irq_work: record irq_work_queue() call stack
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
121e6f32 75#include <linux/vmalloc.h>
1da177e4 76
7ee3d4e8 77#include <asm/sections.h>
1da177e4 78#include <asm/tlbflush.h>
ac924c60 79#include <asm/div64.h>
1da177e4 80#include "internal.h"
e900a918 81#include "shuffle.h"
36e66c55 82#include "page_reporting.h"
1da177e4 83
f04a5d5d
DH
84/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
85typedef int __bitwise fpi_t;
86
87/* No special request */
88#define FPI_NONE ((__force fpi_t)0)
89
90/*
91 * Skip free page reporting notification for the (possibly merged) page.
92 * This does not hinder free page reporting from grabbing the page,
93 * reporting it and marking it "reported" - it only skips notifying
94 * the free page reporting infrastructure about a newly freed page. For
95 * example, used when temporarily pulling a page from a freelist and
96 * putting it back unmodified.
97 */
98#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
99
47b6a24a
DH
100/*
101 * Place the (possibly merged) page to the tail of the freelist. Will ignore
102 * page shuffling (relevant code - e.g., memory onlining - is expected to
103 * shuffle the whole zone).
104 *
105 * Note: No code should rely on this flag for correctness - it's purely
106 * to allow for optimizations when handing back either fresh pages
107 * (memory onlining) or untouched pages (page isolation, free page
108 * reporting).
109 */
110#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
111
2c335680
AK
112/*
113 * Don't poison memory with KASAN (only for the tag-based modes).
114 * During boot, all non-reserved memblock memory is exposed to page_alloc.
115 * Poisoning all that memory lengthens boot time, especially on systems with
116 * large amount of RAM. This flag is used to skip that poisoning.
117 * This is only done for the tag-based KASAN modes, as those are able to
118 * detect memory corruptions with the memory tags assigned by default.
119 * All memory allocated normally after boot gets poisoned as usual.
120 */
121#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
122
c8e251fa
CS
123/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
124static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 125#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 126
72812019
LS
127#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
128DEFINE_PER_CPU(int, numa_node);
129EXPORT_PER_CPU_SYMBOL(numa_node);
130#endif
131
4518085e
KW
132DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
133
7aac7898
LS
134#ifdef CONFIG_HAVE_MEMORYLESS_NODES
135/*
136 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
137 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
138 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
139 * defined in <linux/topology.h>.
140 */
141DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
142EXPORT_PER_CPU_SYMBOL(_numa_mem_);
143#endif
144
bd233f53 145/* work_structs for global per-cpu drains */
d9367bd0
WY
146struct pcpu_drain {
147 struct zone *zone;
148 struct work_struct work;
149};
8b885f53
JY
150static DEFINE_MUTEX(pcpu_drain_mutex);
151static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 152
38addce8 153#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 154volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
155EXPORT_SYMBOL(latent_entropy);
156#endif
157
1da177e4 158/*
13808910 159 * Array of node states.
1da177e4 160 */
13808910
CL
161nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
162 [N_POSSIBLE] = NODE_MASK_ALL,
163 [N_ONLINE] = { { [0] = 1UL } },
164#ifndef CONFIG_NUMA
165 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
166#ifdef CONFIG_HIGHMEM
167 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 168#endif
20b2f52b 169 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
170 [N_CPU] = { { [0] = 1UL } },
171#endif /* NUMA */
172};
173EXPORT_SYMBOL(node_states);
174
ca79b0c2
AK
175atomic_long_t _totalram_pages __read_mostly;
176EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 177unsigned long totalreserve_pages __read_mostly;
e48322ab 178unsigned long totalcma_pages __read_mostly;
ab8fabd4 179
1b76b02f 180int percpu_pagelist_fraction;
dcce284a 181gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 182DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
183EXPORT_SYMBOL(init_on_alloc);
184
51cba1eb 185DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
186EXPORT_SYMBOL(init_on_free);
187
04013513
VB
188static bool _init_on_alloc_enabled_early __read_mostly
189 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
190static int __init early_init_on_alloc(char *buf)
191{
6471384a 192
04013513 193 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
194}
195early_param("init_on_alloc", early_init_on_alloc);
196
04013513
VB
197static bool _init_on_free_enabled_early __read_mostly
198 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
199static int __init early_init_on_free(char *buf)
200{
04013513 201 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
202}
203early_param("init_on_free", early_init_on_free);
1da177e4 204
bb14c2c7
VB
205/*
206 * A cached value of the page's pageblock's migratetype, used when the page is
207 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
208 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
209 * Also the migratetype set in the page does not necessarily match the pcplist
210 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
211 * other index - this ensures that it will be put on the correct CMA freelist.
212 */
213static inline int get_pcppage_migratetype(struct page *page)
214{
215 return page->index;
216}
217
218static inline void set_pcppage_migratetype(struct page *page, int migratetype)
219{
220 page->index = migratetype;
221}
222
452aa699
RW
223#ifdef CONFIG_PM_SLEEP
224/*
225 * The following functions are used by the suspend/hibernate code to temporarily
226 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
227 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
228 * they should always be called with system_transition_mutex held
229 * (gfp_allowed_mask also should only be modified with system_transition_mutex
230 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
231 * with that modification).
452aa699 232 */
c9e664f1
RW
233
234static gfp_t saved_gfp_mask;
235
236void pm_restore_gfp_mask(void)
452aa699 237{
55f2503c 238 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
239 if (saved_gfp_mask) {
240 gfp_allowed_mask = saved_gfp_mask;
241 saved_gfp_mask = 0;
242 }
452aa699
RW
243}
244
c9e664f1 245void pm_restrict_gfp_mask(void)
452aa699 246{
55f2503c 247 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
248 WARN_ON(saved_gfp_mask);
249 saved_gfp_mask = gfp_allowed_mask;
d0164adc 250 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 251}
f90ac398
MG
252
253bool pm_suspended_storage(void)
254{
d0164adc 255 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
256 return false;
257 return true;
258}
452aa699
RW
259#endif /* CONFIG_PM_SLEEP */
260
d9c23400 261#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 262unsigned int pageblock_order __read_mostly;
d9c23400
MG
263#endif
264
7fef431b
DH
265static void __free_pages_ok(struct page *page, unsigned int order,
266 fpi_t fpi_flags);
a226f6c8 267
1da177e4
LT
268/*
269 * results with 256, 32 in the lowmem_reserve sysctl:
270 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
271 * 1G machine -> (16M dma, 784M normal, 224M high)
272 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
273 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 274 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
275 *
276 * TBD: should special case ZONE_DMA32 machines here - in those we normally
277 * don't need any ZONE_NORMAL reservation
1da177e4 278 */
d3cda233 279int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 280#ifdef CONFIG_ZONE_DMA
d3cda233 281 [ZONE_DMA] = 256,
4b51d669 282#endif
fb0e7942 283#ifdef CONFIG_ZONE_DMA32
d3cda233 284 [ZONE_DMA32] = 256,
fb0e7942 285#endif
d3cda233 286 [ZONE_NORMAL] = 32,
e53ef38d 287#ifdef CONFIG_HIGHMEM
d3cda233 288 [ZONE_HIGHMEM] = 0,
e53ef38d 289#endif
d3cda233 290 [ZONE_MOVABLE] = 0,
2f1b6248 291};
1da177e4 292
15ad7cdc 293static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 294#ifdef CONFIG_ZONE_DMA
2f1b6248 295 "DMA",
4b51d669 296#endif
fb0e7942 297#ifdef CONFIG_ZONE_DMA32
2f1b6248 298 "DMA32",
fb0e7942 299#endif
2f1b6248 300 "Normal",
e53ef38d 301#ifdef CONFIG_HIGHMEM
2a1e274a 302 "HighMem",
e53ef38d 303#endif
2a1e274a 304 "Movable",
033fbae9
DW
305#ifdef CONFIG_ZONE_DEVICE
306 "Device",
307#endif
2f1b6248
CL
308};
309
c999fbd3 310const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
311 "Unmovable",
312 "Movable",
313 "Reclaimable",
314 "HighAtomic",
315#ifdef CONFIG_CMA
316 "CMA",
317#endif
318#ifdef CONFIG_MEMORY_ISOLATION
319 "Isolate",
320#endif
321};
322
ae70eddd
AK
323compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
324 [NULL_COMPOUND_DTOR] = NULL,
325 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 326#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 327 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 328#endif
9a982250 329#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 330 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 331#endif
f1e61557
KS
332};
333
1da177e4 334int min_free_kbytes = 1024;
42aa83cb 335int user_min_free_kbytes = -1;
24512228
MG
336#ifdef CONFIG_DISCONTIGMEM
337/*
338 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
339 * are not on separate NUMA nodes. Functionally this works but with
340 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
341 * quite small. By default, do not boost watermarks on discontigmem as in
342 * many cases very high-order allocations like THP are likely to be
343 * unsupported and the premature reclaim offsets the advantage of long-term
344 * fragmentation avoidance.
345 */
346int watermark_boost_factor __read_mostly;
347#else
1c30844d 348int watermark_boost_factor __read_mostly = 15000;
24512228 349#endif
795ae7a0 350int watermark_scale_factor = 10;
1da177e4 351
bbe5d993
OS
352static unsigned long nr_kernel_pages __initdata;
353static unsigned long nr_all_pages __initdata;
354static unsigned long dma_reserve __initdata;
1da177e4 355
bbe5d993
OS
356static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
357static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 358static unsigned long required_kernelcore __initdata;
a5c6d650 359static unsigned long required_kernelcore_percent __initdata;
7f16f91f 360static unsigned long required_movablecore __initdata;
a5c6d650 361static unsigned long required_movablecore_percent __initdata;
bbe5d993 362static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 363static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
364
365/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
366int movable_zone;
367EXPORT_SYMBOL(movable_zone);
c713216d 368
418508c1 369#if MAX_NUMNODES > 1
b9726c26 370unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 371unsigned int nr_online_nodes __read_mostly = 1;
418508c1 372EXPORT_SYMBOL(nr_node_ids);
62bc62a8 373EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
374#endif
375
9ef9acb0
MG
376int page_group_by_mobility_disabled __read_mostly;
377
3a80a7fa 378#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
379/*
380 * During boot we initialize deferred pages on-demand, as needed, but once
381 * page_alloc_init_late() has finished, the deferred pages are all initialized,
382 * and we can permanently disable that path.
383 */
384static DEFINE_STATIC_KEY_TRUE(deferred_pages);
385
386/*
387 * Calling kasan_free_pages() only after deferred memory initialization
388 * has completed. Poisoning pages during deferred memory init will greatly
389 * lengthen the process and cause problem in large memory systems as the
390 * deferred pages initialization is done with interrupt disabled.
391 *
392 * Assuming that there will be no reference to those newly initialized
393 * pages before they are ever allocated, this should have no effect on
394 * KASAN memory tracking as the poison will be properly inserted at page
395 * allocation time. The only corner case is when pages are allocated by
396 * on-demand allocation and then freed again before the deferred pages
397 * initialization is done, but this is not likely to happen.
398 */
2c335680 399static inline void kasan_free_nondeferred_pages(struct page *page, int order,
1bb5eab3 400 bool init, fpi_t fpi_flags)
3c0c12cc 401{
2c335680
AK
402 if (static_branch_unlikely(&deferred_pages))
403 return;
404 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
405 (fpi_flags & FPI_SKIP_KASAN_POISON))
406 return;
1bb5eab3 407 kasan_free_pages(page, order, init);
3c0c12cc
WL
408}
409
3a80a7fa 410/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 411static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 412{
ef70b6f4
MG
413 int nid = early_pfn_to_nid(pfn);
414
415 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
416 return true;
417
418 return false;
419}
420
421/*
d3035be4 422 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
423 * later in the boot cycle when it can be parallelised.
424 */
d3035be4
PT
425static bool __meminit
426defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 427{
d3035be4
PT
428 static unsigned long prev_end_pfn, nr_initialised;
429
430 /*
431 * prev_end_pfn static that contains the end of previous zone
432 * No need to protect because called very early in boot before smp_init.
433 */
434 if (prev_end_pfn != end_pfn) {
435 prev_end_pfn = end_pfn;
436 nr_initialised = 0;
437 }
438
3c2c6488 439 /* Always populate low zones for address-constrained allocations */
d3035be4 440 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 441 return false;
23b68cfa 442
dc2da7b4
BH
443 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
444 return true;
23b68cfa
WY
445 /*
446 * We start only with one section of pages, more pages are added as
447 * needed until the rest of deferred pages are initialized.
448 */
d3035be4 449 nr_initialised++;
23b68cfa 450 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
451 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
452 NODE_DATA(nid)->first_deferred_pfn = pfn;
453 return true;
3a80a7fa 454 }
d3035be4 455 return false;
3a80a7fa
MG
456}
457#else
2c335680 458static inline void kasan_free_nondeferred_pages(struct page *page, int order,
1bb5eab3 459 bool init, fpi_t fpi_flags)
2c335680
AK
460{
461 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
462 (fpi_flags & FPI_SKIP_KASAN_POISON))
463 return;
1bb5eab3 464 kasan_free_pages(page, order, init);
2c335680 465}
3c0c12cc 466
3a80a7fa
MG
467static inline bool early_page_uninitialised(unsigned long pfn)
468{
469 return false;
470}
471
d3035be4 472static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 473{
d3035be4 474 return false;
3a80a7fa
MG
475}
476#endif
477
0b423ca2
MG
478/* Return a pointer to the bitmap storing bits affecting a block of pages */
479static inline unsigned long *get_pageblock_bitmap(struct page *page,
480 unsigned long pfn)
481{
482#ifdef CONFIG_SPARSEMEM
f1eca35a 483 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
484#else
485 return page_zone(page)->pageblock_flags;
486#endif /* CONFIG_SPARSEMEM */
487}
488
489static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
490{
491#ifdef CONFIG_SPARSEMEM
492 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
493#else
494 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 495#endif /* CONFIG_SPARSEMEM */
399b795b 496 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
497}
498
535b81e2
WY
499static __always_inline
500unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 501 unsigned long pfn,
0b423ca2
MG
502 unsigned long mask)
503{
504 unsigned long *bitmap;
505 unsigned long bitidx, word_bitidx;
506 unsigned long word;
507
508 bitmap = get_pageblock_bitmap(page, pfn);
509 bitidx = pfn_to_bitidx(page, pfn);
510 word_bitidx = bitidx / BITS_PER_LONG;
511 bitidx &= (BITS_PER_LONG-1);
512
513 word = bitmap[word_bitidx];
d93d5ab9 514 return (word >> bitidx) & mask;
0b423ca2
MG
515}
516
a00cda3f
MCC
517/**
518 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
519 * @page: The page within the block of interest
520 * @pfn: The target page frame number
521 * @mask: mask of bits that the caller is interested in
522 *
523 * Return: pageblock_bits flags
524 */
0b423ca2 525unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
526 unsigned long mask)
527{
535b81e2 528 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
529}
530
531static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
532{
535b81e2 533 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
534}
535
536/**
537 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
538 * @page: The page within the block of interest
539 * @flags: The flags to set
540 * @pfn: The target page frame number
0b423ca2
MG
541 * @mask: mask of bits that the caller is interested in
542 */
543void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
544 unsigned long pfn,
0b423ca2
MG
545 unsigned long mask)
546{
547 unsigned long *bitmap;
548 unsigned long bitidx, word_bitidx;
549 unsigned long old_word, word;
550
551 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 552 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
553
554 bitmap = get_pageblock_bitmap(page, pfn);
555 bitidx = pfn_to_bitidx(page, pfn);
556 word_bitidx = bitidx / BITS_PER_LONG;
557 bitidx &= (BITS_PER_LONG-1);
558
559 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
560
d93d5ab9
WY
561 mask <<= bitidx;
562 flags <<= bitidx;
0b423ca2
MG
563
564 word = READ_ONCE(bitmap[word_bitidx]);
565 for (;;) {
566 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
567 if (word == old_word)
568 break;
569 word = old_word;
570 }
571}
3a80a7fa 572
ee6f509c 573void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 574{
5d0f3f72
KM
575 if (unlikely(page_group_by_mobility_disabled &&
576 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
577 migratetype = MIGRATE_UNMOVABLE;
578
d93d5ab9 579 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 580 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
581}
582
13e7444b 583#ifdef CONFIG_DEBUG_VM
c6a57e19 584static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 585{
bdc8cb98
DH
586 int ret = 0;
587 unsigned seq;
588 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 589 unsigned long sp, start_pfn;
c6a57e19 590
bdc8cb98
DH
591 do {
592 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
593 start_pfn = zone->zone_start_pfn;
594 sp = zone->spanned_pages;
108bcc96 595 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
596 ret = 1;
597 } while (zone_span_seqretry(zone, seq));
598
b5e6a5a2 599 if (ret)
613813e8
DH
600 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
601 pfn, zone_to_nid(zone), zone->name,
602 start_pfn, start_pfn + sp);
b5e6a5a2 603
bdc8cb98 604 return ret;
c6a57e19
DH
605}
606
607static int page_is_consistent(struct zone *zone, struct page *page)
608{
14e07298 609 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 610 return 0;
1da177e4 611 if (zone != page_zone(page))
c6a57e19
DH
612 return 0;
613
614 return 1;
615}
616/*
617 * Temporary debugging check for pages not lying within a given zone.
618 */
d73d3c9f 619static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
620{
621 if (page_outside_zone_boundaries(zone, page))
1da177e4 622 return 1;
c6a57e19
DH
623 if (!page_is_consistent(zone, page))
624 return 1;
625
1da177e4
LT
626 return 0;
627}
13e7444b 628#else
d73d3c9f 629static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
630{
631 return 0;
632}
633#endif
634
82a3241a 635static void bad_page(struct page *page, const char *reason)
1da177e4 636{
d936cf9b
HD
637 static unsigned long resume;
638 static unsigned long nr_shown;
639 static unsigned long nr_unshown;
640
641 /*
642 * Allow a burst of 60 reports, then keep quiet for that minute;
643 * or allow a steady drip of one report per second.
644 */
645 if (nr_shown == 60) {
646 if (time_before(jiffies, resume)) {
647 nr_unshown++;
648 goto out;
649 }
650 if (nr_unshown) {
ff8e8116 651 pr_alert(
1e9e6365 652 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
653 nr_unshown);
654 nr_unshown = 0;
655 }
656 nr_shown = 0;
657 }
658 if (nr_shown++ == 0)
659 resume = jiffies + 60 * HZ;
660
ff8e8116 661 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 662 current->comm, page_to_pfn(page));
ff8e8116 663 __dump_page(page, reason);
4e462112 664 dump_page_owner(page);
3dc14741 665
4f31888c 666 print_modules();
1da177e4 667 dump_stack();
d936cf9b 668out:
8cc3b392 669 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 670 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
672}
673
1da177e4
LT
674/*
675 * Higher-order pages are called "compound pages". They are structured thusly:
676 *
1d798ca3 677 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 678 *
1d798ca3
KS
679 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
680 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 681 *
1d798ca3
KS
682 * The first tail page's ->compound_dtor holds the offset in array of compound
683 * page destructors. See compound_page_dtors.
1da177e4 684 *
1d798ca3 685 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 686 * This usage means that zero-order pages may not be compound.
1da177e4 687 */
d98c7a09 688
9a982250 689void free_compound_page(struct page *page)
d98c7a09 690{
7ae88534 691 mem_cgroup_uncharge(page);
7fef431b 692 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
693}
694
d00181b9 695void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
696{
697 int i;
698 int nr_pages = 1 << order;
699
18229df5
AW
700 __SetPageHead(page);
701 for (i = 1; i < nr_pages; i++) {
702 struct page *p = page + i;
58a84aa9 703 set_page_count(p, 0);
1c290f64 704 p->mapping = TAIL_MAPPING;
1d798ca3 705 set_compound_head(p, page);
18229df5 706 }
1378a5ee
MWO
707
708 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
709 set_compound_order(page, order);
53f9263b 710 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
711 if (hpage_pincount_available(page))
712 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
713}
714
c0a32fc5
SG
715#ifdef CONFIG_DEBUG_PAGEALLOC
716unsigned int _debug_guardpage_minorder;
96a2b03f 717
8e57f8ac
VB
718bool _debug_pagealloc_enabled_early __read_mostly
719 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
720EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 721DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 722EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
723
724DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 725
031bc574
JK
726static int __init early_debug_pagealloc(char *buf)
727{
8e57f8ac 728 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
729}
730early_param("debug_pagealloc", early_debug_pagealloc);
731
c0a32fc5
SG
732static int __init debug_guardpage_minorder_setup(char *buf)
733{
734 unsigned long res;
735
736 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 737 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
738 return 0;
739 }
740 _debug_guardpage_minorder = res;
1170532b 741 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
742 return 0;
743}
f1c1e9f7 744early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 745
acbc15a4 746static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 747 unsigned int order, int migratetype)
c0a32fc5 748{
e30825f1 749 if (!debug_guardpage_enabled())
acbc15a4
JK
750 return false;
751
752 if (order >= debug_guardpage_minorder())
753 return false;
e30825f1 754
3972f6bb 755 __SetPageGuard(page);
2847cf95
JK
756 INIT_LIST_HEAD(&page->lru);
757 set_page_private(page, order);
758 /* Guard pages are not available for any usage */
759 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
760
761 return true;
c0a32fc5
SG
762}
763
2847cf95
JK
764static inline void clear_page_guard(struct zone *zone, struct page *page,
765 unsigned int order, int migratetype)
c0a32fc5 766{
e30825f1
JK
767 if (!debug_guardpage_enabled())
768 return;
769
3972f6bb 770 __ClearPageGuard(page);
e30825f1 771
2847cf95
JK
772 set_page_private(page, 0);
773 if (!is_migrate_isolate(migratetype))
774 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
775}
776#else
acbc15a4
JK
777static inline bool set_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) { return false; }
2847cf95
JK
779static inline void clear_page_guard(struct zone *zone, struct page *page,
780 unsigned int order, int migratetype) {}
c0a32fc5
SG
781#endif
782
04013513
VB
783/*
784 * Enable static keys related to various memory debugging and hardening options.
785 * Some override others, and depend on early params that are evaluated in the
786 * order of appearance. So we need to first gather the full picture of what was
787 * enabled, and then make decisions.
788 */
789void init_mem_debugging_and_hardening(void)
790{
791 if (_init_on_alloc_enabled_early) {
792 if (page_poisoning_enabled())
793 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
794 "will take precedence over init_on_alloc\n");
795 else
796 static_branch_enable(&init_on_alloc);
797 }
798 if (_init_on_free_enabled_early) {
799 if (page_poisoning_enabled())
800 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
801 "will take precedence over init_on_free\n");
802 else
803 static_branch_enable(&init_on_free);
804 }
805
8db26a3d
VB
806#ifdef CONFIG_PAGE_POISONING
807 /*
808 * Page poisoning is debug page alloc for some arches. If
809 * either of those options are enabled, enable poisoning.
810 */
811 if (page_poisoning_enabled() ||
812 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
813 debug_pagealloc_enabled()))
814 static_branch_enable(&_page_poisoning_enabled);
815#endif
816
04013513
VB
817#ifdef CONFIG_DEBUG_PAGEALLOC
818 if (!debug_pagealloc_enabled())
819 return;
820
821 static_branch_enable(&_debug_pagealloc_enabled);
822
823 if (!debug_guardpage_minorder())
824 return;
825
826 static_branch_enable(&_debug_guardpage_enabled);
827#endif
828}
829
ab130f91 830static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 831{
4c21e2f2 832 set_page_private(page, order);
676165a8 833 __SetPageBuddy(page);
1da177e4
LT
834}
835
1da177e4
LT
836/*
837 * This function checks whether a page is free && is the buddy
6e292b9b 838 * we can coalesce a page and its buddy if
13ad59df 839 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 840 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
841 * (c) a page and its buddy have the same order &&
842 * (d) a page and its buddy are in the same zone.
676165a8 843 *
6e292b9b
MW
844 * For recording whether a page is in the buddy system, we set PageBuddy.
845 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 846 *
676165a8 847 * For recording page's order, we use page_private(page).
1da177e4 848 */
fe925c0c 849static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 850 unsigned int order)
1da177e4 851{
fe925c0c 852 if (!page_is_guard(buddy) && !PageBuddy(buddy))
853 return false;
4c5018ce 854
ab130f91 855 if (buddy_order(buddy) != order)
fe925c0c 856 return false;
c0a32fc5 857
fe925c0c 858 /*
859 * zone check is done late to avoid uselessly calculating
860 * zone/node ids for pages that could never merge.
861 */
862 if (page_zone_id(page) != page_zone_id(buddy))
863 return false;
d34c5fa0 864
fe925c0c 865 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 866
fe925c0c 867 return true;
1da177e4
LT
868}
869
5e1f0f09
MG
870#ifdef CONFIG_COMPACTION
871static inline struct capture_control *task_capc(struct zone *zone)
872{
873 struct capture_control *capc = current->capture_control;
874
deba0487 875 return unlikely(capc) &&
5e1f0f09
MG
876 !(current->flags & PF_KTHREAD) &&
877 !capc->page &&
deba0487 878 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
879}
880
881static inline bool
882compaction_capture(struct capture_control *capc, struct page *page,
883 int order, int migratetype)
884{
885 if (!capc || order != capc->cc->order)
886 return false;
887
888 /* Do not accidentally pollute CMA or isolated regions*/
889 if (is_migrate_cma(migratetype) ||
890 is_migrate_isolate(migratetype))
891 return false;
892
893 /*
894 * Do not let lower order allocations polluate a movable pageblock.
895 * This might let an unmovable request use a reclaimable pageblock
896 * and vice-versa but no more than normal fallback logic which can
897 * have trouble finding a high-order free page.
898 */
899 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
900 return false;
901
902 capc->page = page;
903 return true;
904}
905
906#else
907static inline struct capture_control *task_capc(struct zone *zone)
908{
909 return NULL;
910}
911
912static inline bool
913compaction_capture(struct capture_control *capc, struct page *page,
914 int order, int migratetype)
915{
916 return false;
917}
918#endif /* CONFIG_COMPACTION */
919
6ab01363
AD
920/* Used for pages not on another list */
921static inline void add_to_free_list(struct page *page, struct zone *zone,
922 unsigned int order, int migratetype)
923{
924 struct free_area *area = &zone->free_area[order];
925
926 list_add(&page->lru, &area->free_list[migratetype]);
927 area->nr_free++;
928}
929
930/* Used for pages not on another list */
931static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
932 unsigned int order, int migratetype)
933{
934 struct free_area *area = &zone->free_area[order];
935
936 list_add_tail(&page->lru, &area->free_list[migratetype]);
937 area->nr_free++;
938}
939
293ffa5e
DH
940/*
941 * Used for pages which are on another list. Move the pages to the tail
942 * of the list - so the moved pages won't immediately be considered for
943 * allocation again (e.g., optimization for memory onlining).
944 */
6ab01363
AD
945static inline void move_to_free_list(struct page *page, struct zone *zone,
946 unsigned int order, int migratetype)
947{
948 struct free_area *area = &zone->free_area[order];
949
293ffa5e 950 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
951}
952
953static inline void del_page_from_free_list(struct page *page, struct zone *zone,
954 unsigned int order)
955{
36e66c55
AD
956 /* clear reported state and update reported page count */
957 if (page_reported(page))
958 __ClearPageReported(page);
959
6ab01363
AD
960 list_del(&page->lru);
961 __ClearPageBuddy(page);
962 set_page_private(page, 0);
963 zone->free_area[order].nr_free--;
964}
965
a2129f24
AD
966/*
967 * If this is not the largest possible page, check if the buddy
968 * of the next-highest order is free. If it is, it's possible
969 * that pages are being freed that will coalesce soon. In case,
970 * that is happening, add the free page to the tail of the list
971 * so it's less likely to be used soon and more likely to be merged
972 * as a higher order page
973 */
974static inline bool
975buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
976 struct page *page, unsigned int order)
977{
978 struct page *higher_page, *higher_buddy;
979 unsigned long combined_pfn;
980
981 if (order >= MAX_ORDER - 2)
982 return false;
983
984 if (!pfn_valid_within(buddy_pfn))
985 return false;
986
987 combined_pfn = buddy_pfn & pfn;
988 higher_page = page + (combined_pfn - pfn);
989 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
990 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
991
992 return pfn_valid_within(buddy_pfn) &&
993 page_is_buddy(higher_page, higher_buddy, order + 1);
994}
995
1da177e4
LT
996/*
997 * Freeing function for a buddy system allocator.
998 *
999 * The concept of a buddy system is to maintain direct-mapped table
1000 * (containing bit values) for memory blocks of various "orders".
1001 * The bottom level table contains the map for the smallest allocatable
1002 * units of memory (here, pages), and each level above it describes
1003 * pairs of units from the levels below, hence, "buddies".
1004 * At a high level, all that happens here is marking the table entry
1005 * at the bottom level available, and propagating the changes upward
1006 * as necessary, plus some accounting needed to play nicely with other
1007 * parts of the VM system.
1008 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1009 * free pages of length of (1 << order) and marked with PageBuddy.
1010 * Page's order is recorded in page_private(page) field.
1da177e4 1011 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1012 * other. That is, if we allocate a small block, and both were
1013 * free, the remainder of the region must be split into blocks.
1da177e4 1014 * If a block is freed, and its buddy is also free, then this
5f63b720 1015 * triggers coalescing into a block of larger size.
1da177e4 1016 *
6d49e352 1017 * -- nyc
1da177e4
LT
1018 */
1019
48db57f8 1020static inline void __free_one_page(struct page *page,
dc4b0caf 1021 unsigned long pfn,
ed0ae21d 1022 struct zone *zone, unsigned int order,
f04a5d5d 1023 int migratetype, fpi_t fpi_flags)
1da177e4 1024{
a2129f24 1025 struct capture_control *capc = task_capc(zone);
3f649ab7 1026 unsigned long buddy_pfn;
a2129f24 1027 unsigned long combined_pfn;
d9dddbf5 1028 unsigned int max_order;
a2129f24
AD
1029 struct page *buddy;
1030 bool to_tail;
d9dddbf5 1031
7ad69832 1032 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1033
d29bb978 1034 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1035 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1036
ed0ae21d 1037 VM_BUG_ON(migratetype == -1);
d9dddbf5 1038 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1039 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1040
76741e77 1041 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1042 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1043
d9dddbf5 1044continue_merging:
7ad69832 1045 while (order < max_order) {
5e1f0f09
MG
1046 if (compaction_capture(capc, page, order, migratetype)) {
1047 __mod_zone_freepage_state(zone, -(1 << order),
1048 migratetype);
1049 return;
1050 }
76741e77
VB
1051 buddy_pfn = __find_buddy_pfn(pfn, order);
1052 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1053
1054 if (!pfn_valid_within(buddy_pfn))
1055 goto done_merging;
cb2b95e1 1056 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1057 goto done_merging;
c0a32fc5
SG
1058 /*
1059 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1060 * merge with it and move up one order.
1061 */
b03641af 1062 if (page_is_guard(buddy))
2847cf95 1063 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1064 else
6ab01363 1065 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1066 combined_pfn = buddy_pfn & pfn;
1067 page = page + (combined_pfn - pfn);
1068 pfn = combined_pfn;
1da177e4
LT
1069 order++;
1070 }
7ad69832 1071 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1072 /* If we are here, it means order is >= pageblock_order.
1073 * We want to prevent merge between freepages on isolate
1074 * pageblock and normal pageblock. Without this, pageblock
1075 * isolation could cause incorrect freepage or CMA accounting.
1076 *
1077 * We don't want to hit this code for the more frequent
1078 * low-order merging.
1079 */
1080 if (unlikely(has_isolate_pageblock(zone))) {
1081 int buddy_mt;
1082
76741e77
VB
1083 buddy_pfn = __find_buddy_pfn(pfn, order);
1084 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1085 buddy_mt = get_pageblock_migratetype(buddy);
1086
1087 if (migratetype != buddy_mt
1088 && (is_migrate_isolate(migratetype) ||
1089 is_migrate_isolate(buddy_mt)))
1090 goto done_merging;
1091 }
7ad69832 1092 max_order = order + 1;
d9dddbf5
VB
1093 goto continue_merging;
1094 }
1095
1096done_merging:
ab130f91 1097 set_buddy_order(page, order);
6dda9d55 1098
47b6a24a
DH
1099 if (fpi_flags & FPI_TO_TAIL)
1100 to_tail = true;
1101 else if (is_shuffle_order(order))
a2129f24 1102 to_tail = shuffle_pick_tail();
97500a4a 1103 else
a2129f24 1104 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1105
a2129f24 1106 if (to_tail)
6ab01363 1107 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1108 else
6ab01363 1109 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1110
1111 /* Notify page reporting subsystem of freed page */
f04a5d5d 1112 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1113 page_reporting_notify_free(order);
1da177e4
LT
1114}
1115
7bfec6f4
MG
1116/*
1117 * A bad page could be due to a number of fields. Instead of multiple branches,
1118 * try and check multiple fields with one check. The caller must do a detailed
1119 * check if necessary.
1120 */
1121static inline bool page_expected_state(struct page *page,
1122 unsigned long check_flags)
1123{
1124 if (unlikely(atomic_read(&page->_mapcount) != -1))
1125 return false;
1126
1127 if (unlikely((unsigned long)page->mapping |
1128 page_ref_count(page) |
1129#ifdef CONFIG_MEMCG
48060834 1130 page->memcg_data |
7bfec6f4
MG
1131#endif
1132 (page->flags & check_flags)))
1133 return false;
1134
1135 return true;
1136}
1137
58b7f119 1138static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1139{
82a3241a 1140 const char *bad_reason = NULL;
f0b791a3 1141
53f9263b 1142 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1143 bad_reason = "nonzero mapcount";
1144 if (unlikely(page->mapping != NULL))
1145 bad_reason = "non-NULL mapping";
fe896d18 1146 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1147 bad_reason = "nonzero _refcount";
58b7f119
WY
1148 if (unlikely(page->flags & flags)) {
1149 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1150 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1151 else
1152 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1153 }
9edad6ea 1154#ifdef CONFIG_MEMCG
48060834 1155 if (unlikely(page->memcg_data))
9edad6ea
JW
1156 bad_reason = "page still charged to cgroup";
1157#endif
58b7f119
WY
1158 return bad_reason;
1159}
1160
1161static void check_free_page_bad(struct page *page)
1162{
1163 bad_page(page,
1164 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1165}
1166
534fe5e3 1167static inline int check_free_page(struct page *page)
bb552ac6 1168{
da838d4f 1169 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1170 return 0;
bb552ac6
MG
1171
1172 /* Something has gone sideways, find it */
0d0c48a2 1173 check_free_page_bad(page);
7bfec6f4 1174 return 1;
1da177e4
LT
1175}
1176
4db7548c
MG
1177static int free_tail_pages_check(struct page *head_page, struct page *page)
1178{
1179 int ret = 1;
1180
1181 /*
1182 * We rely page->lru.next never has bit 0 set, unless the page
1183 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1184 */
1185 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1186
1187 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1188 ret = 0;
1189 goto out;
1190 }
1191 switch (page - head_page) {
1192 case 1:
4da1984e 1193 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1194 if (unlikely(compound_mapcount(page))) {
82a3241a 1195 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1196 goto out;
1197 }
1198 break;
1199 case 2:
1200 /*
1201 * the second tail page: ->mapping is
fa3015b7 1202 * deferred_list.next -- ignore value.
