mm: page_alloc: reduce number of times page_to_pfn is called
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
17cf4406
NP
412static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
413{
414 int i;
415
6626c5d5
AM
416 /*
417 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
418 * and __GFP_HIGHMEM from hard or soft interrupt context.
419 */
725d704e 420 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
421 for (i = 0; i < (1 << order); i++)
422 clear_highpage(page + i);
423}
424
c0a32fc5
SG
425#ifdef CONFIG_DEBUG_PAGEALLOC
426unsigned int _debug_guardpage_minorder;
427
428static int __init debug_guardpage_minorder_setup(char *buf)
429{
430 unsigned long res;
431
432 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
433 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
434 return 0;
435 }
436 _debug_guardpage_minorder = res;
437 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
438 return 0;
439}
440__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
441
442static inline void set_page_guard_flag(struct page *page)
443{
444 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
445}
446
447static inline void clear_page_guard_flag(struct page *page)
448{
449 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
450}
451#else
452static inline void set_page_guard_flag(struct page *page) { }
453static inline void clear_page_guard_flag(struct page *page) { }
454#endif
455
6aa3001b
AM
456static inline void set_page_order(struct page *page, int order)
457{
4c21e2f2 458 set_page_private(page, order);
676165a8 459 __SetPageBuddy(page);
1da177e4
LT
460}
461
462static inline void rmv_page_order(struct page *page)
463{
676165a8 464 __ClearPageBuddy(page);
4c21e2f2 465 set_page_private(page, 0);
1da177e4
LT
466}
467
468/*
469 * Locate the struct page for both the matching buddy in our
470 * pair (buddy1) and the combined O(n+1) page they form (page).
471 *
472 * 1) Any buddy B1 will have an order O twin B2 which satisfies
473 * the following equation:
474 * B2 = B1 ^ (1 << O)
475 * For example, if the starting buddy (buddy2) is #8 its order
476 * 1 buddy is #10:
477 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
478 *
479 * 2) Any buddy B will have an order O+1 parent P which
480 * satisfies the following equation:
481 * P = B & ~(1 << O)
482 *
d6e05edc 483 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 484 */
1da177e4 485static inline unsigned long
43506fad 486__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 487{
43506fad 488 return page_idx ^ (1 << order);
1da177e4
LT
489}
490
491/*
492 * This function checks whether a page is free && is the buddy
493 * we can do coalesce a page and its buddy if
13e7444b 494 * (a) the buddy is not in a hole &&
676165a8 495 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
496 * (c) a page and its buddy have the same order &&
497 * (d) a page and its buddy are in the same zone.
676165a8 498 *
cf6fe945
WSH
499 * For recording whether a page is in the buddy system, we set ->_mapcount
500 * PAGE_BUDDY_MAPCOUNT_VALUE.
501 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
502 * serialized by zone->lock.
1da177e4 503 *
676165a8 504 * For recording page's order, we use page_private(page).
1da177e4 505 */
cb2b95e1
AW
506static inline int page_is_buddy(struct page *page, struct page *buddy,
507 int order)
1da177e4 508{
14e07298 509 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 510 return 0;
13e7444b 511
c0a32fc5 512 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 513 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
514
515 if (page_zone_id(page) != page_zone_id(buddy))
516 return 0;
517
c0a32fc5
SG
518 return 1;
519 }
520
cb2b95e1 521 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 522 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
523
524 /*
525 * zone check is done late to avoid uselessly
526 * calculating zone/node ids for pages that could
527 * never merge.
528 */
529 if (page_zone_id(page) != page_zone_id(buddy))
530 return 0;
531
6aa3001b 532 return 1;
676165a8 533 }
6aa3001b 534 return 0;
1da177e4
LT
535}
536
537/*
538 * Freeing function for a buddy system allocator.
539 *
540 * The concept of a buddy system is to maintain direct-mapped table
541 * (containing bit values) for memory blocks of various "orders".
542 * The bottom level table contains the map for the smallest allocatable
543 * units of memory (here, pages), and each level above it describes
544 * pairs of units from the levels below, hence, "buddies".
545 * At a high level, all that happens here is marking the table entry
546 * at the bottom level available, and propagating the changes upward
547 * as necessary, plus some accounting needed to play nicely with other
548 * parts of the VM system.
549 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
550 * free pages of length of (1 << order) and marked with _mapcount
551 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
552 * field.
1da177e4 553 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
554 * other. That is, if we allocate a small block, and both were
555 * free, the remainder of the region must be split into blocks.
1da177e4 556 * If a block is freed, and its buddy is also free, then this
5f63b720 557 * triggers coalescing into a block of larger size.
1da177e4 558 *
6d49e352 559 * -- nyc
1da177e4
LT
560 */
561
48db57f8 562static inline void __free_one_page(struct page *page,
dc4b0caf 563 unsigned long pfn,
ed0ae21d
MG
564 struct zone *zone, unsigned int order,
565 int migratetype)
1da177e4
LT
566{
567 unsigned long page_idx;
6dda9d55 568 unsigned long combined_idx;
43506fad 569 unsigned long uninitialized_var(buddy_idx);
6dda9d55 570 struct page *buddy;
1da177e4 571
d29bb978
CS
572 VM_BUG_ON(!zone_is_initialized(zone));
573
224abf92 574 if (unlikely(PageCompound(page)))
8cc3b392
HD
575 if (unlikely(destroy_compound_page(page, order)))
576 return;
1da177e4 577
ed0ae21d
MG
578 VM_BUG_ON(migratetype == -1);
579
dc4b0caf 580 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 581
309381fe
SL
582 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
583 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 584
1da177e4 585 while (order < MAX_ORDER-1) {
43506fad
KC
586 buddy_idx = __find_buddy_index(page_idx, order);
587 buddy = page + (buddy_idx - page_idx);
cb2b95e1 588 if (!page_is_buddy(page, buddy, order))
3c82d0ce 589 break;
c0a32fc5
SG
590 /*
591 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
592 * merge with it and move up one order.
593 */
594 if (page_is_guard(buddy)) {
595 clear_page_guard_flag(buddy);
596 set_page_private(page, 0);
d1ce749a
BZ
597 __mod_zone_freepage_state(zone, 1 << order,
598 migratetype);
c0a32fc5
SG
599 } else {
600 list_del(&buddy->lru);
601 zone->free_area[order].nr_free--;
602 rmv_page_order(buddy);
603 }
43506fad 604 combined_idx = buddy_idx & page_idx;
1da177e4
LT
605 page = page + (combined_idx - page_idx);
606 page_idx = combined_idx;
607 order++;
608 }
609 set_page_order(page, order);
6dda9d55
CZ
610
611 /*
612 * If this is not the largest possible page, check if the buddy
613 * of the next-highest order is free. If it is, it's possible
614 * that pages are being freed that will coalesce soon. In case,
615 * that is happening, add the free page to the tail of the list
616 * so it's less likely to be used soon and more likely to be merged
617 * as a higher order page
618 */
b7f50cfa 619 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 620 struct page *higher_page, *higher_buddy;
43506fad
KC
621 combined_idx = buddy_idx & page_idx;
622 higher_page = page + (combined_idx - page_idx);
623 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 624 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
625 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
626 list_add_tail(&page->lru,
627 &zone->free_area[order].free_list[migratetype]);
628 goto out;
629 }
630 }
631
632 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
633out:
1da177e4
LT
634 zone->free_area[order].nr_free++;
635}
636
224abf92 637static inline int free_pages_check(struct page *page)
1da177e4 638{
d230dec1 639 const char *bad_reason = NULL;
f0b791a3
DH
640 unsigned long bad_flags = 0;
641
642 if (unlikely(page_mapcount(page)))
643 bad_reason = "nonzero mapcount";
644 if (unlikely(page->mapping != NULL))
645 bad_reason = "non-NULL mapping";
646 if (unlikely(atomic_read(&page->_count) != 0))
647 bad_reason = "nonzero _count";
648 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
649 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
650 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
651 }
652 if (unlikely(mem_cgroup_bad_page_check(page)))
653 bad_reason = "cgroup check failed";
654 if (unlikely(bad_reason)) {
655 bad_page(page, bad_reason, bad_flags);
79f4b7bf 656 return 1;
8cc3b392 657 }
90572890 658 page_cpupid_reset_last(page);
79f4b7bf
HD
659 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
660 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
661 return 0;
1da177e4
LT
662}
663
664/*
5f8dcc21 665 * Frees a number of pages from the PCP lists
1da177e4 666 * Assumes all pages on list are in same zone, and of same order.
