 }
e2d0bd2b
YL
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
c3993076 1602
9705bea5 1603 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1604
1605 /*
1606 * Bypass PCP and place fresh pages right to the tail, primarily
1607 * relevant for memory onlining.
1608 */
2c335680 1609 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1610}
1611
a9ee6cf5 1612#ifdef CONFIG_NUMA
7ace9917 1613
03e92a5e
MR
1614/*
1615 * During memory init memblocks map pfns to nids. The search is expensive and
1616 * this caches recent lookups. The implementation of __early_pfn_to_nid
1617 * treats start/end as pfns.
1618 */
1619struct mminit_pfnnid_cache {
1620 unsigned long last_start;
1621 unsigned long last_end;
1622 int last_nid;
1623};
75a592a4 1624
03e92a5e 1625static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1626
1627/*
1628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1629 */
03e92a5e 1630static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1631 struct mminit_pfnnid_cache *state)
75a592a4 1632{
6f24fbd3 1633 unsigned long start_pfn, end_pfn;
75a592a4
MG
1634 int nid;
1635
6f24fbd3
MR
1636 if (state->last_start <= pfn && pfn < state->last_end)
1637 return state->last_nid;
1638
1639 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1640 if (nid != NUMA_NO_NODE) {
1641 state->last_start = start_pfn;
1642 state->last_end = end_pfn;
1643 state->last_nid = nid;
1644 }
7ace9917
MG
1645
1646 return nid;
75a592a4 1647}
75a592a4 1648
75a592a4 1649int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1650{
7ace9917 1651 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1652 int nid;
1653
7ace9917 1654 spin_lock(&early_pfn_lock);
56ec43d8 1655 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1656 if (nid < 0)
e4568d38 1657 nid = first_online_node;
7ace9917 1658 spin_unlock(&early_pfn_lock);
75a592a4 1659
7ace9917 1660 return nid;
75a592a4 1661}
a9ee6cf5 1662#endif /* CONFIG_NUMA */
75a592a4 1663
7c2ee349 1664void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1665 unsigned int order)
1666{
1667 if (early_page_uninitialised(pfn))
1668 return;
a9cd410a 1669 __free_pages_core(page, order);
3a80a7fa
MG
1670}
1671
7cf91a98
JK
1672/*
1673 * Check that the whole (or subset of) a pageblock given by the interval of
1674 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1675 * with the migration of free compaction scanner.
7cf91a98
JK
1676 *
1677 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1678 *
1679 * It's possible on some configurations to have a setup like node0 node1 node0
1680 * i.e. it's possible that all pages within a zones range of pages do not
1681 * belong to a single zone. We assume that a border between node0 and node1
1682 * can occur within a single pageblock, but not a node0 node1 node0
1683 * interleaving within a single pageblock. It is therefore sufficient to check
1684 * the first and last page of a pageblock and avoid checking each individual
1685 * page in a pageblock.
1686 */
1687struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1688 unsigned long end_pfn, struct zone *zone)
1689{
1690 struct page *start_page;
1691 struct page *end_page;
1692
1693 /* end_pfn is one past the range we are checking */
1694 end_pfn--;
1695
1696 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1697 return NULL;
1698
2d070eab
MH
1699 start_page = pfn_to_online_page(start_pfn);
1700 if (!start_page)
1701 return NULL;
7cf91a98
JK
1702
1703 if (page_zone(start_page) != zone)
1704 return NULL;
1705
1706 end_page = pfn_to_page(end_pfn);
1707
1708 /* This gives a shorter code than deriving page_zone(end_page) */
1709 if (page_zone_id(start_page) != page_zone_id(end_page))
1710 return NULL;
1711
1712 return start_page;
1713}
1714
1715void set_zone_contiguous(struct zone *zone)
1716{
1717 unsigned long block_start_pfn = zone->zone_start_pfn;
1718 unsigned long block_end_pfn;
1719
1720 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1721 for (; block_start_pfn < zone_end_pfn(zone);
1722 block_start_pfn = block_end_pfn,
1723 block_end_pfn += pageblock_nr_pages) {
1724
1725 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1726
1727 if (!__pageblock_pfn_to_page(block_start_pfn,
1728 block_end_pfn, zone))
1729 return;
e84fe99b 1730 cond_resched();
7cf91a98
JK
1731 }
1732
1733 /* We confirm that there is no hole */
1734 zone->contiguous = true;
1735}
1736
1737void clear_zone_contiguous(struct zone *zone)
1738{
1739 zone->contiguous = false;
1740}
1741
7e18adb4 1742#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1743static void __init deferred_free_range(unsigned long pfn,
1744 unsigned long nr_pages)
a4de83dd 1745{
2f47a91f
PT
1746 struct page *page;
1747 unsigned long i;
a4de83dd 1748
2f47a91f 1749 if (!nr_pages)
a4de83dd
MG
1750 return;
1751
2f47a91f
PT
1752 page = pfn_to_page(pfn);
1753
a4de83dd 1754 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1755 if (nr_pages == pageblock_nr_pages &&
1756 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1757 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1758 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1759 return;
1760 }
1761
e780149b
XQ
1762 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1763 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1764 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1765 __free_pages_core(page, 0);
e780149b 1766 }
a4de83dd
MG
1767}
1768
d3cd131d
NS
1769/* Completion tracking for deferred_init_memmap() threads */
1770static atomic_t pgdat_init_n_undone __initdata;
1771static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1772
1773static inline void __init pgdat_init_report_one_done(void)
1774{
1775 if (atomic_dec_and_test(&pgdat_init_n_undone))
1776 complete(&pgdat_init_all_done_comp);
1777}
0e1cc95b 1778
2f47a91f 1779/*
80b1f41c
PT
1780 * Returns true if page needs to be initialized or freed to buddy allocator.
1781 *
1782 * First we check if pfn is valid on architectures where it is possible to have
1783 * holes within pageblock_nr_pages. On systems where it is not possible, this
1784 * function is optimized out.
1785 *
1786 * Then, we check if a current large page is valid by only checking the validity
1787 * of the head pfn.
2f47a91f 1788 */
56ec43d8 1789static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1790{
80b1f41c
PT
1791 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1792 return false;
80b1f41c
PT
1793 return true;
1794}
2f47a91f 1795
80b1f41c
PT
1796/*
1797 * Free pages to buddy allocator. Try to free aligned pages in
1798 * pageblock_nr_pages sizes.
1799 */
56ec43d8 1800static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1801 unsigned long end_pfn)
1802{
80b1f41c
PT
1803 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1804 unsigned long nr_free = 0;
2f47a91f 1805
80b1f41c 1806 for (; pfn < end_pfn; pfn++) {
56ec43d8 1807 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1808 deferred_free_range(pfn - nr_free, nr_free);
1809 nr_free = 0;
1810 } else if (!(pfn & nr_pgmask)) {
1811 deferred_free_range(pfn - nr_free, nr_free);
1812 nr_free = 1;
80b1f41c
PT
1813 } else {
1814 nr_free++;
1815 }
1816 }
1817 /* Free the last block of pages to allocator */
1818 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1819}
1820
80b1f41c
PT
1821/*
1822 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1823 * by performing it only once every pageblock_nr_pages.
1824 * Return number of pages initialized.
1825 */
56ec43d8 1826static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1827 unsigned long pfn,
1828 unsigned long end_pfn)
2f47a91f 1829{
2f47a91f 1830 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1831 int nid = zone_to_nid(zone);
2f47a91f 1832 unsigned long nr_pages = 0;
56ec43d8 1833 int zid = zone_idx(zone);
2f47a91f 1834 struct page *page = NULL;
2f47a91f 1835
80b1f41c 1836 for (; pfn < end_pfn; pfn++) {
56ec43d8 1837 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1838 page = NULL;
2f47a91f 1839 continue;
80b1f41c 1840 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1841 page = pfn_to_page(pfn);
80b1f41c
PT
1842 } else {
1843 page++;
2f47a91f 1844 }
d0dc12e8 1845 __init_single_page(page, pfn, zid, nid);
80b1f41c 1846 nr_pages++;
2f47a91f 1847 }
80b1f41c 1848 return (nr_pages);
2f47a91f
PT
1849}
1850
0e56acae
AD
1851/*
1852 * This function is meant to pre-load the iterator for the zone init.
1853 * Specifically it walks through the ranges until we are caught up to the
1854 * first_init_pfn value and exits there. If we never encounter the value we
1855 * return false indicating there are no valid ranges left.
1856 */
1857static bool __init
1858deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1859 unsigned long *spfn, unsigned long *epfn,
1860 unsigned long first_init_pfn)
1861{
1862 u64 j;
1863
1864 /*
1865 * Start out by walking through the ranges in this zone that have
1866 * already been initialized. We don't need to do anything with them
1867 * so we just need to flush them out of the system.
1868 */
1869 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1870 if (*epfn <= first_init_pfn)
1871 continue;
1872 if (*spfn < first_init_pfn)
1873 *spfn = first_init_pfn;
1874 *i = j;
1875 return true;
1876 }
1877
1878 return false;
1879}
1880
1881/*
1882 * Initialize and free pages. We do it in two loops: first we initialize
1883 * struct page, then free to buddy allocator, because while we are
1884 * freeing pages we can access pages that are ahead (computing buddy
1885 * page in __free_one_page()).
1886 *
1887 * In order to try and keep some memory in the cache we have the loop
1888 * broken along max page order boundaries. This way we will not cause
1889 * any issues with the buddy page computation.
1890 */
1891static unsigned long __init
1892deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1893 unsigned long *end_pfn)
1894{
1895 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1896 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1897 unsigned long nr_pages = 0;
1898 u64 j = *i;
1899
1900 /* First we loop through and initialize the page values */
1901 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1902 unsigned long t;
1903
1904 if (mo_pfn <= *start_pfn)
1905 break;
1906
1907 t = min(mo_pfn, *end_pfn);
1908 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1909
1910 if (mo_pfn < *end_pfn) {
1911 *start_pfn = mo_pfn;
1912 break;
1913 }
1914 }
1915
1916 /* Reset values and now loop through freeing pages as needed */
1917 swap(j, *i);
1918
1919 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1920 unsigned long t;
1921
1922 if (mo_pfn <= spfn)
1923 break;
1924
1925 t = min(mo_pfn, epfn);
1926 deferred_free_pages(spfn, t);
1927
1928 if (mo_pfn <= epfn)
1929 break;
1930 }
1931
1932 return nr_pages;
1933}
1934
e4443149
DJ
1935static void __init
1936deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1937 void *arg)
1938{
1939 unsigned long spfn, epfn;
1940 struct zone *zone = arg;
1941 u64 i;
1942
1943 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1944
1945 /*
1946 * Initialize and free pages in MAX_ORDER sized increments so that we
1947 * can avoid introducing any issues with the buddy allocator.
1948 */
1949 while (spfn < end_pfn) {
1950 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1951 cond_resched();
1952 }
1953}
1954
ecd09650
DJ
1955/* An arch may override for more concurrency. */
1956__weak int __init
1957deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1958{
1959 return 1;
1960}
1961
7e18adb4 1962/* Initialise remaining memory on a node */
0e1cc95b 1963static int __init deferred_init_memmap(void *data)
7e18adb4 1964{
0e1cc95b 1965 pg_data_t *pgdat = data;
0e56acae 1966 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1967 unsigned long spfn = 0, epfn = 0;
0e56acae 1968 unsigned long first_init_pfn, flags;
7e18adb4 1969 unsigned long start = jiffies;
7e18adb4 1970 struct zone *zone;
e4443149 1971 int zid, max_threads;
2f47a91f 1972 u64 i;
7e18adb4 1973
3a2d7fa8
PT
1974 /* Bind memory initialisation thread to a local node if possible */
1975 if (!cpumask_empty(cpumask))
1976 set_cpus_allowed_ptr(current, cpumask);
1977
1978 pgdat_resize_lock(pgdat, &flags);
1979 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1980 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1981 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1982 pgdat_init_report_one_done();
0e1cc95b
MG
1983 return 0;
1984 }
1985
7e18adb4
MG
1986 /* Sanity check boundaries */
1987 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1988 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1989 pgdat->first_deferred_pfn = ULONG_MAX;
1990
3d060856
PT
1991 /*
1992 * Once we unlock here, the zone cannot be grown anymore, thus if an
1993 * interrupt thread must allocate this early in boot, zone must be
1994 * pre-grown prior to start of deferred page initialization.
1995 */
1996 pgdat_resize_unlock(pgdat, &flags);
1997
7e18adb4
MG
1998 /* Only the highest zone is deferred so find it */
1999 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2000 zone = pgdat->node_zones + zid;
2001 if (first_init_pfn < zone_end_pfn(zone))
2002 break;
2003 }
0e56acae
AD
2004
2005 /* If the zone is empty somebody else may have cleared out the zone */
2006 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2007 first_init_pfn))
2008 goto zone_empty;
7e18adb4 2009
ecd09650 2010 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2011
117003c3 2012 while (spfn < epfn) {
e4443149
DJ
2013 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2014 struct padata_mt_job job = {
2015 .thread_fn = deferred_init_memmap_chunk,
2016 .fn_arg = zone,
2017 .start = spfn,
2018 .size = epfn_align - spfn,
2019 .align = PAGES_PER_SECTION,
2020 .min_chunk = PAGES_PER_SECTION,
2021 .max_threads = max_threads,
2022 };
2023
2024 padata_do_multithreaded(&job);
2025 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2026 epfn_align);
117003c3 2027 }
0e56acae 2028zone_empty:
7e18adb4
MG
2029 /* Sanity check that the next zone really is unpopulated */
2030 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2031
89c7c402
DJ
2032 pr_info("node %d deferred pages initialised in %ums\n",
2033 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2034
2035 pgdat_init_report_one_done();
0e1cc95b
MG
2036 return 0;
2037}
c9e97a19 2038
c9e97a19
PT
2039/*
2040 * If this zone has deferred pages, try to grow it by initializing enough
2041 * deferred pages to satisfy the allocation specified by order, rounded up to
2042 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2043 * of SECTION_SIZE bytes by initializing struct pages in increments of
2044 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2045 *
2046 * Return true when zone was grown, otherwise return false. We return true even
2047 * when we grow less than requested, to let the caller decide if there are
2048 * enough pages to satisfy the allocation.
2049 *
2050 * Note: We use noinline because this function is needed only during boot, and
2051 * it is called from a __ref function _deferred_grow_zone. This way we are
2052 * making sure that it is not inlined into permanent text section.
2053 */
2054static noinline bool __init
2055deferred_grow_zone(struct zone *zone, unsigned int order)
2056{
c9e97a19 2057 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2058 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2059 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2060 unsigned long spfn, epfn, flags;
2061 unsigned long nr_pages = 0;
c9e97a19
PT
2062 u64 i;
2063
2064 /* Only the last zone may have deferred pages */
2065 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2066 return false;
2067
2068 pgdat_resize_lock(pgdat, &flags);
2069
c9e97a19
PT
2070 /*
2071 * If someone grew this zone while we were waiting for spinlock, return
2072 * true, as there might be enough pages already.
2073 */
2074 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2075 pgdat_resize_unlock(pgdat, &flags);
2076 return true;
2077 }
2078
0e56acae
AD
2079 /* If the zone is empty somebody else may have cleared out the zone */
2080 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2081 first_deferred_pfn)) {
2082 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2083 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2084 /* Retry only once. */
2085 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2086 }
2087
0e56acae
AD
2088 /*
2089 * Initialize and free pages in MAX_ORDER sized increments so
2090 * that we can avoid introducing any issues with the buddy
2091 * allocator.
2092 */
2093 while (spfn < epfn) {
2094 /* update our first deferred PFN for this section */
2095 first_deferred_pfn = spfn;
2096
2097 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2098 touch_nmi_watchdog();
c9e97a19 2099
0e56acae
AD
2100 /* We should only stop along section boundaries */
2101 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2102 continue;
c9e97a19 2103
0e56acae 2104 /* If our quota has been met we can stop here */
c9e97a19
PT
2105 if (nr_pages >= nr_pages_needed)
2106 break;
2107 }
2108
0e56acae 2109 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2110 pgdat_resize_unlock(pgdat, &flags);
2111
2112 return nr_pages > 0;
2113}
2114
2115/*
2116 * deferred_grow_zone() is __init, but it is called from
2117 * get_page_from_freelist() during early boot until deferred_pages permanently
2118 * disables this call. This is why we have refdata wrapper to avoid warning,
2119 * and to ensure that the function body gets unloaded.
2120 */
2121static bool __ref
2122_deferred_grow_zone(struct zone *zone, unsigned int order)
2123{
2124 return deferred_grow_zone(zone, order);
2125}
2126
7cf91a98 2127#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2128
2129void __init page_alloc_init_late(void)
2130{
7cf91a98 2131 struct zone *zone;
e900a918 2132 int nid;
7cf91a98
JK
2133
2134#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2135
d3cd131d
NS
2136 /* There will be num_node_state(N_MEMORY) threads */
2137 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2138 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2139 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2140 }
2141
2142 /* Block until all are initialised */
d3cd131d 2143 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2144
c9e97a19
PT
2145 /*
2146 * We initialized the rest of the deferred pages. Permanently disable
2147 * on-demand struct page initialization.
2148 */
2149 static_branch_disable(&deferred_pages);
2150
4248b0da
MG
2151 /* Reinit limits that are based on free pages after the kernel is up */
2152 files_maxfiles_init();
7cf91a98 2153#endif
350e88ba 2154
ba8f3587
LF
2155 buffer_init();
2156
3010f876
PT
2157 /* Discard memblock private memory */
2158 memblock_discard();
7cf91a98 2159
e900a918
DW
2160 for_each_node_state(nid, N_MEMORY)
2161 shuffle_free_memory(NODE_DATA(nid));
2162
7cf91a98
JK
2163 for_each_populated_zone(zone)
2164 set_zone_contiguous(zone);
7e18adb4 2165}
7e18adb4 2166
47118af0 2167#ifdef CONFIG_CMA
9cf510a5 2168/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2169void __init init_cma_reserved_pageblock(struct page *page)
2170{
2171 unsigned i = pageblock_nr_pages;
2172 struct page *p = page;
2173
2174 do {
2175 __ClearPageReserved(p);
2176 set_page_count(p, 0);
d883c6cf 2177 } while (++p, --i);
47118af0 2178
47118af0 2179 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2180 set_page_refcounted(page);
2181 __free_pages(page, pageblock_order);
dc78327c 2182
3dcc0571 2183 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2184 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2185}
2186#endif
1da177e4
LT
2187
2188/*
2189 * The order of subdivision here is critical for the IO subsystem.
2190 * Please do not alter this order without good reasons and regression
2191 * testing. Specifically, as large blocks of memory are subdivided,
2192 * the order in which smaller blocks are delivered depends on the order
2193 * they're subdivided in this function. This is the primary factor
2194 * influencing the order in which pages are delivered to the IO
2195 * subsystem according to empirical testing, and this is also justified
2196 * by considering the behavior of a buddy system containing a single
2197 * large block of memory acted on by a series of small allocations.
2198 * This behavior is a critical factor in sglist merging's success.
2199 *
6d49e352 2200 * -- nyc
1da177e4 2201 */
085cc7d5 2202static inline void expand(struct zone *zone, struct page *page,
6ab01363 2203 int low, int high, int migratetype)
1da177e4
LT
2204{
2205 unsigned long size = 1 << high;
2206
2207 while (high > low) {
1da177e4
LT
2208 high--;
2209 size >>= 1;
309381fe 2210 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2211
acbc15a4
JK
2212 /*
2213 * Mark as guard pages (or page), that will allow to
2214 * merge back to allocator when buddy will be freed.
2215 * Corresponding page table entries will not be touched,
2216 * pages will stay not present in virtual address space
2217 */
2218 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2219 continue;
acbc15a4 2220
6ab01363 2221 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2222 set_buddy_order(&page[size], high);
1da177e4 2223 }
1da177e4
LT
2224}
2225
4e611801 2226static void check_new_page_bad(struct page *page)
1da177e4 2227{
f4c18e6f 2228 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2229 /* Don't complain about hwpoisoned pages */
2230 page_mapcount_reset(page); /* remove PageBuddy */
2231 return;
f4c18e6f 2232 }
58b7f119
WY
2233
2234 bad_page(page,
2235 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2236}
2237
2238/*
2239 * This page is about to be returned from the page allocator
2240 */
2241static inline int check_new_page(struct page *page)
2242{
2243 if (likely(page_expected_state(page,
2244 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2245 return 0;
2246
2247 check_new_page_bad(page);
2248 return 1;
2a7684a2
WF
2249}
2250
77fe7f13
MG
2251static bool check_new_pages(struct page *page, unsigned int order)
2252{
2253 int i;
2254 for (i = 0; i < (1 << order); i++) {
2255 struct page *p = page + i;
2256
2257 if (unlikely(check_new_page(p)))
2258 return true;
2259 }
2260
2261 return false;
2262}
2263
479f854a 2264#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2265/*
2266 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2267 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2268 * also checked when pcp lists are refilled from the free lists.
2269 */
77fe7f13 2270static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2271{
8e57f8ac 2272 if (debug_pagealloc_enabled_static())
77fe7f13 2273 return check_new_pages(page, order);
4462b32c
VB
2274 else
2275 return false;
479f854a
MG
2276}
2277
77fe7f13 2278static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2279{
77fe7f13 2280 return check_new_pages(page, order);
479f854a
MG
2281}
2282#else
4462b32c
VB
2283/*
2284 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2285 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2286 * enabled, they are also checked when being allocated from the pcp lists.
2287 */
77fe7f13 2288static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2289{
77fe7f13 2290 return check_new_pages(page, order);
479f854a 2291}
77fe7f13 2292static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2293{
8e57f8ac 2294 if (debug_pagealloc_enabled_static())
77fe7f13 2295 return check_new_pages(page, order);
4462b32c
VB
2296 else
2297 return false;
479f854a
MG
2298}
2299#endif /* CONFIG_DEBUG_VM */
2300
53ae233c
AK
2301static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2302{
2303 /* Don't skip if a software KASAN mode is enabled. */
2304 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2305 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2306 return false;
2307
2308 /* Skip, if hardware tag-based KASAN is not enabled. */
2309 if (!kasan_hw_tags_enabled())
2310 return true;
2311
2312 /*
2313 * With hardware tag-based KASAN enabled, skip if either:
2314 *
2315 * 1. Memory tags have already been cleared via tag_clear_highpage().
2316 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2317 */
2318 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2319}
2320
9353ffa6
AK
2321static inline bool should_skip_init(gfp_t flags)
2322{
2323 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2324 if (!kasan_hw_tags_enabled())
2325 return false;
2326
2327 /* For hardware tag-based KASAN, skip if requested. */
2328 return (flags & __GFP_SKIP_ZERO);
2329}
2330
46f24fd8
JK
2331inline void post_alloc_hook(struct page *page, unsigned int order,
2332 gfp_t gfp_flags)
2333{
9353ffa6
AK
2334 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2335 !should_skip_init(gfp_flags);
b42090ae
AK
2336 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2337
46f24fd8
JK
2338 set_page_private(page, 0);
2339 set_page_refcounted(page);
2340
2341 arch_alloc_page(page, order);
77bc7fd6 2342 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2343
2344 /*
2345 * Page unpoisoning must happen before memory initialization.
2346 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2347 * allocations and the page unpoisoning code will complain.
2348 */
8db26a3d 2349 kernel_unpoison_pages(page, 1 << order);
862b6dee 2350
1bb5eab3
AK
2351 /*
2352 * As memory initialization might be integrated into KASAN,
b42090ae 2353 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
2354 * kept together to avoid discrepancies in behavior.
2355 */
9294b128
AK
2356
2357 /*
2358 * If memory tags should be zeroed (which happens only when memory
2359 * should be initialized as well).
2360 */
2361 if (init_tags) {
2362 int i;
2363
2364 /* Initialize both memory and tags. */
2365 for (i = 0; i != 1 << order; ++i)
2366 tag_clear_highpage(page + i);
2367
2368 /* Note that memory is already initialized by the loop above. */
2369 init = false;
2370 }
53ae233c
AK
2371 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2372 /* Unpoison shadow memory or set memory tags. */
e9d0ca92 2373 kasan_unpoison_pages(page, order, init);
7e3cbba6 2374
e9d0ca92
AK
2375 /* Note that memory is already initialized by KASAN. */
2376 if (kasan_has_integrated_init())
7e3cbba6 2377 init = false;
7a3b8353 2378 }
7e3cbba6
AK
2379 /* If memory is still not initialized, do it now. */
2380 if (init)
2381 kernel_init_free_pages(page, 1 << order);
89b27116
AK
2382 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2383 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2384 SetPageSkipKASanPoison(page);
1bb5eab3
AK
2385
2386 set_page_owner(page, order, gfp_flags);
df4e817b 2387 page_table_check_alloc(page, order);
46f24fd8
JK
2388}
2389
479f854a 2390static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2391 unsigned int alloc_flags)
2a7684a2 2392{
46f24fd8 2393 post_alloc_hook(page, order, gfp_flags);
17cf4406 2394
17cf4406
NP
2395 if (order && (gfp_flags & __GFP_COMP))
2396 prep_compound_page(page, order);
2397
75379191 2398 /*
2f064f34 2399 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2400 * allocate the page. The expectation is that the caller is taking
2401 * steps that will free more memory. The caller should avoid the page
2402 * being used for !PFMEMALLOC purposes.
2403 */
2f064f34
MH
2404 if (alloc_flags & ALLOC_NO_WATERMARKS)
2405 set_page_pfmemalloc(page);
2406 else
2407 clear_page_pfmemalloc(page);
1da177e4
LT
2408}
2409
56fd56b8
MG
2410/*
2411 * Go through the free lists for the given migratetype and remove
2412 * the smallest available page from the freelists
2413 */
85ccc8fa 2414static __always_inline
728ec980 2415struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2416 int migratetype)
2417{
2418 unsigned int current_order;
b8af2941 2419 struct free_area *area;
56fd56b8
MG
2420 struct page *page;
2421
2422 /* Find a page of the appropriate size in the preferred list */
2423 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2424 area = &(zone->free_area[current_order]);
b03641af 2425 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2426 if (!page)
2427 continue;
6ab01363
AD
2428 del_page_from_free_list(page, zone, current_order);
2429 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2430 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2431 return page;
2432 }
2433
2434 return NULL;
2435}
2436
2437
b2a0ac88
MG
2438/*
2439 * This array describes the order lists are fallen back to when
2440 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2441 *
2442 * The other migratetypes do not have fallbacks.
b2a0ac88 2443 */
da415663 2444static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2445 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2446 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2447 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2448};
2449
dc67647b 2450#ifdef CONFIG_CMA
85ccc8fa 2451static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2452 unsigned int order)
2453{
2454 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2455}
2456#else
2457static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2458 unsigned int order) { return NULL; }
2459#endif
2460
c361be55 2461/*
293ffa5e 2462 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2463 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2464 * boundary. If alignment is required, use move_freepages_block()
2465 */
02aa0cdd 2466static int move_freepages(struct zone *zone,
39ddb991 2467 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2468 int migratetype, int *num_movable)
c361be55
MG
2469{
2470 struct page *page;
39ddb991 2471 unsigned long pfn;
d00181b9 2472 unsigned int order;
d100313f 2473 int pages_moved = 0;
c361be55 2474
39ddb991 2475 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2476 page = pfn_to_page(pfn);
c361be55 2477 if (!PageBuddy(page)) {
02aa0cdd
VB
2478 /*
2479 * We assume that pages that could be isolated for
2480 * migration are movable. But we don't actually try
2481 * isolating, as that would be expensive.
2482 */
2483 if (num_movable &&
2484 (PageLRU(page) || __PageMovable(page)))
2485 (*num_movable)++;
39ddb991 2486 pfn++;
c361be55
MG
2487 continue;
2488 }
2489
cd961038
DR
2490 /* Make sure we are not inadvertently changing nodes */
2491 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2492 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2493
ab130f91 2494 order = buddy_order(page);
6ab01363 2495 move_to_free_list(page, zone, order, migratetype);
39ddb991 2496 pfn += 1 << order;
d100313f 2497 pages_moved += 1 << order;
c361be55
MG
2498 }
2499
d100313f 2500 return pages_moved;
c361be55
MG
2501}
2502
ee6f509c 2503int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2504 int migratetype, int *num_movable)
c361be55 2505{
39ddb991 2506 unsigned long start_pfn, end_pfn, pfn;
c361be55 2507
4a222127
DR
2508 if (num_movable)
2509 *num_movable = 0;
2510
39ddb991
KW
2511 pfn = page_to_pfn(page);
2512 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2513 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2514
2515 /* Do not cross zone boundaries */
108bcc96 2516 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2517 start_pfn = pfn;
108bcc96 2518 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2519 return 0;
2520
39ddb991 2521 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2522 num_movable);
c361be55
MG
2523}
2524
2f66a68f
MG
2525static void change_pageblock_range(struct page *pageblock_page,
2526 int start_order, int migratetype)
2527{
2528 int nr_pageblocks = 1 << (start_order - pageblock_order);
2529
2530 while (nr_pageblocks--) {
2531 set_pageblock_migratetype(pageblock_page, migratetype);
2532 pageblock_page += pageblock_nr_pages;
2533 }
2534}
2535
fef903ef 2536/*
9c0415eb
VB
2537 * When we are falling back to another migratetype during allocation, try to
2538 * steal extra free pages from the same pageblocks to satisfy further
2539 * allocations, instead of polluting multiple pageblocks.
2540 *
2541 * If we are stealing a relatively large buddy page, it is likely there will
2542 * be more free pages in the pageblock, so try to steal them all. For
2543 * reclaimable and unmovable allocations, we steal regardless of page size,
2544 * as fragmentation caused by those allocations polluting movable pageblocks
2545 * is worse than movable allocations stealing from unmovable and reclaimable
2546 * pageblocks.
fef903ef 2547 */
4eb7dce6
JK
2548static bool can_steal_fallback(unsigned int order, int start_mt)
2549{
2550 /*
2551 * Leaving this order check is intended, although there is
2552 * relaxed order check in next check. The reason is that
2553 * we can actually steal whole pageblock if this condition met,
2554 * but, below check doesn't guarantee it and that is just heuristic
2555 * so could be changed anytime.
2556 */
2557 if (order >= pageblock_order)
2558 return true;
2559
2560 if (order >= pageblock_order / 2 ||
2561 start_mt == MIGRATE_RECLAIMABLE ||
2562 start_mt == MIGRATE_UNMOVABLE ||
2563 page_group_by_mobility_disabled)
2564 return true;
2565
2566 return false;
2567}
2568
597c8920 2569static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2570{
2571 unsigned long max_boost;
2572
2573 if (!watermark_boost_factor)
597c8920 2574 return false;
14f69140
HW
2575 /*
2576 * Don't bother in zones that are unlikely to produce results.
2577 * On small machines, including kdump capture kernels running
2578 * in a small area, boosting the watermark can cause an out of
2579 * memory situation immediately.
2580 */
2581 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2582 return false;
1c30844d
MG
2583
2584 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2585 watermark_boost_factor, 10000);
94b3334c
MG
2586
2587 /*
2588 * high watermark may be uninitialised if fragmentation occurs
2589 * very early in boot so do not boost. We do not fall
2590 * through and boost by pageblock_nr_pages as failing
2591 * allocations that early means that reclaim is not going
2592 * to help and it may even be impossible to reclaim the
2593 * boosted watermark resulting in a hang.
2594 */
2595 if (!max_boost)
597c8920 2596 return false;
94b3334c 2597
1c30844d
MG
2598 max_boost = max(pageblock_nr_pages, max_boost);
2599
2600 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2601 max_boost);
597c8920
JW
2602
2603 return true;
1c30844d
MG
2604}
2605
4eb7dce6
JK
2606/*
2607 * This function implements actual steal behaviour. If order is large enough,
2608 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2609 * pageblock to our migratetype and determine how many already-allocated pages
2610 * are there in the pageblock with a compatible migratetype. If at least half
2611 * of pages are free or compatible, we can change migratetype of the pageblock
2612 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2613 */
2614static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2615 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2616{
ab130f91 2617 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2618 int free_pages, movable_pages, alike_pages;
2619 int old_block_type;
2620
2621 old_block_type = get_pageblock_migratetype(page);
fef903ef 2622
3bc48f96
VB
2623 /*
2624 * This can happen due to races and we want to prevent broken
2625 * highatomic accounting.
