memblock: remove _virt from APIs returning virtual address
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53
MG
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
38addce8 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 104volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
1da177e4 108/*
13808910 109 * Array of node states.
1da177e4 110 */
13808910
CL
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 118#endif
20b2f52b 119 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
c3d5f5f0
JL
125/* Protect totalram_pages and zone->managed_pages */
126static DEFINE_SPINLOCK(managed_page_count_lock);
127
6c231b7b 128unsigned long totalram_pages __read_mostly;
cb45b0e9 129unsigned long totalreserve_pages __read_mostly;
e48322ab 130unsigned long totalcma_pages __read_mostly;
ab8fabd4 131
1b76b02f 132int percpu_pagelist_fraction;
dcce284a 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 134
bb14c2c7
VB
135/*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
143static inline int get_pcppage_migratetype(struct page *page)
144{
145 return page->index;
146}
147
148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149{
150 page->index = migratetype;
151}
152
452aa699
RW
153#ifdef CONFIG_PM_SLEEP
154/*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
158 * they should always be called with system_transition_mutex held
159 * (gfp_allowed_mask also should only be modified with system_transition_mutex
160 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
161 * with that modification).
452aa699 162 */
c9e664f1
RW
163
164static gfp_t saved_gfp_mask;
165
166void pm_restore_gfp_mask(void)
452aa699 167{
55f2503c 168 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
452aa699
RW
173}
174
c9e664f1 175void pm_restrict_gfp_mask(void)
452aa699 176{
55f2503c 177 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
d0164adc 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 181}
f90ac398
MG
182
183bool pm_suspended_storage(void)
184{
d0164adc 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
186 return false;
187 return true;
188}
452aa699
RW
189#endif /* CONFIG_PM_SLEEP */
190
d9c23400 191#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 192unsigned int pageblock_order __read_mostly;
d9c23400
MG
193#endif
194
d98c7a09 195static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 196
1da177e4
LT
197/*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
1da177e4 207 */
d3cda233 208int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 209#ifdef CONFIG_ZONE_DMA
d3cda233 210 [ZONE_DMA] = 256,
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
d3cda233 213 [ZONE_DMA32] = 256,
fb0e7942 214#endif
d3cda233 215 [ZONE_NORMAL] = 32,
e53ef38d 216#ifdef CONFIG_HIGHMEM
d3cda233 217 [ZONE_HIGHMEM] = 0,
e53ef38d 218#endif
d3cda233 219 [ZONE_MOVABLE] = 0,
2f1b6248 220};
1da177e4
LT
221
222EXPORT_SYMBOL(totalram_pages);
1da177e4 223
15ad7cdc 224static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 225#ifdef CONFIG_ZONE_DMA
2f1b6248 226 "DMA",
4b51d669 227#endif
fb0e7942 228#ifdef CONFIG_ZONE_DMA32
2f1b6248 229 "DMA32",
fb0e7942 230#endif
2f1b6248 231 "Normal",
e53ef38d 232#ifdef CONFIG_HIGHMEM
2a1e274a 233 "HighMem",
e53ef38d 234#endif
2a1e274a 235 "Movable",
033fbae9
DW
236#ifdef CONFIG_ZONE_DEVICE
237 "Device",
238#endif
2f1b6248
CL
239};
240
60f30350
VB
241char * const migratetype_names[MIGRATE_TYPES] = {
242 "Unmovable",
243 "Movable",
244 "Reclaimable",
245 "HighAtomic",
246#ifdef CONFIG_CMA
247 "CMA",
248#endif
249#ifdef CONFIG_MEMORY_ISOLATION
250 "Isolate",
251#endif
252};
253
f1e61557
KS
254compound_page_dtor * const compound_page_dtors[] = {
255 NULL,
256 free_compound_page,
257#ifdef CONFIG_HUGETLB_PAGE
258 free_huge_page,
259#endif
9a982250
KS
260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 free_transhuge_page,
262#endif
f1e61557
KS
263};
264
1da177e4 265int min_free_kbytes = 1024;
42aa83cb 266int user_min_free_kbytes = -1;
795ae7a0 267int watermark_scale_factor = 10;
1da177e4 268
7f16f91f
DR
269static unsigned long nr_kernel_pages __meminitdata;
270static unsigned long nr_all_pages __meminitdata;
271static unsigned long dma_reserve __meminitdata;
1da177e4 272
0ee332c1 273#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7f16f91f
DR
274static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
276static unsigned long required_kernelcore __initdata;
a5c6d650 277static unsigned long required_kernelcore_percent __initdata;
7f16f91f 278static unsigned long required_movablecore __initdata;
a5c6d650 279static unsigned long required_movablecore_percent __initdata;
7f16f91f
DR
280static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
281static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
282
283/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284int movable_zone;
285EXPORT_SYMBOL(movable_zone);
286#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 287
418508c1
MS
288#if MAX_NUMNODES > 1
289int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 290int nr_online_nodes __read_mostly = 1;
418508c1 291EXPORT_SYMBOL(nr_node_ids);
62bc62a8 292EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
293#endif
294
9ef9acb0
MG
295int page_group_by_mobility_disabled __read_mostly;
296
3a80a7fa 297#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3a80a7fa 298/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 299static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 300{
ef70b6f4
MG
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
304 return true;
305
306 return false;
307}
308
309/*
d3035be4 310 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
311 * later in the boot cycle when it can be parallelised.
312 */
d3035be4
PT
313static bool __meminit
314defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 315{
d3035be4
PT
316 static unsigned long prev_end_pfn, nr_initialised;
317
318 /*
319 * prev_end_pfn static that contains the end of previous zone
320 * No need to protect because called very early in boot before smp_init.
321 */
322 if (prev_end_pfn != end_pfn) {
323 prev_end_pfn = end_pfn;
324 nr_initialised = 0;
325 }
326
3c2c6488 327 /* Always populate low zones for address-constrained allocations */
d3035be4 328 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 329 return false;
d3035be4
PT
330 nr_initialised++;
331 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
332 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
333 NODE_DATA(nid)->first_deferred_pfn = pfn;
334 return true;
3a80a7fa 335 }
d3035be4 336 return false;
3a80a7fa
MG
337}
338#else
3a80a7fa
MG
339static inline bool early_page_uninitialised(unsigned long pfn)
340{
341 return false;
342}
343
d3035be4 344static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 345{
d3035be4 346 return false;
3a80a7fa
MG
347}
348#endif
349
0b423ca2
MG
350/* Return a pointer to the bitmap storing bits affecting a block of pages */
351static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353{
354#ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356#else
357 return page_zone(page)->pageblock_flags;
358#endif /* CONFIG_SPARSEMEM */
359}
360
361static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362{
363#ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366#else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369#endif /* CONFIG_SPARSEMEM */
370}
371
372/**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385{
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398}
399
400unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403{
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405}
406
407static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408{
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410}
411
412/**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424{
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449}
3a80a7fa 450
ee6f509c 451void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 452{
5d0f3f72
KM
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
455 migratetype = MIGRATE_UNMOVABLE;
456
b2a0ac88
MG
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459}
460
13e7444b 461#ifdef CONFIG_DEBUG_VM
c6a57e19 462static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 463{
bdc8cb98
DH
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 467 unsigned long sp, start_pfn;
c6a57e19 468
bdc8cb98
DH
469 do {
470 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
108bcc96 473 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
b5e6a5a2 477 if (ret)
613813e8
DH
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
b5e6a5a2 481
bdc8cb98 482 return ret;
c6a57e19
DH
483}
484
485static int page_is_consistent(struct zone *zone, struct page *page)
486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 488 return 0;
1da177e4 489 if (zone != page_zone(page))
c6a57e19
DH
490 return 0;
491
492 return 1;
493}
494/*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
d73d3c9f 497static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
498{
499 if (page_outside_zone_boundaries(zone, page))
1da177e4 500 return 1;
c6a57e19
DH
501 if (!page_is_consistent(zone, page))
502 return 1;
503
1da177e4
LT
504 return 0;
505}
13e7444b 506#else
d73d3c9f 507static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
508{
509 return 0;
510}
511#endif
512
d230dec1
KS
513static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
1da177e4 515{
d936cf9b
HD
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
ff8e8116 530 pr_alert(
1e9e6365 531 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
ff8e8116 540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 541 current->comm, page_to_pfn(page));
ff8e8116
VB
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
4e462112 547 dump_page_owner(page);
3dc14741 548
4f31888c 549 print_modules();
1da177e4 550 dump_stack();
d936cf9b 551out:
8cc3b392 552 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 553 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
555}
556
1da177e4
LT
557/*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
1d798ca3 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 561 *
1d798ca3
KS
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 564 *
1d798ca3
KS
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
1da177e4 567 *
1d798ca3 568 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 569 * This usage means that zero-order pages may not be compound.
1da177e4 570 */
d98c7a09 571
9a982250 572void free_compound_page(struct page *page)
d98c7a09 573{
d85f3385 574 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
575}
576
d00181b9 577void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
578{
579 int i;
580 int nr_pages = 1 << order;
581
f1e61557 582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
58a84aa9 587 set_page_count(p, 0);
1c290f64 588 p->mapping = TAIL_MAPPING;
1d798ca3 589 set_compound_head(p, page);
18229df5 590 }
53f9263b 591 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
592}
593
c0a32fc5
SG
594#ifdef CONFIG_DEBUG_PAGEALLOC
595unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
596bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 598EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
599bool _debug_guardpage_enabled __read_mostly;
600
031bc574
JK
601static int __init early_debug_pagealloc(char *buf)
602{
603 if (!buf)
604 return -EINVAL;
2a138dc7 605 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
606}
607early_param("debug_pagealloc", early_debug_pagealloc);
608
e30825f1
JK
609static bool need_debug_guardpage(void)
610{
031bc574
JK
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
f1c1e9f7
JK
615 if (!debug_guardpage_minorder())
616 return false;
617
e30825f1
JK
618 return true;
619}
620
621static void init_debug_guardpage(void)
622{
031bc574
JK
623 if (!debug_pagealloc_enabled())
624 return;
625
f1c1e9f7
JK
626 if (!debug_guardpage_minorder())
627 return;
628
e30825f1
JK
629 _debug_guardpage_enabled = true;
630}
631
632struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635};
c0a32fc5
SG
636
637static int __init debug_guardpage_minorder_setup(char *buf)
638{
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 642 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
1170532b 646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
647 return 0;
648}
f1c1e9f7 649early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 650
acbc15a4 651static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 652 unsigned int order, int migratetype)
c0a32fc5 653{
e30825f1
JK
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
acbc15a4
JK
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
e30825f1
JK
661
662 page_ext = lookup_page_ext(page);
f86e4271 663 if (unlikely(!page_ext))
acbc15a4 664 return false;
f86e4271 665
e30825f1
JK
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
2847cf95
JK
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
672
673 return true;
c0a32fc5
SG
674}
675
2847cf95
JK
676static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
c0a32fc5 678{
e30825f1
JK
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
f86e4271
YS
685 if (unlikely(!page_ext))
686 return;
687
e30825f1
JK
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
2847cf95
JK
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
693}
694#else
980ac167 695struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
696static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
2847cf95
JK
698static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
c0a32fc5
SG
700#endif
701
7aeb09f9 702static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 703{
4c21e2f2 704 set_page_private(page, order);
676165a8 705 __SetPageBuddy(page);
1da177e4
LT
706}
707
708static inline void rmv_page_order(struct page *page)
709{
676165a8 710 __ClearPageBuddy(page);
4c21e2f2 711 set_page_private(page, 0);
1da177e4
LT
712}
713
1da177e4
LT
714/*
715 * This function checks whether a page is free && is the buddy
6e292b9b 716 * we can coalesce a page and its buddy if
13ad59df 717 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 718 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
676165a8 721 *
6e292b9b
MW
722 * For recording whether a page is in the buddy system, we set PageBuddy.
723 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 724 *
676165a8 725 * For recording page's order, we use page_private(page).
1da177e4 726 */
cb2b95e1 727static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 728 unsigned int order)
1da177e4 729{
c0a32fc5 730 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
731 if (page_zone_id(page) != page_zone_id(buddy))
732 return 0;
733
4c5018ce
WY
734 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735
c0a32fc5
SG
736 return 1;
737 }
738
cb2b95e1 739 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
740 /*
741 * zone check is done late to avoid uselessly
742 * calculating zone/node ids for pages that could
743 * never merge.
744 */
745 if (page_zone_id(page) != page_zone_id(buddy))
746 return 0;
747
4c5018ce
WY
748 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749
6aa3001b 750 return 1;
676165a8 751 }
6aa3001b 752 return 0;
1da177e4
LT
753}
754
755/*
756 * Freeing function for a buddy system allocator.
757 *
758 * The concept of a buddy system is to maintain direct-mapped table
759 * (containing bit values) for memory blocks of various "orders".
760 * The bottom level table contains the map for the smallest allocatable
761 * units of memory (here, pages), and each level above it describes
762 * pairs of units from the levels below, hence, "buddies".
763 * At a high level, all that happens here is marking the table entry
764 * at the bottom level available, and propagating the changes upward
765 * as necessary, plus some accounting needed to play nicely with other
766 * parts of the VM system.
767 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
768 * free pages of length of (1 << order) and marked with PageBuddy.
769 * Page's order is recorded in page_private(page) field.
1da177e4 770 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
771 * other. That is, if we allocate a small block, and both were
772 * free, the remainder of the region must be split into blocks.
1da177e4 773 * If a block is freed, and its buddy is also free, then this
5f63b720 774 * triggers coalescing into a block of larger size.
1da177e4 775 *
6d49e352 776 * -- nyc
1da177e4
LT
777 */
778
48db57f8 779static inline void __free_one_page(struct page *page,
dc4b0caf 780 unsigned long pfn,
ed0ae21d
MG
781 struct zone *zone, unsigned int order,
782 int migratetype)
1da177e4 783{
76741e77
VB
784 unsigned long combined_pfn;
785 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 786 struct page *buddy;
d9dddbf5
VB
787 unsigned int max_order;
788
789 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 790
d29bb978 791 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 792 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 793
ed0ae21d 794 VM_BUG_ON(migratetype == -1);
d9dddbf5 795 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 796 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 797
76741e77 798 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 799 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 800
d9dddbf5 801continue_merging:
3c605096 802 while (order < max_order - 1) {
76741e77
VB
803 buddy_pfn = __find_buddy_pfn(pfn, order);
804 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
805
806 if (!pfn_valid_within(buddy_pfn))
807 goto done_merging;
cb2b95e1 808 if (!page_is_buddy(page, buddy, order))
d9dddbf5 809 goto done_merging;
c0a32fc5
SG
810 /*
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
813 */
814 if (page_is_guard(buddy)) {
2847cf95 815 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
816 } else {
817 list_del(&buddy->lru);
818 zone->free_area[order].nr_free--;
819 rmv_page_order(buddy);
820 }
76741e77
VB
821 combined_pfn = buddy_pfn & pfn;
822 page = page + (combined_pfn - pfn);
823 pfn = combined_pfn;
1da177e4
LT
824 order++;
825 }
d9dddbf5
VB
826 if (max_order < MAX_ORDER) {
827 /* If we are here, it means order is >= pageblock_order.
828 * We want to prevent merge between freepages on isolate
829 * pageblock and normal pageblock. Without this, pageblock
830 * isolation could cause incorrect freepage or CMA accounting.
831 *
832 * We don't want to hit this code for the more frequent
833 * low-order merging.
834 */
835 if (unlikely(has_isolate_pageblock(zone))) {
836 int buddy_mt;
837
76741e77
VB
838 buddy_pfn = __find_buddy_pfn(pfn, order);
839 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
840 buddy_mt = get_pageblock_migratetype(buddy);
841
842 if (migratetype != buddy_mt
843 && (is_migrate_isolate(migratetype) ||
844 is_migrate_isolate(buddy_mt)))
845 goto done_merging;
846 }
847 max_order++;
848 goto continue_merging;
849 }
850
851done_merging:
1da177e4 852 set_page_order(page, order);
6dda9d55
CZ
853
854 /*
855 * If this is not the largest possible page, check if the buddy
856 * of the next-highest order is free. If it is, it's possible
857 * that pages are being freed that will coalesce soon. In case,
858 * that is happening, add the free page to the tail of the list
859 * so it's less likely to be used soon and more likely to be merged
860 * as a higher order page
861 */
13ad59df 862 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 863 struct page *higher_page, *higher_buddy;
76741e77
VB
864 combined_pfn = buddy_pfn & pfn;
865 higher_page = page + (combined_pfn - pfn);
866 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
867 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
868 if (pfn_valid_within(buddy_pfn) &&
869 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
870 list_add_tail(&page->lru,
871 &zone->free_area[order].free_list[migratetype]);
872 goto out;
873 }
874 }
875
876 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
877out:
1da177e4
LT
878 zone->free_area[order].nr_free++;
879}
880
7bfec6f4
MG
881/*
882 * A bad page could be due to a number of fields. Instead of multiple branches,
883 * try and check multiple fields with one check. The caller must do a detailed
884 * check if necessary.
885 */
886static inline bool page_expected_state(struct page *page,
887 unsigned long check_flags)
888{
889 if (unlikely(atomic_read(&page->_mapcount) != -1))
890 return false;
891
892 if (unlikely((unsigned long)page->mapping |
893 page_ref_count(page) |
894#ifdef CONFIG_MEMCG
895 (unsigned long)page->mem_cgroup |
896#endif
897 (page->flags & check_flags)))
898 return false;
899
900 return true;
901}
902
bb552ac6 903static void free_pages_check_bad(struct page *page)
1da177e4 904{
7bfec6f4
MG
905 const char *bad_reason;
906 unsigned long bad_flags;
907
7bfec6f4
MG
908 bad_reason = NULL;
909 bad_flags = 0;
f0b791a3 910
53f9263b 911 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
912 bad_reason = "nonzero mapcount";
913 if (unlikely(page->mapping != NULL))
914 bad_reason = "non-NULL mapping";
fe896d18 915 if (unlikely(page_ref_count(page) != 0))
0139aa7b 916 bad_reason = "nonzero _refcount";
f0b791a3
DH
917 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
918 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
919 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 }
9edad6ea
JW
921#ifdef CONFIG_MEMCG
922 if (unlikely(page->mem_cgroup))
923 bad_reason = "page still charged to cgroup";
924#endif
7bfec6f4 925 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
926}
927
928static inline int free_pages_check(struct page *page)
929{
da838d4f 930 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 931 return 0;
bb552ac6
MG
932
933 /* Something has gone sideways, find it */
934 free_pages_check_bad(page);
7bfec6f4 935 return 1;
1da177e4
LT
936}
937
4db7548c
MG
938static int free_tail_pages_check(struct page *head_page, struct page *page)
939{
940 int ret = 1;
941
942 /*
943 * We rely page->lru.next never has bit 0 set, unless the page
944 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 */
946 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947
948 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
949 ret = 0;
950 goto out;
951 }
952 switch (page - head_page) {
953 case 1:
4da1984e 954 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
955 if (unlikely(compound_mapcount(page))) {
956 bad_page(page, "nonzero compound_mapcount", 0);
957 goto out;
958 }
959 break;
960 case 2:
961 /*
962 * the second tail page: ->mapping is
fa3015b7 963 * deferred_list.next -- ignore value.
4db7548c
MG
964 */
965 break;
966 default:
967 if (page->mapping != TAIL_MAPPING) {
968 bad_page(page, "corrupted mapping in tail page", 0);
969 goto out;
970 }
971 break;
972 }
973 if (unlikely(!PageTail(page))) {
974 bad_page(page, "PageTail not set", 0);
975 goto out;
976 }
977 if (unlikely(compound_head(page) != head_page)) {
978 bad_page(page, "compound_head not consistent", 0);
979 goto out;
980 }
981 ret = 0;
982out:
983 page->mapping = NULL;
984 clear_compound_head(page);
985 return ret;
986}
987
e2769dbd
MG
988static __always_inline bool free_pages_prepare(struct page *page,
989 unsigned int order, bool check_free)
4db7548c 990{
e2769dbd 991 int bad = 0;
4db7548c 992
4db7548c
MG
993 VM_BUG_ON_PAGE(PageTail(page), page);
994
e2769dbd 995 trace_mm_page_free(page, order);
e2769dbd
MG
996
997 /*
998 * Check tail pages before head page information is cleared to
999 * avoid checking PageCompound for order-0 pages.
1000 */
1001 if (unlikely(order)) {
1002 bool compound = PageCompound(page);
1003 int i;
1004
1005 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1006
9a73f61b
KS
1007 if (compound)
1008 ClearPageDoubleMap(page);
e2769dbd
MG
1009 for (i = 1; i < (1 << order); i++) {
1010 if (compound)
1011 bad += free_tail_pages_check(page, page + i);
1012 if (unlikely(free_pages_check(page + i))) {
1013 bad++;
1014 continue;
1015 }
1016 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 }
1018 }
bda807d4 1019 if (PageMappingFlags(page))
4db7548c 1020 page->mapping = NULL;
c4159a75 1021 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1022 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1023 if (check_free)
1024 bad += free_pages_check(page);
1025 if (bad)
1026 return false;
4db7548c 1027
e2769dbd
MG
1028 page_cpupid_reset_last(page);
1029 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1030 reset_page_owner(page, order);
4db7548c
MG
1031
1032 if (!PageHighMem(page)) {
1033 debug_check_no_locks_freed(page_address(page),
e2769dbd 1034 PAGE_SIZE << order);
4db7548c 1035 debug_check_no_obj_freed(page_address(page),
e2769dbd 1036 PAGE_SIZE << order);
4db7548c 1037 }
e2769dbd
MG
1038 arch_free_page(page, order);
1039 kernel_poison_pages(page, 1 << order, 0);
1040 kernel_map_pages(page, 1 << order, 0);
29b52de1 1041 kasan_free_pages(page, order);
4db7548c 1042
4db7548c
MG
1043 return true;
1044}
1045
e2769dbd
MG
1046#ifdef CONFIG_DEBUG_VM
1047static inline bool free_pcp_prepare(struct page *page)
1048{
1049 return free_pages_prepare(page, 0, true);
1050}
1051
1052static inline bool bulkfree_pcp_prepare(struct page *page)
1053{
1054 return false;
1055}
1056#else
1057static bool free_pcp_prepare(struct page *page)
1058{
1059 return free_pages_prepare(page, 0, false);
1060}
1061
4db7548c
MG
1062static bool bulkfree_pcp_prepare(struct page *page)
1063{
1064 return free_pages_check(page);
1065}
1066#endif /* CONFIG_DEBUG_VM */
1067
97334162
AL
1068static inline void prefetch_buddy(struct page *page)
1069{
1070 unsigned long pfn = page_to_pfn(page);
1071 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1072 struct page *buddy = page + (buddy_pfn - pfn);
1073
1074 prefetch(buddy);
1075}
1076
1da177e4 1077/*
5f8dcc21 1078 * Frees a number of pages from the PCP lists
1da177e4 1079 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1080 * count is the number of pages to free.
1da177e4
LT
1081 *
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1084 *
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1087 */
5f8dcc21
MG
1088static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1da177e4 1090{
5f8dcc21 1091 int migratetype = 0;
a6f9edd6 1092 int batch_free = 0;
97334162 1093 int prefetch_nr = 0;
3777999d 1094 bool isolated_pageblocks;
0a5f4e5b
AL
1095 struct page *page, *tmp;
1096 LIST_HEAD(head);
f2260e6b 1097
e5b31ac2 1098 while (count) {
5f8dcc21
MG
1099 struct list_head *list;
1100
1101 /*
a6f9edd6
MG
1102 * Remove pages from lists in a round-robin fashion. A
1103 * batch_free count is maintained that is incremented when an
1104 * empty list is encountered. This is so more pages are freed
1105 * off fuller lists instead of spinning excessively around empty
1106 * lists
5f8dcc21
MG
1107 */
1108 do {
a6f9edd6 1109 batch_free++;
5f8dcc21
MG
1110 if (++migratetype == MIGRATE_PCPTYPES)
1111 migratetype = 0;
1112 list = &pcp->lists[migratetype];
1113 } while (list_empty(list));
48db57f8 1114
1d16871d
NK
1115 /* This is the only non-empty list. Free them all. */
1116 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1117 batch_free = count;
1d16871d 1118
a6f9edd6 1119 do {
a16601c5 1120 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1121 /* must delete to avoid corrupting pcp list */
a6f9edd6 1122 list_del(&page->lru);
77ba9062 1123 pcp->count--;
aa016d14 1124
4db7548c
MG
1125 if (bulkfree_pcp_prepare(page))
1126 continue;
1127
0a5f4e5b 1128 list_add_tail(&page->lru, &head);
97334162
AL
1129
1130 /*
1131 * We are going to put the page back to the global
1132 * pool, prefetch its buddy to speed up later access
1133 * under zone->lock. It is believed the overhead of
1134 * an additional test and calculating buddy_pfn here
1135 * can be offset by reduced memory latency later. To
1136 * avoid excessive prefetching due to large count, only
1137 * prefetch buddy for the first pcp->batch nr of pages.
1138 */
1139 if (prefetch_nr++ < pcp->batch)
1140 prefetch_buddy(page);
e5b31ac2 1141 } while (--count && --batch_free && !list_empty(list));
1da177e4 1142 }
0a5f4e5b
AL
1143
1144 spin_lock(&zone->lock);
1145 isolated_pageblocks = has_isolate_pageblock(zone);
1146
1147 /*
1148 * Use safe version since after __free_one_page(),
1149 * page->lru.next will not point to original list.
1150 */
1151 list_for_each_entry_safe(page, tmp, &head, lru) {
1152 int mt = get_pcppage_migratetype(page);
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
1156 if (unlikely(isolated_pageblocks))
1157 mt = get_pageblock_migratetype(page);
1158
1159 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1160 trace_mm_page_pcpu_drain(page, 0, mt);
1161 }
d34b0733 1162 spin_unlock(&zone->lock);
1da177e4
LT
1163}
1164
dc4b0caf
MG
1165static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
7aeb09f9 1167 unsigned int order,
ed0ae21d 1168 int migratetype)
1da177e4 1169{
d34b0733 1170 spin_lock(&zone->lock);
ad53f92e
JK
1171 if (unlikely(has_isolate_pageblock(zone) ||
1172 is_migrate_isolate(migratetype))) {
1173 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1174 }
dc4b0caf 1175 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1176 spin_unlock(&zone->lock);
48db57f8
NP
1177}
1178
1e8ce83c 1179static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1180 unsigned long zone, int nid)
1e8ce83c 1181{
d0dc12e8 1182 mm_zero_struct_page(page);
1e8ce83c 1183 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1184 init_page_count(page);
1185 page_mapcount_reset(page);
1186 page_cpupid_reset_last(page);
1e8ce83c 1187
1e8ce83c
RH
1188 INIT_LIST_HEAD(&page->lru);
1189#ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1193#endif
1194}
1195
7e18adb4 1196#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1197static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1198{
1199 pg_data_t *pgdat;
1200 int nid, zid;
1201
1202 if (!early_page_uninitialised(pfn))
1203 return;
1204
1205 nid = early_pfn_to_nid(pfn);
1206 pgdat = NODE_DATA(nid);
1207
1208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1209 struct zone *zone = &pgdat->node_zones[zid];
1210
1211 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1212 break;
1213 }
d0dc12e8 1214 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1215}
1216#else
1217static inline void init_reserved_page(unsigned long pfn)
1218{
1219}
1220#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1221
92923ca3
NZ
1222/*
1223 * Initialised pages do not have PageReserved set. This function is
1224 * called for each range allocated by the bootmem allocator and
1225 * marks the pages PageReserved. The remaining valid pages are later
1226 * sent to the buddy page allocator.
1227 */
4b50bcc7 1228void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1229{
1230 unsigned long start_pfn = PFN_DOWN(start);
1231 unsigned long end_pfn = PFN_UP(end);
1232
7e18adb4
MG
1233 for (; start_pfn < end_pfn; start_pfn++) {
1234 if (pfn_valid(start_pfn)) {
1235 struct page *page = pfn_to_page(start_pfn);
1236
1237 init_reserved_page(start_pfn);
1d798ca3
KS
1238
1239 /* Avoid false-positive PageTail() */
1240 INIT_LIST_HEAD(&page->lru);
1241
d483da5b
AD
1242 /*
1243 * no need for atomic set_bit because the struct
1244 * page is not visible yet so nobody should
1245 * access it yet.
1246 */
1247 __SetPageReserved(page);
7e18adb4
MG
1248 }
1249 }
92923ca3
NZ
1250}
1251
ec95f53a
KM
1252static void __free_pages_ok(struct page *page, unsigned int order)
1253{
d34b0733 1254 unsigned long flags;
95e34412 1255 int migratetype;
dc4b0caf 1256 unsigned long pfn = page_to_pfn(page);
ec95f53a 1257
e2769dbd 1258 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1259 return;
1260
cfc47a28 1261 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1262 local_irq_save(flags);
1263 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1264 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1265 local_irq_restore(flags);
1da177e4
LT
1266}
1267
949698a3 1268static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1269{
c3993076 1270 unsigned int nr_pages = 1 << order;
e2d0bd2b 1271 struct page *p = page;
c3993076 1272 unsigned int loop;
a226f6c8 1273
e2d0bd2b
YL
1274 prefetchw(p);
1275 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1276 prefetchw(p + 1);
c3993076
JW
1277 __ClearPageReserved(p);
1278 set_page_count(p, 0);
a226f6c8 1279 }
e2d0bd2b
YL
1280 __ClearPageReserved(p);
1281 set_page_count(p, 0);
c3993076 1282
e2d0bd2b 1283 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1284 set_page_refcounted(page);
1285 __free_pages(page, order);
a226f6c8
DH
1286}
1287
75a592a4
MG
1288#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1289 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1290
75a592a4
MG
1291static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1292
1293int __meminit early_pfn_to_nid(unsigned long pfn)
1294{
7ace9917 1295 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1296 int nid;
1297
7ace9917 1298 spin_lock(&early_pfn_lock);
75a592a4 1299 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1300 if (nid < 0)
e4568d38 1301 nid = first_online_node;
7ace9917
MG
1302 spin_unlock(&early_pfn_lock);
1303
1304 return nid;
75a592a4
MG
1305}
1306#endif
1307
1308#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1309static inline bool __meminit __maybe_unused
1310meminit_pfn_in_nid(unsigned long pfn, int node,
1311 struct mminit_pfnnid_cache *state)
75a592a4
MG
1312{
1313 int nid;
1314
1315 nid = __early_pfn_to_nid(pfn, state);
1316 if (nid >= 0 && nid != node)
1317 return false;
1318 return true;
1319}
1320
1321/* Only safe to use early in boot when initialisation is single-threaded */
1322static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323{
1324 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1325}
1326
1327#else
1328
1329static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1330{
1331 return true;
1332}
d73d3c9f
MK
1333static inline bool __meminit __maybe_unused
1334meminit_pfn_in_nid(unsigned long pfn, int node,
1335 struct mminit_pfnnid_cache *state)
75a592a4
MG
1336{
1337 return true;
1338}
1339#endif
1340
1341
0e1cc95b 1342void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1343 unsigned int order)
1344{
1345 if (early_page_uninitialised(pfn))
1346 return;
949698a3 1347 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1348}
1349
7cf91a98
JK
1350/*
1351 * Check that the whole (or subset of) a pageblock given by the interval of
1352 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1353 * with the migration of free compaction scanner. The scanners then need to
1354 * use only pfn_valid_within() check for arches that allow holes within
1355 * pageblocks.