207f36ee 667 * count is the number of pages to free.
1da177e4
LT
668 *
669 * If the zone was previously in an "all pages pinned" state then look to
670 * see if this freeing clears that state.
671 *
672 * And clear the zone's pages_scanned counter, to hold off the "all pages are
673 * pinned" detection logic.
674 */
5f8dcc21
MG
675static void free_pcppages_bulk(struct zone *zone, int count,
676 struct per_cpu_pages *pcp)
1da177e4 677{
5f8dcc21 678 int migratetype = 0;
a6f9edd6 679 int batch_free = 0;
72853e29 680 int to_free = count;
5f8dcc21 681
c54ad30c 682 spin_lock(&zone->lock);
1da177e4 683 zone->pages_scanned = 0;
f2260e6b 684
72853e29 685 while (to_free) {
48db57f8 686 struct page *page;
5f8dcc21
MG
687 struct list_head *list;
688
689 /*
a6f9edd6
MG
690 * Remove pages from lists in a round-robin fashion. A
691 * batch_free count is maintained that is incremented when an
692 * empty list is encountered. This is so more pages are freed
693 * off fuller lists instead of spinning excessively around empty
694 * lists
5f8dcc21
MG
695 */
696 do {
a6f9edd6 697 batch_free++;
5f8dcc21
MG
698 if (++migratetype == MIGRATE_PCPTYPES)
699 migratetype = 0;
700 list = &pcp->lists[migratetype];
701 } while (list_empty(list));
48db57f8 702
1d16871d
NK
703 /* This is the only non-empty list. Free them all. */
704 if (batch_free == MIGRATE_PCPTYPES)
705 batch_free = to_free;
706
a6f9edd6 707 do {
770c8aaa
BZ
708 int mt; /* migratetype of the to-be-freed page */
709
a6f9edd6
MG
710 page = list_entry(list->prev, struct page, lru);
711 /* must delete as __free_one_page list manipulates */
712 list_del(&page->lru);
b12c4ad1 713 mt = get_freepage_migratetype(page);
a7016235 714 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 715 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 716 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 717 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
718 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
719 if (is_migrate_cma(mt))
720 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
721 }
72853e29 722 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 723 }
c54ad30c 724 spin_unlock(&zone->lock);
1da177e4
LT
725}
726
dc4b0caf
MG
727static void free_one_page(struct zone *zone,
728 struct page *page, unsigned long pfn,
729 int order,
ed0ae21d 730 int migratetype)
1da177e4 731{
006d22d9 732 spin_lock(&zone->lock);
006d22d9 733 zone->pages_scanned = 0;
f2260e6b 734
dc4b0caf 735 __free_one_page(page, pfn, zone, order, migratetype);
194159fb 736 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 737 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 738 spin_unlock(&zone->lock);
48db57f8
NP
739}
740
ec95f53a 741static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 742{
1da177e4 743 int i;
8cc3b392 744 int bad = 0;
1da177e4 745
b413d48a 746 trace_mm_page_free(page, order);
b1eeab67
VN
747 kmemcheck_free_shadow(page, order);
748
8dd60a3a
AA
749 if (PageAnon(page))
750 page->mapping = NULL;
751 for (i = 0; i < (1 << order); i++)
752 bad += free_pages_check(page + i);
8cc3b392 753 if (bad)
ec95f53a 754 return false;
689bcebf 755
3ac7fe5a 756 if (!PageHighMem(page)) {
b8af2941
PK
757 debug_check_no_locks_freed(page_address(page),
758 PAGE_SIZE << order);
3ac7fe5a
TG
759 debug_check_no_obj_freed(page_address(page),
760 PAGE_SIZE << order);
761 }
dafb1367 762 arch_free_page(page, order);
48db57f8 763 kernel_map_pages(page, 1 << order, 0);
dafb1367 764
ec95f53a
KM
765 return true;
766}
767
768static void __free_pages_ok(struct page *page, unsigned int order)
769{
770 unsigned long flags;
95e34412 771 int migratetype;
dc4b0caf 772 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
773
774 if (!free_pages_prepare(page, order))
775 return;
776
c54ad30c 777 local_irq_save(flags);
f8891e5e 778 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 779 migratetype = get_pfnblock_migratetype(page, pfn);
95e34412 780 set_freepage_migratetype(page, migratetype);
dc4b0caf 781 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 782 local_irq_restore(flags);
1da177e4
LT
783}
784
170a5a7e 785void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 786{
c3993076 787 unsigned int nr_pages = 1 << order;
e2d0bd2b 788 struct page *p = page;
c3993076 789 unsigned int loop;
a226f6c8 790
e2d0bd2b
YL
791 prefetchw(p);
792 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
793 prefetchw(p + 1);
c3993076
JW
794 __ClearPageReserved(p);
795 set_page_count(p, 0);
a226f6c8 796 }
e2d0bd2b
YL
797 __ClearPageReserved(p);
798 set_page_count(p, 0);
c3993076 799
e2d0bd2b 800 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
801 set_page_refcounted(page);
802 __free_pages(page, order);
a226f6c8
DH
803}
804
47118af0 805#ifdef CONFIG_CMA
9cf510a5 806/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
807void __init init_cma_reserved_pageblock(struct page *page)
808{
809 unsigned i = pageblock_nr_pages;
810 struct page *p = page;
811
812 do {
813 __ClearPageReserved(p);
814 set_page_count(p, 0);
815 } while (++p, --i);
816
817 set_page_refcounted(page);
818 set_pageblock_migratetype(page, MIGRATE_CMA);
819 __free_pages(page, pageblock_order);
3dcc0571 820 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
821}
822#endif
1da177e4
LT
823
824/*
825 * The order of subdivision here is critical for the IO subsystem.
826 * Please do not alter this order without good reasons and regression
827 * testing. Specifically, as large blocks of memory are subdivided,
828 * the order in which smaller blocks are delivered depends on the order
829 * they're subdivided in this function. This is the primary factor
830 * influencing the order in which pages are delivered to the IO
831 * subsystem according to empirical testing, and this is also justified
832 * by considering the behavior of a buddy system containing a single
833 * large block of memory acted on by a series of small allocations.