4db7548c
MG
1203 */
1204 break;
1205 default:
1206 if (page->mapping != TAIL_MAPPING) {
82a3241a 1207 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1208 goto out;
1209 }
1210 break;
1211 }
1212 if (unlikely(!PageTail(page))) {
82a3241a 1213 bad_page(page, "PageTail not set");
4db7548c
MG
1214 goto out;
1215 }
1216 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1217 bad_page(page, "compound_head not consistent");
4db7548c
MG
1218 goto out;
1219 }
1220 ret = 0;
1221out:
1222 page->mapping = NULL;
1223 clear_compound_head(page);
1224 return ret;
1225}
1226
6471384a
AP
1227static void kernel_init_free_pages(struct page *page, int numpages)
1228{
1229 int i;
1230
9e15afa5
QC
1231 /* s390's use of memset() could override KASAN redzones. */
1232 kasan_disable_current();
aa1ef4d7 1233 for (i = 0; i < numpages; i++) {
acb35b17 1234 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1235 page_kasan_tag_reset(page + i);
6471384a 1236 clear_highpage(page + i);
acb35b17 1237 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1238 }
9e15afa5 1239 kasan_enable_current();
6471384a
AP
1240}
1241
e2769dbd 1242static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1243 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1244{
e2769dbd 1245 int bad = 0;
1bb5eab3 1246 bool init;
4db7548c 1247
4db7548c
MG
1248 VM_BUG_ON_PAGE(PageTail(page), page);
1249
e2769dbd 1250 trace_mm_page_free(page, order);
e2769dbd 1251
79f5f8fa
OS
1252 if (unlikely(PageHWPoison(page)) && !order) {
1253 /*
1254 * Do not let hwpoison pages hit pcplists/buddy
1255 * Untie memcg state and reset page's owner
1256 */
18b2db3b 1257 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1258 __memcg_kmem_uncharge_page(page, order);
1259 reset_page_owner(page, order);
1260 return false;
1261 }
1262
e2769dbd
MG
1263 /*
1264 * Check tail pages before head page information is cleared to
1265 * avoid checking PageCompound for order-0 pages.
1266 */
1267 if (unlikely(order)) {
1268 bool compound = PageCompound(page);
1269 int i;
1270
1271 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1272
9a73f61b
KS
1273 if (compound)
1274 ClearPageDoubleMap(page);
e2769dbd
MG
1275 for (i = 1; i < (1 << order); i++) {
1276 if (compound)
1277 bad += free_tail_pages_check(page, page + i);
534fe5e3 1278 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1279 bad++;
1280 continue;
1281 }
1282 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1283 }
1284 }
bda807d4 1285 if (PageMappingFlags(page))
4db7548c 1286 page->mapping = NULL;
18b2db3b 1287 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1288 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1289 if (check_free)
534fe5e3 1290 bad += check_free_page(page);
e2769dbd
MG
1291 if (bad)
1292 return false;
4db7548c 1293
e2769dbd
MG
1294 page_cpupid_reset_last(page);
1295 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1296 reset_page_owner(page, order);
4db7548c
MG
1297
1298 if (!PageHighMem(page)) {
1299 debug_check_no_locks_freed(page_address(page),
e2769dbd 1300 PAGE_SIZE << order);
4db7548c 1301 debug_check_no_obj_freed(page_address(page),
e2769dbd 1302 PAGE_SIZE << order);
4db7548c 1303 }
6471384a 1304
8db26a3d
VB
1305 kernel_poison_pages(page, 1 << order);
1306
f9d79e8d 1307 /*
1bb5eab3
AK
1308 * As memory initialization might be integrated into KASAN,
1309 * kasan_free_pages and kernel_init_free_pages must be
1310 * kept together to avoid discrepancies in behavior.
1311 *
f9d79e8d
AK
1312 * With hardware tag-based KASAN, memory tags must be set before the
1313 * page becomes unavailable via debug_pagealloc or arch_free_page.
1314 */
1bb5eab3
AK
1315 init = want_init_on_free();
1316 if (init && !kasan_has_integrated_init())
1317 kernel_init_free_pages(page, 1 << order);
1318 kasan_free_nondeferred_pages(page, order, init, fpi_flags);
f9d79e8d 1319
234fdce8
QC
1320 /*
1321 * arch_free_page() can make the page's contents inaccessible. s390
1322 * does this. So nothing which can access the page's contents should
1323 * happen after this.
1324 */
1325 arch_free_page(page, order);
1326
77bc7fd6 1327 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1328
4db7548c
MG
1329 return true;
1330}
1331
e2769dbd 1332#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1333/*
1334 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1335 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1336 * moved from pcp lists to free lists.
1337 */
1338static bool free_pcp_prepare(struct page *page)
e2769dbd 1339{
2c335680 1340 return free_pages_prepare(page, 0, true, FPI_NONE);
e2769dbd
MG
1341}
1342
4462b32c 1343static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1344{
8e57f8ac 1345 if (debug_pagealloc_enabled_static())
534fe5e3 1346 return check_free_page(page);
4462b32c
VB
1347 else
1348 return false;
e2769dbd
MG
1349}
1350#else
4462b32c
VB
1351/*
1352 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1353 * moving from pcp lists to free list in order to reduce overhead. With
1354 * debug_pagealloc enabled, they are checked also immediately when being freed
1355 * to the pcp lists.
1356 */
e2769dbd
MG
1357static bool free_pcp_prepare(struct page *page)
1358{
8e57f8ac 1359 if (debug_pagealloc_enabled_static())
2c335680 1360 return free_pages_prepare(page, 0, true, FPI_NONE);
4462b32c 1361 else
2c335680 1362 return free_pages_prepare(page, 0, false, FPI_NONE);
e2769dbd
MG
1363}
1364
4db7548c
MG
1365static bool bulkfree_pcp_prepare(struct page *page)
1366{
534fe5e3 1367 return check_free_page(page);
4db7548c
MG
1368}
1369#endif /* CONFIG_DEBUG_VM */
1370
97334162
AL
1371static inline void prefetch_buddy(struct page *page)
1372{
1373 unsigned long pfn = page_to_pfn(page);
1374 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1375 struct page *buddy = page + (buddy_pfn - pfn);
1376
1377 prefetch(buddy);
1378}
1379
1da177e4 1380/*
5f8dcc21 1381 * Frees a number of pages from the PCP lists
1da177e4 1382 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1383 * count is the number of pages to free.
1da177e4
LT
1384 *
1385 * If the zone was previously in an "all pages pinned" state then look to
1386 * see if this freeing clears that state.
1387 *
1388 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1389 * pinned" detection logic.
1390 */
5f8dcc21
MG
1391static void free_pcppages_bulk(struct zone *zone, int count,
1392 struct per_cpu_pages *pcp)
1da177e4 1393{
5f8dcc21 1394 int migratetype = 0;
a6f9edd6 1395 int batch_free = 0;
5c3ad2eb 1396 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1397 bool isolated_pageblocks;
0a5f4e5b
AL
1398 struct page *page, *tmp;
1399 LIST_HEAD(head);
f2260e6b 1400
88e8ac11
CTR
1401 /*
1402 * Ensure proper count is passed which otherwise would stuck in the
1403 * below while (list_empty(list)) loop.
1404 */
1405 count = min(pcp->count, count);
e5b31ac2 1406 while (count) {
5f8dcc21
MG
1407 struct list_head *list;
1408
1409 /*
a6f9edd6
MG
1410 * Remove pages from lists in a round-robin fashion. A
1411 * batch_free count is maintained that is incremented when an
1412 * empty list is encountered. This is so more pages are freed
1413 * off fuller lists instead of spinning excessively around empty
1414 * lists
5f8dcc21
MG
1415 */
1416 do {
a6f9edd6 1417 batch_free++;
5f8dcc21
MG
1418 if (++migratetype == MIGRATE_PCPTYPES)
1419 migratetype = 0;
1420 list = &pcp->lists[migratetype];
1421 } while (list_empty(list));
48db57f8 1422
1d16871d
NK
1423 /* This is the only non-empty list. Free them all. */
1424 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1425 batch_free = count;
1d16871d 1426
a6f9edd6 1427 do {
a16601c5 1428 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1429 /* must delete to avoid corrupting pcp list */
a6f9edd6 1430 list_del(&page->lru);
77ba9062 1431 pcp->count--;
aa016d14 1432
4db7548c
MG
1433 if (bulkfree_pcp_prepare(page))
1434 continue;
1435
0a5f4e5b 1436 list_add_tail(&page->lru, &head);
97334162
AL
1437
1438 /*
1439 * We are going to put the page back to the global
1440 * pool, prefetch its buddy to speed up later access
1441 * under zone->lock. It is believed the overhead of
1442 * an additional test and calculating buddy_pfn here
1443 * can be offset by reduced memory latency later. To
1444 * avoid excessive prefetching due to large count, only
1445 * prefetch buddy for the first pcp->batch nr of pages.
1446 */
5c3ad2eb 1447 if (prefetch_nr) {
97334162 1448 prefetch_buddy(page);
5c3ad2eb
VB
1449 prefetch_nr--;
1450 }
e5b31ac2 1451 } while (--count && --batch_free && !list_empty(list));
1da177e4 1452 }
0a5f4e5b
AL
1453
1454 spin_lock(&zone->lock);
1455 isolated_pageblocks = has_isolate_pageblock(zone);
1456
1457 /*
1458 * Use safe version since after __free_one_page(),
1459 * page->lru.next will not point to original list.
1460 */
1461 list_for_each_entry_safe(page, tmp, &head, lru) {
1462 int mt = get_pcppage_migratetype(page);
1463 /* MIGRATE_ISOLATE page should not go to pcplists */
1464 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1465 /* Pageblock could have been isolated meanwhile */
1466 if (unlikely(isolated_pageblocks))
1467 mt = get_pageblock_migratetype(page);
1468
f04a5d5d 1469 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1470 trace_mm_page_pcpu_drain(page, 0, mt);
1471 }
d34b0733 1472 spin_unlock(&zone->lock);
1da177e4
LT
1473}
1474
dc4b0caf
MG
1475static void free_one_page(struct zone *zone,
1476 struct page *page, unsigned long pfn,
7aeb09f9 1477 unsigned int order,
7fef431b 1478 int migratetype, fpi_t fpi_flags)
1da177e4 1479{
d34b0733 1480 spin_lock(&zone->lock);
ad53f92e
JK
1481 if (unlikely(has_isolate_pageblock(zone) ||
1482 is_migrate_isolate(migratetype))) {
1483 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1484 }
7fef431b 1485 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1486 spin_unlock(&zone->lock);
48db57f8
NP
1487}
1488
1e8ce83c 1489static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1490 unsigned long zone, int nid)
1e8ce83c 1491{
d0dc12e8 1492 mm_zero_struct_page(page);
1e8ce83c 1493 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1494 init_page_count(page);
1495 page_mapcount_reset(page);
1496 page_cpupid_reset_last(page);
2813b9c0 1497 page_kasan_tag_reset(page);
1e8ce83c 1498
1e8ce83c
RH
1499 INIT_LIST_HEAD(&page->lru);
1500#ifdef WANT_PAGE_VIRTUAL
1501 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1502 if (!is_highmem_idx(zone))
1503 set_page_address(page, __va(pfn << PAGE_SHIFT));
1504#endif
1505}
1506
7e18adb4 1507#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1508static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1509{
1510 pg_data_t *pgdat;
1511 int nid, zid;
1512
1513 if (!early_page_uninitialised(pfn))
1514 return;
1515
1516 nid = early_pfn_to_nid(pfn);
1517 pgdat = NODE_DATA(nid);
1518
1519 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1520 struct zone *zone = &pgdat->node_zones[zid];
1521
1522 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1523 break;
1524 }
d0dc12e8 1525 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1526}
1527#else
1528static inline void init_reserved_page(unsigned long pfn)
1529{
1530}
1531#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1532
92923ca3
NZ
1533/*
1534 * Initialised pages do not have PageReserved set. This function is
1535 * called for each range allocated by the bootmem allocator and
1536 * marks the pages PageReserved. The remaining valid pages are later
1537 * sent to the buddy page allocator.
1538 */
4b50bcc7 1539void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1540{
1541 unsigned long start_pfn = PFN_DOWN(start);
1542 unsigned long end_pfn = PFN_UP(end);
1543
7e18adb4
MG
1544 for (; start_pfn < end_pfn; start_pfn++) {
1545 if (pfn_valid(start_pfn)) {
1546 struct page *page = pfn_to_page(start_pfn);
1547
1548 init_reserved_page(start_pfn);
1d798ca3
KS
1549
1550 /* Avoid false-positive PageTail() */
1551 INIT_LIST_HEAD(&page->lru);
1552
d483da5b
AD
1553 /*
1554 * no need for atomic set_bit because the struct
1555 * page is not visible yet so nobody should
1556 * access it yet.
1557 */
1558 __SetPageReserved(page);
7e18adb4
MG
1559 }
1560 }
92923ca3
NZ
1561}
1562
7fef431b
DH
1563static void __free_pages_ok(struct page *page, unsigned int order,
1564 fpi_t fpi_flags)
ec95f53a 1565{
d34b0733 1566 unsigned long flags;
95e34412 1567 int migratetype;
dc4b0caf 1568 unsigned long pfn = page_to_pfn(page);
ec95f53a 1569
2c335680 1570 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1571 return;
1572
cfc47a28 1573 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1574 local_irq_save(flags);
1575 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1576 free_one_page(page_zone(page), page, pfn, order, migratetype,
1577 fpi_flags);
d34b0733 1578 local_irq_restore(flags);
1da177e4
LT
1579}
1580
a9cd410a 1581void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1582{
c3993076 1583 unsigned int nr_pages = 1 << order;
e2d0bd2b 1584 struct page *p = page;
c3993076 1585 unsigned int loop;
a226f6c8 1586
7fef431b
DH
1587 /*
1588 * When initializing the memmap, __init_single_page() sets the refcount
1589 * of all pages to 1 ("allocated"/"not free"). We have to set the
1590 * refcount of all involved pages to 0.
1591 */
e2d0bd2b
YL
1592 prefetchw(p);
1593 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1594 prefetchw(p + 1);
c3993076
JW
1595 __ClearPageReserved(p);
1596 set_page_count(p, 0);
a226f6c8 1597 }
e2d0bd2b
YL
1598 __ClearPageReserved(p);
1599 set_page_count(p, 0);
c3993076 1600
9705bea5 1601 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1602
1603 /*
1604 * Bypass PCP and place fresh pages right to the tail, primarily
1605 * relevant for memory onlining.
1606 */
2c335680 1607 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1608}
1609
3f08a302 1610#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1611
03e92a5e
MR
1612/*
1613 * During memory init memblocks map pfns to nids. The search is expensive and
1614 * this caches recent lookups. The implementation of __early_pfn_to_nid
1615 * treats start/end as pfns.
1616 */
1617struct mminit_pfnnid_cache {
1618 unsigned long last_start;
1619 unsigned long last_end;
1620 int last_nid;
1621};
75a592a4 1622
03e92a5e 1623static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1624
1625/*
1626 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1627 */
03e92a5e 1628static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1629 struct mminit_pfnnid_cache *state)
75a592a4 1630{
6f24fbd3 1631 unsigned long start_pfn, end_pfn;
75a592a4
MG
1632 int nid;
1633
6f24fbd3
MR
1634 if (state->last_start <= pfn && pfn < state->last_end)
1635 return state->last_nid;
1636
1637 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1638 if (nid != NUMA_NO_NODE) {
1639 state->last_start = start_pfn;
1640 state->last_end = end_pfn;
1641 state->last_nid = nid;
1642 }
7ace9917
MG
1643
1644 return nid;
75a592a4 1645}
75a592a4 1646
75a592a4 1647int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1648{
7ace9917 1649 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1650 int nid;
1651
7ace9917 1652 spin_lock(&early_pfn_lock);
56ec43d8 1653 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1654 if (nid < 0)
e4568d38 1655 nid = first_online_node;
7ace9917 1656 spin_unlock(&early_pfn_lock);
75a592a4 1657
7ace9917 1658 return nid;
75a592a4 1659}
3f08a302 1660#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1661
7c2ee349 1662void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1663 unsigned int order)
1664{
1665 if (early_page_uninitialised(pfn))
1666 return;
a9cd410a 1667 __free_pages_core(page, order);
3a80a7fa
MG
1668}
1669
7cf91a98
JK
1670/*
1671 * Check that the whole (or subset of) a pageblock given by the interval of
1672 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1673 * with the migration of free compaction scanner. The scanners then need to
1674 * use only pfn_valid_within() check for arches that allow holes within
1675 * pageblocks.
1676 *
1677 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1678 *
1679 * It's possible on some configurations to have a setup like node0 node1 node0
1680 * i.e. it's possible that all pages within a zones range of pages do not
1681 * belong to a single zone. We assume that a border between node0 and node1
1682 * can occur within a single pageblock, but not a node0 node1 node0
1683 * interleaving within a single pageblock. It is therefore sufficient to check
1684 * the first and last page of a pageblock and avoid checking each individual
1685 * page in a pageblock.
1686 */
1687struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1688 unsigned long end_pfn, struct zone *zone)
1689{
1690 struct page *start_page;
1691 struct page *end_page;
1692
1693 /* end_pfn is one past the range we are checking */
1694 end_pfn--;
1695
1696 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1697 return NULL;
1698
2d070eab
MH
1699 start_page = pfn_to_online_page(start_pfn);
1700 if (!start_page)
1701 return NULL;
7cf91a98
JK
1702
1703 if (page_zone(start_page) != zone)
1704 return NULL;
1705
1706 end_page = pfn_to_page(end_pfn);
1707
1708 /* This gives a shorter code than deriving page_zone(end_page) */
1709 if (page_zone_id(start_page) != page_zone_id(end_page))
1710 return NULL;
1711
1712 return start_page;
1713}
1714
1715void set_zone_contiguous(struct zone *zone)
1716{
1717 unsigned long block_start_pfn = zone->zone_start_pfn;
1718 unsigned long block_end_pfn;
1719
1720 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1721 for (; block_start_pfn < zone_end_pfn(zone);
1722 block_start_pfn = block_end_pfn,
1723 block_end_pfn += pageblock_nr_pages) {
1724
1725 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1726
1727 if (!__pageblock_pfn_to_page(block_start_pfn,
1728 block_end_pfn, zone))
1729 return;
e84fe99b 1730 cond_resched();
7cf91a98
JK
1731 }
1732
1733 /* We confirm that there is no hole */
1734 zone->contiguous = true;
1735}
1736
1737void clear_zone_contiguous(struct zone *zone)
1738{
1739 zone->contiguous = false;
1740}
1741
7e18adb4 1742#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1743static void __init deferred_free_range(unsigned long pfn,
1744 unsigned long nr_pages)
a4de83dd 1745{
2f47a91f
PT
1746 struct page *page;
1747 unsigned long i;
a4de83dd 1748
2f47a91f 1749 if (!nr_pages)
a4de83dd
MG
1750 return;
1751
2f47a91f
PT
1752 page = pfn_to_page(pfn);
1753
a4de83dd 1754 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1755 if (nr_pages == pageblock_nr_pages &&
1756 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1757 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1758 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1759 return;
1760 }
1761
e780149b
XQ
1762 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1763 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1764 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1765 __free_pages_core(page, 0);
e780149b 1766 }
a4de83dd
MG
1767}
1768
d3cd131d
NS
1769/* Completion tracking for deferred_init_memmap() threads */
1770static atomic_t pgdat_init_n_undone __initdata;
1771static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1772
1773static inline void __init pgdat_init_report_one_done(void)
1774{
1775 if (atomic_dec_and_test(&pgdat_init_n_undone))
1776 complete(&pgdat_init_all_done_comp);
1777}
0e1cc95b 1778
2f47a91f 1779/*
80b1f41c
PT
1780 * Returns true if page needs to be initialized or freed to buddy allocator.
1781 *
1782 * First we check if pfn is valid on architectures where it is possible to have
1783 * holes within pageblock_nr_pages. On systems where it is not possible, this
1784 * function is optimized out.
1785 *
1786 * Then, we check if a current large page is valid by only checking the validity
1787 * of the head pfn.
2f47a91f 1788 */
56ec43d8 1789static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1790{
80b1f41c
PT
1791 if (!pfn_valid_within(pfn))
1792 return false;
1793 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1794 return false;
80b1f41c
PT
1795 return true;
1796}
2f47a91f 1797
80b1f41c
PT
1798/*
1799 * Free pages to buddy allocator. Try to free aligned pages in
1800 * pageblock_nr_pages sizes.
1801 */
56ec43d8 1802static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1803 unsigned long end_pfn)
1804{
80b1f41c
PT
1805 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1806 unsigned long nr_free = 0;
2f47a91f 1807
80b1f41c 1808 for (; pfn < end_pfn; pfn++) {
56ec43d8 1809 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1810 deferred_free_range(pfn - nr_free, nr_free);
1811 nr_free = 0;
1812 } else if (!(pfn & nr_pgmask)) {
1813 deferred_free_range(pfn - nr_free, nr_free);
1814 nr_free = 1;
80b1f41c
PT
1815 } else {
1816 nr_free++;
1817 }
1818 }
1819 /* Free the last block of pages to allocator */
1820 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1821}
1822
80b1f41c
PT
1823/*
1824 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1825 * by performing it only once every pageblock_nr_pages.
1826 * Return number of pages initialized.
1827 */
56ec43d8 1828static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1829 unsigned long pfn,
1830 unsigned long end_pfn)
2f47a91f 1831{
2f47a91f 1832 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1833 int nid = zone_to_nid(zone);
2f47a91f 1834 unsigned long nr_pages = 0;
56ec43d8 1835 int zid = zone_idx(zone);
2f47a91f 1836 struct page *page = NULL;
2f47a91f 1837
80b1f41c 1838 for (; pfn < end_pfn; pfn++) {
56ec43d8 1839 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1840 page = NULL;
2f47a91f 1841 continue;
80b1f41c 1842 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1843 page = pfn_to_page(pfn);
80b1f41c
PT
1844 } else {
1845 page++;
2f47a91f 1846 }
d0dc12e8 1847 __init_single_page(page, pfn, zid, nid);
80b1f41c 1848 nr_pages++;
2f47a91f 1849 }
80b1f41c 1850 return (nr_pages);
2f47a91f
PT
1851}
1852
0e56acae
AD
1853/*
1854 * This function is meant to pre-load the iterator for the zone init.
1855 * Specifically it walks through the ranges until we are caught up to the
1856 * first_init_pfn value and exits there. If we never encounter the value we
1857 * return false indicating there are no valid ranges left.
1858 */
1859static bool __init
1860deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1861 unsigned long *spfn, unsigned long *epfn,
1862 unsigned long first_init_pfn)
1863{
1864 u64 j;
1865
1866 /*
1867 * Start out by walking through the ranges in this zone that have
1868 * already been initialized. We don't need to do anything with them
1869 * so we just need to flush them out of the system.
1870 */
1871 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1872 if (*epfn <= first_init_pfn)
1873 continue;
1874 if (*spfn < first_init_pfn)
1875 *spfn = first_init_pfn;
1876 *i = j;
1877 return true;
1878 }
1879
1880 return false;
1881}
1882
1883/*
1884 * Initialize and free pages. We do it in two loops: first we initialize
1885 * struct page, then free to buddy allocator, because while we are
1886 * freeing pages we can access pages that are ahead (computing buddy
1887 * page in __free_one_page()).
1888 *
1889 * In order to try and keep some memory in the cache we have the loop
1890 * broken along max page order boundaries. This way we will not cause
1891 * any issues with the buddy page computation.
1892 */
1893static unsigned long __init
1894deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1895 unsigned long *end_pfn)
1896{
1897 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1898 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1899 unsigned long nr_pages = 0;
1900 u64 j = *i;
1901
1902 /* First we loop through and initialize the page values */
1903 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1904 unsigned long t;
1905
1906 if (mo_pfn <= *start_pfn)
1907 break;
1908
1909 t = min(mo_pfn, *end_pfn);
1910 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1911
1912 if (mo_pfn < *end_pfn) {
1913 *start_pfn = mo_pfn;
1914 break;
1915 }
1916 }
1917
1918 /* Reset values and now loop through freeing pages as needed */
1919 swap(j, *i);
1920
1921 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1922 unsigned long t;
1923
1924 if (mo_pfn <= spfn)
1925 break;
1926
1927 t = min(mo_pfn, epfn);
1928 deferred_free_pages(spfn, t);
1929
1930 if (mo_pfn <= epfn)
1931 break;
1932 }
1933
1934 return nr_pages;
1935}
1936
e4443149
DJ
1937static void __init
1938deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1939 void *arg)
1940{
1941 unsigned long spfn, epfn;
1942 struct zone *zone = arg;
1943 u64 i;
1944
1945 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1946
1947 /*
1948 * Initialize and free pages in MAX_ORDER sized increments so that we
1949 * can avoid introducing any issues with the buddy allocator.
1950 */
1951 while (spfn < end_pfn) {
1952 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1953 cond_resched();
1954 }
1955}
1956
ecd09650
DJ
1957/* An arch may override for more concurrency. */
1958__weak int __init
1959deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1960{
1961 return 1;
1962}
1963
7e18adb4 1964/* Initialise remaining memory on a node */
0e1cc95b 1965static int __init deferred_init_memmap(void *data)
7e18adb4 1966{
0e1cc95b 1967 pg_data_t *pgdat = data;
0e56acae 1968 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1969 unsigned long spfn = 0, epfn = 0;
0e56acae 1970 unsigned long first_init_pfn, flags;
7e18adb4 1971 unsigned long start = jiffies;
7e18adb4 1972 struct zone *zone;
e4443149 1973 int zid, max_threads;
2f47a91f 1974 u64 i;
7e18adb4 1975
3a2d7fa8
PT
1976 /* Bind memory initialisation thread to a local node if possible */
1977 if (!cpumask_empty(cpumask))
1978 set_cpus_allowed_ptr(current, cpumask);
1979
1980 pgdat_resize_lock(pgdat, &flags);
1981 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1982 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1983 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1984 pgdat_init_report_one_done();
0e1cc95b
MG
1985 return 0;
1986 }
1987
7e18adb4
MG
1988 /* Sanity check boundaries */
1989 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1990 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1991 pgdat->first_deferred_pfn = ULONG_MAX;
1992
3d060856
PT
1993 /*
1994 * Once we unlock here, the zone cannot be grown anymore, thus if an
1995 * interrupt thread must allocate this early in boot, zone must be
1996 * pre-grown prior to start of deferred page initialization.
1997 */
1998 pgdat_resize_unlock(pgdat, &flags);
1999
7e18adb4
MG
2000 /* Only the highest zone is deferred so find it */
2001 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2002 zone = pgdat->node_zones + zid;
2003 if (first_init_pfn < zone_end_pfn(zone))
2004 break;
2005 }
0e56acae
AD
2006
2007 /* If the zone is empty somebody else may have cleared out the zone */
2008 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2009 first_init_pfn))
2010 goto zone_empty;
7e18adb4 2011
ecd09650 2012 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2013
117003c3 2014 while (spfn < epfn) {
e4443149
DJ
2015 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2016 struct padata_mt_job job = {
2017 .thread_fn = deferred_init_memmap_chunk,
2018 .fn_arg = zone,
2019 .start = spfn,
2020 .size = epfn_align - spfn,
2021 .align = PAGES_PER_SECTION,
2022 .min_chunk = PAGES_PER_SECTION,
2023 .max_threads = max_threads,
2024 };
2025
2026 padata_do_multithreaded(&job);
2027 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2028 epfn_align);
117003c3 2029 }
0e56acae 2030zone_empty:
7e18adb4
MG
2031 /* Sanity check that the next zone really is unpopulated */
2032 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2033
89c7c402
DJ
2034 pr_info("node %d deferred pages initialised in %ums\n",
2035 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2036
2037 pgdat_init_report_one_done();
0e1cc95b
MG
2038 return 0;
2039}
c9e97a19 2040
c9e97a19
PT
2041/*
2042 * If this zone has deferred pages, try to grow it by initializing enough
2043 * deferred pages to satisfy the allocation specified by order, rounded up to
2044 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2045 * of SECTION_SIZE bytes by initializing struct pages in increments of
2046 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2047 *
2048 * Return true when zone was grown, otherwise return false. We return true even
2049 * when we grow less than requested, to let the caller decide if there are
2050 * enough pages to satisfy the allocation.
2051 *
2052 * Note: We use noinline because this function is needed only during boot, and
2053 * it is called from a __ref function _deferred_grow_zone. This way we are
2054 * making sure that it is not inlined into permanent text section.
2055 */
2056static noinline bool __init
2057deferred_grow_zone(struct zone *zone, unsigned int order)
2058{
c9e97a19 2059 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2060 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2061 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2062 unsigned long spfn, epfn, flags;
2063 unsigned long nr_pages = 0;
c9e97a19
PT
2064 u64 i;
2065
2066 /* Only the last zone may have deferred pages */
2067 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2068 return false;
2069
2070 pgdat_resize_lock(pgdat, &flags);
2071
c9e97a19
PT
2072 /*
2073 * If someone grew this zone while we were waiting for spinlock, return
2074 * true, as there might be enough pages already.
2075 */
2076 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2077 pgdat_resize_unlock(pgdat, &flags);
2078 return true;
2079 }
2080
0e56acae
AD
2081 /* If the zone is empty somebody else may have cleared out the zone */
2082 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2083 first_deferred_pfn)) {
2084 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2085 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2086 /* Retry only once. */
2087 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2088 }
2089
0e56acae
AD
2090 /*
2091 * Initialize and free pages in MAX_ORDER sized increments so
2092 * that we can avoid introducing any issues with the buddy
2093 * allocator.
2094 */
2095 while (spfn < epfn) {
2096 /* update our first deferred PFN for this section */
2097 first_deferred_pfn = spfn;
2098
2099 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2100 touch_nmi_watchdog();
c9e97a19 2101
0e56acae
AD
2102 /* We should only stop along section boundaries */
2103 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2104 continue;
c9e97a19 2105
0e56acae 2106 /* If our quota has been met we can stop here */
c9e97a19
PT
2107 if (nr_pages >= nr_pages_needed)
2108 break;
2109 }
2110
0e56acae 2111 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2112 pgdat_resize_unlock(pgdat, &flags);
2113
2114 return nr_pages > 0;
2115}
2116
2117/*
2118 * deferred_grow_zone() is __init, but it is called from
2119 * get_page_from_freelist() during early boot until deferred_pages permanently
2120 * disables this call. This is why we have refdata wrapper to avoid warning,
2121 * and to ensure that the function body gets unloaded.
2122 */
2123static bool __ref
2124_deferred_grow_zone(struct zone *zone, unsigned int order)
2125{
2126 return deferred_grow_zone(zone, order);
2127}
2128
7cf91a98 2129#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2130
2131void __init page_alloc_init_late(void)
2132{
7cf91a98 2133 struct zone *zone;
e900a918 2134 int nid;
7cf91a98
JK
2135
2136#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2137
d3cd131d
NS
2138 /* There will be num_node_state(N_MEMORY) threads */
2139 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2140 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2141 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2142 }
2143
2144 /* Block until all are initialised */
d3cd131d 2145 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2146
3e8fc007
MG
2147 /*
2148 * The number of managed pages has changed due to the initialisation
2149 * so the pcpu batch and high limits needs to be updated or the limits
2150 * will be artificially small.
2151 */
2152 for_each_populated_zone(zone)
2153 zone_pcp_update(zone);
2154
c9e97a19
PT
2155 /*
2156 * We initialized the rest of the deferred pages. Permanently disable
2157 * on-demand struct page initialization.
2158 */
2159 static_branch_disable(&deferred_pages);
2160
4248b0da
MG
2161 /* Reinit limits that are based on free pages after the kernel is up */
2162 files_maxfiles_init();
7cf91a98 2163#endif
350e88ba 2164
ba8f3587
LF
2165 buffer_init();
2166
3010f876
PT
2167 /* Discard memblock private memory */
2168 memblock_discard();
7cf91a98 2169
e900a918
DW
2170 for_each_node_state(nid, N_MEMORY)
2171 shuffle_free_memory(NODE_DATA(nid));
2172
7cf91a98
JK
2173 for_each_populated_zone(zone)
2174 set_zone_contiguous(zone);
7e18adb4 2175}
7e18adb4 2176
47118af0 2177#ifdef CONFIG_CMA
9cf510a5 2178/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2179void __init init_cma_reserved_pageblock(struct page *page)
2180{
2181 unsigned i = pageblock_nr_pages;
2182 struct page *p = page;
2183
2184 do {
2185 __ClearPageReserved(p);
2186 set_page_count(p, 0);
d883c6cf 2187 } while (++p, --i);
47118af0 2188
47118af0 2189 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2190
2191 if (pageblock_order >= MAX_ORDER) {
2192 i = pageblock_nr_pages;
2193 p = page;
2194 do {
2195 set_page_refcounted(p);
2196 __free_pages(p, MAX_ORDER - 1);
2197 p += MAX_ORDER_NR_PAGES;
2198 } while (i -= MAX_ORDER_NR_PAGES);
2199 } else {
2200 set_page_refcounted(page);
2201 __free_pages(page, pageblock_order);
2202 }
2203
3dcc0571 2204 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2205 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2206}
2207#endif
1da177e4
LT
2208
2209/*
2210 * The order of subdivision here is critical for the IO subsystem.
2211 * Please do not alter this order without good reasons and regression
2212 * testing. Specifically, as large blocks of memory are subdivided,
2213 * the order in which smaller blocks are delivered depends on the order
2214 * they're subdivided in this function. This is the primary factor
2215 * influencing the order in which pages are delivered to the IO
2216 * subsystem according to empirical testing, and this is also justified
2217 * by considering the behavior of a buddy system containing a single
2218 * large block of memory acted on by a series of small allocations.
2219 * This behavior is a critical factor in sglist merging's success.
2220 *
6d49e352 2221 * -- nyc
1da177e4 2222 */
085cc7d5 2223static inline void expand(struct zone *zone, struct page *page,
6ab01363 2224 int low, int high, int migratetype)
1da177e4
LT
2225{
2226 unsigned long size = 1 << high;
2227
2228 while (high > low) {
1da177e4
LT
2229 high--;
2230 size >>= 1;
309381fe 2231 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2232
acbc15a4
JK
2233 /*
2234 * Mark as guard pages (or page), that will allow to
2235 * merge back to allocator when buddy will be freed.
2236 * Corresponding page table entries will not be touched,
2237 * pages will stay not present in virtual address space
2238 */
2239 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2240 continue;
acbc15a4 2241
6ab01363 2242 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2243 set_buddy_order(&page[size], high);
1da177e4 2244 }
1da177e4
LT
2245}
2246
4e611801 2247static void check_new_page_bad(struct page *page)
1da177e4 2248{
f4c18e6f 2249 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2250 /* Don't complain about hwpoisoned pages */
2251 page_mapcount_reset(page); /* remove PageBuddy */
2252 return;
f4c18e6f 2253 }
58b7f119
WY
2254
2255 bad_page(page,
2256 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2257}
2258
2259/*
2260 * This page is about to be returned from the page allocator
2261 */
2262static inline int check_new_page(struct page *page)
2263{
2264 if (likely(page_expected_state(page,
2265 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2266 return 0;
2267
2268 check_new_page_bad(page);
2269 return 1;
2a7684a2
WF
2270}
2271
479f854a 2272#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2273/*
2274 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2275 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2276 * also checked when pcp lists are refilled from the free lists.
2277 */
2278static inline bool check_pcp_refill(struct page *page)
479f854a 2279{
8e57f8ac 2280 if (debug_pagealloc_enabled_static())
4462b32c
VB
2281 return check_new_page(page);
2282 else
2283 return false;
479f854a
MG
2284}
2285
4462b32c 2286static inline bool check_new_pcp(struct page *page)
479f854a
MG
2287{
2288 return check_new_page(page);
2289}
2290#else
4462b32c
VB
2291/*
2292 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2293 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2294 * enabled, they are also checked when being allocated from the pcp lists.