2626 */
02aa0cdd 2627 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2628 goto single_page;
2629
fef903ef
SB
2630 /* Take ownership for orders >= pageblock_order */
2631 if (current_order >= pageblock_order) {
2632 change_pageblock_range(page, current_order, start_type);
3bc48f96 2633 goto single_page;
fef903ef
SB
2634 }
2635
1c30844d
MG
2636 /*
2637 * Boost watermarks to increase reclaim pressure to reduce the
2638 * likelihood of future fallbacks. Wake kswapd now as the node
2639 * may be balanced overall and kswapd will not wake naturally.
2640 */
597c8920 2641 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2642 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2643
3bc48f96
VB
2644 /* We are not allowed to try stealing from the whole block */
2645 if (!whole_block)
2646 goto single_page;
2647
02aa0cdd
VB
2648 free_pages = move_freepages_block(zone, page, start_type,
2649 &movable_pages);
2650 /*
2651 * Determine how many pages are compatible with our allocation.
2652 * For movable allocation, it's the number of movable pages which
2653 * we just obtained. For other types it's a bit more tricky.
2654 */
2655 if (start_type == MIGRATE_MOVABLE) {
2656 alike_pages = movable_pages;
2657 } else {
2658 /*
2659 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2660 * to MOVABLE pageblock, consider all non-movable pages as
2661 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2662 * vice versa, be conservative since we can't distinguish the
2663 * exact migratetype of non-movable pages.
2664 */
2665 if (old_block_type == MIGRATE_MOVABLE)
2666 alike_pages = pageblock_nr_pages
2667 - (free_pages + movable_pages);
2668 else
2669 alike_pages = 0;
2670 }
2671
3bc48f96 2672 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2673 if (!free_pages)
3bc48f96 2674 goto single_page;
fef903ef 2675
02aa0cdd
VB
2676 /*
2677 * If a sufficient number of pages in the block are either free or of
2678 * comparable migratability as our allocation, claim the whole block.
2679 */
2680 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2681 page_group_by_mobility_disabled)
2682 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2683
2684 return;
2685
2686single_page:
6ab01363 2687 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2688}
2689
2149cdae
JK
2690/*
2691 * Check whether there is a suitable fallback freepage with requested order.
2692 * If only_stealable is true, this function returns fallback_mt only if
2693 * we can steal other freepages all together. This would help to reduce
2694 * fragmentation due to mixed migratetype pages in one pageblock.
2695 */
2696int find_suitable_fallback(struct free_area *area, unsigned int order,
2697 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2698{
2699 int i;
2700 int fallback_mt;
2701
2702 if (area->nr_free == 0)
2703 return -1;
2704
2705 *can_steal = false;
2706 for (i = 0;; i++) {
2707 fallback_mt = fallbacks[migratetype][i];
974a786e 2708 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2709 break;
2710
b03641af 2711 if (free_area_empty(area, fallback_mt))
4eb7dce6 2712 continue;
fef903ef 2713
4eb7dce6
JK
2714 if (can_steal_fallback(order, migratetype))
2715 *can_steal = true;
2716
2149cdae
JK
2717 if (!only_stealable)
2718 return fallback_mt;
2719
2720 if (*can_steal)
2721 return fallback_mt;
fef903ef 2722 }
4eb7dce6
JK
2723
2724 return -1;
fef903ef
SB
2725}
2726
0aaa29a5
MG
2727/*
2728 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2729 * there are no empty page blocks that contain a page with a suitable order
2730 */
2731static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2732 unsigned int alloc_order)
2733{
2734 int mt;
2735 unsigned long max_managed, flags;
2736
2737 /*
2738 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2739 * Check is race-prone but harmless.
2740 */
9705bea5 2741 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2742 if (zone->nr_reserved_highatomic >= max_managed)
2743 return;
2744
2745 spin_lock_irqsave(&zone->lock, flags);
2746
2747 /* Recheck the nr_reserved_highatomic limit under the lock */
2748 if (zone->nr_reserved_highatomic >= max_managed)
2749 goto out_unlock;
2750
2751 /* Yoink! */
2752 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2753 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2754 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2755 zone->nr_reserved_highatomic += pageblock_nr_pages;
2756 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2757 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2758 }
2759
2760out_unlock:
2761 spin_unlock_irqrestore(&zone->lock, flags);
2762}
2763
2764/*
2765 * Used when an allocation is about to fail under memory pressure. This
2766 * potentially hurts the reliability of high-order allocations when under
2767 * intense memory pressure but failed atomic allocations should be easier
2768 * to recover from than an OOM.
29fac03b
MK
2769 *
2770 * If @force is true, try to unreserve a pageblock even though highatomic
2771 * pageblock is exhausted.
0aaa29a5 2772 */
29fac03b
MK
2773static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2774 bool force)
0aaa29a5
MG
2775{
2776 struct zonelist *zonelist = ac->zonelist;
2777 unsigned long flags;
2778 struct zoneref *z;
2779 struct zone *zone;
2780 struct page *page;
2781 int order;
04c8716f 2782 bool ret;
0aaa29a5 2783
97a225e6 2784 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2785 ac->nodemask) {
29fac03b
MK
2786 /*
2787 * Preserve at least one pageblock unless memory pressure
2788 * is really high.
2789 */
2790 if (!force && zone->nr_reserved_highatomic <=
2791 pageblock_nr_pages)
0aaa29a5
MG
2792 continue;
2793
2794 spin_lock_irqsave(&zone->lock, flags);
2795 for (order = 0; order < MAX_ORDER; order++) {
2796 struct free_area *area = &(zone->free_area[order]);
2797
b03641af 2798 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2799 if (!page)
0aaa29a5
MG
2800 continue;
2801
0aaa29a5 2802 /*
4855e4a7
MK
2803 * In page freeing path, migratetype change is racy so
2804 * we can counter several free pages in a pageblock
f0953a1b 2805 * in this loop although we changed the pageblock type
4855e4a7
MK
2806 * from highatomic to ac->migratetype. So we should
2807 * adjust the count once.
0aaa29a5 2808 */
a6ffdc07 2809 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2810 /*
2811 * It should never happen but changes to
2812 * locking could inadvertently allow a per-cpu
2813 * drain to add pages to MIGRATE_HIGHATOMIC
2814 * while unreserving so be safe and watch for
2815 * underflows.
2816 */
2817 zone->nr_reserved_highatomic -= min(
2818 pageblock_nr_pages,
2819 zone->nr_reserved_highatomic);
2820 }
0aaa29a5
MG
2821
2822 /*
2823 * Convert to ac->migratetype and avoid the normal
2824 * pageblock stealing heuristics. Minimally, the caller
2825 * is doing the work and needs the pages. More
2826 * importantly, if the block was always converted to
2827 * MIGRATE_UNMOVABLE or another type then the number
2828 * of pageblocks that cannot be completely freed
2829 * may increase.
2830 */
2831 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2832 ret = move_freepages_block(zone, page, ac->migratetype,
2833 NULL);
29fac03b
MK
2834 if (ret) {
2835 spin_unlock_irqrestore(&zone->lock, flags);
2836 return ret;
2837 }
0aaa29a5
MG
2838 }
2839 spin_unlock_irqrestore(&zone->lock, flags);
2840 }
04c8716f
MK
2841
2842 return false;
0aaa29a5
MG
2843}
2844
3bc48f96
VB
2845/*
2846 * Try finding a free buddy page on the fallback list and put it on the free
2847 * list of requested migratetype, possibly along with other pages from the same
2848 * block, depending on fragmentation avoidance heuristics. Returns true if
2849 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2850 *
2851 * The use of signed ints for order and current_order is a deliberate
2852 * deviation from the rest of this file, to make the for loop
2853 * condition simpler.
3bc48f96 2854 */
85ccc8fa 2855static __always_inline bool
6bb15450
MG
2856__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2857 unsigned int alloc_flags)
b2a0ac88 2858{
b8af2941 2859 struct free_area *area;
b002529d 2860 int current_order;
6bb15450 2861 int min_order = order;
b2a0ac88 2862 struct page *page;
4eb7dce6
JK
2863 int fallback_mt;
2864 bool can_steal;
b2a0ac88 2865
6bb15450
MG
2866 /*
2867 * Do not steal pages from freelists belonging to other pageblocks
2868 * i.e. orders < pageblock_order. If there are no local zones free,
2869 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2870 */
2871 if (alloc_flags & ALLOC_NOFRAGMENT)
2872 min_order = pageblock_order;
2873
7a8f58f3
VB
2874 /*
2875 * Find the largest available free page in the other list. This roughly
2876 * approximates finding the pageblock with the most free pages, which
2877 * would be too costly to do exactly.
2878 */
6bb15450 2879 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2880 --current_order) {
4eb7dce6
JK
2881 area = &(zone->free_area[current_order]);
2882 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2883 start_migratetype, false, &can_steal);
4eb7dce6
JK
2884 if (fallback_mt == -1)
2885 continue;
b2a0ac88 2886
7a8f58f3
VB
2887 /*
2888 * We cannot steal all free pages from the pageblock and the
2889 * requested migratetype is movable. In that case it's better to
2890 * steal and split the smallest available page instead of the
2891 * largest available page, because even if the next movable
2892 * allocation falls back into a different pageblock than this
2893 * one, it won't cause permanent fragmentation.
2894 */
2895 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2896 && current_order > order)
2897 goto find_smallest;
b2a0ac88 2898
7a8f58f3
VB
2899 goto do_steal;
2900 }
e0fff1bd 2901
7a8f58f3 2902 return false;
e0fff1bd 2903
7a8f58f3
VB
2904find_smallest:
2905 for (current_order = order; current_order < MAX_ORDER;
2906 current_order++) {
2907 area = &(zone->free_area[current_order]);
2908 fallback_mt = find_suitable_fallback(area, current_order,
2909 start_migratetype, false, &can_steal);
2910 if (fallback_mt != -1)
2911 break;
b2a0ac88
MG
2912 }
2913
7a8f58f3
VB
2914 /*
2915 * This should not happen - we already found a suitable fallback
2916 * when looking for the largest page.
2917 */
2918 VM_BUG_ON(current_order == MAX_ORDER);
2919
2920do_steal:
b03641af 2921 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2922
1c30844d
MG
2923 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2924 can_steal);
7a8f58f3
VB
2925
2926 trace_mm_page_alloc_extfrag(page, order, current_order,
2927 start_migratetype, fallback_mt);
2928
2929 return true;
2930
b2a0ac88
MG
2931}
2932
56fd56b8 2933/*
1da177e4
LT
2934 * Do the hard work of removing an element from the buddy allocator.
2935 * Call me with the zone->lock already held.
2936 */
85ccc8fa 2937static __always_inline struct page *
6bb15450
MG
2938__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2939 unsigned int alloc_flags)
1da177e4 2940{
1da177e4
LT
2941 struct page *page;
2942
ce8f86ee
H
2943 if (IS_ENABLED(CONFIG_CMA)) {
2944 /*
2945 * Balance movable allocations between regular and CMA areas by
2946 * allocating from CMA when over half of the zone's free memory
2947 * is in the CMA area.
2948 */
2949 if (alloc_flags & ALLOC_CMA &&
2950 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2951 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2952 page = __rmqueue_cma_fallback(zone, order);
2953 if (page)
2954 goto out;
2955 }
16867664 2956 }
3bc48f96 2957retry:
56fd56b8 2958 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2959 if (unlikely(!page)) {
8510e69c 2960 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2961 page = __rmqueue_cma_fallback(zone, order);
2962
6bb15450
MG
2963 if (!page && __rmqueue_fallback(zone, order, migratetype,
2964 alloc_flags))
3bc48f96 2965 goto retry;
728ec980 2966 }
ce8f86ee
H
2967out:
2968 if (page)
2969 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2970 return page;
1da177e4
LT
2971}
2972
5f63b720 2973/*
1da177e4
LT
2974 * Obtain a specified number of elements from the buddy allocator, all under
2975 * a single hold of the lock, for efficiency. Add them to the supplied list.
2976 * Returns the number of new pages which were placed at *list.
2977 */
5f63b720 2978static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2979 unsigned long count, struct list_head *list,
6bb15450 2980 int migratetype, unsigned int alloc_flags)
1da177e4 2981{
cb66bede 2982 int i, allocated = 0;
5f63b720 2983
dbbee9d5
MG
2984 /*
2985 * local_lock_irq held so equivalent to spin_lock_irqsave for
2986 * both PREEMPT_RT and non-PREEMPT_RT configurations.
2987 */
d34b0733 2988 spin_lock(&zone->lock);
1da177e4 2989 for (i = 0; i < count; ++i) {
6bb15450
MG
2990 struct page *page = __rmqueue(zone, order, migratetype,
2991 alloc_flags);
085cc7d5 2992 if (unlikely(page == NULL))
1da177e4 2993 break;
81eabcbe 2994
77fe7f13 2995 if (unlikely(check_pcp_refill(page, order)))
479f854a
MG
2996 continue;
2997
81eabcbe 2998 /*
0fac3ba5
VB
2999 * Split buddy pages returned by expand() are received here in
3000 * physical page order. The page is added to the tail of
3001 * caller's list. From the callers perspective, the linked list
3002 * is ordered by page number under some conditions. This is
3003 * useful for IO devices that can forward direction from the
3004 * head, thus also in the physical page order. This is useful
3005 * for IO devices that can merge IO requests if the physical
3006 * pages are ordered properly.
81eabcbe 3007 */
0fac3ba5 3008 list_add_tail(&page->lru, list);
cb66bede 3009 allocated++;
bb14c2c7 3010 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3011 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3012 -(1 << order));
1da177e4 3013 }
a6de734b
MG
3014
3015 /*
3016 * i pages were removed from the buddy list even if some leak due
3017 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3018 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3019 * pages added to the pcp list.
3020 */
f2260e6b 3021 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3022 spin_unlock(&zone->lock);
cb66bede 3023 return allocated;
1da177e4
LT
3024}
3025
4ae7c039 3026#ifdef CONFIG_NUMA
8fce4d8e 3027/*
4037d452
CL
3028 * Called from the vmstat counter updater to drain pagesets of this
3029 * currently executing processor on remote nodes after they have
3030 * expired.
3031 *
879336c3
CL
3032 * Note that this function must be called with the thread pinned to
3033 * a single processor.
8fce4d8e 3034 */
4037d452 3035void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3036{
4ae7c039 3037 unsigned long flags;
7be12fc9 3038 int to_drain, batch;
4ae7c039 3039
dbbee9d5 3040 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3041 batch = READ_ONCE(pcp->batch);
7be12fc9 3042 to_drain = min(pcp->count, batch);
77ba9062 3043 if (to_drain > 0)
fd56eef2 3044 free_pcppages_bulk(zone, to_drain, pcp, 0);
dbbee9d5 3045 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3046}
3047#endif
3048
9f8f2172 3049/*
93481ff0 3050 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3051 *
3052 * The processor must either be the current processor and the
3053 * thread pinned to the current processor or a processor that
3054 * is not online.
3055 */
93481ff0 3056static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3057{
c54ad30c 3058 unsigned long flags;
93481ff0 3059 struct per_cpu_pages *pcp;
1da177e4 3060
dbbee9d5 3061 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3062
28f836b6 3063 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3064 if (pcp->count)
fd56eef2 3065 free_pcppages_bulk(zone, pcp->count, pcp, 0);
28f836b6 3066
dbbee9d5 3067 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3068}
3dfa5721 3069
93481ff0
VB
3070/*
3071 * Drain pcplists of all zones on the indicated processor.
3072 *
3073 * The processor must either be the current processor and the
3074 * thread pinned to the current processor or a processor that
3075 * is not online.
3076 */
3077static void drain_pages(unsigned int cpu)
3078{
3079 struct zone *zone;
3080
3081 for_each_populated_zone(zone) {
3082 drain_pages_zone(cpu, zone);
1da177e4
LT
3083 }
3084}
1da177e4 3085
9f8f2172
CL
3086/*
3087 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3088 *
3089 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3090 * the single zone's pages.
9f8f2172 3091 */
93481ff0 3092void drain_local_pages(struct zone *zone)
9f8f2172 3093{
93481ff0
VB
3094 int cpu = smp_processor_id();
3095
3096 if (zone)
3097 drain_pages_zone(cpu, zone);
3098 else
3099 drain_pages(cpu);
9f8f2172
CL
3100}
3101
0ccce3b9
MG
3102static void drain_local_pages_wq(struct work_struct *work)
3103{
d9367bd0
WY
3104 struct pcpu_drain *drain;
3105
3106 drain = container_of(work, struct pcpu_drain, work);
3107
a459eeb7
MH
3108 /*
3109 * drain_all_pages doesn't use proper cpu hotplug protection so
3110 * we can race with cpu offline when the WQ can move this from
3111 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3112 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3113 * a different one.
3114 */
9c25cbfc 3115 migrate_disable();
d9367bd0 3116 drain_local_pages(drain->zone);
9c25cbfc 3117 migrate_enable();
0ccce3b9
MG
3118}
3119
9f8f2172 3120/*
ec6e8c7e
VB
3121 * The implementation of drain_all_pages(), exposing an extra parameter to
3122 * drain on all cpus.
93481ff0 3123 *
ec6e8c7e
VB
3124 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3125 * not empty. The check for non-emptiness can however race with a free to
3126 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3127 * that need the guarantee that every CPU has drained can disable the
3128 * optimizing racy check.
9f8f2172 3129 */
3b1f3658 3130static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3131{
74046494 3132 int cpu;
74046494
GBY
3133
3134 /*
041711ce 3135 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3136 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3137 */
3138 static cpumask_t cpus_with_pcps;
3139
ce612879
MH
3140 /*
3141 * Make sure nobody triggers this path before mm_percpu_wq is fully
3142 * initialized.
3143 */
3144 if (WARN_ON_ONCE(!mm_percpu_wq))
3145 return;
3146
bd233f53
MG
3147 /*
3148 * Do not drain if one is already in progress unless it's specific to
3149 * a zone. Such callers are primarily CMA and memory hotplug and need
3150 * the drain to be complete when the call returns.
3151 */
3152 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3153 if (!zone)
3154 return;
3155 mutex_lock(&pcpu_drain_mutex);
3156 }
0ccce3b9 3157
74046494
GBY
3158 /*
3159 * We don't care about racing with CPU hotplug event
3160 * as offline notification will cause the notified
3161 * cpu to drain that CPU pcps and on_each_cpu_mask
3162 * disables preemption as part of its processing
3163 */
3164 for_each_online_cpu(cpu) {
28f836b6 3165 struct per_cpu_pages *pcp;
93481ff0 3166 struct zone *z;
74046494 3167 bool has_pcps = false;
93481ff0 3168
ec6e8c7e
VB
3169 if (force_all_cpus) {
3170 /*
3171 * The pcp.count check is racy, some callers need a
3172 * guarantee that no cpu is missed.
3173 */
3174 has_pcps = true;
3175 } else if (zone) {
28f836b6
MG
3176 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3177 if (pcp->count)
74046494 3178 has_pcps = true;
93481ff0
VB
3179 } else {
3180 for_each_populated_zone(z) {
28f836b6
MG
3181 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3182 if (pcp->count) {
93481ff0
VB
3183 has_pcps = true;
3184 break;
3185 }
74046494
GBY
3186 }
3187 }
93481ff0 3188
74046494
GBY
3189 if (has_pcps)
3190 cpumask_set_cpu(cpu, &cpus_with_pcps);
3191 else
3192 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3193 }
0ccce3b9 3194
bd233f53 3195 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3196 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3197
3198 drain->zone = zone;
3199 INIT_WORK(&drain->work, drain_local_pages_wq);
3200 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3201 }
bd233f53 3202 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3203 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3204
3205 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3206}
3207
ec6e8c7e
VB
3208/*
3209 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3210 *
3211 * When zone parameter is non-NULL, spill just the single zone's pages.
3212 *
3213 * Note that this can be extremely slow as the draining happens in a workqueue.
3214 */
3215void drain_all_pages(struct zone *zone)
3216{
3217 __drain_all_pages(zone, false);
3218}
3219
296699de 3220#ifdef CONFIG_HIBERNATION
1da177e4 3221
556b969a
CY
3222/*
3223 * Touch the watchdog for every WD_PAGE_COUNT pages.
3224 */
3225#define WD_PAGE_COUNT (128*1024)
3226
1da177e4
LT
3227void mark_free_pages(struct zone *zone)
3228{
556b969a 3229 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3230 unsigned long flags;
7aeb09f9 3231 unsigned int order, t;
86760a2c 3232 struct page *page;
1da177e4 3233
8080fc03 3234 if (zone_is_empty(zone))
1da177e4
LT
3235 return;
3236
3237 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3238
108bcc96 3239 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3240 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3241 if (pfn_valid(pfn)) {
86760a2c 3242 page = pfn_to_page(pfn);
ba6b0979 3243
556b969a
CY
3244 if (!--page_count) {
3245 touch_nmi_watchdog();
3246 page_count = WD_PAGE_COUNT;
3247 }
3248
ba6b0979
JK
3249 if (page_zone(page) != zone)
3250 continue;
3251
7be98234
RW
3252 if (!swsusp_page_is_forbidden(page))
3253 swsusp_unset_page_free(page);
f623f0db 3254 }
1da177e4 3255
b2a0ac88 3256 for_each_migratetype_order(order, t) {
86760a2c
GT
3257 list_for_each_entry(page,
3258 &zone->free_area[order].free_list[t], lru) {
f623f0db 3259 unsigned long i;
1da177e4 3260
86760a2c 3261 pfn = page_to_pfn(page);
556b969a
CY
3262 for (i = 0; i < (1UL << order); i++) {
3263 if (!--page_count) {
3264 touch_nmi_watchdog();
3265 page_count = WD_PAGE_COUNT;
3266 }
7be98234 3267 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3268 }
f623f0db 3269 }
b2a0ac88 3270 }
1da177e4
LT
3271 spin_unlock_irqrestore(&zone->lock, flags);
3272}
e2c55dc8 3273#endif /* CONFIG_PM */
1da177e4 3274
44042b44
MG
3275static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3276 unsigned int order)
1da177e4 3277{
5f8dcc21 3278 int migratetype;
1da177e4 3279
44042b44 3280 if (!free_pcp_prepare(page, order))
9cca35d4 3281 return false;
689bcebf 3282
dc4b0caf 3283 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3284 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3285 return true;
3286}
3287
f26b3fa0
MG
3288static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3289 bool free_high)
3b12e7e9
MG
3290{
3291 int min_nr_free, max_nr_free;
3292
f26b3fa0
MG
3293 /* Free everything if batch freeing high-order pages. */
3294 if (unlikely(free_high))
3295 return pcp->count;
3296
3b12e7e9
MG
3297 /* Check for PCP disabled or boot pageset */
3298 if (unlikely(high < batch))
3299 return 1;
3300
3301 /* Leave at least pcp->batch pages on the list */
3302 min_nr_free = batch;
3303 max_nr_free = high - batch;
3304
3305 /*
3306 * Double the number of pages freed each time there is subsequent
3307 * freeing of pages without any allocation.
3308 */
3309 batch <<= pcp->free_factor;
3310 if (batch < max_nr_free)
3311 pcp->free_factor++;
3312 batch = clamp(batch, min_nr_free, max_nr_free);
3313
3314 return batch;
3315}
3316
f26b3fa0
MG
3317static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3318 bool free_high)
c49c2c47
MG
3319{
3320 int high = READ_ONCE(pcp->high);
3321
f26b3fa0 3322 if (unlikely(!high || free_high))
c49c2c47
MG
3323 return 0;
3324
3325 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3326 return high;
3327
3328 /*
3329 * If reclaim is active, limit the number of pages that can be
3330 * stored on pcp lists
3331 */
3332 return min(READ_ONCE(pcp->batch) << 2, high);
3333}
3334
56651377
NSJ
3335static void free_unref_page_commit(struct page *page, int migratetype,
3336 unsigned int order)
9cca35d4
MG
3337{
3338 struct zone *zone = page_zone(page);
3339 struct per_cpu_pages *pcp;
3b12e7e9 3340 int high;
44042b44 3341 int pindex;
f26b3fa0 3342 bool free_high;
9cca35d4 3343
d34b0733 3344 __count_vm_event(PGFREE);
28f836b6 3345 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3346 pindex = order_to_pindex(migratetype, order);
3347 list_add(&page->lru, &pcp->lists[pindex]);
3348 pcp->count += 1 << order;
f26b3fa0
MG
3349
3350 /*
3351 * As high-order pages other than THP's stored on PCP can contribute
3352 * to fragmentation, limit the number stored when PCP is heavily
3353 * freeing without allocation. The remainder after bulk freeing
3354 * stops will be drained from vmstat refresh context.
3355 */
3356 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3357
3358 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3359 if (pcp->count >= high) {
3360 int batch = READ_ONCE(pcp->batch);
3361
f26b3fa0 3362 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3363 }
9cca35d4 3364}
5f8dcc21 3365
9cca35d4 3366/*
44042b44 3367 * Free a pcp page
9cca35d4 3368 */
44042b44 3369void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3370{
3371 unsigned long flags;
3372 unsigned long pfn = page_to_pfn(page);
df1acc85 3373 int migratetype;
9cca35d4 3374
44042b44 3375 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3376 return;
da456f14 3377
5f8dcc21
MG
3378 /*
3379 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3380 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3381 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3382 * areas back if necessary. Otherwise, we may have to free
3383 * excessively into the page allocator
3384 */
df1acc85
MG
3385 migratetype = get_pcppage_migratetype(page);
3386 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3387 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3388 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3389 return;
5f8dcc21
MG
3390 }
3391 migratetype = MIGRATE_MOVABLE;
3392 }
3393
dbbee9d5 3394 local_lock_irqsave(&pagesets.lock, flags);
56651377 3395 free_unref_page_commit(page, migratetype, order);
dbbee9d5 3396 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3397}
3398
cc59850e
KK
3399/*
3400 * Free a list of 0-order pages
3401 */
2d4894b5 3402void free_unref_page_list(struct list_head *list)
cc59850e
KK
3403{
3404 struct page *page, *next;
56651377 3405 unsigned long flags;
c24ad77d 3406 int batch_count = 0;
df1acc85 3407 int migratetype;
9cca35d4
MG
3408
3409 /* Prepare pages for freeing */
3410 list_for_each_entry_safe(page, next, list, lru) {
56651377 3411 unsigned long pfn = page_to_pfn(page);
053cfda1 3412 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3413 list_del(&page->lru);
053cfda1
ML
3414 continue;
3415 }
df1acc85
MG
3416
3417 /*
3418 * Free isolated pages directly to the allocator, see
3419 * comment in free_unref_page.
3420 */
3421 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3422 if (unlikely(is_migrate_isolate(migratetype))) {
3423 list_del(&page->lru);
3424 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3425 continue;
df1acc85 3426 }
9cca35d4 3427 }
cc59850e 3428
dbbee9d5 3429 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3430 list_for_each_entry_safe(page, next, list, lru) {
47aef601
DB
3431 /*
3432 * Non-isolated types over MIGRATE_PCPTYPES get added
3433 * to the MIGRATE_MOVABLE pcp list.
3434 */
df1acc85 3435 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3436 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3437 migratetype = MIGRATE_MOVABLE;
3438
2d4894b5 3439 trace_mm_page_free_batched(page);
56651377 3440 free_unref_page_commit(page, migratetype, 0);
c24ad77d
LS
3441
3442 /*
3443 * Guard against excessive IRQ disabled times when we get
3444 * a large list of pages to free.
3445 */
3446 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3447 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3448 batch_count = 0;
dbbee9d5 3449 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3450 }
cc59850e 3451 }
dbbee9d5 3452 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3453}
3454
8dfcc9ba
NP
3455/*
3456 * split_page takes a non-compound higher-order page, and splits it into
3457 * n (1<<order) sub-pages: page[0..n]
3458 * Each sub-page must be freed individually.
3459 *
3460 * Note: this is probably too low level an operation for use in drivers.
3461 * Please consult with lkml before using this in your driver.
3462 */
3463void split_page(struct page *page, unsigned int order)
3464{
3465 int i;
3466
309381fe
SL
3467 VM_BUG_ON_PAGE(PageCompound(page), page);
3468 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3469
a9627bc5 3470 for (i = 1; i < (1 << order); i++)
7835e98b 3471 set_page_refcounted(page + i);
8fb156c9 3472 split_page_owner(page, 1 << order);
e1baddf8 3473 split_page_memcg(page, 1 << order);
8dfcc9ba 3474}
5853ff23 3475EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3476
3c605096 3477int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3478{
748446bb
MG
3479 unsigned long watermark;
3480 struct zone *zone;
2139cbe6 3481 int mt;
748446bb
MG
3482
3483 BUG_ON(!PageBuddy(page));
3484
3485 zone = page_zone(page);
2e30abd1 3486 mt = get_pageblock_migratetype(page);
748446bb 3487
194159fb 3488 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3489 /*
3490 * Obey watermarks as if the page was being allocated. We can
3491 * emulate a high-order watermark check with a raised order-0
3492 * watermark, because we already know our high-order page
3493 * exists.
3494 */
fd1444b2 3495 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3496 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3497 return 0;
3498
8fb74b9f 3499 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3500 }
748446bb
MG
3501
3502 /* Remove page from free list */
b03641af 3503
6ab01363 3504 del_page_from_free_list(page, zone, order);
2139cbe6 3505
400bc7fd 3506 /*
3507 * Set the pageblock if the isolated page is at least half of a
3508 * pageblock
3509 */
748446bb
MG
3510 if (order >= pageblock_order - 1) {
3511 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3512 for (; page < endpage; page += pageblock_nr_pages) {
3513 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3514 /*
3515 * Only change normal pageblocks (i.e., they can merge
3516 * with others)
3517 */
3518 if (migratetype_is_mergeable(mt))
47118af0
MN
3519 set_pageblock_migratetype(page,
3520 MIGRATE_MOVABLE);
3521 }
748446bb
MG
3522 }
3523
f3a14ced 3524
8fb74b9f 3525 return 1UL << order;
1fb3f8ca
MG
3526}
3527
624f58d8
AD
3528/**
3529 * __putback_isolated_page - Return a now-isolated page back where we got it
3530 * @page: Page that was isolated
3531 * @order: Order of the isolated page
e6a0a7ad 3532 * @mt: The page's pageblock's migratetype
624f58d8
AD
3533 *
3534 * This function is meant to return a page pulled from the free lists via
3535 * __isolate_free_page back to the free lists they were pulled from.
3536 */
3537void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3538{
3539 struct zone *zone = page_zone(page);
3540
3541 /* zone lock should be held when this function is called */
3542 lockdep_assert_held(&zone->lock);
3543
3544 /* Return isolated page to tail of freelist. */
f04a5d5d 3545 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3546 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3547}
3548
060e7417
MG
3549/*
3550 * Update NUMA hit/miss statistics
3551 *
3552 * Must be called with interrupts disabled.
060e7417 3553 */
3e23060b
MG
3554static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3555 long nr_account)
060e7417
MG
3556{
3557#ifdef CONFIG_NUMA
3a321d2a 3558 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3559
4518085e
KW
3560 /* skip numa counters update if numa stats is disabled */
3561 if (!static_branch_likely(&vm_numa_stat_key))
3562 return;
3563
c1093b74 3564 if (zone_to_nid(z) != numa_node_id())
060e7417 3565 local_stat = NUMA_OTHER;
060e7417 3566
c1093b74 3567 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3568 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3569 else {
3e23060b
MG
3570 __count_numa_events(z, NUMA_MISS, nr_account);
3571 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3572 }
3e23060b 3573 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3574#endif
3575}
3576
066b2393 3577/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3578static inline
44042b44
MG
3579struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3580 int migratetype,
6bb15450 3581 unsigned int alloc_flags,
453f85d4 3582 struct per_cpu_pages *pcp,
066b2393
MG
3583 struct list_head *list)
3584{
3585 struct page *page;
3586
3587 do {
3588 if (list_empty(list)) {
44042b44
MG
3589 int batch = READ_ONCE(pcp->batch);
3590 int alloced;
3591
3592 /*
3593 * Scale batch relative to order if batch implies
3594 * free pages can be stored on the PCP. Batch can
3595 * be 1 for small zones or for boot pagesets which
3596 * should never store free pages as the pages may
3597 * belong to arbitrary zones.