834 * This behavior is a critical factor in sglist merging's success.
835 *
6d49e352 836 * -- nyc
1da177e4 837 */
085cc7d5 838static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
839 int low, int high, struct free_area *area,
840 int migratetype)
1da177e4
LT
841{
842 unsigned long size = 1 << high;
843
844 while (high > low) {
845 area--;
846 high--;
847 size >>= 1;
309381fe 848 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
849
850#ifdef CONFIG_DEBUG_PAGEALLOC
851 if (high < debug_guardpage_minorder()) {
852 /*
853 * Mark as guard pages (or page), that will allow to
854 * merge back to allocator when buddy will be freed.
855 * Corresponding page table entries will not be touched,
856 * pages will stay not present in virtual address space
857 */
858 INIT_LIST_HEAD(&page[size].lru);
859 set_page_guard_flag(&page[size]);
860 set_page_private(&page[size], high);
861 /* Guard pages are not available for any usage */
d1ce749a
BZ
862 __mod_zone_freepage_state(zone, -(1 << high),
863 migratetype);
c0a32fc5
SG
864 continue;
865 }
866#endif
b2a0ac88 867 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
868 area->nr_free++;
869 set_page_order(&page[size], high);
870 }
1da177e4
LT
871}
872
1da177e4
LT
873/*
874 * This page is about to be returned from the page allocator
875 */
2a7684a2 876static inline int check_new_page(struct page *page)
1da177e4 877{
d230dec1 878 const char *bad_reason = NULL;
f0b791a3
DH
879 unsigned long bad_flags = 0;
880
881 if (unlikely(page_mapcount(page)))
882 bad_reason = "nonzero mapcount";
883 if (unlikely(page->mapping != NULL))
884 bad_reason = "non-NULL mapping";
885 if (unlikely(atomic_read(&page->_count) != 0))
886 bad_reason = "nonzero _count";
887 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
888 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
889 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
890 }
891 if (unlikely(mem_cgroup_bad_page_check(page)))
892 bad_reason = "cgroup check failed";
893 if (unlikely(bad_reason)) {
894 bad_page(page, bad_reason, bad_flags);
689bcebf 895 return 1;
8cc3b392 896 }
2a7684a2
WF
897 return 0;
898}
899
900static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
901{
902 int i;
903
904 for (i = 0; i < (1 << order); i++) {
905 struct page *p = page + i;
906 if (unlikely(check_new_page(p)))
907 return 1;
908 }
689bcebf 909
4c21e2f2 910 set_page_private(page, 0);
7835e98b 911 set_page_refcounted(page);
cc102509
NP
912
913 arch_alloc_page(page, order);
1da177e4 914 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
915
916 if (gfp_flags & __GFP_ZERO)
917 prep_zero_page(page, order, gfp_flags);
918
919 if (order && (gfp_flags & __GFP_COMP))
920 prep_compound_page(page, order);
921
689bcebf 922 return 0;
1da177e4
LT
923}
924
56fd56b8
MG
925/*
926 * Go through the free lists for the given migratetype and remove
927 * the smallest available page from the freelists
928 */
728ec980
MG
929static inline
930struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
931 int migratetype)
932{
933 unsigned int current_order;
b8af2941 934 struct free_area *area;
56fd56b8
MG
935 struct page *page;
936
937 /* Find a page of the appropriate size in the preferred list */
938 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
939 area = &(zone->free_area[current_order]);
940 if (list_empty(&area->free_list[migratetype]))
941 continue;
942
943 page = list_entry(area->free_list[migratetype].next,
944 struct page, lru);
945 list_del(&page->lru);
946 rmv_page_order(page);
947 area->nr_free--;
56fd56b8 948 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 949 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
950 return page;
951 }
952
953 return NULL;
954}
955
956
b2a0ac88
MG
957/*
958 * This array describes the order lists are fallen back to when
959 * the free lists for the desirable migrate type are depleted
960 */
47118af0
MN
961static int fallbacks[MIGRATE_TYPES][4] = {
962 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
963 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
964#ifdef CONFIG_CMA
965 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
966 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
967#else
968 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
969#endif
6d4a4916 970 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 971#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 972 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 973#endif
b2a0ac88
MG
974};
975
c361be55
MG
976/*
977 * Move the free pages in a range to the free lists of the requested type.
d9c23400 978 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
979 * boundary. If alignment is required, use move_freepages_block()
980 */
435b405c 981int move_freepages(struct zone *zone,
b69a7288
AB
982 struct page *start_page, struct page *end_page,
983 int migratetype)
c361be55
MG
984{
985 struct page *page;
986 unsigned long order;
d100313f 987 int pages_moved = 0;
c361be55
MG
988
989#ifndef CONFIG_HOLES_IN_ZONE
990 /*
991 * page_zone is not safe to call in this context when
992 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
993 * anyway as we check zone boundaries in move_freepages_block().
994 * Remove at a later date when no bug reports exist related to
ac0e5b7a 995 * grouping pages by mobility
c361be55
MG
996 */
997 BUG_ON(page_zone(start_page) != page_zone(end_page));
998#endif
999
1000 for (page = start_page; page <= end_page;) {
344c790e 1001 /* Make sure we are not inadvertently changing nodes */
309381fe 1002 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1003
c361be55
MG
1004 if (!pfn_valid_within(page_to_pfn(page))) {
1005 page++;
1006 continue;
1007 }
1008
1009 if (!PageBuddy(page)) {
1010 page++;
1011 continue;
1012 }
1013
1014 order = page_order(page);
84be48d8
KS
1015 list_move(&page->lru,
1016 &zone->free_area[order].free_list[migratetype]);
95e34412 1017 set_freepage_migratetype(page, migratetype);
c361be55 1018 page += 1 << order;
d100313f 1019 pages_moved += 1 << order;
c361be55
MG
1020 }
1021
d100313f 1022 return pages_moved;
c361be55
MG
1023}
1024
ee6f509c 1025int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1026 int migratetype)
c361be55
MG
1027{
1028 unsigned long start_pfn, end_pfn;
1029 struct page *start_page, *end_page;
1030
1031 start_pfn = page_to_pfn(page);
d9c23400 1032 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1033 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1034 end_page = start_page + pageblock_nr_pages - 1;
1035 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1036
1037 /* Do not cross zone boundaries */
108bcc96 1038 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1039 start_page = page;
108bcc96 1040 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1041 return 0;
1042
1043 return move_freepages(zone, start_page, end_page, migratetype);
1044}
1045
2f66a68f
MG
1046static void change_pageblock_range(struct page *pageblock_page,
1047 int start_order, int migratetype)
1048{
1049 int nr_pageblocks = 1 << (start_order - pageblock_order);
1050
1051 while (nr_pageblocks--) {
1052 set_pageblock_migratetype(pageblock_page, migratetype);
1053 pageblock_page += pageblock_nr_pages;
1054 }
1055}
1056
fef903ef
SB
1057/*
1058 * If breaking a large block of pages, move all free pages to the preferred
1059 * allocation list. If falling back for a reclaimable kernel allocation, be
1060 * more aggressive about taking ownership of free pages.