1356 *
1357 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1358 *
1359 * It's possible on some configurations to have a setup like node0 node1 node0
1360 * i.e. it's possible that all pages within a zones range of pages do not
1361 * belong to a single zone. We assume that a border between node0 and node1
1362 * can occur within a single pageblock, but not a node0 node1 node0
1363 * interleaving within a single pageblock. It is therefore sufficient to check
1364 * the first and last page of a pageblock and avoid checking each individual
1365 * page in a pageblock.
1366 */
1367struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1368 unsigned long end_pfn, struct zone *zone)
1369{
1370 struct page *start_page;
1371 struct page *end_page;
1372
1373 /* end_pfn is one past the range we are checking */
1374 end_pfn--;
1375
1376 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1377 return NULL;
1378
2d070eab
MH
1379 start_page = pfn_to_online_page(start_pfn);
1380 if (!start_page)
1381 return NULL;
7cf91a98
JK
1382
1383 if (page_zone(start_page) != zone)
1384 return NULL;
1385
1386 end_page = pfn_to_page(end_pfn);
1387
1388 /* This gives a shorter code than deriving page_zone(end_page) */
1389 if (page_zone_id(start_page) != page_zone_id(end_page))
1390 return NULL;
1391
1392 return start_page;
1393}
1394
1395void set_zone_contiguous(struct zone *zone)
1396{
1397 unsigned long block_start_pfn = zone->zone_start_pfn;
1398 unsigned long block_end_pfn;
1399
1400 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1401 for (; block_start_pfn < zone_end_pfn(zone);
1402 block_start_pfn = block_end_pfn,
1403 block_end_pfn += pageblock_nr_pages) {
1404
1405 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1406
1407 if (!__pageblock_pfn_to_page(block_start_pfn,
1408 block_end_pfn, zone))
1409 return;
1410 }
1411
1412 /* We confirm that there is no hole */
1413 zone->contiguous = true;
1414}
1415
1416void clear_zone_contiguous(struct zone *zone)
1417{
1418 zone->contiguous = false;
1419}
1420
7e18adb4 1421#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1422static void __init deferred_free_range(unsigned long pfn,
1423 unsigned long nr_pages)
a4de83dd 1424{
2f47a91f
PT
1425 struct page *page;
1426 unsigned long i;
a4de83dd 1427
2f47a91f 1428 if (!nr_pages)
a4de83dd
MG
1429 return;
1430
2f47a91f
PT
1431 page = pfn_to_page(pfn);
1432
a4de83dd 1433 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1434 if (nr_pages == pageblock_nr_pages &&
1435 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1436 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1437 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1438 return;
1439 }
1440
e780149b
XQ
1441 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1442 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1443 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1444 __free_pages_boot_core(page, 0);
e780149b 1445 }
a4de83dd
MG
1446}
1447
d3cd131d
NS
1448/* Completion tracking for deferred_init_memmap() threads */
1449static atomic_t pgdat_init_n_undone __initdata;
1450static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1451
1452static inline void __init pgdat_init_report_one_done(void)
1453{
1454 if (atomic_dec_and_test(&pgdat_init_n_undone))
1455 complete(&pgdat_init_all_done_comp);
1456}
0e1cc95b 1457
2f47a91f 1458/*
80b1f41c
PT
1459 * Returns true if page needs to be initialized or freed to buddy allocator.
1460 *
1461 * First we check if pfn is valid on architectures where it is possible to have
1462 * holes within pageblock_nr_pages. On systems where it is not possible, this
1463 * function is optimized out.
1464 *
1465 * Then, we check if a current large page is valid by only checking the validity
1466 * of the head pfn.
1467 *
1468 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1469 * within a node: a pfn is between start and end of a node, but does not belong
1470 * to this memory node.
2f47a91f 1471 */
80b1f41c
PT
1472static inline bool __init
1473deferred_pfn_valid(int nid, unsigned long pfn,
1474 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1475{
80b1f41c
PT
1476 if (!pfn_valid_within(pfn))
1477 return false;
1478 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1479 return false;
1480 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1481 return false;
1482 return true;
1483}
2f47a91f 1484
80b1f41c
PT
1485/*
1486 * Free pages to buddy allocator. Try to free aligned pages in
1487 * pageblock_nr_pages sizes.
1488 */
1489static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1490 unsigned long end_pfn)
1491{
1492 struct mminit_pfnnid_cache nid_init_state = { };
1493 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1494 unsigned long nr_free = 0;
2f47a91f 1495
80b1f41c
PT
1496 for (; pfn < end_pfn; pfn++) {
1497 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1498 deferred_free_range(pfn - nr_free, nr_free);
1499 nr_free = 0;
1500 } else if (!(pfn & nr_pgmask)) {
1501 deferred_free_range(pfn - nr_free, nr_free);
1502 nr_free = 1;
3a2d7fa8 1503 touch_nmi_watchdog();
80b1f41c
PT
1504 } else {
1505 nr_free++;
1506 }
1507 }
1508 /* Free the last block of pages to allocator */
1509 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1510}
1511
80b1f41c
PT
1512/*
1513 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1514 * by performing it only once every pageblock_nr_pages.
1515 * Return number of pages initialized.
1516 */
1517static unsigned long __init deferred_init_pages(int nid, int zid,
1518 unsigned long pfn,
1519 unsigned long end_pfn)
2f47a91f
PT
1520{
1521 struct mminit_pfnnid_cache nid_init_state = { };
1522 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1523 unsigned long nr_pages = 0;
2f47a91f 1524 struct page *page = NULL;
2f47a91f 1525
80b1f41c
PT
1526 for (; pfn < end_pfn; pfn++) {
1527 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1528 page = NULL;
2f47a91f 1529 continue;
80b1f41c 1530 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1531 page = pfn_to_page(pfn);
3a2d7fa8 1532 touch_nmi_watchdog();
80b1f41c
PT
1533 } else {
1534 page++;
2f47a91f 1535 }
d0dc12e8 1536 __init_single_page(page, pfn, zid, nid);
80b1f41c 1537 nr_pages++;
2f47a91f 1538 }
80b1f41c 1539 return (nr_pages);
2f47a91f
PT
1540}
1541
7e18adb4 1542/* Initialise remaining memory on a node */
0e1cc95b 1543static int __init deferred_init_memmap(void *data)
7e18adb4 1544{
0e1cc95b
MG
1545 pg_data_t *pgdat = data;
1546 int nid = pgdat->node_id;
7e18adb4
MG
1547 unsigned long start = jiffies;
1548 unsigned long nr_pages = 0;
3a2d7fa8 1549 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1550 phys_addr_t spa, epa;
1551 int zid;
7e18adb4 1552 struct zone *zone;
0e1cc95b 1553 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1554 u64 i;
7e18adb4 1555
3a2d7fa8
PT
1556 /* Bind memory initialisation thread to a local node if possible */
1557 if (!cpumask_empty(cpumask))
1558 set_cpus_allowed_ptr(current, cpumask);
1559
1560 pgdat_resize_lock(pgdat, &flags);
1561 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1562 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1563 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1564 pgdat_init_report_one_done();
0e1cc95b
MG
1565 return 0;
1566 }
1567
7e18adb4
MG
1568 /* Sanity check boundaries */
1569 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1570 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1571 pgdat->first_deferred_pfn = ULONG_MAX;
1572
1573 /* Only the highest zone is deferred so find it */
1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 zone = pgdat->node_zones + zid;
1576 if (first_init_pfn < zone_end_pfn(zone))
1577 break;
1578 }
2f47a91f 1579 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1580
80b1f41c
PT
1581 /*
1582 * Initialize and free pages. We do it in two loops: first we initialize
1583 * struct page, than free to buddy allocator, because while we are
1584 * freeing pages we can access pages that are ahead (computing buddy
1585 * page in __free_one_page()).
1586 */
1587 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1588 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1589 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1590 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1591 }
2f47a91f
PT
1592 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1593 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1594 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1595 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1596 }
3a2d7fa8 1597 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1598
1599 /* Sanity check that the next zone really is unpopulated */
1600 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1601
0e1cc95b 1602 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1603 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1604
1605 pgdat_init_report_one_done();
0e1cc95b
MG
1606 return 0;
1607}
c9e97a19
PT
1608
1609/*
1610 * During boot we initialize deferred pages on-demand, as needed, but once
1611 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1612 * and we can permanently disable that path.
1613 */
1614static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1615
1616/*
1617 * If this zone has deferred pages, try to grow it by initializing enough
1618 * deferred pages to satisfy the allocation specified by order, rounded up to
1619 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1620 * of SECTION_SIZE bytes by initializing struct pages in increments of
1621 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1622 *
1623 * Return true when zone was grown, otherwise return false. We return true even
1624 * when we grow less than requested, to let the caller decide if there are
1625 * enough pages to satisfy the allocation.
1626 *
1627 * Note: We use noinline because this function is needed only during boot, and
1628 * it is called from a __ref function _deferred_grow_zone. This way we are
1629 * making sure that it is not inlined into permanent text section.
1630 */
1631static noinline bool __init
1632deferred_grow_zone(struct zone *zone, unsigned int order)
1633{
1634 int zid = zone_idx(zone);
1635 int nid = zone_to_nid(zone);
1636 pg_data_t *pgdat = NODE_DATA(nid);
1637 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1638 unsigned long nr_pages = 0;
1639 unsigned long first_init_pfn, spfn, epfn, t, flags;
1640 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1641 phys_addr_t spa, epa;
1642 u64 i;
1643
1644 /* Only the last zone may have deferred pages */
1645 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1646 return false;
1647
1648 pgdat_resize_lock(pgdat, &flags);
1649
1650 /*
1651 * If deferred pages have been initialized while we were waiting for
1652 * the lock, return true, as the zone was grown. The caller will retry
1653 * this zone. We won't return to this function since the caller also
1654 * has this static branch.
1655 */
1656 if (!static_branch_unlikely(&deferred_pages)) {
1657 pgdat_resize_unlock(pgdat, &flags);
1658 return true;
1659 }
1660
1661 /*
1662 * If someone grew this zone while we were waiting for spinlock, return
1663 * true, as there might be enough pages already.
1664 */
1665 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1666 pgdat_resize_unlock(pgdat, &flags);
1667 return true;
1668 }
1669
1670 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1671
1672 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1673 pgdat_resize_unlock(pgdat, &flags);
1674 return false;
1675 }
1676
1677 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1678 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1679 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1680
1681 while (spfn < epfn && nr_pages < nr_pages_needed) {
1682 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1683 first_deferred_pfn = min(t, epfn);
1684 nr_pages += deferred_init_pages(nid, zid, spfn,
1685 first_deferred_pfn);
1686 spfn = first_deferred_pfn;
1687 }
1688
1689 if (nr_pages >= nr_pages_needed)
1690 break;
1691 }
1692
1693 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1694 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1695 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1696 deferred_free_pages(nid, zid, spfn, epfn);
1697
1698 if (first_deferred_pfn == epfn)
1699 break;
1700 }
1701 pgdat->first_deferred_pfn = first_deferred_pfn;
1702 pgdat_resize_unlock(pgdat, &flags);
1703
1704 return nr_pages > 0;
1705}
1706
1707/*
1708 * deferred_grow_zone() is __init, but it is called from
1709 * get_page_from_freelist() during early boot until deferred_pages permanently
1710 * disables this call. This is why we have refdata wrapper to avoid warning,
1711 * and to ensure that the function body gets unloaded.
1712 */
1713static bool __ref
1714_deferred_grow_zone(struct zone *zone, unsigned int order)
1715{
1716 return deferred_grow_zone(zone, order);
1717}
1718
7cf91a98 1719#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1720
1721void __init page_alloc_init_late(void)
1722{
7cf91a98
JK
1723 struct zone *zone;
1724
1725#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1726 int nid;
1727
d3cd131d
NS
1728 /* There will be num_node_state(N_MEMORY) threads */
1729 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1730 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1731 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1732 }
1733
1734 /* Block until all are initialised */
d3cd131d 1735 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1736
c9e97a19
PT
1737 /*
1738 * We initialized the rest of the deferred pages. Permanently disable
1739 * on-demand struct page initialization.
1740 */
1741 static_branch_disable(&deferred_pages);
1742
4248b0da
MG
1743 /* Reinit limits that are based on free pages after the kernel is up */
1744 files_maxfiles_init();
7cf91a98 1745#endif
3010f876
PT
1746#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1747 /* Discard memblock private memory */
1748 memblock_discard();
1749#endif
7cf91a98
JK
1750
1751 for_each_populated_zone(zone)
1752 set_zone_contiguous(zone);
7e18adb4 1753}
7e18adb4 1754
47118af0 1755#ifdef CONFIG_CMA
9cf510a5 1756/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1757void __init init_cma_reserved_pageblock(struct page *page)
1758{
1759 unsigned i = pageblock_nr_pages;
1760 struct page *p = page;
1761
1762 do {
1763 __ClearPageReserved(p);
1764 set_page_count(p, 0);
d883c6cf 1765 } while (++p, --i);
47118af0 1766
47118af0 1767 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1768
1769 if (pageblock_order >= MAX_ORDER) {
1770 i = pageblock_nr_pages;
1771 p = page;
1772 do {
1773 set_page_refcounted(p);
1774 __free_pages(p, MAX_ORDER - 1);
1775 p += MAX_ORDER_NR_PAGES;
1776 } while (i -= MAX_ORDER_NR_PAGES);
1777 } else {
1778 set_page_refcounted(page);
1779 __free_pages(page, pageblock_order);
1780 }
1781
3dcc0571 1782 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1783}
1784#endif
1da177e4
LT
1785
1786/*
1787 * The order of subdivision here is critical for the IO subsystem.
1788 * Please do not alter this order without good reasons and regression
1789 * testing. Specifically, as large blocks of memory are subdivided,
1790 * the order in which smaller blocks are delivered depends on the order
1791 * they're subdivided in this function. This is the primary factor
1792 * influencing the order in which pages are delivered to the IO
1793 * subsystem according to empirical testing, and this is also justified
1794 * by considering the behavior of a buddy system containing a single
1795 * large block of memory acted on by a series of small allocations.
1796 * This behavior is a critical factor in sglist merging's success.
1797 *
6d49e352 1798 * -- nyc
1da177e4 1799 */
085cc7d5 1800static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1801 int low, int high, struct free_area *area,
1802 int migratetype)
1da177e4
LT
1803{
1804 unsigned long size = 1 << high;
1805
1806 while (high > low) {
1807 area--;
1808 high--;
1809 size >>= 1;
309381fe 1810 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1811
acbc15a4
JK
1812 /*
1813 * Mark as guard pages (or page), that will allow to
1814 * merge back to allocator when buddy will be freed.
1815 * Corresponding page table entries will not be touched,
1816 * pages will stay not present in virtual address space
1817 */
1818 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1819 continue;
acbc15a4 1820
b2a0ac88 1821 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1822 area->nr_free++;
1823 set_page_order(&page[size], high);
1824 }
1da177e4
LT
1825}
1826
4e611801 1827static void check_new_page_bad(struct page *page)
1da177e4 1828{
4e611801
VB
1829 const char *bad_reason = NULL;
1830 unsigned long bad_flags = 0;
7bfec6f4 1831
53f9263b 1832 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1833 bad_reason = "nonzero mapcount";
1834 if (unlikely(page->mapping != NULL))
1835 bad_reason = "non-NULL mapping";
fe896d18 1836 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1837 bad_reason = "nonzero _count";
f4c18e6f
NH
1838 if (unlikely(page->flags & __PG_HWPOISON)) {
1839 bad_reason = "HWPoisoned (hardware-corrupted)";
1840 bad_flags = __PG_HWPOISON;
e570f56c
NH
1841 /* Don't complain about hwpoisoned pages */
1842 page_mapcount_reset(page); /* remove PageBuddy */
1843 return;
f4c18e6f 1844 }
f0b791a3
DH
1845 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1846 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1847 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1848 }
9edad6ea
JW
1849#ifdef CONFIG_MEMCG
1850 if (unlikely(page->mem_cgroup))
1851 bad_reason = "page still charged to cgroup";
1852#endif
4e611801
VB
1853 bad_page(page, bad_reason, bad_flags);
1854}
1855
1856/*
1857 * This page is about to be returned from the page allocator
1858 */
1859static inline int check_new_page(struct page *page)
1860{
1861 if (likely(page_expected_state(page,
1862 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1863 return 0;
1864
1865 check_new_page_bad(page);
1866 return 1;
2a7684a2
WF
1867}
1868
bd33ef36 1869static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1870{
1871 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1872 page_poisoning_enabled();
1414c7f4
LA
1873}
1874
479f854a
MG
1875#ifdef CONFIG_DEBUG_VM
1876static bool check_pcp_refill(struct page *page)
1877{
1878 return false;
1879}
1880
1881static bool check_new_pcp(struct page *page)
1882{
1883 return check_new_page(page);
1884}
1885#else
1886static bool check_pcp_refill(struct page *page)
1887{
1888 return check_new_page(page);
1889}
1890static bool check_new_pcp(struct page *page)
1891{
1892 return false;
1893}
1894#endif /* CONFIG_DEBUG_VM */
1895
1896static bool check_new_pages(struct page *page, unsigned int order)
1897{
1898 int i;
1899 for (i = 0; i < (1 << order); i++) {
1900 struct page *p = page + i;
1901
1902 if (unlikely(check_new_page(p)))
1903 return true;
1904 }
1905
1906 return false;
1907}
1908
46f24fd8
JK
1909inline void post_alloc_hook(struct page *page, unsigned int order,
1910 gfp_t gfp_flags)
1911{
1912 set_page_private(page, 0);
1913 set_page_refcounted(page);
1914
1915 arch_alloc_page(page, order);
1916 kernel_map_pages(page, 1 << order, 1);
1917 kernel_poison_pages(page, 1 << order, 1);
1918 kasan_alloc_pages(page, order);
1919 set_page_owner(page, order, gfp_flags);
1920}
1921
479f854a 1922static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1923 unsigned int alloc_flags)
2a7684a2
WF
1924{
1925 int i;
689bcebf 1926
46f24fd8 1927 post_alloc_hook(page, order, gfp_flags);
17cf4406 1928
bd33ef36 1929 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1930 for (i = 0; i < (1 << order); i++)
1931 clear_highpage(page + i);
17cf4406
NP
1932
1933 if (order && (gfp_flags & __GFP_COMP))
1934 prep_compound_page(page, order);
1935
75379191 1936 /*
2f064f34 1937 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1938 * allocate the page. The expectation is that the caller is taking
1939 * steps that will free more memory. The caller should avoid the page
1940 * being used for !PFMEMALLOC purposes.
1941 */
2f064f34
MH
1942 if (alloc_flags & ALLOC_NO_WATERMARKS)
1943 set_page_pfmemalloc(page);
1944 else
1945 clear_page_pfmemalloc(page);
1da177e4
LT
1946}
1947
56fd56b8
MG
1948/*
1949 * Go through the free lists for the given migratetype and remove
1950 * the smallest available page from the freelists
1951 */
85ccc8fa 1952static __always_inline
728ec980 1953struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1954 int migratetype)
1955{
1956 unsigned int current_order;
b8af2941 1957 struct free_area *area;
56fd56b8
MG
1958 struct page *page;
1959
1960 /* Find a page of the appropriate size in the preferred list */
1961 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1962 area = &(zone->free_area[current_order]);
a16601c5 1963 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1964 struct page, lru);
a16601c5
GT
1965 if (!page)
1966 continue;
56fd56b8
MG
1967 list_del(&page->lru);
1968 rmv_page_order(page);
1969 area->nr_free--;
56fd56b8 1970 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1971 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1972 return page;
1973 }
1974
1975 return NULL;
1976}
1977
1978
b2a0ac88
MG
1979/*
1980 * This array describes the order lists are fallen back to when
1981 * the free lists for the desirable migrate type are depleted
1982 */
47118af0 1983static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1984 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1985 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1986 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1987#ifdef CONFIG_CMA
974a786e 1988 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1989#endif
194159fb 1990#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1991 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1992#endif
b2a0ac88
MG
1993};
1994
dc67647b 1995#ifdef CONFIG_CMA
85ccc8fa 1996static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1997 unsigned int order)
1998{
1999 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2000}
2001#else
2002static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2003 unsigned int order) { return NULL; }
2004#endif
2005
c361be55
MG
2006/*
2007 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2008 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2009 * boundary. If alignment is required, use move_freepages_block()
2010 */
02aa0cdd 2011static int move_freepages(struct zone *zone,
b69a7288 2012 struct page *start_page, struct page *end_page,
02aa0cdd 2013 int migratetype, int *num_movable)
c361be55
MG
2014{
2015 struct page *page;
d00181b9 2016 unsigned int order;
d100313f 2017 int pages_moved = 0;
c361be55
MG
2018
2019#ifndef CONFIG_HOLES_IN_ZONE
2020 /*
2021 * page_zone is not safe to call in this context when
2022 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2023 * anyway as we check zone boundaries in move_freepages_block().
2024 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2025 * grouping pages by mobility
c361be55 2026 */
3e04040d
AB
2027 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2028 pfn_valid(page_to_pfn(end_page)) &&
2029 page_zone(start_page) != page_zone(end_page));
c361be55 2030#endif
c361be55
MG
2031 for (page = start_page; page <= end_page;) {
2032 if (!pfn_valid_within(page_to_pfn(page))) {
2033 page++;
2034 continue;
2035 }
2036
f073bdc5
AB
2037 /* Make sure we are not inadvertently changing nodes */
2038 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2039
c361be55 2040 if (!PageBuddy(page)) {
02aa0cdd
VB
2041 /*
2042 * We assume that pages that could be isolated for
2043 * migration are movable. But we don't actually try
2044 * isolating, as that would be expensive.
2045 */
2046 if (num_movable &&
2047 (PageLRU(page) || __PageMovable(page)))
2048 (*num_movable)++;
2049
c361be55
MG
2050 page++;
2051 continue;
2052 }
2053
2054 order = page_order(page);
84be48d8
KS
2055 list_move(&page->lru,
2056 &zone->free_area[order].free_list[migratetype]);
c361be55 2057 page += 1 << order;
d100313f 2058 pages_moved += 1 << order;
c361be55
MG
2059 }
2060
d100313f 2061 return pages_moved;
c361be55
MG
2062}
2063
ee6f509c 2064int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2065 int migratetype, int *num_movable)
c361be55
MG
2066{
2067 unsigned long start_pfn, end_pfn;
2068 struct page *start_page, *end_page;
2069
4a222127
DR
2070 if (num_movable)
2071 *num_movable = 0;
2072
c361be55 2073 start_pfn = page_to_pfn(page);
d9c23400 2074 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2075 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2076 end_page = start_page + pageblock_nr_pages - 1;
2077 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2078
2079 /* Do not cross zone boundaries */
108bcc96 2080 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2081 start_page = page;
108bcc96 2082 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2083 return 0;
2084
02aa0cdd
VB
2085 return move_freepages(zone, start_page, end_page, migratetype,
2086 num_movable);
c361be55
MG
2087}
2088
2f66a68f
MG
2089static void change_pageblock_range(struct page *pageblock_page,
2090 int start_order, int migratetype)
2091{
2092 int nr_pageblocks = 1 << (start_order - pageblock_order);
2093
2094 while (nr_pageblocks--) {
2095 set_pageblock_migratetype(pageblock_page, migratetype);
2096 pageblock_page += pageblock_nr_pages;
2097 }
2098}
2099
fef903ef 2100/*
9c0415eb
VB
2101 * When we are falling back to another migratetype during allocation, try to
2102 * steal extra free pages from the same pageblocks to satisfy further
2103 * allocations, instead of polluting multiple pageblocks.
2104 *
2105 * If we are stealing a relatively large buddy page, it is likely there will
2106 * be more free pages in the pageblock, so try to steal them all. For
2107 * reclaimable and unmovable allocations, we steal regardless of page size,
2108 * as fragmentation caused by those allocations polluting movable pageblocks
2109 * is worse than movable allocations stealing from unmovable and reclaimable
2110 * pageblocks.
fef903ef 2111 */
4eb7dce6
JK
2112static bool can_steal_fallback(unsigned int order, int start_mt)
2113{
2114 /*
2115 * Leaving this order check is intended, although there is
2116 * relaxed order check in next check. The reason is that
2117 * we can actually steal whole pageblock if this condition met,
2118 * but, below check doesn't guarantee it and that is just heuristic
2119 * so could be changed anytime.
2120 */
2121 if (order >= pageblock_order)
2122 return true;
2123
2124 if (order >= pageblock_order / 2 ||
2125 start_mt == MIGRATE_RECLAIMABLE ||
2126 start_mt == MIGRATE_UNMOVABLE ||
2127 page_group_by_mobility_disabled)
2128 return true;
2129
2130 return false;
2131}
2132
2133/*
2134 * This function implements actual steal behaviour. If order is large enough,
2135 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2136 * pageblock to our migratetype and determine how many already-allocated pages
2137 * are there in the pageblock with a compatible migratetype. If at least half
2138 * of pages are free or compatible, we can change migratetype of the pageblock
2139 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2140 */
2141static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2142 int start_type, bool whole_block)
fef903ef 2143{
d00181b9 2144 unsigned int current_order = page_order(page);
3bc48f96 2145 struct free_area *area;
02aa0cdd
VB
2146 int free_pages, movable_pages, alike_pages;
2147 int old_block_type;
2148
2149 old_block_type = get_pageblock_migratetype(page);
fef903ef 2150
3bc48f96
VB
2151 /*
2152 * This can happen due to races and we want to prevent broken
2153 * highatomic accounting.
2154 */
02aa0cdd 2155 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2156 goto single_page;
2157
fef903ef
SB
2158 /* Take ownership for orders >= pageblock_order */
2159 if (current_order >= pageblock_order) {
2160 change_pageblock_range(page, current_order, start_type);
3bc48f96 2161 goto single_page;
fef903ef
SB
2162 }
2163
3bc48f96
VB
2164 /* We are not allowed to try stealing from the whole block */
2165 if (!whole_block)
2166 goto single_page;
2167
02aa0cdd
VB
2168 free_pages = move_freepages_block(zone, page, start_type,
2169 &movable_pages);
2170 /*
2171 * Determine how many pages are compatible with our allocation.
2172 * For movable allocation, it's the number of movable pages which
2173 * we just obtained. For other types it's a bit more tricky.
2174 */
2175 if (start_type == MIGRATE_MOVABLE) {
2176 alike_pages = movable_pages;
2177 } else {
2178 /*
2179 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2180 * to MOVABLE pageblock, consider all non-movable pages as
2181 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2182 * vice versa, be conservative since we can't distinguish the
2183 * exact migratetype of non-movable pages.
2184 */
2185 if (old_block_type == MIGRATE_MOVABLE)
2186 alike_pages = pageblock_nr_pages
2187 - (free_pages + movable_pages);
2188 else
2189 alike_pages = 0;
2190 }
2191
3bc48f96 2192 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2193 if (!free_pages)
3bc48f96 2194 goto single_page;
fef903ef 2195
02aa0cdd
VB
2196 /*
2197 * If a sufficient number of pages in the block are either free or of
2198 * comparable migratability as our allocation, claim the whole block.
2199 */
2200 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2201 page_group_by_mobility_disabled)
2202 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2203
2204 return;
2205
2206single_page:
2207 area = &zone->free_area[current_order];
2208 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2209}
2210
2149cdae
JK
2211/*
2212 * Check whether there is a suitable fallback freepage with requested order.
2213 * If only_stealable is true, this function returns fallback_mt only if
2214 * we can steal other freepages all together. This would help to reduce
2215 * fragmentation due to mixed migratetype pages in one pageblock.
2216 */
2217int find_suitable_fallback(struct free_area *area, unsigned int order,
2218 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2219{
2220 int i;
2221 int fallback_mt;
2222
2223 if (area->nr_free == 0)
2224 return -1;
2225
2226 *can_steal = false;
2227 for (i = 0;; i++) {
2228 fallback_mt = fallbacks[migratetype][i];
974a786e 2229 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2230 break;
2231
2232 if (list_empty(&area->free_list[fallback_mt]))
2233 continue;
fef903ef 2234
4eb7dce6
JK
2235 if (can_steal_fallback(order, migratetype))
2236 *can_steal = true;
2237
2149cdae
JK
2238 if (!only_stealable)
2239 return fallback_mt;
2240
2241 if (*can_steal)
2242 return fallback_mt;
fef903ef 2243 }
4eb7dce6
JK
2244
2245 return -1;
fef903ef
SB
2246}
2247
0aaa29a5
MG
2248/*
2249 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2250 * there are no empty page blocks that contain a page with a suitable order
2251 */
2252static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2253 unsigned int alloc_order)
2254{
2255 int mt;
2256 unsigned long max_managed, flags;
2257
2258 /*
2259 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2260 * Check is race-prone but harmless.
2261 */
2262 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2263 if (zone->nr_reserved_highatomic >= max_managed)
2264 return;
2265
2266 spin_lock_irqsave(&zone->lock, flags);
2267
2268 /* Recheck the nr_reserved_highatomic limit under the lock */
2269 if (zone->nr_reserved_highatomic >= max_managed)
2270 goto out_unlock;
2271
2272 /* Yoink! */
2273 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2274 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2275 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2276 zone->nr_reserved_highatomic += pageblock_nr_pages;
2277 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2278 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2279 }
2280
2281out_unlock:
2282 spin_unlock_irqrestore(&zone->lock, flags);
2283}
2284
2285/*
2286 * Used when an allocation is about to fail under memory pressure. This
2287 * potentially hurts the reliability of high-order allocations when under
2288 * intense memory pressure but failed atomic allocations should be easier
2289 * to recover from than an OOM.
29fac03b
MK
2290 *
2291 * If @force is true, try to unreserve a pageblock even though highatomic
2292 * pageblock is exhausted.
0aaa29a5 2293 */
29fac03b
MK
2294static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2295 bool force)
0aaa29a5
MG
2296{
2297 struct zonelist *zonelist = ac->zonelist;
2298 unsigned long flags;
2299 struct zoneref *z;
2300 struct zone *zone;
2301 struct page *page;
2302 int order;
04c8716f 2303 bool ret;
0aaa29a5
MG
2304
2305 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2306 ac->nodemask) {
29fac03b
MK
2307 /*
2308 * Preserve at least one pageblock unless memory pressure
2309 * is really high.
2310 */
2311 if (!force && zone->nr_reserved_highatomic <=
2312 pageblock_nr_pages)
0aaa29a5
MG
2313 continue;
2314
2315 spin_lock_irqsave(&zone->lock, flags);
2316 for (order = 0; order < MAX_ORDER; order++) {
2317 struct free_area *area = &(zone->free_area[order]);
2318
a16601c5
GT
2319 page = list_first_entry_or_null(
2320 &area->free_list[MIGRATE_HIGHATOMIC],
2321 struct page, lru);
2322 if (!page)
0aaa29a5
MG
2323 continue;
2324
0aaa29a5 2325 /*
4855e4a7
MK
2326 * In page freeing path, migratetype change is racy so
2327 * we can counter several free pages in a pageblock
2328 * in this loop althoug we changed the pageblock type
2329 * from highatomic to ac->migratetype. So we should
2330 * adjust the count once.
0aaa29a5 2331 */
a6ffdc07 2332 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2333 /*
2334 * It should never happen but changes to
2335 * locking could inadvertently allow a per-cpu
2336 * drain to add pages to MIGRATE_HIGHATOMIC
2337 * while unreserving so be safe and watch for
2338 * underflows.
2339 */
2340 zone->nr_reserved_highatomic -= min(
2341 pageblock_nr_pages,
2342 zone->nr_reserved_highatomic);
2343 }
0aaa29a5
MG
2344
2345 /*
2346 * Convert to ac->migratetype and avoid the normal
2347 * pageblock stealing heuristics. Minimally, the caller
2348 * is doing the work and needs the pages. More
2349 * importantly, if the block was always converted to
2350 * MIGRATE_UNMOVABLE or another type then the number
2351 * of pageblocks that cannot be completely freed
2352 * may increase.