3598 */
3599 if (batch > 1)
3600 batch = max(batch >> order, 2);
3601 alloced = rmqueue_bulk(zone, order,
3602 batch, list,
6bb15450 3603 migratetype, alloc_flags);
44042b44
MG
3604
3605 pcp->count += alloced << order;
066b2393
MG
3606 if (unlikely(list_empty(list)))
3607 return NULL;
3608 }
3609
453f85d4 3610 page = list_first_entry(list, struct page, lru);
066b2393 3611 list_del(&page->lru);
44042b44 3612 pcp->count -= 1 << order;
77fe7f13 3613 } while (check_new_pcp(page, order));
066b2393
MG
3614
3615 return page;
3616}
3617
3618/* Lock and remove page from the per-cpu list */
3619static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3620 struct zone *zone, unsigned int order,
3621 gfp_t gfp_flags, int migratetype,
3622 unsigned int alloc_flags)
066b2393
MG
3623{
3624 struct per_cpu_pages *pcp;
3625 struct list_head *list;
066b2393 3626 struct page *page;
d34b0733 3627 unsigned long flags;
066b2393 3628
dbbee9d5 3629 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3630
3631 /*
3632 * On allocation, reduce the number of pages that are batch freed.
3633 * See nr_pcp_free() where free_factor is increased for subsequent
3634 * frees.
3635 */
28f836b6 3636 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3637 pcp->free_factor >>= 1;
44042b44
MG
3638 list = &pcp->lists[order_to_pindex(migratetype, order)];
3639 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3640 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3641 if (page) {
1c52e6d0 3642 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3643 zone_statistics(preferred_zone, zone, 1);
066b2393 3644 }
066b2393
MG
3645 return page;
3646}
3647
1da177e4 3648/*
75379191 3649 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3650 */
0a15c3e9 3651static inline
066b2393 3652struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3653 struct zone *zone, unsigned int order,
c603844b
MG
3654 gfp_t gfp_flags, unsigned int alloc_flags,
3655 int migratetype)
1da177e4
LT
3656{
3657 unsigned long flags;
689bcebf 3658 struct page *page;
1da177e4 3659
44042b44 3660 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3661 /*
3662 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3663 * we need to skip it when CMA area isn't allowed.
3664 */
3665 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3666 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3667 page = rmqueue_pcplist(preferred_zone, zone, order,
3668 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3669 goto out;
3670 }
066b2393 3671 }
83b9355b 3672
066b2393
MG
3673 /*
3674 * We most definitely don't want callers attempting to
3675 * allocate greater than order-1 page units with __GFP_NOFAIL.
3676 */
3677 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
0aaa29a5 3678
066b2393
MG
3679 do {
3680 page = NULL;
3313204c 3681 spin_lock_irqsave(&zone->lock, flags);
1d91df85
JK
3682 /*
3683 * order-0 request can reach here when the pcplist is skipped
3684 * due to non-CMA allocation context. HIGHATOMIC area is
3685 * reserved for high-order atomic allocation, so order-0
3686 * request should skip it.
3687 */
3688 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3689 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3690 if (page)
3691 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3692 }
3313204c 3693 if (!page) {
6bb15450 3694 page = __rmqueue(zone, order, migratetype, alloc_flags);
3313204c
ED
3695 if (!page)
3696 goto failed;
3697 }
3698 __mod_zone_freepage_state(zone, -(1 << order),
3699 get_pcppage_migratetype(page));
3700 spin_unlock_irqrestore(&zone->lock, flags);
3701 } while (check_new_pages(page, order));
1da177e4 3702
16709d1d 3703 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3704 zone_statistics(preferred_zone, zone, 1);
1da177e4 3705
066b2393 3706out:
73444bc4
MG
3707 /* Separate test+clear to avoid unnecessary atomics */
3708 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3709 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3710 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3711 }
3712
066b2393 3713 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3714 return page;
a74609fa
NP
3715
3716failed:
43c95bcc 3717 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3718 return NULL;
1da177e4
LT
3719}
3720
933e312e
AM
3721#ifdef CONFIG_FAIL_PAGE_ALLOC
3722
b2588c4b 3723static struct {
933e312e
AM
3724 struct fault_attr attr;
3725
621a5f7a 3726 bool ignore_gfp_highmem;
71baba4b 3727 bool ignore_gfp_reclaim;
54114994 3728 u32 min_order;
933e312e
AM
3729} fail_page_alloc = {
3730 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3731 .ignore_gfp_reclaim = true,
621a5f7a 3732 .ignore_gfp_highmem = true,
54114994 3733 .min_order = 1,
933e312e
AM
3734};
3735
3736static int __init setup_fail_page_alloc(char *str)
3737{
3738 return setup_fault_attr(&fail_page_alloc.attr, str);
3739}
3740__setup("fail_page_alloc=", setup_fail_page_alloc);
3741
af3b8544 3742static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3743{
54114994 3744 if (order < fail_page_alloc.min_order)
deaf386e 3745 return false;
933e312e 3746 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3747 return false;
933e312e 3748 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3749 return false;
71baba4b
MG
3750 if (fail_page_alloc.ignore_gfp_reclaim &&
3751 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3752 return false;
933e312e
AM
3753
3754 return should_fail(&fail_page_alloc.attr, 1 << order);
3755}
3756
3757#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3758
3759static int __init fail_page_alloc_debugfs(void)
3760{
0825a6f9 3761 umode_t mode = S_IFREG | 0600;
933e312e 3762 struct dentry *dir;
933e312e 3763
dd48c085
AM
3764 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3765 &fail_page_alloc.attr);
b2588c4b 3766
d9f7979c
GKH
3767 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3768 &fail_page_alloc.ignore_gfp_reclaim);
3769 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3770 &fail_page_alloc.ignore_gfp_highmem);
3771 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3772
d9f7979c 3773 return 0;
933e312e
AM
3774}
3775
3776late_initcall(fail_page_alloc_debugfs);
3777
3778#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3779
3780#else /* CONFIG_FAIL_PAGE_ALLOC */
3781
af3b8544 3782static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3783{
deaf386e 3784 return false;
933e312e
AM
3785}
3786
3787#endif /* CONFIG_FAIL_PAGE_ALLOC */
3788
54aa3866 3789noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3790{
3791 return __should_fail_alloc_page(gfp_mask, order);
3792}
3793ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3794
f27ce0e1
JK
3795static inline long __zone_watermark_unusable_free(struct zone *z,
3796 unsigned int order, unsigned int alloc_flags)
3797{
3798 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3799 long unusable_free = (1 << order) - 1;
3800
3801 /*
3802 * If the caller does not have rights to ALLOC_HARDER then subtract
3803 * the high-atomic reserves. This will over-estimate the size of the
3804 * atomic reserve but it avoids a search.
3805 */
3806 if (likely(!alloc_harder))
3807 unusable_free += z->nr_reserved_highatomic;
3808
3809#ifdef CONFIG_CMA
3810 /* If allocation can't use CMA areas don't use free CMA pages */
3811 if (!(alloc_flags & ALLOC_CMA))
3812 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3813#endif
3814
3815 return unusable_free;
3816}
3817
1da177e4 3818/*
97a16fc8
MG
3819 * Return true if free base pages are above 'mark'. For high-order checks it
3820 * will return true of the order-0 watermark is reached and there is at least
3821 * one free page of a suitable size. Checking now avoids taking the zone lock
3822 * to check in the allocation paths if no pages are free.
1da177e4 3823 */
86a294a8 3824bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3825 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3826 long free_pages)
1da177e4 3827{
d23ad423 3828 long min = mark;
1da177e4 3829 int o;
cd04ae1e 3830 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3831
0aaa29a5 3832 /* free_pages may go negative - that's OK */
f27ce0e1 3833 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3834
7fb1d9fc 3835 if (alloc_flags & ALLOC_HIGH)
1da177e4 3836 min -= min / 2;
0aaa29a5 3837
f27ce0e1 3838 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3839 /*
3840 * OOM victims can try even harder than normal ALLOC_HARDER
3841 * users on the grounds that it's definitely going to be in
3842 * the exit path shortly and free memory. Any allocation it
3843 * makes during the free path will be small and short-lived.
3844 */
3845 if (alloc_flags & ALLOC_OOM)
3846 min -= min / 2;
3847 else
3848 min -= min / 4;
3849 }
3850
97a16fc8
MG
3851 /*
3852 * Check watermarks for an order-0 allocation request. If these
3853 * are not met, then a high-order request also cannot go ahead
3854 * even if a suitable page happened to be free.
3855 */
97a225e6 3856 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3857 return false;
1da177e4 3858
97a16fc8
MG
3859 /* If this is an order-0 request then the watermark is fine */
3860 if (!order)
3861 return true;
3862
3863 /* For a high-order request, check at least one suitable page is free */
3864 for (o = order; o < MAX_ORDER; o++) {
3865 struct free_area *area = &z->free_area[o];
3866 int mt;
3867
3868 if (!area->nr_free)
3869 continue;
3870
97a16fc8 3871 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3872 if (!free_area_empty(area, mt))
97a16fc8
MG
3873 return true;
3874 }
3875
3876#ifdef CONFIG_CMA
d883c6cf 3877 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3878 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3879 return true;
d883c6cf 3880 }
97a16fc8 3881#endif
76089d00 3882 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3883 return true;
1da177e4 3884 }
97a16fc8 3885 return false;
88f5acf8
MG
3886}
3887
7aeb09f9 3888bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3889 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3890{
97a225e6 3891 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3892 zone_page_state(z, NR_FREE_PAGES));
3893}
3894
48ee5f36 3895static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3896 unsigned long mark, int highest_zoneidx,
f80b08fc 3897 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3898{
f27ce0e1 3899 long free_pages;
d883c6cf 3900
f27ce0e1 3901 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3902
3903 /*
3904 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3905 * need to be calculated.
48ee5f36 3906 */
f27ce0e1
JK
3907 if (!order) {
3908 long fast_free;
3909
3910 fast_free = free_pages;
3911 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3912 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3913 return true;
3914 }
48ee5f36 3915
f80b08fc
CTR
3916 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3917 free_pages))
3918 return true;
3919 /*
3920 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3921 * when checking the min watermark. The min watermark is the
3922 * point where boosting is ignored so that kswapd is woken up
3923 * when below the low watermark.
3924 */
3925 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3926 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3927 mark = z->_watermark[WMARK_MIN];
3928 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3929 alloc_flags, free_pages);
3930 }
3931
3932 return false;
48ee5f36
MG
3933}
3934
7aeb09f9 3935bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3936 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3937{
3938 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3939
3940 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3941 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3942
97a225e6 3943 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3944 free_pages);
1da177e4
LT
3945}
3946
9276b1bc 3947#ifdef CONFIG_NUMA
61bb6cd2
GU
3948int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3949
957f822a
DR
3950static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3951{
e02dc017 3952 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3953 node_reclaim_distance;
957f822a 3954}
9276b1bc 3955#else /* CONFIG_NUMA */
957f822a
DR
3956static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3957{
3958 return true;
3959}
9276b1bc
PJ
3960#endif /* CONFIG_NUMA */
3961
6bb15450
MG
3962/*
3963 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3964 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3965 * premature use of a lower zone may cause lowmem pressure problems that
3966 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3967 * probably too small. It only makes sense to spread allocations to avoid
3968 * fragmentation between the Normal and DMA32 zones.
3969 */
3970static inline unsigned int
0a79cdad 3971alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3972{
736838e9 3973 unsigned int alloc_flags;
0a79cdad 3974
736838e9
MN
3975 /*
3976 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3977 * to save a branch.
3978 */
3979 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3980
3981#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3982 if (!zone)
3983 return alloc_flags;
3984
6bb15450 3985 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3986 return alloc_flags;
6bb15450
MG
3987
3988 /*
3989 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3990 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3991 * on UMA that if Normal is populated then so is DMA32.
3992 */
3993 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3994 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3995 return alloc_flags;
6bb15450 3996
8118b82e 3997 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3998#endif /* CONFIG_ZONE_DMA32 */
3999 return alloc_flags;
6bb15450 4000}
6bb15450 4001
8e3560d9
PT
4002/* Must be called after current_gfp_context() which can change gfp_mask */
4003static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4004 unsigned int alloc_flags)
8510e69c
JK
4005{
4006#ifdef CONFIG_CMA
8e3560d9 4007 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4008 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4009#endif
4010 return alloc_flags;
4011}
4012
7fb1d9fc 4013/*
0798e519 4014 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4015 * a page.
4016 */
4017static struct page *
a9263751
VB
4018get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4019 const struct alloc_context *ac)
753ee728 4020{
6bb15450 4021 struct zoneref *z;
5117f45d 4022 struct zone *zone;
3b8c0be4 4023 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 4024 bool no_fallback;
3b8c0be4 4025
6bb15450 4026retry:
7fb1d9fc 4027 /*
9276b1bc 4028 * Scan zonelist, looking for a zone with enough free.
344736f2 4029 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4030 */
6bb15450
MG
4031 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4032 z = ac->preferred_zoneref;
30d8ec73
MN
4033 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4034 ac->nodemask) {
be06af00 4035 struct page *page;
e085dbc5
JW
4036 unsigned long mark;
4037
664eedde
MG
4038 if (cpusets_enabled() &&
4039 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4040 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4041 continue;
a756cf59
JW
4042 /*
4043 * When allocating a page cache page for writing, we
281e3726
MG
4044 * want to get it from a node that is within its dirty
4045 * limit, such that no single node holds more than its
a756cf59 4046 * proportional share of globally allowed dirty pages.
281e3726 4047 * The dirty limits take into account the node's
a756cf59
JW
4048 * lowmem reserves and high watermark so that kswapd
4049 * should be able to balance it without having to
4050 * write pages from its LRU list.
4051 *
a756cf59 4052 * XXX: For now, allow allocations to potentially
281e3726 4053 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4054 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4055 * which is important when on a NUMA setup the allowed
281e3726 4056 * nodes are together not big enough to reach the
a756cf59 4057 * global limit. The proper fix for these situations
281e3726 4058 * will require awareness of nodes in the
a756cf59
JW
4059 * dirty-throttling and the flusher threads.
4060 */
3b8c0be4
MG
4061 if (ac->spread_dirty_pages) {
4062 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4063 continue;
4064
4065 if (!node_dirty_ok(zone->zone_pgdat)) {
4066 last_pgdat_dirty_limit = zone->zone_pgdat;
4067 continue;
4068 }
4069 }
7fb1d9fc 4070
6bb15450
MG
4071 if (no_fallback && nr_online_nodes > 1 &&
4072 zone != ac->preferred_zoneref->zone) {
4073 int local_nid;
4074
4075 /*
4076 * If moving to a remote node, retry but allow
4077 * fragmenting fallbacks. Locality is more important
4078 * than fragmentation avoidance.
4079 */
4080 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4081 if (zone_to_nid(zone) != local_nid) {
4082 alloc_flags &= ~ALLOC_NOFRAGMENT;
4083 goto retry;
4084 }
4085 }
4086
a9214443 4087 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4088 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4089 ac->highest_zoneidx, alloc_flags,
4090 gfp_mask)) {
fa5e084e
MG
4091 int ret;
4092
c9e97a19
PT
4093#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4094 /*
4095 * Watermark failed for this zone, but see if we can
4096 * grow this zone if it contains deferred pages.
4097 */
4098 if (static_branch_unlikely(&deferred_pages)) {
4099 if (_deferred_grow_zone(zone, order))
4100 goto try_this_zone;
4101 }
4102#endif
5dab2911
MG
4103 /* Checked here to keep the fast path fast */
4104 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4105 if (alloc_flags & ALLOC_NO_WATERMARKS)
4106 goto try_this_zone;
4107
202e35db 4108 if (!node_reclaim_enabled() ||
c33d6c06 4109 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4110 continue;
4111
a5f5f91d 4112 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4113 switch (ret) {
a5f5f91d 4114 case NODE_RECLAIM_NOSCAN:
fa5e084e 4115 /* did not scan */
cd38b115 4116 continue;
a5f5f91d 4117 case NODE_RECLAIM_FULL:
fa5e084e 4118 /* scanned but unreclaimable */
cd38b115 4119 continue;
fa5e084e
MG
4120 default:
4121 /* did we reclaim enough */
fed2719e 4122 if (zone_watermark_ok(zone, order, mark,
97a225e6 4123 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4124 goto try_this_zone;
4125
fed2719e 4126 continue;
0798e519 4127 }
7fb1d9fc
RS
4128 }
4129
fa5e084e 4130try_this_zone:
066b2393 4131 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4132 gfp_mask, alloc_flags, ac->migratetype);
75379191 4133 if (page) {
479f854a 4134 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4135
4136 /*
4137 * If this is a high-order atomic allocation then check
4138 * if the pageblock should be reserved for the future
4139 */
4140 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4141 reserve_highatomic_pageblock(page, zone, order);
4142
75379191 4143 return page;
c9e97a19
PT
4144 } else {
4145#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4146 /* Try again if zone has deferred pages */
4147 if (static_branch_unlikely(&deferred_pages)) {
4148 if (_deferred_grow_zone(zone, order))
4149 goto try_this_zone;
4150 }
4151#endif
75379191 4152 }
54a6eb5c 4153 }
9276b1bc 4154
6bb15450
MG
4155 /*
4156 * It's possible on a UMA machine to get through all zones that are
4157 * fragmented. If avoiding fragmentation, reset and try again.
4158 */
4159 if (no_fallback) {
4160 alloc_flags &= ~ALLOC_NOFRAGMENT;
4161 goto retry;
4162 }
4163
4ffeaf35 4164 return NULL;
753ee728
MH
4165}
4166
9af744d7 4167static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4168{
a238ab5b 4169 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4170
4171 /*
4172 * This documents exceptions given to allocations in certain
4173 * contexts that are allowed to allocate outside current's set
4174 * of allowed nodes.
4175 */
4176 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4177 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4178 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4179 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4180 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4181 filter &= ~SHOW_MEM_FILTER_NODES;
4182
9af744d7 4183 show_mem(filter, nodemask);
aa187507
MH
4184}
4185
a8e99259 4186void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4187{
4188 struct va_format vaf;
4189 va_list args;
1be334e5 4190 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4191
c4dc63f0
BH
4192 if ((gfp_mask & __GFP_NOWARN) ||
4193 !__ratelimit(&nopage_rs) ||
4194 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4195 return;
4196
7877cdcc
MH
4197 va_start(args, fmt);
4198 vaf.fmt = fmt;
4199 vaf.va = &args;
ef8444ea 4200 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4201 current->comm, &vaf, gfp_mask, &gfp_mask,
4202 nodemask_pr_args(nodemask));
7877cdcc 4203 va_end(args);
3ee9a4f0 4204
a8e99259 4205 cpuset_print_current_mems_allowed();
ef8444ea 4206 pr_cont("\n");
a238ab5b 4207 dump_stack();
685dbf6f 4208 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4209}
4210
6c18ba7a
MH
4211static inline struct page *
4212__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4213 unsigned int alloc_flags,
4214 const struct alloc_context *ac)
4215{
4216 struct page *page;
4217
4218 page = get_page_from_freelist(gfp_mask, order,
4219 alloc_flags|ALLOC_CPUSET, ac);
4220 /*
4221 * fallback to ignore cpuset restriction if our nodes
4222 * are depleted
4223 */
4224 if (!page)
4225 page = get_page_from_freelist(gfp_mask, order,
4226 alloc_flags, ac);
4227
4228 return page;
4229}
4230
11e33f6a
MG
4231static inline struct page *
4232__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4233 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4234{
6e0fc46d
DR
4235 struct oom_control oc = {
4236 .zonelist = ac->zonelist,
4237 .nodemask = ac->nodemask,
2a966b77 4238 .memcg = NULL,
6e0fc46d
DR
4239 .gfp_mask = gfp_mask,
4240 .order = order,
6e0fc46d 4241 };
11e33f6a
MG
4242 struct page *page;
4243
9879de73
JW
4244 *did_some_progress = 0;
4245
9879de73 4246 /*
dc56401f
JW
4247 * Acquire the oom lock. If that fails, somebody else is
4248 * making progress for us.
9879de73 4249 */
dc56401f 4250 if (!mutex_trylock(&oom_lock)) {
9879de73 4251 *did_some_progress = 1;
11e33f6a 4252 schedule_timeout_uninterruptible(1);
1da177e4
LT
4253 return NULL;
4254 }
6b1de916 4255
11e33f6a
MG
4256 /*
4257 * Go through the zonelist yet one more time, keep very high watermark
4258 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4259 * we're still under heavy pressure. But make sure that this reclaim
4260 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4261 * allocation which will never fail due to oom_lock already held.
11e33f6a 4262 */
e746bf73
TH
4263 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4264 ~__GFP_DIRECT_RECLAIM, order,
4265 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4266 if (page)
11e33f6a
MG
4267 goto out;
4268
06ad276a
MH
4269 /* Coredumps can quickly deplete all memory reserves */
4270 if (current->flags & PF_DUMPCORE)
4271 goto out;
4272 /* The OOM killer will not help higher order allocs */
4273 if (order > PAGE_ALLOC_COSTLY_ORDER)
4274 goto out;
dcda9b04
MH
4275 /*
4276 * We have already exhausted all our reclaim opportunities without any
4277 * success so it is time to admit defeat. We will skip the OOM killer
4278 * because it is very likely that the caller has a more reasonable
4279 * fallback than shooting a random task.
cfb4a541
MN
4280 *
4281 * The OOM killer may not free memory on a specific node.
dcda9b04 4282 */
cfb4a541 4283 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4284 goto out;
06ad276a 4285 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4286 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4287 goto out;
4288 if (pm_suspended_storage())
4289 goto out;
4290 /*
4291 * XXX: GFP_NOFS allocations should rather fail than rely on
4292 * other request to make a forward progress.
4293 * We are in an unfortunate situation where out_of_memory cannot
4294 * do much for this context but let's try it to at least get
4295 * access to memory reserved if the current task is killed (see
4296 * out_of_memory). Once filesystems are ready to handle allocation
4297 * failures more gracefully we should just bail out here.
4298 */
4299
3c2c6488 4300 /* Exhausted what can be done so it's blame time */
5020e285 4301 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4302 *did_some_progress = 1;
5020e285 4303
6c18ba7a
MH
4304 /*
4305 * Help non-failing allocations by giving them access to memory
4306 * reserves
4307 */
4308 if (gfp_mask & __GFP_NOFAIL)
4309 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4310 ALLOC_NO_WATERMARKS, ac);
5020e285 4311 }
11e33f6a 4312out:
dc56401f 4313 mutex_unlock(&oom_lock);
11e33f6a
MG
4314 return page;
4315}
4316
33c2d214 4317/*
baf2f90b 4318 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4319 * killer is consider as the only way to move forward.
4320 */
4321#define MAX_COMPACT_RETRIES 16
4322
56de7263
MG
4323#ifdef CONFIG_COMPACTION
4324/* Try memory compaction for high-order allocations before reclaim */
4325static struct page *
4326__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4327 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4328 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4329{
5e1f0f09 4330 struct page *page = NULL;
eb414681 4331 unsigned long pflags;
499118e9 4332 unsigned int noreclaim_flag;
53853e2d
VB
4333
4334 if (!order)
66199712 4335 return NULL;
66199712 4336
eb414681 4337 psi_memstall_enter(&pflags);
5bf18281 4338 delayacct_compact_start();
499118e9 4339 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4340
c5d01d0d 4341 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4342 prio, &page);
eb414681 4343
499118e9 4344 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4345 psi_memstall_leave(&pflags);
5bf18281 4346 delayacct_compact_end();
56de7263 4347
06dac2f4
CTR
4348 if (*compact_result == COMPACT_SKIPPED)
4349 return NULL;
98dd3b48
VB
4350 /*
4351 * At least in one zone compaction wasn't deferred or skipped, so let's
4352 * count a compaction stall
4353 */
4354 count_vm_event(COMPACTSTALL);
8fb74b9f 4355
5e1f0f09
MG
4356 /* Prep a captured page if available */
4357 if (page)
4358 prep_new_page(page, order, gfp_mask, alloc_flags);
4359
4360 /* Try get a page from the freelist if available */
4361 if (!page)
4362 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4363
98dd3b48
VB
4364 if (page) {
4365 struct zone *zone = page_zone(page);
53853e2d 4366
98dd3b48
VB
4367 zone->compact_blockskip_flush = false;
4368 compaction_defer_reset(zone, order, true);
4369 count_vm_event(COMPACTSUCCESS);
4370 return page;
4371 }
56de7263 4372
98dd3b48
VB
4373 /*
4374 * It's bad if compaction run occurs and fails. The most likely reason
4375 * is that pages exist, but not enough to satisfy watermarks.
4376 */
4377 count_vm_event(COMPACTFAIL);
66199712 4378
98dd3b48 4379 cond_resched();
56de7263
MG
4380
4381 return NULL;
4382}
33c2d214 4383
3250845d
VB
4384static inline bool
4385should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4386 enum compact_result compact_result,
4387 enum compact_priority *compact_priority,
d9436498 4388 int *compaction_retries)
3250845d
VB
4389{
4390 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4391 int min_priority;
65190cff
MH
4392 bool ret = false;
4393 int retries = *compaction_retries;
4394 enum compact_priority priority = *compact_priority;
3250845d
VB
4395
4396 if (!order)
4397 return false;
4398
691d9497
AT
4399 if (fatal_signal_pending(current))
4400 return false;
4401
d9436498
VB
4402 if (compaction_made_progress(compact_result))
4403 (*compaction_retries)++;
4404
3250845d
VB
4405 /*
4406 * compaction considers all the zone as desperately out of memory
4407 * so it doesn't really make much sense to retry except when the
4408 * failure could be caused by insufficient priority
4409 */
d9436498
VB
4410 if (compaction_failed(compact_result))
4411 goto check_priority;
3250845d 4412
49433085
VB
4413 /*
4414 * compaction was skipped because there are not enough order-0 pages
4415 * to work with, so we retry only if it looks like reclaim can help.
4416 */
4417 if (compaction_needs_reclaim(compact_result)) {
4418 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4419 goto out;
4420 }
4421
3250845d
VB
4422 /*
4423 * make sure the compaction wasn't deferred or didn't bail out early
4424 * due to locks contention before we declare that we should give up.
49433085
VB
4425 * But the next retry should use a higher priority if allowed, so
4426 * we don't just keep bailing out endlessly.
3250845d 4427 */
65190cff 4428 if (compaction_withdrawn(compact_result)) {
49433085 4429 goto check_priority;
65190cff 4430 }
3250845d
VB
4431
4432 /*
dcda9b04 4433 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4434 * costly ones because they are de facto nofail and invoke OOM
4435 * killer to move on while costly can fail and users are ready
4436 * to cope with that. 1/4 retries is rather arbitrary but we
4437 * would need much more detailed feedback from compaction to
4438 * make a better decision.
4439 */
4440 if (order > PAGE_ALLOC_COSTLY_ORDER)
4441 max_retries /= 4;
65190cff
MH
4442 if (*compaction_retries <= max_retries) {
4443 ret = true;
4444 goto out;
4445 }
3250845d 4446
d9436498
VB
4447 /*
4448 * Make sure there are attempts at the highest priority if we exhausted
4449 * all retries or failed at the lower priorities.
4450 */
4451check_priority:
c2033b00
VB
4452 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4453 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4454
c2033b00 4455 if (*compact_priority > min_priority) {
d9436498
VB
4456 (*compact_priority)--;
4457 *compaction_retries = 0;
65190cff 4458 ret = true;
d9436498 4459 }
65190cff
MH
4460out:
4461 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4462 return ret;
3250845d 4463}
56de7263
MG
4464#else
4465static inline struct page *
4466__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4467 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4468 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4469{
33c2d214 4470 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4471 return NULL;
4472}
33c2d214
MH
4473
4474static inline bool
86a294a8
MH
4475should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4476 enum compact_result compact_result,
a5508cd8 4477 enum compact_priority *compact_priority,
d9436498 4478 int *compaction_retries)
33c2d214 4479{
31e49bfd
MH
4480 struct zone *zone;
4481 struct zoneref *z;
4482
4483 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4484 return false;
4485
4486 /*
4487 * There are setups with compaction disabled which would prefer to loop
4488 * inside the allocator rather than hit the oom killer prematurely.
4489 * Let's give them a good hope and keep retrying while the order-0
4490 * watermarks are OK.
4491 */
97a225e6
JK
4492 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4493 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4494 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4495 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4496 return true;
4497 }
33c2d214
MH
4498 return false;
4499}
3250845d 4500#endif /* CONFIG_COMPACTION */
56de7263 4501
d92a8cfc 4502#ifdef CONFIG_LOCKDEP
93781325 4503static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4504 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4505
f920e413 4506static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4507{
d92a8cfc
PZ
4508 /* no reclaim without waiting on it */
4509 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4510 return false;
4511
4512 /* this guy won't enter reclaim */
2e517d68 4513 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4514 return false;
4515
d92a8cfc
PZ
4516 if (gfp_mask & __GFP_NOLOCKDEP)
4517 return false;
4518
4519 return true;
4520}
4521
4f3eaf45 4522void __fs_reclaim_acquire(unsigned long ip)
93781325 4523{
4f3eaf45 4524 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4525}
4526
4f3eaf45 4527void __fs_reclaim_release(unsigned long ip)
93781325 4528{
4f3eaf45 4529 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4530}
4531
d92a8cfc
PZ
4532void fs_reclaim_acquire(gfp_t gfp_mask)
4533{
f920e413
DV
4534 gfp_mask = current_gfp_context(gfp_mask);
4535
4536 if (__need_reclaim(gfp_mask)) {
4537 if (gfp_mask & __GFP_FS)
4f3eaf45 4538 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4539
4540#ifdef CONFIG_MMU_NOTIFIER
4541 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4542 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4543#endif
4544
4545 }
d92a8cfc
PZ
4546}
4547EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4548
4549void fs_reclaim_release(gfp_t gfp_mask)
4550{
f920e413
DV
4551 gfp_mask = current_gfp_context(gfp_mask);
4552
4553 if (__need_reclaim(gfp_mask)) {
4554 if (gfp_mask & __GFP_FS)
4f3eaf45 4555 __fs_reclaim_release(_RET_IP_);
f920e413 4556 }
d92a8cfc
PZ
4557}
4558EXPORT_SYMBOL_GPL(fs_reclaim_release);
4559#endif
4560
bba90710 4561/* Perform direct synchronous page reclaim */
2187e17b 4562static unsigned long
a9263751
VB
4563__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4564 const struct alloc_context *ac)
11e33f6a 4565{
499118e9 4566 unsigned int noreclaim_flag;
fa7fc75f 4567 unsigned long progress;
11e33f6a
MG
4568
4569 cond_resched();
4570
4571 /* We now go into synchronous reclaim */
4572 cpuset_memory_pressure_bump();
d92a8cfc 4573 fs_reclaim_acquire(gfp_mask);
93781325 4574 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4575
a9263751
VB
4576 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4577 ac->nodemask);
11e33f6a 4578
499118e9 4579 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4580 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4581
4582 cond_resched();
4583
bba90710
MS
4584 return progress;
4585}
4586
4587/* The really slow allocator path where we enter direct reclaim */
4588static inline struct page *
4589__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4590 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4591 unsigned long *did_some_progress)
bba90710
MS
4592{
4593 struct page *page = NULL;
fa7fc75f 4594 unsigned long pflags;
bba90710
MS
4595 bool drained = false;
4596
fa7fc75f 4597 psi_memstall_enter(&pflags);
a9263751 4598 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4599 if (unlikely(!(*did_some_progress)))
fa7fc75f 4600 goto out;
11e33f6a 4601
9ee493ce 4602retry:
31a6c190 4603 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4604
4605 /*
4606 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4607 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4608 * Shrink them and try again
9ee493ce
MG
4609 */
4610 if (!page && !drained) {
29fac03b 4611 unreserve_highatomic_pageblock(ac, false);
93481ff0 4612 drain_all_pages(NULL);
9ee493ce
MG
4613 drained = true;
4614 goto retry;
4615 }
fa7fc75f
SB
4616out:
4617 psi_memstall_leave(&pflags);
9ee493ce 4618
11e33f6a
MG
4619 return page;
4620}
4621
5ecd9d40
DR
4622static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4623 const struct alloc_context *ac)
3a025760
JW
4624{
4625 struct zoneref *z;
4626 struct zone *zone;
e1a55637 4627 pg_data_t *last_pgdat = NULL;
97a225e6 4628 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4629
97a225e6 4630 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4631 ac->nodemask) {
bc53008e
WY
4632 if (!managed_zone(zone))
4633 continue;
e1a55637 4634 if (last_pgdat != zone->zone_pgdat)
97a225e6 4635 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4636 last_pgdat = zone->zone_pgdat;
4637 }
3a025760
JW
4638}
4639
c603844b 4640static inline unsigned int
341ce06f
PZ
4641gfp_to_alloc_flags(gfp_t gfp_mask)
4642{
c603844b 4643 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4644
736838e9
MN
4645 /*
4646 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4647 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4648 * to save two branches.