2295 */
2296static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2297{
2298 return check_new_page(page);
2299}
4462b32c 2300static inline bool check_new_pcp(struct page *page)
479f854a 2301{
8e57f8ac 2302 if (debug_pagealloc_enabled_static())
4462b32c
VB
2303 return check_new_page(page);
2304 else
2305 return false;
479f854a
MG
2306}
2307#endif /* CONFIG_DEBUG_VM */
2308
2309static bool check_new_pages(struct page *page, unsigned int order)
2310{
2311 int i;
2312 for (i = 0; i < (1 << order); i++) {
2313 struct page *p = page + i;
2314
2315 if (unlikely(check_new_page(p)))
2316 return true;
2317 }
2318
2319 return false;
2320}
2321
46f24fd8
JK
2322inline void post_alloc_hook(struct page *page, unsigned int order,
2323 gfp_t gfp_flags)
2324{
1bb5eab3
AK
2325 bool init;
2326
46f24fd8
JK
2327 set_page_private(page, 0);
2328 set_page_refcounted(page);
2329
2330 arch_alloc_page(page, order);
77bc7fd6 2331 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2332
2333 /*
2334 * Page unpoisoning must happen before memory initialization.
2335 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2336 * allocations and the page unpoisoning code will complain.
2337 */
8db26a3d 2338 kernel_unpoison_pages(page, 1 << order);
862b6dee 2339
1bb5eab3
AK
2340 /*
2341 * As memory initialization might be integrated into KASAN,
2342 * kasan_alloc_pages and kernel_init_free_pages must be
2343 * kept together to avoid discrepancies in behavior.
2344 */
2345 init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2346 kasan_alloc_pages(page, order, init);
2347 if (init && !kasan_has_integrated_init())
862b6dee 2348 kernel_init_free_pages(page, 1 << order);
1bb5eab3
AK
2349
2350 set_page_owner(page, order, gfp_flags);
46f24fd8
JK
2351}
2352
479f854a 2353static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2354 unsigned int alloc_flags)
2a7684a2 2355{
46f24fd8 2356 post_alloc_hook(page, order, gfp_flags);
17cf4406 2357
17cf4406
NP
2358 if (order && (gfp_flags & __GFP_COMP))
2359 prep_compound_page(page, order);
2360
75379191 2361 /*
2f064f34 2362 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2363 * allocate the page. The expectation is that the caller is taking
2364 * steps that will free more memory. The caller should avoid the page
2365 * being used for !PFMEMALLOC purposes.
2366 */
2f064f34
MH
2367 if (alloc_flags & ALLOC_NO_WATERMARKS)
2368 set_page_pfmemalloc(page);
2369 else
2370 clear_page_pfmemalloc(page);
1da177e4
LT
2371}
2372
56fd56b8
MG
2373/*
2374 * Go through the free lists for the given migratetype and remove
2375 * the smallest available page from the freelists
2376 */
85ccc8fa 2377static __always_inline
728ec980 2378struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2379 int migratetype)
2380{
2381 unsigned int current_order;
b8af2941 2382 struct free_area *area;
56fd56b8
MG
2383 struct page *page;
2384
2385 /* Find a page of the appropriate size in the preferred list */
2386 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2387 area = &(zone->free_area[current_order]);
b03641af 2388 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2389 if (!page)
2390 continue;
6ab01363
AD
2391 del_page_from_free_list(page, zone, current_order);
2392 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2393 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2394 return page;
2395 }
2396
2397 return NULL;
2398}
2399
2400
b2a0ac88
MG
2401/*
2402 * This array describes the order lists are fallen back to when
2403 * the free lists for the desirable migrate type are depleted
2404 */
da415663 2405static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2406 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2407 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2408 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2409#ifdef CONFIG_CMA
974a786e 2410 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2411#endif
194159fb 2412#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2413 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2414#endif
b2a0ac88
MG
2415};
2416
dc67647b 2417#ifdef CONFIG_CMA
85ccc8fa 2418static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2419 unsigned int order)
2420{
2421 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2422}
2423#else
2424static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2425 unsigned int order) { return NULL; }
2426#endif
2427
c361be55 2428/*
293ffa5e 2429 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2430 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2431 * boundary. If alignment is required, use move_freepages_block()
2432 */
02aa0cdd 2433static int move_freepages(struct zone *zone,
b69a7288 2434 struct page *start_page, struct page *end_page,
02aa0cdd 2435 int migratetype, int *num_movable)
c361be55
MG
2436{
2437 struct page *page;
d00181b9 2438 unsigned int order;
d100313f 2439 int pages_moved = 0;
c361be55 2440
c361be55
MG
2441 for (page = start_page; page <= end_page;) {
2442 if (!pfn_valid_within(page_to_pfn(page))) {
2443 page++;
2444 continue;
2445 }
2446
2447 if (!PageBuddy(page)) {
02aa0cdd
VB
2448 /*
2449 * We assume that pages that could be isolated for
2450 * migration are movable. But we don't actually try
2451 * isolating, as that would be expensive.
2452 */
2453 if (num_movable &&
2454 (PageLRU(page) || __PageMovable(page)))
2455 (*num_movable)++;
2456
c361be55
MG
2457 page++;
2458 continue;
2459 }
2460
cd961038
DR
2461 /* Make sure we are not inadvertently changing nodes */
2462 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2463 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2464
ab130f91 2465 order = buddy_order(page);
6ab01363 2466 move_to_free_list(page, zone, order, migratetype);
c361be55 2467 page += 1 << order;
d100313f 2468 pages_moved += 1 << order;
c361be55
MG
2469 }
2470
d100313f 2471 return pages_moved;
c361be55
MG
2472}
2473
ee6f509c 2474int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2475 int migratetype, int *num_movable)
c361be55
MG
2476{
2477 unsigned long start_pfn, end_pfn;
2478 struct page *start_page, *end_page;
2479
4a222127
DR
2480 if (num_movable)
2481 *num_movable = 0;
2482
c361be55 2483 start_pfn = page_to_pfn(page);
d9c23400 2484 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2485 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2486 end_page = start_page + pageblock_nr_pages - 1;
2487 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2488
2489 /* Do not cross zone boundaries */
108bcc96 2490 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2491 start_page = page;
108bcc96 2492 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2493 return 0;
2494
02aa0cdd
VB
2495 return move_freepages(zone, start_page, end_page, migratetype,
2496 num_movable);
c361be55
MG
2497}
2498
2f66a68f
MG
2499static void change_pageblock_range(struct page *pageblock_page,
2500 int start_order, int migratetype)
2501{
2502 int nr_pageblocks = 1 << (start_order - pageblock_order);
2503
2504 while (nr_pageblocks--) {
2505 set_pageblock_migratetype(pageblock_page, migratetype);
2506 pageblock_page += pageblock_nr_pages;
2507 }
2508}
2509
fef903ef 2510/*
9c0415eb
VB
2511 * When we are falling back to another migratetype during allocation, try to
2512 * steal extra free pages from the same pageblocks to satisfy further
2513 * allocations, instead of polluting multiple pageblocks.
2514 *
2515 * If we are stealing a relatively large buddy page, it is likely there will
2516 * be more free pages in the pageblock, so try to steal them all. For
2517 * reclaimable and unmovable allocations, we steal regardless of page size,
2518 * as fragmentation caused by those allocations polluting movable pageblocks
2519 * is worse than movable allocations stealing from unmovable and reclaimable
2520 * pageblocks.
fef903ef 2521 */
4eb7dce6
JK
2522static bool can_steal_fallback(unsigned int order, int start_mt)
2523{
2524 /*
2525 * Leaving this order check is intended, although there is
2526 * relaxed order check in next check. The reason is that
2527 * we can actually steal whole pageblock if this condition met,
2528 * but, below check doesn't guarantee it and that is just heuristic
2529 * so could be changed anytime.
2530 */
2531 if (order >= pageblock_order)
2532 return true;
2533
2534 if (order >= pageblock_order / 2 ||
2535 start_mt == MIGRATE_RECLAIMABLE ||
2536 start_mt == MIGRATE_UNMOVABLE ||
2537 page_group_by_mobility_disabled)
2538 return true;
2539
2540 return false;
2541}
2542
597c8920 2543static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2544{
2545 unsigned long max_boost;
2546
2547 if (!watermark_boost_factor)
597c8920 2548 return false;
14f69140
HW
2549 /*
2550 * Don't bother in zones that are unlikely to produce results.
2551 * On small machines, including kdump capture kernels running
2552 * in a small area, boosting the watermark can cause an out of
2553 * memory situation immediately.
2554 */
2555 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2556 return false;
1c30844d
MG
2557
2558 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2559 watermark_boost_factor, 10000);
94b3334c
MG
2560
2561 /*
2562 * high watermark may be uninitialised if fragmentation occurs
2563 * very early in boot so do not boost. We do not fall
2564 * through and boost by pageblock_nr_pages as failing
2565 * allocations that early means that reclaim is not going
2566 * to help and it may even be impossible to reclaim the
2567 * boosted watermark resulting in a hang.
2568 */
2569 if (!max_boost)
597c8920 2570 return false;
94b3334c 2571
1c30844d
MG
2572 max_boost = max(pageblock_nr_pages, max_boost);
2573
2574 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2575 max_boost);
597c8920
JW
2576
2577 return true;
1c30844d
MG
2578}
2579
4eb7dce6
JK
2580/*
2581 * This function implements actual steal behaviour. If order is large enough,
2582 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2583 * pageblock to our migratetype and determine how many already-allocated pages
2584 * are there in the pageblock with a compatible migratetype. If at least half
2585 * of pages are free or compatible, we can change migratetype of the pageblock
2586 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2587 */
2588static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2589 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2590{
ab130f91 2591 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2592 int free_pages, movable_pages, alike_pages;
2593 int old_block_type;
2594
2595 old_block_type = get_pageblock_migratetype(page);
fef903ef 2596
3bc48f96
VB
2597 /*
2598 * This can happen due to races and we want to prevent broken
2599 * highatomic accounting.
2600 */
02aa0cdd 2601 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2602 goto single_page;
2603
fef903ef
SB
2604 /* Take ownership for orders >= pageblock_order */
2605 if (current_order >= pageblock_order) {
2606 change_pageblock_range(page, current_order, start_type);
3bc48f96 2607 goto single_page;
fef903ef
SB
2608 }
2609
1c30844d
MG
2610 /*
2611 * Boost watermarks to increase reclaim pressure to reduce the
2612 * likelihood of future fallbacks. Wake kswapd now as the node
2613 * may be balanced overall and kswapd will not wake naturally.
2614 */
597c8920 2615 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2616 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2617
3bc48f96
VB
2618 /* We are not allowed to try stealing from the whole block */
2619 if (!whole_block)
2620 goto single_page;
2621
02aa0cdd
VB
2622 free_pages = move_freepages_block(zone, page, start_type,
2623 &movable_pages);
2624 /*
2625 * Determine how many pages are compatible with our allocation.
2626 * For movable allocation, it's the number of movable pages which
2627 * we just obtained. For other types it's a bit more tricky.
2628 */
2629 if (start_type == MIGRATE_MOVABLE) {
2630 alike_pages = movable_pages;
2631 } else {
2632 /*
2633 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2634 * to MOVABLE pageblock, consider all non-movable pages as
2635 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2636 * vice versa, be conservative since we can't distinguish the
2637 * exact migratetype of non-movable pages.
2638 */
2639 if (old_block_type == MIGRATE_MOVABLE)
2640 alike_pages = pageblock_nr_pages
2641 - (free_pages + movable_pages);
2642 else
2643 alike_pages = 0;
2644 }
2645
3bc48f96 2646 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2647 if (!free_pages)
3bc48f96 2648 goto single_page;
fef903ef 2649
02aa0cdd
VB
2650 /*
2651 * If a sufficient number of pages in the block are either free or of
2652 * comparable migratability as our allocation, claim the whole block.
2653 */
2654 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2655 page_group_by_mobility_disabled)
2656 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2657
2658 return;
2659
2660single_page:
6ab01363 2661 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2662}
2663
2149cdae
JK
2664/*
2665 * Check whether there is a suitable fallback freepage with requested order.
2666 * If only_stealable is true, this function returns fallback_mt only if
2667 * we can steal other freepages all together. This would help to reduce
2668 * fragmentation due to mixed migratetype pages in one pageblock.
2669 */
2670int find_suitable_fallback(struct free_area *area, unsigned int order,
2671 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2672{
2673 int i;
2674 int fallback_mt;
2675
2676 if (area->nr_free == 0)
2677 return -1;
2678
2679 *can_steal = false;
2680 for (i = 0;; i++) {
2681 fallback_mt = fallbacks[migratetype][i];
974a786e 2682 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2683 break;
2684
b03641af 2685 if (free_area_empty(area, fallback_mt))
4eb7dce6 2686 continue;
fef903ef 2687
4eb7dce6
JK
2688 if (can_steal_fallback(order, migratetype))
2689 *can_steal = true;
2690
2149cdae
JK
2691 if (!only_stealable)
2692 return fallback_mt;
2693
2694 if (*can_steal)
2695 return fallback_mt;
fef903ef 2696 }
4eb7dce6
JK
2697
2698 return -1;
fef903ef
SB
2699}
2700
0aaa29a5
MG
2701/*
2702 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2703 * there are no empty page blocks that contain a page with a suitable order
2704 */
2705static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2706 unsigned int alloc_order)
2707{
2708 int mt;
2709 unsigned long max_managed, flags;
2710
2711 /*
2712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2713 * Check is race-prone but harmless.
2714 */
9705bea5 2715 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2716 if (zone->nr_reserved_highatomic >= max_managed)
2717 return;
2718
2719 spin_lock_irqsave(&zone->lock, flags);
2720
2721 /* Recheck the nr_reserved_highatomic limit under the lock */
2722 if (zone->nr_reserved_highatomic >= max_managed)
2723 goto out_unlock;
2724
2725 /* Yoink! */
2726 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2727 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2728 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2729 zone->nr_reserved_highatomic += pageblock_nr_pages;
2730 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2731 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2732 }
2733
2734out_unlock:
2735 spin_unlock_irqrestore(&zone->lock, flags);
2736}
2737
2738/*
2739 * Used when an allocation is about to fail under memory pressure. This
2740 * potentially hurts the reliability of high-order allocations when under
2741 * intense memory pressure but failed atomic allocations should be easier
2742 * to recover from than an OOM.
29fac03b
MK
2743 *
2744 * If @force is true, try to unreserve a pageblock even though highatomic
2745 * pageblock is exhausted.
0aaa29a5 2746 */
29fac03b
MK
2747static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2748 bool force)
0aaa29a5
MG
2749{
2750 struct zonelist *zonelist = ac->zonelist;
2751 unsigned long flags;
2752 struct zoneref *z;
2753 struct zone *zone;
2754 struct page *page;
2755 int order;
04c8716f 2756 bool ret;
0aaa29a5 2757
97a225e6 2758 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2759 ac->nodemask) {
29fac03b
MK
2760 /*
2761 * Preserve at least one pageblock unless memory pressure
2762 * is really high.
2763 */
2764 if (!force && zone->nr_reserved_highatomic <=
2765 pageblock_nr_pages)
0aaa29a5
MG
2766 continue;
2767
2768 spin_lock_irqsave(&zone->lock, flags);
2769 for (order = 0; order < MAX_ORDER; order++) {
2770 struct free_area *area = &(zone->free_area[order]);
2771
b03641af 2772 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2773 if (!page)
0aaa29a5
MG
2774 continue;
2775
0aaa29a5 2776 /*
4855e4a7
MK
2777 * In page freeing path, migratetype change is racy so
2778 * we can counter several free pages in a pageblock
2779 * in this loop althoug we changed the pageblock type
2780 * from highatomic to ac->migratetype. So we should
2781 * adjust the count once.
0aaa29a5 2782 */
a6ffdc07 2783 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2784 /*
2785 * It should never happen but changes to
2786 * locking could inadvertently allow a per-cpu
2787 * drain to add pages to MIGRATE_HIGHATOMIC
2788 * while unreserving so be safe and watch for
2789 * underflows.
2790 */
2791 zone->nr_reserved_highatomic -= min(
2792 pageblock_nr_pages,
2793 zone->nr_reserved_highatomic);
2794 }
0aaa29a5
MG
2795
2796 /*
2797 * Convert to ac->migratetype and avoid the normal
2798 * pageblock stealing heuristics. Minimally, the caller
2799 * is doing the work and needs the pages. More
2800 * importantly, if the block was always converted to
2801 * MIGRATE_UNMOVABLE or another type then the number
2802 * of pageblocks that cannot be completely freed
2803 * may increase.
2804 */
2805 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2806 ret = move_freepages_block(zone, page, ac->migratetype,
2807 NULL);
29fac03b
MK
2808 if (ret) {
2809 spin_unlock_irqrestore(&zone->lock, flags);
2810 return ret;
2811 }
0aaa29a5
MG
2812 }
2813 spin_unlock_irqrestore(&zone->lock, flags);
2814 }
04c8716f
MK
2815
2816 return false;
0aaa29a5
MG
2817}
2818
3bc48f96
VB
2819/*
2820 * Try finding a free buddy page on the fallback list and put it on the free
2821 * list of requested migratetype, possibly along with other pages from the same
2822 * block, depending on fragmentation avoidance heuristics. Returns true if
2823 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2824 *
2825 * The use of signed ints for order and current_order is a deliberate
2826 * deviation from the rest of this file, to make the for loop
2827 * condition simpler.
3bc48f96 2828 */
85ccc8fa 2829static __always_inline bool
6bb15450
MG
2830__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2831 unsigned int alloc_flags)
b2a0ac88 2832{
b8af2941 2833 struct free_area *area;
b002529d 2834 int current_order;
6bb15450 2835 int min_order = order;
b2a0ac88 2836 struct page *page;
4eb7dce6
JK
2837 int fallback_mt;
2838 bool can_steal;
b2a0ac88 2839
6bb15450
MG
2840 /*
2841 * Do not steal pages from freelists belonging to other pageblocks
2842 * i.e. orders < pageblock_order. If there are no local zones free,
2843 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2844 */
2845 if (alloc_flags & ALLOC_NOFRAGMENT)
2846 min_order = pageblock_order;
2847
7a8f58f3
VB
2848 /*
2849 * Find the largest available free page in the other list. This roughly
2850 * approximates finding the pageblock with the most free pages, which
2851 * would be too costly to do exactly.
2852 */
6bb15450 2853 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2854 --current_order) {
4eb7dce6
JK
2855 area = &(zone->free_area[current_order]);
2856 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2857 start_migratetype, false, &can_steal);
4eb7dce6
JK
2858 if (fallback_mt == -1)
2859 continue;
b2a0ac88 2860
7a8f58f3
VB
2861 /*
2862 * We cannot steal all free pages from the pageblock and the
2863 * requested migratetype is movable. In that case it's better to
2864 * steal and split the smallest available page instead of the
2865 * largest available page, because even if the next movable
2866 * allocation falls back into a different pageblock than this
2867 * one, it won't cause permanent fragmentation.
2868 */
2869 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2870 && current_order > order)
2871 goto find_smallest;
b2a0ac88 2872
7a8f58f3
VB
2873 goto do_steal;
2874 }
e0fff1bd 2875
7a8f58f3 2876 return false;
e0fff1bd 2877
7a8f58f3
VB
2878find_smallest:
2879 for (current_order = order; current_order < MAX_ORDER;
2880 current_order++) {
2881 area = &(zone->free_area[current_order]);
2882 fallback_mt = find_suitable_fallback(area, current_order,
2883 start_migratetype, false, &can_steal);
2884 if (fallback_mt != -1)
2885 break;
b2a0ac88
MG
2886 }
2887
7a8f58f3
VB
2888 /*
2889 * This should not happen - we already found a suitable fallback
2890 * when looking for the largest page.
2891 */
2892 VM_BUG_ON(current_order == MAX_ORDER);
2893
2894do_steal:
b03641af 2895 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2896
1c30844d
MG
2897 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2898 can_steal);
7a8f58f3
VB
2899
2900 trace_mm_page_alloc_extfrag(page, order, current_order,
2901 start_migratetype, fallback_mt);
2902
2903 return true;
2904
b2a0ac88
MG
2905}
2906
56fd56b8 2907/*
1da177e4
LT
2908 * Do the hard work of removing an element from the buddy allocator.
2909 * Call me with the zone->lock already held.
2910 */
85ccc8fa 2911static __always_inline struct page *
6bb15450
MG
2912__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2913 unsigned int alloc_flags)
1da177e4 2914{
1da177e4
LT
2915 struct page *page;
2916
ce8f86ee
H
2917 if (IS_ENABLED(CONFIG_CMA)) {
2918 /*
2919 * Balance movable allocations between regular and CMA areas by
2920 * allocating from CMA when over half of the zone's free memory
2921 * is in the CMA area.
2922 */
2923 if (alloc_flags & ALLOC_CMA &&
2924 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2925 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2926 page = __rmqueue_cma_fallback(zone, order);
2927 if (page)
2928 goto out;
2929 }
16867664 2930 }
3bc48f96 2931retry:
56fd56b8 2932 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2933 if (unlikely(!page)) {
8510e69c 2934 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2935 page = __rmqueue_cma_fallback(zone, order);
2936
6bb15450
MG
2937 if (!page && __rmqueue_fallback(zone, order, migratetype,
2938 alloc_flags))
3bc48f96 2939 goto retry;
728ec980 2940 }
ce8f86ee
H
2941out:
2942 if (page)
2943 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2944 return page;
1da177e4
LT
2945}
2946
5f63b720 2947/*
1da177e4
LT
2948 * Obtain a specified number of elements from the buddy allocator, all under
2949 * a single hold of the lock, for efficiency. Add them to the supplied list.
2950 * Returns the number of new pages which were placed at *list.
2951 */
5f63b720 2952static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2953 unsigned long count, struct list_head *list,
6bb15450 2954 int migratetype, unsigned int alloc_flags)
1da177e4 2955{
a6de734b 2956 int i, alloced = 0;
5f63b720 2957
d34b0733 2958 spin_lock(&zone->lock);
1da177e4 2959 for (i = 0; i < count; ++i) {
6bb15450
MG
2960 struct page *page = __rmqueue(zone, order, migratetype,
2961 alloc_flags);
085cc7d5 2962 if (unlikely(page == NULL))
1da177e4 2963 break;
81eabcbe 2964
479f854a
MG
2965 if (unlikely(check_pcp_refill(page)))
2966 continue;
2967
81eabcbe 2968 /*
0fac3ba5
VB
2969 * Split buddy pages returned by expand() are received here in
2970 * physical page order. The page is added to the tail of
2971 * caller's list. From the callers perspective, the linked list
2972 * is ordered by page number under some conditions. This is
2973 * useful for IO devices that can forward direction from the
2974 * head, thus also in the physical page order. This is useful
2975 * for IO devices that can merge IO requests if the physical
2976 * pages are ordered properly.
81eabcbe 2977 */
0fac3ba5 2978 list_add_tail(&page->lru, list);
a6de734b 2979 alloced++;
bb14c2c7 2980 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2981 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2982 -(1 << order));
1da177e4 2983 }
a6de734b
MG
2984
2985 /*
2986 * i pages were removed from the buddy list even if some leak due
2987 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2988 * on i. Do not confuse with 'alloced' which is the number of
2989 * pages added to the pcp list.
2990 */
f2260e6b 2991 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2992 spin_unlock(&zone->lock);
a6de734b 2993 return alloced;
1da177e4
LT
2994}
2995
4ae7c039 2996#ifdef CONFIG_NUMA
8fce4d8e 2997/*
4037d452
CL
2998 * Called from the vmstat counter updater to drain pagesets of this
2999 * currently executing processor on remote nodes after they have
3000 * expired.
3001 *
879336c3
CL
3002 * Note that this function must be called with the thread pinned to
3003 * a single processor.
8fce4d8e 3004 */
4037d452 3005void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3006{
4ae7c039 3007 unsigned long flags;
7be12fc9 3008 int to_drain, batch;
4ae7c039 3009
4037d452 3010 local_irq_save(flags);
4db0c3c2 3011 batch = READ_ONCE(pcp->batch);
7be12fc9 3012 to_drain = min(pcp->count, batch);
77ba9062 3013 if (to_drain > 0)
2a13515c 3014 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 3015 local_irq_restore(flags);
4ae7c039
CL
3016}
3017#endif
3018
9f8f2172 3019/*
93481ff0 3020 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3021 *
3022 * The processor must either be the current processor and the
3023 * thread pinned to the current processor or a processor that
3024 * is not online.
3025 */
93481ff0 3026static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3027{
c54ad30c 3028 unsigned long flags;
93481ff0
VB
3029 struct per_cpu_pageset *pset;
3030 struct per_cpu_pages *pcp;
1da177e4 3031
93481ff0
VB
3032 local_irq_save(flags);
3033 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3034
93481ff0 3035 pcp = &pset->pcp;
77ba9062 3036 if (pcp->count)
93481ff0 3037 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
3038 local_irq_restore(flags);
3039}
3dfa5721 3040
93481ff0
VB
3041/*
3042 * Drain pcplists of all zones on the indicated processor.
3043 *
3044 * The processor must either be the current processor and the
3045 * thread pinned to the current processor or a processor that
3046 * is not online.
3047 */
3048static void drain_pages(unsigned int cpu)
3049{
3050 struct zone *zone;
3051
3052 for_each_populated_zone(zone) {
3053 drain_pages_zone(cpu, zone);
1da177e4
LT
3054 }
3055}
1da177e4 3056
9f8f2172
CL
3057/*
3058 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3059 *
3060 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3061 * the single zone's pages.
9f8f2172 3062 */
93481ff0 3063void drain_local_pages(struct zone *zone)
9f8f2172 3064{
93481ff0
VB
3065 int cpu = smp_processor_id();
3066
3067 if (zone)
3068 drain_pages_zone(cpu, zone);
3069 else
3070 drain_pages(cpu);
9f8f2172
CL
3071}
3072
0ccce3b9
MG
3073static void drain_local_pages_wq(struct work_struct *work)
3074{
d9367bd0
WY
3075 struct pcpu_drain *drain;
3076
3077 drain = container_of(work, struct pcpu_drain, work);
3078
a459eeb7
MH
3079 /*
3080 * drain_all_pages doesn't use proper cpu hotplug protection so
3081 * we can race with cpu offline when the WQ can move this from
3082 * a cpu pinned worker to an unbound one. We can operate on a different
3083 * cpu which is allright but we also have to make sure to not move to
3084 * a different one.
3085 */
3086 preempt_disable();
d9367bd0 3087 drain_local_pages(drain->zone);
a459eeb7 3088 preempt_enable();
0ccce3b9
MG
3089}
3090
9f8f2172 3091/*
ec6e8c7e
VB
3092 * The implementation of drain_all_pages(), exposing an extra parameter to
3093 * drain on all cpus.
93481ff0 3094 *
ec6e8c7e
VB
3095 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3096 * not empty. The check for non-emptiness can however race with a free to
3097 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3098 * that need the guarantee that every CPU has drained can disable the
3099 * optimizing racy check.
9f8f2172 3100 */
3b1f3658 3101static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3102{
74046494 3103 int cpu;
74046494
GBY
3104
3105 /*
3106 * Allocate in the BSS so we wont require allocation in
3107 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3108 */
3109 static cpumask_t cpus_with_pcps;
3110
ce612879
MH
3111 /*
3112 * Make sure nobody triggers this path before mm_percpu_wq is fully
3113 * initialized.
3114 */
3115 if (WARN_ON_ONCE(!mm_percpu_wq))
3116 return;
3117
bd233f53
MG
3118 /*
3119 * Do not drain if one is already in progress unless it's specific to
3120 * a zone. Such callers are primarily CMA and memory hotplug and need
3121 * the drain to be complete when the call returns.
3122 */
3123 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3124 if (!zone)
3125 return;
3126 mutex_lock(&pcpu_drain_mutex);
3127 }
0ccce3b9 3128
74046494
GBY
3129 /*
3130 * We don't care about racing with CPU hotplug event
3131 * as offline notification will cause the notified
3132 * cpu to drain that CPU pcps and on_each_cpu_mask
3133 * disables preemption as part of its processing
3134 */
3135 for_each_online_cpu(cpu) {
93481ff0
VB
3136 struct per_cpu_pageset *pcp;
3137 struct zone *z;
74046494 3138 bool has_pcps = false;
93481ff0 3139
ec6e8c7e
VB
3140 if (force_all_cpus) {
3141 /*
3142 * The pcp.count check is racy, some callers need a
3143 * guarantee that no cpu is missed.
3144 */
3145 has_pcps = true;
3146 } else if (zone) {
74046494 3147 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3148 if (pcp->pcp.count)
74046494 3149 has_pcps = true;
93481ff0
VB
3150 } else {
3151 for_each_populated_zone(z) {
3152 pcp = per_cpu_ptr(z->pageset, cpu);
3153 if (pcp->pcp.count) {
3154 has_pcps = true;
3155 break;
3156 }
74046494
GBY
3157 }
3158 }
93481ff0 3159
74046494
GBY
3160 if (has_pcps)
3161 cpumask_set_cpu(cpu, &cpus_with_pcps);
3162 else
3163 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3164 }
0ccce3b9 3165
bd233f53 3166 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3167 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3168
3169 drain->zone = zone;
3170 INIT_WORK(&drain->work, drain_local_pages_wq);
3171 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3172 }
bd233f53 3173 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3174 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3175
3176 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3177}
3178
ec6e8c7e
VB
3179/*
3180 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3181 *
3182 * When zone parameter is non-NULL, spill just the single zone's pages.
3183 *
3184 * Note that this can be extremely slow as the draining happens in a workqueue.
3185 */
3186void drain_all_pages(struct zone *zone)
3187{
3188 __drain_all_pages(zone, false);
3189}
3190
296699de 3191#ifdef CONFIG_HIBERNATION
1da177e4 3192
556b969a
CY
3193/*
3194 * Touch the watchdog for every WD_PAGE_COUNT pages.
3195 */
3196#define WD_PAGE_COUNT (128*1024)
3197
1da177e4
LT
3198void mark_free_pages(struct zone *zone)
3199{
556b969a 3200 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3201 unsigned long flags;
7aeb09f9 3202 unsigned int order, t;
86760a2c 3203 struct page *page;
1da177e4 3204
8080fc03 3205 if (zone_is_empty(zone))
1da177e4
LT
3206 return;
3207
3208 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3209
108bcc96 3210 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3211 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3212 if (pfn_valid(pfn)) {
86760a2c 3213 page = pfn_to_page(pfn);
ba6b0979 3214
556b969a
CY
3215 if (!--page_count) {
3216 touch_nmi_watchdog();
3217 page_count = WD_PAGE_COUNT;
3218 }
3219
ba6b0979
JK
3220 if (page_zone(page) != zone)
3221 continue;
3222
7be98234
RW
3223 if (!swsusp_page_is_forbidden(page))
3224 swsusp_unset_page_free(page);
f623f0db 3225 }
1da177e4 3226
b2a0ac88 3227 for_each_migratetype_order(order, t) {
86760a2c
GT
3228 list_for_each_entry(page,
3229 &zone->free_area[order].free_list[t], lru) {
f623f0db 3230 unsigned long i;
1da177e4 3231
86760a2c 3232 pfn = page_to_pfn(page);
556b969a
CY
3233 for (i = 0; i < (1UL << order); i++) {
3234 if (!--page_count) {
3235 touch_nmi_watchdog();
3236 page_count = WD_PAGE_COUNT;
3237 }
7be98234 3238 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3239 }
f623f0db 3240 }
b2a0ac88 3241 }
1da177e4
LT
3242 spin_unlock_irqrestore(&zone->lock, flags);
3243}
e2c55dc8 3244#endif /* CONFIG_PM */
1da177e4 3245
2d4894b5 3246static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3247{
5f8dcc21 3248 int migratetype;
1da177e4 3249
4db7548c 3250 if (!free_pcp_prepare(page))
9cca35d4 3251 return false;
689bcebf 3252
dc4b0caf 3253 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3254 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3255 return true;
3256}
3257
2d4894b5 3258static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3259{
3260 struct zone *zone = page_zone(page);
3261 struct per_cpu_pages *pcp;
3262 int migratetype;
3263
3264 migratetype = get_pcppage_migratetype(page);
d34b0733 3265 __count_vm_event(PGFREE);
da456f14 3266
5f8dcc21
MG
3267 /*
3268 * We only track unmovable, reclaimable and movable on pcp lists.
3269 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3270 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3271 * areas back if necessary. Otherwise, we may have to free
3272 * excessively into the page allocator
3273 */
3274 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3275 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3276 free_one_page(zone, page, pfn, 0, migratetype,
3277 FPI_NONE);
9cca35d4 3278 return;
5f8dcc21
MG
3279 }
3280 migratetype = MIGRATE_MOVABLE;
3281 }
3282
99dcc3e5 3283 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3284 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3285 pcp->count++;
5c3ad2eb
VB
3286 if (pcp->count >= READ_ONCE(pcp->high))
3287 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3288}
5f8dcc21 3289
9cca35d4
MG
3290/*
3291 * Free a 0-order page
9cca35d4 3292 */
2d4894b5 3293void free_unref_page(struct page *page)
9cca35d4
MG
3294{
3295 unsigned long flags;
3296 unsigned long pfn = page_to_pfn(page);
3297
2d4894b5 3298 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3299 return;
3300
3301 local_irq_save(flags);
2d4894b5 3302 free_unref_page_commit(page, pfn);
d34b0733 3303 local_irq_restore(flags);
1da177e4
LT
3304}
3305
cc59850e
KK
3306/*
3307 * Free a list of 0-order pages
3308 */
2d4894b5 3309void free_unref_page_list(struct list_head *list)
cc59850e
KK
3310{
3311 struct page *page, *next;
9cca35d4 3312 unsigned long flags, pfn;
c24ad77d 3313 int batch_count = 0;
9cca35d4
MG
3314
3315 /* Prepare pages for freeing */
3316 list_for_each_entry_safe(page, next, list, lru) {
3317 pfn = page_to_pfn(page);
2d4894b5 3318 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3319 list_del(&page->lru);
3320 set_page_private(page, pfn);
3321 }
cc59850e 3322
9cca35d4 3323 local_irq_save(flags);
cc59850e 3324 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3325 unsigned long pfn = page_private(page);
3326
3327 set_page_private(page, 0);
2d4894b5
MG
3328 trace_mm_page_free_batched(page);
3329 free_unref_page_commit(page, pfn);
c24ad77d
LS
3330
3331 /*
3332 * Guard against excessive IRQ disabled times when we get
3333 * a large list of pages to free.
3334 */
3335 if (++batch_count == SWAP_CLUSTER_MAX) {
3336 local_irq_restore(flags);
3337 batch_count = 0;
3338 local_irq_save(flags);
3339 }
cc59850e 3340 }
9cca35d4 3341 local_irq_restore(flags);
cc59850e
KK
3342}
3343
8dfcc9ba
NP
3344/*
3345 * split_page takes a non-compound higher-order page, and splits it into
3346 * n (1<<order) sub-pages: page[0..n]
3347 * Each sub-page must be freed individually.
3348 *
3349 * Note: this is probably too low level an operation for use in drivers.
3350 * Please consult with lkml before using this in your driver.
3351 */
3352void split_page(struct page *page, unsigned int order)
3353{
3354 int i;
3355
309381fe
SL
3356 VM_BUG_ON_PAGE(PageCompound(page), page);
3357 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3358
a9627bc5 3359 for (i = 1; i < (1 << order); i++)
7835e98b 3360 set_page_refcounted(page + i);
8fb156c9 3361 split_page_owner(page, 1 << order);
e1baddf8 3362 split_page_memcg(page, 1 << order);
8dfcc9ba 3363}
5853ff23 3364EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3365
3c605096 3366int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3367{
748446bb
MG
3368 unsigned long watermark;
3369 struct zone *zone;
2139cbe6 3370 int mt;
748446bb
MG
3371
3372 BUG_ON(!PageBuddy(page));
3373
3374 zone = page_zone(page);
2e30abd1 3375 mt = get_pageblock_migratetype(page);
748446bb 3376
194159fb 3377 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3378 /*
3379 * Obey watermarks as if the page was being allocated. We can
3380 * emulate a high-order watermark check with a raised order-0
3381 * watermark, because we already know our high-order page
3382 * exists.