2353 */
2354 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2355 ret = move_freepages_block(zone, page, ac->migratetype,
2356 NULL);
29fac03b
MK
2357 if (ret) {
2358 spin_unlock_irqrestore(&zone->lock, flags);
2359 return ret;
2360 }
0aaa29a5
MG
2361 }
2362 spin_unlock_irqrestore(&zone->lock, flags);
2363 }
04c8716f
MK
2364
2365 return false;
0aaa29a5
MG
2366}
2367
3bc48f96
VB
2368/*
2369 * Try finding a free buddy page on the fallback list and put it on the free
2370 * list of requested migratetype, possibly along with other pages from the same
2371 * block, depending on fragmentation avoidance heuristics. Returns true if
2372 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2373 *
2374 * The use of signed ints for order and current_order is a deliberate
2375 * deviation from the rest of this file, to make the for loop
2376 * condition simpler.
3bc48f96 2377 */
85ccc8fa 2378static __always_inline bool
b002529d 2379__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2380{
b8af2941 2381 struct free_area *area;
b002529d 2382 int current_order;
b2a0ac88 2383 struct page *page;
4eb7dce6
JK
2384 int fallback_mt;
2385 bool can_steal;
b2a0ac88 2386
7a8f58f3
VB
2387 /*
2388 * Find the largest available free page in the other list. This roughly
2389 * approximates finding the pageblock with the most free pages, which
2390 * would be too costly to do exactly.
2391 */
b002529d 2392 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2393 --current_order) {
4eb7dce6
JK
2394 area = &(zone->free_area[current_order]);
2395 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2396 start_migratetype, false, &can_steal);
4eb7dce6
JK
2397 if (fallback_mt == -1)
2398 continue;
b2a0ac88 2399
7a8f58f3
VB
2400 /*
2401 * We cannot steal all free pages from the pageblock and the
2402 * requested migratetype is movable. In that case it's better to
2403 * steal and split the smallest available page instead of the
2404 * largest available page, because even if the next movable
2405 * allocation falls back into a different pageblock than this
2406 * one, it won't cause permanent fragmentation.
2407 */
2408 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2409 && current_order > order)
2410 goto find_smallest;
b2a0ac88 2411
7a8f58f3
VB
2412 goto do_steal;
2413 }
e0fff1bd 2414
7a8f58f3 2415 return false;
e0fff1bd 2416
7a8f58f3
VB
2417find_smallest:
2418 for (current_order = order; current_order < MAX_ORDER;
2419 current_order++) {
2420 area = &(zone->free_area[current_order]);
2421 fallback_mt = find_suitable_fallback(area, current_order,
2422 start_migratetype, false, &can_steal);
2423 if (fallback_mt != -1)
2424 break;
b2a0ac88
MG
2425 }
2426
7a8f58f3
VB
2427 /*
2428 * This should not happen - we already found a suitable fallback
2429 * when looking for the largest page.
2430 */
2431 VM_BUG_ON(current_order == MAX_ORDER);
2432
2433do_steal:
2434 page = list_first_entry(&area->free_list[fallback_mt],
2435 struct page, lru);
2436
2437 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2438
2439 trace_mm_page_alloc_extfrag(page, order, current_order,
2440 start_migratetype, fallback_mt);
2441
2442 return true;
2443
b2a0ac88
MG
2444}
2445
56fd56b8 2446/*
1da177e4
LT
2447 * Do the hard work of removing an element from the buddy allocator.
2448 * Call me with the zone->lock already held.
2449 */
85ccc8fa
AL
2450static __always_inline struct page *
2451__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2452{
1da177e4
LT
2453 struct page *page;
2454
3bc48f96 2455retry:
56fd56b8 2456 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2457 if (unlikely(!page)) {
dc67647b
JK
2458 if (migratetype == MIGRATE_MOVABLE)
2459 page = __rmqueue_cma_fallback(zone, order);
2460
3bc48f96
VB
2461 if (!page && __rmqueue_fallback(zone, order, migratetype))
2462 goto retry;
728ec980
MG
2463 }
2464
0d3d062a 2465 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2466 return page;
1da177e4
LT
2467}
2468
5f63b720 2469/*
1da177e4
LT
2470 * Obtain a specified number of elements from the buddy allocator, all under
2471 * a single hold of the lock, for efficiency. Add them to the supplied list.
2472 * Returns the number of new pages which were placed at *list.
2473 */
5f63b720 2474static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2475 unsigned long count, struct list_head *list,
453f85d4 2476 int migratetype)
1da177e4 2477{
a6de734b 2478 int i, alloced = 0;
5f63b720 2479
d34b0733 2480 spin_lock(&zone->lock);
1da177e4 2481 for (i = 0; i < count; ++i) {
6ac0206b 2482 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2483 if (unlikely(page == NULL))
1da177e4 2484 break;
81eabcbe 2485
479f854a
MG
2486 if (unlikely(check_pcp_refill(page)))
2487 continue;
2488
81eabcbe 2489 /*
0fac3ba5
VB
2490 * Split buddy pages returned by expand() are received here in
2491 * physical page order. The page is added to the tail of
2492 * caller's list. From the callers perspective, the linked list
2493 * is ordered by page number under some conditions. This is
2494 * useful for IO devices that can forward direction from the
2495 * head, thus also in the physical page order. This is useful
2496 * for IO devices that can merge IO requests if the physical
2497 * pages are ordered properly.
81eabcbe 2498 */
0fac3ba5 2499 list_add_tail(&page->lru, list);
a6de734b 2500 alloced++;
bb14c2c7 2501 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2502 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2503 -(1 << order));
1da177e4 2504 }
a6de734b
MG
2505
2506 /*
2507 * i pages were removed from the buddy list even if some leak due
2508 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2509 * on i. Do not confuse with 'alloced' which is the number of
2510 * pages added to the pcp list.
2511 */
f2260e6b 2512 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2513 spin_unlock(&zone->lock);
a6de734b 2514 return alloced;
1da177e4
LT
2515}
2516
4ae7c039 2517#ifdef CONFIG_NUMA
8fce4d8e 2518/*
4037d452
CL
2519 * Called from the vmstat counter updater to drain pagesets of this
2520 * currently executing processor on remote nodes after they have
2521 * expired.
2522 *
879336c3
CL
2523 * Note that this function must be called with the thread pinned to
2524 * a single processor.
8fce4d8e 2525 */
4037d452 2526void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2527{
4ae7c039 2528 unsigned long flags;
7be12fc9 2529 int to_drain, batch;
4ae7c039 2530
4037d452 2531 local_irq_save(flags);
4db0c3c2 2532 batch = READ_ONCE(pcp->batch);
7be12fc9 2533 to_drain = min(pcp->count, batch);
77ba9062 2534 if (to_drain > 0)
2a13515c 2535 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2536 local_irq_restore(flags);
4ae7c039
CL
2537}
2538#endif
2539
9f8f2172 2540/*
93481ff0 2541 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2542 *
2543 * The processor must either be the current processor and the
2544 * thread pinned to the current processor or a processor that
2545 * is not online.
2546 */
93481ff0 2547static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2548{
c54ad30c 2549 unsigned long flags;
93481ff0
VB
2550 struct per_cpu_pageset *pset;
2551 struct per_cpu_pages *pcp;
1da177e4 2552
93481ff0
VB
2553 local_irq_save(flags);
2554 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2555
93481ff0 2556 pcp = &pset->pcp;
77ba9062 2557 if (pcp->count)
93481ff0 2558 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2559 local_irq_restore(flags);
2560}
3dfa5721 2561
93481ff0
VB
2562/*
2563 * Drain pcplists of all zones on the indicated processor.
2564 *
2565 * The processor must either be the current processor and the
2566 * thread pinned to the current processor or a processor that
2567 * is not online.
2568 */
2569static void drain_pages(unsigned int cpu)
2570{
2571 struct zone *zone;
2572
2573 for_each_populated_zone(zone) {
2574 drain_pages_zone(cpu, zone);
1da177e4
LT
2575 }
2576}
1da177e4 2577
9f8f2172
CL
2578/*
2579 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2580 *
2581 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2582 * the single zone's pages.
9f8f2172 2583 */
93481ff0 2584void drain_local_pages(struct zone *zone)
9f8f2172 2585{
93481ff0
VB
2586 int cpu = smp_processor_id();
2587
2588 if (zone)
2589 drain_pages_zone(cpu, zone);
2590 else
2591 drain_pages(cpu);
9f8f2172
CL
2592}
2593
0ccce3b9
MG
2594static void drain_local_pages_wq(struct work_struct *work)
2595{
a459eeb7
MH
2596 /*
2597 * drain_all_pages doesn't use proper cpu hotplug protection so
2598 * we can race with cpu offline when the WQ can move this from
2599 * a cpu pinned worker to an unbound one. We can operate on a different
2600 * cpu which is allright but we also have to make sure to not move to
2601 * a different one.
2602 */
2603 preempt_disable();
0ccce3b9 2604 drain_local_pages(NULL);
a459eeb7 2605 preempt_enable();
0ccce3b9
MG
2606}
2607
9f8f2172 2608/*
74046494
GBY
2609 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2610 *
93481ff0
VB
2611 * When zone parameter is non-NULL, spill just the single zone's pages.
2612 *
0ccce3b9 2613 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2614 */
93481ff0 2615void drain_all_pages(struct zone *zone)
9f8f2172 2616{
74046494 2617 int cpu;
74046494
GBY
2618
2619 /*
2620 * Allocate in the BSS so we wont require allocation in
2621 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2622 */
2623 static cpumask_t cpus_with_pcps;
2624
ce612879
MH
2625 /*
2626 * Make sure nobody triggers this path before mm_percpu_wq is fully
2627 * initialized.
2628 */
2629 if (WARN_ON_ONCE(!mm_percpu_wq))
2630 return;
2631
bd233f53
MG
2632 /*
2633 * Do not drain if one is already in progress unless it's specific to
2634 * a zone. Such callers are primarily CMA and memory hotplug and need
2635 * the drain to be complete when the call returns.
2636 */
2637 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2638 if (!zone)
2639 return;
2640 mutex_lock(&pcpu_drain_mutex);
2641 }
0ccce3b9 2642
74046494
GBY
2643 /*
2644 * We don't care about racing with CPU hotplug event
2645 * as offline notification will cause the notified
2646 * cpu to drain that CPU pcps and on_each_cpu_mask
2647 * disables preemption as part of its processing
2648 */
2649 for_each_online_cpu(cpu) {
93481ff0
VB
2650 struct per_cpu_pageset *pcp;
2651 struct zone *z;
74046494 2652 bool has_pcps = false;
93481ff0
VB
2653
2654 if (zone) {
74046494 2655 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2656 if (pcp->pcp.count)
74046494 2657 has_pcps = true;
93481ff0
VB
2658 } else {
2659 for_each_populated_zone(z) {
2660 pcp = per_cpu_ptr(z->pageset, cpu);
2661 if (pcp->pcp.count) {
2662 has_pcps = true;
2663 break;
2664 }
74046494
GBY
2665 }
2666 }
93481ff0 2667
74046494
GBY
2668 if (has_pcps)
2669 cpumask_set_cpu(cpu, &cpus_with_pcps);
2670 else
2671 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2672 }
0ccce3b9 2673
bd233f53
MG
2674 for_each_cpu(cpu, &cpus_with_pcps) {
2675 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2676 INIT_WORK(work, drain_local_pages_wq);
ce612879 2677 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2678 }
bd233f53
MG
2679 for_each_cpu(cpu, &cpus_with_pcps)
2680 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2681
2682 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2683}
2684
296699de 2685#ifdef CONFIG_HIBERNATION
1da177e4 2686
556b969a
CY
2687/*
2688 * Touch the watchdog for every WD_PAGE_COUNT pages.
2689 */
2690#define WD_PAGE_COUNT (128*1024)
2691
1da177e4
LT
2692void mark_free_pages(struct zone *zone)
2693{
556b969a 2694 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2695 unsigned long flags;
7aeb09f9 2696 unsigned int order, t;
86760a2c 2697 struct page *page;
1da177e4 2698
8080fc03 2699 if (zone_is_empty(zone))
1da177e4
LT
2700 return;
2701
2702 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2703
108bcc96 2704 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2705 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2706 if (pfn_valid(pfn)) {
86760a2c 2707 page = pfn_to_page(pfn);
ba6b0979 2708
556b969a
CY
2709 if (!--page_count) {
2710 touch_nmi_watchdog();
2711 page_count = WD_PAGE_COUNT;
2712 }
2713
ba6b0979
JK
2714 if (page_zone(page) != zone)
2715 continue;
2716
7be98234
RW
2717 if (!swsusp_page_is_forbidden(page))
2718 swsusp_unset_page_free(page);
f623f0db 2719 }
1da177e4 2720
b2a0ac88 2721 for_each_migratetype_order(order, t) {
86760a2c
GT
2722 list_for_each_entry(page,
2723 &zone->free_area[order].free_list[t], lru) {
f623f0db 2724 unsigned long i;
1da177e4 2725
86760a2c 2726 pfn = page_to_pfn(page);
556b969a
CY
2727 for (i = 0; i < (1UL << order); i++) {
2728 if (!--page_count) {
2729 touch_nmi_watchdog();
2730 page_count = WD_PAGE_COUNT;
2731 }
7be98234 2732 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2733 }
f623f0db 2734 }
b2a0ac88 2735 }
1da177e4
LT
2736 spin_unlock_irqrestore(&zone->lock, flags);
2737}
e2c55dc8 2738#endif /* CONFIG_PM */
1da177e4 2739
2d4894b5 2740static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2741{
5f8dcc21 2742 int migratetype;
1da177e4 2743
4db7548c 2744 if (!free_pcp_prepare(page))
9cca35d4 2745 return false;
689bcebf 2746
dc4b0caf 2747 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2748 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2749 return true;
2750}
2751
2d4894b5 2752static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2753{
2754 struct zone *zone = page_zone(page);
2755 struct per_cpu_pages *pcp;
2756 int migratetype;
2757
2758 migratetype = get_pcppage_migratetype(page);
d34b0733 2759 __count_vm_event(PGFREE);
da456f14 2760
5f8dcc21
MG
2761 /*
2762 * We only track unmovable, reclaimable and movable on pcp lists.
2763 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2764 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2765 * areas back if necessary. Otherwise, we may have to free
2766 * excessively into the page allocator
2767 */
2768 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2769 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2770 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2771 return;
5f8dcc21
MG
2772 }
2773 migratetype = MIGRATE_MOVABLE;
2774 }
2775
99dcc3e5 2776 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2777 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2778 pcp->count++;
48db57f8 2779 if (pcp->count >= pcp->high) {
4db0c3c2 2780 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2781 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2782 }
9cca35d4 2783}
5f8dcc21 2784
9cca35d4
MG
2785/*
2786 * Free a 0-order page
9cca35d4 2787 */
2d4894b5 2788void free_unref_page(struct page *page)
9cca35d4
MG
2789{
2790 unsigned long flags;
2791 unsigned long pfn = page_to_pfn(page);
2792
2d4894b5 2793 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2794 return;
2795
2796 local_irq_save(flags);
2d4894b5 2797 free_unref_page_commit(page, pfn);
d34b0733 2798 local_irq_restore(flags);
1da177e4
LT
2799}
2800
cc59850e
KK
2801/*
2802 * Free a list of 0-order pages
2803 */
2d4894b5 2804void free_unref_page_list(struct list_head *list)
cc59850e
KK
2805{
2806 struct page *page, *next;
9cca35d4 2807 unsigned long flags, pfn;
c24ad77d 2808 int batch_count = 0;
9cca35d4
MG
2809
2810 /* Prepare pages for freeing */
2811 list_for_each_entry_safe(page, next, list, lru) {
2812 pfn = page_to_pfn(page);
2d4894b5 2813 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2814 list_del(&page->lru);
2815 set_page_private(page, pfn);
2816 }
cc59850e 2817
9cca35d4 2818 local_irq_save(flags);
cc59850e 2819 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2820 unsigned long pfn = page_private(page);
2821
2822 set_page_private(page, 0);
2d4894b5
MG
2823 trace_mm_page_free_batched(page);
2824 free_unref_page_commit(page, pfn);
c24ad77d
LS
2825
2826 /*
2827 * Guard against excessive IRQ disabled times when we get
2828 * a large list of pages to free.
2829 */
2830 if (++batch_count == SWAP_CLUSTER_MAX) {
2831 local_irq_restore(flags);
2832 batch_count = 0;
2833 local_irq_save(flags);
2834 }
cc59850e 2835 }
9cca35d4 2836 local_irq_restore(flags);
cc59850e
KK
2837}
2838
8dfcc9ba
NP
2839/*
2840 * split_page takes a non-compound higher-order page, and splits it into
2841 * n (1<<order) sub-pages: page[0..n]
2842 * Each sub-page must be freed individually.
2843 *
2844 * Note: this is probably too low level an operation for use in drivers.
2845 * Please consult with lkml before using this in your driver.
2846 */
2847void split_page(struct page *page, unsigned int order)
2848{
2849 int i;
2850
309381fe
SL
2851 VM_BUG_ON_PAGE(PageCompound(page), page);
2852 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2853
a9627bc5 2854 for (i = 1; i < (1 << order); i++)
7835e98b 2855 set_page_refcounted(page + i);
a9627bc5 2856 split_page_owner(page, order);
8dfcc9ba 2857}
5853ff23 2858EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2859
3c605096 2860int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2861{
748446bb
MG
2862 unsigned long watermark;
2863 struct zone *zone;
2139cbe6 2864 int mt;
748446bb
MG
2865
2866 BUG_ON(!PageBuddy(page));
2867
2868 zone = page_zone(page);
2e30abd1 2869 mt = get_pageblock_migratetype(page);
748446bb 2870
194159fb 2871 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2872 /*
2873 * Obey watermarks as if the page was being allocated. We can
2874 * emulate a high-order watermark check with a raised order-0
2875 * watermark, because we already know our high-order page
2876 * exists.
2877 */
2878 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2879 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2880 return 0;
2881
8fb74b9f 2882 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2883 }
748446bb
MG
2884
2885 /* Remove page from free list */
2886 list_del(&page->lru);
2887 zone->free_area[order].nr_free--;
2888 rmv_page_order(page);
2139cbe6 2889
400bc7fd 2890 /*
2891 * Set the pageblock if the isolated page is at least half of a
2892 * pageblock
2893 */
748446bb
MG
2894 if (order >= pageblock_order - 1) {
2895 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2896 for (; page < endpage; page += pageblock_nr_pages) {
2897 int mt = get_pageblock_migratetype(page);
88ed365e 2898 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2899 && !is_migrate_highatomic(mt))
47118af0
MN
2900 set_pageblock_migratetype(page,
2901 MIGRATE_MOVABLE);
2902 }
748446bb
MG
2903 }
2904
f3a14ced 2905
8fb74b9f 2906 return 1UL << order;
1fb3f8ca
MG
2907}
2908
060e7417
MG
2909/*
2910 * Update NUMA hit/miss statistics
2911 *
2912 * Must be called with interrupts disabled.
060e7417 2913 */
41b6167e 2914static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2915{
2916#ifdef CONFIG_NUMA
3a321d2a 2917 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2918
4518085e
KW
2919 /* skip numa counters update if numa stats is disabled */
2920 if (!static_branch_likely(&vm_numa_stat_key))
2921 return;
2922
c1093b74 2923 if (zone_to_nid(z) != numa_node_id())
060e7417 2924 local_stat = NUMA_OTHER;
060e7417 2925
c1093b74 2926 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 2927 __inc_numa_state(z, NUMA_HIT);
2df26639 2928 else {
3a321d2a
KW
2929 __inc_numa_state(z, NUMA_MISS);
2930 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2931 }
3a321d2a 2932 __inc_numa_state(z, local_stat);
060e7417
MG
2933#endif
2934}
2935
066b2393
MG
2936/* Remove page from the per-cpu list, caller must protect the list */
2937static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2938 struct per_cpu_pages *pcp,
066b2393
MG
2939 struct list_head *list)
2940{
2941 struct page *page;
2942
2943 do {
2944 if (list_empty(list)) {
2945 pcp->count += rmqueue_bulk(zone, 0,
2946 pcp->batch, list,
453f85d4 2947 migratetype);
066b2393
MG
2948 if (unlikely(list_empty(list)))
2949 return NULL;
2950 }
2951
453f85d4 2952 page = list_first_entry(list, struct page, lru);
066b2393
MG
2953 list_del(&page->lru);
2954 pcp->count--;
2955 } while (check_new_pcp(page));
2956
2957 return page;
2958}
2959
2960/* Lock and remove page from the per-cpu list */
2961static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2962 struct zone *zone, unsigned int order,
2963 gfp_t gfp_flags, int migratetype)
2964{
2965 struct per_cpu_pages *pcp;
2966 struct list_head *list;
066b2393 2967 struct page *page;
d34b0733 2968 unsigned long flags;
066b2393 2969
d34b0733 2970 local_irq_save(flags);
066b2393
MG
2971 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2972 list = &pcp->lists[migratetype];
453f85d4 2973 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2974 if (page) {
2975 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2976 zone_statistics(preferred_zone, zone);
2977 }
d34b0733 2978 local_irq_restore(flags);
066b2393
MG
2979 return page;
2980}
2981
1da177e4 2982/*
75379191 2983 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2984 */
0a15c3e9 2985static inline
066b2393 2986struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2987 struct zone *zone, unsigned int order,
c603844b
MG
2988 gfp_t gfp_flags, unsigned int alloc_flags,
2989 int migratetype)
1da177e4
LT
2990{
2991 unsigned long flags;
689bcebf 2992 struct page *page;
1da177e4 2993
d34b0733 2994 if (likely(order == 0)) {
066b2393
MG
2995 page = rmqueue_pcplist(preferred_zone, zone, order,
2996 gfp_flags, migratetype);
2997 goto out;
2998 }
83b9355b 2999
066b2393
MG
3000 /*
3001 * We most definitely don't want callers attempting to
3002 * allocate greater than order-1 page units with __GFP_NOFAIL.
3003 */
3004 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3005 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3006
066b2393
MG
3007 do {
3008 page = NULL;
3009 if (alloc_flags & ALLOC_HARDER) {
3010 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3011 if (page)
3012 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3013 }
a74609fa 3014 if (!page)
066b2393
MG
3015 page = __rmqueue(zone, order, migratetype);
3016 } while (page && check_new_pages(page, order));
3017 spin_unlock(&zone->lock);
3018 if (!page)
3019 goto failed;
3020 __mod_zone_freepage_state(zone, -(1 << order),
3021 get_pcppage_migratetype(page));
1da177e4 3022
16709d1d 3023 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3024 zone_statistics(preferred_zone, zone);
a74609fa 3025 local_irq_restore(flags);
1da177e4 3026
066b2393
MG
3027out:
3028 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3029 return page;
a74609fa
NP
3030
3031failed:
3032 local_irq_restore(flags);
a74609fa 3033 return NULL;
1da177e4
LT
3034}
3035
933e312e
AM
3036#ifdef CONFIG_FAIL_PAGE_ALLOC
3037
b2588c4b 3038static struct {
933e312e
AM
3039 struct fault_attr attr;
3040
621a5f7a 3041 bool ignore_gfp_highmem;
71baba4b 3042 bool ignore_gfp_reclaim;
54114994 3043 u32 min_order;
933e312e
AM
3044} fail_page_alloc = {
3045 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3046 .ignore_gfp_reclaim = true,
621a5f7a 3047 .ignore_gfp_highmem = true,
54114994 3048 .min_order = 1,
933e312e
AM
3049};
3050
3051static int __init setup_fail_page_alloc(char *str)
3052{
3053 return setup_fault_attr(&fail_page_alloc.attr, str);
3054}
3055__setup("fail_page_alloc=", setup_fail_page_alloc);
3056
deaf386e 3057static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3058{
54114994 3059 if (order < fail_page_alloc.min_order)
deaf386e 3060 return false;
933e312e 3061 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3062 return false;
933e312e 3063 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3064 return false;
71baba4b
MG
3065 if (fail_page_alloc.ignore_gfp_reclaim &&
3066 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3067 return false;
933e312e
AM
3068
3069 return should_fail(&fail_page_alloc.attr, 1 << order);
3070}
3071
3072#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3073
3074static int __init fail_page_alloc_debugfs(void)
3075{
0825a6f9 3076 umode_t mode = S_IFREG | 0600;
933e312e 3077 struct dentry *dir;
933e312e 3078
dd48c085
AM
3079 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3080 &fail_page_alloc.attr);
3081 if (IS_ERR(dir))
3082 return PTR_ERR(dir);
933e312e 3083
b2588c4b 3084 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3085 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3086 goto fail;
3087 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3088 &fail_page_alloc.ignore_gfp_highmem))
3089 goto fail;
3090 if (!debugfs_create_u32("min-order", mode, dir,
3091 &fail_page_alloc.min_order))
3092 goto fail;
3093
3094 return 0;
3095fail:
dd48c085 3096 debugfs_remove_recursive(dir);
933e312e 3097
b2588c4b 3098 return -ENOMEM;
933e312e
AM
3099}
3100
3101late_initcall(fail_page_alloc_debugfs);
3102
3103#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3104
3105#else /* CONFIG_FAIL_PAGE_ALLOC */
3106
deaf386e 3107static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3108{
deaf386e 3109 return false;
933e312e
AM
3110}
3111
3112#endif /* CONFIG_FAIL_PAGE_ALLOC */
3113
1da177e4 3114/*
97a16fc8
MG
3115 * Return true if free base pages are above 'mark'. For high-order checks it
3116 * will return true of the order-0 watermark is reached and there is at least
3117 * one free page of a suitable size. Checking now avoids taking the zone lock
3118 * to check in the allocation paths if no pages are free.
1da177e4 3119 */
86a294a8
MH
3120bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3121 int classzone_idx, unsigned int alloc_flags,
3122 long free_pages)
1da177e4 3123{
d23ad423 3124 long min = mark;
1da177e4 3125 int o;
cd04ae1e 3126 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3127
0aaa29a5 3128 /* free_pages may go negative - that's OK */
df0a6daa 3129 free_pages -= (1 << order) - 1;
0aaa29a5 3130
7fb1d9fc 3131 if (alloc_flags & ALLOC_HIGH)
1da177e4 3132 min -= min / 2;
0aaa29a5
MG
3133
3134 /*
3135 * If the caller does not have rights to ALLOC_HARDER then subtract
3136 * the high-atomic reserves. This will over-estimate the size of the
3137 * atomic reserve but it avoids a search.
3138 */
cd04ae1e 3139 if (likely(!alloc_harder)) {
0aaa29a5 3140 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3141 } else {
3142 /*
3143 * OOM victims can try even harder than normal ALLOC_HARDER
3144 * users on the grounds that it's definitely going to be in
3145 * the exit path shortly and free memory. Any allocation it
3146 * makes during the free path will be small and short-lived.
3147 */
3148 if (alloc_flags & ALLOC_OOM)
3149 min -= min / 2;
3150 else
3151 min -= min / 4;
3152 }
3153
e2b19197 3154
d883c6cf
JK
3155#ifdef CONFIG_CMA
3156 /* If allocation can't use CMA areas don't use free CMA pages */
3157 if (!(alloc_flags & ALLOC_CMA))
3158 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3159#endif
3160
97a16fc8
MG
3161 /*
3162 * Check watermarks for an order-0 allocation request. If these
3163 * are not met, then a high-order request also cannot go ahead
3164 * even if a suitable page happened to be free.
3165 */
3166 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3167 return false;
1da177e4 3168
97a16fc8
MG
3169 /* If this is an order-0 request then the watermark is fine */
3170 if (!order)
3171 return true;
3172
3173 /* For a high-order request, check at least one suitable page is free */
3174 for (o = order; o < MAX_ORDER; o++) {
3175 struct free_area *area = &z->free_area[o];
3176 int mt;
3177
3178 if (!area->nr_free)
3179 continue;
3180
97a16fc8
MG
3181 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3182 if (!list_empty(&area->free_list[mt]))
3183 return true;
3184 }
3185
3186#ifdef CONFIG_CMA
d883c6cf
JK
3187 if ((alloc_flags & ALLOC_CMA) &&
3188 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3189 return true;
d883c6cf 3190 }
97a16fc8 3191#endif
b050e376
VB
3192 if (alloc_harder &&
3193 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3194 return true;
1da177e4 3195 }
97a16fc8 3196 return false;
88f5acf8
MG
3197}
3198
7aeb09f9 3199bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3200 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3201{
3202 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3203 zone_page_state(z, NR_FREE_PAGES));
3204}
3205
48ee5f36
MG
3206static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3207 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3208{
3209 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3210 long cma_pages = 0;
3211
3212#ifdef CONFIG_CMA
3213 /* If allocation can't use CMA areas don't use free CMA pages */
3214 if (!(alloc_flags & ALLOC_CMA))
3215 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3216#endif
48ee5f36
MG
3217
3218 /*
3219 * Fast check for order-0 only. If this fails then the reserves
3220 * need to be calculated. There is a corner case where the check
3221 * passes but only the high-order atomic reserve are free. If
3222 * the caller is !atomic then it'll uselessly search the free
3223 * list. That corner case is then slower but it is harmless.
3224 */
d883c6cf 3225 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3226 return true;
3227
3228 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3229 free_pages);
3230}
3231
7aeb09f9 3232bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3233 unsigned long mark, int classzone_idx)
88f5acf8
MG
3234{
3235 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3236
3237 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3238 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3239
e2b19197 3240 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3241 free_pages);
1da177e4
LT
3242}
3243
9276b1bc 3244#ifdef CONFIG_NUMA
957f822a
DR
3245static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3246{
e02dc017 3247 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3248 RECLAIM_DISTANCE;
957f822a 3249}
9276b1bc 3250#else /* CONFIG_NUMA */
957f822a
DR
3251static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3252{
3253 return true;
3254}
9276b1bc
PJ
3255#endif /* CONFIG_NUMA */
3256
7fb1d9fc 3257/*
0798e519 3258 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3259 * a page.
3260 */
3261static struct page *
a9263751
VB
3262get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3263 const struct alloc_context *ac)
753ee728 3264{
c33d6c06 3265 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3266 struct zone *zone;
3b8c0be4
MG
3267 struct pglist_data *last_pgdat_dirty_limit = NULL;
3268
7fb1d9fc 3269 /*
9276b1bc 3270 * Scan zonelist, looking for a zone with enough free.
344736f2 3271 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3272 */
c33d6c06 3273 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3274 ac->nodemask) {
be06af00 3275 struct page *page;
e085dbc5
JW
3276 unsigned long mark;
3277
664eedde
MG
3278 if (cpusets_enabled() &&
3279 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3280 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3281 continue;
a756cf59
JW
3282 /*
3283 * When allocating a page cache page for writing, we
281e3726
MG
3284 * want to get it from a node that is within its dirty
3285 * limit, such that no single node holds more than its
a756cf59 3286 * proportional share of globally allowed dirty pages.
281e3726 3287 * The dirty limits take into account the node's
a756cf59
JW
3288 * lowmem reserves and high watermark so that kswapd
3289 * should be able to balance it without having to
3290 * write pages from its LRU list.
3291 *
a756cf59 3292 * XXX: For now, allow allocations to potentially
281e3726 3293 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3294 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3295 * which is important when on a NUMA setup the allowed
281e3726 3296 * nodes are together not big enough to reach the
a756cf59 3297 * global limit. The proper fix for these situations
281e3726 3298 * will require awareness of nodes in the
a756cf59
JW
3299 * dirty-throttling and the flusher threads.