4649 */
e6223a3b 4650 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4651 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4652
341ce06f
PZ
4653 /*
4654 * The caller may dip into page reserves a bit more if the caller
4655 * cannot run direct reclaim, or if the caller has realtime scheduling
4656 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4657 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4658 */
736838e9
MN
4659 alloc_flags |= (__force int)
4660 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4661
d0164adc 4662 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4663 /*
b104a35d
DR
4664 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4665 * if it can't schedule.
5c3240d9 4666 */
b104a35d 4667 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4668 alloc_flags |= ALLOC_HARDER;
523b9458 4669 /*
b104a35d 4670 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4671 * comment for __cpuset_node_allowed().
523b9458 4672 */
341ce06f 4673 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4674 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4675 alloc_flags |= ALLOC_HARDER;
4676
8e3560d9 4677 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4678
341ce06f
PZ
4679 return alloc_flags;
4680}
4681
cd04ae1e 4682static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4683{
cd04ae1e
MH
4684 if (!tsk_is_oom_victim(tsk))
4685 return false;
4686
4687 /*
4688 * !MMU doesn't have oom reaper so give access to memory reserves
4689 * only to the thread with TIF_MEMDIE set
4690 */
4691 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4692 return false;
4693
cd04ae1e
MH
4694 return true;
4695}
4696
4697/*
4698 * Distinguish requests which really need access to full memory
4699 * reserves from oom victims which can live with a portion of it
4700 */
4701static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4702{
4703 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4704 return 0;
31a6c190 4705 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4706 return ALLOC_NO_WATERMARKS;
31a6c190 4707 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4708 return ALLOC_NO_WATERMARKS;
4709 if (!in_interrupt()) {
4710 if (current->flags & PF_MEMALLOC)
4711 return ALLOC_NO_WATERMARKS;
4712 else if (oom_reserves_allowed(current))
4713 return ALLOC_OOM;
4714 }
31a6c190 4715
cd04ae1e
MH
4716 return 0;
4717}
4718
4719bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4720{
4721 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4722}
4723
0a0337e0
MH
4724/*
4725 * Checks whether it makes sense to retry the reclaim to make a forward progress
4726 * for the given allocation request.
491d79ae
JW
4727 *
4728 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4729 * without success, or when we couldn't even meet the watermark if we
4730 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4731 *
4732 * Returns true if a retry is viable or false to enter the oom path.
4733 */
4734static inline bool
4735should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4736 struct alloc_context *ac, int alloc_flags,
423b452e 4737 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4738{
4739 struct zone *zone;
4740 struct zoneref *z;
15f570bf 4741 bool ret = false;
0a0337e0 4742
423b452e
VB
4743 /*
4744 * Costly allocations might have made a progress but this doesn't mean
4745 * their order will become available due to high fragmentation so
4746 * always increment the no progress counter for them
4747 */
4748 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4749 *no_progress_loops = 0;
4750 else
4751 (*no_progress_loops)++;
4752
0a0337e0
MH
4753 /*
4754 * Make sure we converge to OOM if we cannot make any progress
4755 * several times in the row.
4756 */
04c8716f
MK
4757 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4758 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4759 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4760 }
0a0337e0 4761
bca67592
MG
4762 /*
4763 * Keep reclaiming pages while there is a chance this will lead
4764 * somewhere. If none of the target zones can satisfy our allocation
4765 * request even if all reclaimable pages are considered then we are
4766 * screwed and have to go OOM.
0a0337e0 4767 */
97a225e6
JK
4768 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4769 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4770 unsigned long available;
ede37713 4771 unsigned long reclaimable;
d379f01d
MH
4772 unsigned long min_wmark = min_wmark_pages(zone);
4773 bool wmark;
0a0337e0 4774
5a1c84b4 4775 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4776 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4777
4778 /*
491d79ae
JW
4779 * Would the allocation succeed if we reclaimed all
4780 * reclaimable pages?
0a0337e0 4781 */
d379f01d 4782 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4783 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4784 trace_reclaim_retry_zone(z, order, reclaimable,
4785 available, min_wmark, *no_progress_loops, wmark);
4786 if (wmark) {
15f570bf 4787 ret = true;
132b0d21 4788 break;
0a0337e0
MH
4789 }
4790 }
4791
15f570bf
MH
4792 /*
4793 * Memory allocation/reclaim might be called from a WQ context and the
4794 * current implementation of the WQ concurrency control doesn't
4795 * recognize that a particular WQ is congested if the worker thread is
4796 * looping without ever sleeping. Therefore we have to do a short sleep
4797 * here rather than calling cond_resched().
4798 */
4799 if (current->flags & PF_WQ_WORKER)
4800 schedule_timeout_uninterruptible(1);
4801 else
4802 cond_resched();
4803 return ret;
0a0337e0
MH
4804}
4805
902b6281
VB
4806static inline bool
4807check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4808{
4809 /*
4810 * It's possible that cpuset's mems_allowed and the nodemask from
4811 * mempolicy don't intersect. This should be normally dealt with by
4812 * policy_nodemask(), but it's possible to race with cpuset update in
4813 * such a way the check therein was true, and then it became false
4814 * before we got our cpuset_mems_cookie here.
4815 * This assumes that for all allocations, ac->nodemask can come only
4816 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4817 * when it does not intersect with the cpuset restrictions) or the
4818 * caller can deal with a violated nodemask.
4819 */
4820 if (cpusets_enabled() && ac->nodemask &&
4821 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4822 ac->nodemask = NULL;
4823 return true;
4824 }
4825
4826 /*
4827 * When updating a task's mems_allowed or mempolicy nodemask, it is
4828 * possible to race with parallel threads in such a way that our
4829 * allocation can fail while the mask is being updated. If we are about
4830 * to fail, check if the cpuset changed during allocation and if so,
4831 * retry.
4832 */
4833 if (read_mems_allowed_retry(cpuset_mems_cookie))
4834 return true;
4835
4836 return false;
4837}
4838
11e33f6a
MG
4839static inline struct page *
4840__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4841 struct alloc_context *ac)
11e33f6a 4842{
d0164adc 4843 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4844 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4845 struct page *page = NULL;
c603844b 4846 unsigned int alloc_flags;
11e33f6a 4847 unsigned long did_some_progress;
5ce9bfef 4848 enum compact_priority compact_priority;
c5d01d0d 4849 enum compact_result compact_result;
5ce9bfef
VB
4850 int compaction_retries;
4851 int no_progress_loops;
5ce9bfef 4852 unsigned int cpuset_mems_cookie;
cd04ae1e 4853 int reserve_flags;
1da177e4 4854
d0164adc
MG
4855 /*
4856 * We also sanity check to catch abuse of atomic reserves being used by
4857 * callers that are not in atomic context.
4858 */
4859 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4860 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4861 gfp_mask &= ~__GFP_ATOMIC;
4862
5ce9bfef
VB
4863retry_cpuset:
4864 compaction_retries = 0;
4865 no_progress_loops = 0;
4866 compact_priority = DEF_COMPACT_PRIORITY;
4867 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4868
4869 /*
4870 * The fast path uses conservative alloc_flags to succeed only until
4871 * kswapd needs to be woken up, and to avoid the cost of setting up
4872 * alloc_flags precisely. So we do that now.
4873 */
4874 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4875
e47483bc
VB
4876 /*
4877 * We need to recalculate the starting point for the zonelist iterator
4878 * because we might have used different nodemask in the fast path, or
4879 * there was a cpuset modification and we are retrying - otherwise we
4880 * could end up iterating over non-eligible zones endlessly.
4881 */
4882 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4883 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4884 if (!ac->preferred_zoneref->zone)
4885 goto nopage;
4886
8ca1b5a4
FT
4887 /*
4888 * Check for insane configurations where the cpuset doesn't contain
4889 * any suitable zone to satisfy the request - e.g. non-movable
4890 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4891 */
4892 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4893 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4894 ac->highest_zoneidx,
4895 &cpuset_current_mems_allowed);
4896 if (!z->zone)
4897 goto nopage;
4898 }
4899
0a79cdad 4900 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4901 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4902
4903 /*
4904 * The adjusted alloc_flags might result in immediate success, so try
4905 * that first
4906 */
4907 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4908 if (page)
4909 goto got_pg;
4910
a8161d1e
VB
4911 /*
4912 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4913 * that we have enough base pages and don't need to reclaim. For non-
4914 * movable high-order allocations, do that as well, as compaction will
4915 * try prevent permanent fragmentation by migrating from blocks of the
4916 * same migratetype.
4917 * Don't try this for allocations that are allowed to ignore
4918 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4919 */
282722b0
VB
4920 if (can_direct_reclaim &&
4921 (costly_order ||
4922 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4923 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4924 page = __alloc_pages_direct_compact(gfp_mask, order,
4925 alloc_flags, ac,
a5508cd8 4926 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4927 &compact_result);
4928 if (page)
4929 goto got_pg;
4930
cc638f32
VB
4931 /*
4932 * Checks for costly allocations with __GFP_NORETRY, which
4933 * includes some THP page fault allocations
4934 */
4935 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4936 /*
4937 * If allocating entire pageblock(s) and compaction
4938 * failed because all zones are below low watermarks
4939 * or is prohibited because it recently failed at this
3f36d866
DR
4940 * order, fail immediately unless the allocator has
4941 * requested compaction and reclaim retry.
b39d0ee2
DR
4942 *
4943 * Reclaim is
4944 * - potentially very expensive because zones are far
4945 * below their low watermarks or this is part of very
4946 * bursty high order allocations,
4947 * - not guaranteed to help because isolate_freepages()
4948 * may not iterate over freed pages as part of its
4949 * linear scan, and
4950 * - unlikely to make entire pageblocks free on its
4951 * own.
4952 */
4953 if (compact_result == COMPACT_SKIPPED ||
4954 compact_result == COMPACT_DEFERRED)
4955 goto nopage;
a8161d1e 4956
a8161d1e 4957 /*
3eb2771b
VB
4958 * Looks like reclaim/compaction is worth trying, but
4959 * sync compaction could be very expensive, so keep
25160354 4960 * using async compaction.
a8161d1e 4961 */
a5508cd8 4962 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4963 }
4964 }
23771235 4965
31a6c190 4966retry:
23771235 4967 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4968 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4969 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4970
cd04ae1e
MH
4971 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4972 if (reserve_flags)
8e3560d9 4973 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 4974
e46e7b77 4975 /*
d6a24df0
VB
4976 * Reset the nodemask and zonelist iterators if memory policies can be
4977 * ignored. These allocations are high priority and system rather than
4978 * user oriented.
e46e7b77 4979 */
cd04ae1e 4980 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4981 ac->nodemask = NULL;
e46e7b77 4982 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4983 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4984 }
4985
23771235 4986 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4987 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4988 if (page)
4989 goto got_pg;
1da177e4 4990
d0164adc 4991 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4992 if (!can_direct_reclaim)
1da177e4
LT
4993 goto nopage;
4994
9a67f648
MH
4995 /* Avoid recursion of direct reclaim */
4996 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4997 goto nopage;
4998
a8161d1e
VB
4999 /* Try direct reclaim and then allocating */
5000 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5001 &did_some_progress);
5002 if (page)
5003 goto got_pg;
5004
5005 /* Try direct compaction and then allocating */
a9263751 5006 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5007 compact_priority, &compact_result);
56de7263
MG
5008 if (page)
5009 goto got_pg;
75f30861 5010
9083905a
JW
5011 /* Do not loop if specifically requested */
5012 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5013 goto nopage;
9083905a 5014
0a0337e0
MH
5015 /*
5016 * Do not retry costly high order allocations unless they are
dcda9b04 5017 * __GFP_RETRY_MAYFAIL
0a0337e0 5018 */
dcda9b04 5019 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5020 goto nopage;
0a0337e0 5021
0a0337e0 5022 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5023 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5024 goto retry;
5025
33c2d214
MH
5026 /*
5027 * It doesn't make any sense to retry for the compaction if the order-0
5028 * reclaim is not able to make any progress because the current
5029 * implementation of the compaction depends on the sufficient amount
5030 * of free memory (see __compaction_suitable)
5031 */
5032 if (did_some_progress > 0 &&
86a294a8 5033 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5034 compact_result, &compact_priority,
d9436498 5035 &compaction_retries))
33c2d214
MH
5036 goto retry;
5037
902b6281
VB
5038
5039 /* Deal with possible cpuset update races before we start OOM killing */
5040 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5041 goto retry_cpuset;
5042
9083905a
JW
5043 /* Reclaim has failed us, start killing things */
5044 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5045 if (page)
5046 goto got_pg;
5047
9a67f648 5048 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5049 if (tsk_is_oom_victim(current) &&
8510e69c 5050 (alloc_flags & ALLOC_OOM ||
c288983d 5051 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5052 goto nopage;
5053
9083905a 5054 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5055 if (did_some_progress) {
5056 no_progress_loops = 0;
9083905a 5057 goto retry;
0a0337e0 5058 }
9083905a 5059
1da177e4 5060nopage:
902b6281
VB
5061 /* Deal with possible cpuset update races before we fail */
5062 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5063 goto retry_cpuset;
5064
9a67f648
MH
5065 /*
5066 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5067 * we always retry
5068 */
5069 if (gfp_mask & __GFP_NOFAIL) {
5070 /*
5071 * All existing users of the __GFP_NOFAIL are blockable, so warn
5072 * of any new users that actually require GFP_NOWAIT
5073 */
5074 if (WARN_ON_ONCE(!can_direct_reclaim))
5075 goto fail;
5076
5077 /*
5078 * PF_MEMALLOC request from this context is rather bizarre
5079 * because we cannot reclaim anything and only can loop waiting
5080 * for somebody to do a work for us
5081 */
5082 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5083
5084 /*
5085 * non failing costly orders are a hard requirement which we
5086 * are not prepared for much so let's warn about these users
5087 * so that we can identify them and convert them to something
5088 * else.
5089 */
5090 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5091
6c18ba7a
MH
5092 /*
5093 * Help non-failing allocations by giving them access to memory
5094 * reserves but do not use ALLOC_NO_WATERMARKS because this
5095 * could deplete whole memory reserves which would just make
5096 * the situation worse
5097 */
5098 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5099 if (page)
5100 goto got_pg;
5101
9a67f648
MH
5102 cond_resched();
5103 goto retry;
5104 }
5105fail:
a8e99259 5106 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5107 "page allocation failure: order:%u", order);
1da177e4 5108got_pg:
072bb0aa 5109 return page;
1da177e4 5110}
11e33f6a 5111
9cd75558 5112static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5113 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5114 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5115 unsigned int *alloc_flags)
11e33f6a 5116{
97a225e6 5117 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5118 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5119 ac->nodemask = nodemask;
01c0bfe0 5120 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5121
682a3385 5122 if (cpusets_enabled()) {
8e6a930b 5123 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5124 /*
5125 * When we are in the interrupt context, it is irrelevant
5126 * to the current task context. It means that any node ok.
5127 */
88dc6f20 5128 if (in_task() && !ac->nodemask)
9cd75558 5129 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5130 else
5131 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5132 }
5133
d92a8cfc
PZ
5134 fs_reclaim_acquire(gfp_mask);
5135 fs_reclaim_release(gfp_mask);
11e33f6a 5136
d0164adc 5137 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5138
5139 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5140 return false;
11e33f6a 5141
8e3560d9 5142 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5143
c9ab0c4f 5144 /* Dirty zone balancing only done in the fast path */
9cd75558 5145 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5146
e46e7b77
MG
5147 /*
5148 * The preferred zone is used for statistics but crucially it is
5149 * also used as the starting point for the zonelist iterator. It
5150 * may get reset for allocations that ignore memory policies.
5151 */
9cd75558 5152 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5153 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5154
5155 return true;
9cd75558
MG
5156}
5157
387ba26f 5158/*
0f87d9d3 5159 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5160 * @gfp: GFP flags for the allocation
5161 * @preferred_nid: The preferred NUMA node ID to allocate from
5162 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5163 * @nr_pages: The number of pages desired on the list or array
5164 * @page_list: Optional list to store the allocated pages
5165 * @page_array: Optional array to store the pages
387ba26f
MG
5166 *
5167 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5168 * allocate nr_pages quickly. Pages are added to page_list if page_list
5169 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5170 *
0f87d9d3
MG
5171 * For lists, nr_pages is the number of pages that should be allocated.
5172 *
5173 * For arrays, only NULL elements are populated with pages and nr_pages
5174 * is the maximum number of pages that will be stored in the array.
5175 *
5176 * Returns the number of pages on the list or array.
387ba26f
MG
5177 */
5178unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5179 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5180 struct list_head *page_list,
5181 struct page **page_array)
387ba26f
MG
5182{
5183 struct page *page;
5184 unsigned long flags;
5185 struct zone *zone;
5186 struct zoneref *z;
5187 struct per_cpu_pages *pcp;
5188 struct list_head *pcp_list;
5189 struct alloc_context ac;
5190 gfp_t alloc_gfp;
5191 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5192 int nr_populated = 0, nr_account = 0;
387ba26f 5193
0f87d9d3
MG
5194 /*
5195 * Skip populated array elements to determine if any pages need
5196 * to be allocated before disabling IRQs.
5197 */
b08e50dd 5198 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5199 nr_populated++;
5200
06147843
CL
5201 /* No pages requested? */
5202 if (unlikely(nr_pages <= 0))
5203 goto out;
5204
b3b64ebd
MG
5205 /* Already populated array? */
5206 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5207 goto out;
b3b64ebd 5208
8dcb3060
SB
5209 /* Bulk allocator does not support memcg accounting. */
5210 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5211 goto failed;
5212
387ba26f 5213 /* Use the single page allocator for one page. */
0f87d9d3 5214 if (nr_pages - nr_populated == 1)
387ba26f
MG
5215 goto failed;
5216
187ad460
MG
5217#ifdef CONFIG_PAGE_OWNER
5218 /*
5219 * PAGE_OWNER may recurse into the allocator to allocate space to
5220 * save the stack with pagesets.lock held. Releasing/reacquiring
5221 * removes much of the performance benefit of bulk allocation so
5222 * force the caller to allocate one page at a time as it'll have
5223 * similar performance to added complexity to the bulk allocator.
5224 */
5225 if (static_branch_unlikely(&page_owner_inited))
5226 goto failed;
5227#endif
5228
387ba26f
MG
5229 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5230 gfp &= gfp_allowed_mask;
5231 alloc_gfp = gfp;
5232 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5233 goto out;
387ba26f
MG
5234 gfp = alloc_gfp;
5235
5236 /* Find an allowed local zone that meets the low watermark. */
5237 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5238 unsigned long mark;
5239
5240 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5241 !__cpuset_zone_allowed(zone, gfp)) {
5242 continue;
5243 }
5244
5245 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5246 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5247 goto failed;
5248 }
5249
5250 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5251 if (zone_watermark_fast(zone, 0, mark,
5252 zonelist_zone_idx(ac.preferred_zoneref),
5253 alloc_flags, gfp)) {
5254 break;
5255 }
5256 }
5257
5258 /*
5259 * If there are no allowed local zones that meets the watermarks then
5260 * try to allocate a single page and reclaim if necessary.
5261 */
ce76f9a1 5262 if (unlikely(!zone))
387ba26f
MG
5263 goto failed;
5264
5265 /* Attempt the batch allocation */
dbbee9d5 5266 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5267 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5268 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5269
0f87d9d3
MG
5270 while (nr_populated < nr_pages) {
5271
5272 /* Skip existing pages */
5273 if (page_array && page_array[nr_populated]) {
5274 nr_populated++;
5275 continue;
5276 }
5277
44042b44 5278 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5279 pcp, pcp_list);
ce76f9a1 5280 if (unlikely(!page)) {
387ba26f 5281 /* Try and get at least one page */
0f87d9d3 5282 if (!nr_populated)
387ba26f
MG
5283 goto failed_irq;
5284 break;
5285 }
3e23060b 5286 nr_account++;
387ba26f
MG
5287
5288 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5289 if (page_list)
5290 list_add(&page->lru, page_list);
5291 else
5292 page_array[nr_populated] = page;
5293 nr_populated++;
387ba26f
MG
5294 }
5295
43c95bcc
MG
5296 local_unlock_irqrestore(&pagesets.lock, flags);
5297
3e23060b
MG
5298 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5299 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5300
06147843 5301out:
0f87d9d3 5302 return nr_populated;
387ba26f
MG
5303
5304failed_irq:
dbbee9d5 5305 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5306
5307failed:
5308 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5309 if (page) {
0f87d9d3
MG
5310 if (page_list)
5311 list_add(&page->lru, page_list);
5312 else
5313 page_array[nr_populated] = page;
5314 nr_populated++;
387ba26f
MG
5315 }
5316
06147843 5317 goto out;
387ba26f
MG
5318}
5319EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5320
9cd75558
MG
5321/*
5322 * This is the 'heart' of the zoned buddy allocator.
5323 */
84172f4b 5324struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5325 nodemask_t *nodemask)
9cd75558
MG
5326{
5327 struct page *page;
5328 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5329 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5330 struct alloc_context ac = { };
5331
c63ae43b
MH
5332 /*
5333 * There are several places where we assume that the order value is sane
5334 * so bail out early if the request is out of bound.
5335 */
5336 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5337 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5338 return NULL;
5339 }
5340
6e5e0f28 5341 gfp &= gfp_allowed_mask;
da6df1b0
PT
5342 /*
5343 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5344 * resp. GFP_NOIO which has to be inherited for all allocation requests
5345 * from a particular context which has been marked by
8e3560d9
PT
5346 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5347 * movable zones are not used during allocation.
da6df1b0
PT
5348 */
5349 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5350 alloc_gfp = gfp;
5351 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5352 &alloc_gfp, &alloc_flags))
9cd75558
MG
5353 return NULL;
5354
6bb15450
MG
5355 /*
5356 * Forbid the first pass from falling back to types that fragment
5357 * memory until all local zones are considered.
5358 */
6e5e0f28 5359 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5360
5117f45d 5361 /* First allocation attempt */
8e6a930b 5362 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5363 if (likely(page))
5364 goto out;
11e33f6a 5365
da6df1b0 5366 alloc_gfp = gfp;
4fcb0971 5367 ac.spread_dirty_pages = false;
23f086f9 5368
4741526b
MG
5369 /*
5370 * Restore the original nodemask if it was potentially replaced with
5371 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5372 */
97ce86f9 5373 ac.nodemask = nodemask;
16096c25 5374
8e6a930b 5375 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5376
4fcb0971 5377out:
6e5e0f28
MWO
5378 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5379 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5380 __free_pages(page, order);
5381 page = NULL;
4949148a
VD
5382 }
5383
8e6a930b 5384 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5385
11e33f6a 5386 return page;
1da177e4 5387}
84172f4b 5388EXPORT_SYMBOL(__alloc_pages);
1da177e4 5389
cc09cb13
MWO
5390struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5391 nodemask_t *nodemask)
5392{
5393 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5394 preferred_nid, nodemask);
5395
5396 if (page && order > 1)
5397 prep_transhuge_page(page);
5398 return (struct folio *)page;
5399}
5400EXPORT_SYMBOL(__folio_alloc);
5401
1da177e4 5402/*
9ea9a680
MH
5403 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5404 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5405 * you need to access high mem.
1da177e4 5406 */
920c7a5d 5407unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5408{
945a1113
AM
5409 struct page *page;
5410
9ea9a680 5411 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5412 if (!page)
5413 return 0;
5414 return (unsigned long) page_address(page);
5415}
1da177e4
LT
5416EXPORT_SYMBOL(__get_free_pages);
5417
920c7a5d 5418unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5419{
945a1113 5420 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5421}
1da177e4
LT
5422EXPORT_SYMBOL(get_zeroed_page);
5423
7f194fbb
MWO
5424/**
5425 * __free_pages - Free pages allocated with alloc_pages().
5426 * @page: The page pointer returned from alloc_pages().
5427 * @order: The order of the allocation.
5428 *
5429 * This function can free multi-page allocations that are not compound
5430 * pages. It does not check that the @order passed in matches that of
5431 * the allocation, so it is easy to leak memory. Freeing more memory
5432 * than was allocated will probably emit a warning.
5433 *
5434 * If the last reference to this page is speculative, it will be released
5435 * by put_page() which only frees the first page of a non-compound
5436 * allocation. To prevent the remaining pages from being leaked, we free
5437 * the subsequent pages here. If you want to use the page's reference
5438 * count to decide when to free the allocation, you should allocate a
5439 * compound page, and use put_page() instead of __free_pages().
5440 *
5441 * Context: May be called in interrupt context or while holding a normal
5442 * spinlock, but not in NMI context or while holding a raw spinlock.
5443 */
742aa7fb
AL
5444void __free_pages(struct page *page, unsigned int order)
5445{
5446 if (put_page_testzero(page))
5447 free_the_page(page, order);
e320d301
MWO
5448 else if (!PageHead(page))
5449 while (order-- > 0)
5450 free_the_page(page + (1 << order), order);
742aa7fb 5451}
1da177e4
LT
5452EXPORT_SYMBOL(__free_pages);
5453
920c7a5d 5454void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5455{
5456 if (addr != 0) {
725d704e 5457 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5458 __free_pages(virt_to_page((void *)addr), order);
5459 }
5460}
5461
5462EXPORT_SYMBOL(free_pages);
5463
b63ae8ca
AD
5464/*
5465 * Page Fragment:
5466 * An arbitrary-length arbitrary-offset area of memory which resides
5467 * within a 0 or higher order page. Multiple fragments within that page
5468 * are individually refcounted, in the page's reference counter.
5469 *
5470 * The page_frag functions below provide a simple allocation framework for
5471 * page fragments. This is used by the network stack and network device
5472 * drivers to provide a backing region of memory for use as either an
5473 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5474 */
2976db80
AD
5475static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5476 gfp_t gfp_mask)
b63ae8ca
AD
5477{
5478 struct page *page = NULL;
5479 gfp_t gfp = gfp_mask;
5480
5481#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5482 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5483 __GFP_NOMEMALLOC;
5484 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5485 PAGE_FRAG_CACHE_MAX_ORDER);
5486 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5487#endif
5488 if (unlikely(!page))
5489 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5490
5491 nc->va = page ? page_address(page) : NULL;
5492
5493 return page;
5494}
5495
2976db80 5496void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5497{
5498 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5499
742aa7fb
AL
5500 if (page_ref_sub_and_test(page, count))
5501 free_the_page(page, compound_order(page));
44fdffd7 5502}
2976db80 5503EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5504
b358e212
KH
5505void *page_frag_alloc_align(struct page_frag_cache *nc,
5506 unsigned int fragsz, gfp_t gfp_mask,
5507 unsigned int align_mask)
b63ae8ca
AD
5508{
5509 unsigned int size = PAGE_SIZE;
5510 struct page *page;
5511 int offset;
5512
5513 if (unlikely(!nc->va)) {
5514refill:
2976db80 5515 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5516 if (!page)
5517 return NULL;
5518
5519#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5520 /* if size can vary use size else just use PAGE_SIZE */
5521 size = nc->size;
5522#endif
5523 /* Even if we own the page, we do not use atomic_set().
5524 * This would break get_page_unless_zero() users.
5525 */
86447726 5526 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5527
5528 /* reset page count bias and offset to start of new frag */
2f064f34 5529 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5530 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5531 nc->offset = size;
5532 }
5533
5534 offset = nc->offset - fragsz;
5535 if (unlikely(offset < 0)) {
5536 page = virt_to_page(nc->va);
5537
fe896d18 5538 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5539 goto refill;
5540
d8c19014
DZ
5541 if (unlikely(nc->pfmemalloc)) {
5542 free_the_page(page, compound_order(page));
5543 goto refill;
5544 }
5545
b63ae8ca
AD
5546#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5547 /* if size can vary use size else just use PAGE_SIZE */
5548 size = nc->size;
5549#endif
5550 /* OK, page count is 0, we can safely set it */
86447726 5551 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5552
5553 /* reset page count bias and offset to start of new frag */
86447726 5554 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5555 offset = size - fragsz;
5556 }
5557
5558 nc->pagecnt_bias--;
b358e212 5559 offset &= align_mask;
b63ae8ca
AD
5560 nc->offset = offset;
5561
5562 return nc->va + offset;
5563}
b358e212 5564EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5565
5566/*
5567 * Frees a page fragment allocated out of either a compound or order 0 page.
5568 */
8c2dd3e4 5569void page_frag_free(void *addr)
b63ae8ca
AD
5570{
5571 struct page *page = virt_to_head_page(addr);
5572
742aa7fb
AL
5573 if (unlikely(put_page_testzero(page)))
5574 free_the_page(page, compound_order(page));
b63ae8ca 5575}
8c2dd3e4 5576EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5577
d00181b9
KS
5578static void *make_alloc_exact(unsigned long addr, unsigned int order,
5579 size_t size)
ee85c2e1
AK
5580{
5581 if (addr) {
5582 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5583 unsigned long used = addr + PAGE_ALIGN(size);
5584
5585 split_page(virt_to_page((void *)addr), order);
5586 while (used < alloc_end) {
5587 free_page(used);
5588 used += PAGE_SIZE;
5589 }
5590 }
5591 return (void *)addr;
5592}
5593
2be0ffe2
TT
5594/**
5595 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5596 * @size: the number of bytes to allocate
63931eb9 5597 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5598 *
5599 * This function is similar to alloc_pages(), except that it allocates the
5600 * minimum number of pages to satisfy the request. alloc_pages() can only
5601 * allocate memory in power-of-two pages.
5602 *
5603 * This function is also limited by MAX_ORDER.
5604 *
5605 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5606 *
5607 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5608 */
5609void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5610{
5611 unsigned int order = get_order(size);
5612 unsigned long addr;
5613
ba7f1b9e
ML
5614 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5615 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5616
2be0ffe2 5617 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5618 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5619}
5620EXPORT_SYMBOL(alloc_pages_exact);
5621
ee85c2e1
AK
5622/**
5623 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5624 * pages on a node.
b5e6ab58 5625 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5626 * @size: the number of bytes to allocate
63931eb9 5627 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5628 *
5629 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5630 * back.
a862f68a
MR
5631 *
5632 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5633 */
e1931811 5634void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5635{
d00181b9 5636 unsigned int order = get_order(size);
63931eb9
VB
5637 struct page *p;
5638
ba7f1b9e
ML
5639 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5640 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5641
5642 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5643 if (!p)
5644 return NULL;
5645 return make_alloc_exact((unsigned long)page_address(p), order, size);
5646}
ee85c2e1 5647
2be0ffe2
TT
5648/**
5649 * free_pages_exact - release memory allocated via alloc_pages_exact()
5650 * @virt: the value returned by alloc_pages_exact.
5651 * @size: size of allocation, same value as passed to alloc_pages_exact().
5652 *
5653 * Release the memory allocated by a previous call to alloc_pages_exact.