3383 */
fd1444b2 3384 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3385 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3386 return 0;
3387
8fb74b9f 3388 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3389 }
748446bb
MG
3390
3391 /* Remove page from free list */
b03641af 3392
6ab01363 3393 del_page_from_free_list(page, zone, order);
2139cbe6 3394
400bc7fd 3395 /*
3396 * Set the pageblock if the isolated page is at least half of a
3397 * pageblock
3398 */
748446bb
MG
3399 if (order >= pageblock_order - 1) {
3400 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3401 for (; page < endpage; page += pageblock_nr_pages) {
3402 int mt = get_pageblock_migratetype(page);
88ed365e 3403 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3404 && !is_migrate_highatomic(mt))
47118af0
MN
3405 set_pageblock_migratetype(page,
3406 MIGRATE_MOVABLE);
3407 }
748446bb
MG
3408 }
3409
f3a14ced 3410
8fb74b9f 3411 return 1UL << order;
1fb3f8ca
MG
3412}
3413
624f58d8
AD
3414/**
3415 * __putback_isolated_page - Return a now-isolated page back where we got it
3416 * @page: Page that was isolated
3417 * @order: Order of the isolated page
e6a0a7ad 3418 * @mt: The page's pageblock's migratetype
624f58d8
AD
3419 *
3420 * This function is meant to return a page pulled from the free lists via
3421 * __isolate_free_page back to the free lists they were pulled from.
3422 */
3423void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3424{
3425 struct zone *zone = page_zone(page);
3426
3427 /* zone lock should be held when this function is called */
3428 lockdep_assert_held(&zone->lock);
3429
3430 /* Return isolated page to tail of freelist. */
f04a5d5d 3431 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3432 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3433}
3434
060e7417
MG
3435/*
3436 * Update NUMA hit/miss statistics
3437 *
3438 * Must be called with interrupts disabled.
060e7417 3439 */
41b6167e 3440static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3441{
3442#ifdef CONFIG_NUMA
3a321d2a 3443 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3444
4518085e
KW
3445 /* skip numa counters update if numa stats is disabled */
3446 if (!static_branch_likely(&vm_numa_stat_key))
3447 return;
3448
c1093b74 3449 if (zone_to_nid(z) != numa_node_id())
060e7417 3450 local_stat = NUMA_OTHER;
060e7417 3451
c1093b74 3452 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3453 __inc_numa_state(z, NUMA_HIT);
2df26639 3454 else {
3a321d2a
KW
3455 __inc_numa_state(z, NUMA_MISS);
3456 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3457 }
3a321d2a 3458 __inc_numa_state(z, local_stat);
060e7417
MG
3459#endif
3460}
3461
066b2393
MG
3462/* Remove page from the per-cpu list, caller must protect the list */
3463static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3464 unsigned int alloc_flags,
453f85d4 3465 struct per_cpu_pages *pcp,
066b2393
MG
3466 struct list_head *list)
3467{
3468 struct page *page;
3469
3470 do {
3471 if (list_empty(list)) {
3472 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3473 READ_ONCE(pcp->batch), list,
6bb15450 3474 migratetype, alloc_flags);
066b2393
MG
3475 if (unlikely(list_empty(list)))
3476 return NULL;
3477 }
3478
453f85d4 3479 page = list_first_entry(list, struct page, lru);
066b2393
MG
3480 list_del(&page->lru);
3481 pcp->count--;
3482 } while (check_new_pcp(page));
3483
3484 return page;
3485}
3486
3487/* Lock and remove page from the per-cpu list */
3488static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3489 struct zone *zone, gfp_t gfp_flags,
3490 int migratetype, unsigned int alloc_flags)
066b2393
MG
3491{
3492 struct per_cpu_pages *pcp;
3493 struct list_head *list;
066b2393 3494 struct page *page;
d34b0733 3495 unsigned long flags;
066b2393 3496
d34b0733 3497 local_irq_save(flags);
066b2393
MG
3498 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3499 list = &pcp->lists[migratetype];
6bb15450 3500 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3501 if (page) {
1c52e6d0 3502 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3503 zone_statistics(preferred_zone, zone);
3504 }
d34b0733 3505 local_irq_restore(flags);
066b2393
MG
3506 return page;
3507}
3508
1da177e4 3509/*
75379191 3510 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3511 */
0a15c3e9 3512static inline
066b2393 3513struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3514 struct zone *zone, unsigned int order,
c603844b
MG
3515 gfp_t gfp_flags, unsigned int alloc_flags,
3516 int migratetype)
1da177e4
LT
3517{
3518 unsigned long flags;
689bcebf 3519 struct page *page;
1da177e4 3520
d34b0733 3521 if (likely(order == 0)) {
1d91df85
JK
3522 /*
3523 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3524 * we need to skip it when CMA area isn't allowed.
3525 */
3526 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3527 migratetype != MIGRATE_MOVABLE) {
3528 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3529 migratetype, alloc_flags);
1d91df85
JK
3530 goto out;
3531 }
066b2393 3532 }
83b9355b 3533
066b2393
MG
3534 /*
3535 * We most definitely don't want callers attempting to
3536 * allocate greater than order-1 page units with __GFP_NOFAIL.
3537 */
3538 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3539 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3540
066b2393
MG
3541 do {
3542 page = NULL;
1d91df85
JK
3543 /*
3544 * order-0 request can reach here when the pcplist is skipped
3545 * due to non-CMA allocation context. HIGHATOMIC area is
3546 * reserved for high-order atomic allocation, so order-0
3547 * request should skip it.
3548 */
3549 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3550 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3551 if (page)
3552 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3553 }
a74609fa 3554 if (!page)
6bb15450 3555 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3556 } while (page && check_new_pages(page, order));
3557 spin_unlock(&zone->lock);
3558 if (!page)
3559 goto failed;
3560 __mod_zone_freepage_state(zone, -(1 << order),
3561 get_pcppage_migratetype(page));
1da177e4 3562
16709d1d 3563 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3564 zone_statistics(preferred_zone, zone);
a74609fa 3565 local_irq_restore(flags);
1da177e4 3566
066b2393 3567out:
73444bc4
MG
3568 /* Separate test+clear to avoid unnecessary atomics */
3569 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3570 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3571 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3572 }
3573
066b2393 3574 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3575 return page;
a74609fa
NP
3576
3577failed:
3578 local_irq_restore(flags);
a74609fa 3579 return NULL;
1da177e4
LT
3580}
3581
933e312e
AM
3582#ifdef CONFIG_FAIL_PAGE_ALLOC
3583
b2588c4b 3584static struct {
933e312e
AM
3585 struct fault_attr attr;
3586
621a5f7a 3587 bool ignore_gfp_highmem;
71baba4b 3588 bool ignore_gfp_reclaim;
54114994 3589 u32 min_order;
933e312e
AM
3590} fail_page_alloc = {
3591 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3592 .ignore_gfp_reclaim = true,
621a5f7a 3593 .ignore_gfp_highmem = true,
54114994 3594 .min_order = 1,
933e312e
AM
3595};
3596
3597static int __init setup_fail_page_alloc(char *str)
3598{
3599 return setup_fault_attr(&fail_page_alloc.attr, str);
3600}
3601__setup("fail_page_alloc=", setup_fail_page_alloc);
3602
af3b8544 3603static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3604{
54114994 3605 if (order < fail_page_alloc.min_order)
deaf386e 3606 return false;
933e312e 3607 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3608 return false;
933e312e 3609 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3610 return false;
71baba4b
MG
3611 if (fail_page_alloc.ignore_gfp_reclaim &&
3612 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3613 return false;
933e312e
AM
3614
3615 return should_fail(&fail_page_alloc.attr, 1 << order);
3616}
3617
3618#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3619
3620static int __init fail_page_alloc_debugfs(void)
3621{
0825a6f9 3622 umode_t mode = S_IFREG | 0600;
933e312e 3623 struct dentry *dir;
933e312e 3624
dd48c085
AM
3625 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3626 &fail_page_alloc.attr);
b2588c4b 3627
d9f7979c
GKH
3628 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3629 &fail_page_alloc.ignore_gfp_reclaim);
3630 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3631 &fail_page_alloc.ignore_gfp_highmem);
3632 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3633
d9f7979c 3634 return 0;
933e312e
AM
3635}
3636
3637late_initcall(fail_page_alloc_debugfs);
3638
3639#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3640
3641#else /* CONFIG_FAIL_PAGE_ALLOC */
3642
af3b8544 3643static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3644{
deaf386e 3645 return false;
933e312e
AM
3646}
3647
3648#endif /* CONFIG_FAIL_PAGE_ALLOC */
3649
76cd6173 3650noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3651{
3652 return __should_fail_alloc_page(gfp_mask, order);
3653}
3654ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3655
f27ce0e1
JK
3656static inline long __zone_watermark_unusable_free(struct zone *z,
3657 unsigned int order, unsigned int alloc_flags)
3658{
3659 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3660 long unusable_free = (1 << order) - 1;
3661
3662 /*
3663 * If the caller does not have rights to ALLOC_HARDER then subtract
3664 * the high-atomic reserves. This will over-estimate the size of the
3665 * atomic reserve but it avoids a search.
3666 */
3667 if (likely(!alloc_harder))
3668 unusable_free += z->nr_reserved_highatomic;
3669
3670#ifdef CONFIG_CMA
3671 /* If allocation can't use CMA areas don't use free CMA pages */
3672 if (!(alloc_flags & ALLOC_CMA))
3673 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3674#endif
3675
3676 return unusable_free;
3677}
3678
1da177e4 3679/*
97a16fc8
MG
3680 * Return true if free base pages are above 'mark'. For high-order checks it
3681 * will return true of the order-0 watermark is reached and there is at least
3682 * one free page of a suitable size. Checking now avoids taking the zone lock
3683 * to check in the allocation paths if no pages are free.
1da177e4 3684 */
86a294a8 3685bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3686 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3687 long free_pages)
1da177e4 3688{
d23ad423 3689 long min = mark;
1da177e4 3690 int o;
cd04ae1e 3691 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3692
0aaa29a5 3693 /* free_pages may go negative - that's OK */
f27ce0e1 3694 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3695
7fb1d9fc 3696 if (alloc_flags & ALLOC_HIGH)
1da177e4 3697 min -= min / 2;
0aaa29a5 3698
f27ce0e1 3699 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3700 /*
3701 * OOM victims can try even harder than normal ALLOC_HARDER
3702 * users on the grounds that it's definitely going to be in
3703 * the exit path shortly and free memory. Any allocation it
3704 * makes during the free path will be small and short-lived.
3705 */
3706 if (alloc_flags & ALLOC_OOM)
3707 min -= min / 2;
3708 else
3709 min -= min / 4;
3710 }
3711
97a16fc8
MG
3712 /*
3713 * Check watermarks for an order-0 allocation request. If these
3714 * are not met, then a high-order request also cannot go ahead
3715 * even if a suitable page happened to be free.
3716 */
97a225e6 3717 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3718 return false;
1da177e4 3719
97a16fc8
MG
3720 /* If this is an order-0 request then the watermark is fine */
3721 if (!order)
3722 return true;
3723
3724 /* For a high-order request, check at least one suitable page is free */
3725 for (o = order; o < MAX_ORDER; o++) {
3726 struct free_area *area = &z->free_area[o];
3727 int mt;
3728
3729 if (!area->nr_free)
3730 continue;
3731
97a16fc8 3732 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3733 if (!free_area_empty(area, mt))
97a16fc8
MG
3734 return true;
3735 }
3736
3737#ifdef CONFIG_CMA
d883c6cf 3738 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3739 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3740 return true;
d883c6cf 3741 }
97a16fc8 3742#endif
76089d00 3743 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3744 return true;
1da177e4 3745 }
97a16fc8 3746 return false;
88f5acf8
MG
3747}
3748
7aeb09f9 3749bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3750 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3751{
97a225e6 3752 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3753 zone_page_state(z, NR_FREE_PAGES));
3754}
3755
48ee5f36 3756static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3757 unsigned long mark, int highest_zoneidx,
f80b08fc 3758 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3759{
f27ce0e1 3760 long free_pages;
d883c6cf 3761
f27ce0e1 3762 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3763
3764 /*
3765 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3766 * need to be calculated.
48ee5f36 3767 */
f27ce0e1
JK
3768 if (!order) {
3769 long fast_free;
3770
3771 fast_free = free_pages;
3772 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3773 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3774 return true;
3775 }
48ee5f36 3776
f80b08fc
CTR
3777 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3778 free_pages))
3779 return true;
3780 /*
3781 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3782 * when checking the min watermark. The min watermark is the
3783 * point where boosting is ignored so that kswapd is woken up
3784 * when below the low watermark.
3785 */
3786 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3787 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3788 mark = z->_watermark[WMARK_MIN];
3789 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3790 alloc_flags, free_pages);
3791 }
3792
3793 return false;
48ee5f36
MG
3794}
3795
7aeb09f9 3796bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3797 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3798{
3799 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3800
3801 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3802 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3803
97a225e6 3804 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3805 free_pages);
1da177e4
LT
3806}
3807
9276b1bc 3808#ifdef CONFIG_NUMA
957f822a
DR
3809static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3810{
e02dc017 3811 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3812 node_reclaim_distance;
957f822a 3813}
9276b1bc 3814#else /* CONFIG_NUMA */
957f822a
DR
3815static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3816{
3817 return true;
3818}
9276b1bc
PJ
3819#endif /* CONFIG_NUMA */
3820
6bb15450
MG
3821/*
3822 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3823 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3824 * premature use of a lower zone may cause lowmem pressure problems that
3825 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3826 * probably too small. It only makes sense to spread allocations to avoid
3827 * fragmentation between the Normal and DMA32 zones.
3828 */
3829static inline unsigned int
0a79cdad 3830alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3831{
736838e9 3832 unsigned int alloc_flags;
0a79cdad 3833
736838e9
MN
3834 /*
3835 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3836 * to save a branch.
3837 */
3838 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3839
3840#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3841 if (!zone)
3842 return alloc_flags;
3843
6bb15450 3844 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3845 return alloc_flags;
6bb15450
MG
3846
3847 /*
3848 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3849 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3850 * on UMA that if Normal is populated then so is DMA32.
3851 */
3852 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3853 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3854 return alloc_flags;
6bb15450 3855
8118b82e 3856 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3857#endif /* CONFIG_ZONE_DMA32 */
3858 return alloc_flags;
6bb15450 3859}
6bb15450 3860
8510e69c
JK
3861static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3862 unsigned int alloc_flags)
3863{
3864#ifdef CONFIG_CMA
3865 unsigned int pflags = current->flags;
3866
3867 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3868 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3869 alloc_flags |= ALLOC_CMA;
3870
3871#endif
3872 return alloc_flags;
3873}
3874
7fb1d9fc 3875/*
0798e519 3876 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3877 * a page.
3878 */
3879static struct page *
a9263751
VB
3880get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3881 const struct alloc_context *ac)
753ee728 3882{
6bb15450 3883 struct zoneref *z;
5117f45d 3884 struct zone *zone;
3b8c0be4 3885 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3886 bool no_fallback;
3b8c0be4 3887
6bb15450 3888retry:
7fb1d9fc 3889 /*
9276b1bc 3890 * Scan zonelist, looking for a zone with enough free.
344736f2 3891 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3892 */
6bb15450
MG
3893 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3894 z = ac->preferred_zoneref;
30d8ec73
MN
3895 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3896 ac->nodemask) {
be06af00 3897 struct page *page;
e085dbc5
JW
3898 unsigned long mark;
3899
664eedde
MG
3900 if (cpusets_enabled() &&
3901 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3902 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3903 continue;
a756cf59
JW
3904 /*
3905 * When allocating a page cache page for writing, we
281e3726
MG
3906 * want to get it from a node that is within its dirty
3907 * limit, such that no single node holds more than its
a756cf59 3908 * proportional share of globally allowed dirty pages.
281e3726 3909 * The dirty limits take into account the node's
a756cf59
JW
3910 * lowmem reserves and high watermark so that kswapd
3911 * should be able to balance it without having to
3912 * write pages from its LRU list.
3913 *
a756cf59 3914 * XXX: For now, allow allocations to potentially
281e3726 3915 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3916 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3917 * which is important when on a NUMA setup the allowed
281e3726 3918 * nodes are together not big enough to reach the
a756cf59 3919 * global limit. The proper fix for these situations
281e3726 3920 * will require awareness of nodes in the
a756cf59
JW
3921 * dirty-throttling and the flusher threads.
3922 */
3b8c0be4
MG
3923 if (ac->spread_dirty_pages) {
3924 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3925 continue;
3926
3927 if (!node_dirty_ok(zone->zone_pgdat)) {
3928 last_pgdat_dirty_limit = zone->zone_pgdat;
3929 continue;
3930 }
3931 }
7fb1d9fc 3932
6bb15450
MG
3933 if (no_fallback && nr_online_nodes > 1 &&
3934 zone != ac->preferred_zoneref->zone) {
3935 int local_nid;
3936
3937 /*
3938 * If moving to a remote node, retry but allow
3939 * fragmenting fallbacks. Locality is more important
3940 * than fragmentation avoidance.
3941 */
3942 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3943 if (zone_to_nid(zone) != local_nid) {
3944 alloc_flags &= ~ALLOC_NOFRAGMENT;
3945 goto retry;
3946 }
3947 }
3948
a9214443 3949 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3950 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3951 ac->highest_zoneidx, alloc_flags,
3952 gfp_mask)) {
fa5e084e
MG
3953 int ret;
3954
c9e97a19
PT
3955#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3956 /*
3957 * Watermark failed for this zone, but see if we can
3958 * grow this zone if it contains deferred pages.
3959 */
3960 if (static_branch_unlikely(&deferred_pages)) {
3961 if (_deferred_grow_zone(zone, order))
3962 goto try_this_zone;
3963 }
3964#endif
5dab2911
MG
3965 /* Checked here to keep the fast path fast */
3966 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3967 if (alloc_flags & ALLOC_NO_WATERMARKS)
3968 goto try_this_zone;
3969
a5f5f91d 3970 if (node_reclaim_mode == 0 ||
c33d6c06 3971 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3972 continue;
3973
a5f5f91d 3974 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3975 switch (ret) {
a5f5f91d 3976 case NODE_RECLAIM_NOSCAN:
fa5e084e 3977 /* did not scan */
cd38b115 3978 continue;
a5f5f91d 3979 case NODE_RECLAIM_FULL:
fa5e084e 3980 /* scanned but unreclaimable */
cd38b115 3981 continue;
fa5e084e
MG
3982 default:
3983 /* did we reclaim enough */
fed2719e 3984 if (zone_watermark_ok(zone, order, mark,
97a225e6 3985 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3986 goto try_this_zone;
3987
fed2719e 3988 continue;
0798e519 3989 }
7fb1d9fc
RS
3990 }
3991
fa5e084e 3992try_this_zone:
066b2393 3993 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3994 gfp_mask, alloc_flags, ac->migratetype);
75379191 3995 if (page) {
479f854a 3996 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3997
3998 /*
3999 * If this is a high-order atomic allocation then check
4000 * if the pageblock should be reserved for the future
4001 */
4002 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4003 reserve_highatomic_pageblock(page, zone, order);
4004
75379191 4005 return page;
c9e97a19
PT
4006 } else {
4007#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4008 /* Try again if zone has deferred pages */
4009 if (static_branch_unlikely(&deferred_pages)) {
4010 if (_deferred_grow_zone(zone, order))
4011 goto try_this_zone;
4012 }
4013#endif
75379191 4014 }
54a6eb5c 4015 }
9276b1bc 4016
6bb15450
MG
4017 /*
4018 * It's possible on a UMA machine to get through all zones that are
4019 * fragmented. If avoiding fragmentation, reset and try again.
4020 */
4021 if (no_fallback) {
4022 alloc_flags &= ~ALLOC_NOFRAGMENT;
4023 goto retry;
4024 }
4025
4ffeaf35 4026 return NULL;
753ee728
MH
4027}
4028
9af744d7 4029static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4030{
a238ab5b 4031 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4032
4033 /*
4034 * This documents exceptions given to allocations in certain
4035 * contexts that are allowed to allocate outside current's set
4036 * of allowed nodes.
4037 */
4038 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4039 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4040 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4041 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 4042 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4043 filter &= ~SHOW_MEM_FILTER_NODES;
4044
9af744d7 4045 show_mem(filter, nodemask);
aa187507
MH
4046}
4047
a8e99259 4048void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4049{
4050 struct va_format vaf;
4051 va_list args;
1be334e5 4052 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4053
0f7896f1 4054 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4055 return;
4056
7877cdcc
MH
4057 va_start(args, fmt);
4058 vaf.fmt = fmt;
4059 vaf.va = &args;
ef8444ea 4060 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4061 current->comm, &vaf, gfp_mask, &gfp_mask,
4062 nodemask_pr_args(nodemask));
7877cdcc 4063 va_end(args);
3ee9a4f0 4064
a8e99259 4065 cpuset_print_current_mems_allowed();
ef8444ea 4066 pr_cont("\n");
a238ab5b 4067 dump_stack();
685dbf6f 4068 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4069}
4070
6c18ba7a
MH
4071static inline struct page *
4072__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4073 unsigned int alloc_flags,
4074 const struct alloc_context *ac)
4075{
4076 struct page *page;
4077
4078 page = get_page_from_freelist(gfp_mask, order,
4079 alloc_flags|ALLOC_CPUSET, ac);
4080 /*
4081 * fallback to ignore cpuset restriction if our nodes
4082 * are depleted
4083 */
4084 if (!page)
4085 page = get_page_from_freelist(gfp_mask, order,
4086 alloc_flags, ac);
4087
4088 return page;
4089}
4090
11e33f6a
MG
4091static inline struct page *
4092__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4093 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4094{
6e0fc46d
DR
4095 struct oom_control oc = {
4096 .zonelist = ac->zonelist,
4097 .nodemask = ac->nodemask,
2a966b77 4098 .memcg = NULL,
6e0fc46d
DR
4099 .gfp_mask = gfp_mask,
4100 .order = order,
6e0fc46d 4101 };
11e33f6a
MG
4102 struct page *page;
4103
9879de73
JW
4104 *did_some_progress = 0;
4105
9879de73 4106 /*
dc56401f
JW
4107 * Acquire the oom lock. If that fails, somebody else is
4108 * making progress for us.
9879de73 4109 */
dc56401f 4110 if (!mutex_trylock(&oom_lock)) {
9879de73 4111 *did_some_progress = 1;
11e33f6a 4112 schedule_timeout_uninterruptible(1);
1da177e4
LT
4113 return NULL;
4114 }
6b1de916 4115
11e33f6a
MG
4116 /*
4117 * Go through the zonelist yet one more time, keep very high watermark
4118 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4119 * we're still under heavy pressure. But make sure that this reclaim
4120 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4121 * allocation which will never fail due to oom_lock already held.
11e33f6a 4122 */
e746bf73
TH
4123 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4124 ~__GFP_DIRECT_RECLAIM, order,
4125 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4126 if (page)
11e33f6a
MG
4127 goto out;
4128
06ad276a
MH
4129 /* Coredumps can quickly deplete all memory reserves */
4130 if (current->flags & PF_DUMPCORE)
4131 goto out;
4132 /* The OOM killer will not help higher order allocs */
4133 if (order > PAGE_ALLOC_COSTLY_ORDER)
4134 goto out;
dcda9b04
MH
4135 /*
4136 * We have already exhausted all our reclaim opportunities without any
4137 * success so it is time to admit defeat. We will skip the OOM killer
4138 * because it is very likely that the caller has a more reasonable
4139 * fallback than shooting a random task.
cfb4a541
MN
4140 *
4141 * The OOM killer may not free memory on a specific node.
dcda9b04 4142 */
cfb4a541 4143 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4144 goto out;
06ad276a 4145 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4146 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4147 goto out;
4148 if (pm_suspended_storage())
4149 goto out;
4150 /*
4151 * XXX: GFP_NOFS allocations should rather fail than rely on
4152 * other request to make a forward progress.
4153 * We are in an unfortunate situation where out_of_memory cannot
4154 * do much for this context but let's try it to at least get
4155 * access to memory reserved if the current task is killed (see
4156 * out_of_memory). Once filesystems are ready to handle allocation
4157 * failures more gracefully we should just bail out here.
4158 */
4159
3c2c6488 4160 /* Exhausted what can be done so it's blame time */
5020e285 4161 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4162 *did_some_progress = 1;
5020e285 4163
6c18ba7a
MH
4164 /*
4165 * Help non-failing allocations by giving them access to memory
4166 * reserves
4167 */
4168 if (gfp_mask & __GFP_NOFAIL)
4169 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4170 ALLOC_NO_WATERMARKS, ac);
5020e285 4171 }
11e33f6a 4172out:
dc56401f 4173 mutex_unlock(&oom_lock);
11e33f6a
MG
4174 return page;
4175}
4176
33c2d214
MH
4177/*
4178 * Maximum number of compaction retries wit a progress before OOM
4179 * killer is consider as the only way to move forward.
4180 */
4181#define MAX_COMPACT_RETRIES 16
4182
56de7263
MG
4183#ifdef CONFIG_COMPACTION
4184/* Try memory compaction for high-order allocations before reclaim */
4185static struct page *
4186__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4187 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4188 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4189{
5e1f0f09 4190 struct page *page = NULL;
eb414681 4191 unsigned long pflags;
499118e9 4192 unsigned int noreclaim_flag;
53853e2d
VB
4193
4194 if (!order)
66199712 4195 return NULL;
66199712 4196
eb414681 4197 psi_memstall_enter(&pflags);
499118e9 4198 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4199
c5d01d0d 4200 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4201 prio, &page);
eb414681 4202
499118e9 4203 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4204 psi_memstall_leave(&pflags);
56de7263 4205
98dd3b48
VB
4206 /*
4207 * At least in one zone compaction wasn't deferred or skipped, so let's
4208 * count a compaction stall
4209 */
4210 count_vm_event(COMPACTSTALL);
8fb74b9f 4211
5e1f0f09
MG
4212 /* Prep a captured page if available */
4213 if (page)
4214 prep_new_page(page, order, gfp_mask, alloc_flags);
4215
4216 /* Try get a page from the freelist if available */
4217 if (!page)
4218 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4219
98dd3b48
VB
4220 if (page) {
4221 struct zone *zone = page_zone(page);
53853e2d 4222
98dd3b48
VB
4223 zone->compact_blockskip_flush = false;
4224 compaction_defer_reset(zone, order, true);
4225 count_vm_event(COMPACTSUCCESS);
4226 return page;
4227 }
56de7263 4228
98dd3b48
VB
4229 /*
4230 * It's bad if compaction run occurs and fails. The most likely reason
4231 * is that pages exist, but not enough to satisfy watermarks.
4232 */
4233 count_vm_event(COMPACTFAIL);
66199712 4234
98dd3b48 4235 cond_resched();
56de7263
MG
4236
4237 return NULL;
4238}
33c2d214 4239
3250845d
VB
4240static inline bool
4241should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4242 enum compact_result compact_result,
4243 enum compact_priority *compact_priority,
d9436498 4244 int *compaction_retries)
3250845d
VB
4245{
4246 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4247 int min_priority;
65190cff
MH
4248 bool ret = false;
4249 int retries = *compaction_retries;
4250 enum compact_priority priority = *compact_priority;
3250845d
VB
4251
4252 if (!order)
4253 return false;
4254
d9436498
VB
4255 if (compaction_made_progress(compact_result))
4256 (*compaction_retries)++;
4257
3250845d
VB
4258 /*
4259 * compaction considers all the zone as desperately out of memory
4260 * so it doesn't really make much sense to retry except when the
4261 * failure could be caused by insufficient priority
4262 */
d9436498
VB
4263 if (compaction_failed(compact_result))
4264 goto check_priority;
3250845d 4265
49433085
VB
4266 /*
4267 * compaction was skipped because there are not enough order-0 pages
4268 * to work with, so we retry only if it looks like reclaim can help.
4269 */
4270 if (compaction_needs_reclaim(compact_result)) {
4271 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4272 goto out;
4273 }
4274
3250845d
VB
4275 /*
4276 * make sure the compaction wasn't deferred or didn't bail out early
4277 * due to locks contention before we declare that we should give up.
49433085
VB
4278 * But the next retry should use a higher priority if allowed, so
4279 * we don't just keep bailing out endlessly.
3250845d 4280 */
65190cff 4281 if (compaction_withdrawn(compact_result)) {
49433085 4282 goto check_priority;
65190cff 4283 }
3250845d
VB
4284
4285 /*
dcda9b04 4286 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4287 * costly ones because they are de facto nofail and invoke OOM
4288 * killer to move on while costly can fail and users are ready
4289 * to cope with that. 1/4 retries is rather arbitrary but we
4290 * would need much more detailed feedback from compaction to
4291 * make a better decision.
4292 */
4293 if (order > PAGE_ALLOC_COSTLY_ORDER)
4294 max_retries /= 4;
65190cff
MH
4295 if (*compaction_retries <= max_retries) {
4296 ret = true;
4297 goto out;
4298 }
3250845d 4299
d9436498
VB
4300 /*
4301 * Make sure there are attempts at the highest priority if we exhausted
4302 * all retries or failed at the lower priorities.
4303 */
4304check_priority:
c2033b00
VB
4305 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4306 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4307
c2033b00 4308 if (*compact_priority > min_priority) {
d9436498
VB
4309 (*compact_priority)--;
4310 *compaction_retries = 0;
65190cff 4311 ret = true;
d9436498 4312 }
65190cff
MH
4313out:
4314 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4315 return ret;
3250845d 4316}
56de7263
MG
4317#else
4318static inline struct page *
4319__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4320 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4321 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4322{
33c2d214 4323 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4324 return NULL;
4325}
33c2d214
MH
4326
4327static inline bool
86a294a8
MH
4328should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4329 enum compact_result compact_result,
a5508cd8 4330 enum compact_priority *compact_priority,
d9436498 4331 int *compaction_retries)
33c2d214 4332{
31e49bfd
MH
4333 struct zone *zone;
4334 struct zoneref *z;
4335
4336 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4337 return false;
4338
4339 /*
4340 * There are setups with compaction disabled which would prefer to loop
4341 * inside the allocator rather than hit the oom killer prematurely.
4342 * Let's give them a good hope and keep retrying while the order-0
4343 * watermarks are OK.
4344 */
97a225e6
JK
4345 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4346 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4347 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4348 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4349 return true;
4350 }
33c2d214
MH
4351 return false;
4352}
3250845d 4353#endif /* CONFIG_COMPACTION */
56de7263 4354
d92a8cfc 4355#ifdef CONFIG_LOCKDEP
93781325 4356static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4357 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4358
f920e413 4359static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4360{
d92a8cfc
PZ
4361 /* no reclaim without waiting on it */
4362 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4363 return false;
4364
4365 /* this guy won't enter reclaim */
2e517d68 4366 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4367 return false;
4368
d92a8cfc
PZ
4369 if (gfp_mask & __GFP_NOLOCKDEP)
4370 return false;
4371
4372 return true;
4373}
4374
93781325
OS
4375void __fs_reclaim_acquire(void)
4376{
4377 lock_map_acquire(&__fs_reclaim_map);
4378}
4379
4380void __fs_reclaim_release(void)
4381{
4382 lock_map_release(&__fs_reclaim_map);
4383}
4384
d92a8cfc
PZ
4385void fs_reclaim_acquire(gfp_t gfp_mask)
4386{
f920e413
DV
4387 gfp_mask = current_gfp_context(gfp_mask);
4388
4389 if (__need_reclaim(gfp_mask)) {
4390 if (gfp_mask & __GFP_FS)
4391 __fs_reclaim_acquire();
4392
4393#ifdef CONFIG_MMU_NOTIFIER
4394 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4395 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4396#endif
4397
4398 }
d92a8cfc
PZ
4399}
4400EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4401
4402void fs_reclaim_release(gfp_t gfp_mask)
4403{
f920e413
DV
4404 gfp_mask = current_gfp_context(gfp_mask);
4405
4406 if (__need_reclaim(gfp_mask)) {
4407 if (gfp_mask & __GFP_FS)
4408 __fs_reclaim_release();
4409 }
d92a8cfc
PZ
4410}
4411EXPORT_SYMBOL_GPL(fs_reclaim_release);
4412#endif
4413
bba90710 4414/* Perform direct synchronous page reclaim */
2187e17b 4415static unsigned long
a9263751
VB
4416__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4417 const struct alloc_context *ac)
11e33f6a 4418{
499118e9 4419 unsigned int noreclaim_flag;
2187e17b 4420 unsigned long pflags, progress;
11e33f6a
MG
4421
4422 cond_resched();
4423
4424 /* We now go into synchronous reclaim */
4425 cpuset_memory_pressure_bump();
eb414681 4426 psi_memstall_enter(&pflags);
d92a8cfc 4427 fs_reclaim_acquire(gfp_mask);
93781325 4428 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4429
a9263751
VB
4430 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4431 ac->nodemask);
11e33f6a 4432
499118e9 4433 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4434 fs_reclaim_release(gfp_mask);
eb414681 4435 psi_memstall_leave(&pflags);
11e33f6a
MG
4436
4437 cond_resched();
4438
bba90710
MS
4439 return progress;
4440}
4441
4442/* The really slow allocator path where we enter direct reclaim */
4443static inline struct page *
4444__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4445 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4446 unsigned long *did_some_progress)
bba90710
MS
4447{
4448 struct page *page = NULL;
4449 bool drained = false;
4450
a9263751 4451 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4452 if (unlikely(!(*did_some_progress)))
4453 return NULL;
11e33f6a 4454
9ee493ce 4455retry:
31a6c190 4456 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4457
4458 /*
4459 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4460 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4461 * Shrink them and try again
9ee493ce
MG
4462 */
4463 if (!page && !drained) {
29fac03b 4464 unreserve_highatomic_pageblock(ac, false);
93481ff0 4465 drain_all_pages(NULL);
9ee493ce
MG
4466 drained = true;
4467 goto retry;
4468 }
4469
11e33f6a
MG
4470 return page;
4471}
4472
5ecd9d40
DR
4473static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4474 const struct alloc_context *ac)
3a025760
JW
4475{
4476 struct zoneref *z;
4477 struct zone *zone;
e1a55637 4478 pg_data_t *last_pgdat = NULL;
97a225e6 4479 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4480
97a225e6 4481 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4482 ac->nodemask) {
e1a55637 4483 if (last_pgdat != zone->zone_pgdat)
97a225e6 4484 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4485 last_pgdat = zone->zone_pgdat;
4486 }
3a025760
JW
4487}
4488
c603844b 4489static inline unsigned int
341ce06f
PZ
4490gfp_to_alloc_flags(gfp_t gfp_mask)
4491{
c603844b 4492 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4493
736838e9
MN
4494 /*
4495 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4496 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4497 * to save two branches.
4498 */
e6223a3b 4499 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4500 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4501
341ce06f
PZ
4502 /*
4503 * The caller may dip into page reserves a bit more if the caller
4504 * cannot run direct reclaim, or if the caller has realtime scheduling
4505 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4506 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4507 */
736838e9
MN
4508 alloc_flags |= (__force int)
4509 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4510
d0164adc 4511 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4512 /*
b104a35d
DR
4513 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4514 * if it can't schedule.
5c3240d9 4515 */
b104a35d 4516 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4517 alloc_flags |= ALLOC_HARDER;
523b9458 4518 /*
b104a35d 4519 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4520 * comment for __cpuset_node_allowed().