3300 */
3b8c0be4
MG
3301 if (ac->spread_dirty_pages) {
3302 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3303 continue;
3304
3305 if (!node_dirty_ok(zone->zone_pgdat)) {
3306 last_pgdat_dirty_limit = zone->zone_pgdat;
3307 continue;
3308 }
3309 }
7fb1d9fc 3310
e085dbc5 3311 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3312 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3313 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3314 int ret;
3315
c9e97a19
PT
3316#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3317 /*
3318 * Watermark failed for this zone, but see if we can
3319 * grow this zone if it contains deferred pages.
3320 */
3321 if (static_branch_unlikely(&deferred_pages)) {
3322 if (_deferred_grow_zone(zone, order))
3323 goto try_this_zone;
3324 }
3325#endif
5dab2911
MG
3326 /* Checked here to keep the fast path fast */
3327 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3328 if (alloc_flags & ALLOC_NO_WATERMARKS)
3329 goto try_this_zone;
3330
a5f5f91d 3331 if (node_reclaim_mode == 0 ||
c33d6c06 3332 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3333 continue;
3334
a5f5f91d 3335 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3336 switch (ret) {
a5f5f91d 3337 case NODE_RECLAIM_NOSCAN:
fa5e084e 3338 /* did not scan */
cd38b115 3339 continue;
a5f5f91d 3340 case NODE_RECLAIM_FULL:
fa5e084e 3341 /* scanned but unreclaimable */
cd38b115 3342 continue;
fa5e084e
MG
3343 default:
3344 /* did we reclaim enough */
fed2719e 3345 if (zone_watermark_ok(zone, order, mark,
93ea9964 3346 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3347 goto try_this_zone;
3348
fed2719e 3349 continue;
0798e519 3350 }
7fb1d9fc
RS
3351 }
3352
fa5e084e 3353try_this_zone:
066b2393 3354 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3355 gfp_mask, alloc_flags, ac->migratetype);
75379191 3356 if (page) {
479f854a 3357 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3358
3359 /*
3360 * If this is a high-order atomic allocation then check
3361 * if the pageblock should be reserved for the future
3362 */
3363 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3364 reserve_highatomic_pageblock(page, zone, order);
3365
75379191 3366 return page;
c9e97a19
PT
3367 } else {
3368#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3369 /* Try again if zone has deferred pages */
3370 if (static_branch_unlikely(&deferred_pages)) {
3371 if (_deferred_grow_zone(zone, order))
3372 goto try_this_zone;
3373 }
3374#endif
75379191 3375 }
54a6eb5c 3376 }
9276b1bc 3377
4ffeaf35 3378 return NULL;
753ee728
MH
3379}
3380
9af744d7 3381static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3382{
a238ab5b 3383 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3384 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3385
2c029a1e 3386 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3387 return;
3388
3389 /*
3390 * This documents exceptions given to allocations in certain
3391 * contexts that are allowed to allocate outside current's set
3392 * of allowed nodes.
3393 */
3394 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3395 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3396 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3397 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3398 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3399 filter &= ~SHOW_MEM_FILTER_NODES;
3400
9af744d7 3401 show_mem(filter, nodemask);
aa187507
MH
3402}
3403
a8e99259 3404void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3405{
3406 struct va_format vaf;
3407 va_list args;
3408 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3409 DEFAULT_RATELIMIT_BURST);
3410
0f7896f1 3411 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3412 return;
3413
7877cdcc
MH
3414 va_start(args, fmt);
3415 vaf.fmt = fmt;
3416 vaf.va = &args;
0205f755
MH
3417 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3418 current->comm, &vaf, gfp_mask, &gfp_mask,
3419 nodemask_pr_args(nodemask));
7877cdcc 3420 va_end(args);
3ee9a4f0 3421
a8e99259 3422 cpuset_print_current_mems_allowed();
3ee9a4f0 3423
a238ab5b 3424 dump_stack();
685dbf6f 3425 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3426}
3427
6c18ba7a
MH
3428static inline struct page *
3429__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3430 unsigned int alloc_flags,
3431 const struct alloc_context *ac)
3432{
3433 struct page *page;
3434
3435 page = get_page_from_freelist(gfp_mask, order,
3436 alloc_flags|ALLOC_CPUSET, ac);
3437 /*
3438 * fallback to ignore cpuset restriction if our nodes
3439 * are depleted
3440 */
3441 if (!page)
3442 page = get_page_from_freelist(gfp_mask, order,
3443 alloc_flags, ac);
3444
3445 return page;
3446}
3447
11e33f6a
MG
3448static inline struct page *
3449__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3450 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3451{
6e0fc46d
DR
3452 struct oom_control oc = {
3453 .zonelist = ac->zonelist,
3454 .nodemask = ac->nodemask,
2a966b77 3455 .memcg = NULL,
6e0fc46d
DR
3456 .gfp_mask = gfp_mask,
3457 .order = order,
6e0fc46d 3458 };
11e33f6a
MG
3459 struct page *page;
3460
9879de73
JW
3461 *did_some_progress = 0;
3462
9879de73 3463 /*
dc56401f
JW
3464 * Acquire the oom lock. If that fails, somebody else is
3465 * making progress for us.
9879de73 3466 */
dc56401f 3467 if (!mutex_trylock(&oom_lock)) {
9879de73 3468 *did_some_progress = 1;
11e33f6a 3469 schedule_timeout_uninterruptible(1);
1da177e4
LT
3470 return NULL;
3471 }
6b1de916 3472
11e33f6a
MG
3473 /*
3474 * Go through the zonelist yet one more time, keep very high watermark
3475 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3476 * we're still under heavy pressure. But make sure that this reclaim
3477 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3478 * allocation which will never fail due to oom_lock already held.
11e33f6a 3479 */
e746bf73
TH
3480 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3481 ~__GFP_DIRECT_RECLAIM, order,
3482 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3483 if (page)
11e33f6a
MG
3484 goto out;
3485
06ad276a
MH
3486 /* Coredumps can quickly deplete all memory reserves */
3487 if (current->flags & PF_DUMPCORE)
3488 goto out;
3489 /* The OOM killer will not help higher order allocs */
3490 if (order > PAGE_ALLOC_COSTLY_ORDER)
3491 goto out;
dcda9b04
MH
3492 /*
3493 * We have already exhausted all our reclaim opportunities without any
3494 * success so it is time to admit defeat. We will skip the OOM killer
3495 * because it is very likely that the caller has a more reasonable
3496 * fallback than shooting a random task.
3497 */
3498 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3499 goto out;
06ad276a
MH
3500 /* The OOM killer does not needlessly kill tasks for lowmem */
3501 if (ac->high_zoneidx < ZONE_NORMAL)
3502 goto out;
3503 if (pm_suspended_storage())
3504 goto out;
3505 /*
3506 * XXX: GFP_NOFS allocations should rather fail than rely on
3507 * other request to make a forward progress.
3508 * We are in an unfortunate situation where out_of_memory cannot
3509 * do much for this context but let's try it to at least get
3510 * access to memory reserved if the current task is killed (see
3511 * out_of_memory). Once filesystems are ready to handle allocation
3512 * failures more gracefully we should just bail out here.
3513 */
3514
3515 /* The OOM killer may not free memory on a specific node */
3516 if (gfp_mask & __GFP_THISNODE)
3517 goto out;
3da88fb3 3518
3c2c6488 3519 /* Exhausted what can be done so it's blame time */
5020e285 3520 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3521 *did_some_progress = 1;
5020e285 3522
6c18ba7a
MH
3523 /*
3524 * Help non-failing allocations by giving them access to memory
3525 * reserves
3526 */
3527 if (gfp_mask & __GFP_NOFAIL)
3528 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3529 ALLOC_NO_WATERMARKS, ac);
5020e285 3530 }
11e33f6a 3531out:
dc56401f 3532 mutex_unlock(&oom_lock);
11e33f6a
MG
3533 return page;
3534}
3535
33c2d214
MH
3536/*
3537 * Maximum number of compaction retries wit a progress before OOM
3538 * killer is consider as the only way to move forward.
3539 */
3540#define MAX_COMPACT_RETRIES 16
3541
56de7263
MG
3542#ifdef CONFIG_COMPACTION
3543/* Try memory compaction for high-order allocations before reclaim */
3544static struct page *
3545__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3546 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3547 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3548{
98dd3b48 3549 struct page *page;
eb414681 3550 unsigned long pflags;
499118e9 3551 unsigned int noreclaim_flag;
53853e2d
VB
3552
3553 if (!order)
66199712 3554 return NULL;
66199712 3555
eb414681 3556 psi_memstall_enter(&pflags);
499118e9 3557 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3558
c5d01d0d 3559 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3560 prio);
eb414681 3561
499118e9 3562 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3563 psi_memstall_leave(&pflags);
56de7263 3564
c5d01d0d 3565 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3566 return NULL;
53853e2d 3567
98dd3b48
VB
3568 /*
3569 * At least in one zone compaction wasn't deferred or skipped, so let's
3570 * count a compaction stall
3571 */
3572 count_vm_event(COMPACTSTALL);
8fb74b9f 3573
31a6c190 3574 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3575
98dd3b48
VB
3576 if (page) {
3577 struct zone *zone = page_zone(page);
53853e2d 3578
98dd3b48
VB
3579 zone->compact_blockskip_flush = false;
3580 compaction_defer_reset(zone, order, true);
3581 count_vm_event(COMPACTSUCCESS);
3582 return page;
3583 }
56de7263 3584
98dd3b48
VB
3585 /*
3586 * It's bad if compaction run occurs and fails. The most likely reason
3587 * is that pages exist, but not enough to satisfy watermarks.
3588 */
3589 count_vm_event(COMPACTFAIL);
66199712 3590
98dd3b48 3591 cond_resched();
56de7263
MG
3592
3593 return NULL;
3594}
33c2d214 3595
3250845d
VB
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598 enum compact_result compact_result,
3599 enum compact_priority *compact_priority,
d9436498 3600 int *compaction_retries)
3250845d
VB
3601{
3602 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3603 int min_priority;
65190cff
MH
3604 bool ret = false;
3605 int retries = *compaction_retries;
3606 enum compact_priority priority = *compact_priority;
3250845d
VB
3607
3608 if (!order)
3609 return false;
3610
d9436498
VB
3611 if (compaction_made_progress(compact_result))
3612 (*compaction_retries)++;
3613
3250845d
VB
3614 /*
3615 * compaction considers all the zone as desperately out of memory
3616 * so it doesn't really make much sense to retry except when the
3617 * failure could be caused by insufficient priority
3618 */
d9436498
VB
3619 if (compaction_failed(compact_result))
3620 goto check_priority;
3250845d
VB
3621
3622 /*
3623 * make sure the compaction wasn't deferred or didn't bail out early
3624 * due to locks contention before we declare that we should give up.
3625 * But do not retry if the given zonelist is not suitable for
3626 * compaction.
3627 */
65190cff
MH
3628 if (compaction_withdrawn(compact_result)) {
3629 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630 goto out;
3631 }
3250845d
VB
3632
3633 /*
dcda9b04 3634 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3635 * costly ones because they are de facto nofail and invoke OOM
3636 * killer to move on while costly can fail and users are ready
3637 * to cope with that. 1/4 retries is rather arbitrary but we
3638 * would need much more detailed feedback from compaction to
3639 * make a better decision.
3640 */
3641 if (order > PAGE_ALLOC_COSTLY_ORDER)
3642 max_retries /= 4;
65190cff
MH
3643 if (*compaction_retries <= max_retries) {
3644 ret = true;
3645 goto out;
3646 }
3250845d 3647
d9436498
VB
3648 /*
3649 * Make sure there are attempts at the highest priority if we exhausted
3650 * all retries or failed at the lower priorities.
3651 */
3652check_priority:
c2033b00
VB
3653 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3655
c2033b00 3656 if (*compact_priority > min_priority) {
d9436498
VB
3657 (*compact_priority)--;
3658 *compaction_retries = 0;
65190cff 3659 ret = true;
d9436498 3660 }
65190cff
MH
3661out:
3662 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663 return ret;
3250845d 3664}
56de7263
MG
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3668 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3669 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3670{
33c2d214 3671 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3672 return NULL;
3673}
33c2d214
MH
3674
3675static inline bool
86a294a8
MH
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677 enum compact_result compact_result,
a5508cd8 3678 enum compact_priority *compact_priority,
d9436498 3679 int *compaction_retries)
33c2d214 3680{
31e49bfd
MH
3681 struct zone *zone;
3682 struct zoneref *z;
3683
3684 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685 return false;
3686
3687 /*
3688 * There are setups with compaction disabled which would prefer to loop
3689 * inside the allocator rather than hit the oom killer prematurely.
3690 * Let's give them a good hope and keep retrying while the order-0
3691 * watermarks are OK.
3692 */
3693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694 ac->nodemask) {
3695 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696 ac_classzone_idx(ac), alloc_flags))
3697 return true;
3698 }
33c2d214
MH
3699 return false;
3700}
3250845d 3701#endif /* CONFIG_COMPACTION */
56de7263 3702
d92a8cfc 3703#ifdef CONFIG_LOCKDEP
93781325 3704static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3705 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709 gfp_mask = current_gfp_context(gfp_mask);
3710
3711 /* no reclaim without waiting on it */
3712 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713 return false;
3714
3715 /* this guy won't enter reclaim */
2e517d68 3716 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3717 return false;
3718
3719 /* We're only interested __GFP_FS allocations for now */
3720 if (!(gfp_mask & __GFP_FS))
3721 return false;
3722
3723 if (gfp_mask & __GFP_NOLOCKDEP)
3724 return false;
3725
3726 return true;
3727}
3728
93781325
OS
3729void __fs_reclaim_acquire(void)
3730{
3731 lock_map_acquire(&__fs_reclaim_map);
3732}
3733
3734void __fs_reclaim_release(void)
3735{
3736 lock_map_release(&__fs_reclaim_map);
3737}
3738
d92a8cfc
PZ
3739void fs_reclaim_acquire(gfp_t gfp_mask)
3740{
3741 if (__need_fs_reclaim(gfp_mask))
93781325 3742 __fs_reclaim_acquire();
d92a8cfc
PZ
3743}
3744EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3745
3746void fs_reclaim_release(gfp_t gfp_mask)
3747{
3748 if (__need_fs_reclaim(gfp_mask))
93781325 3749 __fs_reclaim_release();
d92a8cfc
PZ
3750}
3751EXPORT_SYMBOL_GPL(fs_reclaim_release);
3752#endif
3753
bba90710
MS
3754/* Perform direct synchronous page reclaim */
3755static int
a9263751
VB
3756__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3757 const struct alloc_context *ac)
11e33f6a 3758{
11e33f6a 3759 struct reclaim_state reclaim_state;
bba90710 3760 int progress;
499118e9 3761 unsigned int noreclaim_flag;
eb414681 3762 unsigned long pflags;
11e33f6a
MG
3763
3764 cond_resched();
3765
3766 /* We now go into synchronous reclaim */
3767 cpuset_memory_pressure_bump();
eb414681 3768 psi_memstall_enter(&pflags);
d92a8cfc 3769 fs_reclaim_acquire(gfp_mask);
93781325 3770 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3771 reclaim_state.reclaimed_slab = 0;
c06b1fca 3772 current->reclaim_state = &reclaim_state;
11e33f6a 3773
a9263751
VB
3774 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3775 ac->nodemask);
11e33f6a 3776
c06b1fca 3777 current->reclaim_state = NULL;
499118e9 3778 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3779 fs_reclaim_release(gfp_mask);
eb414681 3780 psi_memstall_leave(&pflags);
11e33f6a
MG
3781
3782 cond_resched();
3783
bba90710
MS
3784 return progress;
3785}
3786
3787/* The really slow allocator path where we enter direct reclaim */
3788static inline struct page *
3789__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3790 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3791 unsigned long *did_some_progress)
bba90710
MS
3792{
3793 struct page *page = NULL;
3794 bool drained = false;
3795
a9263751 3796 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3797 if (unlikely(!(*did_some_progress)))
3798 return NULL;
11e33f6a 3799
9ee493ce 3800retry:
31a6c190 3801 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3802
3803 /*
3804 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3805 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806 * Shrink them them and try again
9ee493ce
MG
3807 */
3808 if (!page && !drained) {
29fac03b 3809 unreserve_highatomic_pageblock(ac, false);
93481ff0 3810 drain_all_pages(NULL);
9ee493ce
MG
3811 drained = true;
3812 goto retry;
3813 }
3814
11e33f6a
MG
3815 return page;
3816}
3817
5ecd9d40
DR
3818static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3819 const struct alloc_context *ac)
3a025760
JW
3820{
3821 struct zoneref *z;
3822 struct zone *zone;
e1a55637 3823 pg_data_t *last_pgdat = NULL;
5ecd9d40 3824 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3825
5ecd9d40
DR
3826 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3827 ac->nodemask) {
e1a55637 3828 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3829 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3830 last_pgdat = zone->zone_pgdat;
3831 }
3a025760
JW
3832}
3833
c603844b 3834static inline unsigned int
341ce06f
PZ
3835gfp_to_alloc_flags(gfp_t gfp_mask)
3836{
c603844b 3837 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3838
a56f57ff 3839 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3840 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3841
341ce06f
PZ
3842 /*
3843 * The caller may dip into page reserves a bit more if the caller
3844 * cannot run direct reclaim, or if the caller has realtime scheduling
3845 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3846 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3847 */
e6223a3b 3848 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3849
d0164adc 3850 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3851 /*
b104a35d
DR
3852 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3853 * if it can't schedule.
5c3240d9 3854 */
b104a35d 3855 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3856 alloc_flags |= ALLOC_HARDER;
523b9458 3857 /*
b104a35d 3858 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3859 * comment for __cpuset_node_allowed().
523b9458 3860 */
341ce06f 3861 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3862 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3863 alloc_flags |= ALLOC_HARDER;
3864
d883c6cf
JK
3865#ifdef CONFIG_CMA
3866 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3867 alloc_flags |= ALLOC_CMA;
3868#endif
341ce06f
PZ
3869 return alloc_flags;
3870}
3871
cd04ae1e 3872static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3873{
cd04ae1e
MH
3874 if (!tsk_is_oom_victim(tsk))
3875 return false;
3876
3877 /*
3878 * !MMU doesn't have oom reaper so give access to memory reserves
3879 * only to the thread with TIF_MEMDIE set
3880 */
3881 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3882 return false;
3883
cd04ae1e
MH
3884 return true;
3885}
3886
3887/*
3888 * Distinguish requests which really need access to full memory
3889 * reserves from oom victims which can live with a portion of it
3890 */
3891static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3892{
3893 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3894 return 0;
31a6c190 3895 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3896 return ALLOC_NO_WATERMARKS;
31a6c190 3897 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3898 return ALLOC_NO_WATERMARKS;
3899 if (!in_interrupt()) {
3900 if (current->flags & PF_MEMALLOC)
3901 return ALLOC_NO_WATERMARKS;
3902 else if (oom_reserves_allowed(current))
3903 return ALLOC_OOM;
3904 }
31a6c190 3905
cd04ae1e
MH
3906 return 0;
3907}
3908
3909bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3910{
3911 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3912}
3913
0a0337e0
MH
3914/*
3915 * Checks whether it makes sense to retry the reclaim to make a forward progress
3916 * for the given allocation request.
491d79ae
JW
3917 *
3918 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3919 * without success, or when we couldn't even meet the watermark if we
3920 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3921 *
3922 * Returns true if a retry is viable or false to enter the oom path.
3923 */
3924static inline bool
3925should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3926 struct alloc_context *ac, int alloc_flags,
423b452e 3927 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3928{
3929 struct zone *zone;
3930 struct zoneref *z;
15f570bf 3931 bool ret = false;
0a0337e0 3932
423b452e
VB
3933 /*
3934 * Costly allocations might have made a progress but this doesn't mean
3935 * their order will become available due to high fragmentation so
3936 * always increment the no progress counter for them
3937 */
3938 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3939 *no_progress_loops = 0;
3940 else
3941 (*no_progress_loops)++;
3942
0a0337e0
MH
3943 /*
3944 * Make sure we converge to OOM if we cannot make any progress
3945 * several times in the row.
3946 */
04c8716f
MK
3947 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3948 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3949 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3950 }
0a0337e0 3951
bca67592
MG
3952 /*
3953 * Keep reclaiming pages while there is a chance this will lead
3954 * somewhere. If none of the target zones can satisfy our allocation
3955 * request even if all reclaimable pages are considered then we are
3956 * screwed and have to go OOM.
0a0337e0
MH
3957 */
3958 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3959 ac->nodemask) {
3960 unsigned long available;
ede37713 3961 unsigned long reclaimable;
d379f01d
MH
3962 unsigned long min_wmark = min_wmark_pages(zone);
3963 bool wmark;
0a0337e0 3964
5a1c84b4 3965 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3966 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3967
3968 /*
491d79ae
JW
3969 * Would the allocation succeed if we reclaimed all
3970 * reclaimable pages?
0a0337e0 3971 */
d379f01d
MH
3972 wmark = __zone_watermark_ok(zone, order, min_wmark,
3973 ac_classzone_idx(ac), alloc_flags, available);
3974 trace_reclaim_retry_zone(z, order, reclaimable,
3975 available, min_wmark, *no_progress_loops, wmark);
3976 if (wmark) {
ede37713
MH
3977 /*
3978 * If we didn't make any progress and have a lot of
3979 * dirty + writeback pages then we should wait for
3980 * an IO to complete to slow down the reclaim and
3981 * prevent from pre mature OOM
3982 */
3983 if (!did_some_progress) {
11fb9989 3984 unsigned long write_pending;
ede37713 3985
5a1c84b4
MG
3986 write_pending = zone_page_state_snapshot(zone,
3987 NR_ZONE_WRITE_PENDING);
ede37713 3988
11fb9989 3989 if (2 * write_pending > reclaimable) {
ede37713
MH
3990 congestion_wait(BLK_RW_ASYNC, HZ/10);
3991 return true;
3992 }
3993 }
5a1c84b4 3994
15f570bf
MH
3995 ret = true;
3996 goto out;
0a0337e0
MH
3997 }
3998 }
3999
15f570bf
MH
4000out:
4001 /*
4002 * Memory allocation/reclaim might be called from a WQ context and the
4003 * current implementation of the WQ concurrency control doesn't
4004 * recognize that a particular WQ is congested if the worker thread is
4005 * looping without ever sleeping. Therefore we have to do a short sleep
4006 * here rather than calling cond_resched().
4007 */
4008 if (current->flags & PF_WQ_WORKER)
4009 schedule_timeout_uninterruptible(1);
4010 else
4011 cond_resched();
4012 return ret;
0a0337e0
MH
4013}
4014
902b6281
VB
4015static inline bool
4016check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4017{
4018 /*
4019 * It's possible that cpuset's mems_allowed and the nodemask from
4020 * mempolicy don't intersect. This should be normally dealt with by
4021 * policy_nodemask(), but it's possible to race with cpuset update in
4022 * such a way the check therein was true, and then it became false
4023 * before we got our cpuset_mems_cookie here.
4024 * This assumes that for all allocations, ac->nodemask can come only
4025 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4026 * when it does not intersect with the cpuset restrictions) or the
4027 * caller can deal with a violated nodemask.
4028 */
4029 if (cpusets_enabled() && ac->nodemask &&
4030 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4031 ac->nodemask = NULL;
4032 return true;
4033 }
4034
4035 /*
4036 * When updating a task's mems_allowed or mempolicy nodemask, it is
4037 * possible to race with parallel threads in such a way that our
4038 * allocation can fail while the mask is being updated. If we are about
4039 * to fail, check if the cpuset changed during allocation and if so,
4040 * retry.
4041 */
4042 if (read_mems_allowed_retry(cpuset_mems_cookie))
4043 return true;
4044
4045 return false;
4046}
4047
11e33f6a
MG
4048static inline struct page *
4049__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4050 struct alloc_context *ac)
11e33f6a 4051{
d0164adc 4052 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4053 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4054 struct page *page = NULL;
c603844b 4055 unsigned int alloc_flags;
11e33f6a 4056 unsigned long did_some_progress;
5ce9bfef 4057 enum compact_priority compact_priority;
c5d01d0d 4058 enum compact_result compact_result;
5ce9bfef
VB
4059 int compaction_retries;
4060 int no_progress_loops;
5ce9bfef 4061 unsigned int cpuset_mems_cookie;
cd04ae1e 4062 int reserve_flags;
1da177e4 4063
72807a74
MG
4064 /*
4065 * In the slowpath, we sanity check order to avoid ever trying to
4066 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4067 * be using allocators in order of preference for an area that is
4068 * too large.
4069 */
1fc28b70
MG
4070 if (order >= MAX_ORDER) {
4071 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 4072 return NULL;
1fc28b70 4073 }
1da177e4 4074
d0164adc
MG
4075 /*
4076 * We also sanity check to catch abuse of atomic reserves being used by
4077 * callers that are not in atomic context.
4078 */
4079 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4080 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4081 gfp_mask &= ~__GFP_ATOMIC;
4082
5ce9bfef
VB
4083retry_cpuset:
4084 compaction_retries = 0;
4085 no_progress_loops = 0;
4086 compact_priority = DEF_COMPACT_PRIORITY;
4087 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4088
4089 /*
4090 * The fast path uses conservative alloc_flags to succeed only until
4091 * kswapd needs to be woken up, and to avoid the cost of setting up
4092 * alloc_flags precisely. So we do that now.
4093 */
4094 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4095
e47483bc
VB
4096 /*
4097 * We need to recalculate the starting point for the zonelist iterator
4098 * because we might have used different nodemask in the fast path, or
4099 * there was a cpuset modification and we are retrying - otherwise we
4100 * could end up iterating over non-eligible zones endlessly.
4101 */
4102 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4103 ac->high_zoneidx, ac->nodemask);
4104 if (!ac->preferred_zoneref->zone)
4105 goto nopage;
4106
23771235 4107 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4108 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4109
4110 /*
4111 * The adjusted alloc_flags might result in immediate success, so try
4112 * that first
4113 */
4114 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4115 if (page)
4116 goto got_pg;
4117
a8161d1e
VB
4118 /*
4119 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4120 * that we have enough base pages and don't need to reclaim. For non-
4121 * movable high-order allocations, do that as well, as compaction will
4122 * try prevent permanent fragmentation by migrating from blocks of the
4123 * same migratetype.
4124 * Don't try this for allocations that are allowed to ignore
4125 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4126 */
282722b0
VB
4127 if (can_direct_reclaim &&
4128 (costly_order ||
4129 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4130 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4131 page = __alloc_pages_direct_compact(gfp_mask, order,
4132 alloc_flags, ac,
a5508cd8 4133 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4134 &compact_result);
4135 if (page)
4136 goto got_pg;
4137
3eb2771b
VB
4138 /*
4139 * Checks for costly allocations with __GFP_NORETRY, which
4140 * includes THP page fault allocations
4141 */
282722b0 4142 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4143 /*
4144 * If compaction is deferred for high-order allocations,
4145 * it is because sync compaction recently failed. If
4146 * this is the case and the caller requested a THP
4147 * allocation, we do not want to heavily disrupt the
4148 * system, so we fail the allocation instead of entering
4149 * direct reclaim.
4150 */
4151 if (compact_result == COMPACT_DEFERRED)
4152 goto nopage;
4153
a8161d1e 4154 /*
3eb2771b
VB
4155 * Looks like reclaim/compaction is worth trying, but
4156 * sync compaction could be very expensive, so keep
25160354 4157 * using async compaction.
a8161d1e 4158 */
a5508cd8 4159 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4160 }
4161 }
23771235 4162
31a6c190 4163retry:
23771235 4164 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190 4165 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4166 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4167
cd04ae1e
MH
4168 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4169 if (reserve_flags)
4170 alloc_flags = reserve_flags;
23771235 4171
e46e7b77 4172 /*
d6a24df0
VB
4173 * Reset the nodemask and zonelist iterators if memory policies can be
4174 * ignored. These allocations are high priority and system rather than
4175 * user oriented.
e46e7b77 4176 */
cd04ae1e 4177 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4178 ac->nodemask = NULL;
e46e7b77
MG
4179 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4180 ac->high_zoneidx, ac->nodemask);
4181 }
4182
23771235 4183 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4184 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4185 if (page)
4186 goto got_pg;
1da177e4 4187
d0164adc 4188 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4189 if (!can_direct_reclaim)
1da177e4
LT
4190 goto nopage;
4191
9a67f648
MH
4192 /* Avoid recursion of direct reclaim */
4193 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4194 goto nopage;
4195
a8161d1e
VB
4196 /* Try direct reclaim and then allocating */
4197 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4198 &did_some_progress);
4199 if (page)
4200 goto got_pg;
4201
4202 /* Try direct compaction and then allocating */
a9263751 4203 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4204 compact_priority, &compact_result);
56de7263
MG
4205 if (page)
4206 goto got_pg;
75f30861 4207
9083905a
JW
4208 /* Do not loop if specifically requested */
4209 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4210 goto nopage;
9083905a 4211
0a0337e0
MH
4212 /*
4213 * Do not retry costly high order allocations unless they are
dcda9b04 4214 * __GFP_RETRY_MAYFAIL
0a0337e0 4215 */
dcda9b04 4216 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4217 goto nopage;
0a0337e0 4218
0a0337e0 4219 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4220 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4221 goto retry;
4222
33c2d214
MH
4223 /*
4224 * It doesn't make any sense to retry for the compaction if the order-0
4225 * reclaim is not able to make any progress because the current
4226 * implementation of the compaction depends on the sufficient amount
4227 * of free memory (see __compaction_suitable)
4228 */
4229 if (did_some_progress > 0 &&
86a294a8 4230 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4231 compact_result, &compact_priority,
d9436498 4232 &compaction_retries))
33c2d214
MH
4233 goto retry;
4234
902b6281
VB
4235
4236 /* Deal with possible cpuset update races before we start OOM killing */
4237 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4238 goto retry_cpuset;
4239
9083905a
JW
4240 /* Reclaim has failed us, start killing things */
4241 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4242 if (page)
4243 goto got_pg;
4244
9a67f648 4245 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4246 if (tsk_is_oom_victim(current) &&
4247 (alloc_flags == ALLOC_OOM ||
c288983d 4248 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4249 goto nopage;
4250
9083905a 4251 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4252 if (did_some_progress) {
4253 no_progress_loops = 0;
9083905a 4254 goto retry;
0a0337e0 4255 }
9083905a 4256
1da177e4 4257nopage:
902b6281
VB
4258 /* Deal with possible cpuset update races before we fail */
4259 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4260 goto retry_cpuset;
4261
9a67f648
MH
4262 /*
4263 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4264 * we always retry
4265 */
4266 if (gfp_mask & __GFP_NOFAIL) {
4267 /*
4268 * All existing users of the __GFP_NOFAIL are blockable, so warn
4269 * of any new users that actually require GFP_NOWAIT
4270 */
4271 if (WARN_ON_ONCE(!can_direct_reclaim))
4272 goto fail;
4273
4274 /*
4275 * PF_MEMALLOC request from this context is rather bizarre
4276 * because we cannot reclaim anything and only can loop waiting
4277 * for somebody to do a work for us
4278 */
4279 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4280
4281 /*
4282 * non failing costly orders are a hard requirement which we
4283 * are not prepared for much so let's warn about these users
4284 * so that we can identify them and convert them to something
4285 * else.