1061 *
1062 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1063 * nor move CMA pages to different free lists. We don't want unmovable pages
1064 * to be allocated from MIGRATE_CMA areas.
1065 *
1066 * Returns the new migratetype of the pageblock (or the same old migratetype
1067 * if it was unchanged).
1068 */
1069static int try_to_steal_freepages(struct zone *zone, struct page *page,
1070 int start_type, int fallback_type)
1071{
1072 int current_order = page_order(page);
1073
0cbef29a
KM
1074 /*
1075 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1076 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1077 * is set to CMA so it is returned to the correct freelist in case
1078 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1079 */
fef903ef
SB
1080 if (is_migrate_cma(fallback_type))
1081 return fallback_type;
1082
1083 /* Take ownership for orders >= pageblock_order */
1084 if (current_order >= pageblock_order) {
1085 change_pageblock_range(page, current_order, start_type);
1086 return start_type;
1087 }
1088
1089 if (current_order >= pageblock_order / 2 ||
1090 start_type == MIGRATE_RECLAIMABLE ||
1091 page_group_by_mobility_disabled) {
1092 int pages;
1093
1094 pages = move_freepages_block(zone, page, start_type);
1095
1096 /* Claim the whole block if over half of it is free */
1097 if (pages >= (1 << (pageblock_order-1)) ||
1098 page_group_by_mobility_disabled) {
1099
1100 set_pageblock_migratetype(page, start_type);
1101 return start_type;
1102 }
1103
1104 }
1105
1106 return fallback_type;
1107}
1108
b2a0ac88 1109/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1110static inline struct page *
1111__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 1112{
b8af2941 1113 struct free_area *area;
b2a0ac88
MG
1114 int current_order;
1115 struct page *page;
fef903ef 1116 int migratetype, new_type, i;
b2a0ac88
MG
1117
1118 /* Find the largest possible block of pages in the other list */
1119 for (current_order = MAX_ORDER-1; current_order >= order;
1120 --current_order) {
6d4a4916 1121 for (i = 0;; i++) {
b2a0ac88
MG
1122 migratetype = fallbacks[start_migratetype][i];
1123
56fd56b8
MG
1124 /* MIGRATE_RESERVE handled later if necessary */
1125 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1126 break;
e010487d 1127
b2a0ac88
MG
1128 area = &(zone->free_area[current_order]);
1129 if (list_empty(&area->free_list[migratetype]))
1130 continue;
1131
1132 page = list_entry(area->free_list[migratetype].next,
1133 struct page, lru);
1134 area->nr_free--;
1135
fef903ef
SB
1136 new_type = try_to_steal_freepages(zone, page,
1137 start_migratetype,
1138 migratetype);
b2a0ac88
MG
1139
1140 /* Remove the page from the freelists */
1141 list_del(&page->lru);
1142 rmv_page_order(page);
b2a0ac88 1143
47118af0 1144 expand(zone, page, order, current_order, area,
0cbef29a 1145 new_type);
5bcc9f86
VB
1146 /* The freepage_migratetype may differ from pageblock's
1147 * migratetype depending on the decisions in
1148 * try_to_steal_freepages. This is OK as long as it does
1149 * not differ for MIGRATE_CMA type.
1150 */
1151 set_freepage_migratetype(page, new_type);
e0fff1bd 1152
52c8f6a5
KM
1153 trace_mm_page_alloc_extfrag(page, order, current_order,
1154 start_migratetype, migratetype, new_type);
e0fff1bd 1155
b2a0ac88
MG
1156 return page;
1157 }
1158 }
1159
728ec980 1160 return NULL;
b2a0ac88
MG
1161}
1162
56fd56b8 1163/*
1da177e4
LT
1164 * Do the hard work of removing an element from the buddy allocator.
1165 * Call me with the zone->lock already held.
1166 */
b2a0ac88
MG
1167static struct page *__rmqueue(struct zone *zone, unsigned int order,
1168 int migratetype)
1da177e4 1169{
1da177e4
LT
1170 struct page *page;
1171
728ec980 1172retry_reserve:
56fd56b8 1173 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1174
728ec980 1175 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1176 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1177
728ec980
MG
1178 /*
1179 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1180 * is used because __rmqueue_smallest is an inline function
1181 * and we want just one call site
1182 */
1183 if (!page) {
1184 migratetype = MIGRATE_RESERVE;
1185 goto retry_reserve;
1186 }
1187 }
1188
0d3d062a 1189 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1190 return page;
1da177e4
LT
1191}
1192
5f63b720 1193/*
1da177e4
LT
1194 * Obtain a specified number of elements from the buddy allocator, all under
1195 * a single hold of the lock, for efficiency. Add them to the supplied list.
1196 * Returns the number of new pages which were placed at *list.
1197 */
5f63b720 1198static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1199 unsigned long count, struct list_head *list,
e084b2d9 1200 int migratetype, int cold)
1da177e4 1201{
5bcc9f86 1202 int i;
5f63b720 1203
c54ad30c 1204 spin_lock(&zone->lock);
1da177e4 1205 for (i = 0; i < count; ++i) {
b2a0ac88 1206 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1207 if (unlikely(page == NULL))
1da177e4 1208 break;
81eabcbe
MG
1209
1210 /*
1211 * Split buddy pages returned by expand() are received here
1212 * in physical page order. The page is added to the callers and
1213 * list and the list head then moves forward. From the callers
1214 * perspective, the linked list is ordered by page number in
1215 * some conditions. This is useful for IO devices that can
1216 * merge IO requests if the physical pages are ordered
1217 * properly.
1218 */
e084b2d9
MG
1219 if (likely(cold == 0))
1220 list_add(&page->lru, list);
1221 else
1222 list_add_tail(&page->lru, list);
81eabcbe 1223 list = &page->lru;
5bcc9f86 1224 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1225 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1226 -(1 << order));
1da177e4 1227 }
f2260e6b 1228 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1229 spin_unlock(&zone->lock);
085cc7d5 1230 return i;
1da177e4
LT
1231}
1232
4ae7c039 1233#ifdef CONFIG_NUMA
8fce4d8e 1234/*
4037d452
CL
1235 * Called from the vmstat counter updater to drain pagesets of this
1236 * currently executing processor on remote nodes after they have
1237 * expired.
1238 *
879336c3
CL
1239 * Note that this function must be called with the thread pinned to
1240 * a single processor.
8fce4d8e 1241 */
4037d452 1242void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1243{
4ae7c039 1244 unsigned long flags;
4037d452 1245 int to_drain;
998d39cb 1246 unsigned long batch;
4ae7c039 1247
4037d452 1248 local_irq_save(flags);
998d39cb
CS
1249 batch = ACCESS_ONCE(pcp->batch);
1250 if (pcp->count >= batch)
1251 to_drain = batch;
4037d452
CL
1252 else
1253 to_drain = pcp->count;
2a13515c
KM
1254 if (to_drain > 0) {
1255 free_pcppages_bulk(zone, to_drain, pcp);
1256 pcp->count -= to_drain;
1257 }
4037d452 1258 local_irq_restore(flags);
4ae7c039
CL
1259}
1260#endif
1261
9f8f2172
CL
1262/*
1263 * Drain pages of the indicated processor.
1264 *
1265 * The processor must either be the current processor and the
1266 * thread pinned to the current processor or a processor that
1267 * is not online.