5654 */
5655void free_pages_exact(void *virt, size_t size)
5656{
5657 unsigned long addr = (unsigned long)virt;
5658 unsigned long end = addr + PAGE_ALIGN(size);
5659
5660 while (addr < end) {
5661 free_page(addr);
5662 addr += PAGE_SIZE;
5663 }
5664}
5665EXPORT_SYMBOL(free_pages_exact);
5666
e0fb5815
ZY
5667/**
5668 * nr_free_zone_pages - count number of pages beyond high watermark
5669 * @offset: The zone index of the highest zone
5670 *
a862f68a 5671 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5672 * high watermark within all zones at or below a given zone index. For each
5673 * zone, the number of pages is calculated as:
0e056eb5 5674 *
5675 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5676 *
5677 * Return: number of pages beyond high watermark.
e0fb5815 5678 */
ebec3862 5679static unsigned long nr_free_zone_pages(int offset)
1da177e4 5680{
dd1a239f 5681 struct zoneref *z;
54a6eb5c
MG
5682 struct zone *zone;
5683
e310fd43 5684 /* Just pick one node, since fallback list is circular */
ebec3862 5685 unsigned long sum = 0;
1da177e4 5686
0e88460d 5687 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5688
54a6eb5c 5689 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5690 unsigned long size = zone_managed_pages(zone);
41858966 5691 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5692 if (size > high)
5693 sum += size - high;
1da177e4
LT
5694 }
5695
5696 return sum;
5697}
5698
e0fb5815
ZY
5699/**
5700 * nr_free_buffer_pages - count number of pages beyond high watermark
5701 *
5702 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5703 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5704 *
5705 * Return: number of pages beyond high watermark within ZONE_DMA and
5706 * ZONE_NORMAL.
1da177e4 5707 */
ebec3862 5708unsigned long nr_free_buffer_pages(void)
1da177e4 5709{
af4ca457 5710 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5711}
c2f1a551 5712EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5713
08e0f6a9 5714static inline void show_node(struct zone *zone)
1da177e4 5715{
e5adfffc 5716 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5717 printk("Node %d ", zone_to_nid(zone));
1da177e4 5718}
1da177e4 5719
d02bd27b
IR
5720long si_mem_available(void)
5721{
5722 long available;
5723 unsigned long pagecache;
5724 unsigned long wmark_low = 0;
5725 unsigned long pages[NR_LRU_LISTS];
b29940c1 5726 unsigned long reclaimable;
d02bd27b
IR
5727 struct zone *zone;
5728 int lru;
5729
5730 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5731 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5732
5733 for_each_zone(zone)
a9214443 5734 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5735
5736 /*
5737 * Estimate the amount of memory available for userspace allocations,
5738 * without causing swapping.
5739 */
c41f012a 5740 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5741
5742 /*
5743 * Not all the page cache can be freed, otherwise the system will
5744 * start swapping. Assume at least half of the page cache, or the
5745 * low watermark worth of cache, needs to stay.
5746 */
5747 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5748 pagecache -= min(pagecache / 2, wmark_low);
5749 available += pagecache;
5750
5751 /*
b29940c1
VB
5752 * Part of the reclaimable slab and other kernel memory consists of
5753 * items that are in use, and cannot be freed. Cap this estimate at the
5754 * low watermark.
d02bd27b 5755 */
d42f3245
RG
5756 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5757 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5758 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5759
d02bd27b
IR
5760 if (available < 0)
5761 available = 0;
5762 return available;
5763}
5764EXPORT_SYMBOL_GPL(si_mem_available);
5765
1da177e4
LT
5766void si_meminfo(struct sysinfo *val)
5767{
ca79b0c2 5768 val->totalram = totalram_pages();
11fb9989 5769 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5770 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5771 val->bufferram = nr_blockdev_pages();
ca79b0c2 5772 val->totalhigh = totalhigh_pages();
1da177e4 5773 val->freehigh = nr_free_highpages();
1da177e4
LT
5774 val->mem_unit = PAGE_SIZE;
5775}
5776
5777EXPORT_SYMBOL(si_meminfo);
5778
5779#ifdef CONFIG_NUMA
5780void si_meminfo_node(struct sysinfo *val, int nid)
5781{
cdd91a77
JL
5782 int zone_type; /* needs to be signed */
5783 unsigned long managed_pages = 0;
fc2bd799
JK
5784 unsigned long managed_highpages = 0;
5785 unsigned long free_highpages = 0;
1da177e4
LT
5786 pg_data_t *pgdat = NODE_DATA(nid);
5787
cdd91a77 5788 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5789 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5790 val->totalram = managed_pages;
11fb9989 5791 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5792 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5793#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5794 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5795 struct zone *zone = &pgdat->node_zones[zone_type];
5796
5797 if (is_highmem(zone)) {
9705bea5 5798 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5799 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5800 }
5801 }
5802 val->totalhigh = managed_highpages;
5803 val->freehigh = free_highpages;
98d2b0eb 5804#else
fc2bd799
JK
5805 val->totalhigh = managed_highpages;
5806 val->freehigh = free_highpages;
98d2b0eb 5807#endif
1da177e4
LT
5808 val->mem_unit = PAGE_SIZE;
5809}
5810#endif
5811
ddd588b5 5812/*
7bf02ea2
DR
5813 * Determine whether the node should be displayed or not, depending on whether
5814 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5815 */
9af744d7 5816static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5817{
ddd588b5 5818 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5819 return false;
ddd588b5 5820
9af744d7
MH
5821 /*
5822 * no node mask - aka implicit memory numa policy. Do not bother with
5823 * the synchronization - read_mems_allowed_begin - because we do not
5824 * have to be precise here.
5825 */
5826 if (!nodemask)
5827 nodemask = &cpuset_current_mems_allowed;
5828
5829 return !node_isset(nid, *nodemask);
ddd588b5
DR
5830}
5831
1da177e4
LT
5832#define K(x) ((x) << (PAGE_SHIFT-10))
5833
377e4f16
RV
5834static void show_migration_types(unsigned char type)
5835{
5836 static const char types[MIGRATE_TYPES] = {
5837 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5838 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5839 [MIGRATE_RECLAIMABLE] = 'E',
5840 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5841#ifdef CONFIG_CMA
5842 [MIGRATE_CMA] = 'C',
5843#endif
194159fb 5844#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5845 [MIGRATE_ISOLATE] = 'I',
194159fb 5846#endif
377e4f16
RV
5847 };
5848 char tmp[MIGRATE_TYPES + 1];
5849 char *p = tmp;
5850 int i;
5851
5852 for (i = 0; i < MIGRATE_TYPES; i++) {
5853 if (type & (1 << i))
5854 *p++ = types[i];
5855 }
5856
5857 *p = '\0';
1f84a18f 5858 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5859}
5860
1da177e4
LT
5861/*
5862 * Show free area list (used inside shift_scroll-lock stuff)
5863 * We also calculate the percentage fragmentation. We do this by counting the
5864 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5865 *
5866 * Bits in @filter:
5867 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5868 * cpuset.
1da177e4 5869 */
9af744d7 5870void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5871{
d1bfcdb8 5872 unsigned long free_pcp = 0;
c7241913 5873 int cpu;
1da177e4 5874 struct zone *zone;
599d0c95 5875 pg_data_t *pgdat;
1da177e4 5876
ee99c71c 5877 for_each_populated_zone(zone) {
9af744d7 5878 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5879 continue;
d1bfcdb8 5880
761b0677 5881 for_each_online_cpu(cpu)
28f836b6 5882 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5883 }
5884
a731286d
KM
5885 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5886 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5887 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5888 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5889 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5890 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5891 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5892 global_node_page_state(NR_ACTIVE_ANON),
5893 global_node_page_state(NR_INACTIVE_ANON),
5894 global_node_page_state(NR_ISOLATED_ANON),
5895 global_node_page_state(NR_ACTIVE_FILE),
5896 global_node_page_state(NR_INACTIVE_FILE),
5897 global_node_page_state(NR_ISOLATED_FILE),
5898 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5899 global_node_page_state(NR_FILE_DIRTY),
5900 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5901 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5902 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5903 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5904 global_node_page_state(NR_SHMEM),
f0c0c115 5905 global_node_page_state(NR_PAGETABLE),
c41f012a 5906 global_zone_page_state(NR_BOUNCE),
eb2169ce 5907 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5908 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5909 free_pcp,
c41f012a 5910 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5911
599d0c95 5912 for_each_online_pgdat(pgdat) {
9af744d7 5913 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5914 continue;
5915
599d0c95
MG
5916 printk("Node %d"
5917 " active_anon:%lukB"
5918 " inactive_anon:%lukB"
5919 " active_file:%lukB"
5920 " inactive_file:%lukB"
5921 " unevictable:%lukB"
5922 " isolated(anon):%lukB"
5923 " isolated(file):%lukB"
50658e2e 5924 " mapped:%lukB"
11fb9989
MG
5925 " dirty:%lukB"
5926 " writeback:%lukB"
5927 " shmem:%lukB"
5928#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5929 " shmem_thp: %lukB"
5930 " shmem_pmdmapped: %lukB"
5931 " anon_thp: %lukB"
5932#endif
5933 " writeback_tmp:%lukB"
991e7673
SB
5934 " kernel_stack:%lukB"
5935#ifdef CONFIG_SHADOW_CALL_STACK
5936 " shadow_call_stack:%lukB"
5937#endif
f0c0c115 5938 " pagetables:%lukB"
599d0c95
MG
5939 " all_unreclaimable? %s"
5940 "\n",
5941 pgdat->node_id,
5942 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5943 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5944 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5945 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5946 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5947 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5948 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5949 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5950 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5951 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5952 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5953#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5954 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5955 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5956 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5957#endif
11fb9989 5958 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5959 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5960#ifdef CONFIG_SHADOW_CALL_STACK
5961 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5962#endif
f0c0c115 5963 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5964 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5965 "yes" : "no");
599d0c95
MG
5966 }
5967
ee99c71c 5968 for_each_populated_zone(zone) {
1da177e4
LT
5969 int i;
5970
9af744d7 5971 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5972 continue;
d1bfcdb8
KK
5973
5974 free_pcp = 0;
5975 for_each_online_cpu(cpu)
28f836b6 5976 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 5977
1da177e4 5978 show_node(zone);
1f84a18f
JP
5979 printk(KERN_CONT
5980 "%s"
1da177e4 5981 " free:%lukB"
a6ea8b5b 5982 " boost:%lukB"
1da177e4
LT
5983 " min:%lukB"
5984 " low:%lukB"
5985 " high:%lukB"
e47b346a 5986 " reserved_highatomic:%luKB"
71c799f4
MK
5987 " active_anon:%lukB"
5988 " inactive_anon:%lukB"
5989 " active_file:%lukB"
5990 " inactive_file:%lukB"
5991 " unevictable:%lukB"
5a1c84b4 5992 " writepending:%lukB"
1da177e4 5993 " present:%lukB"
9feedc9d 5994 " managed:%lukB"
4a0aa73f 5995 " mlocked:%lukB"
4a0aa73f 5996 " bounce:%lukB"
d1bfcdb8
KK
5997 " free_pcp:%lukB"
5998 " local_pcp:%ukB"
d1ce749a 5999 " free_cma:%lukB"
1da177e4
LT
6000 "\n",
6001 zone->name,
88f5acf8 6002 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6003 K(zone->watermark_boost),
41858966
MG
6004 K(min_wmark_pages(zone)),
6005 K(low_wmark_pages(zone)),
6006 K(high_wmark_pages(zone)),
e47b346a 6007 K(zone->nr_reserved_highatomic),
71c799f4
MK
6008 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6009 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6010 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6011 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6012 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6013 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6014 K(zone->present_pages),
9705bea5 6015 K(zone_managed_pages(zone)),
4a0aa73f 6016 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6017 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6018 K(free_pcp),
28f836b6 6019 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6020 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6021 printk("lowmem_reserve[]:");
6022 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6023 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6024 printk(KERN_CONT "\n");
1da177e4
LT
6025 }
6026
ee99c71c 6027 for_each_populated_zone(zone) {
d00181b9
KS
6028 unsigned int order;
6029 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6030 unsigned char types[MAX_ORDER];
1da177e4 6031
9af744d7 6032 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6033 continue;
1da177e4 6034 show_node(zone);
1f84a18f 6035 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6036
6037 spin_lock_irqsave(&zone->lock, flags);
6038 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6039 struct free_area *area = &zone->free_area[order];
6040 int type;
6041
6042 nr[order] = area->nr_free;
8f9de51a 6043 total += nr[order] << order;
377e4f16
RV
6044
6045 types[order] = 0;
6046 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6047 if (!free_area_empty(area, type))
377e4f16
RV
6048 types[order] |= 1 << type;
6049 }
1da177e4
LT
6050 }
6051 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6052 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6053 printk(KERN_CONT "%lu*%lukB ",
6054 nr[order], K(1UL) << order);
377e4f16
RV
6055 if (nr[order])
6056 show_migration_types(types[order]);
6057 }
1f84a18f 6058 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6059 }
6060
949f7ec5
DR
6061 hugetlb_show_meminfo();
6062
11fb9989 6063 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6064
1da177e4
LT
6065 show_swap_cache_info();
6066}
6067
19770b32
MG
6068static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6069{
6070 zoneref->zone = zone;
6071 zoneref->zone_idx = zone_idx(zone);
6072}
6073
1da177e4
LT
6074/*
6075 * Builds allocation fallback zone lists.
1a93205b
CL
6076 *
6077 * Add all populated zones of a node to the zonelist.
1da177e4 6078 */
9d3be21b 6079static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6080{
1a93205b 6081 struct zone *zone;
bc732f1d 6082 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6083 int nr_zones = 0;
02a68a5e
CL
6084
6085 do {
2f6726e5 6086 zone_type--;
070f8032 6087 zone = pgdat->node_zones + zone_type;
e553f62f 6088 if (populated_zone(zone)) {
9d3be21b 6089 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6090 check_highest_zone(zone_type);
1da177e4 6091 }
2f6726e5 6092 } while (zone_type);
bc732f1d 6093
070f8032 6094 return nr_zones;
1da177e4
LT
6095}
6096
6097#ifdef CONFIG_NUMA
f0c0b2b8
KH
6098
6099static int __parse_numa_zonelist_order(char *s)
6100{
c9bff3ee 6101 /*
f0953a1b 6102 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6103 * out to be just not useful. Let's keep the warning in place
6104 * if somebody still use the cmd line parameter so that we do
6105 * not fail it silently
6106 */
6107 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6108 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6109 return -EINVAL;
6110 }
6111 return 0;
6112}
6113
c9bff3ee
MH
6114char numa_zonelist_order[] = "Node";
6115
f0c0b2b8
KH
6116/*
6117 * sysctl handler for numa_zonelist_order
6118 */
cccad5b9 6119int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6120 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6121{
32927393
CH
6122 if (write)
6123 return __parse_numa_zonelist_order(buffer);
6124 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6125}
6126
6127
f0c0b2b8
KH
6128static int node_load[MAX_NUMNODES];
6129
1da177e4 6130/**
4dc3b16b 6131 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6132 * @node: node whose fallback list we're appending
6133 * @used_node_mask: nodemask_t of already used nodes
6134 *
6135 * We use a number of factors to determine which is the next node that should
6136 * appear on a given node's fallback list. The node should not have appeared
6137 * already in @node's fallback list, and it should be the next closest node
6138 * according to the distance array (which contains arbitrary distance values
6139 * from each node to each node in the system), and should also prefer nodes
6140 * with no CPUs, since presumably they'll have very little allocation pressure
6141 * on them otherwise.
a862f68a
MR
6142 *
6143 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6144 */
79c28a41 6145int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6146{
4cf808eb 6147 int n, val;
1da177e4 6148 int min_val = INT_MAX;
00ef2d2f 6149 int best_node = NUMA_NO_NODE;
1da177e4 6150
4cf808eb
LT
6151 /* Use the local node if we haven't already */
6152 if (!node_isset(node, *used_node_mask)) {
6153 node_set(node, *used_node_mask);
6154 return node;
6155 }
1da177e4 6156
4b0ef1fe 6157 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6158
6159 /* Don't want a node to appear more than once */
6160 if (node_isset(n, *used_node_mask))
6161 continue;
6162
1da177e4
LT
6163 /* Use the distance array to find the distance */
6164 val = node_distance(node, n);
6165
4cf808eb
LT
6166 /* Penalize nodes under us ("prefer the next node") */
6167 val += (n < node);
6168
1da177e4 6169 /* Give preference to headless and unused nodes */
b630749f 6170 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6171 val += PENALTY_FOR_NODE_WITH_CPUS;
6172
6173 /* Slight preference for less loaded node */
37931324 6174 val *= MAX_NUMNODES;
1da177e4
LT
6175 val += node_load[n];
6176
6177 if (val < min_val) {
6178 min_val = val;
6179 best_node = n;
6180 }
6181 }
6182
6183 if (best_node >= 0)
6184 node_set(best_node, *used_node_mask);
6185
6186 return best_node;
6187}
6188
f0c0b2b8
KH
6189
6190/*
6191 * Build zonelists ordered by node and zones within node.
6192 * This results in maximum locality--normal zone overflows into local
6193 * DMA zone, if any--but risks exhausting DMA zone.
6194 */
9d3be21b
MH
6195static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6196 unsigned nr_nodes)
1da177e4 6197{
9d3be21b
MH
6198 struct zoneref *zonerefs;
6199 int i;
6200
6201 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6202
6203 for (i = 0; i < nr_nodes; i++) {
6204 int nr_zones;
6205
6206 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6207
9d3be21b
MH
6208 nr_zones = build_zonerefs_node(node, zonerefs);
6209 zonerefs += nr_zones;
6210 }
6211 zonerefs->zone = NULL;
6212 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6213}
6214
523b9458
CL
6215/*
6216 * Build gfp_thisnode zonelists
6217 */
6218static void build_thisnode_zonelists(pg_data_t *pgdat)
6219{
9d3be21b
MH
6220 struct zoneref *zonerefs;
6221 int nr_zones;
523b9458 6222
9d3be21b
MH
6223 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6224 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6225 zonerefs += nr_zones;
6226 zonerefs->zone = NULL;
6227 zonerefs->zone_idx = 0;
523b9458
CL
6228}
6229
f0c0b2b8
KH
6230/*
6231 * Build zonelists ordered by zone and nodes within zones.
6232 * This results in conserving DMA zone[s] until all Normal memory is
6233 * exhausted, but results in overflowing to remote node while memory
6234 * may still exist in local DMA zone.
6235 */
f0c0b2b8 6236
f0c0b2b8
KH
6237static void build_zonelists(pg_data_t *pgdat)
6238{
9d3be21b 6239 static int node_order[MAX_NUMNODES];
37931324 6240 int node, nr_nodes = 0;
d0ddf49b 6241 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6242 int local_node, prev_node;
1da177e4
LT
6243
6244 /* NUMA-aware ordering of nodes */
6245 local_node = pgdat->node_id;
1da177e4 6246 prev_node = local_node;
f0c0b2b8 6247
f0c0b2b8 6248 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6249 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6250 /*
6251 * We don't want to pressure a particular node.
6252 * So adding penalty to the first node in same
6253 * distance group to make it round-robin.
6254 */
957f822a
DR
6255 if (node_distance(local_node, node) !=
6256 node_distance(local_node, prev_node))
37931324 6257 node_load[node] += 1;
f0c0b2b8 6258
9d3be21b 6259 node_order[nr_nodes++] = node;
1da177e4 6260 prev_node = node;
1da177e4 6261 }
523b9458 6262
9d3be21b 6263 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6264 build_thisnode_zonelists(pgdat);
6cf25392
BR
6265 pr_info("Fallback order for Node %d: ", local_node);
6266 for (node = 0; node < nr_nodes; node++)
6267 pr_cont("%d ", node_order[node]);
6268 pr_cont("\n");
1da177e4
LT
6269}
6270
7aac7898
LS
6271#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6272/*
6273 * Return node id of node used for "local" allocations.
6274 * I.e., first node id of first zone in arg node's generic zonelist.
6275 * Used for initializing percpu 'numa_mem', which is used primarily
6276 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6277 */
6278int local_memory_node(int node)
6279{
c33d6c06 6280 struct zoneref *z;
7aac7898 6281
c33d6c06 6282 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6283 gfp_zone(GFP_KERNEL),
c33d6c06 6284 NULL);
c1093b74 6285 return zone_to_nid(z->zone);
7aac7898
LS
6286}
6287#endif
f0c0b2b8 6288
6423aa81
JK
6289static void setup_min_unmapped_ratio(void);
6290static void setup_min_slab_ratio(void);
1da177e4
LT
6291#else /* CONFIG_NUMA */
6292
f0c0b2b8 6293static void build_zonelists(pg_data_t *pgdat)
1da177e4 6294{
19655d34 6295 int node, local_node;
9d3be21b
MH
6296 struct zoneref *zonerefs;
6297 int nr_zones;
1da177e4
LT
6298
6299 local_node = pgdat->node_id;
1da177e4 6300
9d3be21b
MH
6301 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6302 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6303 zonerefs += nr_zones;
1da177e4 6304
54a6eb5c
MG
6305 /*
6306 * Now we build the zonelist so that it contains the zones
6307 * of all the other nodes.
6308 * We don't want to pressure a particular node, so when
6309 * building the zones for node N, we make sure that the
6310 * zones coming right after the local ones are those from
6311 * node N+1 (modulo N)
6312 */
6313 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6314 if (!node_online(node))
6315 continue;
9d3be21b
MH
6316 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6317 zonerefs += nr_zones;
1da177e4 6318 }
54a6eb5c
MG
6319 for (node = 0; node < local_node; node++) {
6320 if (!node_online(node))
6321 continue;
9d3be21b
MH
6322 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6323 zonerefs += nr_zones;
54a6eb5c
MG
6324 }
6325
9d3be21b
MH
6326 zonerefs->zone = NULL;
6327 zonerefs->zone_idx = 0;
1da177e4
LT
6328}
6329
6330#endif /* CONFIG_NUMA */
6331
99dcc3e5
CL
6332/*
6333 * Boot pageset table. One per cpu which is going to be used for all
6334 * zones and all nodes. The parameters will be set in such a way
6335 * that an item put on a list will immediately be handed over to
6336 * the buddy list. This is safe since pageset manipulation is done
6337 * with interrupts disabled.
6338 *
6339 * The boot_pagesets must be kept even after bootup is complete for
6340 * unused processors and/or zones. They do play a role for bootstrapping
6341 * hotplugged processors.
6342 *
6343 * zoneinfo_show() and maybe other functions do
6344 * not check if the processor is online before following the pageset pointer.
6345 * Other parts of the kernel may not check if the zone is available.
6346 */
28f836b6 6347static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6348/* These effectively disable the pcplists in the boot pageset completely */
6349#define BOOT_PAGESET_HIGH 0
6350#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6351static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6352static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
09f49dca 6353DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6354
11cd8638 6355static void __build_all_zonelists(void *data)
1da177e4 6356{
6811378e 6357 int nid;
afb6ebb3 6358 int __maybe_unused cpu;
9adb62a5 6359 pg_data_t *self = data;
b93e0f32
MH
6360 static DEFINE_SPINLOCK(lock);
6361
6362 spin_lock(&lock);
9276b1bc 6363
7f9cfb31
BL
6364#ifdef CONFIG_NUMA
6365 memset(node_load, 0, sizeof(node_load));
6366#endif
9adb62a5 6367
c1152583
WY
6368 /*
6369 * This node is hotadded and no memory is yet present. So just
6370 * building zonelists is fine - no need to touch other nodes.
6371 */
9adb62a5
JL
6372 if (self && !node_online(self->node_id)) {
6373 build_zonelists(self);
c1152583 6374 } else {
09f49dca
MH
6375 /*
6376 * All possible nodes have pgdat preallocated
6377 * in free_area_init
6378 */
6379 for_each_node(nid) {
c1152583 6380 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6381
c1152583
WY
6382 build_zonelists(pgdat);
6383 }
99dcc3e5 6384
7aac7898
LS
6385#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6386 /*
6387 * We now know the "local memory node" for each node--
6388 * i.e., the node of the first zone in the generic zonelist.
6389 * Set up numa_mem percpu variable for on-line cpus. During
6390 * boot, only the boot cpu should be on-line; we'll init the
6391 * secondary cpus' numa_mem as they come on-line. During
6392 * node/memory hotplug, we'll fixup all on-line cpus.
6393 */
d9c9a0b9 6394 for_each_online_cpu(cpu)
7aac7898 6395 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6396#endif
d9c9a0b9 6397 }
b93e0f32
MH
6398
6399 spin_unlock(&lock);
6811378e
YG
6400}
6401
061f67bc
RV
6402static noinline void __init
6403build_all_zonelists_init(void)
6404{
afb6ebb3
MH
6405 int cpu;
6406
061f67bc 6407 __build_all_zonelists(NULL);
afb6ebb3
MH
6408
6409 /*
6410 * Initialize the boot_pagesets that are going to be used
6411 * for bootstrapping processors. The real pagesets for
6412 * each zone will be allocated later when the per cpu
6413 * allocator is available.
6414 *
6415 * boot_pagesets are used also for bootstrapping offline
6416 * cpus if the system is already booted because the pagesets
6417 * are needed to initialize allocators on a specific cpu too.
6418 * F.e. the percpu allocator needs the page allocator which
6419 * needs the percpu allocator in order to allocate its pagesets
6420 * (a chicken-egg dilemma).
6421 */
6422 for_each_possible_cpu(cpu)
28f836b6 6423 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6424
061f67bc
RV
6425 mminit_verify_zonelist();
6426 cpuset_init_current_mems_allowed();
6427}
6428
4eaf3f64 6429/*
4eaf3f64 6430 * unless system_state == SYSTEM_BOOTING.
061f67bc 6431 *
72675e13 6432 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6433 * [protected by SYSTEM_BOOTING].
4eaf3f64 6434 */
72675e13 6435void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6436{
0a18e607
DH
6437 unsigned long vm_total_pages;
6438
6811378e 6439 if (system_state == SYSTEM_BOOTING) {
061f67bc 6440 build_all_zonelists_init();
6811378e 6441 } else {
11cd8638 6442 __build_all_zonelists(pgdat);
6811378e
YG
6443 /* cpuset refresh routine should be here */
6444 }
56b9413b
DH
6445 /* Get the number of free pages beyond high watermark in all zones. */
6446 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6447 /*
6448 * Disable grouping by mobility if the number of pages in the
6449 * system is too low to allow the mechanism to work. It would be
6450 * more accurate, but expensive to check per-zone. This check is
6451 * made on memory-hotadd so a system can start with mobility
6452 * disabled and enable it later
6453 */
d9c23400 6454 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6455 page_group_by_mobility_disabled = 1;
6456 else
6457 page_group_by_mobility_disabled = 0;
6458
ce0725f7 6459 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6460 nr_online_nodes,
756a025f
JP
6461 page_group_by_mobility_disabled ? "off" : "on",
6462 vm_total_pages);
f0c0b2b8 6463#ifdef CONFIG_NUMA
f88dfff5 6464 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6465#endif
1da177e4
LT
6466}
6467
a9a9e77f
PT
6468/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6469static bool __meminit
6470overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6471{
a9a9e77f
PT
6472 static struct memblock_region *r;
6473
6474 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6475 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6476 for_each_mem_region(r) {
a9a9e77f
PT
6477 if (*pfn < memblock_region_memory_end_pfn(r))
6478 break;
6479 }
6480 }
6481 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6482 memblock_is_mirror(r)) {
6483 *pfn = memblock_region_memory_end_pfn(r);
6484 return true;
6485 }
6486 }
a9a9e77f
PT
6487 return false;
6488}
6489
1da177e4
LT
6490/*
6491 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6492 * up by memblock_free_all() once the early boot process is
1da177e4 6493 * done. Non-atomic initialization, single-pass.
d882c006
DH
6494 *
6495 * All aligned pageblocks are initialized to the specified migratetype
6496 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6497 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6498 */
ab28cb6e 6499void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6500 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6501 enum meminit_context context,
6502 struct vmem_altmap *altmap, int migratetype)
1da177e4 6503{
a9a9e77f 6504 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6505 struct page *page;
1da177e4 6506
22b31eec
HD
6507 if (highest_memmap_pfn < end_pfn - 1)
6508 highest_memmap_pfn = end_pfn - 1;
6509
966cf44f 6510#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6511 /*
6512 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6513 * memory. We limit the total number of pages to initialize to just
6514 * those that might contain the memory mapping. We will defer the
6515 * ZONE_DEVICE page initialization until after we have released
6516 * the hotplug lock.
4b94ffdc 6517 */
966cf44f
AD
6518 if (zone == ZONE_DEVICE) {
6519 if (!altmap)
6520 return;
6521
6522 if (start_pfn == altmap->base_pfn)
6523 start_pfn += altmap->reserve;
6524 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6525 }
6526#endif
4b94ffdc 6527
948c436e 6528 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6529 /*
b72d0ffb
AM
6530 * There can be holes in boot-time mem_map[]s handed to this
6531 * function. They do not exist on hotplugged memory.
a2f3aa02 6532 */
c1d0da83 6533 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6534 if (overlap_memmap_init(zone, &pfn))
6535 continue;
dc2da7b4 6536 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6537 break;
a2f3aa02 6538 }
ac5d2539 6539
d0dc12e8
PT
6540 page = pfn_to_page(pfn);
6541 __init_single_page(page, pfn, zone, nid);
c1d0da83 6542 if (context == MEMINIT_HOTPLUG)
d483da5b 6543 __SetPageReserved(page);
d0dc12e8 6544
ac5d2539 6545 /*
d882c006
DH
6546 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6547 * such that unmovable allocations won't be scattered all
6548 * over the place during system boot.
ac5d2539 6549 */
4eb29bd9 6550 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6551 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6552 cond_resched();
ac5d2539 6553 }
948c436e 6554 pfn++;
1da177e4
LT
6555 }
6556}
6557
966cf44f 6558#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6559static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6560 unsigned long zone_idx, int nid,
6561 struct dev_pagemap *pgmap)
6562{
6563
6564 __init_single_page(page, pfn, zone_idx, nid);
6565
6566 /*
6567 * Mark page reserved as it will need to wait for onlining
6568 * phase for it to be fully associated with a zone.
6569 *
6570 * We can use the non-atomic __set_bit operation for setting
6571 * the flag as we are still initializing the pages.
6572 */
6573 __SetPageReserved(page);
6574
6575 /*
6576 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6577 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6578 * ever freed or placed on a driver-private list.
6579 */
6580 page->pgmap = pgmap;
6581 page->zone_device_data = NULL;
6582
6583 /*
6584 * Mark the block movable so that blocks are reserved for
6585 * movable at startup. This will force kernel allocations
6586 * to reserve their blocks rather than leaking throughout
6587 * the address space during boot when many long-lived
6588 * kernel allocations are made.
6589 *
6590 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6591 * because this is done early in section_activate()
6592 */
6593 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6594 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6595 cond_resched();
6596 }
6597}
6598
6fd3620b
JM
6599/*
6600 * With compound page geometry and when struct pages are stored in ram most
6601 * tail pages are reused. Consequently, the amount of unique struct pages to
6602 * initialize is a lot smaller that the total amount of struct pages being
6603 * mapped. This is a paired / mild layering violation with explicit knowledge
6604 * of how the sparse_vmemmap internals handle compound pages in the lack
6605 * of an altmap. See vmemmap_populate_compound_pages().
6606 */
6607static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6608 unsigned long nr_pages)
6609{
6610 return is_power_of_2(sizeof(struct page)) &&
6611 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6612}
6613
c4386bd8
JM
6614static void __ref memmap_init_compound(struct page *head,
6615 unsigned long head_pfn,
6616 unsigned long zone_idx, int nid,
6617 struct dev_pagemap *pgmap,
6618 unsigned long nr_pages)
6619{
6620 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6621 unsigned int order = pgmap->vmemmap_shift;
6622
6623 __SetPageHead(head);
6624 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6625 struct page *page = pfn_to_page(pfn);
6626
6627 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6628 prep_compound_tail(head, pfn - head_pfn);
6629 set_page_count(page, 0);
6630
6631 /*
6632 * The first tail page stores compound_mapcount_ptr() and
6633 * compound_order() and the second tail page stores
6634 * compound_pincount_ptr(). Call prep_compound_head() after
6635 * the first and second tail pages have been initialized to
6636 * not have the data overwritten.