523b9458 4521 */
341ce06f 4522 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4523 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4524 alloc_flags |= ALLOC_HARDER;
4525
8510e69c
JK
4526 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4527
341ce06f
PZ
4528 return alloc_flags;
4529}
4530
cd04ae1e 4531static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4532{
cd04ae1e
MH
4533 if (!tsk_is_oom_victim(tsk))
4534 return false;
4535
4536 /*
4537 * !MMU doesn't have oom reaper so give access to memory reserves
4538 * only to the thread with TIF_MEMDIE set
4539 */
4540 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4541 return false;
4542
cd04ae1e
MH
4543 return true;
4544}
4545
4546/*
4547 * Distinguish requests which really need access to full memory
4548 * reserves from oom victims which can live with a portion of it
4549 */
4550static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4551{
4552 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4553 return 0;
31a6c190 4554 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4555 return ALLOC_NO_WATERMARKS;
31a6c190 4556 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4557 return ALLOC_NO_WATERMARKS;
4558 if (!in_interrupt()) {
4559 if (current->flags & PF_MEMALLOC)
4560 return ALLOC_NO_WATERMARKS;
4561 else if (oom_reserves_allowed(current))
4562 return ALLOC_OOM;
4563 }
31a6c190 4564
cd04ae1e
MH
4565 return 0;
4566}
4567
4568bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4569{
4570 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4571}
4572
0a0337e0
MH
4573/*
4574 * Checks whether it makes sense to retry the reclaim to make a forward progress
4575 * for the given allocation request.
491d79ae
JW
4576 *
4577 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4578 * without success, or when we couldn't even meet the watermark if we
4579 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4580 *
4581 * Returns true if a retry is viable or false to enter the oom path.
4582 */
4583static inline bool
4584should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4585 struct alloc_context *ac, int alloc_flags,
423b452e 4586 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4587{
4588 struct zone *zone;
4589 struct zoneref *z;
15f570bf 4590 bool ret = false;
0a0337e0 4591
423b452e
VB
4592 /*
4593 * Costly allocations might have made a progress but this doesn't mean
4594 * their order will become available due to high fragmentation so
4595 * always increment the no progress counter for them
4596 */
4597 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4598 *no_progress_loops = 0;
4599 else
4600 (*no_progress_loops)++;
4601
0a0337e0
MH
4602 /*
4603 * Make sure we converge to OOM if we cannot make any progress
4604 * several times in the row.
4605 */
04c8716f
MK
4606 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4607 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4608 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4609 }
0a0337e0 4610
bca67592
MG
4611 /*
4612 * Keep reclaiming pages while there is a chance this will lead
4613 * somewhere. If none of the target zones can satisfy our allocation
4614 * request even if all reclaimable pages are considered then we are
4615 * screwed and have to go OOM.
0a0337e0 4616 */
97a225e6
JK
4617 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4618 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4619 unsigned long available;
ede37713 4620 unsigned long reclaimable;
d379f01d
MH
4621 unsigned long min_wmark = min_wmark_pages(zone);
4622 bool wmark;
0a0337e0 4623
5a1c84b4 4624 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4625 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4626
4627 /*
491d79ae
JW
4628 * Would the allocation succeed if we reclaimed all
4629 * reclaimable pages?
0a0337e0 4630 */
d379f01d 4631 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4632 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4633 trace_reclaim_retry_zone(z, order, reclaimable,
4634 available, min_wmark, *no_progress_loops, wmark);
4635 if (wmark) {
ede37713
MH
4636 /*
4637 * If we didn't make any progress and have a lot of
4638 * dirty + writeback pages then we should wait for
4639 * an IO to complete to slow down the reclaim and
4640 * prevent from pre mature OOM
4641 */
4642 if (!did_some_progress) {
11fb9989 4643 unsigned long write_pending;
ede37713 4644
5a1c84b4
MG
4645 write_pending = zone_page_state_snapshot(zone,
4646 NR_ZONE_WRITE_PENDING);
ede37713 4647
11fb9989 4648 if (2 * write_pending > reclaimable) {
ede37713
MH
4649 congestion_wait(BLK_RW_ASYNC, HZ/10);
4650 return true;
4651 }
4652 }
5a1c84b4 4653
15f570bf
MH
4654 ret = true;
4655 goto out;
0a0337e0
MH
4656 }
4657 }
4658
15f570bf
MH
4659out:
4660 /*
4661 * Memory allocation/reclaim might be called from a WQ context and the
4662 * current implementation of the WQ concurrency control doesn't
4663 * recognize that a particular WQ is congested if the worker thread is
4664 * looping without ever sleeping. Therefore we have to do a short sleep
4665 * here rather than calling cond_resched().
4666 */
4667 if (current->flags & PF_WQ_WORKER)
4668 schedule_timeout_uninterruptible(1);
4669 else
4670 cond_resched();
4671 return ret;
0a0337e0
MH
4672}
4673
902b6281
VB
4674static inline bool
4675check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4676{
4677 /*
4678 * It's possible that cpuset's mems_allowed and the nodemask from
4679 * mempolicy don't intersect. This should be normally dealt with by
4680 * policy_nodemask(), but it's possible to race with cpuset update in
4681 * such a way the check therein was true, and then it became false
4682 * before we got our cpuset_mems_cookie here.
4683 * This assumes that for all allocations, ac->nodemask can come only
4684 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4685 * when it does not intersect with the cpuset restrictions) or the
4686 * caller can deal with a violated nodemask.
4687 */
4688 if (cpusets_enabled() && ac->nodemask &&
4689 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4690 ac->nodemask = NULL;
4691 return true;
4692 }
4693
4694 /*
4695 * When updating a task's mems_allowed or mempolicy nodemask, it is
4696 * possible to race with parallel threads in such a way that our
4697 * allocation can fail while the mask is being updated. If we are about
4698 * to fail, check if the cpuset changed during allocation and if so,
4699 * retry.
4700 */
4701 if (read_mems_allowed_retry(cpuset_mems_cookie))
4702 return true;
4703
4704 return false;
4705}
4706
11e33f6a
MG
4707static inline struct page *
4708__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4709 struct alloc_context *ac)
11e33f6a 4710{
d0164adc 4711 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4712 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4713 struct page *page = NULL;
c603844b 4714 unsigned int alloc_flags;
11e33f6a 4715 unsigned long did_some_progress;
5ce9bfef 4716 enum compact_priority compact_priority;
c5d01d0d 4717 enum compact_result compact_result;
5ce9bfef
VB
4718 int compaction_retries;
4719 int no_progress_loops;
5ce9bfef 4720 unsigned int cpuset_mems_cookie;
cd04ae1e 4721 int reserve_flags;
1da177e4 4722
d0164adc
MG
4723 /*
4724 * We also sanity check to catch abuse of atomic reserves being used by
4725 * callers that are not in atomic context.
4726 */
4727 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4728 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4729 gfp_mask &= ~__GFP_ATOMIC;
4730
5ce9bfef
VB
4731retry_cpuset:
4732 compaction_retries = 0;
4733 no_progress_loops = 0;
4734 compact_priority = DEF_COMPACT_PRIORITY;
4735 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4736
4737 /*
4738 * The fast path uses conservative alloc_flags to succeed only until
4739 * kswapd needs to be woken up, and to avoid the cost of setting up
4740 * alloc_flags precisely. So we do that now.
4741 */
4742 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4743
e47483bc
VB
4744 /*
4745 * We need to recalculate the starting point for the zonelist iterator
4746 * because we might have used different nodemask in the fast path, or
4747 * there was a cpuset modification and we are retrying - otherwise we
4748 * could end up iterating over non-eligible zones endlessly.
4749 */
4750 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4751 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4752 if (!ac->preferred_zoneref->zone)
4753 goto nopage;
4754
0a79cdad 4755 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4756 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4757
4758 /*
4759 * The adjusted alloc_flags might result in immediate success, so try
4760 * that first
4761 */
4762 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4763 if (page)
4764 goto got_pg;
4765
a8161d1e
VB
4766 /*
4767 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4768 * that we have enough base pages and don't need to reclaim. For non-
4769 * movable high-order allocations, do that as well, as compaction will
4770 * try prevent permanent fragmentation by migrating from blocks of the
4771 * same migratetype.
4772 * Don't try this for allocations that are allowed to ignore
4773 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4774 */
282722b0
VB
4775 if (can_direct_reclaim &&
4776 (costly_order ||
4777 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4778 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4779 page = __alloc_pages_direct_compact(gfp_mask, order,
4780 alloc_flags, ac,
a5508cd8 4781 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4782 &compact_result);
4783 if (page)
4784 goto got_pg;
4785
cc638f32
VB
4786 /*
4787 * Checks for costly allocations with __GFP_NORETRY, which
4788 * includes some THP page fault allocations
4789 */
4790 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4791 /*
4792 * If allocating entire pageblock(s) and compaction
4793 * failed because all zones are below low watermarks
4794 * or is prohibited because it recently failed at this
3f36d866
DR
4795 * order, fail immediately unless the allocator has
4796 * requested compaction and reclaim retry.
b39d0ee2
DR
4797 *
4798 * Reclaim is
4799 * - potentially very expensive because zones are far
4800 * below their low watermarks or this is part of very
4801 * bursty high order allocations,
4802 * - not guaranteed to help because isolate_freepages()
4803 * may not iterate over freed pages as part of its
4804 * linear scan, and
4805 * - unlikely to make entire pageblocks free on its
4806 * own.
4807 */
4808 if (compact_result == COMPACT_SKIPPED ||
4809 compact_result == COMPACT_DEFERRED)
4810 goto nopage;
a8161d1e 4811
a8161d1e 4812 /*
3eb2771b
VB
4813 * Looks like reclaim/compaction is worth trying, but
4814 * sync compaction could be very expensive, so keep
25160354 4815 * using async compaction.
a8161d1e 4816 */
a5508cd8 4817 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4818 }
4819 }
23771235 4820
31a6c190 4821retry:
23771235 4822 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4823 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4824 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4825
cd04ae1e
MH
4826 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4827 if (reserve_flags)
8510e69c 4828 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4829
e46e7b77 4830 /*
d6a24df0
VB
4831 * Reset the nodemask and zonelist iterators if memory policies can be
4832 * ignored. These allocations are high priority and system rather than
4833 * user oriented.
e46e7b77 4834 */
cd04ae1e 4835 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4836 ac->nodemask = NULL;
e46e7b77 4837 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4838 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4839 }
4840
23771235 4841 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4842 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4843 if (page)
4844 goto got_pg;
1da177e4 4845
d0164adc 4846 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4847 if (!can_direct_reclaim)
1da177e4
LT
4848 goto nopage;
4849
9a67f648
MH
4850 /* Avoid recursion of direct reclaim */
4851 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4852 goto nopage;
4853
a8161d1e
VB
4854 /* Try direct reclaim and then allocating */
4855 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4856 &did_some_progress);
4857 if (page)
4858 goto got_pg;
4859
4860 /* Try direct compaction and then allocating */
a9263751 4861 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4862 compact_priority, &compact_result);
56de7263
MG
4863 if (page)
4864 goto got_pg;
75f30861 4865
9083905a
JW
4866 /* Do not loop if specifically requested */
4867 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4868 goto nopage;
9083905a 4869
0a0337e0
MH
4870 /*
4871 * Do not retry costly high order allocations unless they are
dcda9b04 4872 * __GFP_RETRY_MAYFAIL
0a0337e0 4873 */
dcda9b04 4874 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4875 goto nopage;
0a0337e0 4876
0a0337e0 4877 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4878 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4879 goto retry;
4880
33c2d214
MH
4881 /*
4882 * It doesn't make any sense to retry for the compaction if the order-0
4883 * reclaim is not able to make any progress because the current
4884 * implementation of the compaction depends on the sufficient amount
4885 * of free memory (see __compaction_suitable)
4886 */
4887 if (did_some_progress > 0 &&
86a294a8 4888 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4889 compact_result, &compact_priority,
d9436498 4890 &compaction_retries))
33c2d214
MH
4891 goto retry;
4892
902b6281
VB
4893
4894 /* Deal with possible cpuset update races before we start OOM killing */
4895 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4896 goto retry_cpuset;
4897
9083905a
JW
4898 /* Reclaim has failed us, start killing things */
4899 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4900 if (page)
4901 goto got_pg;
4902
9a67f648 4903 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4904 if (tsk_is_oom_victim(current) &&
8510e69c 4905 (alloc_flags & ALLOC_OOM ||
c288983d 4906 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4907 goto nopage;
4908
9083905a 4909 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4910 if (did_some_progress) {
4911 no_progress_loops = 0;
9083905a 4912 goto retry;
0a0337e0 4913 }
9083905a 4914
1da177e4 4915nopage:
902b6281
VB
4916 /* Deal with possible cpuset update races before we fail */
4917 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4918 goto retry_cpuset;
4919
9a67f648
MH
4920 /*
4921 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4922 * we always retry
4923 */
4924 if (gfp_mask & __GFP_NOFAIL) {
4925 /*
4926 * All existing users of the __GFP_NOFAIL are blockable, so warn
4927 * of any new users that actually require GFP_NOWAIT
4928 */
4929 if (WARN_ON_ONCE(!can_direct_reclaim))
4930 goto fail;
4931
4932 /*
4933 * PF_MEMALLOC request from this context is rather bizarre
4934 * because we cannot reclaim anything and only can loop waiting
4935 * for somebody to do a work for us
4936 */
4937 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4938
4939 /*
4940 * non failing costly orders are a hard requirement which we
4941 * are not prepared for much so let's warn about these users
4942 * so that we can identify them and convert them to something
4943 * else.
4944 */
4945 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4946
6c18ba7a
MH
4947 /*
4948 * Help non-failing allocations by giving them access to memory
4949 * reserves but do not use ALLOC_NO_WATERMARKS because this
4950 * could deplete whole memory reserves which would just make
4951 * the situation worse
4952 */
4953 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4954 if (page)
4955 goto got_pg;
4956
9a67f648
MH
4957 cond_resched();
4958 goto retry;
4959 }
4960fail:
a8e99259 4961 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4962 "page allocation failure: order:%u", order);
1da177e4 4963got_pg:
072bb0aa 4964 return page;
1da177e4 4965}
11e33f6a 4966
9cd75558 4967static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4968 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4969 struct alloc_context *ac, gfp_t *alloc_mask,
4970 unsigned int *alloc_flags)
11e33f6a 4971{
97a225e6 4972 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4973 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4974 ac->nodemask = nodemask;
01c0bfe0 4975 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4976
682a3385 4977 if (cpusets_enabled()) {
9cd75558 4978 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4979 /*
4980 * When we are in the interrupt context, it is irrelevant
4981 * to the current task context. It means that any node ok.
4982 */
4983 if (!in_interrupt() && !ac->nodemask)
9cd75558 4984 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4985 else
4986 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4987 }
4988
d92a8cfc
PZ
4989 fs_reclaim_acquire(gfp_mask);
4990 fs_reclaim_release(gfp_mask);
11e33f6a 4991
d0164adc 4992 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4993
4994 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4995 return false;
11e33f6a 4996
8510e69c 4997 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4998
c9ab0c4f 4999 /* Dirty zone balancing only done in the fast path */
9cd75558 5000 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5001
e46e7b77
MG
5002 /*
5003 * The preferred zone is used for statistics but crucially it is
5004 * also used as the starting point for the zonelist iterator. It
5005 * may get reset for allocations that ignore memory policies.
5006 */
9cd75558 5007 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5008 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5009
5010 return true;
9cd75558
MG
5011}
5012
5013/*
5014 * This is the 'heart' of the zoned buddy allocator.
5015 */
5016struct page *
04ec6264
VB
5017__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
5018 nodemask_t *nodemask)
9cd75558
MG
5019{
5020 struct page *page;
5021 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 5022 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5023 struct alloc_context ac = { };
5024
c63ae43b
MH
5025 /*
5026 * There are several places where we assume that the order value is sane
5027 * so bail out early if the request is out of bound.
5028 */
5029 if (unlikely(order >= MAX_ORDER)) {
5030 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
5031 return NULL;
5032 }
5033
9cd75558 5034 gfp_mask &= gfp_allowed_mask;
f19360f0 5035 alloc_mask = gfp_mask;
04ec6264 5036 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
5037 return NULL;
5038
6bb15450
MG
5039 /*
5040 * Forbid the first pass from falling back to types that fragment
5041 * memory until all local zones are considered.
5042 */
0a79cdad 5043 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 5044
5117f45d 5045 /* First allocation attempt */
a9263751 5046 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
5047 if (likely(page))
5048 goto out;
11e33f6a 5049
4fcb0971 5050 /*
7dea19f9
MH
5051 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5052 * resp. GFP_NOIO which has to be inherited for all allocation requests
5053 * from a particular context which has been marked by
5054 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 5055 */
7dea19f9 5056 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 5057 ac.spread_dirty_pages = false;
23f086f9 5058
4741526b
MG
5059 /*
5060 * Restore the original nodemask if it was potentially replaced with
5061 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5062 */
97ce86f9 5063 ac.nodemask = nodemask;
16096c25 5064
4fcb0971 5065 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 5066
4fcb0971 5067out:
c4159a75 5068 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 5069 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
5070 __free_pages(page, order);
5071 page = NULL;
4949148a
VD
5072 }
5073
4fcb0971
MG
5074 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5075
11e33f6a 5076 return page;
1da177e4 5077}
d239171e 5078EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
5079
5080/*
9ea9a680
MH
5081 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5082 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5083 * you need to access high mem.
1da177e4 5084 */
920c7a5d 5085unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5086{
945a1113
AM
5087 struct page *page;
5088
9ea9a680 5089 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5090 if (!page)
5091 return 0;
5092 return (unsigned long) page_address(page);
5093}
1da177e4
LT
5094EXPORT_SYMBOL(__get_free_pages);
5095
920c7a5d 5096unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5097{
945a1113 5098 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5099}
1da177e4
LT
5100EXPORT_SYMBOL(get_zeroed_page);
5101
742aa7fb 5102static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5103{
742aa7fb
AL
5104 if (order == 0) /* Via pcp? */
5105 free_unref_page(page);
5106 else
7fef431b 5107 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5108}
5109
7f194fbb
MWO
5110/**
5111 * __free_pages - Free pages allocated with alloc_pages().
5112 * @page: The page pointer returned from alloc_pages().
5113 * @order: The order of the allocation.
5114 *
5115 * This function can free multi-page allocations that are not compound
5116 * pages. It does not check that the @order passed in matches that of
5117 * the allocation, so it is easy to leak memory. Freeing more memory
5118 * than was allocated will probably emit a warning.
5119 *
5120 * If the last reference to this page is speculative, it will be released
5121 * by put_page() which only frees the first page of a non-compound
5122 * allocation. To prevent the remaining pages from being leaked, we free
5123 * the subsequent pages here. If you want to use the page's reference
5124 * count to decide when to free the allocation, you should allocate a
5125 * compound page, and use put_page() instead of __free_pages().
5126 *
5127 * Context: May be called in interrupt context or while holding a normal
5128 * spinlock, but not in NMI context or while holding a raw spinlock.
5129 */
742aa7fb
AL
5130void __free_pages(struct page *page, unsigned int order)
5131{
5132 if (put_page_testzero(page))
5133 free_the_page(page, order);
e320d301
MWO
5134 else if (!PageHead(page))
5135 while (order-- > 0)
5136 free_the_page(page + (1 << order), order);
742aa7fb 5137}
1da177e4
LT
5138EXPORT_SYMBOL(__free_pages);
5139
920c7a5d 5140void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5141{
5142 if (addr != 0) {
725d704e 5143 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5144 __free_pages(virt_to_page((void *)addr), order);
5145 }
5146}
5147
5148EXPORT_SYMBOL(free_pages);
5149
b63ae8ca
AD
5150/*
5151 * Page Fragment:
5152 * An arbitrary-length arbitrary-offset area of memory which resides
5153 * within a 0 or higher order page. Multiple fragments within that page
5154 * are individually refcounted, in the page's reference counter.
5155 *
5156 * The page_frag functions below provide a simple allocation framework for
5157 * page fragments. This is used by the network stack and network device
5158 * drivers to provide a backing region of memory for use as either an
5159 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5160 */
2976db80
AD
5161static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5162 gfp_t gfp_mask)
b63ae8ca
AD
5163{
5164 struct page *page = NULL;
5165 gfp_t gfp = gfp_mask;
5166
5167#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5168 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5169 __GFP_NOMEMALLOC;
5170 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5171 PAGE_FRAG_CACHE_MAX_ORDER);
5172 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5173#endif
5174 if (unlikely(!page))
5175 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5176
5177 nc->va = page ? page_address(page) : NULL;
5178
5179 return page;
5180}
5181
2976db80 5182void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5183{
5184 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5185
742aa7fb
AL
5186 if (page_ref_sub_and_test(page, count))
5187 free_the_page(page, compound_order(page));
44fdffd7 5188}
2976db80 5189EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5190
b358e212
KH
5191void *page_frag_alloc_align(struct page_frag_cache *nc,
5192 unsigned int fragsz, gfp_t gfp_mask,
5193 unsigned int align_mask)
b63ae8ca
AD
5194{
5195 unsigned int size = PAGE_SIZE;
5196 struct page *page;
5197 int offset;
5198
5199 if (unlikely(!nc->va)) {
5200refill:
2976db80 5201 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5202 if (!page)
5203 return NULL;
5204
5205#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5206 /* if size can vary use size else just use PAGE_SIZE */
5207 size = nc->size;
5208#endif
5209 /* Even if we own the page, we do not use atomic_set().
5210 * This would break get_page_unless_zero() users.
5211 */
86447726 5212 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5213
5214 /* reset page count bias and offset to start of new frag */
2f064f34 5215 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5216 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5217 nc->offset = size;
5218 }
5219
5220 offset = nc->offset - fragsz;
5221 if (unlikely(offset < 0)) {
5222 page = virt_to_page(nc->va);
5223
fe896d18 5224 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5225 goto refill;
5226
d8c19014
DZ
5227 if (unlikely(nc->pfmemalloc)) {
5228 free_the_page(page, compound_order(page));
5229 goto refill;
5230 }
5231
b63ae8ca
AD
5232#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5233 /* if size can vary use size else just use PAGE_SIZE */
5234 size = nc->size;
5235#endif
5236 /* OK, page count is 0, we can safely set it */
86447726 5237 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5238
5239 /* reset page count bias and offset to start of new frag */
86447726 5240 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5241 offset = size - fragsz;
5242 }
5243
5244 nc->pagecnt_bias--;
b358e212 5245 offset &= align_mask;
b63ae8ca
AD
5246 nc->offset = offset;
5247
5248 return nc->va + offset;
5249}
b358e212 5250EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5251
5252/*
5253 * Frees a page fragment allocated out of either a compound or order 0 page.
5254 */
8c2dd3e4 5255void page_frag_free(void *addr)
b63ae8ca
AD
5256{
5257 struct page *page = virt_to_head_page(addr);
5258
742aa7fb
AL
5259 if (unlikely(put_page_testzero(page)))
5260 free_the_page(page, compound_order(page));
b63ae8ca 5261}
8c2dd3e4 5262EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5263
d00181b9
KS
5264static void *make_alloc_exact(unsigned long addr, unsigned int order,
5265 size_t size)
ee85c2e1
AK
5266{
5267 if (addr) {
5268 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5269 unsigned long used = addr + PAGE_ALIGN(size);
5270
5271 split_page(virt_to_page((void *)addr), order);
5272 while (used < alloc_end) {
5273 free_page(used);
5274 used += PAGE_SIZE;
5275 }
5276 }
5277 return (void *)addr;
5278}
5279
2be0ffe2
TT
5280/**
5281 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5282 * @size: the number of bytes to allocate
63931eb9 5283 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5284 *
5285 * This function is similar to alloc_pages(), except that it allocates the
5286 * minimum number of pages to satisfy the request. alloc_pages() can only
5287 * allocate memory in power-of-two pages.
5288 *
5289 * This function is also limited by MAX_ORDER.
5290 *
5291 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5292 *
5293 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5294 */
5295void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5296{
5297 unsigned int order = get_order(size);
5298 unsigned long addr;
5299
63931eb9
VB
5300 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5301 gfp_mask &= ~__GFP_COMP;
5302
2be0ffe2 5303 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5304 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5305}
5306EXPORT_SYMBOL(alloc_pages_exact);
5307
ee85c2e1
AK
5308/**
5309 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5310 * pages on a node.
b5e6ab58 5311 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5312 * @size: the number of bytes to allocate
63931eb9 5313 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5314 *
5315 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5316 * back.
a862f68a
MR
5317 *
5318 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5319 */
e1931811 5320void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5321{
d00181b9 5322 unsigned int order = get_order(size);
63931eb9
VB
5323 struct page *p;
5324
5325 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5326 gfp_mask &= ~__GFP_COMP;
5327
5328 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5329 if (!p)
5330 return NULL;
5331 return make_alloc_exact((unsigned long)page_address(p), order, size);
5332}
ee85c2e1 5333
2be0ffe2
TT
5334/**
5335 * free_pages_exact - release memory allocated via alloc_pages_exact()
5336 * @virt: the value returned by alloc_pages_exact.
5337 * @size: size of allocation, same value as passed to alloc_pages_exact().
5338 *
5339 * Release the memory allocated by a previous call to alloc_pages_exact.
5340 */
5341void free_pages_exact(void *virt, size_t size)
5342{
5343 unsigned long addr = (unsigned long)virt;
5344 unsigned long end = addr + PAGE_ALIGN(size);
5345
5346 while (addr < end) {
5347 free_page(addr);
5348 addr += PAGE_SIZE;
5349 }
5350}
5351EXPORT_SYMBOL(free_pages_exact);
5352
e0fb5815
ZY
5353/**
5354 * nr_free_zone_pages - count number of pages beyond high watermark
5355 * @offset: The zone index of the highest zone
5356 *
a862f68a 5357 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5358 * high watermark within all zones at or below a given zone index. For each
5359 * zone, the number of pages is calculated as:
0e056eb5 5360 *
5361 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5362 *
5363 * Return: number of pages beyond high watermark.
e0fb5815 5364 */
ebec3862 5365static unsigned long nr_free_zone_pages(int offset)
1da177e4 5366{
dd1a239f 5367 struct zoneref *z;
54a6eb5c
MG
5368 struct zone *zone;
5369
e310fd43 5370 /* Just pick one node, since fallback list is circular */
ebec3862 5371 unsigned long sum = 0;
1da177e4 5372
0e88460d 5373 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5374
54a6eb5c 5375 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5376 unsigned long size = zone_managed_pages(zone);
41858966 5377 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5378 if (size > high)
5379 sum += size - high;
1da177e4
LT
5380 }
5381
5382 return sum;
5383}
5384
e0fb5815
ZY
5385/**
5386 * nr_free_buffer_pages - count number of pages beyond high watermark
5387 *
5388 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5389 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5390 *
5391 * Return: number of pages beyond high watermark within ZONE_DMA and
5392 * ZONE_NORMAL.
1da177e4 5393 */
ebec3862 5394unsigned long nr_free_buffer_pages(void)
1da177e4 5395{
af4ca457 5396 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5397}
c2f1a551 5398EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5399
08e0f6a9 5400static inline void show_node(struct zone *zone)
1da177e4 5401{
e5adfffc 5402 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5403 printk("Node %d ", zone_to_nid(zone));
1da177e4 5404}
1da177e4 5405
d02bd27b
IR
5406long si_mem_available(void)
5407{
5408 long available;
5409 unsigned long pagecache;
5410 unsigned long wmark_low = 0;
5411 unsigned long pages[NR_LRU_LISTS];
b29940c1 5412 unsigned long reclaimable;
d02bd27b
IR
5413 struct zone *zone;
5414 int lru;
5415
5416 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5417 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5418
5419 for_each_zone(zone)
a9214443 5420 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5421
5422 /*
5423 * Estimate the amount of memory available for userspace allocations,
5424 * without causing swapping.
5425 */
c41f012a 5426 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5427
5428 /*
5429 * Not all the page cache can be freed, otherwise the system will
5430 * start swapping. Assume at least half of the page cache, or the
5431 * low watermark worth of cache, needs to stay.
5432 */
5433 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5434 pagecache -= min(pagecache / 2, wmark_low);
5435 available += pagecache;
5436
5437 /*
b29940c1
VB
5438 * Part of the reclaimable slab and other kernel memory consists of
5439 * items that are in use, and cannot be freed. Cap this estimate at the
5440 * low watermark.
d02bd27b 5441 */
d42f3245
RG
5442 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5443 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5444 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5445
d02bd27b
IR
5446 if (available < 0)
5447 available = 0;
5448 return available;
5449}
5450EXPORT_SYMBOL_GPL(si_mem_available);
5451
1da177e4
LT
5452void si_meminfo(struct sysinfo *val)
5453{
ca79b0c2 5454 val->totalram = totalram_pages();
11fb9989 5455 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5456 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5457 val->bufferram = nr_blockdev_pages();
ca79b0c2 5458 val->totalhigh = totalhigh_pages();
1da177e4 5459 val->freehigh = nr_free_highpages();
1da177e4
LT
5460 val->mem_unit = PAGE_SIZE;
5461}
5462
5463EXPORT_SYMBOL(si_meminfo);
5464
5465#ifdef CONFIG_NUMA
5466void si_meminfo_node(struct sysinfo *val, int nid)
5467{
cdd91a77
JL
5468 int zone_type; /* needs to be signed */
5469 unsigned long managed_pages = 0;
fc2bd799
JK
5470 unsigned long managed_highpages = 0;
5471 unsigned long free_highpages = 0;
1da177e4
LT
5472 pg_data_t *pgdat = NODE_DATA(nid);
5473
cdd91a77 5474 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5475 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5476 val->totalram = managed_pages;
11fb9989 5477 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5478 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5479#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5480 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5481 struct zone *zone = &pgdat->node_zones[zone_type];
5482
5483 if (is_highmem(zone)) {
9705bea5 5484 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5485 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5486 }
5487 }
5488 val->totalhigh = managed_highpages;
5489 val->freehigh = free_highpages;
98d2b0eb 5490#else
fc2bd799
JK
5491 val->totalhigh = managed_highpages;
5492 val->freehigh = free_highpages;
98d2b0eb 5493#endif
1da177e4
LT
5494 val->mem_unit = PAGE_SIZE;
5495}
5496#endif
5497
ddd588b5 5498/*
7bf02ea2
DR
5499 * Determine whether the node should be displayed or not, depending on whether
5500 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5501 */
9af744d7 5502static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5503{
ddd588b5 5504 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5505 return false;
ddd588b5 5506
9af744d7
MH
5507 /*
5508 * no node mask - aka implicit memory numa policy. Do not bother with
5509 * the synchronization - read_mems_allowed_begin - because we do not
5510 * have to be precise here.
5511 */
5512 if (!nodemask)
5513 nodemask = &cpuset_current_mems_allowed;
5514
5515 return !node_isset(nid, *nodemask);
ddd588b5
DR
5516}
5517
1da177e4
LT
5518#define K(x) ((x) << (PAGE_SHIFT-10))
5519
377e4f16
RV
5520static void show_migration_types(unsigned char type)
5521{
5522 static const char types[MIGRATE_TYPES] = {
5523 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5524 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5525 [MIGRATE_RECLAIMABLE] = 'E',
5526 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5527#ifdef CONFIG_CMA
5528 [MIGRATE_CMA] = 'C',
5529#endif
194159fb 5530#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5531 [MIGRATE_ISOLATE] = 'I',
194159fb 5532#endif
377e4f16
RV
5533 };
5534 char tmp[MIGRATE_TYPES + 1];
5535 char *p = tmp;
5536 int i;
5537
5538 for (i = 0; i < MIGRATE_TYPES; i++) {
5539 if (type & (1 << i))
5540 *p++ = types[i];
5541 }
5542
5543 *p = '\0';
1f84a18f 5544 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5545}
5546
1da177e4
LT
5547/*
5548 * Show free area list (used inside shift_scroll-lock stuff)
5549 * We also calculate the percentage fragmentation. We do this by counting the
5550 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5551 *
5552 * Bits in @filter:
5553 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5554 * cpuset.
1da177e4 5555 */
9af744d7 5556void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5557{
d1bfcdb8 5558 unsigned long free_pcp = 0;
c7241913 5559 int cpu;
1da177e4 5560 struct zone *zone;
599d0c95 5561 pg_data_t *pgdat;
1da177e4 5562
ee99c71c 5563 for_each_populated_zone(zone) {
9af744d7 5564 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5565 continue;
d1bfcdb8 5566
761b0677
KK
5567 for_each_online_cpu(cpu)
5568 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5569 }
5570
a731286d
KM
5571 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5572 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5573 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5574 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5575 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5576 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5577 global_node_page_state(NR_ACTIVE_ANON),
5578 global_node_page_state(NR_INACTIVE_ANON),
5579 global_node_page_state(NR_ISOLATED_ANON),
5580 global_node_page_state(NR_ACTIVE_FILE),
5581 global_node_page_state(NR_INACTIVE_FILE),
5582 global_node_page_state(NR_ISOLATED_FILE),
5583 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5584 global_node_page_state(NR_FILE_DIRTY),
5585 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5586 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5587 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5588 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5589 global_node_page_state(NR_SHMEM),
f0c0c115 5590 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5591 global_zone_page_state(NR_BOUNCE),
5592 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5593 free_pcp,
c41f012a 5594 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5595
599d0c95 5596 for_each_online_pgdat(pgdat) {
9af744d7 5597 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5598 continue;
5599
599d0c95
MG
5600 printk("Node %d"
5601 " active_anon:%lukB"
5602 " inactive_anon:%lukB"
5603 " active_file:%lukB"
5604 " inactive_file:%lukB"
5605 " unevictable:%lukB"
5606 " isolated(anon):%lukB"
5607 " isolated(file):%lukB"
50658e2e 5608 " mapped:%lukB"
11fb9989
MG
5609 " dirty:%lukB"
5610 " writeback:%lukB"
5611 " shmem:%lukB"
5612#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5613 " shmem_thp: %lukB"
5614 " shmem_pmdmapped: %lukB"
5615 " anon_thp: %lukB"
5616#endif
5617 " writeback_tmp:%lukB"
991e7673
SB
5618 " kernel_stack:%lukB"
5619#ifdef CONFIG_SHADOW_CALL_STACK
5620 " shadow_call_stack:%lukB"
5621#endif
f0c0c115 5622 " pagetables:%lukB"
599d0c95
MG
5623 " all_unreclaimable? %s"
5624 "\n",
5625 pgdat->node_id,
5626 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5627 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5628 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5629 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5630 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5631 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5632 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5633 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5634 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5635 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5636 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5637#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5638 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5639 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5640 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5641#endif
11fb9989 5642 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5643 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5644#ifdef CONFIG_SHADOW_CALL_STACK
5645 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5646#endif
f0c0c115 5647 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5648 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5649 "yes" : "no");
599d0c95
MG
5650 }
5651
ee99c71c 5652 for_each_populated_zone(zone) {
1da177e4
LT
5653 int i;
5654
9af744d7 5655 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5656 continue;
d1bfcdb8
KK
5657
5658 free_pcp = 0;
5659 for_each_online_cpu(cpu)
5660 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5661
1da177e4 5662 show_node(zone);
1f84a18f
JP
5663 printk(KERN_CONT
5664 "%s"
1da177e4
LT
5665 " free:%lukB"
5666 " min:%lukB"
5667 " low:%lukB"
5668 " high:%lukB"
e47b346a 5669 " reserved_highatomic:%luKB"
71c799f4
MK
5670 " active_anon:%lukB"
5671 " inactive_anon:%lukB"
5672 " active_file:%lukB"
5673 " inactive_file:%lukB"
5674 " unevictable:%lukB"
5a1c84b4 5675 " writepending:%lukB"
1da177e4 5676 " present:%lukB"
9feedc9d 5677 " managed:%lukB"
4a0aa73f 5678 " mlocked:%lukB"
4a0aa73f 5679 " bounce:%lukB"
d1bfcdb8
KK
5680 " free_pcp:%lukB"
5681 " local_pcp:%ukB"
d1ce749a 5682 " free_cma:%lukB"
1da177e4
LT
5683 "\n",
5684 zone->name,
88f5acf8 5685 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5686 K(min_wmark_pages(zone)),
5687 K(low_wmark_pages(zone)),
5688 K(high_wmark_pages(zone)),
e47b346a 5689 K(zone->nr_reserved_highatomic),
71c799f4
MK
5690 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5691 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5692 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5693 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5694 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5695 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5696 K(zone->present_pages),
9705bea5 5697 K(zone_managed_pages(zone)),
4a0aa73f 5698 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5699 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5700 K(free_pcp),
5701 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5702 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5703 printk("lowmem_reserve[]:");
5704 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5705 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5706 printk(KERN_CONT "\n");
1da177e4
LT
5707 }
5708
ee99c71c 5709 for_each_populated_zone(zone) {
d00181b9
KS
5710 unsigned int order;
5711 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5712 unsigned char types[MAX_ORDER];
1da177e4 5713
9af744d7 5714 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5715 continue;
1da177e4 5716 show_node(zone);
1f84a18f 5717 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5718
5719 spin_lock_irqsave(&zone->lock, flags);
5720 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5721 struct free_area *area = &zone->free_area[order];
5722 int type;
5723
5724 nr[order] = area->nr_free;
8f9de51a 5725 total += nr[order] << order;
377e4f16
RV
5726
5727 types[order] = 0;
5728 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5729 if (!free_area_empty(area, type))
377e4f16
RV
5730 types[order] |= 1 << type;
5731 }
1da177e4
LT
5732 }
5733 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5734 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5735 printk(KERN_CONT "%lu*%lukB ",
5736 nr[order], K(1UL) << order);
377e4f16
RV
5737 if (nr[order])
5738 show_migration_types(types[order]);
5739 }
1f84a18f 5740 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5741 }
5742
949f7ec5
DR
5743 hugetlb_show_meminfo();
5744
11fb9989 5745 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5746
1da177e4
LT
5747 show_swap_cache_info();
5748}
5749
19770b32
MG
5750static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5751{
5752 zoneref->zone = zone;
5753 zoneref->zone_idx = zone_idx(zone);
5754}
5755
1da177e4
LT
5756/*
5757 * Builds allocation fallback zone lists.