1268 */
1269static void drain_pages(unsigned int cpu)
1da177e4 1270{
c54ad30c 1271 unsigned long flags;
1da177e4 1272 struct zone *zone;
1da177e4 1273
ee99c71c 1274 for_each_populated_zone(zone) {
1da177e4 1275 struct per_cpu_pageset *pset;
3dfa5721 1276 struct per_cpu_pages *pcp;
1da177e4 1277
99dcc3e5
CL
1278 local_irq_save(flags);
1279 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1280
1281 pcp = &pset->pcp;
2ff754fa
DR
1282 if (pcp->count) {
1283 free_pcppages_bulk(zone, pcp->count, pcp);
1284 pcp->count = 0;
1285 }
3dfa5721 1286 local_irq_restore(flags);
1da177e4
LT
1287 }
1288}
1da177e4 1289
9f8f2172
CL
1290/*
1291 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1292 */
1293void drain_local_pages(void *arg)
1294{
1295 drain_pages(smp_processor_id());
1296}
1297
1298/*
74046494
GBY
1299 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1300 *
1301 * Note that this code is protected against sending an IPI to an offline
1302 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1303 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1304 * nothing keeps CPUs from showing up after we populated the cpumask and
1305 * before the call to on_each_cpu_mask().
9f8f2172
CL
1306 */
1307void drain_all_pages(void)
1308{
74046494
GBY
1309 int cpu;
1310 struct per_cpu_pageset *pcp;
1311 struct zone *zone;
1312
1313 /*
1314 * Allocate in the BSS so we wont require allocation in
1315 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1316 */
1317 static cpumask_t cpus_with_pcps;
1318
1319 /*
1320 * We don't care about racing with CPU hotplug event
1321 * as offline notification will cause the notified
1322 * cpu to drain that CPU pcps and on_each_cpu_mask
1323 * disables preemption as part of its processing
1324 */
1325 for_each_online_cpu(cpu) {
1326 bool has_pcps = false;
1327 for_each_populated_zone(zone) {
1328 pcp = per_cpu_ptr(zone->pageset, cpu);
1329 if (pcp->pcp.count) {
1330 has_pcps = true;
1331 break;
1332 }
1333 }
1334 if (has_pcps)
1335 cpumask_set_cpu(cpu, &cpus_with_pcps);
1336 else
1337 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1338 }
1339 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1340}
1341
296699de 1342#ifdef CONFIG_HIBERNATION
1da177e4
LT
1343
1344void mark_free_pages(struct zone *zone)
1345{
f623f0db
RW
1346 unsigned long pfn, max_zone_pfn;
1347 unsigned long flags;
b2a0ac88 1348 int order, t;
1da177e4
LT
1349 struct list_head *curr;
1350
8080fc03 1351 if (zone_is_empty(zone))
1da177e4
LT
1352 return;
1353
1354 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1355
108bcc96 1356 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1357 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1358 if (pfn_valid(pfn)) {
1359 struct page *page = pfn_to_page(pfn);
1360
7be98234
RW
1361 if (!swsusp_page_is_forbidden(page))
1362 swsusp_unset_page_free(page);
f623f0db 1363 }
1da177e4 1364
b2a0ac88
MG
1365 for_each_migratetype_order(order, t) {
1366 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1367 unsigned long i;
1da177e4 1368
f623f0db
RW
1369 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1370 for (i = 0; i < (1UL << order); i++)
7be98234 1371 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1372 }
b2a0ac88 1373 }
1da177e4
LT
1374 spin_unlock_irqrestore(&zone->lock, flags);
1375}
e2c55dc8 1376#endif /* CONFIG_PM */
1da177e4 1377
1da177e4
LT
1378/*
1379 * Free a 0-order page
fc91668e 1380 * cold == 1 ? free a cold page : free a hot page
1da177e4 1381 */
fc91668e 1382void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1383{
1384 struct zone *zone = page_zone(page);
1385 struct per_cpu_pages *pcp;
1386 unsigned long flags;
dc4b0caf 1387 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1388 int migratetype;
1da177e4 1389
ec95f53a 1390 if (!free_pages_prepare(page, 0))
689bcebf
HD
1391 return;
1392
dc4b0caf 1393 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1394 set_freepage_migratetype(page, migratetype);
1da177e4 1395 local_irq_save(flags);
f8891e5e 1396 __count_vm_event(PGFREE);
da456f14 1397
5f8dcc21
MG
1398 /*
1399 * We only track unmovable, reclaimable and movable on pcp lists.
1400 * Free ISOLATE pages back to the allocator because they are being
1401 * offlined but treat RESERVE as movable pages so we can get those
1402 * areas back if necessary. Otherwise, we may have to free
1403 * excessively into the page allocator
1404 */
1405 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1406 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1407 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1408 goto out;
1409 }
1410 migratetype = MIGRATE_MOVABLE;
1411 }
1412
99dcc3e5 1413 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1414 if (cold)
5f8dcc21 1415 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1416 else
5f8dcc21 1417 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1418 pcp->count++;
48db57f8 1419 if (pcp->count >= pcp->high) {
998d39cb
CS
1420 unsigned long batch = ACCESS_ONCE(pcp->batch);
1421 free_pcppages_bulk(zone, batch, pcp);
1422 pcp->count -= batch;
48db57f8 1423 }
5f8dcc21
MG
1424
1425out:
1da177e4 1426 local_irq_restore(flags);
1da177e4
LT
1427}
1428
cc59850e
KK
1429/*
1430 * Free a list of 0-order pages
1431 */
1432void free_hot_cold_page_list(struct list_head *list, int cold)
1433{
1434 struct page *page, *next;
1435
1436 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1437 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1438 free_hot_cold_page(page, cold);
1439 }
1440}
1441
8dfcc9ba
NP
1442/*
1443 * split_page takes a non-compound higher-order page, and splits it into
1444 * n (1<<order) sub-pages: page[0..n]
1445 * Each sub-page must be freed individually.
1446 *
1447 * Note: this is probably too low level an operation for use in drivers.
1448 * Please consult with lkml before using this in your driver.
1449 */
1450void split_page(struct page *page, unsigned int order)
1451{
1452 int i;
1453
309381fe
SL
1454 VM_BUG_ON_PAGE(PageCompound(page), page);
1455 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1456
1457#ifdef CONFIG_KMEMCHECK
1458 /*
1459 * Split shadow pages too, because free(page[0]) would
1460 * otherwise free the whole shadow.