6637 */
6638 if (pfn == head_pfn + 2)
6639 prep_compound_head(head, order);
6640 }
6641}
6642
966cf44f
AD
6643void __ref memmap_init_zone_device(struct zone *zone,
6644 unsigned long start_pfn,
1f8d75c1 6645 unsigned long nr_pages,
966cf44f
AD
6646 struct dev_pagemap *pgmap)
6647{
1f8d75c1 6648 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6649 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6650 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6651 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6652 unsigned long zone_idx = zone_idx(zone);
6653 unsigned long start = jiffies;
6654 int nid = pgdat->node_id;
6655
46d945ae 6656 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6657 return;
6658
6659 /*
122e093c 6660 * The call to memmap_init should have already taken care
966cf44f
AD
6661 * of the pages reserved for the memmap, so we can just jump to
6662 * the end of that region and start processing the device pages.
6663 */
514caf23 6664 if (altmap) {
966cf44f 6665 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6666 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6667 }
6668
c4386bd8 6669 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6670 struct page *page = pfn_to_page(pfn);
6671
46487e00 6672 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6673
6674 if (pfns_per_compound == 1)
6675 continue;
6676
6677 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6fd3620b 6678 compound_nr_pages(altmap, pfns_per_compound));
966cf44f
AD
6679 }
6680
fdc029b1 6681 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6682 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6683}
6684
6685#endif
1e548deb 6686static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6687{
7aeb09f9 6688 unsigned int order, t;
b2a0ac88
MG
6689 for_each_migratetype_order(order, t) {
6690 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6691 zone->free_area[order].nr_free = 0;
6692 }
6693}
6694
0740a50b
MR
6695/*
6696 * Only struct pages that correspond to ranges defined by memblock.memory
6697 * are zeroed and initialized by going through __init_single_page() during
122e093c 6698 * memmap_init_zone_range().
0740a50b
MR
6699 *
6700 * But, there could be struct pages that correspond to holes in
6701 * memblock.memory. This can happen because of the following reasons:
6702 * - physical memory bank size is not necessarily the exact multiple of the
6703 * arbitrary section size
6704 * - early reserved memory may not be listed in memblock.memory
6705 * - memory layouts defined with memmap= kernel parameter may not align
6706 * nicely with memmap sections
6707 *
6708 * Explicitly initialize those struct pages so that:
6709 * - PG_Reserved is set
6710 * - zone and node links point to zone and node that span the page if the
6711 * hole is in the middle of a zone
6712 * - zone and node links point to adjacent zone/node if the hole falls on
6713 * the zone boundary; the pages in such holes will be prepended to the
6714 * zone/node above the hole except for the trailing pages in the last
6715 * section that will be appended to the zone/node below.
6716 */
122e093c
MR
6717static void __init init_unavailable_range(unsigned long spfn,
6718 unsigned long epfn,
6719 int zone, int node)
0740a50b
MR
6720{
6721 unsigned long pfn;
6722 u64 pgcnt = 0;
6723
6724 for (pfn = spfn; pfn < epfn; pfn++) {
6725 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6726 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6727 + pageblock_nr_pages - 1;
6728 continue;
6729 }
6730 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6731 __SetPageReserved(pfn_to_page(pfn));
6732 pgcnt++;
6733 }
6734
122e093c
MR
6735 if (pgcnt)
6736 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6737 node, zone_names[zone], pgcnt);
0740a50b 6738}
0740a50b 6739
122e093c
MR
6740static void __init memmap_init_zone_range(struct zone *zone,
6741 unsigned long start_pfn,
6742 unsigned long end_pfn,
6743 unsigned long *hole_pfn)
dfb3ccd0 6744{
3256ff83
BH
6745 unsigned long zone_start_pfn = zone->zone_start_pfn;
6746 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6747 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6748
6749 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6750 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6751
6752 if (start_pfn >= end_pfn)
6753 return;
6754
6755 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6756 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6757
6758 if (*hole_pfn < start_pfn)
6759 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6760
6761 *hole_pfn = end_pfn;
6762}
6763
6764static void __init memmap_init(void)
6765{
73a6e474 6766 unsigned long start_pfn, end_pfn;
122e093c 6767 unsigned long hole_pfn = 0;
b346075f 6768 int i, j, zone_id = 0, nid;
73a6e474 6769
122e093c
MR
6770 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6771 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6772
122e093c
MR
6773 for (j = 0; j < MAX_NR_ZONES; j++) {
6774 struct zone *zone = node->node_zones + j;
0740a50b 6775
122e093c
MR
6776 if (!populated_zone(zone))
6777 continue;
0740a50b 6778
122e093c
MR
6779 memmap_init_zone_range(zone, start_pfn, end_pfn,
6780 &hole_pfn);
6781 zone_id = j;
6782 }
73a6e474 6783 }
0740a50b
MR
6784
6785#ifdef CONFIG_SPARSEMEM
6786 /*
122e093c
MR
6787 * Initialize the memory map for hole in the range [memory_end,
6788 * section_end].
6789 * Append the pages in this hole to the highest zone in the last
6790 * node.
6791 * The call to init_unavailable_range() is outside the ifdef to
6792 * silence the compiler warining about zone_id set but not used;
6793 * for FLATMEM it is a nop anyway
0740a50b 6794 */
122e093c 6795 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6796 if (hole_pfn < end_pfn)
0740a50b 6797#endif
122e093c 6798 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6799}
1da177e4 6800
c803b3c8
MR
6801void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6802 phys_addr_t min_addr, int nid, bool exact_nid)
6803{
6804 void *ptr;
6805
6806 if (exact_nid)
6807 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6808 MEMBLOCK_ALLOC_ACCESSIBLE,
6809 nid);
6810 else
6811 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6812 MEMBLOCK_ALLOC_ACCESSIBLE,
6813 nid);
6814
6815 if (ptr && size > 0)
6816 page_init_poison(ptr, size);
6817
6818 return ptr;
6819}
6820
7cd2b0a3 6821static int zone_batchsize(struct zone *zone)
e7c8d5c9 6822{
3a6be87f 6823#ifdef CONFIG_MMU
e7c8d5c9
CL
6824 int batch;
6825
6826 /*
b92ca18e
MG
6827 * The number of pages to batch allocate is either ~0.1%
6828 * of the zone or 1MB, whichever is smaller. The batch
6829 * size is striking a balance between allocation latency
6830 * and zone lock contention.
e7c8d5c9 6831 */
b92ca18e 6832 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6833 batch /= 4; /* We effectively *= 4 below */
6834 if (batch < 1)
6835 batch = 1;
6836
6837 /*
0ceaacc9
NP
6838 * Clamp the batch to a 2^n - 1 value. Having a power
6839 * of 2 value was found to be more likely to have
6840 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6841 *
0ceaacc9
NP
6842 * For example if 2 tasks are alternately allocating
6843 * batches of pages, one task can end up with a lot
6844 * of pages of one half of the possible page colors
6845 * and the other with pages of the other colors.
e7c8d5c9 6846 */
9155203a 6847 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6848
e7c8d5c9 6849 return batch;
3a6be87f
DH
6850
6851#else
6852 /* The deferral and batching of frees should be suppressed under NOMMU
6853 * conditions.
6854 *
6855 * The problem is that NOMMU needs to be able to allocate large chunks
6856 * of contiguous memory as there's no hardware page translation to
6857 * assemble apparent contiguous memory from discontiguous pages.
6858 *
6859 * Queueing large contiguous runs of pages for batching, however,
6860 * causes the pages to actually be freed in smaller chunks. As there
6861 * can be a significant delay between the individual batches being
6862 * recycled, this leads to the once large chunks of space being
6863 * fragmented and becoming unavailable for high-order allocations.
6864 */
6865 return 0;
6866#endif
e7c8d5c9
CL
6867}
6868
04f8cfea 6869static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6870{
6871#ifdef CONFIG_MMU
6872 int high;
203c06ee 6873 int nr_split_cpus;
74f44822
MG
6874 unsigned long total_pages;
6875
6876 if (!percpu_pagelist_high_fraction) {
6877 /*
6878 * By default, the high value of the pcp is based on the zone
6879 * low watermark so that if they are full then background
6880 * reclaim will not be started prematurely.
6881 */
6882 total_pages = low_wmark_pages(zone);
6883 } else {
6884 /*
6885 * If percpu_pagelist_high_fraction is configured, the high
6886 * value is based on a fraction of the managed pages in the
6887 * zone.
6888 */
6889 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6890 }
b92ca18e
MG
6891
6892 /*
74f44822
MG
6893 * Split the high value across all online CPUs local to the zone. Note
6894 * that early in boot that CPUs may not be online yet and that during
6895 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6896 * onlined. For memory nodes that have no CPUs, split pcp->high across
6897 * all online CPUs to mitigate the risk that reclaim is triggered
6898 * prematurely due to pages stored on pcp lists.
b92ca18e 6899 */
203c06ee
MG
6900 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6901 if (!nr_split_cpus)
6902 nr_split_cpus = num_online_cpus();
6903 high = total_pages / nr_split_cpus;
b92ca18e
MG
6904
6905 /*
6906 * Ensure high is at least batch*4. The multiple is based on the
6907 * historical relationship between high and batch.
6908 */
6909 high = max(high, batch << 2);
6910
6911 return high;
6912#else
6913 return 0;
6914#endif
6915}
6916
8d7a8fa9 6917/*
5c3ad2eb
VB
6918 * pcp->high and pcp->batch values are related and generally batch is lower
6919 * than high. They are also related to pcp->count such that count is lower
6920 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6921 *
5c3ad2eb
VB
6922 * However, guaranteeing these relations at all times would require e.g. write
6923 * barriers here but also careful usage of read barriers at the read side, and
6924 * thus be prone to error and bad for performance. Thus the update only prevents
6925 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6926 * can cope with those fields changing asynchronously, and fully trust only the
6927 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6928 *
6929 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6930 * outside of boot time (or some other assurance that no concurrent updaters
6931 * exist).
6932 */
6933static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6934 unsigned long batch)
6935{
5c3ad2eb
VB
6936 WRITE_ONCE(pcp->batch, batch);
6937 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6938}
6939
28f836b6 6940static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6941{
44042b44 6942 int pindex;
2caaad41 6943
28f836b6
MG
6944 memset(pcp, 0, sizeof(*pcp));
6945 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6946
44042b44
MG
6947 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6948 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 6949
69a8396a
VB
6950 /*
6951 * Set batch and high values safe for a boot pageset. A true percpu
6952 * pageset's initialization will update them subsequently. Here we don't
6953 * need to be as careful as pageset_update() as nobody can access the
6954 * pageset yet.
6955 */
952eaf81
VB
6956 pcp->high = BOOT_PAGESET_HIGH;
6957 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6958 pcp->free_factor = 0;
88c90dbc
CS
6959}
6960
3b1f3658 6961static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6962 unsigned long batch)
6963{
28f836b6 6964 struct per_cpu_pages *pcp;
ec6e8c7e
VB
6965 int cpu;
6966
6967 for_each_possible_cpu(cpu) {
28f836b6
MG
6968 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6969 pageset_update(pcp, high, batch);
ec6e8c7e
VB
6970 }
6971}
6972
8ad4b1fb 6973/*
0a8b4f1d 6974 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 6975 * zone based on the zone's size.
8ad4b1fb 6976 */
04f8cfea 6977static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 6978{
b92ca18e 6979 int new_high, new_batch;
7115ac6e 6980
b92ca18e 6981 new_batch = max(1, zone_batchsize(zone));
04f8cfea 6982 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 6983
952eaf81
VB
6984 if (zone->pageset_high == new_high &&
6985 zone->pageset_batch == new_batch)
6986 return;
6987
6988 zone->pageset_high = new_high;
6989 zone->pageset_batch = new_batch;
6990
ec6e8c7e 6991 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6992}
6993
72675e13 6994void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6995{
6996 int cpu;
0a8b4f1d 6997
28f836b6
MG
6998 /* Size may be 0 on !SMP && !NUMA */
6999 if (sizeof(struct per_cpu_zonestat) > 0)
7000 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7001
7002 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 7003 for_each_possible_cpu(cpu) {
28f836b6
MG
7004 struct per_cpu_pages *pcp;
7005 struct per_cpu_zonestat *pzstats;
7006
7007 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7008 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7009 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
7010 }
7011
04f8cfea 7012 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
7013}
7014
2caaad41 7015/*
99dcc3e5
CL
7016 * Allocate per cpu pagesets and initialize them.
7017 * Before this call only boot pagesets were available.
e7c8d5c9 7018 */
99dcc3e5 7019void __init setup_per_cpu_pageset(void)
e7c8d5c9 7020{
b4911ea2 7021 struct pglist_data *pgdat;
99dcc3e5 7022 struct zone *zone;
b418a0f9 7023 int __maybe_unused cpu;
e7c8d5c9 7024
319774e2
WF
7025 for_each_populated_zone(zone)
7026 setup_zone_pageset(zone);
b4911ea2 7027
b418a0f9
SD
7028#ifdef CONFIG_NUMA
7029 /*
7030 * Unpopulated zones continue using the boot pagesets.
7031 * The numa stats for these pagesets need to be reset.
7032 * Otherwise, they will end up skewing the stats of
7033 * the nodes these zones are associated with.
7034 */
7035 for_each_possible_cpu(cpu) {
28f836b6 7036 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7037 memset(pzstats->vm_numa_event, 0,
7038 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7039 }
7040#endif
7041
b4911ea2
MG
7042 for_each_online_pgdat(pgdat)
7043 pgdat->per_cpu_nodestats =
7044 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7045}
7046
c09b4240 7047static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7048{
99dcc3e5
CL
7049 /*
7050 * per cpu subsystem is not up at this point. The following code
7051 * relies on the ability of the linker to provide the
7052 * offset of a (static) per cpu variable into the per cpu area.
7053 */
28f836b6
MG
7054 zone->per_cpu_pageset = &boot_pageset;
7055 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7056 zone->pageset_high = BOOT_PAGESET_HIGH;
7057 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7058
b38a8725 7059 if (populated_zone(zone))
9660ecaa
HK
7060 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7061 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7062}
7063
dc0bbf3b 7064void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7065 unsigned long zone_start_pfn,
b171e409 7066 unsigned long size)
ed8ece2e
DH
7067{
7068 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7069 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7070
8f416836
WY
7071 if (zone_idx > pgdat->nr_zones)
7072 pgdat->nr_zones = zone_idx;
ed8ece2e 7073
ed8ece2e
DH
7074 zone->zone_start_pfn = zone_start_pfn;
7075
708614e6
MG
7076 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7077 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7078 pgdat->node_id,
7079 (unsigned long)zone_idx(zone),
7080 zone_start_pfn, (zone_start_pfn + size));
7081
1e548deb 7082 zone_init_free_lists(zone);
9dcb8b68 7083 zone->initialized = 1;
ed8ece2e
DH
7084}
7085
c713216d
MG
7086/**
7087 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7088 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7089 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7090 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7091 *
7092 * It returns the start and end page frame of a node based on information
7d018176 7093 * provided by memblock_set_node(). If called for a node
c713216d 7094 * with no available memory, a warning is printed and the start and end
88ca3b94 7095 * PFNs will be 0.
c713216d 7096 */
bbe5d993 7097void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7098 unsigned long *start_pfn, unsigned long *end_pfn)
7099{
c13291a5 7100 unsigned long this_start_pfn, this_end_pfn;
c713216d 7101 int i;
c13291a5 7102
c713216d
MG
7103 *start_pfn = -1UL;
7104 *end_pfn = 0;
7105
c13291a5
TH
7106 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7107 *start_pfn = min(*start_pfn, this_start_pfn);
7108 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7109 }
7110
633c0666 7111 if (*start_pfn == -1UL)
c713216d 7112 *start_pfn = 0;
c713216d
MG
7113}
7114
2a1e274a
MG
7115/*
7116 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7117 * assumption is made that zones within a node are ordered in monotonic
7118 * increasing memory addresses so that the "highest" populated zone is used
7119 */
b69a7288 7120static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7121{
7122 int zone_index;
7123 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7124 if (zone_index == ZONE_MOVABLE)
7125 continue;
7126
7127 if (arch_zone_highest_possible_pfn[zone_index] >
7128 arch_zone_lowest_possible_pfn[zone_index])
7129 break;
7130 }
7131
7132 VM_BUG_ON(zone_index == -1);
7133 movable_zone = zone_index;
7134}
7135
7136/*
7137 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7138 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7139 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7140 * in each node depending on the size of each node and how evenly kernelcore
7141 * is distributed. This helper function adjusts the zone ranges
7142 * provided by the architecture for a given node by using the end of the
7143 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7144 * zones within a node are in order of monotonic increases memory addresses
7145 */
bbe5d993 7146static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7147 unsigned long zone_type,
7148 unsigned long node_start_pfn,
7149 unsigned long node_end_pfn,
7150 unsigned long *zone_start_pfn,
7151 unsigned long *zone_end_pfn)
7152{
7153 /* Only adjust if ZONE_MOVABLE is on this node */
7154 if (zone_movable_pfn[nid]) {
7155 /* Size ZONE_MOVABLE */
7156 if (zone_type == ZONE_MOVABLE) {
7157 *zone_start_pfn = zone_movable_pfn[nid];
7158 *zone_end_pfn = min(node_end_pfn,
7159 arch_zone_highest_possible_pfn[movable_zone]);
7160
e506b996
XQ
7161 /* Adjust for ZONE_MOVABLE starting within this range */
7162 } else if (!mirrored_kernelcore &&
7163 *zone_start_pfn < zone_movable_pfn[nid] &&
7164 *zone_end_pfn > zone_movable_pfn[nid]) {
7165 *zone_end_pfn = zone_movable_pfn[nid];
7166
2a1e274a
MG
7167 /* Check if this whole range is within ZONE_MOVABLE */
7168 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7169 *zone_start_pfn = *zone_end_pfn;
7170 }
7171}
7172
c713216d
MG
7173/*
7174 * Return the number of pages a zone spans in a node, including holes
7175 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7176 */
bbe5d993 7177static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7178 unsigned long zone_type,
7960aedd
ZY
7179 unsigned long node_start_pfn,
7180 unsigned long node_end_pfn,
d91749c1 7181 unsigned long *zone_start_pfn,
854e8848 7182 unsigned long *zone_end_pfn)
c713216d 7183{
299c83dc
LF
7184 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7185 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7186 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7187 if (!node_start_pfn && !node_end_pfn)
7188 return 0;
7189
7960aedd 7190 /* Get the start and end of the zone */
299c83dc
LF
7191 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7192 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7193 adjust_zone_range_for_zone_movable(nid, zone_type,
7194 node_start_pfn, node_end_pfn,
d91749c1 7195 zone_start_pfn, zone_end_pfn);
c713216d
MG
7196
7197 /* Check that this node has pages within the zone's required range */
d91749c1 7198 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7199 return 0;
7200
7201 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7202 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7203 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7204
7205 /* Return the spanned pages */
d91749c1 7206 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7207}
7208
7209/*
7210 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7211 * then all holes in the requested range will be accounted for.
c713216d 7212 */
bbe5d993 7213unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7214 unsigned long range_start_pfn,
7215 unsigned long range_end_pfn)
7216{
96e907d1
TH
7217 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7218 unsigned long start_pfn, end_pfn;
7219 int i;
c713216d 7220
96e907d1
TH
7221 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7222 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7223 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7224 nr_absent -= end_pfn - start_pfn;
c713216d 7225 }
96e907d1 7226 return nr_absent;
c713216d
MG
7227}
7228
7229/**
7230 * absent_pages_in_range - Return number of page frames in holes within a range
7231 * @start_pfn: The start PFN to start searching for holes
7232 * @end_pfn: The end PFN to stop searching for holes
7233 *
a862f68a 7234 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7235 */
7236unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7237 unsigned long end_pfn)
7238{
7239 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7240}
7241
7242/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7243static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7244 unsigned long zone_type,
7960aedd 7245 unsigned long node_start_pfn,
854e8848 7246 unsigned long node_end_pfn)
c713216d 7247{
96e907d1
TH
7248 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7249 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7250 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7251 unsigned long nr_absent;
9c7cd687 7252
b5685e92 7253 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7254 if (!node_start_pfn && !node_end_pfn)
7255 return 0;
7256
96e907d1
TH
7257 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7258 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7259
2a1e274a
MG
7260 adjust_zone_range_for_zone_movable(nid, zone_type,
7261 node_start_pfn, node_end_pfn,
7262 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7263 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7264
7265 /*
7266 * ZONE_MOVABLE handling.
7267 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7268 * and vice versa.
7269 */
e506b996
XQ
7270 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7271 unsigned long start_pfn, end_pfn;
7272 struct memblock_region *r;
7273
cc6de168 7274 for_each_mem_region(r) {
e506b996
XQ
7275 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7276 zone_start_pfn, zone_end_pfn);
7277 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7278 zone_start_pfn, zone_end_pfn);
7279
7280 if (zone_type == ZONE_MOVABLE &&
7281 memblock_is_mirror(r))
7282 nr_absent += end_pfn - start_pfn;
7283
7284 if (zone_type == ZONE_NORMAL &&
7285 !memblock_is_mirror(r))
7286 nr_absent += end_pfn - start_pfn;
342332e6
TI
7287 }
7288 }
7289
7290 return nr_absent;
c713216d 7291}
0e0b864e 7292
bbe5d993 7293static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7294 unsigned long node_start_pfn,
854e8848 7295 unsigned long node_end_pfn)
c713216d 7296{
febd5949 7297 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7298 enum zone_type i;
7299
febd5949
GZ
7300 for (i = 0; i < MAX_NR_ZONES; i++) {
7301 struct zone *zone = pgdat->node_zones + i;
d91749c1 7302 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7303 unsigned long spanned, absent;
febd5949 7304 unsigned long size, real_size;
c713216d 7305
854e8848
MR
7306 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7307 node_start_pfn,
7308 node_end_pfn,
7309 &zone_start_pfn,
7310 &zone_end_pfn);
7311 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7312 node_start_pfn,
7313 node_end_pfn);
3f08a302
MR
7314
7315 size = spanned;
7316 real_size = size - absent;
7317
d91749c1
TI
7318 if (size)
7319 zone->zone_start_pfn = zone_start_pfn;
7320 else
7321 zone->zone_start_pfn = 0;
febd5949
GZ
7322 zone->spanned_pages = size;
7323 zone->present_pages = real_size;
4b097002
DH
7324#if defined(CONFIG_MEMORY_HOTPLUG)
7325 zone->present_early_pages = real_size;
7326#endif
febd5949
GZ
7327
7328 totalpages += size;
7329 realtotalpages += real_size;
7330 }
7331
7332 pgdat->node_spanned_pages = totalpages;
c713216d 7333 pgdat->node_present_pages = realtotalpages;
9660ecaa 7334 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7335}
7336
835c134e
MG
7337#ifndef CONFIG_SPARSEMEM
7338/*
7339 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7340 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7341 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7342 * round what is now in bits to nearest long in bits, then return it in
7343 * bytes.
7344 */
7c45512d 7345static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7346{
7347 unsigned long usemapsize;
7348
7c45512d 7349 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7350 usemapsize = roundup(zonesize, pageblock_nr_pages);
7351 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7352 usemapsize *= NR_PAGEBLOCK_BITS;
7353 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7354
7355 return usemapsize / 8;
7356}
7357
7010a6ec 7358static void __ref setup_usemap(struct zone *zone)
835c134e 7359{
7010a6ec
BH
7360 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7361 zone->spanned_pages);
835c134e 7362 zone->pageblock_flags = NULL;
23a7052a 7363 if (usemapsize) {
6782832e 7364 zone->pageblock_flags =
26fb3dae 7365 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7366 zone_to_nid(zone));
23a7052a
MR
7367 if (!zone->pageblock_flags)
7368 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7369 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7370 }
835c134e
MG
7371}
7372#else
7010a6ec 7373static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7374#endif /* CONFIG_SPARSEMEM */
7375
d9c23400 7376#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7377
d9c23400 7378/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7379void __init set_pageblock_order(void)
d9c23400 7380{
b3d40a2b 7381 unsigned int order = MAX_ORDER - 1;
955c1cd7 7382
d9c23400
MG
7383 /* Check that pageblock_nr_pages has not already been setup */
7384 if (pageblock_order)
7385 return;
7386
b3d40a2b
DH
7387 /* Don't let pageblocks exceed the maximum allocation granularity. */
7388 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7389 order = HUGETLB_PAGE_ORDER;
955c1cd7 7390
d9c23400
MG
7391 /*
7392 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7393 * This value may be variable depending on boot parameters on IA64 and
7394 * powerpc.
d9c23400
MG
7395 */
7396 pageblock_order = order;
7397}
7398#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7399
ba72cb8c
MG
7400/*
7401 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7402 * is unused as pageblock_order is set at compile-time. See
7403 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7404 * the kernel config
ba72cb8c 7405 */
03e85f9d 7406void __init set_pageblock_order(void)
ba72cb8c 7407{
ba72cb8c 7408}
d9c23400
MG
7409
7410#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7411
03e85f9d 7412static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7413 unsigned long present_pages)
01cefaef
JL
7414{
7415 unsigned long pages = spanned_pages;
7416
7417 /*
7418 * Provide a more accurate estimation if there are holes within
7419 * the zone and SPARSEMEM is in use. If there are holes within the
7420 * zone, each populated memory region may cost us one or two extra
7421 * memmap pages due to alignment because memmap pages for each
89d790ab 7422 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7423 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7424 */
7425 if (spanned_pages > present_pages + (present_pages >> 4) &&
7426 IS_ENABLED(CONFIG_SPARSEMEM))
7427 pages = present_pages;
7428
7429 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7430}
7431
ace1db39
OS
7432#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7433static void pgdat_init_split_queue(struct pglist_data *pgdat)
7434{
364c1eeb
YS
7435 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7436
7437 spin_lock_init(&ds_queue->split_queue_lock);
7438 INIT_LIST_HEAD(&ds_queue->split_queue);
7439 ds_queue->split_queue_len = 0;
ace1db39
OS
7440}
7441#else
7442static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7443#endif
7444
7445#ifdef CONFIG_COMPACTION
7446static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7447{
7448 init_waitqueue_head(&pgdat->kcompactd_wait);
7449}
7450#else
7451static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7452#endif
7453
03e85f9d 7454static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7455{
8cd7c588
MG
7456 int i;
7457
208d54e5 7458 pgdat_resize_init(pgdat);
ace1db39 7459
ace1db39
OS
7460 pgdat_init_split_queue(pgdat);
7461 pgdat_init_kcompactd(pgdat);
7462
1da177e4 7463 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7464 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7465
8cd7c588
MG
7466 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7467 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7468
eefa864b 7469 pgdat_page_ext_init(pgdat);
867e5e1d 7470 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7471}
7472
7473static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7474 unsigned long remaining_pages)
7475{
9705bea5 7476 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7477 zone_set_nid(zone, nid);
7478 zone->name = zone_names[idx];
7479 zone->zone_pgdat = NODE_DATA(nid);
7480 spin_lock_init(&zone->lock);
7481 zone_seqlock_init(zone);
7482 zone_pcp_init(zone);
7483}
7484
7485/*
7486 * Set up the zone data structures
7487 * - init pgdat internals
7488 * - init all zones belonging to this node
7489 *
7490 * NOTE: this function is only called during memory hotplug
7491 */
7492#ifdef CONFIG_MEMORY_HOTPLUG
70b5b46a 7493void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
03e85f9d 7494{
70b5b46a 7495 int nid = pgdat->node_id;
03e85f9d 7496 enum zone_type z;
70b5b46a 7497 int cpu;
03e85f9d
OS
7498
7499 pgdat_init_internals(pgdat);
70b5b46a
MH
7500
7501 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7502 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7503
7504 /*
7505 * Reset the nr_zones, order and highest_zoneidx before reuse.
7506 * Note that kswapd will init kswapd_highest_zoneidx properly
7507 * when it starts in the near future.
7508 */
7509 pgdat->nr_zones = 0;
7510 pgdat->kswapd_order = 0;
7511 pgdat->kswapd_highest_zoneidx = 0;
7512 pgdat->node_start_pfn = 0;
7513 for_each_online_cpu(cpu) {
7514 struct per_cpu_nodestat *p;
7515
7516 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7517 memset(p, 0, sizeof(*p));
7518 }
7519
03e85f9d
OS
7520 for (z = 0; z < MAX_NR_ZONES; z++)
7521 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7522}
7523#endif
7524
7525/*
7526 * Set up the zone data structures:
7527 * - mark all pages reserved
7528 * - mark all memory queues empty
7529 * - clear the memory bitmaps
7530 *
7531 * NOTE: pgdat should get zeroed by caller.
7532 * NOTE: this function is only called during early init.
7533 */
7534static void __init free_area_init_core(struct pglist_data *pgdat)
7535{
7536 enum zone_type j;
7537 int nid = pgdat->node_id;
5f63b720 7538
03e85f9d 7539 pgdat_init_internals(pgdat);
385386cf
JW
7540 pgdat->per_cpu_nodestats = &boot_nodestats;
7541
1da177e4
LT
7542 for (j = 0; j < MAX_NR_ZONES; j++) {
7543 struct zone *zone = pgdat->node_zones + j;
e6943859 7544 unsigned long size, freesize, memmap_pages;
1da177e4 7545
febd5949 7546 size = zone->spanned_pages;
e6943859 7547 freesize = zone->present_pages;
1da177e4 7548
0e0b864e 7549 /*
9feedc9d 7550 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7551 * is used by this zone for memmap. This affects the watermark
7552 * and per-cpu initialisations
7553 */
e6943859 7554 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7555 if (!is_highmem_idx(j)) {
7556 if (freesize >= memmap_pages) {
7557 freesize -= memmap_pages;
7558 if (memmap_pages)
9660ecaa
HK
7559 pr_debug(" %s zone: %lu pages used for memmap\n",
7560 zone_names[j], memmap_pages);
ba914f48 7561 } else
e47aa905 7562 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7563 zone_names[j], memmap_pages, freesize);
7564 }
0e0b864e 7565
6267276f 7566 /* Account for reserved pages */
9feedc9d
JL
7567 if (j == 0 && freesize > dma_reserve) {
7568 freesize -= dma_reserve;
9660ecaa 7569 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7570 }
7571
98d2b0eb 7572 if (!is_highmem_idx(j))
9feedc9d 7573 nr_kernel_pages += freesize;
01cefaef
JL
7574 /* Charge for highmem memmap if there are enough kernel pages */
7575 else if (nr_kernel_pages > memmap_pages * 2)
7576 nr_kernel_pages -= memmap_pages;
9feedc9d 7577 nr_all_pages += freesize;
1da177e4 7578
9feedc9d
JL
7579 /*
7580 * Set an approximate value for lowmem here, it will be adjusted
7581 * when the bootmem allocator frees pages into the buddy system.
7582 * And all highmem pages will be managed by the buddy system.
7583 */
03e85f9d 7584 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7585
d883c6cf 7586 if (!size)
1da177e4
LT
7587 continue;
7588
955c1cd7 7589 set_pageblock_order();
7010a6ec 7590 setup_usemap(zone);
9699ee7b 7591 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7592 }
7593}
7594
43b02ba9 7595#ifdef CONFIG_FLATMEM
3b446da6 7596static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7597{
b0aeba74 7598 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7599 unsigned long __maybe_unused offset = 0;
7600
1da177e4
LT
7601 /* Skip empty nodes */
7602 if (!pgdat->node_spanned_pages)
7603 return;
7604
b0aeba74
TL
7605 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7606 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7607 /* ia64 gets its own node_mem_map, before this, without bootmem */
7608 if (!pgdat->node_mem_map) {
b0aeba74 7609 unsigned long size, end;
d41dee36
AW
7610 struct page *map;
7611
e984bb43
BP
7612 /*
7613 * The zone's endpoints aren't required to be MAX_ORDER
7614 * aligned but the node_mem_map endpoints must be in order
7615 * for the buddy allocator to function correctly.