1a93205b
CL
5758 *
5759 * Add all populated zones of a node to the zonelist.
1da177e4 5760 */
9d3be21b 5761static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5762{
1a93205b 5763 struct zone *zone;
bc732f1d 5764 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5765 int nr_zones = 0;
02a68a5e
CL
5766
5767 do {
2f6726e5 5768 zone_type--;
070f8032 5769 zone = pgdat->node_zones + zone_type;
6aa303de 5770 if (managed_zone(zone)) {
9d3be21b 5771 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5772 check_highest_zone(zone_type);
1da177e4 5773 }
2f6726e5 5774 } while (zone_type);
bc732f1d 5775
070f8032 5776 return nr_zones;
1da177e4
LT
5777}
5778
5779#ifdef CONFIG_NUMA
f0c0b2b8
KH
5780
5781static int __parse_numa_zonelist_order(char *s)
5782{
c9bff3ee
MH
5783 /*
5784 * We used to support different zonlists modes but they turned
5785 * out to be just not useful. Let's keep the warning in place
5786 * if somebody still use the cmd line parameter so that we do
5787 * not fail it silently
5788 */
5789 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5790 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5791 return -EINVAL;
5792 }
5793 return 0;
5794}
5795
c9bff3ee
MH
5796char numa_zonelist_order[] = "Node";
5797
f0c0b2b8
KH
5798/*
5799 * sysctl handler for numa_zonelist_order
5800 */
cccad5b9 5801int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5802 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5803{
32927393
CH
5804 if (write)
5805 return __parse_numa_zonelist_order(buffer);
5806 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5807}
5808
5809
62bc62a8 5810#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5811static int node_load[MAX_NUMNODES];
5812
1da177e4 5813/**
4dc3b16b 5814 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5815 * @node: node whose fallback list we're appending
5816 * @used_node_mask: nodemask_t of already used nodes
5817 *
5818 * We use a number of factors to determine which is the next node that should
5819 * appear on a given node's fallback list. The node should not have appeared
5820 * already in @node's fallback list, and it should be the next closest node
5821 * according to the distance array (which contains arbitrary distance values
5822 * from each node to each node in the system), and should also prefer nodes
5823 * with no CPUs, since presumably they'll have very little allocation pressure
5824 * on them otherwise.
a862f68a
MR
5825 *
5826 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5827 */
f0c0b2b8 5828static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5829{
4cf808eb 5830 int n, val;
1da177e4 5831 int min_val = INT_MAX;
00ef2d2f 5832 int best_node = NUMA_NO_NODE;
1da177e4 5833
4cf808eb
LT
5834 /* Use the local node if we haven't already */
5835 if (!node_isset(node, *used_node_mask)) {
5836 node_set(node, *used_node_mask);
5837 return node;
5838 }
1da177e4 5839
4b0ef1fe 5840 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5841
5842 /* Don't want a node to appear more than once */
5843 if (node_isset(n, *used_node_mask))
5844 continue;
5845
1da177e4
LT
5846 /* Use the distance array to find the distance */
5847 val = node_distance(node, n);
5848
4cf808eb
LT
5849 /* Penalize nodes under us ("prefer the next node") */
5850 val += (n < node);
5851
1da177e4 5852 /* Give preference to headless and unused nodes */
b630749f 5853 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5854 val += PENALTY_FOR_NODE_WITH_CPUS;
5855
5856 /* Slight preference for less loaded node */
5857 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5858 val += node_load[n];
5859
5860 if (val < min_val) {
5861 min_val = val;
5862 best_node = n;
5863 }
5864 }
5865
5866 if (best_node >= 0)
5867 node_set(best_node, *used_node_mask);
5868
5869 return best_node;
5870}
5871
f0c0b2b8
KH
5872
5873/*
5874 * Build zonelists ordered by node and zones within node.
5875 * This results in maximum locality--normal zone overflows into local
5876 * DMA zone, if any--but risks exhausting DMA zone.
5877 */
9d3be21b
MH
5878static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5879 unsigned nr_nodes)
1da177e4 5880{
9d3be21b
MH
5881 struct zoneref *zonerefs;
5882 int i;
5883
5884 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5885
5886 for (i = 0; i < nr_nodes; i++) {
5887 int nr_zones;
5888
5889 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5890
9d3be21b
MH
5891 nr_zones = build_zonerefs_node(node, zonerefs);
5892 zonerefs += nr_zones;
5893 }
5894 zonerefs->zone = NULL;
5895 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5896}
5897
523b9458
CL
5898/*
5899 * Build gfp_thisnode zonelists
5900 */
5901static void build_thisnode_zonelists(pg_data_t *pgdat)
5902{
9d3be21b
MH
5903 struct zoneref *zonerefs;
5904 int nr_zones;
523b9458 5905
9d3be21b
MH
5906 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5907 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5908 zonerefs += nr_zones;
5909 zonerefs->zone = NULL;
5910 zonerefs->zone_idx = 0;
523b9458
CL
5911}
5912
f0c0b2b8
KH
5913/*
5914 * Build zonelists ordered by zone and nodes within zones.
5915 * This results in conserving DMA zone[s] until all Normal memory is
5916 * exhausted, but results in overflowing to remote node while memory
5917 * may still exist in local DMA zone.
5918 */
f0c0b2b8 5919
f0c0b2b8
KH
5920static void build_zonelists(pg_data_t *pgdat)
5921{
9d3be21b
MH
5922 static int node_order[MAX_NUMNODES];
5923 int node, load, nr_nodes = 0;
d0ddf49b 5924 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5925 int local_node, prev_node;
1da177e4
LT
5926
5927 /* NUMA-aware ordering of nodes */
5928 local_node = pgdat->node_id;
62bc62a8 5929 load = nr_online_nodes;
1da177e4 5930 prev_node = local_node;
f0c0b2b8 5931
f0c0b2b8 5932 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5933 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5934 /*
5935 * We don't want to pressure a particular node.
5936 * So adding penalty to the first node in same
5937 * distance group to make it round-robin.
5938 */
957f822a
DR
5939 if (node_distance(local_node, node) !=
5940 node_distance(local_node, prev_node))
f0c0b2b8
KH
5941 node_load[node] = load;
5942
9d3be21b 5943 node_order[nr_nodes++] = node;
1da177e4
LT
5944 prev_node = node;
5945 load--;
1da177e4 5946 }
523b9458 5947
9d3be21b 5948 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5949 build_thisnode_zonelists(pgdat);
1da177e4
LT
5950}
5951
7aac7898
LS
5952#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5953/*
5954 * Return node id of node used for "local" allocations.
5955 * I.e., first node id of first zone in arg node's generic zonelist.
5956 * Used for initializing percpu 'numa_mem', which is used primarily
5957 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5958 */
5959int local_memory_node(int node)
5960{
c33d6c06 5961 struct zoneref *z;
7aac7898 5962
c33d6c06 5963 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5964 gfp_zone(GFP_KERNEL),
c33d6c06 5965 NULL);
c1093b74 5966 return zone_to_nid(z->zone);
7aac7898
LS
5967}
5968#endif
f0c0b2b8 5969
6423aa81
JK
5970static void setup_min_unmapped_ratio(void);
5971static void setup_min_slab_ratio(void);
1da177e4
LT
5972#else /* CONFIG_NUMA */
5973
f0c0b2b8 5974static void build_zonelists(pg_data_t *pgdat)
1da177e4 5975{
19655d34 5976 int node, local_node;
9d3be21b
MH
5977 struct zoneref *zonerefs;
5978 int nr_zones;
1da177e4
LT
5979
5980 local_node = pgdat->node_id;
1da177e4 5981
9d3be21b
MH
5982 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5983 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5984 zonerefs += nr_zones;
1da177e4 5985
54a6eb5c
MG
5986 /*
5987 * Now we build the zonelist so that it contains the zones
5988 * of all the other nodes.
5989 * We don't want to pressure a particular node, so when
5990 * building the zones for node N, we make sure that the
5991 * zones coming right after the local ones are those from
5992 * node N+1 (modulo N)
5993 */
5994 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5995 if (!node_online(node))
5996 continue;
9d3be21b
MH
5997 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5998 zonerefs += nr_zones;
1da177e4 5999 }
54a6eb5c
MG
6000 for (node = 0; node < local_node; node++) {
6001 if (!node_online(node))
6002 continue;
9d3be21b
MH
6003 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6004 zonerefs += nr_zones;
54a6eb5c
MG
6005 }
6006
9d3be21b
MH
6007 zonerefs->zone = NULL;
6008 zonerefs->zone_idx = 0;
1da177e4
LT
6009}
6010
6011#endif /* CONFIG_NUMA */
6012
99dcc3e5
CL
6013/*
6014 * Boot pageset table. One per cpu which is going to be used for all
6015 * zones and all nodes. The parameters will be set in such a way
6016 * that an item put on a list will immediately be handed over to
6017 * the buddy list. This is safe since pageset manipulation is done
6018 * with interrupts disabled.
6019 *
6020 * The boot_pagesets must be kept even after bootup is complete for
6021 * unused processors and/or zones. They do play a role for bootstrapping
6022 * hotplugged processors.
6023 *
6024 * zoneinfo_show() and maybe other functions do
6025 * not check if the processor is online before following the pageset pointer.
6026 * Other parts of the kernel may not check if the zone is available.
6027 */
69a8396a 6028static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
6029/* These effectively disable the pcplists in the boot pageset completely */
6030#define BOOT_PAGESET_HIGH 0
6031#define BOOT_PAGESET_BATCH 1
99dcc3e5 6032static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 6033static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6034
11cd8638 6035static void __build_all_zonelists(void *data)
1da177e4 6036{
6811378e 6037 int nid;
afb6ebb3 6038 int __maybe_unused cpu;
9adb62a5 6039 pg_data_t *self = data;
b93e0f32
MH
6040 static DEFINE_SPINLOCK(lock);
6041
6042 spin_lock(&lock);
9276b1bc 6043
7f9cfb31
BL
6044#ifdef CONFIG_NUMA
6045 memset(node_load, 0, sizeof(node_load));
6046#endif
9adb62a5 6047
c1152583
WY
6048 /*
6049 * This node is hotadded and no memory is yet present. So just
6050 * building zonelists is fine - no need to touch other nodes.
6051 */
9adb62a5
JL
6052 if (self && !node_online(self->node_id)) {
6053 build_zonelists(self);
c1152583
WY
6054 } else {
6055 for_each_online_node(nid) {
6056 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6057
c1152583
WY
6058 build_zonelists(pgdat);
6059 }
99dcc3e5 6060
7aac7898
LS
6061#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6062 /*
6063 * We now know the "local memory node" for each node--
6064 * i.e., the node of the first zone in the generic zonelist.
6065 * Set up numa_mem percpu variable for on-line cpus. During
6066 * boot, only the boot cpu should be on-line; we'll init the
6067 * secondary cpus' numa_mem as they come on-line. During
6068 * node/memory hotplug, we'll fixup all on-line cpus.
6069 */
d9c9a0b9 6070 for_each_online_cpu(cpu)
7aac7898 6071 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6072#endif
d9c9a0b9 6073 }
b93e0f32
MH
6074
6075 spin_unlock(&lock);
6811378e
YG
6076}
6077
061f67bc
RV
6078static noinline void __init
6079build_all_zonelists_init(void)
6080{
afb6ebb3
MH
6081 int cpu;
6082
061f67bc 6083 __build_all_zonelists(NULL);
afb6ebb3
MH
6084
6085 /*
6086 * Initialize the boot_pagesets that are going to be used
6087 * for bootstrapping processors. The real pagesets for
6088 * each zone will be allocated later when the per cpu
6089 * allocator is available.
6090 *
6091 * boot_pagesets are used also for bootstrapping offline
6092 * cpus if the system is already booted because the pagesets
6093 * are needed to initialize allocators on a specific cpu too.
6094 * F.e. the percpu allocator needs the page allocator which
6095 * needs the percpu allocator in order to allocate its pagesets
6096 * (a chicken-egg dilemma).
6097 */
6098 for_each_possible_cpu(cpu)
69a8396a 6099 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6100
061f67bc
RV
6101 mminit_verify_zonelist();
6102 cpuset_init_current_mems_allowed();
6103}
6104
4eaf3f64 6105/*
4eaf3f64 6106 * unless system_state == SYSTEM_BOOTING.
061f67bc 6107 *
72675e13 6108 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6109 * [protected by SYSTEM_BOOTING].
4eaf3f64 6110 */
72675e13 6111void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6112{
0a18e607
DH
6113 unsigned long vm_total_pages;
6114
6811378e 6115 if (system_state == SYSTEM_BOOTING) {
061f67bc 6116 build_all_zonelists_init();
6811378e 6117 } else {
11cd8638 6118 __build_all_zonelists(pgdat);
6811378e
YG
6119 /* cpuset refresh routine should be here */
6120 }
56b9413b
DH
6121 /* Get the number of free pages beyond high watermark in all zones. */
6122 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6123 /*
6124 * Disable grouping by mobility if the number of pages in the
6125 * system is too low to allow the mechanism to work. It would be
6126 * more accurate, but expensive to check per-zone. This check is
6127 * made on memory-hotadd so a system can start with mobility
6128 * disabled and enable it later
6129 */
d9c23400 6130 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6131 page_group_by_mobility_disabled = 1;
6132 else
6133 page_group_by_mobility_disabled = 0;
6134
ce0725f7 6135 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6136 nr_online_nodes,
756a025f
JP
6137 page_group_by_mobility_disabled ? "off" : "on",
6138 vm_total_pages);
f0c0b2b8 6139#ifdef CONFIG_NUMA
f88dfff5 6140 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6141#endif
1da177e4
LT
6142}
6143
a9a9e77f
PT
6144/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6145static bool __meminit
6146overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6147{
a9a9e77f
PT
6148 static struct memblock_region *r;
6149
6150 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6151 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6152 for_each_mem_region(r) {
a9a9e77f
PT
6153 if (*pfn < memblock_region_memory_end_pfn(r))
6154 break;
6155 }
6156 }
6157 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6158 memblock_is_mirror(r)) {
6159 *pfn = memblock_region_memory_end_pfn(r);
6160 return true;
6161 }
6162 }
a9a9e77f
PT
6163 return false;
6164}
6165
1da177e4
LT
6166/*
6167 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6168 * up by memblock_free_all() once the early boot process is
1da177e4 6169 * done. Non-atomic initialization, single-pass.
d882c006
DH
6170 *
6171 * All aligned pageblocks are initialized to the specified migratetype
6172 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6173 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6174 */
ab28cb6e 6175void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6176 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6177 enum meminit_context context,
6178 struct vmem_altmap *altmap, int migratetype)
1da177e4 6179{
a9a9e77f 6180 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6181 struct page *page;
1da177e4 6182
22b31eec
HD
6183 if (highest_memmap_pfn < end_pfn - 1)
6184 highest_memmap_pfn = end_pfn - 1;
6185
966cf44f 6186#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6187 /*
6188 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6189 * memory. We limit the total number of pages to initialize to just
6190 * those that might contain the memory mapping. We will defer the
6191 * ZONE_DEVICE page initialization until after we have released
6192 * the hotplug lock.
4b94ffdc 6193 */
966cf44f
AD
6194 if (zone == ZONE_DEVICE) {
6195 if (!altmap)
6196 return;
6197
6198 if (start_pfn == altmap->base_pfn)
6199 start_pfn += altmap->reserve;
6200 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6201 }
6202#endif
4b94ffdc 6203
948c436e 6204 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6205 /*
b72d0ffb
AM
6206 * There can be holes in boot-time mem_map[]s handed to this
6207 * function. They do not exist on hotplugged memory.
a2f3aa02 6208 */
c1d0da83 6209 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6210 if (overlap_memmap_init(zone, &pfn))
6211 continue;
dc2da7b4 6212 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6213 break;
a2f3aa02 6214 }
ac5d2539 6215
d0dc12e8
PT
6216 page = pfn_to_page(pfn);
6217 __init_single_page(page, pfn, zone, nid);
c1d0da83 6218 if (context == MEMINIT_HOTPLUG)
d483da5b 6219 __SetPageReserved(page);
d0dc12e8 6220
ac5d2539 6221 /*
d882c006
DH
6222 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6223 * such that unmovable allocations won't be scattered all
6224 * over the place during system boot.
ac5d2539 6225 */
4eb29bd9 6226 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6227 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6228 cond_resched();
ac5d2539 6229 }
948c436e 6230 pfn++;
1da177e4
LT
6231 }
6232}
6233
966cf44f
AD
6234#ifdef CONFIG_ZONE_DEVICE
6235void __ref memmap_init_zone_device(struct zone *zone,
6236 unsigned long start_pfn,
1f8d75c1 6237 unsigned long nr_pages,
966cf44f
AD
6238 struct dev_pagemap *pgmap)
6239{
1f8d75c1 6240 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6241 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6242 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6243 unsigned long zone_idx = zone_idx(zone);
6244 unsigned long start = jiffies;
6245 int nid = pgdat->node_id;
6246
46d945ae 6247 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6248 return;
6249
6250 /*
6251 * The call to memmap_init_zone should have already taken care
6252 * of the pages reserved for the memmap, so we can just jump to
6253 * the end of that region and start processing the device pages.
6254 */
514caf23 6255 if (altmap) {
966cf44f 6256 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6257 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6258 }
6259
6260 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6261 struct page *page = pfn_to_page(pfn);
6262
6263 __init_single_page(page, pfn, zone_idx, nid);
6264
6265 /*
6266 * Mark page reserved as it will need to wait for onlining
6267 * phase for it to be fully associated with a zone.
6268 *
6269 * We can use the non-atomic __set_bit operation for setting
6270 * the flag as we are still initializing the pages.
6271 */
6272 __SetPageReserved(page);
6273
6274 /*
8a164fef
CH
6275 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6276 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6277 * ever freed or placed on a driver-private list.
966cf44f
AD
6278 */
6279 page->pgmap = pgmap;
8a164fef 6280 page->zone_device_data = NULL;
966cf44f
AD
6281
6282 /*
6283 * Mark the block movable so that blocks are reserved for
6284 * movable at startup. This will force kernel allocations
6285 * to reserve their blocks rather than leaking throughout
6286 * the address space during boot when many long-lived
6287 * kernel allocations are made.
6288 *
c1d0da83 6289 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6290 * because this is done early in section_activate()
966cf44f 6291 */
4eb29bd9 6292 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6293 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6294 cond_resched();
6295 }
6296 }
6297
fdc029b1 6298 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6299 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6300}
6301
6302#endif
1e548deb 6303static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6304{
7aeb09f9 6305 unsigned int order, t;
b2a0ac88
MG
6306 for_each_migratetype_order(order, t) {
6307 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6308 zone->free_area[order].nr_free = 0;
6309 }
6310}
6311
0740a50b
MR
6312#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6313/*
6314 * Only struct pages that correspond to ranges defined by memblock.memory
6315 * are zeroed and initialized by going through __init_single_page() during
6316 * memmap_init_zone().
6317 *
6318 * But, there could be struct pages that correspond to holes in
6319 * memblock.memory. This can happen because of the following reasons:
6320 * - physical memory bank size is not necessarily the exact multiple of the
6321 * arbitrary section size
6322 * - early reserved memory may not be listed in memblock.memory
6323 * - memory layouts defined with memmap= kernel parameter may not align
6324 * nicely with memmap sections
6325 *
6326 * Explicitly initialize those struct pages so that:
6327 * - PG_Reserved is set
6328 * - zone and node links point to zone and node that span the page if the
6329 * hole is in the middle of a zone
6330 * - zone and node links point to adjacent zone/node if the hole falls on
6331 * the zone boundary; the pages in such holes will be prepended to the
6332 * zone/node above the hole except for the trailing pages in the last
6333 * section that will be appended to the zone/node below.
6334 */
6335static u64 __meminit init_unavailable_range(unsigned long spfn,
6336 unsigned long epfn,
6337 int zone, int node)
6338{
6339 unsigned long pfn;
6340 u64 pgcnt = 0;
6341
6342 for (pfn = spfn; pfn < epfn; pfn++) {
6343 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6344 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6345 + pageblock_nr_pages - 1;
6346 continue;
6347 }
6348 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6349 __SetPageReserved(pfn_to_page(pfn));
6350 pgcnt++;
6351 }
6352
6353 return pgcnt;
6354}
6355#else
6356static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6357 int zone, int node)
6358{
6359 return 0;
6360}
6361#endif
6362
3256ff83 6363void __meminit __weak memmap_init_zone(struct zone *zone)
dfb3ccd0 6364{
3256ff83
BH
6365 unsigned long zone_start_pfn = zone->zone_start_pfn;
6366 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6367 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
0740a50b 6368 static unsigned long hole_pfn;
73a6e474 6369 unsigned long start_pfn, end_pfn;
0740a50b 6370 u64 pgcnt = 0;
73a6e474
BH
6371
6372 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3256ff83
BH
6373 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6374 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
73a6e474 6375
3256ff83
BH
6376 if (end_pfn > start_pfn)
6377 memmap_init_range(end_pfn - start_pfn, nid,
6378 zone_id, start_pfn, zone_end_pfn,
6379 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
0740a50b
MR
6380
6381 if (hole_pfn < start_pfn)
6382 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6383 zone_id, nid);
6384 hole_pfn = end_pfn;
73a6e474 6385 }
0740a50b
MR
6386
6387#ifdef CONFIG_SPARSEMEM
6388 /*
6389 * Initialize the hole in the range [zone_end_pfn, section_end].
6390 * If zone boundary falls in the middle of a section, this hole
6391 * will be re-initialized during the call to this function for the
6392 * higher zone.
6393 */
6394 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6395 if (hole_pfn < end_pfn)
6396 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6397 zone_id, nid);
6398#endif
6399
6400 if (pgcnt)
6401 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6402 zone->name, pgcnt);
dfb3ccd0 6403}
1da177e4 6404
7cd2b0a3 6405static int zone_batchsize(struct zone *zone)
e7c8d5c9 6406{
3a6be87f 6407#ifdef CONFIG_MMU
e7c8d5c9
CL
6408 int batch;
6409
6410 /*
6411 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6412 * size of the zone.
e7c8d5c9 6413 */
9705bea5 6414 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6415 /* But no more than a meg. */
6416 if (batch * PAGE_SIZE > 1024 * 1024)
6417 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6418 batch /= 4; /* We effectively *= 4 below */
6419 if (batch < 1)
6420 batch = 1;
6421
6422 /*
0ceaacc9
NP
6423 * Clamp the batch to a 2^n - 1 value. Having a power
6424 * of 2 value was found to be more likely to have
6425 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6426 *
0ceaacc9
NP
6427 * For example if 2 tasks are alternately allocating
6428 * batches of pages, one task can end up with a lot
6429 * of pages of one half of the possible page colors
6430 * and the other with pages of the other colors.
e7c8d5c9 6431 */
9155203a 6432 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6433
e7c8d5c9 6434 return batch;
3a6be87f
DH
6435
6436#else
6437 /* The deferral and batching of frees should be suppressed under NOMMU
6438 * conditions.
6439 *
6440 * The problem is that NOMMU needs to be able to allocate large chunks
6441 * of contiguous memory as there's no hardware page translation to
6442 * assemble apparent contiguous memory from discontiguous pages.
6443 *
6444 * Queueing large contiguous runs of pages for batching, however,
6445 * causes the pages to actually be freed in smaller chunks. As there
6446 * can be a significant delay between the individual batches being
6447 * recycled, this leads to the once large chunks of space being
6448 * fragmented and becoming unavailable for high-order allocations.
6449 */
6450 return 0;
6451#endif
e7c8d5c9
CL
6452}
6453
8d7a8fa9 6454/*
5c3ad2eb
VB
6455 * pcp->high and pcp->batch values are related and generally batch is lower
6456 * than high. They are also related to pcp->count such that count is lower
6457 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6458 *
5c3ad2eb
VB
6459 * However, guaranteeing these relations at all times would require e.g. write
6460 * barriers here but also careful usage of read barriers at the read side, and
6461 * thus be prone to error and bad for performance. Thus the update only prevents
6462 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6463 * can cope with those fields changing asynchronously, and fully trust only the
6464 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6465 *
6466 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6467 * outside of boot time (or some other assurance that no concurrent updaters
6468 * exist).
6469 */
6470static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6471 unsigned long batch)
6472{
5c3ad2eb
VB
6473 WRITE_ONCE(pcp->batch, batch);
6474 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6475}
6476
88c90dbc 6477static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6478{
6479 struct per_cpu_pages *pcp;
5f8dcc21 6480 int migratetype;
2caaad41 6481
1c6fe946
MD
6482 memset(p, 0, sizeof(*p));
6483
3dfa5721 6484 pcp = &p->pcp;
5f8dcc21
MG
6485 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6486 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6487
69a8396a
VB
6488 /*
6489 * Set batch and high values safe for a boot pageset. A true percpu
6490 * pageset's initialization will update them subsequently. Here we don't
6491 * need to be as careful as pageset_update() as nobody can access the
6492 * pageset yet.
6493 */
952eaf81
VB
6494 pcp->high = BOOT_PAGESET_HIGH;
6495 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6496}
6497
3b1f3658 6498static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6499 unsigned long batch)
6500{
6501 struct per_cpu_pageset *p;
6502 int cpu;
6503
6504 for_each_possible_cpu(cpu) {
6505 p = per_cpu_ptr(zone->pageset, cpu);
6506 pageset_update(&p->pcp, high, batch);
6507 }
6508}
6509
8ad4b1fb 6510/*
0a8b4f1d 6511 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6512 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6513 */
0a8b4f1d 6514static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6515{
7115ac6e
VB
6516 unsigned long new_high, new_batch;
6517
6518 if (percpu_pagelist_fraction) {
6519 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6520 new_batch = max(1UL, new_high / 4);
6521 if ((new_high / 4) > (PAGE_SHIFT * 8))
6522 new_batch = PAGE_SHIFT * 8;
6523 } else {
6524 new_batch = zone_batchsize(zone);
6525 new_high = 6 * new_batch;
6526 new_batch = max(1UL, 1 * new_batch);
6527 }
169f6c19 6528
952eaf81
VB
6529 if (zone->pageset_high == new_high &&
6530 zone->pageset_batch == new_batch)
6531 return;
6532
6533 zone->pageset_high = new_high;
6534 zone->pageset_batch = new_batch;
6535
ec6e8c7e 6536 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6537}
6538
72675e13 6539void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6540{
0a8b4f1d 6541 struct per_cpu_pageset *p;
319774e2 6542 int cpu;
0a8b4f1d 6543
319774e2 6544 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6545 for_each_possible_cpu(cpu) {
6546 p = per_cpu_ptr(zone->pageset, cpu);
6547 pageset_init(p);
6548 }
6549
6550 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6551}
6552
2caaad41 6553/*
99dcc3e5
CL
6554 * Allocate per cpu pagesets and initialize them.
6555 * Before this call only boot pagesets were available.
e7c8d5c9 6556 */
99dcc3e5 6557void __init setup_per_cpu_pageset(void)
e7c8d5c9 6558{
b4911ea2 6559 struct pglist_data *pgdat;
99dcc3e5 6560 struct zone *zone;
b418a0f9 6561 int __maybe_unused cpu;
e7c8d5c9 6562
319774e2
WF
6563 for_each_populated_zone(zone)
6564 setup_zone_pageset(zone);
b4911ea2 6565
b418a0f9
SD
6566#ifdef CONFIG_NUMA
6567 /*
6568 * Unpopulated zones continue using the boot pagesets.
6569 * The numa stats for these pagesets need to be reset.
6570 * Otherwise, they will end up skewing the stats of
6571 * the nodes these zones are associated with.
6572 */
6573 for_each_possible_cpu(cpu) {
6574 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6575 memset(pcp->vm_numa_stat_diff, 0,
6576 sizeof(pcp->vm_numa_stat_diff));
6577 }
6578#endif
6579
b4911ea2
MG
6580 for_each_online_pgdat(pgdat)
6581 pgdat->per_cpu_nodestats =
6582 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6583}
6584
c09b4240 6585static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6586{
99dcc3e5
CL
6587 /*
6588 * per cpu subsystem is not up at this point. The following code
6589 * relies on the ability of the linker to provide the
6590 * offset of a (static) per cpu variable into the per cpu area.
6591 */
6592 zone->pageset = &boot_pageset;
952eaf81
VB
6593 zone->pageset_high = BOOT_PAGESET_HIGH;
6594 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6595
b38a8725 6596 if (populated_zone(zone))
99dcc3e5
CL
6597 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6598 zone->name, zone->present_pages,
6599 zone_batchsize(zone));
ed8ece2e
DH
6600}
6601
dc0bbf3b 6602void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6603 unsigned long zone_start_pfn,
b171e409 6604 unsigned long size)
ed8ece2e
DH
6605{
6606 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6607 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6608
8f416836
WY
6609 if (zone_idx > pgdat->nr_zones)
6610 pgdat->nr_zones = zone_idx;
ed8ece2e 6611
ed8ece2e
DH
6612 zone->zone_start_pfn = zone_start_pfn;
6613
708614e6
MG
6614 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6615 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6616 pgdat->node_id,
6617 (unsigned long)zone_idx(zone),
6618 zone_start_pfn, (zone_start_pfn + size));
6619
1e548deb 6620 zone_init_free_lists(zone);
9dcb8b68 6621 zone->initialized = 1;
ed8ece2e
DH
6622}
6623
c713216d
MG
6624/**
6625 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6626 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6627 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6628 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6629 *
6630 * It returns the start and end page frame of a node based on information
7d018176 6631 * provided by memblock_set_node(). If called for a node
c713216d 6632 * with no available memory, a warning is printed and the start and end
88ca3b94 6633 * PFNs will be 0.
c713216d 6634 */
bbe5d993 6635void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6636 unsigned long *start_pfn, unsigned long *end_pfn)
6637{
c13291a5 6638 unsigned long this_start_pfn, this_end_pfn;
c713216d 6639 int i;
c13291a5 6640
c713216d
MG
6641 *start_pfn = -1UL;
6642 *end_pfn = 0;
6643
c13291a5
TH
6644 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6645 *start_pfn = min(*start_pfn, this_start_pfn);
6646 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6647 }
6648
633c0666 6649 if (*start_pfn == -1UL)
c713216d 6650 *start_pfn = 0;
c713216d
MG
6651}
6652
2a1e274a
MG
6653/*
6654 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6655 * assumption is made that zones within a node are ordered in monotonic
6656 * increasing memory addresses so that the "highest" populated zone is used
6657 */
b69a7288 6658static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6659{
6660 int zone_index;
6661 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6662 if (zone_index == ZONE_MOVABLE)
6663 continue;
6664
6665 if (arch_zone_highest_possible_pfn[zone_index] >
6666 arch_zone_lowest_possible_pfn[zone_index])
6667 break;
6668 }
6669
6670 VM_BUG_ON(zone_index == -1);
6671 movable_zone = zone_index;
6672}
6673
6674/*
6675 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6676 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6677 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6678 * in each node depending on the size of each node and how evenly kernelcore
6679 * is distributed. This helper function adjusts the zone ranges
6680 * provided by the architecture for a given node by using the end of the
6681 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6682 * zones within a node are in order of monotonic increases memory addresses
6683 */
bbe5d993 6684static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6685 unsigned long zone_type,
6686 unsigned long node_start_pfn,
6687 unsigned long node_end_pfn,
6688 unsigned long *zone_start_pfn,
6689 unsigned long *zone_end_pfn)
6690{
6691 /* Only adjust if ZONE_MOVABLE is on this node */
6692 if (zone_movable_pfn[nid]) {
6693 /* Size ZONE_MOVABLE */
6694 if (zone_type == ZONE_MOVABLE) {
6695 *zone_start_pfn = zone_movable_pfn[nid];
6696 *zone_end_pfn = min(node_end_pfn,
6697 arch_zone_highest_possible_pfn[movable_zone]);
6698
e506b996
XQ
6699 /* Adjust for ZONE_MOVABLE starting within this range */
6700 } else if (!mirrored_kernelcore &&
6701 *zone_start_pfn < zone_movable_pfn[nid] &&
6702 *zone_end_pfn > zone_movable_pfn[nid]) {
6703 *zone_end_pfn = zone_movable_pfn[nid];
6704
2a1e274a
MG
6705 /* Check if this whole range is within ZONE_MOVABLE */
6706 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6707 *zone_start_pfn = *zone_end_pfn;
6708 }
6709}
6710
c713216d
MG
6711/*
6712 * Return the number of pages a zone spans in a node, including holes
6713 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6714 */
bbe5d993 6715static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6716 unsigned long zone_type,
7960aedd
ZY
6717 unsigned long node_start_pfn,
6718 unsigned long node_end_pfn,
d91749c1 6719 unsigned long *zone_start_pfn,
854e8848 6720 unsigned long *zone_end_pfn)
c713216d 6721{
299c83dc
LF
6722 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6723 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6724 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6725 if (!node_start_pfn && !node_end_pfn)
6726 return 0;
6727
7960aedd 6728 /* Get the start and end of the zone */
299c83dc
LF
6729 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6730 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6731 adjust_zone_range_for_zone_movable(nid, zone_type,
6732 node_start_pfn, node_end_pfn,
d91749c1 6733 zone_start_pfn, zone_end_pfn);
c713216d
MG
6734
6735 /* Check that this node has pages within the zone's required range */
d91749c1 6736 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6737 return 0;
6738
6739 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6740 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6741 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6742
6743 /* Return the spanned pages */
d91749c1 6744 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6745}
6746
6747/*
6748 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6749 * then all holes in the requested range will be accounted for.
c713216d 6750 */
bbe5d993 6751unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6752 unsigned long range_start_pfn,
6753 unsigned long range_end_pfn)
6754{
96e907d1
TH
6755 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6756 unsigned long start_pfn, end_pfn;
6757 int i;
c713216d 6758
96e907d1
TH
6759 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6760 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6761 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6762 nr_absent -= end_pfn - start_pfn;
c713216d 6763 }
96e907d1 6764 return nr_absent;
c713216d
MG
6765}
6766
6767/**
6768 * absent_pages_in_range - Return number of page frames in holes within a range
6769 * @start_pfn: The start PFN to start searching for holes
6770 * @end_pfn: The end PFN to stop searching for holes
6771 *
a862f68a 6772 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6773 */
6774unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6775 unsigned long end_pfn)
6776{
6777 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6778}
6779
6780/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6781static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6782 unsigned long zone_type,
7960aedd 6783 unsigned long node_start_pfn,
854e8848 6784 unsigned long node_end_pfn)
c713216d 6785{
96e907d1
TH
6786 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6787 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6788 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6789 unsigned long nr_absent;
9c7cd687 6790
b5685e92 6791 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6792 if (!node_start_pfn && !node_end_pfn)
6793 return 0;
6794
96e907d1
TH
6795 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6796 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6797
2a1e274a
MG
6798 adjust_zone_range_for_zone_movable(nid, zone_type,
6799 node_start_pfn, node_end_pfn,
6800 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6801 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6802
6803 /*
6804 * ZONE_MOVABLE handling.