1461 */
1462 if (kmemcheck_page_is_tracked(page))
1463 split_page(virt_to_page(page[0].shadow), order);
1464#endif
1465
7835e98b
NP
1466 for (i = 1; i < (1 << order); i++)
1467 set_page_refcounted(page + i);
8dfcc9ba 1468}
5853ff23 1469EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1470
8fb74b9f 1471static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1472{
748446bb
MG
1473 unsigned long watermark;
1474 struct zone *zone;
2139cbe6 1475 int mt;
748446bb
MG
1476
1477 BUG_ON(!PageBuddy(page));
1478
1479 zone = page_zone(page);
2e30abd1 1480 mt = get_pageblock_migratetype(page);
748446bb 1481
194159fb 1482 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1483 /* Obey watermarks as if the page was being allocated */
1484 watermark = low_wmark_pages(zone) + (1 << order);
1485 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1486 return 0;
1487
8fb74b9f 1488 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1489 }
748446bb
MG
1490
1491 /* Remove page from free list */
1492 list_del(&page->lru);
1493 zone->free_area[order].nr_free--;
1494 rmv_page_order(page);
2139cbe6 1495
8fb74b9f 1496 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1497 if (order >= pageblock_order - 1) {
1498 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1499 for (; page < endpage; page += pageblock_nr_pages) {
1500 int mt = get_pageblock_migratetype(page);
194159fb 1501 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1502 set_pageblock_migratetype(page,
1503 MIGRATE_MOVABLE);
1504 }
748446bb
MG
1505 }
1506
8fb74b9f 1507 return 1UL << order;
1fb3f8ca
MG
1508}
1509
1510/*
1511 * Similar to split_page except the page is already free. As this is only
1512 * being used for migration, the migratetype of the block also changes.
1513 * As this is called with interrupts disabled, the caller is responsible
1514 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1515 * are enabled.
1516 *
1517 * Note: this is probably too low level an operation for use in drivers.
1518 * Please consult with lkml before using this in your driver.
1519 */
1520int split_free_page(struct page *page)
1521{
1522 unsigned int order;
1523 int nr_pages;
1524
1fb3f8ca
MG
1525 order = page_order(page);
1526
8fb74b9f 1527 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1528 if (!nr_pages)
1529 return 0;
1530
1531 /* Split into individual pages */
1532 set_page_refcounted(page);
1533 split_page(page, order);
1534 return nr_pages;
748446bb
MG
1535}
1536
1da177e4
LT
1537/*
1538 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1539 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1540 * or two.
1541 */
0a15c3e9
MG
1542static inline
1543struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1544 struct zone *zone, int order, gfp_t gfp_flags,
1545 int migratetype)
1da177e4
LT
1546{
1547 unsigned long flags;
689bcebf 1548 struct page *page;
1da177e4
LT
1549 int cold = !!(gfp_flags & __GFP_COLD);
1550
689bcebf 1551again:
48db57f8 1552 if (likely(order == 0)) {
1da177e4 1553 struct per_cpu_pages *pcp;
5f8dcc21 1554 struct list_head *list;
1da177e4 1555
1da177e4 1556 local_irq_save(flags);
99dcc3e5
CL
1557 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1558 list = &pcp->lists[migratetype];
5f8dcc21 1559 if (list_empty(list)) {
535131e6 1560 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1561 pcp->batch, list,
e084b2d9 1562 migratetype, cold);
5f8dcc21 1563 if (unlikely(list_empty(list)))
6fb332fa 1564 goto failed;
535131e6 1565 }
b92a6edd 1566
5f8dcc21
MG
1567 if (cold)
1568 page = list_entry(list->prev, struct page, lru);
1569 else
1570 page = list_entry(list->next, struct page, lru);
1571
b92a6edd
MG
1572 list_del(&page->lru);
1573 pcp->count--;
7fb1d9fc 1574 } else {
dab48dab
AM
1575 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1576 /*
1577 * __GFP_NOFAIL is not to be used in new code.
1578 *
1579 * All __GFP_NOFAIL callers should be fixed so that they
1580 * properly detect and handle allocation failures.
1581 *
1582 * We most definitely don't want callers attempting to
4923abf9 1583 * allocate greater than order-1 page units with
dab48dab
AM
1584 * __GFP_NOFAIL.
1585 */
4923abf9 1586 WARN_ON_ONCE(order > 1);
dab48dab 1587 }
1da177e4 1588 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1589 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1590 spin_unlock(&zone->lock);
1591 if (!page)
1592 goto failed;
d1ce749a 1593 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1594 get_freepage_migratetype(page));
1da177e4
LT
1595 }
1596
3a025760 1597 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
27329369 1598
f8891e5e 1599 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1600 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1601 local_irq_restore(flags);
1da177e4 1602
309381fe 1603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1604 if (prep_new_page(page, order, gfp_flags))
a74609fa 1605 goto again;
1da177e4 1606 return page;
a74609fa
NP
1607
1608failed:
1609 local_irq_restore(flags);
a74609fa 1610 return NULL;
1da177e4
LT
1611}
1612
933e312e
AM
1613#ifdef CONFIG_FAIL_PAGE_ALLOC
1614
b2588c4b 1615static struct {
933e312e
AM
1616 struct fault_attr attr;
1617
1618 u32 ignore_gfp_highmem;
1619 u32 ignore_gfp_wait;
54114994 1620 u32 min_order;
933e312e
AM
1621} fail_page_alloc = {
1622 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1623 .ignore_gfp_wait = 1,
1624 .ignore_gfp_highmem = 1,
54114994 1625 .min_order = 1,
933e312e
AM
1626};
1627
1628static int __init setup_fail_page_alloc(char *str)
1629{
1630 return setup_fault_attr(&fail_page_alloc.attr, str);
1631}
1632__setup("fail_page_alloc=", setup_fail_page_alloc);
1633
deaf386e 1634static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1635{
54114994 1636 if (order < fail_page_alloc.min_order)
deaf386e 1637 return false;
933e312e 1638 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1639 return false;
933e312e 1640 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1641 return false;
933e312e 1642 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1643 return false;
933e312e
AM
1644
1645 return should_fail(&fail_page_alloc.attr, 1 << order);
1646}
1647
1648#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1649
1650static int __init fail_page_alloc_debugfs(void)
1651{
f4ae40a6 1652 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1653 struct dentry *dir;
933e312e 1654
dd48c085
AM
1655 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1656 &fail_page_alloc.attr);
1657 if (IS_ERR(dir))
1658 return PTR_ERR(dir);
933e312e 1659
b2588c4b
AM
1660 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1661 &fail_page_alloc.ignore_gfp_wait))
1662 goto fail;
1663 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1664 &fail_page_alloc.ignore_gfp_highmem))
1665 goto fail;
1666 if (!debugfs_create_u32("min-order", mode, dir,
1667 &fail_page_alloc.min_order))
1668 goto fail;
1669
1670 return 0;
1671fail:
dd48c085 1672 debugfs_remove_recursive(dir);
933e312e 1673
b2588c4b 1674 return -ENOMEM;
933e312e
AM
1675}
1676
1677late_initcall(fail_page_alloc_debugfs);
1678
1679#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1680
1681#else /* CONFIG_FAIL_PAGE_ALLOC */
1682
deaf386e 1683static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1684{
deaf386e 1685 return false;
933e312e
AM
1686}
1687
1688#endif /* CONFIG_FAIL_PAGE_ALLOC */
1689
1da177e4 1690/*
88f5acf8 1691 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1692 * of the allocation.