7616 */
108bcc96 7617 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7618 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7619 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7620 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7621 pgdat->node_id, false);
23a7052a
MR
7622 if (!map)
7623 panic("Failed to allocate %ld bytes for node %d memory map\n",
7624 size, pgdat->node_id);
a1c34a3b 7625 pgdat->node_mem_map = map + offset;
1da177e4 7626 }
0cd842f9
OS
7627 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7628 __func__, pgdat->node_id, (unsigned long)pgdat,
7629 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7630#ifndef CONFIG_NUMA
1da177e4
LT
7631 /*
7632 * With no DISCONTIG, the global mem_map is just set as node 0's
7633 */
c713216d 7634 if (pgdat == NODE_DATA(0)) {
1da177e4 7635 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7636 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7637 mem_map -= offset;
c713216d 7638 }
1da177e4
LT
7639#endif
7640}
0cd842f9 7641#else
3b446da6 7642static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7643#endif /* CONFIG_FLATMEM */
1da177e4 7644
0188dc98
OS
7645#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7646static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7647{
0188dc98
OS
7648 pgdat->first_deferred_pfn = ULONG_MAX;
7649}
7650#else
7651static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7652#endif
7653
854e8848 7654static void __init free_area_init_node(int nid)
1da177e4 7655{
9109fb7b 7656 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7657 unsigned long start_pfn = 0;
7658 unsigned long end_pfn = 0;
9109fb7b 7659
88fdf75d 7660 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7661 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7662
854e8848 7663 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7664
1da177e4 7665 pgdat->node_id = nid;
854e8848 7666 pgdat->node_start_pfn = start_pfn;
75ef7184 7667 pgdat->per_cpu_nodestats = NULL;
854e8848 7668
7c30daac
MH
7669 if (start_pfn != end_pfn) {
7670 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7671 (u64)start_pfn << PAGE_SHIFT,
7672 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7673 } else {
7674 pr_info("Initmem setup node %d as memoryless\n", nid);
7675 }
7676
854e8848 7677 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7678
7679 alloc_node_mem_map(pgdat);
0188dc98 7680 pgdat_set_deferred_range(pgdat);
1da177e4 7681
7f3eb55b 7682 free_area_init_core(pgdat);
1da177e4
LT
7683}
7684
1ca75fa7 7685static void __init free_area_init_memoryless_node(int nid)
3f08a302 7686{
854e8848 7687 free_area_init_node(nid);
3f08a302
MR
7688}
7689
418508c1
MS
7690#if MAX_NUMNODES > 1
7691/*
7692 * Figure out the number of possible node ids.
7693 */
f9872caf 7694void __init setup_nr_node_ids(void)
418508c1 7695{
904a9553 7696 unsigned int highest;
418508c1 7697
904a9553 7698 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7699 nr_node_ids = highest + 1;
7700}
418508c1
MS
7701#endif
7702
1e01979c
TH
7703/**
7704 * node_map_pfn_alignment - determine the maximum internode alignment
7705 *
7706 * This function should be called after node map is populated and sorted.
7707 * It calculates the maximum power of two alignment which can distinguish
7708 * all the nodes.
7709 *
7710 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7711 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7712 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7713 * shifted, 1GiB is enough and this function will indicate so.
7714 *
7715 * This is used to test whether pfn -> nid mapping of the chosen memory
7716 * model has fine enough granularity to avoid incorrect mapping for the
7717 * populated node map.
7718 *
a862f68a 7719 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7720 * requirement (single node).
7721 */
7722unsigned long __init node_map_pfn_alignment(void)
7723{
7724 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7725 unsigned long start, end, mask;
98fa15f3 7726 int last_nid = NUMA_NO_NODE;
c13291a5 7727 int i, nid;
1e01979c 7728
c13291a5 7729 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7730 if (!start || last_nid < 0 || last_nid == nid) {
7731 last_nid = nid;
7732 last_end = end;
7733 continue;
7734 }
7735
7736 /*
7737 * Start with a mask granular enough to pin-point to the
7738 * start pfn and tick off bits one-by-one until it becomes
7739 * too coarse to separate the current node from the last.
7740 */
7741 mask = ~((1 << __ffs(start)) - 1);
7742 while (mask && last_end <= (start & (mask << 1)))
7743 mask <<= 1;
7744
7745 /* accumulate all internode masks */
7746 accl_mask |= mask;
7747 }
7748
7749 /* convert mask to number of pages */
7750 return ~accl_mask + 1;
7751}
7752
c713216d
MG
7753/**
7754 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7755 *
a862f68a 7756 * Return: the minimum PFN based on information provided via
7d018176 7757 * memblock_set_node().
c713216d
MG
7758 */
7759unsigned long __init find_min_pfn_with_active_regions(void)
7760{
8a1b25fe 7761 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7762}
7763
37b07e41
LS
7764/*
7765 * early_calculate_totalpages()
7766 * Sum pages in active regions for movable zone.
4b0ef1fe 7767 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7768 */
484f51f8 7769static unsigned long __init early_calculate_totalpages(void)
7e63efef 7770{
7e63efef 7771 unsigned long totalpages = 0;
c13291a5
TH
7772 unsigned long start_pfn, end_pfn;
7773 int i, nid;
7774
7775 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7776 unsigned long pages = end_pfn - start_pfn;
7e63efef 7777
37b07e41
LS
7778 totalpages += pages;
7779 if (pages)
4b0ef1fe 7780 node_set_state(nid, N_MEMORY);
37b07e41 7781 }
b8af2941 7782 return totalpages;
7e63efef
MG
7783}
7784
2a1e274a
MG
7785/*
7786 * Find the PFN the Movable zone begins in each node. Kernel memory
7787 * is spread evenly between nodes as long as the nodes have enough
7788 * memory. When they don't, some nodes will have more kernelcore than
7789 * others
7790 */
b224ef85 7791static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7792{
7793 int i, nid;
7794 unsigned long usable_startpfn;
7795 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7796 /* save the state before borrow the nodemask */
4b0ef1fe 7797 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7798 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7799 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7800 struct memblock_region *r;
b2f3eebe
TC
7801
7802 /* Need to find movable_zone earlier when movable_node is specified. */
7803 find_usable_zone_for_movable();
7804
7805 /*
7806 * If movable_node is specified, ignore kernelcore and movablecore
7807 * options.
7808 */
7809 if (movable_node_is_enabled()) {
cc6de168 7810 for_each_mem_region(r) {
136199f0 7811 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7812 continue;
7813
d622abf7 7814 nid = memblock_get_region_node(r);
b2f3eebe 7815
136199f0 7816 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7817 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7818 min(usable_startpfn, zone_movable_pfn[nid]) :
7819 usable_startpfn;
7820 }
7821
7822 goto out2;
7823 }
2a1e274a 7824
342332e6
TI
7825 /*
7826 * If kernelcore=mirror is specified, ignore movablecore option
7827 */
7828 if (mirrored_kernelcore) {
7829 bool mem_below_4gb_not_mirrored = false;
7830
cc6de168 7831 for_each_mem_region(r) {
342332e6
TI
7832 if (memblock_is_mirror(r))
7833 continue;
7834
d622abf7 7835 nid = memblock_get_region_node(r);
342332e6
TI
7836
7837 usable_startpfn = memblock_region_memory_base_pfn(r);
7838
aa282a15 7839 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
342332e6
TI
7840 mem_below_4gb_not_mirrored = true;
7841 continue;
7842 }
7843
7844 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7845 min(usable_startpfn, zone_movable_pfn[nid]) :
7846 usable_startpfn;
7847 }
7848
7849 if (mem_below_4gb_not_mirrored)
633bf2fe 7850 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7851
7852 goto out2;
7853 }
7854
7e63efef 7855 /*
a5c6d650
DR
7856 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7857 * amount of necessary memory.
7858 */
7859 if (required_kernelcore_percent)
7860 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7861 10000UL;
7862 if (required_movablecore_percent)
7863 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7864 10000UL;
7865
7866 /*
7867 * If movablecore= was specified, calculate what size of
7e63efef
MG
7868 * kernelcore that corresponds so that memory usable for
7869 * any allocation type is evenly spread. If both kernelcore
7870 * and movablecore are specified, then the value of kernelcore
7871 * will be used for required_kernelcore if it's greater than
7872 * what movablecore would have allowed.
7873 */
7874 if (required_movablecore) {
7e63efef
MG
7875 unsigned long corepages;
7876
7877 /*
7878 * Round-up so that ZONE_MOVABLE is at least as large as what
7879 * was requested by the user
7880 */
7881 required_movablecore =
7882 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7883 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7884 corepages = totalpages - required_movablecore;
7885
7886 required_kernelcore = max(required_kernelcore, corepages);
7887 }
7888
bde304bd
XQ
7889 /*
7890 * If kernelcore was not specified or kernelcore size is larger
7891 * than totalpages, there is no ZONE_MOVABLE.
7892 */
7893 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7894 goto out;
2a1e274a
MG
7895
7896 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7897 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7898
7899restart:
7900 /* Spread kernelcore memory as evenly as possible throughout nodes */
7901 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7902 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7903 unsigned long start_pfn, end_pfn;
7904
2a1e274a
MG
7905 /*
7906 * Recalculate kernelcore_node if the division per node
7907 * now exceeds what is necessary to satisfy the requested
7908 * amount of memory for the kernel
7909 */
7910 if (required_kernelcore < kernelcore_node)
7911 kernelcore_node = required_kernelcore / usable_nodes;
7912
7913 /*
7914 * As the map is walked, we track how much memory is usable
7915 * by the kernel using kernelcore_remaining. When it is
7916 * 0, the rest of the node is usable by ZONE_MOVABLE
7917 */
7918 kernelcore_remaining = kernelcore_node;
7919
7920 /* Go through each range of PFNs within this node */
c13291a5 7921 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7922 unsigned long size_pages;
7923
c13291a5 7924 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7925 if (start_pfn >= end_pfn)
7926 continue;
7927
7928 /* Account for what is only usable for kernelcore */
7929 if (start_pfn < usable_startpfn) {
7930 unsigned long kernel_pages;
7931 kernel_pages = min(end_pfn, usable_startpfn)
7932 - start_pfn;
7933
7934 kernelcore_remaining -= min(kernel_pages,
7935 kernelcore_remaining);
7936 required_kernelcore -= min(kernel_pages,
7937 required_kernelcore);
7938
7939 /* Continue if range is now fully accounted */
7940 if (end_pfn <= usable_startpfn) {
7941
7942 /*
7943 * Push zone_movable_pfn to the end so
7944 * that if we have to rebalance
7945 * kernelcore across nodes, we will
7946 * not double account here
7947 */
7948 zone_movable_pfn[nid] = end_pfn;
7949 continue;
7950 }
7951 start_pfn = usable_startpfn;
7952 }
7953
7954 /*
7955 * The usable PFN range for ZONE_MOVABLE is from
7956 * start_pfn->end_pfn. Calculate size_pages as the
7957 * number of pages used as kernelcore
7958 */
7959 size_pages = end_pfn - start_pfn;
7960 if (size_pages > kernelcore_remaining)
7961 size_pages = kernelcore_remaining;
7962 zone_movable_pfn[nid] = start_pfn + size_pages;
7963
7964 /*
7965 * Some kernelcore has been met, update counts and
7966 * break if the kernelcore for this node has been
b8af2941 7967 * satisfied
2a1e274a
MG
7968 */
7969 required_kernelcore -= min(required_kernelcore,
7970 size_pages);
7971 kernelcore_remaining -= size_pages;
7972 if (!kernelcore_remaining)
7973 break;
7974 }
7975 }
7976
7977 /*
7978 * If there is still required_kernelcore, we do another pass with one
7979 * less node in the count. This will push zone_movable_pfn[nid] further
7980 * along on the nodes that still have memory until kernelcore is
b8af2941 7981 * satisfied
2a1e274a
MG
7982 */
7983 usable_nodes--;
7984 if (usable_nodes && required_kernelcore > usable_nodes)
7985 goto restart;
7986
b2f3eebe 7987out2:
2a1e274a 7988 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
7989 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7990 unsigned long start_pfn, end_pfn;
7991
2a1e274a
MG
7992 zone_movable_pfn[nid] =
7993 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7994
ddbc84f3
AP
7995 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7996 if (zone_movable_pfn[nid] >= end_pfn)
7997 zone_movable_pfn[nid] = 0;
7998 }
7999
20e6926d 8000out:
66918dcd 8001 /* restore the node_state */
4b0ef1fe 8002 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
8003}
8004
4b0ef1fe
LJ
8005/* Any regular or high memory on that node ? */
8006static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 8007{
37b07e41
LS
8008 enum zone_type zone_type;
8009
4b0ef1fe 8010 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 8011 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 8012 if (populated_zone(zone)) {
7b0e0c0e
OS
8013 if (IS_ENABLED(CONFIG_HIGHMEM))
8014 node_set_state(nid, N_HIGH_MEMORY);
8015 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 8016 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
8017 break;
8018 }
37b07e41 8019 }
37b07e41
LS
8020}
8021
51930df5 8022/*
f0953a1b 8023 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
8024 * such cases we allow max_zone_pfn sorted in the descending order
8025 */
8026bool __weak arch_has_descending_max_zone_pfns(void)
8027{
8028 return false;
8029}
8030
c713216d 8031/**
9691a071 8032 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 8033 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
8034 *
8035 * This will call free_area_init_node() for each active node in the system.
7d018176 8036 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
8037 * zone in each node and their holes is calculated. If the maximum PFN
8038 * between two adjacent zones match, it is assumed that the zone is empty.
8039 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8040 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8041 * starts where the previous one ended. For example, ZONE_DMA32 starts
8042 * at arch_max_dma_pfn.
8043 */
9691a071 8044void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 8045{
c13291a5 8046 unsigned long start_pfn, end_pfn;
51930df5
MR
8047 int i, nid, zone;
8048 bool descending;
a6af2bc3 8049
c713216d
MG
8050 /* Record where the zone boundaries are */
8051 memset(arch_zone_lowest_possible_pfn, 0,
8052 sizeof(arch_zone_lowest_possible_pfn));
8053 memset(arch_zone_highest_possible_pfn, 0,
8054 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
8055
8056 start_pfn = find_min_pfn_with_active_regions();
51930df5 8057 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8058
8059 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8060 if (descending)
8061 zone = MAX_NR_ZONES - i - 1;
8062 else
8063 zone = i;
8064
8065 if (zone == ZONE_MOVABLE)
2a1e274a 8066 continue;
90cae1fe 8067
51930df5
MR
8068 end_pfn = max(max_zone_pfn[zone], start_pfn);
8069 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8070 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8071
8072 start_pfn = end_pfn;
c713216d 8073 }
2a1e274a
MG
8074
8075 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8076 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8077 find_zone_movable_pfns_for_nodes();
c713216d 8078
c713216d 8079 /* Print out the zone ranges */
f88dfff5 8080 pr_info("Zone ranges:\n");
2a1e274a
MG
8081 for (i = 0; i < MAX_NR_ZONES; i++) {
8082 if (i == ZONE_MOVABLE)
8083 continue;
f88dfff5 8084 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8085 if (arch_zone_lowest_possible_pfn[i] ==
8086 arch_zone_highest_possible_pfn[i])
f88dfff5 8087 pr_cont("empty\n");
72f0ba02 8088 else
8d29e18a
JG
8089 pr_cont("[mem %#018Lx-%#018Lx]\n",
8090 (u64)arch_zone_lowest_possible_pfn[i]
8091 << PAGE_SHIFT,
8092 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8093 << PAGE_SHIFT) - 1);
2a1e274a
MG
8094 }
8095
8096 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8097 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8098 for (i = 0; i < MAX_NUMNODES; i++) {
8099 if (zone_movable_pfn[i])
8d29e18a
JG
8100 pr_info(" Node %d: %#018Lx\n", i,
8101 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8102 }
c713216d 8103
f46edbd1
DW
8104 /*
8105 * Print out the early node map, and initialize the
8106 * subsection-map relative to active online memory ranges to
8107 * enable future "sub-section" extensions of the memory map.
8108 */
f88dfff5 8109 pr_info("Early memory node ranges\n");
f46edbd1 8110 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8111 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8112 (u64)start_pfn << PAGE_SHIFT,
8113 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8114 subsection_map_init(start_pfn, end_pfn - start_pfn);
8115 }
c713216d
MG
8116
8117 /* Initialise every node */
708614e6 8118 mminit_verify_pageflags_layout();
8ef82866 8119 setup_nr_node_ids();
09f49dca
MH
8120 for_each_node(nid) {
8121 pg_data_t *pgdat;
8122
8123 if (!node_online(nid)) {
8124 pr_info("Initializing node %d as memoryless\n", nid);
8125
8126 /* Allocator not initialized yet */
8127 pgdat = arch_alloc_nodedata(nid);
8128 if (!pgdat) {
8129 pr_err("Cannot allocate %zuB for node %d.\n",
8130 sizeof(*pgdat), nid);
8131 continue;
8132 }
8133 arch_refresh_nodedata(nid, pgdat);
8134 free_area_init_memoryless_node(nid);
8135
8136 /*
8137 * We do not want to confuse userspace by sysfs
8138 * files/directories for node without any memory
8139 * attached to it, so this node is not marked as
8140 * N_MEMORY and not marked online so that no sysfs
8141 * hierarchy will be created via register_one_node for
8142 * it. The pgdat will get fully initialized by
8143 * hotadd_init_pgdat() when memory is hotplugged into
8144 * this node.
8145 */
8146 continue;
8147 }
8148
8149 pgdat = NODE_DATA(nid);
854e8848 8150 free_area_init_node(nid);
37b07e41
LS
8151
8152 /* Any memory on that node */
8153 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8154 node_set_state(nid, N_MEMORY);
8155 check_for_memory(pgdat, nid);
c713216d 8156 }
122e093c
MR
8157
8158 memmap_init();
c713216d 8159}
2a1e274a 8160
a5c6d650
DR
8161static int __init cmdline_parse_core(char *p, unsigned long *core,
8162 unsigned long *percent)
2a1e274a
MG
8163{
8164 unsigned long long coremem;
a5c6d650
DR
8165 char *endptr;
8166
2a1e274a
MG
8167 if (!p)
8168 return -EINVAL;
8169
a5c6d650
DR
8170 /* Value may be a percentage of total memory, otherwise bytes */
8171 coremem = simple_strtoull(p, &endptr, 0);
8172 if (*endptr == '%') {
8173 /* Paranoid check for percent values greater than 100 */
8174 WARN_ON(coremem > 100);
2a1e274a 8175
a5c6d650
DR
8176 *percent = coremem;
8177 } else {
8178 coremem = memparse(p, &p);
8179 /* Paranoid check that UL is enough for the coremem value */
8180 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8181
a5c6d650
DR
8182 *core = coremem >> PAGE_SHIFT;
8183 *percent = 0UL;
8184 }
2a1e274a
MG
8185 return 0;
8186}
ed7ed365 8187
7e63efef
MG
8188/*
8189 * kernelcore=size sets the amount of memory for use for allocations that
8190 * cannot be reclaimed or migrated.
8191 */
8192static int __init cmdline_parse_kernelcore(char *p)
8193{
342332e6
TI
8194 /* parse kernelcore=mirror */
8195 if (parse_option_str(p, "mirror")) {
8196 mirrored_kernelcore = true;
8197 return 0;
8198 }
8199
a5c6d650
DR
8200 return cmdline_parse_core(p, &required_kernelcore,
8201 &required_kernelcore_percent);
7e63efef
MG
8202}
8203
8204/*
8205 * movablecore=size sets the amount of memory for use for allocations that
8206 * can be reclaimed or migrated.
8207 */
8208static int __init cmdline_parse_movablecore(char *p)
8209{
a5c6d650
DR
8210 return cmdline_parse_core(p, &required_movablecore,
8211 &required_movablecore_percent);
7e63efef
MG
8212}
8213
ed7ed365 8214early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8215early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8216
c3d5f5f0
JL
8217void adjust_managed_page_count(struct page *page, long count)
8218{
9705bea5 8219 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8220 totalram_pages_add(count);
3dcc0571
JL
8221#ifdef CONFIG_HIGHMEM
8222 if (PageHighMem(page))
ca79b0c2 8223 totalhigh_pages_add(count);
3dcc0571 8224#endif
c3d5f5f0 8225}
3dcc0571 8226EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8227
e5cb113f 8228unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8229{
11199692
JL
8230 void *pos;
8231 unsigned long pages = 0;
69afade7 8232
11199692
JL
8233 start = (void *)PAGE_ALIGN((unsigned long)start);
8234 end = (void *)((unsigned long)end & PAGE_MASK);
8235 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8236 struct page *page = virt_to_page(pos);
8237 void *direct_map_addr;
8238
8239 /*
8240 * 'direct_map_addr' might be different from 'pos'
8241 * because some architectures' virt_to_page()
8242 * work with aliases. Getting the direct map
8243 * address ensures that we get a _writeable_
8244 * alias for the memset().
8245 */
8246 direct_map_addr = page_address(page);
c746170d
VF
8247 /*
8248 * Perform a kasan-unchecked memset() since this memory
8249 * has not been initialized.
8250 */
8251 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8252 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8253 memset(direct_map_addr, poison, PAGE_SIZE);
8254
8255 free_reserved_page(page);
69afade7
JL
8256 }
8257
8258 if (pages && s)
ff7ed9e4 8259 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8260
8261 return pages;
8262}
8263
1f9d03c5 8264void __init mem_init_print_info(void)
7ee3d4e8
JL
8265{
8266 unsigned long physpages, codesize, datasize, rosize, bss_size;
8267 unsigned long init_code_size, init_data_size;
8268
8269 physpages = get_num_physpages();
8270 codesize = _etext - _stext;
8271 datasize = _edata - _sdata;
8272 rosize = __end_rodata - __start_rodata;
8273 bss_size = __bss_stop - __bss_start;
8274 init_data_size = __init_end - __init_begin;
8275 init_code_size = _einittext - _sinittext;
8276
8277 /*
8278 * Detect special cases and adjust section sizes accordingly:
8279 * 1) .init.* may be embedded into .data sections
8280 * 2) .init.text.* may be out of [__init_begin, __init_end],
8281 * please refer to arch/tile/kernel/vmlinux.lds.S.
8282 * 3) .rodata.* may be embedded into .text or .data sections.
8283 */
8284#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8285 do { \
ca831f29 8286 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8287 size -= adj; \
8288 } while (0)
7ee3d4e8
JL
8289
8290 adj_init_size(__init_begin, __init_end, init_data_size,
8291 _sinittext, init_code_size);
8292 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8293 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8294 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8295 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8296
8297#undef adj_init_size
8298
756a025f 8299 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8300#ifdef CONFIG_HIGHMEM
756a025f 8301 ", %luK highmem"
7ee3d4e8 8302#endif
1f9d03c5 8303 ")\n",
ff7ed9e4 8304 K(nr_free_pages()), K(physpages),
756a025f
JP
8305 codesize >> 10, datasize >> 10, rosize >> 10,
8306 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ff7ed9e4
ML
8307 K(physpages - totalram_pages() - totalcma_pages),
8308 K(totalcma_pages)
7ee3d4e8 8309#ifdef CONFIG_HIGHMEM
ff7ed9e4 8310 , K(totalhigh_pages())
7ee3d4e8 8311#endif
1f9d03c5 8312 );
7ee3d4e8
JL
8313}
8314
0e0b864e 8315/**
88ca3b94
RD
8316 * set_dma_reserve - set the specified number of pages reserved in the first zone
8317 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8318 *
013110a7 8319 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8320 * In the DMA zone, a significant percentage may be consumed by kernel image
8321 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8322 * function may optionally be used to account for unfreeable pages in the
8323 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8324 * smaller per-cpu batchsize.
0e0b864e
MG
8325 */
8326void __init set_dma_reserve(unsigned long new_dma_reserve)
8327{
8328 dma_reserve = new_dma_reserve;
8329}
8330
005fd4bb 8331static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8332{
04f8cfea 8333 struct zone *zone;
1da177e4 8334
005fd4bb 8335 lru_add_drain_cpu(cpu);
adb11e78 8336 mlock_page_drain_remote(cpu);
005fd4bb 8337 drain_pages(cpu);
9f8f2172 8338
005fd4bb
SAS
8339 /*
8340 * Spill the event counters of the dead processor
8341 * into the current processors event counters.
8342 * This artificially elevates the count of the current
8343 * processor.
8344 */
8345 vm_events_fold_cpu(cpu);
9f8f2172 8346
005fd4bb
SAS
8347 /*
8348 * Zero the differential counters of the dead processor
8349 * so that the vm statistics are consistent.
8350 *
8351 * This is only okay since the processor is dead and cannot
8352 * race with what we are doing.
8353 */
8354 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8355
8356 for_each_populated_zone(zone)
8357 zone_pcp_update(zone, 0);
8358
8359 return 0;
8360}
8361
8362static int page_alloc_cpu_online(unsigned int cpu)
8363{
8364 struct zone *zone;
8365
8366 for_each_populated_zone(zone)
8367 zone_pcp_update(zone, 1);
005fd4bb 8368 return 0;
1da177e4 8369}
1da177e4 8370
e03a5125
NP
8371#ifdef CONFIG_NUMA
8372int hashdist = HASHDIST_DEFAULT;
8373
8374static int __init set_hashdist(char *str)
8375{
8376 if (!str)
8377 return 0;
8378 hashdist = simple_strtoul(str, &str, 0);
8379 return 1;
8380}
8381__setup("hashdist=", set_hashdist);
8382#endif
8383
1da177e4
LT
8384void __init page_alloc_init(void)
8385{
005fd4bb
SAS
8386 int ret;
8387
e03a5125
NP
8388#ifdef CONFIG_NUMA
8389 if (num_node_state(N_MEMORY) == 1)
8390 hashdist = 0;
8391#endif
8392
04f8cfea
MG
8393 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8394 "mm/page_alloc:pcp",
8395 page_alloc_cpu_online,
005fd4bb
SAS
8396 page_alloc_cpu_dead);
8397 WARN_ON(ret < 0);
1da177e4
LT
8398}
8399
cb45b0e9 8400/*
34b10060 8401 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8402 * or min_free_kbytes changes.
8403 */
8404static void calculate_totalreserve_pages(void)
8405{
8406 struct pglist_data *pgdat;
8407 unsigned long reserve_pages = 0;
2f6726e5 8408 enum zone_type i, j;
cb45b0e9
HA
8409
8410 for_each_online_pgdat(pgdat) {
281e3726
MG
8411
8412 pgdat->totalreserve_pages = 0;
8413
cb45b0e9
HA
8414 for (i = 0; i < MAX_NR_ZONES; i++) {
8415 struct zone *zone = pgdat->node_zones + i;
3484b2de 8416 long max = 0;
9705bea5 8417 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8418
8419 /* Find valid and maximum lowmem_reserve in the zone */
8420 for (j = i; j < MAX_NR_ZONES; j++) {
8421 if (zone->lowmem_reserve[j] > max)
8422 max = zone->lowmem_reserve[j];
8423 }
8424
41858966
MG
8425 /* we treat the high watermark as reserved pages. */
8426 max += high_wmark_pages(zone);
cb45b0e9 8427
3d6357de
AK
8428 if (max > managed_pages)
8429 max = managed_pages;
a8d01437 8430
281e3726 8431 pgdat->totalreserve_pages += max;
a8d01437 8432
cb45b0e9
HA
8433 reserve_pages += max;
8434 }
8435 }
8436 totalreserve_pages = reserve_pages;
8437}
8438
1da177e4
LT
8439/*
8440 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8441 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8442 * has a correct pages reserved value, so an adequate number of
8443 * pages are left in the zone after a successful __alloc_pages().
8444 */
8445static void setup_per_zone_lowmem_reserve(void)
8446{
8447 struct pglist_data *pgdat;
470c61d7 8448 enum zone_type i, j;
1da177e4 8449
ec936fc5 8450 for_each_online_pgdat(pgdat) {
470c61d7
LS
8451 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8452 struct zone *zone = &pgdat->node_zones[i];
8453 int ratio = sysctl_lowmem_reserve_ratio[i];
8454 bool clear = !ratio || !zone_managed_pages(zone);
8455 unsigned long managed_pages = 0;
8456
8457 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8458 struct zone *upper_zone = &pgdat->node_zones[j];
8459
8460 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8461
f7ec1044
LS
8462 if (clear)
8463 zone->lowmem_reserve[j] = 0;
8464 else
470c61d7 8465 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8466 }
8467 }
8468 }
cb45b0e9
HA
8469
8470 /* update totalreserve_pages */
8471 calculate_totalreserve_pages();
1da177e4
LT
8472}
8473
cfd3da1e 8474static void __setup_per_zone_wmarks(void)
1da177e4
LT
8475{
8476 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8477 unsigned long lowmem_pages = 0;
8478 struct zone *zone;
8479 unsigned long flags;
8480
8481 /* Calculate total number of !ZONE_HIGHMEM pages */
8482 for_each_zone(zone) {
8483 if (!is_highmem(zone))
9705bea5 8484 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8485 }
8486
8487 for_each_zone(zone) {
ac924c60
AM
8488 u64 tmp;
8489
1125b4e3 8490 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8491 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8492 do_div(tmp, lowmem_pages);
1da177e4
LT
8493 if (is_highmem(zone)) {
8494 /*
669ed175
NP
8495 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8496 * need highmem pages, so cap pages_min to a small
8497 * value here.
8498 *
41858966 8499 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8500 * deltas control async page reclaim, and so should
669ed175 8501 * not be capped for highmem.
1da177e4 8502 */
90ae8d67 8503 unsigned long min_pages;
1da177e4 8504
9705bea5 8505 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8506 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8507 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8508 } else {
669ed175
NP
8509 /*
8510 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8511 * proportionate to the zone's size.
8512 */
a9214443 8513 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8514 }
8515
795ae7a0
JW
8516 /*
8517 * Set the kswapd watermarks distance according to the
8518 * scale factor in proportion to available memory, but
8519 * ensure a minimum size on small systems.
8520 */
8521 tmp = max_t(u64, tmp >> 2,
9705bea5 8522 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8523 watermark_scale_factor, 10000));
8524
aa092591 8525 zone->watermark_boost = 0;
a9214443 8526 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
8527 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8528 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 8529
1125b4e3 8530 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8531 }
cb45b0e9
HA
8532
8533 /* update totalreserve_pages */
8534 calculate_totalreserve_pages();
1da177e4
LT
8535}
8536
cfd3da1e
MG
8537/**
8538 * setup_per_zone_wmarks - called when min_free_kbytes changes
8539 * or when memory is hot-{added|removed}
8540 *
8541 * Ensures that the watermark[min,low,high] values for each zone are set
8542 * correctly with respect to min_free_kbytes.
8543 */
8544void setup_per_zone_wmarks(void)
8545{
b92ca18e 8546 struct zone *zone;
b93e0f32
MH
8547 static DEFINE_SPINLOCK(lock);
8548
8549 spin_lock(&lock);
cfd3da1e 8550 __setup_per_zone_wmarks();
b93e0f32 8551 spin_unlock(&lock);
b92ca18e
MG
8552
8553 /*
8554 * The watermark size have changed so update the pcpu batch
8555 * and high limits or the limits may be inappropriate.
8556 */
8557 for_each_zone(zone)
04f8cfea 8558 zone_pcp_update(zone, 0);
cfd3da1e
MG
8559}
8560
1da177e4
LT
8561/*
8562 * Initialise min_free_kbytes.
8563 *
8564 * For small machines we want it small (128k min). For large machines
8beeae86 8565 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8566 * bandwidth does not increase linearly with machine size. We use
8567 *
b8af2941 8568 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8569 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8570 *
8571 * which yields
8572 *
8573 * 16MB: 512k
8574 * 32MB: 724k
8575 * 64MB: 1024k
8576 * 128MB: 1448k
8577 * 256MB: 2048k
8578 * 512MB: 2896k
8579 * 1024MB: 4096k
8580 * 2048MB: 5792k
8581 * 4096MB: 8192k
8582 * 8192MB: 11584k
8583 * 16384MB: 16384k
8584 */
bd3400ea 8585void calculate_min_free_kbytes(void)
1da177e4
LT
8586{
8587 unsigned long lowmem_kbytes;
5f12733e 8588 int new_min_free_kbytes;
1da177e4
LT
8589
8590 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8591 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8592
59d336bd
WS
8593 if (new_min_free_kbytes > user_min_free_kbytes)
8594 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8595 else
5f12733e
MH
8596 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8597 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8598
bd3400ea
LF
8599}
8600
8601int __meminit init_per_zone_wmark_min(void)
8602{
8603 calculate_min_free_kbytes();
bc75d33f 8604 setup_per_zone_wmarks();
a6cccdc3 8605 refresh_zone_stat_thresholds();
1da177e4 8606 setup_per_zone_lowmem_reserve();
6423aa81
JK
8607
8608#ifdef CONFIG_NUMA
8609 setup_min_unmapped_ratio();
8610 setup_min_slab_ratio();
8611#endif
8612
4aab2be0
VB
8613 khugepaged_min_free_kbytes_update();
8614
1da177e4
LT
8615 return 0;
8616}
e08d3fdf 8617postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8618
8619/*
b8af2941 8620 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8621 * that we can call two helper functions whenever min_free_kbytes
8622 * changes.