4286 */
4287 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4288
6c18ba7a
MH
4289 /*
4290 * Help non-failing allocations by giving them access to memory
4291 * reserves but do not use ALLOC_NO_WATERMARKS because this
4292 * could deplete whole memory reserves which would just make
4293 * the situation worse
4294 */
4295 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4296 if (page)
4297 goto got_pg;
4298
9a67f648
MH
4299 cond_resched();
4300 goto retry;
4301 }
4302fail:
a8e99259 4303 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4304 "page allocation failure: order:%u", order);
1da177e4 4305got_pg:
072bb0aa 4306 return page;
1da177e4 4307}
11e33f6a 4308
9cd75558 4309static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4310 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4311 struct alloc_context *ac, gfp_t *alloc_mask,
4312 unsigned int *alloc_flags)
11e33f6a 4313{
9cd75558 4314 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4315 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4316 ac->nodemask = nodemask;
4317 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4318
682a3385 4319 if (cpusets_enabled()) {
9cd75558 4320 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4321 if (!ac->nodemask)
4322 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4323 else
4324 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4325 }
4326
d92a8cfc
PZ
4327 fs_reclaim_acquire(gfp_mask);
4328 fs_reclaim_release(gfp_mask);
11e33f6a 4329
d0164adc 4330 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4331
4332 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4333 return false;
11e33f6a 4334
d883c6cf
JK
4335 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4336 *alloc_flags |= ALLOC_CMA;
4337
9cd75558
MG
4338 return true;
4339}
21bb9bd1 4340
9cd75558 4341/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4342static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4343{
c9ab0c4f 4344 /* Dirty zone balancing only done in the fast path */
9cd75558 4345 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4346
e46e7b77
MG
4347 /*
4348 * The preferred zone is used for statistics but crucially it is
4349 * also used as the starting point for the zonelist iterator. It
4350 * may get reset for allocations that ignore memory policies.
4351 */
9cd75558
MG
4352 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4353 ac->high_zoneidx, ac->nodemask);
4354}
4355
4356/*
4357 * This is the 'heart' of the zoned buddy allocator.
4358 */
4359struct page *
04ec6264
VB
4360__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4361 nodemask_t *nodemask)
9cd75558
MG
4362{
4363 struct page *page;
4364 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4365 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4366 struct alloc_context ac = { };
4367
4368 gfp_mask &= gfp_allowed_mask;
f19360f0 4369 alloc_mask = gfp_mask;
04ec6264 4370 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4371 return NULL;
4372
a380b40a 4373 finalise_ac(gfp_mask, &ac);
5bb1b169 4374
5117f45d 4375 /* First allocation attempt */
a9263751 4376 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4377 if (likely(page))
4378 goto out;
11e33f6a 4379
4fcb0971 4380 /*
7dea19f9
MH
4381 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4382 * resp. GFP_NOIO which has to be inherited for all allocation requests
4383 * from a particular context which has been marked by
4384 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4385 */
7dea19f9 4386 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4387 ac.spread_dirty_pages = false;
23f086f9 4388
4741526b
MG
4389 /*
4390 * Restore the original nodemask if it was potentially replaced with
4391 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4392 */
e47483bc 4393 if (unlikely(ac.nodemask != nodemask))
4741526b 4394 ac.nodemask = nodemask;
16096c25 4395
4fcb0971 4396 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4397
4fcb0971 4398out:
c4159a75
VD
4399 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4400 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4401 __free_pages(page, order);
4402 page = NULL;
4949148a
VD
4403 }
4404
4fcb0971
MG
4405 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4406
11e33f6a 4407 return page;
1da177e4 4408}
d239171e 4409EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4410
4411/*
9ea9a680
MH
4412 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4413 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4414 * you need to access high mem.
1da177e4 4415 */
920c7a5d 4416unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4417{
945a1113
AM
4418 struct page *page;
4419
9ea9a680 4420 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4421 if (!page)
4422 return 0;
4423 return (unsigned long) page_address(page);
4424}
1da177e4
LT
4425EXPORT_SYMBOL(__get_free_pages);
4426
920c7a5d 4427unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4428{
945a1113 4429 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4430}
1da177e4
LT
4431EXPORT_SYMBOL(get_zeroed_page);
4432
920c7a5d 4433void __free_pages(struct page *page, unsigned int order)
1da177e4 4434{
b5810039 4435 if (put_page_testzero(page)) {
1da177e4 4436 if (order == 0)
2d4894b5 4437 free_unref_page(page);
1da177e4
LT
4438 else
4439 __free_pages_ok(page, order);
4440 }
4441}
4442
4443EXPORT_SYMBOL(__free_pages);
4444
920c7a5d 4445void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4446{
4447 if (addr != 0) {
725d704e 4448 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4449 __free_pages(virt_to_page((void *)addr), order);
4450 }
4451}
4452
4453EXPORT_SYMBOL(free_pages);
4454
b63ae8ca
AD
4455/*
4456 * Page Fragment:
4457 * An arbitrary-length arbitrary-offset area of memory which resides
4458 * within a 0 or higher order page. Multiple fragments within that page
4459 * are individually refcounted, in the page's reference counter.
4460 *
4461 * The page_frag functions below provide a simple allocation framework for
4462 * page fragments. This is used by the network stack and network device
4463 * drivers to provide a backing region of memory for use as either an
4464 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4465 */
2976db80
AD
4466static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4467 gfp_t gfp_mask)
b63ae8ca
AD
4468{
4469 struct page *page = NULL;
4470 gfp_t gfp = gfp_mask;
4471
4472#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4473 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4474 __GFP_NOMEMALLOC;
4475 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4476 PAGE_FRAG_CACHE_MAX_ORDER);
4477 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4478#endif
4479 if (unlikely(!page))
4480 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4481
4482 nc->va = page ? page_address(page) : NULL;
4483
4484 return page;
4485}
4486
2976db80 4487void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4488{
4489 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4490
4491 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4492 unsigned int order = compound_order(page);
4493
44fdffd7 4494 if (order == 0)
2d4894b5 4495 free_unref_page(page);
44fdffd7
AD
4496 else
4497 __free_pages_ok(page, order);
4498 }
4499}
2976db80 4500EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4501
8c2dd3e4
AD
4502void *page_frag_alloc(struct page_frag_cache *nc,
4503 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4504{
4505 unsigned int size = PAGE_SIZE;
4506 struct page *page;
4507 int offset;
4508
4509 if (unlikely(!nc->va)) {
4510refill:
2976db80 4511 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4512 if (!page)
4513 return NULL;
4514
4515#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4516 /* if size can vary use size else just use PAGE_SIZE */
4517 size = nc->size;
4518#endif
4519 /* Even if we own the page, we do not use atomic_set().
4520 * This would break get_page_unless_zero() users.
4521 */
fe896d18 4522 page_ref_add(page, size - 1);
b63ae8ca
AD
4523
4524 /* reset page count bias and offset to start of new frag */
2f064f34 4525 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4526 nc->pagecnt_bias = size;
4527 nc->offset = size;
4528 }
4529
4530 offset = nc->offset - fragsz;
4531 if (unlikely(offset < 0)) {
4532 page = virt_to_page(nc->va);
4533
fe896d18 4534 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4535 goto refill;
4536
4537#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4538 /* if size can vary use size else just use PAGE_SIZE */
4539 size = nc->size;
4540#endif
4541 /* OK, page count is 0, we can safely set it */
fe896d18 4542 set_page_count(page, size);
b63ae8ca
AD
4543
4544 /* reset page count bias and offset to start of new frag */
4545 nc->pagecnt_bias = size;
4546 offset = size - fragsz;
4547 }
4548
4549 nc->pagecnt_bias--;
4550 nc->offset = offset;
4551
4552 return nc->va + offset;
4553}
8c2dd3e4 4554EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4555
4556/*
4557 * Frees a page fragment allocated out of either a compound or order 0 page.
4558 */
8c2dd3e4 4559void page_frag_free(void *addr)
b63ae8ca
AD
4560{
4561 struct page *page = virt_to_head_page(addr);
4562
4563 if (unlikely(put_page_testzero(page)))
4564 __free_pages_ok(page, compound_order(page));
4565}
8c2dd3e4 4566EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4567
d00181b9
KS
4568static void *make_alloc_exact(unsigned long addr, unsigned int order,
4569 size_t size)
ee85c2e1
AK
4570{
4571 if (addr) {
4572 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4573 unsigned long used = addr + PAGE_ALIGN(size);
4574
4575 split_page(virt_to_page((void *)addr), order);
4576 while (used < alloc_end) {
4577 free_page(used);
4578 used += PAGE_SIZE;
4579 }
4580 }
4581 return (void *)addr;
4582}
4583
2be0ffe2
TT
4584/**
4585 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4586 * @size: the number of bytes to allocate
4587 * @gfp_mask: GFP flags for the allocation
4588 *
4589 * This function is similar to alloc_pages(), except that it allocates the
4590 * minimum number of pages to satisfy the request. alloc_pages() can only
4591 * allocate memory in power-of-two pages.
4592 *
4593 * This function is also limited by MAX_ORDER.
4594 *
4595 * Memory allocated by this function must be released by free_pages_exact().
4596 */
4597void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4598{
4599 unsigned int order = get_order(size);
4600 unsigned long addr;
4601
4602 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4603 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4604}
4605EXPORT_SYMBOL(alloc_pages_exact);
4606
ee85c2e1
AK
4607/**
4608 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4609 * pages on a node.
b5e6ab58 4610 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4611 * @size: the number of bytes to allocate
4612 * @gfp_mask: GFP flags for the allocation
4613 *
4614 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4615 * back.
ee85c2e1 4616 */
e1931811 4617void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4618{
d00181b9 4619 unsigned int order = get_order(size);
ee85c2e1
AK
4620 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4621 if (!p)
4622 return NULL;
4623 return make_alloc_exact((unsigned long)page_address(p), order, size);
4624}
ee85c2e1 4625
2be0ffe2
TT
4626/**
4627 * free_pages_exact - release memory allocated via alloc_pages_exact()
4628 * @virt: the value returned by alloc_pages_exact.
4629 * @size: size of allocation, same value as passed to alloc_pages_exact().
4630 *
4631 * Release the memory allocated by a previous call to alloc_pages_exact.
4632 */
4633void free_pages_exact(void *virt, size_t size)
4634{
4635 unsigned long addr = (unsigned long)virt;
4636 unsigned long end = addr + PAGE_ALIGN(size);
4637
4638 while (addr < end) {
4639 free_page(addr);
4640 addr += PAGE_SIZE;
4641 }
4642}
4643EXPORT_SYMBOL(free_pages_exact);
4644
e0fb5815
ZY
4645/**
4646 * nr_free_zone_pages - count number of pages beyond high watermark
4647 * @offset: The zone index of the highest zone
4648 *
4649 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4650 * high watermark within all zones at or below a given zone index. For each
4651 * zone, the number of pages is calculated as:
0e056eb5 4652 *
4653 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4654 */
ebec3862 4655static unsigned long nr_free_zone_pages(int offset)
1da177e4 4656{
dd1a239f 4657 struct zoneref *z;
54a6eb5c
MG
4658 struct zone *zone;
4659
e310fd43 4660 /* Just pick one node, since fallback list is circular */
ebec3862 4661 unsigned long sum = 0;
1da177e4 4662
0e88460d 4663 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4664
54a6eb5c 4665 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4666 unsigned long size = zone->managed_pages;
41858966 4667 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4668 if (size > high)
4669 sum += size - high;
1da177e4
LT
4670 }
4671
4672 return sum;
4673}
4674
e0fb5815
ZY
4675/**
4676 * nr_free_buffer_pages - count number of pages beyond high watermark
4677 *
4678 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4679 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4680 */
ebec3862 4681unsigned long nr_free_buffer_pages(void)
1da177e4 4682{
af4ca457 4683 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4684}
c2f1a551 4685EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4686
e0fb5815
ZY
4687/**
4688 * nr_free_pagecache_pages - count number of pages beyond high watermark
4689 *
4690 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4691 * high watermark within all zones.
1da177e4 4692 */
ebec3862 4693unsigned long nr_free_pagecache_pages(void)
1da177e4 4694{
2a1e274a 4695 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4696}
08e0f6a9
CL
4697
4698static inline void show_node(struct zone *zone)
1da177e4 4699{
e5adfffc 4700 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4701 printk("Node %d ", zone_to_nid(zone));
1da177e4 4702}
1da177e4 4703
d02bd27b
IR
4704long si_mem_available(void)
4705{
4706 long available;
4707 unsigned long pagecache;
4708 unsigned long wmark_low = 0;
4709 unsigned long pages[NR_LRU_LISTS];
b29940c1 4710 unsigned long reclaimable;
d02bd27b
IR
4711 struct zone *zone;
4712 int lru;
4713
4714 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4715 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4716
4717 for_each_zone(zone)
4718 wmark_low += zone->watermark[WMARK_LOW];
4719
4720 /*
4721 * Estimate the amount of memory available for userspace allocations,
4722 * without causing swapping.
4723 */
c41f012a 4724 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4725
4726 /*
4727 * Not all the page cache can be freed, otherwise the system will
4728 * start swapping. Assume at least half of the page cache, or the
4729 * low watermark worth of cache, needs to stay.
4730 */
4731 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4732 pagecache -= min(pagecache / 2, wmark_low);
4733 available += pagecache;
4734
4735 /*
b29940c1
VB
4736 * Part of the reclaimable slab and other kernel memory consists of
4737 * items that are in use, and cannot be freed. Cap this estimate at the
4738 * low watermark.
d02bd27b 4739 */
b29940c1
VB
4740 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4741 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4742 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4743
d02bd27b
IR
4744 if (available < 0)
4745 available = 0;
4746 return available;
4747}
4748EXPORT_SYMBOL_GPL(si_mem_available);
4749
1da177e4
LT
4750void si_meminfo(struct sysinfo *val)
4751{
4752 val->totalram = totalram_pages;
11fb9989 4753 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4754 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4755 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4756 val->totalhigh = totalhigh_pages;
4757 val->freehigh = nr_free_highpages();
1da177e4
LT
4758 val->mem_unit = PAGE_SIZE;
4759}
4760
4761EXPORT_SYMBOL(si_meminfo);
4762
4763#ifdef CONFIG_NUMA
4764void si_meminfo_node(struct sysinfo *val, int nid)
4765{
cdd91a77
JL
4766 int zone_type; /* needs to be signed */
4767 unsigned long managed_pages = 0;
fc2bd799
JK
4768 unsigned long managed_highpages = 0;
4769 unsigned long free_highpages = 0;
1da177e4
LT
4770 pg_data_t *pgdat = NODE_DATA(nid);
4771
cdd91a77
JL
4772 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4773 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4774 val->totalram = managed_pages;
11fb9989 4775 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4776 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4777#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4778 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4779 struct zone *zone = &pgdat->node_zones[zone_type];
4780
4781 if (is_highmem(zone)) {
4782 managed_highpages += zone->managed_pages;
4783 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4784 }
4785 }
4786 val->totalhigh = managed_highpages;
4787 val->freehigh = free_highpages;
98d2b0eb 4788#else
fc2bd799
JK
4789 val->totalhigh = managed_highpages;
4790 val->freehigh = free_highpages;
98d2b0eb 4791#endif
1da177e4
LT
4792 val->mem_unit = PAGE_SIZE;
4793}
4794#endif
4795
ddd588b5 4796/*
7bf02ea2
DR
4797 * Determine whether the node should be displayed or not, depending on whether
4798 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4799 */
9af744d7 4800static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4801{
ddd588b5 4802 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4803 return false;
ddd588b5 4804
9af744d7
MH
4805 /*
4806 * no node mask - aka implicit memory numa policy. Do not bother with
4807 * the synchronization - read_mems_allowed_begin - because we do not
4808 * have to be precise here.
4809 */
4810 if (!nodemask)
4811 nodemask = &cpuset_current_mems_allowed;
4812
4813 return !node_isset(nid, *nodemask);
ddd588b5
DR
4814}
4815
1da177e4
LT
4816#define K(x) ((x) << (PAGE_SHIFT-10))
4817
377e4f16
RV
4818static void show_migration_types(unsigned char type)
4819{
4820 static const char types[MIGRATE_TYPES] = {
4821 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4822 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4823 [MIGRATE_RECLAIMABLE] = 'E',
4824 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4825#ifdef CONFIG_CMA
4826 [MIGRATE_CMA] = 'C',
4827#endif
194159fb 4828#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4829 [MIGRATE_ISOLATE] = 'I',
194159fb 4830#endif
377e4f16
RV
4831 };
4832 char tmp[MIGRATE_TYPES + 1];
4833 char *p = tmp;
4834 int i;
4835
4836 for (i = 0; i < MIGRATE_TYPES; i++) {
4837 if (type & (1 << i))
4838 *p++ = types[i];
4839 }
4840
4841 *p = '\0';
1f84a18f 4842 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4843}
4844
1da177e4
LT
4845/*
4846 * Show free area list (used inside shift_scroll-lock stuff)
4847 * We also calculate the percentage fragmentation. We do this by counting the
4848 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4849 *
4850 * Bits in @filter:
4851 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4852 * cpuset.
1da177e4 4853 */
9af744d7 4854void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4855{
d1bfcdb8 4856 unsigned long free_pcp = 0;
c7241913 4857 int cpu;
1da177e4 4858 struct zone *zone;
599d0c95 4859 pg_data_t *pgdat;
1da177e4 4860
ee99c71c 4861 for_each_populated_zone(zone) {
9af744d7 4862 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4863 continue;
d1bfcdb8 4864
761b0677
KK
4865 for_each_online_cpu(cpu)
4866 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4867 }
4868
a731286d
KM
4869 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4870 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4871 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4872 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4873 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4874 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4875 global_node_page_state(NR_ACTIVE_ANON),
4876 global_node_page_state(NR_INACTIVE_ANON),
4877 global_node_page_state(NR_ISOLATED_ANON),
4878 global_node_page_state(NR_ACTIVE_FILE),
4879 global_node_page_state(NR_INACTIVE_FILE),
4880 global_node_page_state(NR_ISOLATED_FILE),
4881 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4882 global_node_page_state(NR_FILE_DIRTY),
4883 global_node_page_state(NR_WRITEBACK),
4884 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4885 global_node_page_state(NR_SLAB_RECLAIMABLE),
4886 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4887 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4888 global_node_page_state(NR_SHMEM),
c41f012a
MH
4889 global_zone_page_state(NR_PAGETABLE),
4890 global_zone_page_state(NR_BOUNCE),
4891 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4892 free_pcp,
c41f012a 4893 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4894
599d0c95 4895 for_each_online_pgdat(pgdat) {
9af744d7 4896 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4897 continue;
4898
599d0c95
MG
4899 printk("Node %d"
4900 " active_anon:%lukB"
4901 " inactive_anon:%lukB"
4902 " active_file:%lukB"
4903 " inactive_file:%lukB"
4904 " unevictable:%lukB"
4905 " isolated(anon):%lukB"
4906 " isolated(file):%lukB"
50658e2e 4907 " mapped:%lukB"
11fb9989
MG
4908 " dirty:%lukB"
4909 " writeback:%lukB"
4910 " shmem:%lukB"
4911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4912 " shmem_thp: %lukB"
4913 " shmem_pmdmapped: %lukB"
4914 " anon_thp: %lukB"
4915#endif
4916 " writeback_tmp:%lukB"
4917 " unstable:%lukB"
599d0c95
MG
4918 " all_unreclaimable? %s"
4919 "\n",
4920 pgdat->node_id,
4921 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4922 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4923 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4924 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4925 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4926 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4927 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4928 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4929 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4930 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4931 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4932#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4933 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4934 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4935 * HPAGE_PMD_NR),
4936 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4937#endif
11fb9989
MG
4938 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4939 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4940 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4941 "yes" : "no");
599d0c95
MG
4942 }
4943
ee99c71c 4944 for_each_populated_zone(zone) {
1da177e4
LT
4945 int i;
4946
9af744d7 4947 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4948 continue;
d1bfcdb8
KK
4949
4950 free_pcp = 0;
4951 for_each_online_cpu(cpu)
4952 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4953
1da177e4 4954 show_node(zone);
1f84a18f
JP
4955 printk(KERN_CONT
4956 "%s"
1da177e4
LT
4957 " free:%lukB"
4958 " min:%lukB"
4959 " low:%lukB"
4960 " high:%lukB"
71c799f4
MK
4961 " active_anon:%lukB"
4962 " inactive_anon:%lukB"
4963 " active_file:%lukB"
4964 " inactive_file:%lukB"
4965 " unevictable:%lukB"
5a1c84b4 4966 " writepending:%lukB"
1da177e4 4967 " present:%lukB"
9feedc9d 4968 " managed:%lukB"
4a0aa73f 4969 " mlocked:%lukB"
c6a7f572 4970 " kernel_stack:%lukB"
4a0aa73f 4971 " pagetables:%lukB"
4a0aa73f 4972 " bounce:%lukB"
d1bfcdb8
KK
4973 " free_pcp:%lukB"
4974 " local_pcp:%ukB"
d1ce749a 4975 " free_cma:%lukB"
1da177e4
LT
4976 "\n",
4977 zone->name,
88f5acf8 4978 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4979 K(min_wmark_pages(zone)),
4980 K(low_wmark_pages(zone)),
4981 K(high_wmark_pages(zone)),
71c799f4
MK
4982 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4983 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4984 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4985 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4986 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4987 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4988 K(zone->present_pages),
9feedc9d 4989 K(zone->managed_pages),
4a0aa73f 4990 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4991 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4992 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4993 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4994 K(free_pcp),
4995 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4996 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4997 printk("lowmem_reserve[]:");
4998 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4999 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5000 printk(KERN_CONT "\n");
1da177e4
LT
5001 }
5002
ee99c71c 5003 for_each_populated_zone(zone) {
d00181b9
KS
5004 unsigned int order;
5005 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5006 unsigned char types[MAX_ORDER];
1da177e4 5007
9af744d7 5008 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5009 continue;
1da177e4 5010 show_node(zone);
1f84a18f 5011 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5012
5013 spin_lock_irqsave(&zone->lock, flags);
5014 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5015 struct free_area *area = &zone->free_area[order];
5016 int type;
5017
5018 nr[order] = area->nr_free;
8f9de51a 5019 total += nr[order] << order;
377e4f16
RV
5020
5021 types[order] = 0;
5022 for (type = 0; type < MIGRATE_TYPES; type++) {
5023 if (!list_empty(&area->free_list[type]))
5024 types[order] |= 1 << type;
5025 }
1da177e4
LT
5026 }
5027 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5028 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5029 printk(KERN_CONT "%lu*%lukB ",
5030 nr[order], K(1UL) << order);
377e4f16
RV
5031 if (nr[order])
5032 show_migration_types(types[order]);
5033 }
1f84a18f 5034 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5035 }
5036
949f7ec5
DR
5037 hugetlb_show_meminfo();
5038
11fb9989 5039 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5040
1da177e4
LT
5041 show_swap_cache_info();
5042}
5043
19770b32
MG
5044static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5045{
5046 zoneref->zone = zone;
5047 zoneref->zone_idx = zone_idx(zone);
5048}
5049
1da177e4
LT
5050/*
5051 * Builds allocation fallback zone lists.
1a93205b
CL
5052 *
5053 * Add all populated zones of a node to the zonelist.
1da177e4 5054 */
9d3be21b 5055static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5056{
1a93205b 5057 struct zone *zone;
bc732f1d 5058 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5059 int nr_zones = 0;
02a68a5e
CL
5060
5061 do {
2f6726e5 5062 zone_type--;
070f8032 5063 zone = pgdat->node_zones + zone_type;
6aa303de 5064 if (managed_zone(zone)) {
9d3be21b 5065 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5066 check_highest_zone(zone_type);
1da177e4 5067 }
2f6726e5 5068 } while (zone_type);
bc732f1d 5069
070f8032 5070 return nr_zones;
1da177e4
LT
5071}
5072
5073#ifdef CONFIG_NUMA
f0c0b2b8
KH
5074
5075static int __parse_numa_zonelist_order(char *s)
5076{
c9bff3ee
MH
5077 /*
5078 * We used to support different zonlists modes but they turned
5079 * out to be just not useful. Let's keep the warning in place
5080 * if somebody still use the cmd line parameter so that we do
5081 * not fail it silently
5082 */
5083 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5084 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5085 return -EINVAL;
5086 }
5087 return 0;
5088}
5089
5090static __init int setup_numa_zonelist_order(char *s)
5091{
ecb256f8
VL
5092 if (!s)
5093 return 0;
5094
c9bff3ee 5095 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5096}
5097early_param("numa_zonelist_order", setup_numa_zonelist_order);
5098
c9bff3ee
MH
5099char numa_zonelist_order[] = "Node";
5100
f0c0b2b8
KH
5101/*
5102 * sysctl handler for numa_zonelist_order
5103 */
cccad5b9 5104int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5105 void __user *buffer, size_t *length,
f0c0b2b8
KH
5106 loff_t *ppos)
5107{
c9bff3ee 5108 char *str;
f0c0b2b8
KH
5109 int ret;
5110
c9bff3ee
MH
5111 if (!write)
5112 return proc_dostring(table, write, buffer, length, ppos);
5113 str = memdup_user_nul(buffer, 16);
5114 if (IS_ERR(str))
5115 return PTR_ERR(str);
dacbde09 5116
c9bff3ee
MH
5117 ret = __parse_numa_zonelist_order(str);
5118 kfree(str);
443c6f14 5119 return ret;
f0c0b2b8
KH
5120}
5121
5122
62bc62a8 5123#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5124static int node_load[MAX_NUMNODES];
5125
1da177e4 5126/**
4dc3b16b 5127 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5128 * @node: node whose fallback list we're appending
5129 * @used_node_mask: nodemask_t of already used nodes
5130 *
5131 * We use a number of factors to determine which is the next node that should
5132 * appear on a given node's fallback list. The node should not have appeared
5133 * already in @node's fallback list, and it should be the next closest node
5134 * according to the distance array (which contains arbitrary distance values
5135 * from each node to each node in the system), and should also prefer nodes
5136 * with no CPUs, since presumably they'll have very little allocation pressure
5137 * on them otherwise.
5138 * It returns -1 if no node is found.
5139 */
f0c0b2b8 5140static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5141{
4cf808eb 5142 int n, val;
1da177e4 5143 int min_val = INT_MAX;
00ef2d2f 5144 int best_node = NUMA_NO_NODE;
a70f7302 5145 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5146
4cf808eb
LT
5147 /* Use the local node if we haven't already */
5148 if (!node_isset(node, *used_node_mask)) {
5149 node_set(node, *used_node_mask);
5150 return node;
5151 }
1da177e4 5152
4b0ef1fe 5153 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5154
5155 /* Don't want a node to appear more than once */
5156 if (node_isset(n, *used_node_mask))
5157 continue;
5158
1da177e4
LT
5159 /* Use the distance array to find the distance */
5160 val = node_distance(node, n);
5161
4cf808eb
LT
5162 /* Penalize nodes under us ("prefer the next node") */
5163 val += (n < node);
5164
1da177e4 5165 /* Give preference to headless and unused nodes */
a70f7302
RR
5166 tmp = cpumask_of_node(n);
5167 if (!cpumask_empty(tmp))
1da177e4
LT
5168 val += PENALTY_FOR_NODE_WITH_CPUS;
5169
5170 /* Slight preference for less loaded node */
5171 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5172 val += node_load[n];
5173
5174 if (val < min_val) {
5175 min_val = val;
5176 best_node = n;
5177 }
5178 }
5179
5180 if (best_node >= 0)
5181 node_set(best_node, *used_node_mask);
5182
5183 return best_node;
5184}
5185
f0c0b2b8
KH
5186
5187/*
5188 * Build zonelists ordered by node and zones within node.
5189 * This results in maximum locality--normal zone overflows into local
5190 * DMA zone, if any--but risks exhausting DMA zone.
5191 */
9d3be21b
MH
5192static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5193 unsigned nr_nodes)
1da177e4 5194{
9d3be21b
MH
5195 struct zoneref *zonerefs;
5196 int i;
5197
5198 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5199
5200 for (i = 0; i < nr_nodes; i++) {
5201 int nr_zones;
5202
5203 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5204
9d3be21b
MH
5205 nr_zones = build_zonerefs_node(node, zonerefs);
5206 zonerefs += nr_zones;
5207 }
5208 zonerefs->zone = NULL;
5209 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5210}
5211
523b9458
CL
5212/*
5213 * Build gfp_thisnode zonelists
5214 */
5215static void build_thisnode_zonelists(pg_data_t *pgdat)
5216{
9d3be21b
MH
5217 struct zoneref *zonerefs;
5218 int nr_zones;
523b9458 5219
9d3be21b
MH
5220 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5221 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5222 zonerefs += nr_zones;
5223 zonerefs->zone = NULL;
5224 zonerefs->zone_idx = 0;
523b9458
CL
5225}
5226
f0c0b2b8
KH
5227/*
5228 * Build zonelists ordered by zone and nodes within zones.
5229 * This results in conserving DMA zone[s] until all Normal memory is
5230 * exhausted, but results in overflowing to remote node while memory
5231 * may still exist in local DMA zone.
5232 */
f0c0b2b8 5233
f0c0b2b8
KH
5234static void build_zonelists(pg_data_t *pgdat)
5235{
9d3be21b
MH
5236 static int node_order[MAX_NUMNODES];
5237 int node, load, nr_nodes = 0;
1da177e4 5238 nodemask_t used_mask;
f0c0b2b8 5239 int local_node, prev_node;
1da177e4
LT
5240
5241 /* NUMA-aware ordering of nodes */
5242 local_node = pgdat->node_id;
62bc62a8 5243 load = nr_online_nodes;
1da177e4
LT
5244 prev_node = local_node;
5245 nodes_clear(used_mask);
f0c0b2b8 5246
f0c0b2b8 5247 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5248 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5249 /*
5250 * We don't want to pressure a particular node.
5251 * So adding penalty to the first node in same
5252 * distance group to make it round-robin.
5253 */
957f822a
DR
5254 if (node_distance(local_node, node) !=
5255 node_distance(local_node, prev_node))
f0c0b2b8
KH
5256 node_load[node] = load;
5257
9d3be21b 5258 node_order[nr_nodes++] = node;
1da177e4
LT
5259 prev_node = node;
5260 load--;
1da177e4 5261 }
523b9458 5262
9d3be21b 5263 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5264 build_thisnode_zonelists(pgdat);
1da177e4
LT
5265}
5266
7aac7898
LS
5267#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5268/*
5269 * Return node id of node used for "local" allocations.
5270 * I.e., first node id of first zone in arg node's generic zonelist.
5271 * Used for initializing percpu 'numa_mem', which is used primarily
5272 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5273 */
5274int local_memory_node(int node)
5275{
c33d6c06 5276 struct zoneref *z;
7aac7898 5277
c33d6c06 5278 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5279 gfp_zone(GFP_KERNEL),
c33d6c06 5280 NULL);
c1093b74 5281 return zone_to_nid(z->zone);
7aac7898
LS
5282}
5283#endif
f0c0b2b8 5284
6423aa81
JK
5285static void setup_min_unmapped_ratio(void);
5286static void setup_min_slab_ratio(void);
1da177e4
LT
5287#else /* CONFIG_NUMA */
5288
f0c0b2b8 5289static void build_zonelists(pg_data_t *pgdat)
1da177e4 5290{
19655d34 5291 int node, local_node;
9d3be21b
MH
5292 struct zoneref *zonerefs;
5293 int nr_zones;
1da177e4
LT
5294
5295 local_node = pgdat->node_id;
1da177e4 5296
9d3be21b
MH
5297 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5298 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5299 zonerefs += nr_zones;
1da177e4 5300
54a6eb5c
MG
5301 /*
5302 * Now we build the zonelist so that it contains the zones
5303 * of all the other nodes.