1693 */
88f5acf8
MG
1694static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1695 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1696{
1697 /* free_pages my go negative - that's OK */
d23ad423 1698 long min = mark;
2cfed075 1699 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1700 int o;
026b0814 1701 long free_cma = 0;
1da177e4 1702
df0a6daa 1703 free_pages -= (1 << order) - 1;
7fb1d9fc 1704 if (alloc_flags & ALLOC_HIGH)
1da177e4 1705 min -= min / 2;
7fb1d9fc 1706 if (alloc_flags & ALLOC_HARDER)
1da177e4 1707 min -= min / 4;
d95ea5d1
BZ
1708#ifdef CONFIG_CMA
1709 /* If allocation can't use CMA areas don't use free CMA pages */
1710 if (!(alloc_flags & ALLOC_CMA))
026b0814 1711 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1712#endif
026b0814
TS
1713
1714 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1715 return false;
1da177e4
LT
1716 for (o = 0; o < order; o++) {
1717 /* At the next order, this order's pages become unavailable */
1718 free_pages -= z->free_area[o].nr_free << o;
1719
1720 /* Require fewer higher order pages to be free */
1721 min >>= 1;
1722
1723 if (free_pages <= min)
88f5acf8 1724 return false;
1da177e4 1725 }
88f5acf8
MG
1726 return true;
1727}
1728
1729bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1730 int classzone_idx, int alloc_flags)
1731{
1732 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1733 zone_page_state(z, NR_FREE_PAGES));
1734}
1735
1736bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1737 int classzone_idx, int alloc_flags)
1738{
1739 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1740
1741 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1742 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1743
1744 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1745 free_pages);
1da177e4
LT
1746}
1747
9276b1bc
PJ
1748#ifdef CONFIG_NUMA
1749/*
1750 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1751 * skip over zones that are not allowed by the cpuset, or that have
1752 * been recently (in last second) found to be nearly full. See further
1753 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1754 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1755 *
a1aeb65a 1756 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1757 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1758 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1759 *
1760 * If the zonelist cache is not available for this zonelist, does
1761 * nothing and returns NULL.
1762 *
1763 * If the fullzones BITMAP in the zonelist cache is stale (more than
1764 * a second since last zap'd) then we zap it out (clear its bits.)
1765 *
1766 * We hold off even calling zlc_setup, until after we've checked the
1767 * first zone in the zonelist, on the theory that most allocations will
1768 * be satisfied from that first zone, so best to examine that zone as
1769 * quickly as we can.
1770 */
1771static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1772{
1773 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1774 nodemask_t *allowednodes; /* zonelist_cache approximation */
1775
1776 zlc = zonelist->zlcache_ptr;
1777 if (!zlc)
1778 return NULL;
1779
f05111f5 1780 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1781 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1782 zlc->last_full_zap = jiffies;
1783 }
1784
1785 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1786 &cpuset_current_mems_allowed :
4b0ef1fe 1787 &node_states[N_MEMORY];
9276b1bc
PJ
1788 return allowednodes;
1789}
1790
1791/*
1792 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1793 * if it is worth looking at further for free memory:
1794 * 1) Check that the zone isn't thought to be full (doesn't have its
1795 * bit set in the zonelist_cache fullzones BITMAP).
1796 * 2) Check that the zones node (obtained from the zonelist_cache
1797 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1798 * Return true (non-zero) if zone is worth looking at further, or
1799 * else return false (zero) if it is not.
1800 *
1801 * This check -ignores- the distinction between various watermarks,
1802 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1803 * found to be full for any variation of these watermarks, it will
1804 * be considered full for up to one second by all requests, unless
1805 * we are so low on memory on all allowed nodes that we are forced
1806 * into the second scan of the zonelist.
1807 *
1808 * In the second scan we ignore this zonelist cache and exactly
1809 * apply the watermarks to all zones, even it is slower to do so.
1810 * We are low on memory in the second scan, and should leave no stone
1811 * unturned looking for a free page.
1812 */
dd1a239f 1813static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1814 nodemask_t *allowednodes)
1815{
1816 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1817 int i; /* index of *z in zonelist zones */
1818 int n; /* node that zone *z is on */
1819
1820 zlc = zonelist->zlcache_ptr;
1821 if (!zlc)
1822 return 1;
1823
dd1a239f 1824 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1825 n = zlc->z_to_n[i];
1826
1827 /* This zone is worth trying if it is allowed but not full */
1828 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1829}
1830
1831/*
1832 * Given 'z' scanning a zonelist, set the corresponding bit in
1833 * zlc->fullzones, so that subsequent attempts to allocate a page
1834 * from that zone don't waste time re-examining it.
1835 */
dd1a239f 1836static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1837{
1838 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1839 int i; /* index of *z in zonelist zones */
1840
1841 zlc = zonelist->zlcache_ptr;
1842 if (!zlc)
1843 return;
1844
dd1a239f 1845 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1846
1847 set_bit(i, zlc->fullzones);
1848}
1849
76d3fbf8
MG
1850/*
1851 * clear all zones full, called after direct reclaim makes progress so that
1852 * a zone that was recently full is not skipped over for up to a second
1853 */
1854static void zlc_clear_zones_full(struct zonelist *zonelist)
1855{
1856 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1857
1858 zlc = zonelist->zlcache_ptr;
1859 if (!zlc)
1860 return;
1861
1862 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1863}
1864
81c0a2bb
JW
1865static bool zone_local(struct zone *local_zone, struct zone *zone)
1866{
fff4068c 1867 return local_zone->node == zone->node;
81c0a2bb
JW
1868}
1869
957f822a
DR
1870static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1871{
5f7a75ac
MG
1872 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1873 RECLAIM_DISTANCE;
957f822a
DR
1874}
1875
9276b1bc
PJ
1876#else /* CONFIG_NUMA */
1877
1878static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1879{
1880 return NULL;
1881}
1882
dd1a239f 1883static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1884 nodemask_t *allowednodes)
1885{
1886 return 1;
1887}
1888
dd1a239f 1889static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1890{
1891}
76d3fbf8
MG
1892
1893static void zlc_clear_zones_full(struct zonelist *zonelist)
1894{
1895}
957f822a 1896
81c0a2bb
JW
1897static bool zone_local(struct zone *local_zone, struct zone *zone)
1898{
1899 return true;
1900}
1901
957f822a
DR
1902static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1903{
1904 return true;
1905}
1906
9276b1bc
PJ
1907#endif /* CONFIG_NUMA */
1908
7fb1d9fc 1909/*
0798e519 1910 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1911 * a page.
1912 */
1913static struct page *
19770b32 1914get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1915 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1916 struct zone *preferred_zone, int migratetype)
753ee728 1917{
dd1a239f 1918 struct zoneref *z;
7fb1d9fc 1919 struct page *page = NULL;
54a6eb5c 1920 int classzone_idx;
5117f45d 1921 struct zone *zone;
9276b1bc
PJ
1922 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1923 int zlc_active = 0; /* set if using zonelist_cache */
1924 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1925 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1926 (gfp_mask & __GFP_WRITE);
54a6eb5c 1927
19770b32 1928 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1929zonelist_scan:
7fb1d9fc 1930 /*
9276b1bc 1931 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1932 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1933 */
19770b32
MG
1934 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1935 high_zoneidx, nodemask) {
e085dbc5
JW
1936 unsigned long mark;
1937
e5adfffc 1938 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1939 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1940 continue;
664eedde
MG
1941 if (cpusets_enabled() &&
1942 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1943 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1944 continue;
81c0a2bb
JW
1945 /*
1946 * Distribute pages in proportion to the individual
1947 * zone size to ensure fair page aging. The zone a
1948 * page was allocated in should have no effect on the
1949 * time the page has in memory before being reclaimed.