6805 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6806 * and vice versa.
6807 */
e506b996
XQ
6808 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6809 unsigned long start_pfn, end_pfn;
6810 struct memblock_region *r;
6811
cc6de168 6812 for_each_mem_region(r) {
e506b996
XQ
6813 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6814 zone_start_pfn, zone_end_pfn);
6815 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6816 zone_start_pfn, zone_end_pfn);
6817
6818 if (zone_type == ZONE_MOVABLE &&
6819 memblock_is_mirror(r))
6820 nr_absent += end_pfn - start_pfn;
6821
6822 if (zone_type == ZONE_NORMAL &&
6823 !memblock_is_mirror(r))
6824 nr_absent += end_pfn - start_pfn;
342332e6
TI
6825 }
6826 }
6827
6828 return nr_absent;
c713216d 6829}
0e0b864e 6830
bbe5d993 6831static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6832 unsigned long node_start_pfn,
854e8848 6833 unsigned long node_end_pfn)
c713216d 6834{
febd5949 6835 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6836 enum zone_type i;
6837
febd5949
GZ
6838 for (i = 0; i < MAX_NR_ZONES; i++) {
6839 struct zone *zone = pgdat->node_zones + i;
d91749c1 6840 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6841 unsigned long spanned, absent;
febd5949 6842 unsigned long size, real_size;
c713216d 6843
854e8848
MR
6844 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6845 node_start_pfn,
6846 node_end_pfn,
6847 &zone_start_pfn,
6848 &zone_end_pfn);
6849 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6850 node_start_pfn,
6851 node_end_pfn);
3f08a302
MR
6852
6853 size = spanned;
6854 real_size = size - absent;
6855
d91749c1
TI
6856 if (size)
6857 zone->zone_start_pfn = zone_start_pfn;
6858 else
6859 zone->zone_start_pfn = 0;
febd5949
GZ
6860 zone->spanned_pages = size;
6861 zone->present_pages = real_size;
6862
6863 totalpages += size;
6864 realtotalpages += real_size;
6865 }
6866
6867 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6868 pgdat->node_present_pages = realtotalpages;
6869 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6870 realtotalpages);
6871}
6872
835c134e
MG
6873#ifndef CONFIG_SPARSEMEM
6874/*
6875 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6876 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6877 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6878 * round what is now in bits to nearest long in bits, then return it in
6879 * bytes.
6880 */
7c45512d 6881static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6882{
6883 unsigned long usemapsize;
6884
7c45512d 6885 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6886 usemapsize = roundup(zonesize, pageblock_nr_pages);
6887 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6888 usemapsize *= NR_PAGEBLOCK_BITS;
6889 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6890
6891 return usemapsize / 8;
6892}
6893
7010a6ec 6894static void __ref setup_usemap(struct zone *zone)
835c134e 6895{
7010a6ec
BH
6896 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
6897 zone->spanned_pages);
835c134e 6898 zone->pageblock_flags = NULL;
23a7052a 6899 if (usemapsize) {
6782832e 6900 zone->pageblock_flags =
26fb3dae 6901 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 6902 zone_to_nid(zone));
23a7052a
MR
6903 if (!zone->pageblock_flags)
6904 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 6905 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 6906 }
835c134e
MG
6907}
6908#else
7010a6ec 6909static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
6910#endif /* CONFIG_SPARSEMEM */
6911
d9c23400 6912#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6913
d9c23400 6914/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6915void __init set_pageblock_order(void)
d9c23400 6916{
955c1cd7
AM
6917 unsigned int order;
6918
d9c23400
MG
6919 /* Check that pageblock_nr_pages has not already been setup */
6920 if (pageblock_order)
6921 return;
6922
955c1cd7
AM
6923 if (HPAGE_SHIFT > PAGE_SHIFT)
6924 order = HUGETLB_PAGE_ORDER;
6925 else
6926 order = MAX_ORDER - 1;
6927
d9c23400
MG
6928 /*
6929 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6930 * This value may be variable depending on boot parameters on IA64 and
6931 * powerpc.
d9c23400
MG
6932 */
6933 pageblock_order = order;
6934}
6935#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6936
ba72cb8c
MG
6937/*
6938 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6939 * is unused as pageblock_order is set at compile-time. See
6940 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6941 * the kernel config
ba72cb8c 6942 */
03e85f9d 6943void __init set_pageblock_order(void)
ba72cb8c 6944{
ba72cb8c 6945}
d9c23400
MG
6946
6947#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6948
03e85f9d 6949static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6950 unsigned long present_pages)
01cefaef
JL
6951{
6952 unsigned long pages = spanned_pages;
6953
6954 /*
6955 * Provide a more accurate estimation if there are holes within
6956 * the zone and SPARSEMEM is in use. If there are holes within the
6957 * zone, each populated memory region may cost us one or two extra
6958 * memmap pages due to alignment because memmap pages for each
89d790ab 6959 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6960 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6961 */
6962 if (spanned_pages > present_pages + (present_pages >> 4) &&
6963 IS_ENABLED(CONFIG_SPARSEMEM))
6964 pages = present_pages;
6965
6966 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6967}
6968
ace1db39
OS
6969#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6970static void pgdat_init_split_queue(struct pglist_data *pgdat)
6971{
364c1eeb
YS
6972 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6973
6974 spin_lock_init(&ds_queue->split_queue_lock);
6975 INIT_LIST_HEAD(&ds_queue->split_queue);
6976 ds_queue->split_queue_len = 0;
ace1db39
OS
6977}
6978#else
6979static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6980#endif
6981
6982#ifdef CONFIG_COMPACTION
6983static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6984{
6985 init_waitqueue_head(&pgdat->kcompactd_wait);
6986}
6987#else
6988static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6989#endif
6990
03e85f9d 6991static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6992{
208d54e5 6993 pgdat_resize_init(pgdat);
ace1db39 6994
ace1db39
OS
6995 pgdat_init_split_queue(pgdat);
6996 pgdat_init_kcompactd(pgdat);
6997
1da177e4 6998 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6999 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7000
eefa864b 7001 pgdat_page_ext_init(pgdat);
867e5e1d 7002 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7003}
7004
7005static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7006 unsigned long remaining_pages)
7007{
9705bea5 7008 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7009 zone_set_nid(zone, nid);
7010 zone->name = zone_names[idx];
7011 zone->zone_pgdat = NODE_DATA(nid);
7012 spin_lock_init(&zone->lock);
7013 zone_seqlock_init(zone);
7014 zone_pcp_init(zone);
7015}
7016
7017/*
7018 * Set up the zone data structures
7019 * - init pgdat internals
7020 * - init all zones belonging to this node
7021 *
7022 * NOTE: this function is only called during memory hotplug
7023 */
7024#ifdef CONFIG_MEMORY_HOTPLUG
7025void __ref free_area_init_core_hotplug(int nid)
7026{
7027 enum zone_type z;
7028 pg_data_t *pgdat = NODE_DATA(nid);
7029
7030 pgdat_init_internals(pgdat);
7031 for (z = 0; z < MAX_NR_ZONES; z++)
7032 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7033}
7034#endif
7035
7036/*
7037 * Set up the zone data structures:
7038 * - mark all pages reserved
7039 * - mark all memory queues empty
7040 * - clear the memory bitmaps
7041 *
7042 * NOTE: pgdat should get zeroed by caller.
7043 * NOTE: this function is only called during early init.
7044 */
7045static void __init free_area_init_core(struct pglist_data *pgdat)
7046{
7047 enum zone_type j;
7048 int nid = pgdat->node_id;
5f63b720 7049
03e85f9d 7050 pgdat_init_internals(pgdat);
385386cf
JW
7051 pgdat->per_cpu_nodestats = &boot_nodestats;
7052
1da177e4
LT
7053 for (j = 0; j < MAX_NR_ZONES; j++) {
7054 struct zone *zone = pgdat->node_zones + j;
e6943859 7055 unsigned long size, freesize, memmap_pages;
1da177e4 7056
febd5949 7057 size = zone->spanned_pages;
e6943859 7058 freesize = zone->present_pages;
1da177e4 7059
0e0b864e 7060 /*
9feedc9d 7061 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7062 * is used by this zone for memmap. This affects the watermark
7063 * and per-cpu initialisations
7064 */
e6943859 7065 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7066 if (!is_highmem_idx(j)) {
7067 if (freesize >= memmap_pages) {
7068 freesize -= memmap_pages;
7069 if (memmap_pages)
7070 printk(KERN_DEBUG
7071 " %s zone: %lu pages used for memmap\n",
7072 zone_names[j], memmap_pages);
7073 } else
1170532b 7074 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
7075 zone_names[j], memmap_pages, freesize);
7076 }
0e0b864e 7077
6267276f 7078 /* Account for reserved pages */
9feedc9d
JL
7079 if (j == 0 && freesize > dma_reserve) {
7080 freesize -= dma_reserve;
d903ef9f 7081 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 7082 zone_names[0], dma_reserve);
0e0b864e
MG
7083 }
7084
98d2b0eb 7085 if (!is_highmem_idx(j))
9feedc9d 7086 nr_kernel_pages += freesize;
01cefaef
JL
7087 /* Charge for highmem memmap if there are enough kernel pages */
7088 else if (nr_kernel_pages > memmap_pages * 2)
7089 nr_kernel_pages -= memmap_pages;
9feedc9d 7090 nr_all_pages += freesize;
1da177e4 7091
9feedc9d
JL
7092 /*
7093 * Set an approximate value for lowmem here, it will be adjusted
7094 * when the bootmem allocator frees pages into the buddy system.
7095 * And all highmem pages will be managed by the buddy system.
7096 */
03e85f9d 7097 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7098
d883c6cf 7099 if (!size)
1da177e4
LT
7100 continue;
7101
955c1cd7 7102 set_pageblock_order();
7010a6ec 7103 setup_usemap(zone);
9699ee7b 7104 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
3256ff83 7105 memmap_init_zone(zone);
1da177e4
LT
7106 }
7107}
7108
0cd842f9 7109#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 7110static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7111{
b0aeba74 7112 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7113 unsigned long __maybe_unused offset = 0;
7114
1da177e4
LT
7115 /* Skip empty nodes */
7116 if (!pgdat->node_spanned_pages)
7117 return;
7118
b0aeba74
TL
7119 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7120 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7121 /* ia64 gets its own node_mem_map, before this, without bootmem */
7122 if (!pgdat->node_mem_map) {
b0aeba74 7123 unsigned long size, end;
d41dee36
AW
7124 struct page *map;
7125
e984bb43
BP
7126 /*
7127 * The zone's endpoints aren't required to be MAX_ORDER
7128 * aligned but the node_mem_map endpoints must be in order
7129 * for the buddy allocator to function correctly.
7130 */
108bcc96 7131 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7132 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7133 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7134 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7135 pgdat->node_id);
23a7052a
MR
7136 if (!map)
7137 panic("Failed to allocate %ld bytes for node %d memory map\n",
7138 size, pgdat->node_id);
a1c34a3b 7139 pgdat->node_mem_map = map + offset;
1da177e4 7140 }
0cd842f9
OS
7141 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7142 __func__, pgdat->node_id, (unsigned long)pgdat,
7143 (unsigned long)pgdat->node_mem_map);
12d810c1 7144#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7145 /*
7146 * With no DISCONTIG, the global mem_map is just set as node 0's
7147 */
c713216d 7148 if (pgdat == NODE_DATA(0)) {
1da177e4 7149 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7150 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7151 mem_map -= offset;
c713216d 7152 }
1da177e4
LT
7153#endif
7154}
0cd842f9
OS
7155#else
7156static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7157#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7158
0188dc98
OS
7159#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7160static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7161{
0188dc98
OS
7162 pgdat->first_deferred_pfn = ULONG_MAX;
7163}
7164#else
7165static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7166#endif
7167
854e8848 7168static void __init free_area_init_node(int nid)
1da177e4 7169{
9109fb7b 7170 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7171 unsigned long start_pfn = 0;
7172 unsigned long end_pfn = 0;
9109fb7b 7173
88fdf75d 7174 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7175 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7176
854e8848 7177 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7178
1da177e4 7179 pgdat->node_id = nid;
854e8848 7180 pgdat->node_start_pfn = start_pfn;
75ef7184 7181 pgdat->per_cpu_nodestats = NULL;
854e8848 7182
8d29e18a 7183 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7184 (u64)start_pfn << PAGE_SHIFT,
7185 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7186 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7187
7188 alloc_node_mem_map(pgdat);
0188dc98 7189 pgdat_set_deferred_range(pgdat);
1da177e4 7190
7f3eb55b 7191 free_area_init_core(pgdat);
1da177e4
LT
7192}
7193
bc9331a1 7194void __init free_area_init_memoryless_node(int nid)
3f08a302 7195{
854e8848 7196 free_area_init_node(nid);
3f08a302
MR
7197}
7198
418508c1
MS
7199#if MAX_NUMNODES > 1
7200/*
7201 * Figure out the number of possible node ids.
7202 */
f9872caf 7203void __init setup_nr_node_ids(void)
418508c1 7204{
904a9553 7205 unsigned int highest;
418508c1 7206
904a9553 7207 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7208 nr_node_ids = highest + 1;
7209}
418508c1
MS
7210#endif
7211
1e01979c
TH
7212/**
7213 * node_map_pfn_alignment - determine the maximum internode alignment
7214 *
7215 * This function should be called after node map is populated and sorted.
7216 * It calculates the maximum power of two alignment which can distinguish
7217 * all the nodes.
7218 *
7219 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7220 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7221 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7222 * shifted, 1GiB is enough and this function will indicate so.
7223 *
7224 * This is used to test whether pfn -> nid mapping of the chosen memory
7225 * model has fine enough granularity to avoid incorrect mapping for the
7226 * populated node map.
7227 *
a862f68a 7228 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7229 * requirement (single node).
7230 */
7231unsigned long __init node_map_pfn_alignment(void)
7232{
7233 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7234 unsigned long start, end, mask;
98fa15f3 7235 int last_nid = NUMA_NO_NODE;
c13291a5 7236 int i, nid;
1e01979c 7237
c13291a5 7238 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7239 if (!start || last_nid < 0 || last_nid == nid) {
7240 last_nid = nid;
7241 last_end = end;
7242 continue;
7243 }
7244
7245 /*
7246 * Start with a mask granular enough to pin-point to the
7247 * start pfn and tick off bits one-by-one until it becomes
7248 * too coarse to separate the current node from the last.
7249 */
7250 mask = ~((1 << __ffs(start)) - 1);
7251 while (mask && last_end <= (start & (mask << 1)))
7252 mask <<= 1;
7253
7254 /* accumulate all internode masks */
7255 accl_mask |= mask;
7256 }
7257
7258 /* convert mask to number of pages */
7259 return ~accl_mask + 1;
7260}
7261
c713216d
MG
7262/**
7263 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7264 *
a862f68a 7265 * Return: the minimum PFN based on information provided via
7d018176 7266 * memblock_set_node().
c713216d
MG
7267 */
7268unsigned long __init find_min_pfn_with_active_regions(void)
7269{
8a1b25fe 7270 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7271}
7272
37b07e41
LS
7273/*
7274 * early_calculate_totalpages()
7275 * Sum pages in active regions for movable zone.
4b0ef1fe 7276 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7277 */
484f51f8 7278static unsigned long __init early_calculate_totalpages(void)
7e63efef 7279{
7e63efef 7280 unsigned long totalpages = 0;
c13291a5
TH
7281 unsigned long start_pfn, end_pfn;
7282 int i, nid;
7283
7284 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7285 unsigned long pages = end_pfn - start_pfn;
7e63efef 7286
37b07e41
LS
7287 totalpages += pages;
7288 if (pages)
4b0ef1fe 7289 node_set_state(nid, N_MEMORY);
37b07e41 7290 }
b8af2941 7291 return totalpages;
7e63efef
MG
7292}
7293
2a1e274a
MG
7294/*
7295 * Find the PFN the Movable zone begins in each node. Kernel memory
7296 * is spread evenly between nodes as long as the nodes have enough
7297 * memory. When they don't, some nodes will have more kernelcore than
7298 * others
7299 */
b224ef85 7300static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7301{
7302 int i, nid;
7303 unsigned long usable_startpfn;
7304 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7305 /* save the state before borrow the nodemask */
4b0ef1fe 7306 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7307 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7308 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7309 struct memblock_region *r;
b2f3eebe
TC
7310
7311 /* Need to find movable_zone earlier when movable_node is specified. */
7312 find_usable_zone_for_movable();
7313
7314 /*
7315 * If movable_node is specified, ignore kernelcore and movablecore
7316 * options.
7317 */
7318 if (movable_node_is_enabled()) {
cc6de168 7319 for_each_mem_region(r) {
136199f0 7320 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7321 continue;
7322
d622abf7 7323 nid = memblock_get_region_node(r);
b2f3eebe 7324
136199f0 7325 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7326 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7327 min(usable_startpfn, zone_movable_pfn[nid]) :
7328 usable_startpfn;
7329 }
7330
7331 goto out2;
7332 }
2a1e274a 7333
342332e6
TI
7334 /*
7335 * If kernelcore=mirror is specified, ignore movablecore option
7336 */
7337 if (mirrored_kernelcore) {
7338 bool mem_below_4gb_not_mirrored = false;
7339
cc6de168 7340 for_each_mem_region(r) {
342332e6
TI
7341 if (memblock_is_mirror(r))
7342 continue;
7343
d622abf7 7344 nid = memblock_get_region_node(r);
342332e6
TI
7345
7346 usable_startpfn = memblock_region_memory_base_pfn(r);
7347
7348 if (usable_startpfn < 0x100000) {
7349 mem_below_4gb_not_mirrored = true;
7350 continue;
7351 }
7352
7353 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7354 min(usable_startpfn, zone_movable_pfn[nid]) :
7355 usable_startpfn;
7356 }
7357
7358 if (mem_below_4gb_not_mirrored)
633bf2fe 7359 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7360
7361 goto out2;
7362 }
7363
7e63efef 7364 /*
a5c6d650
DR
7365 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7366 * amount of necessary memory.
7367 */
7368 if (required_kernelcore_percent)
7369 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7370 10000UL;
7371 if (required_movablecore_percent)
7372 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7373 10000UL;
7374
7375 /*
7376 * If movablecore= was specified, calculate what size of
7e63efef
MG
7377 * kernelcore that corresponds so that memory usable for
7378 * any allocation type is evenly spread. If both kernelcore
7379 * and movablecore are specified, then the value of kernelcore
7380 * will be used for required_kernelcore if it's greater than
7381 * what movablecore would have allowed.
7382 */
7383 if (required_movablecore) {
7e63efef
MG
7384 unsigned long corepages;
7385
7386 /*
7387 * Round-up so that ZONE_MOVABLE is at least as large as what
7388 * was requested by the user
7389 */
7390 required_movablecore =
7391 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7392 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7393 corepages = totalpages - required_movablecore;
7394
7395 required_kernelcore = max(required_kernelcore, corepages);
7396 }
7397
bde304bd
XQ
7398 /*
7399 * If kernelcore was not specified or kernelcore size is larger
7400 * than totalpages, there is no ZONE_MOVABLE.
7401 */
7402 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7403 goto out;
2a1e274a
MG
7404
7405 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7406 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7407
7408restart:
7409 /* Spread kernelcore memory as evenly as possible throughout nodes */
7410 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7411 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7412 unsigned long start_pfn, end_pfn;
7413
2a1e274a
MG
7414 /*
7415 * Recalculate kernelcore_node if the division per node
7416 * now exceeds what is necessary to satisfy the requested
7417 * amount of memory for the kernel
7418 */
7419 if (required_kernelcore < kernelcore_node)
7420 kernelcore_node = required_kernelcore / usable_nodes;
7421
7422 /*
7423 * As the map is walked, we track how much memory is usable
7424 * by the kernel using kernelcore_remaining. When it is
7425 * 0, the rest of the node is usable by ZONE_MOVABLE
7426 */
7427 kernelcore_remaining = kernelcore_node;
7428
7429 /* Go through each range of PFNs within this node */
c13291a5 7430 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7431 unsigned long size_pages;
7432
c13291a5 7433 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7434 if (start_pfn >= end_pfn)
7435 continue;
7436
7437 /* Account for what is only usable for kernelcore */
7438 if (start_pfn < usable_startpfn) {
7439 unsigned long kernel_pages;
7440 kernel_pages = min(end_pfn, usable_startpfn)
7441 - start_pfn;
7442
7443 kernelcore_remaining -= min(kernel_pages,
7444 kernelcore_remaining);
7445 required_kernelcore -= min(kernel_pages,
7446 required_kernelcore);
7447
7448 /* Continue if range is now fully accounted */
7449 if (end_pfn <= usable_startpfn) {
7450
7451 /*
7452 * Push zone_movable_pfn to the end so
7453 * that if we have to rebalance
7454 * kernelcore across nodes, we will
7455 * not double account here
7456 */
7457 zone_movable_pfn[nid] = end_pfn;
7458 continue;
7459 }
7460 start_pfn = usable_startpfn;
7461 }
7462
7463 /*
7464 * The usable PFN range for ZONE_MOVABLE is from
7465 * start_pfn->end_pfn. Calculate size_pages as the
7466 * number of pages used as kernelcore
7467 */
7468 size_pages = end_pfn - start_pfn;
7469 if (size_pages > kernelcore_remaining)
7470 size_pages = kernelcore_remaining;
7471 zone_movable_pfn[nid] = start_pfn + size_pages;
7472
7473 /*
7474 * Some kernelcore has been met, update counts and
7475 * break if the kernelcore for this node has been
b8af2941 7476 * satisfied
2a1e274a
MG
7477 */
7478 required_kernelcore -= min(required_kernelcore,
7479 size_pages);
7480 kernelcore_remaining -= size_pages;
7481 if (!kernelcore_remaining)
7482 break;
7483 }
7484 }
7485
7486 /*
7487 * If there is still required_kernelcore, we do another pass with one
7488 * less node in the count. This will push zone_movable_pfn[nid] further
7489 * along on the nodes that still have memory until kernelcore is
b8af2941 7490 * satisfied
2a1e274a
MG
7491 */
7492 usable_nodes--;
7493 if (usable_nodes && required_kernelcore > usable_nodes)
7494 goto restart;
7495
b2f3eebe 7496out2:
2a1e274a
MG
7497 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7498 for (nid = 0; nid < MAX_NUMNODES; nid++)
7499 zone_movable_pfn[nid] =
7500 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7501
20e6926d 7502out:
66918dcd 7503 /* restore the node_state */
4b0ef1fe 7504 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7505}
7506
4b0ef1fe
LJ
7507/* Any regular or high memory on that node ? */
7508static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7509{
37b07e41
LS
7510 enum zone_type zone_type;
7511
4b0ef1fe 7512 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7513 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7514 if (populated_zone(zone)) {
7b0e0c0e
OS
7515 if (IS_ENABLED(CONFIG_HIGHMEM))
7516 node_set_state(nid, N_HIGH_MEMORY);
7517 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7518 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7519 break;
7520 }
37b07e41 7521 }
37b07e41
LS
7522}
7523
51930df5
MR
7524/*
7525 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7526 * such cases we allow max_zone_pfn sorted in the descending order
7527 */
7528bool __weak arch_has_descending_max_zone_pfns(void)
7529{
7530 return false;
7531}
7532
c713216d 7533/**
9691a071 7534 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7535 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7536 *
7537 * This will call free_area_init_node() for each active node in the system.
7d018176 7538 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7539 * zone in each node and their holes is calculated. If the maximum PFN
7540 * between two adjacent zones match, it is assumed that the zone is empty.
7541 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7542 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7543 * starts where the previous one ended. For example, ZONE_DMA32 starts
7544 * at arch_max_dma_pfn.
7545 */
9691a071 7546void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7547{
c13291a5 7548 unsigned long start_pfn, end_pfn;
51930df5
MR
7549 int i, nid, zone;
7550 bool descending;
a6af2bc3 7551
c713216d
MG
7552 /* Record where the zone boundaries are */
7553 memset(arch_zone_lowest_possible_pfn, 0,
7554 sizeof(arch_zone_lowest_possible_pfn));
7555 memset(arch_zone_highest_possible_pfn, 0,
7556 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7557
7558 start_pfn = find_min_pfn_with_active_regions();
51930df5 7559 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7560
7561 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7562 if (descending)
7563 zone = MAX_NR_ZONES - i - 1;
7564 else
7565 zone = i;
7566
7567 if (zone == ZONE_MOVABLE)
2a1e274a 7568 continue;
90cae1fe 7569
51930df5
MR
7570 end_pfn = max(max_zone_pfn[zone], start_pfn);
7571 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7572 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7573
7574 start_pfn = end_pfn;
c713216d 7575 }
2a1e274a
MG
7576
7577 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7578 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7579 find_zone_movable_pfns_for_nodes();
c713216d 7580
c713216d 7581 /* Print out the zone ranges */
f88dfff5 7582 pr_info("Zone ranges:\n");
2a1e274a
MG
7583 for (i = 0; i < MAX_NR_ZONES; i++) {
7584 if (i == ZONE_MOVABLE)
7585 continue;
f88dfff5 7586 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7587 if (arch_zone_lowest_possible_pfn[i] ==
7588 arch_zone_highest_possible_pfn[i])
f88dfff5 7589 pr_cont("empty\n");
72f0ba02 7590 else
8d29e18a
JG
7591 pr_cont("[mem %#018Lx-%#018Lx]\n",
7592 (u64)arch_zone_lowest_possible_pfn[i]
7593 << PAGE_SHIFT,
7594 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7595 << PAGE_SHIFT) - 1);
2a1e274a
MG
7596 }
7597
7598 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7599 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7600 for (i = 0; i < MAX_NUMNODES; i++) {
7601 if (zone_movable_pfn[i])
8d29e18a
JG
7602 pr_info(" Node %d: %#018Lx\n", i,
7603 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7604 }
c713216d 7605
f46edbd1
DW
7606 /*
7607 * Print out the early node map, and initialize the
7608 * subsection-map relative to active online memory ranges to
7609 * enable future "sub-section" extensions of the memory map.
7610 */
f88dfff5 7611 pr_info("Early memory node ranges\n");
f46edbd1 7612 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7613 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7614 (u64)start_pfn << PAGE_SHIFT,
7615 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7616 subsection_map_init(start_pfn, end_pfn - start_pfn);
7617 }
c713216d
MG
7618
7619 /* Initialise every node */
708614e6 7620 mminit_verify_pageflags_layout();
8ef82866 7621 setup_nr_node_ids();
c713216d
MG
7622 for_each_online_node(nid) {
7623 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7624 free_area_init_node(nid);
37b07e41
LS
7625
7626 /* Any memory on that node */
7627 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7628 node_set_state(nid, N_MEMORY);
7629 check_for_memory(pgdat, nid);
c713216d
MG
7630 }
7631}
2a1e274a 7632
a5c6d650
DR
7633static int __init cmdline_parse_core(char *p, unsigned long *core,
7634 unsigned long *percent)
2a1e274a
MG
7635{
7636 unsigned long long coremem;
a5c6d650
DR
7637 char *endptr;
7638
2a1e274a
MG
7639 if (!p)
7640 return -EINVAL;
7641
a5c6d650
DR
7642 /* Value may be a percentage of total memory, otherwise bytes */
7643 coremem = simple_strtoull(p, &endptr, 0);
7644 if (*endptr == '%') {
7645 /* Paranoid check for percent values greater than 100 */
7646 WARN_ON(coremem > 100);
2a1e274a 7647
a5c6d650
DR
7648 *percent = coremem;
7649 } else {
7650 coremem = memparse(p, &p);
7651 /* Paranoid check that UL is enough for the coremem value */
7652 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7653
a5c6d650
DR
7654 *core = coremem >> PAGE_SHIFT;
7655 *percent = 0UL;
7656 }
2a1e274a
MG
7657 return 0;
7658}
ed7ed365 7659
7e63efef
MG
7660/*
7661 * kernelcore=size sets the amount of memory for use for allocations that
7662 * cannot be reclaimed or migrated.
7663 */
7664static int __init cmdline_parse_kernelcore(char *p)
7665{
342332e6
TI
7666 /* parse kernelcore=mirror */
7667 if (parse_option_str(p, "mirror")) {
7668 mirrored_kernelcore = true;
7669 return 0;
7670 }
7671
a5c6d650
DR
7672 return cmdline_parse_core(p, &required_kernelcore,
7673 &required_kernelcore_percent);
7e63efef
MG
7674}
7675
7676/*
7677 * movablecore=size sets the amount of memory for use for allocations that
7678 * can be reclaimed or migrated.
7679 */
7680static int __init cmdline_parse_movablecore(char *p)
7681{
a5c6d650
DR
7682 return cmdline_parse_core(p, &required_movablecore,
7683 &required_movablecore_percent);
7e63efef
MG
7684}
7685
ed7ed365 7686early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7687early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7688
c3d5f5f0
JL
7689void adjust_managed_page_count(struct page *page, long count)
7690{
9705bea5 7691 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7692 totalram_pages_add(count);
3dcc0571
JL
7693#ifdef CONFIG_HIGHMEM
7694 if (PageHighMem(page))
ca79b0c2 7695 totalhigh_pages_add(count);
3dcc0571 7696#endif
c3d5f5f0 7697}
3dcc0571 7698EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7699
e5cb113f 7700unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7701{
11199692
JL
7702 void *pos;
7703 unsigned long pages = 0;
69afade7 7704
11199692
JL
7705 start = (void *)PAGE_ALIGN((unsigned long)start);
7706 end = (void *)((unsigned long)end & PAGE_MASK);
7707 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7708 struct page *page = virt_to_page(pos);
7709 void *direct_map_addr;
7710
7711 /*
7712 * 'direct_map_addr' might be different from 'pos'
7713 * because some architectures' virt_to_page()
7714 * work with aliases. Getting the direct map
7715 * address ensures that we get a _writeable_
7716 * alias for the memset().
7717 */
7718 direct_map_addr = page_address(page);
c746170d
VF
7719 /*
7720 * Perform a kasan-unchecked memset() since this memory
7721 * has not been initialized.
7722 */
7723 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 7724 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7725 memset(direct_map_addr, poison, PAGE_SIZE);
7726
7727 free_reserved_page(page);
69afade7
JL
7728 }
7729
7730 if (pages && s)
adb1fe9a
JP
7731 pr_info("Freeing %s memory: %ldK\n",
7732 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7733
7734 return pages;
7735}
7736
7ee3d4e8
JL
7737void __init mem_init_print_info(const char *str)
7738{
7739 unsigned long physpages, codesize, datasize, rosize, bss_size;
7740 unsigned long init_code_size, init_data_size;
7741
7742 physpages = get_num_physpages();
7743 codesize = _etext - _stext;
7744 datasize = _edata - _sdata;
7745 rosize = __end_rodata - __start_rodata;
7746 bss_size = __bss_stop - __bss_start;
7747 init_data_size = __init_end - __init_begin;
7748 init_code_size = _einittext - _sinittext;
7749
7750 /*
7751 * Detect special cases and adjust section sizes accordingly:
7752 * 1) .init.* may be embedded into .data sections
7753 * 2) .init.text.* may be out of [__init_begin, __init_end],
7754 * please refer to arch/tile/kernel/vmlinux.lds.S.
7755 * 3) .rodata.* may be embedded into .text or .data sections.
7756 */
7757#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7758 do { \
7759 if (start <= pos && pos < end && size > adj) \
7760 size -= adj; \
7761 } while (0)
7ee3d4e8
JL
7762
7763 adj_init_size(__init_begin, __init_end, init_data_size,
7764 _sinittext, init_code_size);
7765 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7766 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7767 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7768 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7769
7770#undef adj_init_size
7771
756a025f 7772 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7773#ifdef CONFIG_HIGHMEM
756a025f 7774 ", %luK highmem"
7ee3d4e8 7775#endif
756a025f
JP
7776 "%s%s)\n",
7777 nr_free_pages() << (PAGE_SHIFT - 10),
7778 physpages << (PAGE_SHIFT - 10),
7779 codesize >> 10, datasize >> 10, rosize >> 10,
7780 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7781 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7782 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7783#ifdef CONFIG_HIGHMEM
ca79b0c2 7784 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7785#endif
756a025f 7786 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7787}
7788
0e0b864e 7789/**
88ca3b94
RD
7790 * set_dma_reserve - set the specified number of pages reserved in the first zone
7791 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7792 *
013110a7 7793 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7794 * In the DMA zone, a significant percentage may be consumed by kernel image
7795 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7796 * function may optionally be used to account for unfreeable pages in the
7797 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7798 * smaller per-cpu batchsize.
0e0b864e
MG
7799 */
7800void __init set_dma_reserve(unsigned long new_dma_reserve)
7801{
7802 dma_reserve = new_dma_reserve;
7803}
7804
005fd4bb 7805static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7806{
1da177e4 7807
005fd4bb
SAS
7808 lru_add_drain_cpu(cpu);
7809 drain_pages(cpu);
9f8f2172 7810
005fd4bb
SAS
7811 /*
7812 * Spill the event counters of the dead processor
7813 * into the current processors event counters.
7814 * This artificially elevates the count of the current
7815 * processor.
7816 */
7817 vm_events_fold_cpu(cpu);
9f8f2172 7818
005fd4bb
SAS
7819 /*
7820 * Zero the differential counters of the dead processor
7821 * so that the vm statistics are consistent.
7822 *
7823 * This is only okay since the processor is dead and cannot
7824 * race with what we are doing.
7825 */
7826 cpu_vm_stats_fold(cpu);
7827 return 0;
1da177e4 7828}
1da177e4 7829
e03a5125
NP
7830#ifdef CONFIG_NUMA
7831int hashdist = HASHDIST_DEFAULT;
7832
7833static int __init set_hashdist(char *str)
7834{
7835 if (!str)
7836 return 0;
7837 hashdist = simple_strtoul(str, &str, 0);
7838 return 1;
7839}
7840__setup("hashdist=", set_hashdist);
7841#endif
7842
1da177e4
LT
7843void __init page_alloc_init(void)
7844{
005fd4bb
SAS
7845 int ret;
7846
e03a5125
NP
7847#ifdef CONFIG_NUMA
7848 if (num_node_state(N_MEMORY) == 1)
7849 hashdist = 0;
7850#endif
7851
005fd4bb
SAS
7852 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7853 "mm/page_alloc:dead", NULL,
7854 page_alloc_cpu_dead);
7855 WARN_ON(ret < 0);
1da177e4
LT
7856}
7857
cb45b0e9 7858/*
34b10060 7859 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7860 * or min_free_kbytes changes.