5304 * We don't want to pressure a particular node, so when
5305 * building the zones for node N, we make sure that the
5306 * zones coming right after the local ones are those from
5307 * node N+1 (modulo N)
5308 */
5309 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5310 if (!node_online(node))
5311 continue;
9d3be21b
MH
5312 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5313 zonerefs += nr_zones;
1da177e4 5314 }
54a6eb5c
MG
5315 for (node = 0; node < local_node; node++) {
5316 if (!node_online(node))
5317 continue;
9d3be21b
MH
5318 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5319 zonerefs += nr_zones;
54a6eb5c
MG
5320 }
5321
9d3be21b
MH
5322 zonerefs->zone = NULL;
5323 zonerefs->zone_idx = 0;
1da177e4
LT
5324}
5325
5326#endif /* CONFIG_NUMA */
5327
99dcc3e5
CL
5328/*
5329 * Boot pageset table. One per cpu which is going to be used for all
5330 * zones and all nodes. The parameters will be set in such a way
5331 * that an item put on a list will immediately be handed over to
5332 * the buddy list. This is safe since pageset manipulation is done
5333 * with interrupts disabled.
5334 *
5335 * The boot_pagesets must be kept even after bootup is complete for
5336 * unused processors and/or zones. They do play a role for bootstrapping
5337 * hotplugged processors.
5338 *
5339 * zoneinfo_show() and maybe other functions do
5340 * not check if the processor is online before following the pageset pointer.
5341 * Other parts of the kernel may not check if the zone is available.
5342 */
5343static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5344static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5345static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5346
11cd8638 5347static void __build_all_zonelists(void *data)
1da177e4 5348{
6811378e 5349 int nid;
afb6ebb3 5350 int __maybe_unused cpu;
9adb62a5 5351 pg_data_t *self = data;
b93e0f32
MH
5352 static DEFINE_SPINLOCK(lock);
5353
5354 spin_lock(&lock);
9276b1bc 5355
7f9cfb31
BL
5356#ifdef CONFIG_NUMA
5357 memset(node_load, 0, sizeof(node_load));
5358#endif
9adb62a5 5359
c1152583
WY
5360 /*
5361 * This node is hotadded and no memory is yet present. So just
5362 * building zonelists is fine - no need to touch other nodes.
5363 */
9adb62a5
JL
5364 if (self && !node_online(self->node_id)) {
5365 build_zonelists(self);
c1152583
WY
5366 } else {
5367 for_each_online_node(nid) {
5368 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5369
c1152583
WY
5370 build_zonelists(pgdat);
5371 }
99dcc3e5 5372
7aac7898
LS
5373#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5374 /*
5375 * We now know the "local memory node" for each node--
5376 * i.e., the node of the first zone in the generic zonelist.
5377 * Set up numa_mem percpu variable for on-line cpus. During
5378 * boot, only the boot cpu should be on-line; we'll init the
5379 * secondary cpus' numa_mem as they come on-line. During
5380 * node/memory hotplug, we'll fixup all on-line cpus.
5381 */
d9c9a0b9 5382 for_each_online_cpu(cpu)
7aac7898 5383 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5384#endif
d9c9a0b9 5385 }
b93e0f32
MH
5386
5387 spin_unlock(&lock);
6811378e
YG
5388}
5389
061f67bc
RV
5390static noinline void __init
5391build_all_zonelists_init(void)
5392{
afb6ebb3
MH
5393 int cpu;
5394
061f67bc 5395 __build_all_zonelists(NULL);
afb6ebb3
MH
5396
5397 /*
5398 * Initialize the boot_pagesets that are going to be used
5399 * for bootstrapping processors. The real pagesets for
5400 * each zone will be allocated later when the per cpu
5401 * allocator is available.
5402 *
5403 * boot_pagesets are used also for bootstrapping offline
5404 * cpus if the system is already booted because the pagesets
5405 * are needed to initialize allocators on a specific cpu too.
5406 * F.e. the percpu allocator needs the page allocator which
5407 * needs the percpu allocator in order to allocate its pagesets
5408 * (a chicken-egg dilemma).
5409 */
5410 for_each_possible_cpu(cpu)
5411 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5412
061f67bc
RV
5413 mminit_verify_zonelist();
5414 cpuset_init_current_mems_allowed();
5415}
5416
4eaf3f64 5417/*
4eaf3f64 5418 * unless system_state == SYSTEM_BOOTING.
061f67bc 5419 *
72675e13 5420 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5421 * [protected by SYSTEM_BOOTING].
4eaf3f64 5422 */
72675e13 5423void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5424{
5425 if (system_state == SYSTEM_BOOTING) {
061f67bc 5426 build_all_zonelists_init();
6811378e 5427 } else {
11cd8638 5428 __build_all_zonelists(pgdat);
6811378e
YG
5429 /* cpuset refresh routine should be here */
5430 }
bd1e22b8 5431 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5432 /*
5433 * Disable grouping by mobility if the number of pages in the
5434 * system is too low to allow the mechanism to work. It would be
5435 * more accurate, but expensive to check per-zone. This check is
5436 * made on memory-hotadd so a system can start with mobility
5437 * disabled and enable it later
5438 */
d9c23400 5439 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5440 page_group_by_mobility_disabled = 1;
5441 else
5442 page_group_by_mobility_disabled = 0;
5443
c9bff3ee 5444 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5445 nr_online_nodes,
756a025f
JP
5446 page_group_by_mobility_disabled ? "off" : "on",
5447 vm_total_pages);
f0c0b2b8 5448#ifdef CONFIG_NUMA
f88dfff5 5449 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5450#endif
1da177e4
LT
5451}
5452
a9a9e77f
PT
5453/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5454static bool __meminit
5455overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5456{
5457#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5458 static struct memblock_region *r;
5459
5460 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5461 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5462 for_each_memblock(memory, r) {
5463 if (*pfn < memblock_region_memory_end_pfn(r))
5464 break;
5465 }
5466 }
5467 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5468 memblock_is_mirror(r)) {
5469 *pfn = memblock_region_memory_end_pfn(r);
5470 return true;
5471 }
5472 }
5473#endif
5474 return false;
5475}
5476
1da177e4
LT
5477/*
5478 * Initially all pages are reserved - free ones are freed
5479 * up by free_all_bootmem() once the early boot process is
5480 * done. Non-atomic initialization, single-pass.
5481 */
c09b4240 5482void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5483 unsigned long start_pfn, enum memmap_context context,
5484 struct vmem_altmap *altmap)
1da177e4 5485{
a9a9e77f 5486 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5487 struct page *page;
1da177e4 5488
22b31eec
HD
5489 if (highest_memmap_pfn < end_pfn - 1)
5490 highest_memmap_pfn = end_pfn - 1;
5491
966cf44f 5492#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5493 /*
5494 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5495 * memory. We limit the total number of pages to initialize to just
5496 * those that might contain the memory mapping. We will defer the
5497 * ZONE_DEVICE page initialization until after we have released
5498 * the hotplug lock.
4b94ffdc 5499 */
966cf44f
AD
5500 if (zone == ZONE_DEVICE) {
5501 if (!altmap)
5502 return;
5503
5504 if (start_pfn == altmap->base_pfn)
5505 start_pfn += altmap->reserve;
5506 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5507 }
5508#endif
4b94ffdc 5509
cbe8dd4a 5510 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5511 /*
b72d0ffb
AM
5512 * There can be holes in boot-time mem_map[]s handed to this
5513 * function. They do not exist on hotplugged memory.
a2f3aa02 5514 */
a9a9e77f
PT
5515 if (context == MEMMAP_EARLY) {
5516 if (!early_pfn_valid(pfn))
b72d0ffb 5517 continue;
a9a9e77f
PT
5518 if (!early_pfn_in_nid(pfn, nid))
5519 continue;
5520 if (overlap_memmap_init(zone, &pfn))
5521 continue;
5522 if (defer_init(nid, pfn, end_pfn))
5523 break;
a2f3aa02 5524 }
ac5d2539 5525
d0dc12e8
PT
5526 page = pfn_to_page(pfn);
5527 __init_single_page(page, pfn, zone, nid);
5528 if (context == MEMMAP_HOTPLUG)
d483da5b 5529 __SetPageReserved(page);
d0dc12e8 5530
ac5d2539
MG
5531 /*
5532 * Mark the block movable so that blocks are reserved for
5533 * movable at startup. This will force kernel allocations
5534 * to reserve their blocks rather than leaking throughout
5535 * the address space during boot when many long-lived
974a786e 5536 * kernel allocations are made.
ac5d2539
MG
5537 *
5538 * bitmap is created for zone's valid pfn range. but memmap
5539 * can be created for invalid pages (for alignment)
5540 * check here not to call set_pageblock_migratetype() against
5541 * pfn out of zone.
5542 */
5543 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5544 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5545 cond_resched();
ac5d2539 5546 }
1da177e4
LT
5547 }
5548}
5549
966cf44f
AD
5550#ifdef CONFIG_ZONE_DEVICE
5551void __ref memmap_init_zone_device(struct zone *zone,
5552 unsigned long start_pfn,
5553 unsigned long size,
5554 struct dev_pagemap *pgmap)
5555{
5556 unsigned long pfn, end_pfn = start_pfn + size;
5557 struct pglist_data *pgdat = zone->zone_pgdat;
5558 unsigned long zone_idx = zone_idx(zone);
5559 unsigned long start = jiffies;
5560 int nid = pgdat->node_id;
5561
5562 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5563 return;
5564
5565 /*
5566 * The call to memmap_init_zone should have already taken care
5567 * of the pages reserved for the memmap, so we can just jump to
5568 * the end of that region and start processing the device pages.
5569 */
5570 if (pgmap->altmap_valid) {
5571 struct vmem_altmap *altmap = &pgmap->altmap;
5572
5573 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5574 size = end_pfn - start_pfn;
5575 }
5576
5577 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5578 struct page *page = pfn_to_page(pfn);
5579
5580 __init_single_page(page, pfn, zone_idx, nid);
5581
5582 /*
5583 * Mark page reserved as it will need to wait for onlining
5584 * phase for it to be fully associated with a zone.
5585 *
5586 * We can use the non-atomic __set_bit operation for setting
5587 * the flag as we are still initializing the pages.
5588 */
5589 __SetPageReserved(page);
5590
5591 /*
5592 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5593 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5594 * page is ever freed or placed on a driver-private list.
5595 */
5596 page->pgmap = pgmap;
5597 page->hmm_data = 0;
5598
5599 /*
5600 * Mark the block movable so that blocks are reserved for
5601 * movable at startup. This will force kernel allocations
5602 * to reserve their blocks rather than leaking throughout
5603 * the address space during boot when many long-lived
5604 * kernel allocations are made.
5605 *
5606 * bitmap is created for zone's valid pfn range. but memmap
5607 * can be created for invalid pages (for alignment)
5608 * check here not to call set_pageblock_migratetype() against
5609 * pfn out of zone.
5610 *
5611 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5612 * because this is done early in sparse_add_one_section
5613 */
5614 if (!(pfn & (pageblock_nr_pages - 1))) {
5615 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5616 cond_resched();
5617 }
5618 }
5619
5620 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5621 size, jiffies_to_msecs(jiffies - start));
5622}
5623
5624#endif
1e548deb 5625static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5626{
7aeb09f9 5627 unsigned int order, t;
b2a0ac88
MG
5628 for_each_migratetype_order(order, t) {
5629 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5630 zone->free_area[order].nr_free = 0;
5631 }
5632}
5633
dfb3ccd0
PT
5634void __meminit __weak memmap_init(unsigned long size, int nid,
5635 unsigned long zone, unsigned long start_pfn)
5636{
5637 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5638}
1da177e4 5639
7cd2b0a3 5640static int zone_batchsize(struct zone *zone)
e7c8d5c9 5641{
3a6be87f 5642#ifdef CONFIG_MMU
e7c8d5c9
CL
5643 int batch;
5644
5645 /*
5646 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5647 * size of the zone.
e7c8d5c9 5648 */
b40da049 5649 batch = zone->managed_pages / 1024;
d8a759b5
AL
5650 /* But no more than a meg. */
5651 if (batch * PAGE_SIZE > 1024 * 1024)
5652 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5653 batch /= 4; /* We effectively *= 4 below */
5654 if (batch < 1)
5655 batch = 1;
5656
5657 /*
0ceaacc9
NP
5658 * Clamp the batch to a 2^n - 1 value. Having a power
5659 * of 2 value was found to be more likely to have
5660 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5661 *
0ceaacc9
NP
5662 * For example if 2 tasks are alternately allocating
5663 * batches of pages, one task can end up with a lot
5664 * of pages of one half of the possible page colors
5665 * and the other with pages of the other colors.
e7c8d5c9 5666 */
9155203a 5667 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5668
e7c8d5c9 5669 return batch;
3a6be87f
DH
5670
5671#else
5672 /* The deferral and batching of frees should be suppressed under NOMMU
5673 * conditions.
5674 *
5675 * The problem is that NOMMU needs to be able to allocate large chunks
5676 * of contiguous memory as there's no hardware page translation to
5677 * assemble apparent contiguous memory from discontiguous pages.
5678 *
5679 * Queueing large contiguous runs of pages for batching, however,
5680 * causes the pages to actually be freed in smaller chunks. As there
5681 * can be a significant delay between the individual batches being
5682 * recycled, this leads to the once large chunks of space being
5683 * fragmented and becoming unavailable for high-order allocations.
5684 */
5685 return 0;
5686#endif
e7c8d5c9
CL
5687}
5688
8d7a8fa9
CS
5689/*
5690 * pcp->high and pcp->batch values are related and dependent on one another:
5691 * ->batch must never be higher then ->high.
5692 * The following function updates them in a safe manner without read side
5693 * locking.
5694 *
5695 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5696 * those fields changing asynchronously (acording the the above rule).
5697 *
5698 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5699 * outside of boot time (or some other assurance that no concurrent updaters
5700 * exist).
5701 */
5702static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5703 unsigned long batch)
5704{
5705 /* start with a fail safe value for batch */
5706 pcp->batch = 1;
5707 smp_wmb();
5708
5709 /* Update high, then batch, in order */
5710 pcp->high = high;
5711 smp_wmb();
5712
5713 pcp->batch = batch;
5714}
5715
3664033c 5716/* a companion to pageset_set_high() */
4008bab7
CS
5717static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5718{
8d7a8fa9 5719 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5720}
5721
88c90dbc 5722static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5723{
5724 struct per_cpu_pages *pcp;
5f8dcc21 5725 int migratetype;
2caaad41 5726
1c6fe946
MD
5727 memset(p, 0, sizeof(*p));
5728
3dfa5721 5729 pcp = &p->pcp;
2caaad41 5730 pcp->count = 0;
5f8dcc21
MG
5731 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5732 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5733}
5734
88c90dbc
CS
5735static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5736{
5737 pageset_init(p);
5738 pageset_set_batch(p, batch);
5739}
5740
8ad4b1fb 5741/*
3664033c 5742 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5743 * to the value high for the pageset p.
5744 */
3664033c 5745static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5746 unsigned long high)
5747{
8d7a8fa9
CS
5748 unsigned long batch = max(1UL, high / 4);
5749 if ((high / 4) > (PAGE_SHIFT * 8))
5750 batch = PAGE_SHIFT * 8;
8ad4b1fb 5751
8d7a8fa9 5752 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5753}
5754
7cd2b0a3
DR
5755static void pageset_set_high_and_batch(struct zone *zone,
5756 struct per_cpu_pageset *pcp)
56cef2b8 5757{
56cef2b8 5758 if (percpu_pagelist_fraction)
3664033c 5759 pageset_set_high(pcp,
56cef2b8
CS
5760 (zone->managed_pages /
5761 percpu_pagelist_fraction));
5762 else
5763 pageset_set_batch(pcp, zone_batchsize(zone));
5764}
5765
169f6c19
CS
5766static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5767{
5768 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5769
5770 pageset_init(pcp);
5771 pageset_set_high_and_batch(zone, pcp);
5772}
5773
72675e13 5774void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5775{
5776 int cpu;
319774e2 5777 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5778 for_each_possible_cpu(cpu)
5779 zone_pageset_init(zone, cpu);
319774e2
WF
5780}
5781
2caaad41 5782/*
99dcc3e5
CL
5783 * Allocate per cpu pagesets and initialize them.
5784 * Before this call only boot pagesets were available.
e7c8d5c9 5785 */
99dcc3e5 5786void __init setup_per_cpu_pageset(void)
e7c8d5c9 5787{
b4911ea2 5788 struct pglist_data *pgdat;
99dcc3e5 5789 struct zone *zone;
e7c8d5c9 5790
319774e2
WF
5791 for_each_populated_zone(zone)
5792 setup_zone_pageset(zone);
b4911ea2
MG
5793
5794 for_each_online_pgdat(pgdat)
5795 pgdat->per_cpu_nodestats =
5796 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5797}
5798
c09b4240 5799static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5800{
99dcc3e5
CL
5801 /*
5802 * per cpu subsystem is not up at this point. The following code
5803 * relies on the ability of the linker to provide the
5804 * offset of a (static) per cpu variable into the per cpu area.
5805 */
5806 zone->pageset = &boot_pageset;
ed8ece2e 5807
b38a8725 5808 if (populated_zone(zone))
99dcc3e5
CL
5809 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5810 zone->name, zone->present_pages,
5811 zone_batchsize(zone));
ed8ece2e
DH
5812}
5813
dc0bbf3b 5814void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5815 unsigned long zone_start_pfn,
b171e409 5816 unsigned long size)
ed8ece2e
DH
5817{
5818 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5819
ed8ece2e
DH
5820 pgdat->nr_zones = zone_idx(zone) + 1;
5821
ed8ece2e
DH
5822 zone->zone_start_pfn = zone_start_pfn;
5823
708614e6
MG
5824 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5825 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5826 pgdat->node_id,
5827 (unsigned long)zone_idx(zone),
5828 zone_start_pfn, (zone_start_pfn + size));
5829
1e548deb 5830 zone_init_free_lists(zone);
9dcb8b68 5831 zone->initialized = 1;
ed8ece2e
DH
5832}
5833
0ee332c1 5834#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5835#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5836
c713216d
MG
5837/*
5838 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5839 */
8a942fde
MG
5840int __meminit __early_pfn_to_nid(unsigned long pfn,
5841 struct mminit_pfnnid_cache *state)
c713216d 5842{
c13291a5 5843 unsigned long start_pfn, end_pfn;
e76b63f8 5844 int nid;
7c243c71 5845
8a942fde
MG
5846 if (state->last_start <= pfn && pfn < state->last_end)
5847 return state->last_nid;
c713216d 5848
e76b63f8
YL
5849 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5850 if (nid != -1) {
8a942fde
MG
5851 state->last_start = start_pfn;
5852 state->last_end = end_pfn;
5853 state->last_nid = nid;
e76b63f8
YL
5854 }
5855
5856 return nid;
c713216d
MG
5857}
5858#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5859
c713216d 5860/**
6782832e 5861 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5862 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5863 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5864 *
7d018176
ZZ
5865 * If an architecture guarantees that all ranges registered contain no holes
5866 * and may be freed, this this function may be used instead of calling
5867 * memblock_free_early_nid() manually.
c713216d 5868 */
c13291a5 5869void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5870{
c13291a5
TH
5871 unsigned long start_pfn, end_pfn;
5872 int i, this_nid;
edbe7d23 5873
c13291a5
TH
5874 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5875 start_pfn = min(start_pfn, max_low_pfn);
5876 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5877
c13291a5 5878 if (start_pfn < end_pfn)
6782832e
SS
5879 memblock_free_early_nid(PFN_PHYS(start_pfn),
5880 (end_pfn - start_pfn) << PAGE_SHIFT,
5881 this_nid);
edbe7d23 5882 }
edbe7d23 5883}
edbe7d23 5884
c713216d
MG
5885/**
5886 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5887 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5888 *
7d018176
ZZ
5889 * If an architecture guarantees that all ranges registered contain no holes and may
5890 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5891 */
5892void __init sparse_memory_present_with_active_regions(int nid)
5893{
c13291a5
TH
5894 unsigned long start_pfn, end_pfn;
5895 int i, this_nid;
c713216d 5896
c13291a5
TH
5897 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5898 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5899}
5900
5901/**
5902 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5903 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5904 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5905 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5906 *
5907 * It returns the start and end page frame of a node based on information
7d018176 5908 * provided by memblock_set_node(). If called for a node
c713216d 5909 * with no available memory, a warning is printed and the start and end
88ca3b94 5910 * PFNs will be 0.
c713216d 5911 */
a3142c8e 5912void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5913 unsigned long *start_pfn, unsigned long *end_pfn)
5914{
c13291a5 5915 unsigned long this_start_pfn, this_end_pfn;
c713216d 5916 int i;
c13291a5 5917
c713216d
MG
5918 *start_pfn = -1UL;
5919 *end_pfn = 0;
5920
c13291a5
TH
5921 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5922 *start_pfn = min(*start_pfn, this_start_pfn);
5923 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5924 }
5925
633c0666 5926 if (*start_pfn == -1UL)
c713216d 5927 *start_pfn = 0;
c713216d
MG
5928}
5929
2a1e274a
MG
5930/*
5931 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5932 * assumption is made that zones within a node are ordered in monotonic
5933 * increasing memory addresses so that the "highest" populated zone is used
5934 */
b69a7288 5935static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5936{
5937 int zone_index;
5938 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5939 if (zone_index == ZONE_MOVABLE)
5940 continue;
5941
5942 if (arch_zone_highest_possible_pfn[zone_index] >
5943 arch_zone_lowest_possible_pfn[zone_index])
5944 break;
5945 }
5946
5947 VM_BUG_ON(zone_index == -1);
5948 movable_zone = zone_index;
5949}
5950
5951/*
5952 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5953 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5954 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5955 * in each node depending on the size of each node and how evenly kernelcore
5956 * is distributed. This helper function adjusts the zone ranges
5957 * provided by the architecture for a given node by using the end of the
5958 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5959 * zones within a node are in order of monotonic increases memory addresses
5960 */
b69a7288 5961static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5962 unsigned long zone_type,
5963 unsigned long node_start_pfn,
5964 unsigned long node_end_pfn,
5965 unsigned long *zone_start_pfn,
5966 unsigned long *zone_end_pfn)
5967{
5968 /* Only adjust if ZONE_MOVABLE is on this node */
5969 if (zone_movable_pfn[nid]) {
5970 /* Size ZONE_MOVABLE */
5971 if (zone_type == ZONE_MOVABLE) {
5972 *zone_start_pfn = zone_movable_pfn[nid];
5973 *zone_end_pfn = min(node_end_pfn,
5974 arch_zone_highest_possible_pfn[movable_zone]);
5975
e506b996
XQ
5976 /* Adjust for ZONE_MOVABLE starting within this range */
5977 } else if (!mirrored_kernelcore &&
5978 *zone_start_pfn < zone_movable_pfn[nid] &&
5979 *zone_end_pfn > zone_movable_pfn[nid]) {
5980 *zone_end_pfn = zone_movable_pfn[nid];
5981
2a1e274a
MG
5982 /* Check if this whole range is within ZONE_MOVABLE */
5983 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5984 *zone_start_pfn = *zone_end_pfn;
5985 }
5986}
5987
c713216d
MG
5988/*
5989 * Return the number of pages a zone spans in a node, including holes
5990 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5991 */
6ea6e688 5992static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5993 unsigned long zone_type,
7960aedd
ZY
5994 unsigned long node_start_pfn,
5995 unsigned long node_end_pfn,
d91749c1
TI
5996 unsigned long *zone_start_pfn,
5997 unsigned long *zone_end_pfn,
c713216d
MG
5998 unsigned long *ignored)
5999{
b5685e92 6000 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6001 if (!node_start_pfn && !node_end_pfn)
6002 return 0;
6003
7960aedd 6004 /* Get the start and end of the zone */
d91749c1
TI
6005 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6006 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6007 adjust_zone_range_for_zone_movable(nid, zone_type,
6008 node_start_pfn, node_end_pfn,
d91749c1 6009 zone_start_pfn, zone_end_pfn);
c713216d
MG
6010
6011 /* Check that this node has pages within the zone's required range */
d91749c1 6012 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6013 return 0;
6014
6015 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6016 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6017 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6018
6019 /* Return the spanned pages */
d91749c1 6020 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6021}
6022
6023/*
6024 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6025 * then all holes in the requested range will be accounted for.
c713216d 6026 */
32996250 6027unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
6028 unsigned long range_start_pfn,
6029 unsigned long range_end_pfn)
6030{
96e907d1
TH
6031 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6032 unsigned long start_pfn, end_pfn;
6033 int i;
c713216d 6034
96e907d1
TH
6035 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6036 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6037 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6038 nr_absent -= end_pfn - start_pfn;
c713216d 6039 }
96e907d1 6040 return nr_absent;
c713216d
MG
6041}
6042
6043/**
6044 * absent_pages_in_range - Return number of page frames in holes within a range
6045 * @start_pfn: The start PFN to start searching for holes
6046 * @end_pfn: The end PFN to stop searching for holes
6047 *
88ca3b94 6048 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
6049 */
6050unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6051 unsigned long end_pfn)
6052{
6053 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6054}
6055
6056/* Return the number of page frames in holes in a zone on a node */
6ea6e688 6057static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6058 unsigned long zone_type,
7960aedd
ZY
6059 unsigned long node_start_pfn,
6060 unsigned long node_end_pfn,
c713216d
MG
6061 unsigned long *ignored)
6062{
96e907d1
TH
6063 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6064 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6065 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6066 unsigned long nr_absent;
9c7cd687 6067
b5685e92 6068 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6069 if (!node_start_pfn && !node_end_pfn)
6070 return 0;
6071
96e907d1
TH
6072 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6073 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6074
2a1e274a
MG
6075 adjust_zone_range_for_zone_movable(nid, zone_type,
6076 node_start_pfn, node_end_pfn,
6077 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6078 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6079
6080 /*
6081 * ZONE_MOVABLE handling.
6082 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6083 * and vice versa.
6084 */
e506b996
XQ
6085 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6086 unsigned long start_pfn, end_pfn;
6087 struct memblock_region *r;
6088
6089 for_each_memblock(memory, r) {
6090 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6091 zone_start_pfn, zone_end_pfn);
6092 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6093 zone_start_pfn, zone_end_pfn);
6094
6095 if (zone_type == ZONE_MOVABLE &&
6096 memblock_is_mirror(r))
6097 nr_absent += end_pfn - start_pfn;
6098
6099 if (zone_type == ZONE_NORMAL &&
6100 !memblock_is_mirror(r))
6101 nr_absent += end_pfn - start_pfn;
342332e6
TI
6102 }
6103 }
6104
6105 return nr_absent;
c713216d 6106}
0e0b864e 6107
0ee332c1 6108#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 6109static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6110 unsigned long zone_type,
7960aedd
ZY
6111 unsigned long node_start_pfn,
6112 unsigned long node_end_pfn,
d91749c1
TI
6113 unsigned long *zone_start_pfn,
6114 unsigned long *zone_end_pfn,
c713216d
MG
6115 unsigned long *zones_size)
6116{
d91749c1
TI
6117 unsigned int zone;
6118
6119 *zone_start_pfn = node_start_pfn;
6120 for (zone = 0; zone < zone_type; zone++)
6121 *zone_start_pfn += zones_size[zone];
6122
6123 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6124
c713216d
MG
6125 return zones_size[zone_type];
6126}
6127
6ea6e688 6128static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6129 unsigned long zone_type,
7960aedd
ZY
6130 unsigned long node_start_pfn,
6131 unsigned long node_end_pfn,
c713216d
MG
6132 unsigned long *zholes_size)
6133{
6134 if (!zholes_size)
6135 return 0;
6136
6137 return zholes_size[zone_type];
6138}
20e6926d 6139
0ee332c1 6140#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6141
a3142c8e 6142static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6143 unsigned long node_start_pfn,
6144 unsigned long node_end_pfn,
6145 unsigned long *zones_size,
6146 unsigned long *zholes_size)
c713216d 6147{
febd5949 6148 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6149 enum zone_type i;
6150
febd5949
GZ
6151 for (i = 0; i < MAX_NR_ZONES; i++) {
6152 struct zone *zone = pgdat->node_zones + i;
d91749c1 6153 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6154 unsigned long size, real_size;
c713216d 6155
febd5949
GZ
6156 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6157 node_start_pfn,
6158 node_end_pfn,
d91749c1
TI
6159 &zone_start_pfn,
6160 &zone_end_pfn,
febd5949
GZ
6161 zones_size);
6162 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6163 node_start_pfn, node_end_pfn,
6164 zholes_size);
d91749c1
TI
6165 if (size)
6166 zone->zone_start_pfn = zone_start_pfn;
6167 else
6168 zone->zone_start_pfn = 0;
febd5949
GZ
6169 zone->spanned_pages = size;
6170 zone->present_pages = real_size;
6171
6172 totalpages += size;
6173 realtotalpages += real_size;
6174 }
6175
6176 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6177 pgdat->node_present_pages = realtotalpages;
6178 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6179 realtotalpages);
6180}
6181
835c134e
MG
6182#ifndef CONFIG_SPARSEMEM
6183/*
6184 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6185 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6186 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6187 * round what is now in bits to nearest long in bits, then return it in
6188 * bytes.