8623 */
cccad5b9 8624int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8625 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8626{
da8c757b
HP
8627 int rc;
8628
8629 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8630 if (rc)
8631 return rc;
8632
5f12733e
MH
8633 if (write) {
8634 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8635 setup_per_zone_wmarks();
5f12733e 8636 }
1da177e4
LT
8637 return 0;
8638}
8639
795ae7a0 8640int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8641 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8642{
8643 int rc;
8644
8645 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8646 if (rc)
8647 return rc;
8648
8649 if (write)
8650 setup_per_zone_wmarks();
8651
8652 return 0;
8653}
8654
9614634f 8655#ifdef CONFIG_NUMA
6423aa81 8656static void setup_min_unmapped_ratio(void)
9614634f 8657{
6423aa81 8658 pg_data_t *pgdat;
9614634f 8659 struct zone *zone;
9614634f 8660
a5f5f91d 8661 for_each_online_pgdat(pgdat)
81cbcbc2 8662 pgdat->min_unmapped_pages = 0;
a5f5f91d 8663
9614634f 8664 for_each_zone(zone)
9705bea5
AK
8665 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8666 sysctl_min_unmapped_ratio) / 100;
9614634f 8667}
0ff38490 8668
6423aa81
JK
8669
8670int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8671 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8672{
0ff38490
CL
8673 int rc;
8674
8d65af78 8675 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8676 if (rc)
8677 return rc;
8678
6423aa81
JK
8679 setup_min_unmapped_ratio();
8680
8681 return 0;
8682}
8683
8684static void setup_min_slab_ratio(void)
8685{
8686 pg_data_t *pgdat;
8687 struct zone *zone;
8688
a5f5f91d
MG
8689 for_each_online_pgdat(pgdat)
8690 pgdat->min_slab_pages = 0;
8691
0ff38490 8692 for_each_zone(zone)
9705bea5
AK
8693 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8694 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8695}
8696
8697int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8698 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8699{
8700 int rc;
8701
8702 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8703 if (rc)
8704 return rc;
8705
8706 setup_min_slab_ratio();
8707
0ff38490
CL
8708 return 0;
8709}
9614634f
CL
8710#endif
8711
1da177e4
LT
8712/*
8713 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8714 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8715 * whenever sysctl_lowmem_reserve_ratio changes.
8716 *
8717 * The reserve ratio obviously has absolutely no relation with the
41858966 8718 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8719 * if in function of the boot time zone sizes.
8720 */
cccad5b9 8721int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8722 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8723{
86aaf255
BH
8724 int i;
8725
8d65af78 8726 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8727
8728 for (i = 0; i < MAX_NR_ZONES; i++) {
8729 if (sysctl_lowmem_reserve_ratio[i] < 1)
8730 sysctl_lowmem_reserve_ratio[i] = 0;
8731 }
8732
1da177e4
LT
8733 setup_per_zone_lowmem_reserve();
8734 return 0;
8735}
8736
8ad4b1fb 8737/*
74f44822
MG
8738 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8739 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8740 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8741 */
74f44822
MG
8742int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8743 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8744{
8745 struct zone *zone;
74f44822 8746 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8747 int ret;
8748
7cd2b0a3 8749 mutex_lock(&pcp_batch_high_lock);
74f44822 8750 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8751
8d65af78 8752 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8753 if (!write || ret < 0)
8754 goto out;
8755
8756 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8757 if (percpu_pagelist_high_fraction &&
8758 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8759 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8760 ret = -EINVAL;
8761 goto out;
8762 }
8763
8764 /* No change? */
74f44822 8765 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8766 goto out;
c8e251fa 8767
cb1ef534 8768 for_each_populated_zone(zone)
74f44822 8769 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8770out:
c8e251fa 8771 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8772 return ret;
8ad4b1fb
RS
8773}
8774
f6f34b43
SD
8775#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8776/*
8777 * Returns the number of pages that arch has reserved but
8778 * is not known to alloc_large_system_hash().
8779 */
8780static unsigned long __init arch_reserved_kernel_pages(void)
8781{
8782 return 0;
8783}
8784#endif
8785
9017217b
PT
8786/*
8787 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8788 * machines. As memory size is increased the scale is also increased but at
8789 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8790 * quadruples the scale is increased by one, which means the size of hash table
8791 * only doubles, instead of quadrupling as well.
8792 * Because 32-bit systems cannot have large physical memory, where this scaling
8793 * makes sense, it is disabled on such platforms.
8794 */
8795#if __BITS_PER_LONG > 32
8796#define ADAPT_SCALE_BASE (64ul << 30)
8797#define ADAPT_SCALE_SHIFT 2
8798#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8799#endif
8800
1da177e4
LT
8801/*
8802 * allocate a large system hash table from bootmem
8803 * - it is assumed that the hash table must contain an exact power-of-2
8804 * quantity of entries
8805 * - limit is the number of hash buckets, not the total allocation size
8806 */
8807void *__init alloc_large_system_hash(const char *tablename,
8808 unsigned long bucketsize,
8809 unsigned long numentries,
8810 int scale,
8811 int flags,
8812 unsigned int *_hash_shift,
8813 unsigned int *_hash_mask,
31fe62b9
TB
8814 unsigned long low_limit,
8815 unsigned long high_limit)
1da177e4 8816{
31fe62b9 8817 unsigned long long max = high_limit;
1da177e4
LT
8818 unsigned long log2qty, size;
8819 void *table = NULL;
3749a8f0 8820 gfp_t gfp_flags;
ec11408a 8821 bool virt;
121e6f32 8822 bool huge;
1da177e4
LT
8823
8824 /* allow the kernel cmdline to have a say */
8825 if (!numentries) {
8826 /* round applicable memory size up to nearest megabyte */
04903664 8827 numentries = nr_kernel_pages;
f6f34b43 8828 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8829
8830 /* It isn't necessary when PAGE_SIZE >= 1MB */
8831 if (PAGE_SHIFT < 20)
8832 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8833
9017217b
PT
8834#if __BITS_PER_LONG > 32
8835 if (!high_limit) {
8836 unsigned long adapt;
8837
8838 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8839 adapt <<= ADAPT_SCALE_SHIFT)
8840 scale++;
8841 }
8842#endif
8843
1da177e4
LT
8844 /* limit to 1 bucket per 2^scale bytes of low memory */
8845 if (scale > PAGE_SHIFT)
8846 numentries >>= (scale - PAGE_SHIFT);
8847 else
8848 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8849
8850 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8851 if (unlikely(flags & HASH_SMALL)) {
8852 /* Makes no sense without HASH_EARLY */
8853 WARN_ON(!(flags & HASH_EARLY));
8854 if (!(numentries >> *_hash_shift)) {
8855 numentries = 1UL << *_hash_shift;
8856 BUG_ON(!numentries);
8857 }
8858 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8859 numentries = PAGE_SIZE / bucketsize;
1da177e4 8860 }
6e692ed3 8861 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8862
8863 /* limit allocation size to 1/16 total memory by default */
8864 if (max == 0) {
8865 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8866 do_div(max, bucketsize);
8867 }
074b8517 8868 max = min(max, 0x80000000ULL);
1da177e4 8869
31fe62b9
TB
8870 if (numentries < low_limit)
8871 numentries = low_limit;
1da177e4
LT
8872 if (numentries > max)
8873 numentries = max;
8874
f0d1b0b3 8875 log2qty = ilog2(numentries);
1da177e4 8876
3749a8f0 8877 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8878 do {
ec11408a 8879 virt = false;
1da177e4 8880 size = bucketsize << log2qty;
ea1f5f37
PT
8881 if (flags & HASH_EARLY) {
8882 if (flags & HASH_ZERO)
26fb3dae 8883 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8884 else
7e1c4e27
MR
8885 table = memblock_alloc_raw(size,
8886 SMP_CACHE_BYTES);
ec11408a 8887 } else if (get_order(size) >= MAX_ORDER || hashdist) {
f2edd118 8888 table = vmalloc_huge(size, gfp_flags);
ec11408a 8889 virt = true;
084f7e23
ED
8890 if (table)
8891 huge = is_vm_area_hugepages(table);
ea1f5f37 8892 } else {
1037b83b
ED
8893 /*
8894 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8895 * some pages at the end of hash table which
8896 * alloc_pages_exact() automatically does
1037b83b 8897 */
ec11408a
NP
8898 table = alloc_pages_exact(size, gfp_flags);
8899 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8900 }
8901 } while (!table && size > PAGE_SIZE && --log2qty);
8902
8903 if (!table)
8904 panic("Failed to allocate %s hash table\n", tablename);
8905
ec11408a
NP
8906 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8907 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8908 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8909
8910 if (_hash_shift)
8911 *_hash_shift = log2qty;
8912 if (_hash_mask)
8913 *_hash_mask = (1 << log2qty) - 1;
8914
8915 return table;
8916}
a117e66e 8917
a5d76b54 8918/*
80934513 8919 * This function checks whether pageblock includes unmovable pages or not.
80934513 8920 *
b8af2941 8921 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8922 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8923 * check without lock_page also may miss some movable non-lru pages at
8924 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8925 *
8926 * Returns a page without holding a reference. If the caller wants to
047b9967 8927 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8928 * cannot get removed (e.g., via memory unplug) concurrently.
8929 *
a5d76b54 8930 */
4a55c047
QC
8931struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8932 int migratetype, int flags)
49ac8255 8933{
1a9f2191
QC
8934 unsigned long iter = 0;
8935 unsigned long pfn = page_to_pfn(page);
6a654e36 8936 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8937
1a9f2191
QC
8938 if (is_migrate_cma_page(page)) {
8939 /*
8940 * CMA allocations (alloc_contig_range) really need to mark
8941 * isolate CMA pageblocks even when they are not movable in fact
8942 * so consider them movable here.
8943 */
8944 if (is_migrate_cma(migratetype))
4a55c047 8945 return NULL;
1a9f2191 8946
3d680bdf 8947 return page;
1a9f2191 8948 }
4da2ce25 8949
6a654e36 8950 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8951 page = pfn_to_page(pfn + iter);
c8721bbb 8952
c9c510dc
DH
8953 /*
8954 * Both, bootmem allocations and memory holes are marked
8955 * PG_reserved and are unmovable. We can even have unmovable
8956 * allocations inside ZONE_MOVABLE, for example when
8957 * specifying "movablecore".
8958 */
d7ab3672 8959 if (PageReserved(page))
3d680bdf 8960 return page;
d7ab3672 8961
9d789999
MH
8962 /*
8963 * If the zone is movable and we have ruled out all reserved
8964 * pages then it should be reasonably safe to assume the rest
8965 * is movable.
8966 */
8967 if (zone_idx(zone) == ZONE_MOVABLE)
8968 continue;
8969
c8721bbb
NH
8970 /*
8971 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8972 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8973 * We need not scan over tail pages because we don't
c8721bbb
NH
8974 * handle each tail page individually in migration.
8975 */
1da2f328 8976 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8977 struct page *head = compound_head(page);
8978 unsigned int skip_pages;
464c7ffb 8979
1da2f328
RR
8980 if (PageHuge(page)) {
8981 if (!hugepage_migration_supported(page_hstate(head)))
8982 return page;
8983 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8984 return page;
1da2f328 8985 }
464c7ffb 8986
d8c6546b 8987 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8988 iter += skip_pages - 1;
c8721bbb
NH
8989 continue;
8990 }
8991
97d255c8
MK
8992 /*
8993 * We can't use page_count without pin a page
8994 * because another CPU can free compound page.
8995 * This check already skips compound tails of THP
0139aa7b 8996 * because their page->_refcount is zero at all time.
97d255c8 8997 */
fe896d18 8998 if (!page_ref_count(page)) {
49ac8255 8999 if (PageBuddy(page))
ab130f91 9000 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
9001 continue;
9002 }
97d255c8 9003
b023f468
WC
9004 /*
9005 * The HWPoisoned page may be not in buddy system, and
9006 * page_count() is not 0.
9007 */
756d25be 9008 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
9009 continue;
9010
aa218795
DH
9011 /*
9012 * We treat all PageOffline() pages as movable when offlining
9013 * to give drivers a chance to decrement their reference count
9014 * in MEM_GOING_OFFLINE in order to indicate that these pages
9015 * can be offlined as there are no direct references anymore.
9016 * For actually unmovable PageOffline() where the driver does
9017 * not support this, we will fail later when trying to actually
9018 * move these pages that still have a reference count > 0.
9019 * (false negatives in this function only)
9020 */
9021 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9022 continue;
9023
fe4c86c9 9024 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
9025 continue;
9026
49ac8255 9027 /*
6b4f7799
JW
9028 * If there are RECLAIMABLE pages, we need to check
9029 * it. But now, memory offline itself doesn't call
9030 * shrink_node_slabs() and it still to be fixed.
49ac8255 9031 */
3d680bdf 9032 return page;
49ac8255 9033 }
4a55c047 9034 return NULL;
49ac8255
KH
9035}
9036
8df995f6 9037#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
9038static unsigned long pfn_max_align_down(unsigned long pfn)
9039{
b3d40a2b 9040 return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
041d3a8c
MN
9041}
9042
9043static unsigned long pfn_max_align_up(unsigned long pfn)
9044{
b3d40a2b 9045 return ALIGN(pfn, MAX_ORDER_NR_PAGES);
041d3a8c
MN
9046}
9047
a1394bdd
MK
9048#if defined(CONFIG_DYNAMIC_DEBUG) || \
9049 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9050/* Usage: See admin-guide/dynamic-debug-howto.rst */
9051static void alloc_contig_dump_pages(struct list_head *page_list)
9052{
9053 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9054
9055 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9056 struct page *page;
9057
9058 dump_stack();
9059 list_for_each_entry(page, page_list, lru)
9060 dump_page(page, "migration failure");
9061 }
9062}
9063#else
9064static inline void alloc_contig_dump_pages(struct list_head *page_list)
9065{
9066}
9067#endif
9068
041d3a8c 9069/* [start, end) must belong to a single zone. */
bb13ffeb
MG
9070static int __alloc_contig_migrate_range(struct compact_control *cc,
9071 unsigned long start, unsigned long end)
041d3a8c
MN
9072{
9073 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 9074 unsigned int nr_reclaimed;
041d3a8c
MN
9075 unsigned long pfn = start;
9076 unsigned int tries = 0;
9077 int ret = 0;
8b94e0b8
JK
9078 struct migration_target_control mtc = {
9079 .nid = zone_to_nid(cc->zone),
9080 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9081 };
041d3a8c 9082
361a2a22 9083 lru_cache_disable();
041d3a8c 9084
bb13ffeb 9085 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
9086 if (fatal_signal_pending(current)) {
9087 ret = -EINTR;
9088 break;
9089 }
9090
bb13ffeb
MG
9091 if (list_empty(&cc->migratepages)) {
9092 cc->nr_migratepages = 0;
c2ad7a1f
OS
9093 ret = isolate_migratepages_range(cc, pfn, end);
9094 if (ret && ret != -EAGAIN)
041d3a8c 9095 break;
c2ad7a1f 9096 pfn = cc->migrate_pfn;
041d3a8c
MN
9097 tries = 0;
9098 } else if (++tries == 5) {
c8e28b47 9099 ret = -EBUSY;
041d3a8c
MN
9100 break;
9101 }
9102
beb51eaa
MK
9103 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9104 &cc->migratepages);
9105 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9106
8b94e0b8 9107 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9108 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9109
9110 /*
9111 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9112 * to retry again over this error, so do the same here.
9113 */
9114 if (ret == -ENOMEM)
9115 break;
041d3a8c 9116 }
d479960e 9117
361a2a22 9118 lru_cache_enable();
2a6f5124 9119 if (ret < 0) {
151e084a
MK
9120 if (ret == -EBUSY)
9121 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9122 putback_movable_pages(&cc->migratepages);
9123 return ret;
9124 }
9125 return 0;
041d3a8c
MN
9126}
9127
9128/**
9129 * alloc_contig_range() -- tries to allocate given range of pages
9130 * @start: start PFN to allocate
9131 * @end: one-past-the-last PFN to allocate
f0953a1b 9132 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9133 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9134 * in range must have the same migratetype and it must
9135 * be either of the two.
ca96b625 9136 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
9137 *
9138 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 9139 * aligned. The PFN range must belong to a single zone.
041d3a8c 9140 *
2c7452a0
MK
9141 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9142 * pageblocks in the range. Once isolated, the pageblocks should not
9143 * be modified by others.
041d3a8c 9144 *
a862f68a 9145 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9146 * pages which PFN is in [start, end) are allocated for the caller and
9147 * need to be freed with free_contig_range().
9148 */
0815f3d8 9149int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9150 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9151{
041d3a8c 9152 unsigned long outer_start, outer_end;
d00181b9
KS
9153 unsigned int order;
9154 int ret = 0;
041d3a8c 9155
bb13ffeb
MG
9156 struct compact_control cc = {
9157 .nr_migratepages = 0,
9158 .order = -1,
9159 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9160 .mode = MIGRATE_SYNC,
bb13ffeb 9161 .ignore_skip_hint = true,
2583d671 9162 .no_set_skip_hint = true,
7dea19f9 9163 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9164 .alloc_contig = true,
bb13ffeb
MG
9165 };
9166 INIT_LIST_HEAD(&cc.migratepages);
9167
041d3a8c
MN
9168 /*
9169 * What we do here is we mark all pageblocks in range as
9170 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9171 * have different sizes, and due to the way page allocator
9172 * work, we align the range to biggest of the two pages so
9173 * that page allocator won't try to merge buddies from
9174 * different pageblocks and change MIGRATE_ISOLATE to some
9175 * other migration type.
9176 *
9177 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9178 * migrate the pages from an unaligned range (ie. pages that
9179 * we are interested in). This will put all the pages in
9180 * range back to page allocator as MIGRATE_ISOLATE.
9181 *
9182 * When this is done, we take the pages in range from page
9183 * allocator removing them from the buddy system. This way
9184 * page allocator will never consider using them.
9185 *
9186 * This lets us mark the pageblocks back as
9187 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9188 * aligned range but not in the unaligned, original range are
9189 * put back to page allocator so that buddy can use them.
9190 */
9191
9192 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 9193 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 9194 if (ret)
86a595f9 9195 return ret;
041d3a8c 9196
7612921f
VB
9197 drain_all_pages(cc.zone);
9198
8ef5849f
JK
9199 /*
9200 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9201 * So, just fall through. test_pages_isolated() has a tracepoint
9202 * which will report the busy page.
9203 *
9204 * It is possible that busy pages could become available before
9205 * the call to test_pages_isolated, and the range will actually be
9206 * allocated. So, if we fall through be sure to clear ret so that
9207 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9208 */
bb13ffeb 9209 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9210 if (ret && ret != -EBUSY)
041d3a8c 9211 goto done;
68d68ff6 9212 ret = 0;
041d3a8c
MN
9213
9214 /*
9215 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9216 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9217 * more, all pages in [start, end) are free in page allocator.
9218 * What we are going to do is to allocate all pages from
9219 * [start, end) (that is remove them from page allocator).
9220 *
9221 * The only problem is that pages at the beginning and at the
9222 * end of interesting range may be not aligned with pages that
9223 * page allocator holds, ie. they can be part of higher order
9224 * pages. Because of this, we reserve the bigger range and
9225 * once this is done free the pages we are not interested in.
9226 *
9227 * We don't have to hold zone->lock here because the pages are
9228 * isolated thus they won't get removed from buddy.
9229 */
9230
041d3a8c
MN
9231 order = 0;
9232 outer_start = start;
9233 while (!PageBuddy(pfn_to_page(outer_start))) {
9234 if (++order >= MAX_ORDER) {
8ef5849f
JK
9235 outer_start = start;
9236 break;
041d3a8c
MN
9237 }
9238 outer_start &= ~0UL << order;
9239 }
9240
8ef5849f 9241 if (outer_start != start) {
ab130f91 9242 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9243
9244 /*
9245 * outer_start page could be small order buddy page and
9246 * it doesn't include start page. Adjust outer_start
9247 * in this case to report failed page properly
9248 * on tracepoint in test_pages_isolated()
9249 */
9250 if (outer_start + (1UL << order) <= start)
9251 outer_start = start;
9252 }
9253
041d3a8c 9254 /* Make sure the range is really isolated. */
756d25be 9255 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9256 ret = -EBUSY;
9257 goto done;
9258 }
9259
49f223a9 9260 /* Grab isolated pages from freelists. */
bb13ffeb 9261 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9262 if (!outer_end) {
9263 ret = -EBUSY;
9264 goto done;
9265 }
9266
9267 /* Free head and tail (if any) */
9268 if (start != outer_start)
9269 free_contig_range(outer_start, start - outer_start);
9270 if (end != outer_end)
9271 free_contig_range(end, outer_end - end);
9272
9273done:
9274 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 9275 pfn_max_align_up(end), migratetype);
041d3a8c
MN
9276 return ret;
9277}
255f5985 9278EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9279
9280static int __alloc_contig_pages(unsigned long start_pfn,
9281 unsigned long nr_pages, gfp_t gfp_mask)
9282{
9283 unsigned long end_pfn = start_pfn + nr_pages;
9284
9285 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9286 gfp_mask);
9287}
9288
9289static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9290 unsigned long nr_pages)
9291{
9292 unsigned long i, end_pfn = start_pfn + nr_pages;
9293 struct page *page;
9294
9295 for (i = start_pfn; i < end_pfn; i++) {
9296 page = pfn_to_online_page(i);
9297 if (!page)
9298 return false;
9299
9300 if (page_zone(page) != z)
9301 return false;
9302
9303 if (PageReserved(page))
9304 return false;
5e27a2df
AK
9305 }
9306 return true;
9307}
9308
9309static bool zone_spans_last_pfn(const struct zone *zone,
9310 unsigned long start_pfn, unsigned long nr_pages)
9311{
9312 unsigned long last_pfn = start_pfn + nr_pages - 1;
9313
9314 return zone_spans_pfn(zone, last_pfn);
9315}
9316
9317/**
9318 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9319 * @nr_pages: Number of contiguous pages to allocate
9320 * @gfp_mask: GFP mask to limit search and used during compaction
9321 * @nid: Target node
9322 * @nodemask: Mask for other possible nodes
9323 *
9324 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9325 * on an applicable zonelist to find a contiguous pfn range which can then be
9326 * tried for allocation with alloc_contig_range(). This routine is intended
9327 * for allocation requests which can not be fulfilled with the buddy allocator.
9328 *
9329 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9330 * power of two, then allocated range is also guaranteed to be aligned to same
9331 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9332 *
9333 * Allocated pages can be freed with free_contig_range() or by manually calling
9334 * __free_page() on each allocated page.
9335 *
9336 * Return: pointer to contiguous pages on success, or NULL if not successful.
9337 */
9338struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9339 int nid, nodemask_t *nodemask)
9340{
9341 unsigned long ret, pfn, flags;
9342 struct zonelist *zonelist;
9343 struct zone *zone;
9344 struct zoneref *z;
9345
9346 zonelist = node_zonelist(nid, gfp_mask);
9347 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9348 gfp_zone(gfp_mask), nodemask) {
9349 spin_lock_irqsave(&zone->lock, flags);
9350
9351 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9352 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9353 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9354 /*
9355 * We release the zone lock here because
9356 * alloc_contig_range() will also lock the zone
9357 * at some point. If there's an allocation
9358 * spinning on this lock, it may win the race
9359 * and cause alloc_contig_range() to fail...
9360 */
9361 spin_unlock_irqrestore(&zone->lock, flags);
9362 ret = __alloc_contig_pages(pfn, nr_pages,
9363 gfp_mask);
9364 if (!ret)
9365 return pfn_to_page(pfn);
9366 spin_lock_irqsave(&zone->lock, flags);
9367 }
9368 pfn += nr_pages;
9369 }
9370 spin_unlock_irqrestore(&zone->lock, flags);
9371 }
9372 return NULL;
9373}
4eb0716e 9374#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9375
78fa5150 9376void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9377{
78fa5150 9378 unsigned long count = 0;
bcc2b02f
MS
9379
9380 for (; nr_pages--; pfn++) {
9381 struct page *page = pfn_to_page(pfn);
9382
9383 count += page_count(page) != 1;
9384 __free_page(page);
9385 }
78fa5150 9386 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9387}
255f5985 9388EXPORT_SYMBOL(free_contig_range);
041d3a8c 9389
0a647f38
CS
9390/*
9391 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9392 * page high values need to be recalculated.
0a647f38 9393 */
04f8cfea 9394void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9395{
c8e251fa 9396 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9397 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9398 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9399}
4ed7e022 9400
ec6e8c7e
VB
9401/*
9402 * Effectively disable pcplists for the zone by setting the high limit to 0
9403 * and draining all cpus. A concurrent page freeing on another CPU that's about
9404 * to put the page on pcplist will either finish before the drain and the page
9405 * will be drained, or observe the new high limit and skip the pcplist.
9406 *
9407 * Must be paired with a call to zone_pcp_enable().
9408 */
9409void zone_pcp_disable(struct zone *zone)
9410{
9411 mutex_lock(&pcp_batch_high_lock);
9412 __zone_set_pageset_high_and_batch(zone, 0, 1);
9413 __drain_all_pages(zone, true);
9414}
9415
9416void zone_pcp_enable(struct zone *zone)
9417{
9418 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9419 mutex_unlock(&pcp_batch_high_lock);
9420}
9421
340175b7
JL
9422void zone_pcp_reset(struct zone *zone)
9423{
5a883813 9424 int cpu;
28f836b6 9425 struct per_cpu_zonestat *pzstats;
340175b7 9426
28f836b6 9427 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9428 for_each_online_cpu(cpu) {
28f836b6
MG
9429 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9430 drain_zonestat(zone, pzstats);
5a883813 9431 }
28f836b6
MG
9432 free_percpu(zone->per_cpu_pageset);
9433 free_percpu(zone->per_cpu_zonestats);
9434 zone->per_cpu_pageset = &boot_pageset;
9435 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9436 }
340175b7
JL
9437}
9438
6dcd73d7 9439#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9440/*
257bea71
DH
9441 * All pages in the range must be in a single zone, must not contain holes,
9442 * must span full sections, and must be isolated before calling this function.
0c0e6195 9443 */
257bea71 9444void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9445{
257bea71 9446 unsigned long pfn = start_pfn;
0c0e6195
KH
9447 struct page *page;
9448 struct zone *zone;
0ee5f4f3 9449 unsigned int order;
0c0e6195 9450 unsigned long flags;
5557c766 9451
2d070eab 9452 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9453 zone = page_zone(pfn_to_page(pfn));
9454 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9455 while (pfn < end_pfn) {
0c0e6195 9456 page = pfn_to_page(pfn);
b023f468
WC
9457 /*
9458 * The HWPoisoned page may be not in buddy system, and
9459 * page_count() is not 0.
9460 */
9461 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9462 pfn++;
b023f468
WC
9463 continue;
9464 }
aa218795
DH
9465 /*
9466 * At this point all remaining PageOffline() pages have a
9467 * reference count of 0 and can simply be skipped.
9468 */
9469 if (PageOffline(page)) {
9470 BUG_ON(page_count(page));
9471 BUG_ON(PageBuddy(page));
9472 pfn++;
aa218795
DH
9473 continue;
9474 }
b023f468 9475
0c0e6195
KH
9476 BUG_ON(page_count(page));
9477 BUG_ON(!PageBuddy(page));
ab130f91 9478 order = buddy_order(page);
6ab01363 9479 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9480 pfn += (1 << order);
9481 }
9482 spin_unlock_irqrestore(&zone->lock, flags);
9483}
9484#endif
8d22ba1b 9485
8446b59b
ED
9486/*
9487 * This function returns a stable result only if called under zone lock.
9488 */
8d22ba1b
WF
9489bool is_free_buddy_page(struct page *page)
9490{
8d22ba1b 9491 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9492 unsigned int order;
8d22ba1b 9493
8d22ba1b
WF
9494 for (order = 0; order < MAX_ORDER; order++) {
9495 struct page *page_head = page - (pfn & ((1 << order) - 1));
9496
8446b59b
ED
9497 if (PageBuddy(page_head) &&
9498 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9499 break;
9500 }
8d22ba1b
WF
9501
9502 return order < MAX_ORDER;
9503}
a581865e 9504EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
9505
9506#ifdef CONFIG_MEMORY_FAILURE
9507/*
06be6ff3
OS
9508 * Break down a higher-order page in sub-pages, and keep our target out of
9509 * buddy allocator.
d4ae9916 9510 */
06be6ff3
OS
9511static void break_down_buddy_pages(struct zone *zone, struct page *page,
9512 struct page *target, int low, int high,
9513 int migratetype)
9514{
9515 unsigned long size = 1 << high;
9516 struct page *current_buddy, *next_page;
9517
9518 while (high > low) {
9519 high--;
9520 size >>= 1;
9521
9522 if (target >= &page[size]) {
9523 next_page = page + size;
9524 current_buddy = page;
9525 } else {
9526 next_page = page;
9527 current_buddy = page + size;
9528 }
9529
9530 if (set_page_guard(zone, current_buddy, high, migratetype))
9531 continue;
9532
9533 if (current_buddy != target) {
9534 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9535 set_buddy_order(current_buddy, high);
06be6ff3
OS
9536 page = next_page;
9537 }
9538 }
9539}
9540
9541/*
9542 * Take a page that will be marked as poisoned off the buddy allocator.
9543 */
9544bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9545{
9546 struct zone *zone = page_zone(page);
9547 unsigned long pfn = page_to_pfn(page);
9548 unsigned long flags;
9549 unsigned int order;
06be6ff3 9550 bool ret = false;
d4ae9916
NH
9551
9552 spin_lock_irqsave(&zone->lock, flags);
9553 for (order = 0; order < MAX_ORDER; order++) {
9554 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9555 int page_order = buddy_order(page_head);
d4ae9916 9556
ab130f91 9557 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9558 unsigned long pfn_head = page_to_pfn(page_head);
9559 int migratetype = get_pfnblock_migratetype(page_head,
9560 pfn_head);
9561
ab130f91 9562 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9563 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9564 page_order, migratetype);
bf181c58 9565 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9566 if (!is_migrate_isolate(migratetype))
9567 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9568 ret = true;
d4ae9916
NH
9569 break;
9570 }
06be6ff3
OS
9571 if (page_count(page_head) > 0)
9572 break;
d4ae9916
NH
9573 }
9574 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9575 return ret;
d4ae9916 9576}
bf181c58
NH
9577
9578/*
9579 * Cancel takeoff done by take_page_off_buddy().
9580 */
9581bool put_page_back_buddy(struct page *page)
9582{
9583 struct zone *zone = page_zone(page);
9584 unsigned long pfn = page_to_pfn(page);
9585 unsigned long flags;
9586 int migratetype = get_pfnblock_migratetype(page, pfn);
9587 bool ret = false;
9588
9589 spin_lock_irqsave(&zone->lock, flags);
9590 if (put_page_testzero(page)) {
9591 ClearPageHWPoisonTakenOff(page);
9592 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9593 if (TestClearPageHWPoison(page)) {
9594 num_poisoned_pages_dec();
9595 ret = true;
9596 }
9597 }
9598 spin_unlock_irqrestore(&zone->lock, flags);
9599
9600 return ret;
9601}
d4ae9916 9602#endif
62b31070
BH
9603
9604#ifdef CONFIG_ZONE_DMA
9605bool has_managed_dma(void)
9606{
9607 struct pglist_data *pgdat;
9608
9609 for_each_online_pgdat(pgdat) {
9610 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9611
9612 if (managed_zone(zone))
9613 return true;
9614 }
9615 return false;
9616}
9617#endif /* CONFIG_ZONE_DMA */