7861 */
7862static void calculate_totalreserve_pages(void)
7863{
7864 struct pglist_data *pgdat;
7865 unsigned long reserve_pages = 0;
2f6726e5 7866 enum zone_type i, j;
cb45b0e9
HA
7867
7868 for_each_online_pgdat(pgdat) {
281e3726
MG
7869
7870 pgdat->totalreserve_pages = 0;
7871
cb45b0e9
HA
7872 for (i = 0; i < MAX_NR_ZONES; i++) {
7873 struct zone *zone = pgdat->node_zones + i;
3484b2de 7874 long max = 0;
9705bea5 7875 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7876
7877 /* Find valid and maximum lowmem_reserve in the zone */
7878 for (j = i; j < MAX_NR_ZONES; j++) {
7879 if (zone->lowmem_reserve[j] > max)
7880 max = zone->lowmem_reserve[j];
7881 }
7882
41858966
MG
7883 /* we treat the high watermark as reserved pages. */
7884 max += high_wmark_pages(zone);
cb45b0e9 7885
3d6357de
AK
7886 if (max > managed_pages)
7887 max = managed_pages;
a8d01437 7888
281e3726 7889 pgdat->totalreserve_pages += max;
a8d01437 7890
cb45b0e9
HA
7891 reserve_pages += max;
7892 }
7893 }
7894 totalreserve_pages = reserve_pages;
7895}
7896
1da177e4
LT
7897/*
7898 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7899 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7900 * has a correct pages reserved value, so an adequate number of
7901 * pages are left in the zone after a successful __alloc_pages().
7902 */
7903static void setup_per_zone_lowmem_reserve(void)
7904{
7905 struct pglist_data *pgdat;
470c61d7 7906 enum zone_type i, j;
1da177e4 7907
ec936fc5 7908 for_each_online_pgdat(pgdat) {
470c61d7
LS
7909 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7910 struct zone *zone = &pgdat->node_zones[i];
7911 int ratio = sysctl_lowmem_reserve_ratio[i];
7912 bool clear = !ratio || !zone_managed_pages(zone);
7913 unsigned long managed_pages = 0;
7914
7915 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7916 if (clear) {
7917 zone->lowmem_reserve[j] = 0;
d3cda233 7918 } else {
470c61d7
LS
7919 struct zone *upper_zone = &pgdat->node_zones[j];
7920
7921 managed_pages += zone_managed_pages(upper_zone);
7922 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 7923 }
1da177e4
LT
7924 }
7925 }
7926 }
cb45b0e9
HA
7927
7928 /* update totalreserve_pages */
7929 calculate_totalreserve_pages();
1da177e4
LT
7930}
7931
cfd3da1e 7932static void __setup_per_zone_wmarks(void)
1da177e4
LT
7933{
7934 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7935 unsigned long lowmem_pages = 0;
7936 struct zone *zone;
7937 unsigned long flags;
7938
7939 /* Calculate total number of !ZONE_HIGHMEM pages */
7940 for_each_zone(zone) {
7941 if (!is_highmem(zone))
9705bea5 7942 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7943 }
7944
7945 for_each_zone(zone) {
ac924c60
AM
7946 u64 tmp;
7947
1125b4e3 7948 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7949 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7950 do_div(tmp, lowmem_pages);
1da177e4
LT
7951 if (is_highmem(zone)) {
7952 /*
669ed175
NP
7953 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7954 * need highmem pages, so cap pages_min to a small
7955 * value here.
7956 *
41858966 7957 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7958 * deltas control async page reclaim, and so should
669ed175 7959 * not be capped for highmem.
1da177e4 7960 */
90ae8d67 7961 unsigned long min_pages;
1da177e4 7962
9705bea5 7963 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7964 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7965 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7966 } else {
669ed175
NP
7967 /*
7968 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7969 * proportionate to the zone's size.
7970 */
a9214443 7971 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7972 }
7973
795ae7a0
JW
7974 /*
7975 * Set the kswapd watermarks distance according to the
7976 * scale factor in proportion to available memory, but
7977 * ensure a minimum size on small systems.
7978 */
7979 tmp = max_t(u64, tmp >> 2,
9705bea5 7980 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7981 watermark_scale_factor, 10000));
7982
aa092591 7983 zone->watermark_boost = 0;
a9214443
MG
7984 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7985 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7986
1125b4e3 7987 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7988 }
cb45b0e9
HA
7989
7990 /* update totalreserve_pages */
7991 calculate_totalreserve_pages();
1da177e4
LT
7992}
7993
cfd3da1e
MG
7994/**
7995 * setup_per_zone_wmarks - called when min_free_kbytes changes
7996 * or when memory is hot-{added|removed}
7997 *
7998 * Ensures that the watermark[min,low,high] values for each zone are set
7999 * correctly with respect to min_free_kbytes.
8000 */
8001void setup_per_zone_wmarks(void)
8002{
b93e0f32
MH
8003 static DEFINE_SPINLOCK(lock);
8004
8005 spin_lock(&lock);
cfd3da1e 8006 __setup_per_zone_wmarks();
b93e0f32 8007 spin_unlock(&lock);
cfd3da1e
MG
8008}
8009
1da177e4
LT
8010/*
8011 * Initialise min_free_kbytes.
8012 *
8013 * For small machines we want it small (128k min). For large machines
8beeae86 8014 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8015 * bandwidth does not increase linearly with machine size. We use
8016 *
b8af2941 8017 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8018 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8019 *
8020 * which yields
8021 *
8022 * 16MB: 512k
8023 * 32MB: 724k
8024 * 64MB: 1024k
8025 * 128MB: 1448k
8026 * 256MB: 2048k
8027 * 512MB: 2896k
8028 * 1024MB: 4096k
8029 * 2048MB: 5792k
8030 * 4096MB: 8192k
8031 * 8192MB: 11584k
8032 * 16384MB: 16384k
8033 */
1b79acc9 8034int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8035{
8036 unsigned long lowmem_kbytes;
5f12733e 8037 int new_min_free_kbytes;
1da177e4
LT
8038
8039 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8040 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8041
8042 if (new_min_free_kbytes > user_min_free_kbytes) {
8043 min_free_kbytes = new_min_free_kbytes;
8044 if (min_free_kbytes < 128)
8045 min_free_kbytes = 128;
ee8eb9a5
JS
8046 if (min_free_kbytes > 262144)
8047 min_free_kbytes = 262144;
5f12733e
MH
8048 } else {
8049 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8050 new_min_free_kbytes, user_min_free_kbytes);
8051 }
bc75d33f 8052 setup_per_zone_wmarks();
a6cccdc3 8053 refresh_zone_stat_thresholds();
1da177e4 8054 setup_per_zone_lowmem_reserve();
6423aa81
JK
8055
8056#ifdef CONFIG_NUMA
8057 setup_min_unmapped_ratio();
8058 setup_min_slab_ratio();
8059#endif
8060
4aab2be0
VB
8061 khugepaged_min_free_kbytes_update();
8062
1da177e4
LT
8063 return 0;
8064}
e08d3fdf 8065postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8066
8067/*
b8af2941 8068 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8069 * that we can call two helper functions whenever min_free_kbytes
8070 * changes.
8071 */
cccad5b9 8072int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8073 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8074{
da8c757b
HP
8075 int rc;
8076
8077 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8078 if (rc)
8079 return rc;
8080
5f12733e
MH
8081 if (write) {
8082 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8083 setup_per_zone_wmarks();
5f12733e 8084 }
1da177e4
LT
8085 return 0;
8086}
8087
795ae7a0 8088int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8089 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8090{
8091 int rc;
8092
8093 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8094 if (rc)
8095 return rc;
8096
8097 if (write)
8098 setup_per_zone_wmarks();
8099
8100 return 0;
8101}
8102
9614634f 8103#ifdef CONFIG_NUMA
6423aa81 8104static void setup_min_unmapped_ratio(void)
9614634f 8105{
6423aa81 8106 pg_data_t *pgdat;
9614634f 8107 struct zone *zone;
9614634f 8108
a5f5f91d 8109 for_each_online_pgdat(pgdat)
81cbcbc2 8110 pgdat->min_unmapped_pages = 0;
a5f5f91d 8111
9614634f 8112 for_each_zone(zone)
9705bea5
AK
8113 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8114 sysctl_min_unmapped_ratio) / 100;
9614634f 8115}
0ff38490 8116
6423aa81
JK
8117
8118int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8119 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8120{
0ff38490
CL
8121 int rc;
8122
8d65af78 8123 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8124 if (rc)
8125 return rc;
8126
6423aa81
JK
8127 setup_min_unmapped_ratio();
8128
8129 return 0;
8130}
8131
8132static void setup_min_slab_ratio(void)
8133{
8134 pg_data_t *pgdat;
8135 struct zone *zone;
8136
a5f5f91d
MG
8137 for_each_online_pgdat(pgdat)
8138 pgdat->min_slab_pages = 0;
8139
0ff38490 8140 for_each_zone(zone)
9705bea5
AK
8141 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8142 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8143}
8144
8145int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8146 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8147{
8148 int rc;
8149
8150 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8151 if (rc)
8152 return rc;
8153
8154 setup_min_slab_ratio();
8155
0ff38490
CL
8156 return 0;
8157}
9614634f
CL
8158#endif
8159
1da177e4
LT
8160/*
8161 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8162 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8163 * whenever sysctl_lowmem_reserve_ratio changes.
8164 *
8165 * The reserve ratio obviously has absolutely no relation with the
41858966 8166 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8167 * if in function of the boot time zone sizes.
8168 */
cccad5b9 8169int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8170 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8171{
86aaf255
BH
8172 int i;
8173
8d65af78 8174 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8175
8176 for (i = 0; i < MAX_NR_ZONES; i++) {
8177 if (sysctl_lowmem_reserve_ratio[i] < 1)
8178 sysctl_lowmem_reserve_ratio[i] = 0;
8179 }
8180
1da177e4
LT
8181 setup_per_zone_lowmem_reserve();
8182 return 0;
8183}
8184
8ad4b1fb
RS
8185/*
8186 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8187 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8188 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8189 */
cccad5b9 8190int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8191 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8192{
8193 struct zone *zone;
7cd2b0a3 8194 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8195 int ret;
8196
7cd2b0a3
DR
8197 mutex_lock(&pcp_batch_high_lock);
8198 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8199
8d65af78 8200 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8201 if (!write || ret < 0)
8202 goto out;
8203
8204 /* Sanity checking to avoid pcp imbalance */
8205 if (percpu_pagelist_fraction &&
8206 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8207 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8208 ret = -EINVAL;
8209 goto out;
8210 }
8211
8212 /* No change? */
8213 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8214 goto out;
c8e251fa 8215
cb1ef534 8216 for_each_populated_zone(zone)
0a8b4f1d 8217 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8218out:
c8e251fa 8219 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8220 return ret;
8ad4b1fb
RS
8221}
8222
f6f34b43
SD
8223#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8224/*
8225 * Returns the number of pages that arch has reserved but
8226 * is not known to alloc_large_system_hash().
8227 */
8228static unsigned long __init arch_reserved_kernel_pages(void)
8229{
8230 return 0;
8231}
8232#endif
8233
9017217b
PT
8234/*
8235 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8236 * machines. As memory size is increased the scale is also increased but at
8237 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8238 * quadruples the scale is increased by one, which means the size of hash table
8239 * only doubles, instead of quadrupling as well.
8240 * Because 32-bit systems cannot have large physical memory, where this scaling
8241 * makes sense, it is disabled on such platforms.
8242 */
8243#if __BITS_PER_LONG > 32
8244#define ADAPT_SCALE_BASE (64ul << 30)
8245#define ADAPT_SCALE_SHIFT 2
8246#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8247#endif
8248
1da177e4
LT
8249/*
8250 * allocate a large system hash table from bootmem
8251 * - it is assumed that the hash table must contain an exact power-of-2
8252 * quantity of entries
8253 * - limit is the number of hash buckets, not the total allocation size
8254 */
8255void *__init alloc_large_system_hash(const char *tablename,
8256 unsigned long bucketsize,
8257 unsigned long numentries,
8258 int scale,
8259 int flags,
8260 unsigned int *_hash_shift,
8261 unsigned int *_hash_mask,
31fe62b9
TB
8262 unsigned long low_limit,
8263 unsigned long high_limit)
1da177e4 8264{
31fe62b9 8265 unsigned long long max = high_limit;
1da177e4
LT
8266 unsigned long log2qty, size;
8267 void *table = NULL;
3749a8f0 8268 gfp_t gfp_flags;
ec11408a 8269 bool virt;
121e6f32 8270 bool huge;
1da177e4
LT
8271
8272 /* allow the kernel cmdline to have a say */
8273 if (!numentries) {
8274 /* round applicable memory size up to nearest megabyte */
04903664 8275 numentries = nr_kernel_pages;
f6f34b43 8276 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8277
8278 /* It isn't necessary when PAGE_SIZE >= 1MB */
8279 if (PAGE_SHIFT < 20)
8280 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8281
9017217b
PT
8282#if __BITS_PER_LONG > 32
8283 if (!high_limit) {
8284 unsigned long adapt;
8285
8286 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8287 adapt <<= ADAPT_SCALE_SHIFT)
8288 scale++;
8289 }
8290#endif
8291
1da177e4
LT
8292 /* limit to 1 bucket per 2^scale bytes of low memory */
8293 if (scale > PAGE_SHIFT)
8294 numentries >>= (scale - PAGE_SHIFT);
8295 else
8296 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8297
8298 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8299 if (unlikely(flags & HASH_SMALL)) {
8300 /* Makes no sense without HASH_EARLY */
8301 WARN_ON(!(flags & HASH_EARLY));
8302 if (!(numentries >> *_hash_shift)) {
8303 numentries = 1UL << *_hash_shift;
8304 BUG_ON(!numentries);
8305 }
8306 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8307 numentries = PAGE_SIZE / bucketsize;
1da177e4 8308 }
6e692ed3 8309 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8310
8311 /* limit allocation size to 1/16 total memory by default */
8312 if (max == 0) {
8313 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8314 do_div(max, bucketsize);
8315 }
074b8517 8316 max = min(max, 0x80000000ULL);
1da177e4 8317
31fe62b9
TB
8318 if (numentries < low_limit)
8319 numentries = low_limit;
1da177e4
LT
8320 if (numentries > max)
8321 numentries = max;
8322
f0d1b0b3 8323 log2qty = ilog2(numentries);
1da177e4 8324
3749a8f0 8325 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8326 do {
ec11408a 8327 virt = false;
1da177e4 8328 size = bucketsize << log2qty;
ea1f5f37
PT
8329 if (flags & HASH_EARLY) {
8330 if (flags & HASH_ZERO)
26fb3dae 8331 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8332 else
7e1c4e27
MR
8333 table = memblock_alloc_raw(size,
8334 SMP_CACHE_BYTES);
ec11408a 8335 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8336 table = __vmalloc(size, gfp_flags);
ec11408a 8337 virt = true;
121e6f32 8338 huge = is_vm_area_hugepages(table);
ea1f5f37 8339 } else {
1037b83b
ED
8340 /*
8341 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8342 * some pages at the end of hash table which
8343 * alloc_pages_exact() automatically does
1037b83b 8344 */
ec11408a
NP
8345 table = alloc_pages_exact(size, gfp_flags);
8346 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8347 }
8348 } while (!table && size > PAGE_SIZE && --log2qty);
8349
8350 if (!table)
8351 panic("Failed to allocate %s hash table\n", tablename);
8352
ec11408a
NP
8353 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8354 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8355 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8356
8357 if (_hash_shift)
8358 *_hash_shift = log2qty;
8359 if (_hash_mask)
8360 *_hash_mask = (1 << log2qty) - 1;
8361
8362 return table;
8363}
a117e66e 8364
a5d76b54 8365/*
80934513 8366 * This function checks whether pageblock includes unmovable pages or not.
80934513 8367 *
b8af2941 8368 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8369 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8370 * check without lock_page also may miss some movable non-lru pages at
8371 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8372 *
8373 * Returns a page without holding a reference. If the caller wants to
047b9967 8374 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8375 * cannot get removed (e.g., via memory unplug) concurrently.
8376 *
a5d76b54 8377 */
4a55c047
QC
8378struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8379 int migratetype, int flags)
49ac8255 8380{
1a9f2191
QC
8381 unsigned long iter = 0;
8382 unsigned long pfn = page_to_pfn(page);
6a654e36 8383 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8384
1a9f2191
QC
8385 if (is_migrate_cma_page(page)) {
8386 /*
8387 * CMA allocations (alloc_contig_range) really need to mark
8388 * isolate CMA pageblocks even when they are not movable in fact
8389 * so consider them movable here.
8390 */
8391 if (is_migrate_cma(migratetype))
4a55c047 8392 return NULL;
1a9f2191 8393
3d680bdf 8394 return page;
1a9f2191 8395 }
4da2ce25 8396
6a654e36 8397 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8398 if (!pfn_valid_within(pfn + iter))
49ac8255 8399 continue;
29723fcc 8400
fe4c86c9 8401 page = pfn_to_page(pfn + iter);
c8721bbb 8402
c9c510dc
DH
8403 /*
8404 * Both, bootmem allocations and memory holes are marked
8405 * PG_reserved and are unmovable. We can even have unmovable
8406 * allocations inside ZONE_MOVABLE, for example when
8407 * specifying "movablecore".
8408 */
d7ab3672 8409 if (PageReserved(page))
3d680bdf 8410 return page;
d7ab3672 8411
9d789999
MH
8412 /*
8413 * If the zone is movable and we have ruled out all reserved
8414 * pages then it should be reasonably safe to assume the rest
8415 * is movable.
8416 */
8417 if (zone_idx(zone) == ZONE_MOVABLE)
8418 continue;
8419
c8721bbb
NH
8420 /*
8421 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8422 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8423 * We need not scan over tail pages because we don't
c8721bbb
NH
8424 * handle each tail page individually in migration.
8425 */
1da2f328 8426 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8427 struct page *head = compound_head(page);
8428 unsigned int skip_pages;
464c7ffb 8429
1da2f328
RR
8430 if (PageHuge(page)) {
8431 if (!hugepage_migration_supported(page_hstate(head)))
8432 return page;
8433 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8434 return page;
1da2f328 8435 }
464c7ffb 8436
d8c6546b 8437 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8438 iter += skip_pages - 1;
c8721bbb
NH
8439 continue;
8440 }
8441
97d255c8
MK
8442 /*
8443 * We can't use page_count without pin a page
8444 * because another CPU can free compound page.
8445 * This check already skips compound tails of THP
0139aa7b 8446 * because their page->_refcount is zero at all time.
97d255c8 8447 */
fe896d18 8448 if (!page_ref_count(page)) {
49ac8255 8449 if (PageBuddy(page))
ab130f91 8450 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8451 continue;
8452 }
97d255c8 8453
b023f468
WC
8454 /*
8455 * The HWPoisoned page may be not in buddy system, and
8456 * page_count() is not 0.
8457 */
756d25be 8458 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8459 continue;
8460
aa218795
DH
8461 /*
8462 * We treat all PageOffline() pages as movable when offlining
8463 * to give drivers a chance to decrement their reference count
8464 * in MEM_GOING_OFFLINE in order to indicate that these pages
8465 * can be offlined as there are no direct references anymore.
8466 * For actually unmovable PageOffline() where the driver does
8467 * not support this, we will fail later when trying to actually
8468 * move these pages that still have a reference count > 0.
8469 * (false negatives in this function only)
8470 */
8471 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8472 continue;
8473
fe4c86c9 8474 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8475 continue;
8476
49ac8255 8477 /*
6b4f7799
JW
8478 * If there are RECLAIMABLE pages, we need to check
8479 * it. But now, memory offline itself doesn't call
8480 * shrink_node_slabs() and it still to be fixed.
49ac8255 8481 */
3d680bdf 8482 return page;
49ac8255 8483 }
4a55c047 8484 return NULL;
49ac8255
KH
8485}
8486
8df995f6 8487#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8488static unsigned long pfn_max_align_down(unsigned long pfn)
8489{
8490 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8491 pageblock_nr_pages) - 1);
8492}
8493
8494static unsigned long pfn_max_align_up(unsigned long pfn)
8495{
8496 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8497 pageblock_nr_pages));
8498}
8499
041d3a8c 8500/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8501static int __alloc_contig_migrate_range(struct compact_control *cc,
8502 unsigned long start, unsigned long end)
041d3a8c
MN
8503{
8504 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8505 unsigned int nr_reclaimed;
041d3a8c
MN
8506 unsigned long pfn = start;
8507 unsigned int tries = 0;
8508 int ret = 0;
8b94e0b8
JK
8509 struct migration_target_control mtc = {
8510 .nid = zone_to_nid(cc->zone),
8511 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8512 };
041d3a8c 8513
be49a6e1 8514 migrate_prep();
041d3a8c 8515
bb13ffeb 8516 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8517 if (fatal_signal_pending(current)) {
8518 ret = -EINTR;
8519 break;
8520 }
8521
bb13ffeb
MG
8522 if (list_empty(&cc->migratepages)) {
8523 cc->nr_migratepages = 0;
edc2ca61 8524 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8525 if (!pfn) {
8526 ret = -EINTR;
8527 break;
8528 }
8529 tries = 0;
8530 } else if (++tries == 5) {
8531 ret = ret < 0 ? ret : -EBUSY;
8532 break;
8533 }
8534
beb51eaa
MK
8535 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8536 &cc->migratepages);
8537 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8538
8b94e0b8
JK
8539 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8540 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8541 }
2a6f5124
SP
8542 if (ret < 0) {
8543 putback_movable_pages(&cc->migratepages);
8544 return ret;
8545 }
8546 return 0;
041d3a8c
MN
8547}
8548
8549/**
8550 * alloc_contig_range() -- tries to allocate given range of pages
8551 * @start: start PFN to allocate
8552 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8553 * @migratetype: migratetype of the underlaying pageblocks (either
8554 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8555 * in range must have the same migratetype and it must
8556 * be either of the two.
ca96b625 8557 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8558 *
8559 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8560 * aligned. The PFN range must belong to a single zone.
041d3a8c 8561 *
2c7452a0
MK
8562 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8563 * pageblocks in the range. Once isolated, the pageblocks should not
8564 * be modified by others.
041d3a8c 8565 *
a862f68a 8566 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8567 * pages which PFN is in [start, end) are allocated for the caller and
8568 * need to be freed with free_contig_range().
8569 */
0815f3d8 8570int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8571 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8572{
041d3a8c 8573 unsigned long outer_start, outer_end;
d00181b9
KS
8574 unsigned int order;
8575 int ret = 0;
041d3a8c 8576
bb13ffeb
MG
8577 struct compact_control cc = {
8578 .nr_migratepages = 0,
8579 .order = -1,
8580 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8581 .mode = MIGRATE_SYNC,
bb13ffeb 8582 .ignore_skip_hint = true,
2583d671 8583 .no_set_skip_hint = true,
7dea19f9 8584 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8585 .alloc_contig = true,
bb13ffeb
MG
8586 };
8587 INIT_LIST_HEAD(&cc.migratepages);
8588
041d3a8c
MN
8589 /*
8590 * What we do here is we mark all pageblocks in range as
8591 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8592 * have different sizes, and due to the way page allocator
8593 * work, we align the range to biggest of the two pages so
8594 * that page allocator won't try to merge buddies from
8595 * different pageblocks and change MIGRATE_ISOLATE to some
8596 * other migration type.
8597 *
8598 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8599 * migrate the pages from an unaligned range (ie. pages that
8600 * we are interested in). This will put all the pages in
8601 * range back to page allocator as MIGRATE_ISOLATE.
8602 *
8603 * When this is done, we take the pages in range from page
8604 * allocator removing them from the buddy system. This way
8605 * page allocator will never consider using them.
8606 *
8607 * This lets us mark the pageblocks back as
8608 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8609 * aligned range but not in the unaligned, original range are
8610 * put back to page allocator so that buddy can use them.
8611 */
8612
8613 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8614 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8615 if (ret)
86a595f9 8616 return ret;
041d3a8c 8617
7612921f
VB
8618 drain_all_pages(cc.zone);
8619
8ef5849f
JK
8620 /*
8621 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8622 * So, just fall through. test_pages_isolated() has a tracepoint
8623 * which will report the busy page.
8624 *
8625 * It is possible that busy pages could become available before
8626 * the call to test_pages_isolated, and the range will actually be
8627 * allocated. So, if we fall through be sure to clear ret so that
8628 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8629 */
bb13ffeb 8630 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8631 if (ret && ret != -EBUSY)
041d3a8c 8632 goto done;
63cd4489 8633 ret =0;
041d3a8c
MN
8634
8635 /*
8636 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8637 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8638 * more, all pages in [start, end) are free in page allocator.
8639 * What we are going to do is to allocate all pages from
8640 * [start, end) (that is remove them from page allocator).
8641 *
8642 * The only problem is that pages at the beginning and at the
8643 * end of interesting range may be not aligned with pages that
8644 * page allocator holds, ie. they can be part of higher order
8645 * pages. Because of this, we reserve the bigger range and
8646 * once this is done free the pages we are not interested in.
8647 *
8648 * We don't have to hold zone->lock here because the pages are
8649 * isolated thus they won't get removed from buddy.
8650 */
8651
8652 lru_add_drain_all();
041d3a8c
MN
8653
8654 order = 0;
8655 outer_start = start;
8656 while (!PageBuddy(pfn_to_page(outer_start))) {
8657 if (++order >= MAX_ORDER) {
8ef5849f
JK
8658 outer_start = start;
8659 break;
041d3a8c
MN
8660 }
8661 outer_start &= ~0UL << order;
8662 }
8663
8ef5849f 8664 if (outer_start != start) {
ab130f91 8665 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8666
8667 /*
8668 * outer_start page could be small order buddy page and
8669 * it doesn't include start page. Adjust outer_start
8670 * in this case to report failed page properly
8671 * on tracepoint in test_pages_isolated()
8672 */
8673 if (outer_start + (1UL << order) <= start)
8674 outer_start = start;
8675 }
8676
041d3a8c 8677 /* Make sure the range is really isolated. */
756d25be 8678 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8679 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8680 __func__, outer_start, end);
041d3a8c
MN
8681 ret = -EBUSY;
8682 goto done;
8683 }
8684
49f223a9 8685 /* Grab isolated pages from freelists. */
bb13ffeb 8686 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8687 if (!outer_end) {
8688 ret = -EBUSY;
8689 goto done;
8690 }
8691
8692 /* Free head and tail (if any) */
8693 if (start != outer_start)
8694 free_contig_range(outer_start, start - outer_start);
8695 if (end != outer_end)
8696 free_contig_range(end, outer_end - end);
8697
8698done:
8699 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8700 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8701 return ret;
8702}
255f5985 8703EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8704
8705static int __alloc_contig_pages(unsigned long start_pfn,
8706 unsigned long nr_pages, gfp_t gfp_mask)
8707{
8708 unsigned long end_pfn = start_pfn + nr_pages;
8709
8710 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8711 gfp_mask);
8712}
8713
8714static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8715 unsigned long nr_pages)
8716{
8717 unsigned long i, end_pfn = start_pfn + nr_pages;
8718 struct page *page;
8719
8720 for (i = start_pfn; i < end_pfn; i++) {
8721 page = pfn_to_online_page(i);
8722 if (!page)
8723 return false;
8724
8725 if (page_zone(page) != z)
8726 return false;
8727
8728 if (PageReserved(page))
8729 return false;
8730
8731 if (page_count(page) > 0)
8732 return false;
8733
8734 if (PageHuge(page))
8735 return false;
8736 }
8737 return true;
8738}
8739
8740static bool zone_spans_last_pfn(const struct zone *zone,
8741 unsigned long start_pfn, unsigned long nr_pages)
8742{
8743 unsigned long last_pfn = start_pfn + nr_pages - 1;
8744
8745 return zone_spans_pfn(zone, last_pfn);
8746}
8747
8748/**
8749 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8750 * @nr_pages: Number of contiguous pages to allocate
8751 * @gfp_mask: GFP mask to limit search and used during compaction
8752 * @nid: Target node
8753 * @nodemask: Mask for other possible nodes
8754 *
8755 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8756 * on an applicable zonelist to find a contiguous pfn range which can then be
8757 * tried for allocation with alloc_contig_range(). This routine is intended
8758 * for allocation requests which can not be fulfilled with the buddy allocator.
8759 *
8760 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8761 * power of two then the alignment is guaranteed to be to the given nr_pages
8762 * (e.g. 1GB request would be aligned to 1GB).
8763 *
8764 * Allocated pages can be freed with free_contig_range() or by manually calling
8765 * __free_page() on each allocated page.
8766 *
8767 * Return: pointer to contiguous pages on success, or NULL if not successful.
8768 */
8769struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8770 int nid, nodemask_t *nodemask)
8771{
8772 unsigned long ret, pfn, flags;
8773 struct zonelist *zonelist;
8774 struct zone *zone;
8775 struct zoneref *z;
8776
8777 zonelist = node_zonelist(nid, gfp_mask);
8778 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8779 gfp_zone(gfp_mask), nodemask) {
8780 spin_lock_irqsave(&zone->lock, flags);
8781
8782 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8783 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8784 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8785 /*
8786 * We release the zone lock here because
8787 * alloc_contig_range() will also lock the zone
8788 * at some point. If there's an allocation
8789 * spinning on this lock, it may win the race
8790 * and cause alloc_contig_range() to fail...
8791 */
8792 spin_unlock_irqrestore(&zone->lock, flags);
8793 ret = __alloc_contig_pages(pfn, nr_pages,
8794 gfp_mask);
8795 if (!ret)
8796 return pfn_to_page(pfn);
8797 spin_lock_irqsave(&zone->lock, flags);
8798 }
8799 pfn += nr_pages;
8800 }
8801 spin_unlock_irqrestore(&zone->lock, flags);
8802 }
8803 return NULL;
8804}
4eb0716e 8805#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8806
4eb0716e 8807void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8808{
bcc2b02f
MS
8809 unsigned int count = 0;
8810
8811 for (; nr_pages--; pfn++) {
8812 struct page *page = pfn_to_page(pfn);
8813
8814 count += page_count(page) != 1;
8815 __free_page(page);
8816 }
8817 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8818}
255f5985 8819EXPORT_SYMBOL(free_contig_range);
041d3a8c 8820
0a647f38
CS
8821/*
8822 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8823 * page high values need to be recalulated.
8824 */
4ed7e022
JL
8825void __meminit zone_pcp_update(struct zone *zone)
8826{
c8e251fa 8827 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8828 zone_set_pageset_high_and_batch(zone);
c8e251fa 8829 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8830}
4ed7e022 8831
ec6e8c7e
VB
8832/*
8833 * Effectively disable pcplists for the zone by setting the high limit to 0
8834 * and draining all cpus. A concurrent page freeing on another CPU that's about
8835 * to put the page on pcplist will either finish before the drain and the page
8836 * will be drained, or observe the new high limit and skip the pcplist.
8837 *
8838 * Must be paired with a call to zone_pcp_enable().
8839 */
8840void zone_pcp_disable(struct zone *zone)
8841{
8842 mutex_lock(&pcp_batch_high_lock);
8843 __zone_set_pageset_high_and_batch(zone, 0, 1);
8844 __drain_all_pages(zone, true);
8845}
8846
8847void zone_pcp_enable(struct zone *zone)
8848{
8849 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8850 mutex_unlock(&pcp_batch_high_lock);
8851}
8852
340175b7
JL
8853void zone_pcp_reset(struct zone *zone)
8854{
8855 unsigned long flags;
5a883813
MK
8856 int cpu;
8857 struct per_cpu_pageset *pset;
340175b7
JL
8858
8859 /* avoid races with drain_pages() */
8860 local_irq_save(flags);
8861 if (zone->pageset != &boot_pageset) {
5a883813
MK
8862 for_each_online_cpu(cpu) {
8863 pset = per_cpu_ptr(zone->pageset, cpu);
8864 drain_zonestat(zone, pset);
8865 }
340175b7
JL
8866 free_percpu(zone->pageset);
8867 zone->pageset = &boot_pageset;
8868 }
8869 local_irq_restore(flags);
8870}
8871
6dcd73d7 8872#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8873/*
257bea71
DH
8874 * All pages in the range must be in a single zone, must not contain holes,
8875 * must span full sections, and must be isolated before calling this function.
0c0e6195 8876 */
257bea71 8877void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8878{
257bea71 8879 unsigned long pfn = start_pfn;
0c0e6195
KH
8880 struct page *page;
8881 struct zone *zone;
0ee5f4f3 8882 unsigned int order;
0c0e6195 8883 unsigned long flags;
5557c766 8884
2d070eab 8885 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8886 zone = page_zone(pfn_to_page(pfn));
8887 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8888 while (pfn < end_pfn) {
0c0e6195 8889 page = pfn_to_page(pfn);
b023f468
WC
8890 /*
8891 * The HWPoisoned page may be not in buddy system, and
8892 * page_count() is not 0.
8893 */
8894 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8895 pfn++;
b023f468
WC
8896 continue;
8897 }
aa218795
DH
8898 /*
8899 * At this point all remaining PageOffline() pages have a
8900 * reference count of 0 and can simply be skipped.
8901 */
8902 if (PageOffline(page)) {
8903 BUG_ON(page_count(page));
8904 BUG_ON(PageBuddy(page));
8905 pfn++;
aa218795
DH
8906 continue;
8907 }
b023f468 8908
0c0e6195
KH
8909 BUG_ON(page_count(page));
8910 BUG_ON(!PageBuddy(page));
ab130f91 8911 order = buddy_order(page);
6ab01363 8912 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8913 pfn += (1 << order);
8914 }
8915 spin_unlock_irqrestore(&zone->lock, flags);
8916}
8917#endif
8d22ba1b 8918
8d22ba1b
WF
8919bool is_free_buddy_page(struct page *page)
8920{
8921 struct zone *zone = page_zone(page);
8922 unsigned long pfn = page_to_pfn(page);
8923 unsigned long flags;
7aeb09f9 8924 unsigned int order;
8d22ba1b
WF
8925
8926 spin_lock_irqsave(&zone->lock, flags);
8927 for (order = 0; order < MAX_ORDER; order++) {
8928 struct page *page_head = page - (pfn & ((1 << order) - 1));
8929
ab130f91 8930 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8931 break;
8932 }
8933 spin_unlock_irqrestore(&zone->lock, flags);
8934
8935 return order < MAX_ORDER;
8936}
d4ae9916
NH
8937
8938#ifdef CONFIG_MEMORY_FAILURE
8939/*
06be6ff3
OS
8940 * Break down a higher-order page in sub-pages, and keep our target out of
8941 * buddy allocator.
d4ae9916 8942 */
06be6ff3
OS
8943static void break_down_buddy_pages(struct zone *zone, struct page *page,
8944 struct page *target, int low, int high,
8945 int migratetype)
8946{
8947 unsigned long size = 1 << high;
8948 struct page *current_buddy, *next_page;
8949
8950 while (high > low) {
8951 high--;
8952 size >>= 1;
8953
8954 if (target >= &page[size]) {
8955 next_page = page + size;
8956 current_buddy = page;
8957 } else {
8958 next_page = page;
8959 current_buddy = page + size;
8960 }
8961
8962 if (set_page_guard(zone, current_buddy, high, migratetype))
8963 continue;
8964
8965 if (current_buddy != target) {
8966 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8967 set_buddy_order(current_buddy, high);
06be6ff3
OS
8968 page = next_page;
8969 }
8970 }
8971}
8972
8973/*
8974 * Take a page that will be marked as poisoned off the buddy allocator.
8975 */
8976bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8977{
8978 struct zone *zone = page_zone(page);
8979 unsigned long pfn = page_to_pfn(page);
8980 unsigned long flags;
8981 unsigned int order;
06be6ff3 8982 bool ret = false;
d4ae9916
NH
8983
8984 spin_lock_irqsave(&zone->lock, flags);
8985 for (order = 0; order < MAX_ORDER; order++) {
8986 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8987 int page_order = buddy_order(page_head);
d4ae9916 8988
ab130f91 8989 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8990 unsigned long pfn_head = page_to_pfn(page_head);
8991 int migratetype = get_pfnblock_migratetype(page_head,
8992 pfn_head);
8993
ab130f91 8994 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8995 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8996 page_order, migratetype);
06be6ff3 8997 ret = true;
d4ae9916
NH
8998 break;
8999 }
06be6ff3
OS
9000 if (page_count(page_head) > 0)
9001 break;
d4ae9916
NH
9002 }
9003 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9004 return ret;
d4ae9916
NH
9005}
9006#endif