6189 */
7c45512d 6190static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6191{
6192 unsigned long usemapsize;
6193
7c45512d 6194 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6195 usemapsize = roundup(zonesize, pageblock_nr_pages);
6196 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6197 usemapsize *= NR_PAGEBLOCK_BITS;
6198 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6199
6200 return usemapsize / 8;
6201}
6202
7cc2a959 6203static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6204 struct zone *zone,
6205 unsigned long zone_start_pfn,
6206 unsigned long zonesize)
835c134e 6207{
7c45512d 6208 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6209 zone->pageblock_flags = NULL;
58a01a45 6210 if (usemapsize)
6782832e 6211 zone->pageblock_flags =
eb31d559 6212 memblock_alloc_node_nopanic(usemapsize,
6782832e 6213 pgdat->node_id);
835c134e
MG
6214}
6215#else
7c45512d
LT
6216static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6217 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6218#endif /* CONFIG_SPARSEMEM */
6219
d9c23400 6220#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6221
d9c23400 6222/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6223void __init set_pageblock_order(void)
d9c23400 6224{
955c1cd7
AM
6225 unsigned int order;
6226
d9c23400
MG
6227 /* Check that pageblock_nr_pages has not already been setup */
6228 if (pageblock_order)
6229 return;
6230
955c1cd7
AM
6231 if (HPAGE_SHIFT > PAGE_SHIFT)
6232 order = HUGETLB_PAGE_ORDER;
6233 else
6234 order = MAX_ORDER - 1;
6235
d9c23400
MG
6236 /*
6237 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6238 * This value may be variable depending on boot parameters on IA64 and
6239 * powerpc.
d9c23400
MG
6240 */
6241 pageblock_order = order;
6242}
6243#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6244
ba72cb8c
MG
6245/*
6246 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6247 * is unused as pageblock_order is set at compile-time. See
6248 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6249 * the kernel config
ba72cb8c 6250 */
03e85f9d 6251void __init set_pageblock_order(void)
ba72cb8c 6252{
ba72cb8c 6253}
d9c23400
MG
6254
6255#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6256
03e85f9d 6257static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6258 unsigned long present_pages)
01cefaef
JL
6259{
6260 unsigned long pages = spanned_pages;
6261
6262 /*
6263 * Provide a more accurate estimation if there are holes within
6264 * the zone and SPARSEMEM is in use. If there are holes within the
6265 * zone, each populated memory region may cost us one or two extra
6266 * memmap pages due to alignment because memmap pages for each
89d790ab 6267 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6268 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6269 */
6270 if (spanned_pages > present_pages + (present_pages >> 4) &&
6271 IS_ENABLED(CONFIG_SPARSEMEM))
6272 pages = present_pages;
6273
6274 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6275}
6276
ace1db39
OS
6277#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6278static void pgdat_init_split_queue(struct pglist_data *pgdat)
6279{
6280 spin_lock_init(&pgdat->split_queue_lock);
6281 INIT_LIST_HEAD(&pgdat->split_queue);
6282 pgdat->split_queue_len = 0;
6283}
6284#else
6285static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6286#endif
6287
6288#ifdef CONFIG_COMPACTION
6289static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6290{
6291 init_waitqueue_head(&pgdat->kcompactd_wait);
6292}
6293#else
6294static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6295#endif
6296
03e85f9d 6297static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6298{
208d54e5 6299 pgdat_resize_init(pgdat);
ace1db39 6300
ace1db39
OS
6301 pgdat_init_split_queue(pgdat);
6302 pgdat_init_kcompactd(pgdat);
6303
1da177e4 6304 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6305 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6306
eefa864b 6307 pgdat_page_ext_init(pgdat);
a52633d8 6308 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6309 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6310}
6311
6312static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6313 unsigned long remaining_pages)
6314{
6315 zone->managed_pages = remaining_pages;
6316 zone_set_nid(zone, nid);
6317 zone->name = zone_names[idx];
6318 zone->zone_pgdat = NODE_DATA(nid);
6319 spin_lock_init(&zone->lock);
6320 zone_seqlock_init(zone);
6321 zone_pcp_init(zone);
6322}
6323
6324/*
6325 * Set up the zone data structures
6326 * - init pgdat internals
6327 * - init all zones belonging to this node
6328 *
6329 * NOTE: this function is only called during memory hotplug
6330 */
6331#ifdef CONFIG_MEMORY_HOTPLUG
6332void __ref free_area_init_core_hotplug(int nid)
6333{
6334 enum zone_type z;
6335 pg_data_t *pgdat = NODE_DATA(nid);
6336
6337 pgdat_init_internals(pgdat);
6338 for (z = 0; z < MAX_NR_ZONES; z++)
6339 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6340}
6341#endif
6342
6343/*
6344 * Set up the zone data structures:
6345 * - mark all pages reserved
6346 * - mark all memory queues empty
6347 * - clear the memory bitmaps
6348 *
6349 * NOTE: pgdat should get zeroed by caller.
6350 * NOTE: this function is only called during early init.
6351 */
6352static void __init free_area_init_core(struct pglist_data *pgdat)
6353{
6354 enum zone_type j;
6355 int nid = pgdat->node_id;
5f63b720 6356
03e85f9d 6357 pgdat_init_internals(pgdat);
385386cf
JW
6358 pgdat->per_cpu_nodestats = &boot_nodestats;
6359
1da177e4
LT
6360 for (j = 0; j < MAX_NR_ZONES; j++) {
6361 struct zone *zone = pgdat->node_zones + j;
e6943859 6362 unsigned long size, freesize, memmap_pages;
d91749c1 6363 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6364
febd5949 6365 size = zone->spanned_pages;
e6943859 6366 freesize = zone->present_pages;
1da177e4 6367
0e0b864e 6368 /*
9feedc9d 6369 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6370 * is used by this zone for memmap. This affects the watermark
6371 * and per-cpu initialisations
6372 */
e6943859 6373 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6374 if (!is_highmem_idx(j)) {
6375 if (freesize >= memmap_pages) {
6376 freesize -= memmap_pages;
6377 if (memmap_pages)
6378 printk(KERN_DEBUG
6379 " %s zone: %lu pages used for memmap\n",
6380 zone_names[j], memmap_pages);
6381 } else
1170532b 6382 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6383 zone_names[j], memmap_pages, freesize);
6384 }
0e0b864e 6385
6267276f 6386 /* Account for reserved pages */
9feedc9d
JL
6387 if (j == 0 && freesize > dma_reserve) {
6388 freesize -= dma_reserve;
d903ef9f 6389 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6390 zone_names[0], dma_reserve);
0e0b864e
MG
6391 }
6392
98d2b0eb 6393 if (!is_highmem_idx(j))
9feedc9d 6394 nr_kernel_pages += freesize;
01cefaef
JL
6395 /* Charge for highmem memmap if there are enough kernel pages */
6396 else if (nr_kernel_pages > memmap_pages * 2)
6397 nr_kernel_pages -= memmap_pages;
9feedc9d 6398 nr_all_pages += freesize;
1da177e4 6399
9feedc9d
JL
6400 /*
6401 * Set an approximate value for lowmem here, it will be adjusted
6402 * when the bootmem allocator frees pages into the buddy system.
6403 * And all highmem pages will be managed by the buddy system.
6404 */
03e85f9d 6405 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6406
d883c6cf 6407 if (!size)
1da177e4
LT
6408 continue;
6409
955c1cd7 6410 set_pageblock_order();
d883c6cf
JK
6411 setup_usemap(pgdat, zone, zone_start_pfn, size);
6412 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6413 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6414 }
6415}
6416
0cd842f9 6417#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6418static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6419{
b0aeba74 6420 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6421 unsigned long __maybe_unused offset = 0;
6422
1da177e4
LT
6423 /* Skip empty nodes */
6424 if (!pgdat->node_spanned_pages)
6425 return;
6426
b0aeba74
TL
6427 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6428 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6429 /* ia64 gets its own node_mem_map, before this, without bootmem */
6430 if (!pgdat->node_mem_map) {
b0aeba74 6431 unsigned long size, end;
d41dee36
AW
6432 struct page *map;
6433
e984bb43
BP
6434 /*
6435 * The zone's endpoints aren't required to be MAX_ORDER
6436 * aligned but the node_mem_map endpoints must be in order
6437 * for the buddy allocator to function correctly.
6438 */
108bcc96 6439 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6440 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6441 size = (end - start) * sizeof(struct page);
eb31d559 6442 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6443 pgdat->node_mem_map = map + offset;
1da177e4 6444 }
0cd842f9
OS
6445 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6446 __func__, pgdat->node_id, (unsigned long)pgdat,
6447 (unsigned long)pgdat->node_mem_map);
12d810c1 6448#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6449 /*
6450 * With no DISCONTIG, the global mem_map is just set as node 0's
6451 */
c713216d 6452 if (pgdat == NODE_DATA(0)) {
1da177e4 6453 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6454#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6455 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6456 mem_map -= offset;
0ee332c1 6457#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6458 }
1da177e4
LT
6459#endif
6460}
0cd842f9
OS
6461#else
6462static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6463#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6464
0188dc98
OS
6465#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6466static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6467{
6468 /*
6469 * We start only with one section of pages, more pages are added as
6470 * needed until the rest of deferred pages are initialized.
6471 */
6472 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6473 pgdat->node_spanned_pages);
6474 pgdat->first_deferred_pfn = ULONG_MAX;
6475}
6476#else
6477static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6478#endif
6479
03e85f9d 6480void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6481 unsigned long node_start_pfn,
6482 unsigned long *zholes_size)
1da177e4 6483{
9109fb7b 6484 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6485 unsigned long start_pfn = 0;
6486 unsigned long end_pfn = 0;
9109fb7b 6487
88fdf75d 6488 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6489 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6490
1da177e4
LT
6491 pgdat->node_id = nid;
6492 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6493 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6494#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6495 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6496 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6497 (u64)start_pfn << PAGE_SHIFT,
6498 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6499#else
6500 start_pfn = node_start_pfn;
7960aedd
ZY
6501#endif
6502 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6503 zones_size, zholes_size);
1da177e4
LT
6504
6505 alloc_node_mem_map(pgdat);
0188dc98 6506 pgdat_set_deferred_range(pgdat);
1da177e4 6507
7f3eb55b 6508 free_area_init_core(pgdat);
1da177e4
LT
6509}
6510
aca52c39 6511#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6512/*
6513 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6514 * pages zeroed
6515 */
6516static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6517{
6518 unsigned long pfn;
6519 u64 pgcnt = 0;
6520
6521 for (pfn = spfn; pfn < epfn; pfn++) {
6522 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6523 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6524 + pageblock_nr_pages - 1;
6525 continue;
6526 }
6527 mm_zero_struct_page(pfn_to_page(pfn));
6528 pgcnt++;
6529 }
6530
6531 return pgcnt;
6532}
6533
a4a3ede2
PT
6534/*
6535 * Only struct pages that are backed by physical memory are zeroed and
6536 * initialized by going through __init_single_page(). But, there are some
6537 * struct pages which are reserved in memblock allocator and their fields
6538 * may be accessed (for example page_to_pfn() on some configuration accesses
6539 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6540 *
6541 * This function also addresses a similar issue where struct pages are left
6542 * uninitialized because the physical address range is not covered by
6543 * memblock.memory or memblock.reserved. That could happen when memblock
6544 * layout is manually configured via memmap=.
a4a3ede2 6545 */
03e85f9d 6546void __init zero_resv_unavail(void)
a4a3ede2
PT
6547{
6548 phys_addr_t start, end;
a4a3ede2 6549 u64 i, pgcnt;
907ec5fc 6550 phys_addr_t next = 0;
a4a3ede2
PT
6551
6552 /*
907ec5fc 6553 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6554 */
6555 pgcnt = 0;
907ec5fc
NH
6556 for_each_mem_range(i, &memblock.memory, NULL,
6557 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6558 if (next < start)
6559 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6560 next = end;
6561 }
ec393a0f 6562 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6563
a4a3ede2
PT
6564 /*
6565 * Struct pages that do not have backing memory. This could be because
6566 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6567 */
6568 if (pgcnt)
907ec5fc 6569 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6570}
aca52c39 6571#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6572
0ee332c1 6573#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6574
6575#if MAX_NUMNODES > 1
6576/*
6577 * Figure out the number of possible node ids.
6578 */
f9872caf 6579void __init setup_nr_node_ids(void)
418508c1 6580{
904a9553 6581 unsigned int highest;
418508c1 6582
904a9553 6583 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6584 nr_node_ids = highest + 1;
6585}
418508c1
MS
6586#endif
6587
1e01979c
TH
6588/**
6589 * node_map_pfn_alignment - determine the maximum internode alignment
6590 *
6591 * This function should be called after node map is populated and sorted.
6592 * It calculates the maximum power of two alignment which can distinguish
6593 * all the nodes.
6594 *
6595 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6596 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6597 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6598 * shifted, 1GiB is enough and this function will indicate so.
6599 *
6600 * This is used to test whether pfn -> nid mapping of the chosen memory
6601 * model has fine enough granularity to avoid incorrect mapping for the
6602 * populated node map.
6603 *
6604 * Returns the determined alignment in pfn's. 0 if there is no alignment
6605 * requirement (single node).
6606 */
6607unsigned long __init node_map_pfn_alignment(void)
6608{
6609 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6610 unsigned long start, end, mask;
1e01979c 6611 int last_nid = -1;
c13291a5 6612 int i, nid;
1e01979c 6613
c13291a5 6614 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6615 if (!start || last_nid < 0 || last_nid == nid) {
6616 last_nid = nid;
6617 last_end = end;
6618 continue;
6619 }
6620
6621 /*
6622 * Start with a mask granular enough to pin-point to the
6623 * start pfn and tick off bits one-by-one until it becomes
6624 * too coarse to separate the current node from the last.
6625 */
6626 mask = ~((1 << __ffs(start)) - 1);
6627 while (mask && last_end <= (start & (mask << 1)))
6628 mask <<= 1;
6629
6630 /* accumulate all internode masks */
6631 accl_mask |= mask;
6632 }
6633
6634 /* convert mask to number of pages */
6635 return ~accl_mask + 1;
6636}
6637
a6af2bc3 6638/* Find the lowest pfn for a node */
b69a7288 6639static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6640{
a6af2bc3 6641 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6642 unsigned long start_pfn;
6643 int i;
1abbfb41 6644
c13291a5
TH
6645 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6646 min_pfn = min(min_pfn, start_pfn);
c713216d 6647
a6af2bc3 6648 if (min_pfn == ULONG_MAX) {
1170532b 6649 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6650 return 0;
6651 }
6652
6653 return min_pfn;
c713216d
MG
6654}
6655
6656/**
6657 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6658 *
6659 * It returns the minimum PFN based on information provided via
7d018176 6660 * memblock_set_node().
c713216d
MG
6661 */
6662unsigned long __init find_min_pfn_with_active_regions(void)
6663{
6664 return find_min_pfn_for_node(MAX_NUMNODES);
6665}
6666
37b07e41
LS
6667/*
6668 * early_calculate_totalpages()
6669 * Sum pages in active regions for movable zone.
4b0ef1fe 6670 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6671 */
484f51f8 6672static unsigned long __init early_calculate_totalpages(void)
7e63efef 6673{
7e63efef 6674 unsigned long totalpages = 0;
c13291a5
TH
6675 unsigned long start_pfn, end_pfn;
6676 int i, nid;
6677
6678 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6679 unsigned long pages = end_pfn - start_pfn;
7e63efef 6680
37b07e41
LS
6681 totalpages += pages;
6682 if (pages)
4b0ef1fe 6683 node_set_state(nid, N_MEMORY);
37b07e41 6684 }
b8af2941 6685 return totalpages;
7e63efef
MG
6686}
6687
2a1e274a
MG
6688/*
6689 * Find the PFN the Movable zone begins in each node. Kernel memory
6690 * is spread evenly between nodes as long as the nodes have enough
6691 * memory. When they don't, some nodes will have more kernelcore than
6692 * others
6693 */
b224ef85 6694static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6695{
6696 int i, nid;
6697 unsigned long usable_startpfn;
6698 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6699 /* save the state before borrow the nodemask */
4b0ef1fe 6700 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6701 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6702 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6703 struct memblock_region *r;
b2f3eebe
TC
6704
6705 /* Need to find movable_zone earlier when movable_node is specified. */
6706 find_usable_zone_for_movable();
6707
6708 /*
6709 * If movable_node is specified, ignore kernelcore and movablecore
6710 * options.
6711 */
6712 if (movable_node_is_enabled()) {
136199f0
EM
6713 for_each_memblock(memory, r) {
6714 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6715 continue;
6716
136199f0 6717 nid = r->nid;
b2f3eebe 6718
136199f0 6719 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6720 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6721 min(usable_startpfn, zone_movable_pfn[nid]) :
6722 usable_startpfn;
6723 }
6724
6725 goto out2;
6726 }
2a1e274a 6727
342332e6
TI
6728 /*
6729 * If kernelcore=mirror is specified, ignore movablecore option
6730 */
6731 if (mirrored_kernelcore) {
6732 bool mem_below_4gb_not_mirrored = false;
6733
6734 for_each_memblock(memory, r) {
6735 if (memblock_is_mirror(r))
6736 continue;
6737
6738 nid = r->nid;
6739
6740 usable_startpfn = memblock_region_memory_base_pfn(r);
6741
6742 if (usable_startpfn < 0x100000) {
6743 mem_below_4gb_not_mirrored = true;
6744 continue;
6745 }
6746
6747 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6748 min(usable_startpfn, zone_movable_pfn[nid]) :
6749 usable_startpfn;
6750 }
6751
6752 if (mem_below_4gb_not_mirrored)
6753 pr_warn("This configuration results in unmirrored kernel memory.");
6754
6755 goto out2;
6756 }
6757
7e63efef 6758 /*
a5c6d650
DR
6759 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6760 * amount of necessary memory.
6761 */
6762 if (required_kernelcore_percent)
6763 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6764 10000UL;
6765 if (required_movablecore_percent)
6766 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6767 10000UL;
6768
6769 /*
6770 * If movablecore= was specified, calculate what size of
7e63efef
MG
6771 * kernelcore that corresponds so that memory usable for
6772 * any allocation type is evenly spread. If both kernelcore
6773 * and movablecore are specified, then the value of kernelcore
6774 * will be used for required_kernelcore if it's greater than
6775 * what movablecore would have allowed.
6776 */
6777 if (required_movablecore) {
7e63efef
MG
6778 unsigned long corepages;
6779
6780 /*
6781 * Round-up so that ZONE_MOVABLE is at least as large as what
6782 * was requested by the user
6783 */
6784 required_movablecore =
6785 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6786 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6787 corepages = totalpages - required_movablecore;
6788
6789 required_kernelcore = max(required_kernelcore, corepages);
6790 }
6791
bde304bd
XQ
6792 /*
6793 * If kernelcore was not specified or kernelcore size is larger
6794 * than totalpages, there is no ZONE_MOVABLE.
6795 */
6796 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6797 goto out;
2a1e274a
MG
6798
6799 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6800 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6801
6802restart:
6803 /* Spread kernelcore memory as evenly as possible throughout nodes */
6804 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6805 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6806 unsigned long start_pfn, end_pfn;
6807
2a1e274a
MG
6808 /*
6809 * Recalculate kernelcore_node if the division per node
6810 * now exceeds what is necessary to satisfy the requested
6811 * amount of memory for the kernel
6812 */
6813 if (required_kernelcore < kernelcore_node)
6814 kernelcore_node = required_kernelcore / usable_nodes;
6815
6816 /*
6817 * As the map is walked, we track how much memory is usable
6818 * by the kernel using kernelcore_remaining. When it is
6819 * 0, the rest of the node is usable by ZONE_MOVABLE
6820 */
6821 kernelcore_remaining = kernelcore_node;
6822
6823 /* Go through each range of PFNs within this node */
c13291a5 6824 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6825 unsigned long size_pages;
6826
c13291a5 6827 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6828 if (start_pfn >= end_pfn)
6829 continue;
6830
6831 /* Account for what is only usable for kernelcore */
6832 if (start_pfn < usable_startpfn) {
6833 unsigned long kernel_pages;
6834 kernel_pages = min(end_pfn, usable_startpfn)
6835 - start_pfn;
6836
6837 kernelcore_remaining -= min(kernel_pages,
6838 kernelcore_remaining);
6839 required_kernelcore -= min(kernel_pages,
6840 required_kernelcore);
6841
6842 /* Continue if range is now fully accounted */
6843 if (end_pfn <= usable_startpfn) {
6844
6845 /*
6846 * Push zone_movable_pfn to the end so
6847 * that if we have to rebalance
6848 * kernelcore across nodes, we will
6849 * not double account here
6850 */
6851 zone_movable_pfn[nid] = end_pfn;
6852 continue;
6853 }
6854 start_pfn = usable_startpfn;
6855 }
6856
6857 /*
6858 * The usable PFN range for ZONE_MOVABLE is from
6859 * start_pfn->end_pfn. Calculate size_pages as the
6860 * number of pages used as kernelcore
6861 */
6862 size_pages = end_pfn - start_pfn;
6863 if (size_pages > kernelcore_remaining)
6864 size_pages = kernelcore_remaining;
6865 zone_movable_pfn[nid] = start_pfn + size_pages;
6866
6867 /*
6868 * Some kernelcore has been met, update counts and
6869 * break if the kernelcore for this node has been
b8af2941 6870 * satisfied
2a1e274a
MG
6871 */
6872 required_kernelcore -= min(required_kernelcore,
6873 size_pages);
6874 kernelcore_remaining -= size_pages;
6875 if (!kernelcore_remaining)
6876 break;
6877 }
6878 }
6879
6880 /*
6881 * If there is still required_kernelcore, we do another pass with one
6882 * less node in the count. This will push zone_movable_pfn[nid] further
6883 * along on the nodes that still have memory until kernelcore is
b8af2941 6884 * satisfied
2a1e274a
MG
6885 */
6886 usable_nodes--;
6887 if (usable_nodes && required_kernelcore > usable_nodes)
6888 goto restart;
6889
b2f3eebe 6890out2:
2a1e274a
MG
6891 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6892 for (nid = 0; nid < MAX_NUMNODES; nid++)
6893 zone_movable_pfn[nid] =
6894 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6895
20e6926d 6896out:
66918dcd 6897 /* restore the node_state */
4b0ef1fe 6898 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6899}
6900
4b0ef1fe
LJ
6901/* Any regular or high memory on that node ? */
6902static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6903{
37b07e41
LS
6904 enum zone_type zone_type;
6905
4b0ef1fe 6906 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6907 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6908 if (populated_zone(zone)) {
7b0e0c0e
OS
6909 if (IS_ENABLED(CONFIG_HIGHMEM))
6910 node_set_state(nid, N_HIGH_MEMORY);
6911 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 6912 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6913 break;
6914 }
37b07e41 6915 }
37b07e41
LS
6916}
6917
c713216d
MG
6918/**
6919 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6920 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6921 *
6922 * This will call free_area_init_node() for each active node in the system.
7d018176 6923 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6924 * zone in each node and their holes is calculated. If the maximum PFN
6925 * between two adjacent zones match, it is assumed that the zone is empty.
6926 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6927 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6928 * starts where the previous one ended. For example, ZONE_DMA32 starts
6929 * at arch_max_dma_pfn.
6930 */
6931void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6932{
c13291a5
TH
6933 unsigned long start_pfn, end_pfn;
6934 int i, nid;
a6af2bc3 6935
c713216d
MG
6936 /* Record where the zone boundaries are */
6937 memset(arch_zone_lowest_possible_pfn, 0,
6938 sizeof(arch_zone_lowest_possible_pfn));
6939 memset(arch_zone_highest_possible_pfn, 0,
6940 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6941
6942 start_pfn = find_min_pfn_with_active_regions();
6943
6944 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6945 if (i == ZONE_MOVABLE)
6946 continue;
90cae1fe
OH
6947
6948 end_pfn = max(max_zone_pfn[i], start_pfn);
6949 arch_zone_lowest_possible_pfn[i] = start_pfn;
6950 arch_zone_highest_possible_pfn[i] = end_pfn;
6951
6952 start_pfn = end_pfn;
c713216d 6953 }
2a1e274a
MG
6954
6955 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6956 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6957 find_zone_movable_pfns_for_nodes();
c713216d 6958
c713216d 6959 /* Print out the zone ranges */
f88dfff5 6960 pr_info("Zone ranges:\n");
2a1e274a
MG
6961 for (i = 0; i < MAX_NR_ZONES; i++) {
6962 if (i == ZONE_MOVABLE)
6963 continue;
f88dfff5 6964 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6965 if (arch_zone_lowest_possible_pfn[i] ==
6966 arch_zone_highest_possible_pfn[i])
f88dfff5 6967 pr_cont("empty\n");
72f0ba02 6968 else
8d29e18a
JG
6969 pr_cont("[mem %#018Lx-%#018Lx]\n",
6970 (u64)arch_zone_lowest_possible_pfn[i]
6971 << PAGE_SHIFT,
6972 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6973 << PAGE_SHIFT) - 1);
2a1e274a
MG
6974 }
6975
6976 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6977 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6978 for (i = 0; i < MAX_NUMNODES; i++) {
6979 if (zone_movable_pfn[i])
8d29e18a
JG
6980 pr_info(" Node %d: %#018Lx\n", i,
6981 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6982 }
c713216d 6983
f2d52fe5 6984 /* Print out the early node map */
f88dfff5 6985 pr_info("Early memory node ranges\n");
c13291a5 6986 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6987 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6988 (u64)start_pfn << PAGE_SHIFT,
6989 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6990
6991 /* Initialise every node */
708614e6 6992 mminit_verify_pageflags_layout();
8ef82866 6993 setup_nr_node_ids();
e181ae0c 6994 zero_resv_unavail();
c713216d
MG
6995 for_each_online_node(nid) {
6996 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6997 free_area_init_node(nid, NULL,
c713216d 6998 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6999
7000 /* Any memory on that node */
7001 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7002 node_set_state(nid, N_MEMORY);
7003 check_for_memory(pgdat, nid);
c713216d
MG
7004 }
7005}
2a1e274a 7006
a5c6d650
DR
7007static int __init cmdline_parse_core(char *p, unsigned long *core,
7008 unsigned long *percent)
2a1e274a
MG
7009{
7010 unsigned long long coremem;
a5c6d650
DR
7011 char *endptr;
7012
2a1e274a
MG
7013 if (!p)
7014 return -EINVAL;
7015
a5c6d650
DR
7016 /* Value may be a percentage of total memory, otherwise bytes */
7017 coremem = simple_strtoull(p, &endptr, 0);
7018 if (*endptr == '%') {
7019 /* Paranoid check for percent values greater than 100 */
7020 WARN_ON(coremem > 100);
2a1e274a 7021
a5c6d650
DR
7022 *percent = coremem;
7023 } else {
7024 coremem = memparse(p, &p);
7025 /* Paranoid check that UL is enough for the coremem value */
7026 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7027
a5c6d650
DR
7028 *core = coremem >> PAGE_SHIFT;
7029 *percent = 0UL;
7030 }
2a1e274a
MG
7031 return 0;
7032}
ed7ed365 7033
7e63efef
MG
7034/*
7035 * kernelcore=size sets the amount of memory for use for allocations that
7036 * cannot be reclaimed or migrated.
7037 */
7038static int __init cmdline_parse_kernelcore(char *p)
7039{
342332e6
TI
7040 /* parse kernelcore=mirror */
7041 if (parse_option_str(p, "mirror")) {
7042 mirrored_kernelcore = true;
7043 return 0;
7044 }
7045
a5c6d650
DR
7046 return cmdline_parse_core(p, &required_kernelcore,
7047 &required_kernelcore_percent);
7e63efef
MG
7048}
7049
7050/*
7051 * movablecore=size sets the amount of memory for use for allocations that
7052 * can be reclaimed or migrated.
7053 */
7054static int __init cmdline_parse_movablecore(char *p)
7055{
a5c6d650
DR
7056 return cmdline_parse_core(p, &required_movablecore,
7057 &required_movablecore_percent);
7e63efef
MG
7058}
7059
ed7ed365 7060early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7061early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7062
0ee332c1 7063#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7064
c3d5f5f0
JL
7065void adjust_managed_page_count(struct page *page, long count)
7066{
7067 spin_lock(&managed_page_count_lock);
7068 page_zone(page)->managed_pages += count;
7069 totalram_pages += count;
3dcc0571
JL
7070#ifdef CONFIG_HIGHMEM
7071 if (PageHighMem(page))
7072 totalhigh_pages += count;
7073#endif
c3d5f5f0
JL
7074 spin_unlock(&managed_page_count_lock);
7075}
3dcc0571 7076EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7077
11199692 7078unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 7079{
11199692
JL
7080 void *pos;
7081 unsigned long pages = 0;
69afade7 7082
11199692
JL
7083 start = (void *)PAGE_ALIGN((unsigned long)start);
7084 end = (void *)((unsigned long)end & PAGE_MASK);
7085 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7086 struct page *page = virt_to_page(pos);
7087 void *direct_map_addr;
7088
7089 /*
7090 * 'direct_map_addr' might be different from 'pos'
7091 * because some architectures' virt_to_page()
7092 * work with aliases. Getting the direct map
7093 * address ensures that we get a _writeable_
7094 * alias for the memset().
7095 */
7096 direct_map_addr = page_address(page);
dbe67df4 7097 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7098 memset(direct_map_addr, poison, PAGE_SIZE);
7099
7100 free_reserved_page(page);
69afade7
JL
7101 }
7102
7103 if (pages && s)
adb1fe9a
JP
7104 pr_info("Freeing %s memory: %ldK\n",
7105 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7106
7107 return pages;
7108}
11199692 7109EXPORT_SYMBOL(free_reserved_area);
69afade7 7110
cfa11e08
JL
7111#ifdef CONFIG_HIGHMEM
7112void free_highmem_page(struct page *page)
7113{
7114 __free_reserved_page(page);
7115 totalram_pages++;
7b4b2a0d 7116 page_zone(page)->managed_pages++;
cfa11e08
JL
7117 totalhigh_pages++;
7118}
7119#endif
7120
7ee3d4e8
JL
7121
7122void __init mem_init_print_info(const char *str)
7123{
7124 unsigned long physpages, codesize, datasize, rosize, bss_size;
7125 unsigned long init_code_size, init_data_size;
7126
7127 physpages = get_num_physpages();
7128 codesize = _etext - _stext;
7129 datasize = _edata - _sdata;
7130 rosize = __end_rodata - __start_rodata;
7131 bss_size = __bss_stop - __bss_start;
7132 init_data_size = __init_end - __init_begin;
7133 init_code_size = _einittext - _sinittext;
7134
7135 /*
7136 * Detect special cases and adjust section sizes accordingly:
7137 * 1) .init.* may be embedded into .data sections
7138 * 2) .init.text.* may be out of [__init_begin, __init_end],
7139 * please refer to arch/tile/kernel/vmlinux.lds.S.
7140 * 3) .rodata.* may be embedded into .text or .data sections.
7141 */
7142#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7143 do { \
7144 if (start <= pos && pos < end && size > adj) \
7145 size -= adj; \
7146 } while (0)
7ee3d4e8
JL
7147
7148 adj_init_size(__init_begin, __init_end, init_data_size,
7149 _sinittext, init_code_size);
7150 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7151 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7152 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7153 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7154
7155#undef adj_init_size
7156
756a025f 7157 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7158#ifdef CONFIG_HIGHMEM
756a025f 7159 ", %luK highmem"
7ee3d4e8 7160#endif
756a025f
JP
7161 "%s%s)\n",
7162 nr_free_pages() << (PAGE_SHIFT - 10),
7163 physpages << (PAGE_SHIFT - 10),
7164 codesize >> 10, datasize >> 10, rosize >> 10,
7165 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7166 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7167 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7168#ifdef CONFIG_HIGHMEM
756a025f 7169 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7170#endif
756a025f 7171 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7172}
7173
0e0b864e 7174/**
88ca3b94
RD
7175 * set_dma_reserve - set the specified number of pages reserved in the first zone
7176 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7177 *
013110a7 7178 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7179 * In the DMA zone, a significant percentage may be consumed by kernel image
7180 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7181 * function may optionally be used to account for unfreeable pages in the
7182 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7183 * smaller per-cpu batchsize.
0e0b864e
MG
7184 */
7185void __init set_dma_reserve(unsigned long new_dma_reserve)
7186{
7187 dma_reserve = new_dma_reserve;
7188}
7189
1da177e4
LT
7190void __init free_area_init(unsigned long *zones_size)
7191{
e181ae0c 7192 zero_resv_unavail();
9109fb7b 7193 free_area_init_node(0, zones_size,
1da177e4
LT
7194 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7195}
1da177e4 7196
005fd4bb 7197static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7198{
1da177e4 7199
005fd4bb
SAS
7200 lru_add_drain_cpu(cpu);
7201 drain_pages(cpu);
9f8f2172 7202
005fd4bb
SAS
7203 /*
7204 * Spill the event counters of the dead processor
7205 * into the current processors event counters.
7206 * This artificially elevates the count of the current
7207 * processor.
7208 */
7209 vm_events_fold_cpu(cpu);
9f8f2172 7210
005fd4bb
SAS
7211 /*
7212 * Zero the differential counters of the dead processor
7213 * so that the vm statistics are consistent.
7214 *
7215 * This is only okay since the processor is dead and cannot
7216 * race with what we are doing.
7217 */
7218 cpu_vm_stats_fold(cpu);
7219 return 0;
1da177e4 7220}
1da177e4
LT
7221
7222void __init page_alloc_init(void)
7223{
005fd4bb
SAS
7224 int ret;
7225
7226 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7227 "mm/page_alloc:dead", NULL,
7228 page_alloc_cpu_dead);
7229 WARN_ON(ret < 0);
1da177e4
LT
7230}
7231
cb45b0e9 7232/*
34b10060 7233 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7234 * or min_free_kbytes changes.
7235 */
7236static void calculate_totalreserve_pages(void)
7237{
7238 struct pglist_data *pgdat;
7239 unsigned long reserve_pages = 0;
2f6726e5 7240 enum zone_type i, j;
cb45b0e9
HA
7241
7242 for_each_online_pgdat(pgdat) {
281e3726
MG
7243
7244 pgdat->totalreserve_pages = 0;
7245
cb45b0e9
HA
7246 for (i = 0; i < MAX_NR_ZONES; i++) {
7247 struct zone *zone = pgdat->node_zones + i;
3484b2de 7248 long max = 0;
cb45b0e9
HA
7249
7250 /* Find valid and maximum lowmem_reserve in the zone */
7251 for (j = i; j < MAX_NR_ZONES; j++) {
7252 if (zone->lowmem_reserve[j] > max)
7253 max = zone->lowmem_reserve[j];
7254 }
7255
41858966
MG
7256 /* we treat the high watermark as reserved pages. */
7257 max += high_wmark_pages(zone);
cb45b0e9 7258
b40da049
JL
7259 if (max > zone->managed_pages)
7260 max = zone->managed_pages;
a8d01437 7261
281e3726 7262 pgdat->totalreserve_pages += max;
a8d01437 7263
cb45b0e9
HA
7264 reserve_pages += max;
7265 }
7266 }
7267 totalreserve_pages = reserve_pages;
7268}
7269
1da177e4
LT
7270/*
7271 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7272 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7273 * has a correct pages reserved value, so an adequate number of
7274 * pages are left in the zone after a successful __alloc_pages().
7275 */
7276static void setup_per_zone_lowmem_reserve(void)
7277{
7278 struct pglist_data *pgdat;
2f6726e5 7279 enum zone_type j, idx;
1da177e4 7280
ec936fc5 7281 for_each_online_pgdat(pgdat) {
1da177e4
LT
7282 for (j = 0; j < MAX_NR_ZONES; j++) {
7283 struct zone *zone = pgdat->node_zones + j;
b40da049 7284 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
7285
7286 zone->lowmem_reserve[j] = 0;
7287
2f6726e5
CL
7288 idx = j;
7289 while (idx) {
1da177e4
LT
7290 struct zone *lower_zone;
7291
2f6726e5 7292 idx--;
1da177e4 7293 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7294
7295 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7296 sysctl_lowmem_reserve_ratio[idx] = 0;
7297 lower_zone->lowmem_reserve[j] = 0;
7298 } else {
7299 lower_zone->lowmem_reserve[j] =
7300 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7301 }
b40da049 7302 managed_pages += lower_zone->managed_pages;
1da177e4
LT
7303 }
7304 }
7305 }
cb45b0e9
HA
7306
7307 /* update totalreserve_pages */
7308 calculate_totalreserve_pages();
1da177e4
LT
7309}
7310
cfd3da1e 7311static void __setup_per_zone_wmarks(void)
1da177e4
LT
7312{
7313 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7314 unsigned long lowmem_pages = 0;
7315 struct zone *zone;
7316 unsigned long flags;
7317
7318 /* Calculate total number of !ZONE_HIGHMEM pages */
7319 for_each_zone(zone) {
7320 if (!is_highmem(zone))
b40da049 7321 lowmem_pages += zone->managed_pages;
1da177e4
LT
7322 }
7323
7324 for_each_zone(zone) {
ac924c60
AM
7325 u64 tmp;
7326
1125b4e3 7327 spin_lock_irqsave(&zone->lock, flags);
b40da049 7328 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7329 do_div(tmp, lowmem_pages);
1da177e4
LT
7330 if (is_highmem(zone)) {
7331 /*
669ed175
NP
7332 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7333 * need highmem pages, so cap pages_min to a small
7334 * value here.
7335 *
41858966 7336 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7337 * deltas control asynch page reclaim, and so should
669ed175 7338 * not be capped for highmem.
1da177e4 7339 */
90ae8d67 7340 unsigned long min_pages;
1da177e4 7341
b40da049 7342 min_pages = zone->managed_pages / 1024;
90ae8d67 7343 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7344 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7345 } else {
669ed175
NP
7346 /*
7347 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7348 * proportionate to the zone's size.
7349 */
41858966 7350 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7351 }
7352
795ae7a0
JW
7353 /*
7354 * Set the kswapd watermarks distance according to the
7355 * scale factor in proportion to available memory, but
7356 * ensure a minimum size on small systems.
7357 */
7358 tmp = max_t(u64, tmp >> 2,
7359 mult_frac(zone->managed_pages,
7360 watermark_scale_factor, 10000));
7361
7362 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7363 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7364
1125b4e3 7365 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7366 }
cb45b0e9
HA
7367
7368 /* update totalreserve_pages */
7369 calculate_totalreserve_pages();
1da177e4
LT
7370}
7371
cfd3da1e
MG
7372/**
7373 * setup_per_zone_wmarks - called when min_free_kbytes changes
7374 * or when memory is hot-{added|removed}
7375 *
7376 * Ensures that the watermark[min,low,high] values for each zone are set
7377 * correctly with respect to min_free_kbytes.
7378 */
7379void setup_per_zone_wmarks(void)
7380{
b93e0f32
MH
7381 static DEFINE_SPINLOCK(lock);
7382
7383 spin_lock(&lock);
cfd3da1e 7384 __setup_per_zone_wmarks();
b93e0f32 7385 spin_unlock(&lock);
cfd3da1e
MG
7386}
7387
1da177e4
LT
7388/*
7389 * Initialise min_free_kbytes.
7390 *
7391 * For small machines we want it small (128k min). For large machines
7392 * we want it large (64MB max). But it is not linear, because network
7393 * bandwidth does not increase linearly with machine size. We use
7394 *
b8af2941 7395 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7396 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7397 *
7398 * which yields
7399 *
7400 * 16MB: 512k
7401 * 32MB: 724k
7402 * 64MB: 1024k
7403 * 128MB: 1448k
7404 * 256MB: 2048k
7405 * 512MB: 2896k
7406 * 1024MB: 4096k
7407 * 2048MB: 5792k
7408 * 4096MB: 8192k
7409 * 8192MB: 11584k
7410 * 16384MB: 16384k
7411 */
1b79acc9 7412int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7413{
7414 unsigned long lowmem_kbytes;
5f12733e 7415 int new_min_free_kbytes;
1da177e4
LT
7416
7417 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7418 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7419
7420 if (new_min_free_kbytes > user_min_free_kbytes) {
7421 min_free_kbytes = new_min_free_kbytes;
7422 if (min_free_kbytes < 128)
7423 min_free_kbytes = 128;
7424 if (min_free_kbytes > 65536)
7425 min_free_kbytes = 65536;
7426 } else {
7427 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7428 new_min_free_kbytes, user_min_free_kbytes);
7429 }
bc75d33f 7430 setup_per_zone_wmarks();
a6cccdc3 7431 refresh_zone_stat_thresholds();
1da177e4 7432 setup_per_zone_lowmem_reserve();
6423aa81
JK
7433
7434#ifdef CONFIG_NUMA
7435 setup_min_unmapped_ratio();
7436 setup_min_slab_ratio();
7437#endif
7438
1da177e4
LT
7439 return 0;
7440}
bc22af74 7441core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7442
7443/*
b8af2941 7444 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7445 * that we can call two helper functions whenever min_free_kbytes
7446 * changes.
7447 */
cccad5b9 7448int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7449 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7450{
da8c757b
HP
7451 int rc;
7452
7453 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7454 if (rc)
7455 return rc;
7456
5f12733e
MH
7457 if (write) {
7458 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7459 setup_per_zone_wmarks();
5f12733e 7460 }
1da177e4
LT
7461 return 0;
7462}
7463
795ae7a0
JW
7464int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7465 void __user *buffer, size_t *length, loff_t *ppos)
7466{
7467 int rc;
7468
7469 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7470 if (rc)
7471 return rc;
7472
7473 if (write)
7474 setup_per_zone_wmarks();
7475
7476 return 0;
7477}
7478
9614634f 7479#ifdef CONFIG_NUMA
6423aa81 7480static void setup_min_unmapped_ratio(void)
9614634f 7481{
6423aa81 7482 pg_data_t *pgdat;
9614634f 7483 struct zone *zone;
9614634f 7484
a5f5f91d 7485 for_each_online_pgdat(pgdat)
81cbcbc2 7486 pgdat->min_unmapped_pages = 0;
a5f5f91d 7487
9614634f 7488 for_each_zone(zone)
a5f5f91d 7489 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7490 sysctl_min_unmapped_ratio) / 100;
9614634f 7491}
0ff38490 7492
6423aa81
JK
7493
7494int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7495 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7496{
0ff38490
CL
7497 int rc;
7498
8d65af78 7499 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7500 if (rc)
7501 return rc;
7502
6423aa81
JK
7503 setup_min_unmapped_ratio();
7504
7505 return 0;
7506}
7507
7508static void setup_min_slab_ratio(void)
7509{
7510 pg_data_t *pgdat;
7511 struct zone *zone;
7512
a5f5f91d
MG
7513 for_each_online_pgdat(pgdat)
7514 pgdat->min_slab_pages = 0;
7515
0ff38490 7516 for_each_zone(zone)
a5f5f91d 7517 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7518 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7519}
7520
7521int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7522 void __user *buffer, size_t *length, loff_t *ppos)
7523{
7524 int rc;
7525
7526 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7527 if (rc)
7528 return rc;
7529
7530 setup_min_slab_ratio();
7531
0ff38490
CL
7532 return 0;
7533}
9614634f
CL
7534#endif
7535
1da177e4
LT
7536/*
7537 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7538 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7539 * whenever sysctl_lowmem_reserve_ratio changes.
7540 *
7541 * The reserve ratio obviously has absolutely no relation with the
41858966 7542 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7543 * if in function of the boot time zone sizes.
7544 */
cccad5b9 7545int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7546 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7547{
8d65af78 7548 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7549 setup_per_zone_lowmem_reserve();
7550 return 0;
7551}
7552
8ad4b1fb
RS
7553/*
7554 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7555 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7556 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7557 */
cccad5b9 7558int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7559 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7560{
7561 struct zone *zone;
7cd2b0a3 7562 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7563 int ret;
7564
7cd2b0a3
DR
7565 mutex_lock(&pcp_batch_high_lock);
7566 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7567
8d65af78 7568 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7569 if (!write || ret < 0)
7570 goto out;
7571
7572 /* Sanity checking to avoid pcp imbalance */
7573 if (percpu_pagelist_fraction &&
7574 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7575 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7576 ret = -EINVAL;
7577 goto out;
7578 }
7579
7580 /* No change? */
7581 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7582 goto out;
c8e251fa 7583
364df0eb 7584 for_each_populated_zone(zone) {
7cd2b0a3
DR
7585 unsigned int cpu;
7586
22a7f12b 7587 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7588 pageset_set_high_and_batch(zone,
7589 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7590 }
7cd2b0a3 7591out:
c8e251fa 7592 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7593 return ret;
8ad4b1fb
RS
7594}
7595
a9919c79 7596#ifdef CONFIG_NUMA
f034b5d4 7597int hashdist = HASHDIST_DEFAULT;
1da177e4 7598
1da177e4
LT
7599static int __init set_hashdist(char *str)
7600{
7601 if (!str)
7602 return 0;
7603 hashdist = simple_strtoul(str, &str, 0);
7604 return 1;
7605}
7606__setup("hashdist=", set_hashdist);
7607#endif
7608
f6f34b43
SD
7609#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7610/*
7611 * Returns the number of pages that arch has reserved but
7612 * is not known to alloc_large_system_hash().
7613 */
7614static unsigned long __init arch_reserved_kernel_pages(void)
7615{
7616 return 0;
7617}
7618#endif
7619
9017217b
PT
7620/*
7621 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7622 * machines. As memory size is increased the scale is also increased but at
7623 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7624 * quadruples the scale is increased by one, which means the size of hash table
7625 * only doubles, instead of quadrupling as well.
7626 * Because 32-bit systems cannot have large physical memory, where this scaling
7627 * makes sense, it is disabled on such platforms.
7628 */
7629#if __BITS_PER_LONG > 32
7630#define ADAPT_SCALE_BASE (64ul << 30)
7631#define ADAPT_SCALE_SHIFT 2
7632#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7633#endif
7634
1da177e4
LT
7635/*
7636 * allocate a large system hash table from bootmem
7637 * - it is assumed that the hash table must contain an exact power-of-2
7638 * quantity of entries
7639 * - limit is the number of hash buckets, not the total allocation size
7640 */
7641void *__init alloc_large_system_hash(const char *tablename,
7642 unsigned long bucketsize,
7643 unsigned long numentries,
7644 int scale,
7645 int flags,
7646 unsigned int *_hash_shift,
7647 unsigned int *_hash_mask,
31fe62b9
TB
7648 unsigned long low_limit,
7649 unsigned long high_limit)
1da177e4 7650{
31fe62b9 7651 unsigned long long max = high_limit;
1da177e4
LT
7652 unsigned long log2qty, size;
7653 void *table = NULL;
3749a8f0 7654 gfp_t gfp_flags;
1da177e4
LT
7655
7656 /* allow the kernel cmdline to have a say */
7657 if (!numentries) {
7658 /* round applicable memory size up to nearest megabyte */
04903664 7659 numentries = nr_kernel_pages;
f6f34b43 7660 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7661
7662 /* It isn't necessary when PAGE_SIZE >= 1MB */
7663 if (PAGE_SHIFT < 20)
7664 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7665
9017217b
PT
7666#if __BITS_PER_LONG > 32
7667 if (!high_limit) {
7668 unsigned long adapt;
7669
7670 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7671 adapt <<= ADAPT_SCALE_SHIFT)
7672 scale++;
7673 }
7674#endif
7675
1da177e4
LT
7676 /* limit to 1 bucket per 2^scale bytes of low memory */
7677 if (scale > PAGE_SHIFT)
7678 numentries >>= (scale - PAGE_SHIFT);
7679 else
7680 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7681
7682 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7683 if (unlikely(flags & HASH_SMALL)) {
7684 /* Makes no sense without HASH_EARLY */
7685 WARN_ON(!(flags & HASH_EARLY));
7686 if (!(numentries >> *_hash_shift)) {
7687 numentries = 1UL << *_hash_shift;
7688 BUG_ON(!numentries);
7689 }
7690 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7691 numentries = PAGE_SIZE / bucketsize;
1da177e4 7692 }
6e692ed3 7693 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7694
7695 /* limit allocation size to 1/16 total memory by default */
7696 if (max == 0) {
7697 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7698 do_div(max, bucketsize);
7699 }
074b8517 7700 max = min(max, 0x80000000ULL);
1da177e4 7701
31fe62b9
TB
7702 if (numentries < low_limit)
7703 numentries = low_limit;
1da177e4
LT
7704 if (numentries > max)
7705 numentries = max;
7706
f0d1b0b3 7707 log2qty = ilog2(numentries);
1da177e4 7708
3749a8f0 7709 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7710 do {
7711 size = bucketsize << log2qty;
ea1f5f37
PT
7712 if (flags & HASH_EARLY) {
7713 if (flags & HASH_ZERO)
eb31d559 7714 table = memblock_alloc_nopanic(size, 0);
ea1f5f37 7715 else
eb31d559 7716 table = memblock_alloc_raw(size, 0);
ea1f5f37 7717 } else if (hashdist) {
3749a8f0 7718 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7719 } else {
1037b83b
ED
7720 /*
7721 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7722 * some pages at the end of hash table which
7723 * alloc_pages_exact() automatically does
1037b83b 7724 */
264ef8a9 7725 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7726 table = alloc_pages_exact(size, gfp_flags);
7727 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7728 }
1da177e4
LT
7729 }
7730 } while (!table && size > PAGE_SIZE && --log2qty);
7731
7732 if (!table)
7733 panic("Failed to allocate %s hash table\n", tablename);
7734
1170532b
JP
7735 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7736 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7737
7738 if (_hash_shift)
7739 *_hash_shift = log2qty;
7740 if (_hash_mask)
7741 *_hash_mask = (1 << log2qty) - 1;
7742
7743 return table;
7744}
a117e66e 7745
a5d76b54 7746/*
80934513
MK
7747 * This function checks whether pageblock includes unmovable pages or not.
7748 * If @count is not zero, it is okay to include less @count unmovable pages
7749 *
b8af2941 7750 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7751 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7752 * check without lock_page also may miss some movable non-lru pages at
7753 * race condition. So you can't expect this function should be exact.
a5d76b54 7754 */
b023f468 7755bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7756 int migratetype,
b023f468 7757 bool skip_hwpoisoned_pages)
49ac8255
KH
7758{
7759 unsigned long pfn, iter, found;
47118af0 7760
49ac8255 7761 /*
15c30bc0
MH
7762 * TODO we could make this much more efficient by not checking every
7763 * page in the range if we know all of them are in MOVABLE_ZONE and
7764 * that the movable zone guarantees that pages are migratable but
7765 * the later is not the case right now unfortunatelly. E.g. movablecore
7766 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7767 */
49ac8255 7768
4da2ce25
MH
7769 /*
7770 * CMA allocations (alloc_contig_range) really need to mark isolate
7771 * CMA pageblocks even when they are not movable in fact so consider
7772 * them movable here.
7773 */
7774 if (is_migrate_cma(migratetype) &&
7775 is_migrate_cma(get_pageblock_migratetype(page)))
7776 return false;
7777
49ac8255
KH
7778 pfn = page_to_pfn(page);
7779 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7780 unsigned long check = pfn + iter;
7781
29723fcc 7782 if (!pfn_valid_within(check))
49ac8255 7783 continue;
29723fcc 7784
49ac8255 7785 page = pfn_to_page(check);
c8721bbb 7786
d7ab3672 7787 if (PageReserved(page))
15c30bc0 7788 goto unmovable;
d7ab3672 7789
c8721bbb
NH
7790 /*
7791 * Hugepages are not in LRU lists, but they're movable.
7792 * We need not scan over tail pages bacause we don't
7793 * handle each tail page individually in migration.
7794 */
7795 if (PageHuge(page)) {
464c7ffb
AK
7796
7797 if (!hugepage_migration_supported(page_hstate(page)))
7798 goto unmovable;
7799
c8721bbb
NH
7800 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7801 continue;
7802 }
7803
97d255c8
MK
7804 /*
7805 * We can't use page_count without pin a page
7806 * because another CPU can free compound page.
7807 * This check already skips compound tails of THP
0139aa7b 7808 * because their page->_refcount is zero at all time.
97d255c8 7809 */
fe896d18 7810 if (!page_ref_count(page)) {
49ac8255
KH
7811 if (PageBuddy(page))
7812 iter += (1 << page_order(page)) - 1;
7813 continue;
7814 }
97d255c8 7815
b023f468
WC
7816 /*
7817 * The HWPoisoned page may be not in buddy system, and
7818 * page_count() is not 0.
7819 */
7820 if (skip_hwpoisoned_pages && PageHWPoison(page))
7821 continue;
7822
0efadf48
YX
7823 if (__PageMovable(page))
7824 continue;
7825
49ac8255
KH
7826 if (!PageLRU(page))
7827 found++;
7828 /*
6b4f7799
JW
7829 * If there are RECLAIMABLE pages, we need to check
7830 * it. But now, memory offline itself doesn't call
7831 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7832 */
7833 /*
7834 * If the page is not RAM, page_count()should be 0.
7835 * we don't need more check. This is an _used_ not-movable page.
7836 *
7837 * The problematic thing here is PG_reserved pages. PG_reserved
7838 * is set to both of a memory hole page and a _used_ kernel
7839 * page at boot.
7840 */
7841 if (found > count)
15c30bc0 7842 goto unmovable;
49ac8255 7843 }
80934513 7844 return false;
15c30bc0
MH
7845unmovable:
7846 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7847 return true;
49ac8255
KH
7848}
7849
080fe206 7850#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7851
7852static unsigned long pfn_max_align_down(unsigned long pfn)
7853{
7854 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7855 pageblock_nr_pages) - 1);
7856}
7857
7858static unsigned long pfn_max_align_up(unsigned long pfn)
7859{
7860 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7861 pageblock_nr_pages));
7862}
7863
041d3a8c 7864/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7865static int __alloc_contig_migrate_range(struct compact_control *cc,
7866 unsigned long start, unsigned long end)
041d3a8c
MN
7867{
7868 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7869 unsigned long nr_reclaimed;
041d3a8c
MN
7870 unsigned long pfn = start;
7871 unsigned int tries = 0;
7872 int ret = 0;
7873
be49a6e1 7874 migrate_prep();
041d3a8c 7875
bb13ffeb 7876 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7877 if (fatal_signal_pending(current)) {
7878 ret = -EINTR;
7879 break;
7880 }
7881
bb13ffeb
MG
7882 if (list_empty(&cc->migratepages)) {
7883 cc->nr_migratepages = 0;
edc2ca61 7884 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7885 if (!pfn) {
7886 ret = -EINTR;
7887 break;
7888 }
7889 tries = 0;
7890 } else if (++tries == 5) {
7891 ret = ret < 0 ? ret : -EBUSY;
7892 break;
7893 }
7894
beb51eaa
MK
7895 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7896 &cc->migratepages);
7897 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7898
9c620e2b 7899 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 7900 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 7901 }
2a6f5124
SP
7902 if (ret < 0) {
7903 putback_movable_pages(&cc->migratepages);
7904 return ret;
7905 }
7906 return 0;
041d3a8c
MN
7907}
7908
7909/**
7910 * alloc_contig_range() -- tries to allocate given range of pages
7911 * @start: start PFN to allocate
7912 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7913 * @migratetype: migratetype of the underlaying pageblocks (either
7914 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7915 * in range must have the same migratetype and it must
7916 * be either of the two.
ca96b625 7917 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7918 *
7919 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 7920 * aligned. The PFN range must belong to a single zone.
041d3a8c 7921 *
2c7452a0
MK
7922 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7923 * pageblocks in the range. Once isolated, the pageblocks should not
7924 * be modified by others.
041d3a8c
MN
7925 *
7926 * Returns zero on success or negative error code. On success all
7927 * pages which PFN is in [start, end) are allocated for the caller and
7928 * need to be freed with free_contig_range().
7929 */
0815f3d8 7930int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7931 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7932{
041d3a8c 7933 unsigned long outer_start, outer_end;
d00181b9
KS
7934 unsigned int order;
7935 int ret = 0;
041d3a8c 7936
bb13ffeb
MG
7937 struct compact_control cc = {
7938 .nr_migratepages = 0,
7939 .order = -1,
7940 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7941 .mode = MIGRATE_SYNC,
bb13ffeb 7942 .ignore_skip_hint = true,
2583d671 7943 .no_set_skip_hint = true,
7dea19f9 7944 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7945 };
7946 INIT_LIST_HEAD(&cc.migratepages);
7947
041d3a8c
MN
7948 /*
7949 * What we do here is we mark all pageblocks in range as
7950 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7951 * have different sizes, and due to the way page allocator
7952 * work, we align the range to biggest of the two pages so
7953 * that page allocator won't try to merge buddies from
7954 * different pageblocks and change MIGRATE_ISOLATE to some
7955 * other migration type.
7956 *
7957 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7958 * migrate the pages from an unaligned range (ie. pages that
7959 * we are interested in). This will put all the pages in
7960 * range back to page allocator as MIGRATE_ISOLATE.
7961 *
7962 * When this is done, we take the pages in range from page
7963 * allocator removing them from the buddy system. This way
7964 * page allocator will never consider using them.
7965 *
7966 * This lets us mark the pageblocks back as
7967 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7968 * aligned range but not in the unaligned, original range are
7969 * put back to page allocator so that buddy can use them.
7970 */
7971
7972 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7973 pfn_max_align_up(end), migratetype,
7974 false);
041d3a8c 7975 if (ret)
86a595f9 7976 return ret;
041d3a8c 7977
8ef5849f
JK
7978 /*
7979 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7980 * So, just fall through. test_pages_isolated() has a tracepoint
7981 * which will report the busy page.
7982 *
7983 * It is possible that busy pages could become available before
7984 * the call to test_pages_isolated, and the range will actually be
7985 * allocated. So, if we fall through be sure to clear ret so that
7986 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7987 */
bb13ffeb 7988 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7989 if (ret && ret != -EBUSY)
041d3a8c 7990 goto done;
63cd4489 7991 ret =0;
041d3a8c
MN
7992
7993 /*
7994 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7995 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7996 * more, all pages in [start, end) are free in page allocator.
7997 * What we are going to do is to allocate all pages from
7998 * [start, end) (that is remove them from page allocator).
7999 *
8000 * The only problem is that pages at the beginning and at the
8001 * end of interesting range may be not aligned with pages that
8002 * page allocator holds, ie. they can be part of higher order
8003 * pages. Because of this, we reserve the bigger range and
8004 * once this is done free the pages we are not interested in.
8005 *
8006 * We don't have to hold zone->lock here because the pages are
8007 * isolated thus they won't get removed from buddy.
8008 */
8009
8010 lru_add_drain_all();
510f5507 8011 drain_all_pages(cc.zone);
041d3a8c
MN
8012
8013 order = 0;
8014 outer_start = start;
8015 while (!PageBuddy(pfn_to_page(outer_start))) {
8016 if (++order >= MAX_ORDER) {
8ef5849f
JK
8017 outer_start = start;
8018 break;
041d3a8c
MN
8019 }
8020 outer_start &= ~0UL << order;
8021 }
8022
8ef5849f
JK
8023 if (outer_start != start) {
8024 order = page_order(pfn_to_page(outer_start));
8025
8026 /*
8027 * outer_start page could be small order buddy page and
8028 * it doesn't include start page. Adjust outer_start
8029 * in this case to report failed page properly
8030 * on tracepoint in test_pages_isolated()
8031 */
8032 if (outer_start + (1UL << order) <= start)
8033 outer_start = start;
8034 }
8035
041d3a8c 8036 /* Make sure the range is really isolated. */
b023f468 8037 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8038 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8039 __func__, outer_start, end);
041d3a8c
MN
8040 ret = -EBUSY;
8041 goto done;
8042 }
8043
49f223a9 8044 /* Grab isolated pages from freelists. */
bb13ffeb 8045 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8046 if (!outer_end) {
8047 ret = -EBUSY;
8048 goto done;
8049 }
8050
8051 /* Free head and tail (if any) */
8052 if (start != outer_start)
8053 free_contig_range(outer_start, start - outer_start);
8054 if (end != outer_end)
8055 free_contig_range(end, outer_end - end);
8056
8057done:
8058 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8059 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8060 return ret;
8061}
8062
8063void free_contig_range(unsigned long pfn, unsigned nr_pages)
8064{
bcc2b02f
MS
8065 unsigned int count = 0;
8066
8067 for (; nr_pages--; pfn++) {
8068 struct page *page = pfn_to_page(pfn);
8069
8070 count += page_count(page) != 1;
8071 __free_page(page);
8072 }
8073 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8074}
8075#endif
8076
d883c6cf 8077#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8078/*
8079 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8080 * page high values need to be recalulated.
8081 */
4ed7e022
JL
8082void __meminit zone_pcp_update(struct zone *zone)
8083{
0a647f38 8084 unsigned cpu;
c8e251fa 8085 mutex_lock(&pcp_batch_high_lock);
0a647f38 8086 for_each_possible_cpu(cpu)
169f6c19
CS
8087 pageset_set_high_and_batch(zone,
8088 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8089 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8090}
8091#endif
8092
340175b7
JL
8093void zone_pcp_reset(struct zone *zone)
8094{
8095 unsigned long flags;
5a883813
MK
8096 int cpu;
8097 struct per_cpu_pageset *pset;
340175b7
JL
8098
8099 /* avoid races with drain_pages() */
8100 local_irq_save(flags);
8101 if (zone->pageset != &boot_pageset) {
5a883813
MK
8102 for_each_online_cpu(cpu) {
8103 pset = per_cpu_ptr(zone->pageset, cpu);
8104 drain_zonestat(zone, pset);
8105 }
340175b7
JL
8106 free_percpu(zone->pageset);
8107 zone->pageset = &boot_pageset;
8108 }
8109 local_irq_restore(flags);
8110}
8111
6dcd73d7 8112#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8113/*
b9eb6319
JK
8114 * All pages in the range must be in a single zone and isolated
8115 * before calling this.
0c0e6195
KH
8116 */
8117void
8118__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8119{
8120 struct page *page;
8121 struct zone *zone;
7aeb09f9 8122 unsigned int order, i;
0c0e6195
KH
8123 unsigned long pfn;
8124 unsigned long flags;
8125 /* find the first valid pfn */
8126 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8127 if (pfn_valid(pfn))
8128 break;
8129 if (pfn == end_pfn)
8130 return;
2d070eab 8131 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8132 zone = page_zone(pfn_to_page(pfn));
8133 spin_lock_irqsave(&zone->lock, flags);
8134 pfn = start_pfn;
8135 while (pfn < end_pfn) {
8136 if (!pfn_valid(pfn)) {
8137 pfn++;
8138 continue;
8139 }
8140 page = pfn_to_page(pfn);
b023f468
WC
8141 /*
8142 * The HWPoisoned page may be not in buddy system, and
8143 * page_count() is not 0.
8144 */
8145 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8146 pfn++;
8147 SetPageReserved(page);
8148 continue;
8149 }
8150
0c0e6195
KH
8151 BUG_ON(page_count(page));
8152 BUG_ON(!PageBuddy(page));
8153 order = page_order(page);
8154#ifdef CONFIG_DEBUG_VM
1170532b
JP
8155 pr_info("remove from free list %lx %d %lx\n",
8156 pfn, 1 << order, end_pfn);
0c0e6195
KH
8157#endif
8158 list_del(&page->lru);
8159 rmv_page_order(page);
8160 zone->free_area[order].nr_free--;
0c0e6195
KH
8161 for (i = 0; i < (1 << order); i++)
8162 SetPageReserved((page+i));
8163 pfn += (1 << order);
8164 }
8165 spin_unlock_irqrestore(&zone->lock, flags);
8166}
8167#endif
8d22ba1b 8168
8d22ba1b
WF
8169bool is_free_buddy_page(struct page *page)
8170{
8171 struct zone *zone = page_zone(page);
8172 unsigned long pfn = page_to_pfn(page);
8173 unsigned long flags;
7aeb09f9 8174 unsigned int order;
8d22ba1b
WF
8175
8176 spin_lock_irqsave(&zone->lock, flags);
8177 for (order = 0; order < MAX_ORDER; order++) {
8178 struct page *page_head = page - (pfn & ((1 << order) - 1));
8179
8180 if (PageBuddy(page_head) && page_order(page_head) >= order)
8181 break;
8182 }
8183 spin_unlock_irqrestore(&zone->lock, flags);
8184
8185 return order < MAX_ORDER;
8186}
d4ae9916
NH
8187
8188#ifdef CONFIG_MEMORY_FAILURE
8189/*
8190 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8191 * test is performed under the zone lock to prevent a race against page
8192 * allocation.
8193 */
8194bool set_hwpoison_free_buddy_page(struct page *page)
8195{
8196 struct zone *zone = page_zone(page);
8197 unsigned long pfn = page_to_pfn(page);
8198 unsigned long flags;
8199 unsigned int order;
8200 bool hwpoisoned = false;
8201
8202 spin_lock_irqsave(&zone->lock, flags);
8203 for (order = 0; order < MAX_ORDER; order++) {
8204 struct page *page_head = page - (pfn & ((1 << order) - 1));
8205
8206 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8207 if (!TestSetPageHWPoison(page))
8208 hwpoisoned = true;
8209 break;
8210 }
8211 }
8212 spin_unlock_irqrestore(&zone->lock, flags);
8213
8214 return hwpoisoned;
8215}
8216#endif