81c0a2bb 1950 */
3a025760 1951 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1952 if (!zone_local(preferred_zone, zone))
81c0a2bb 1953 continue;
3a025760
JW
1954 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1955 continue;
81c0a2bb 1956 }
a756cf59
JW
1957 /*
1958 * When allocating a page cache page for writing, we
1959 * want to get it from a zone that is within its dirty
1960 * limit, such that no single zone holds more than its
1961 * proportional share of globally allowed dirty pages.
1962 * The dirty limits take into account the zone's
1963 * lowmem reserves and high watermark so that kswapd
1964 * should be able to balance it without having to
1965 * write pages from its LRU list.
1966 *
1967 * This may look like it could increase pressure on
1968 * lower zones by failing allocations in higher zones
1969 * before they are full. But the pages that do spill
1970 * over are limited as the lower zones are protected
1971 * by this very same mechanism. It should not become
1972 * a practical burden to them.
1973 *
1974 * XXX: For now, allow allocations to potentially
1975 * exceed the per-zone dirty limit in the slowpath
1976 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1977 * which is important when on a NUMA setup the allowed
1978 * zones are together not big enough to reach the
1979 * global limit. The proper fix for these situations
1980 * will require awareness of zones in the
1981 * dirty-throttling and the flusher threads.
1982 */
a6e21b14 1983 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 1984 continue;
7fb1d9fc 1985
e085dbc5
JW
1986 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1987 if (!zone_watermark_ok(zone, order, mark,
1988 classzone_idx, alloc_flags)) {
fa5e084e
MG
1989 int ret;
1990
5dab2911
MG
1991 /* Checked here to keep the fast path fast */
1992 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1993 if (alloc_flags & ALLOC_NO_WATERMARKS)
1994 goto try_this_zone;
1995
e5adfffc
KS
1996 if (IS_ENABLED(CONFIG_NUMA) &&
1997 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1998 /*
1999 * we do zlc_setup if there are multiple nodes
2000 * and before considering the first zone allowed
2001 * by the cpuset.
2002 */
2003 allowednodes = zlc_setup(zonelist, alloc_flags);
2004 zlc_active = 1;
2005 did_zlc_setup = 1;
2006 }
2007
957f822a
DR
2008 if (zone_reclaim_mode == 0 ||
2009 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2010 goto this_zone_full;
2011
cd38b115
MG
2012 /*
2013 * As we may have just activated ZLC, check if the first
2014 * eligible zone has failed zone_reclaim recently.
2015 */
e5adfffc 2016 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2017 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2018 continue;
2019
fa5e084e
MG
2020 ret = zone_reclaim(zone, gfp_mask, order);
2021 switch (ret) {
2022 case ZONE_RECLAIM_NOSCAN:
2023 /* did not scan */
cd38b115 2024 continue;
fa5e084e
MG
2025 case ZONE_RECLAIM_FULL:
2026 /* scanned but unreclaimable */
cd38b115 2027 continue;
fa5e084e
MG
2028 default:
2029 /* did we reclaim enough */
fed2719e 2030 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2031 classzone_idx, alloc_flags))
fed2719e
MG
2032 goto try_this_zone;
2033
2034 /*
2035 * Failed to reclaim enough to meet watermark.
2036 * Only mark the zone full if checking the min
2037 * watermark or if we failed to reclaim just
2038 * 1<<order pages or else the page allocator
2039 * fastpath will prematurely mark zones full
2040 * when the watermark is between the low and
2041 * min watermarks.
2042 */
2043 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2044 ret == ZONE_RECLAIM_SOME)
9276b1bc 2045 goto this_zone_full;
fed2719e
MG
2046
2047 continue;
0798e519 2048 }
7fb1d9fc
RS
2049 }
2050
fa5e084e 2051try_this_zone:
3dd28266
MG
2052 page = buffered_rmqueue(preferred_zone, zone, order,
2053 gfp_mask, migratetype);
0798e519 2054 if (page)
7fb1d9fc 2055 break;
9276b1bc 2056this_zone_full:
65bb3719 2057 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2058 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2059 }
9276b1bc 2060
e5adfffc 2061 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
2062 /* Disable zlc cache for second zonelist scan */
2063 zlc_active = 0;
2064 goto zonelist_scan;
2065 }
b121186a
AS
2066
2067 if (page)
2068 /*
2069 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2070 * necessary to allocate the page. The expectation is
2071 * that the caller is taking steps that will free more
2072 * memory. The caller should avoid the page being used
2073 * for !PFMEMALLOC purposes.
2074 */
2075 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2076
7fb1d9fc 2077 return page;
753ee728
MH
2078}
2079
29423e77
DR
2080/*
2081 * Large machines with many possible nodes should not always dump per-node
2082 * meminfo in irq context.
2083 */
2084static inline bool should_suppress_show_mem(void)
2085{
2086 bool ret = false;
2087
2088#if NODES_SHIFT > 8
2089 ret = in_interrupt();
2090#endif
2091 return ret;
2092}
2093
a238ab5b
DH
2094static DEFINE_RATELIMIT_STATE(nopage_rs,
2095 DEFAULT_RATELIMIT_INTERVAL,
2096 DEFAULT_RATELIMIT_BURST);
2097
2098void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2099{
a238ab5b
DH
2100 unsigned int filter = SHOW_MEM_FILTER_NODES;
2101
c0a32fc5
SG
2102 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2103 debug_guardpage_minorder() > 0)
a238ab5b
DH
2104 return;
2105
2106 /*
2107 * This documents exceptions given to allocations in certain
2108 * contexts that are allowed to allocate outside current's set
2109 * of allowed nodes.
2110 */
2111 if (!(gfp_mask & __GFP_NOMEMALLOC))
2112 if (test_thread_flag(TIF_MEMDIE) ||
2113 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2114 filter &= ~SHOW_MEM_FILTER_NODES;
2115 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2116 filter &= ~SHOW_MEM_FILTER_NODES;
2117
2118 if (fmt) {
3ee9a4f0
JP
2119 struct va_format vaf;
2120 va_list args;
2121
a238ab5b 2122 va_start(args, fmt);
3ee9a4f0
JP
2123
2124 vaf.fmt = fmt;
2125 vaf.va = &args;
2126
2127 pr_warn("%pV", &vaf);
2128
a238ab5b
DH
2129 va_end(args);
2130 }
2131
3ee9a4f0
JP
2132 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2133 current->comm, order, gfp_mask);
a238ab5b
DH
2134
2135 dump_stack();
2136 if (!should_suppress_show_mem())
2137 show_mem(filter);
2138}
2139
11e33f6a
MG
2140static inline int
2141should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2142 unsigned long did_some_progress,
11e33f6a 2143 unsigned long pages_reclaimed)
1da177e4 2144{
11e33f6a
MG
2145 /* Do not loop if specifically requested */
2146 if (gfp_mask & __GFP_NORETRY)
2147 return 0;
1da177e4 2148
f90ac398
MG
2149 /* Always retry if specifically requested */
2150 if (gfp_mask & __GFP_NOFAIL)
2151 return 1;
2152
2153 /*
2154 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2155 * making forward progress without invoking OOM. Suspend also disables
2156 * storage devices so kswapd will not help. Bail if we are suspending.
2157 */
2158 if (!did_some_progress && pm_suspended_storage())
2159 return 0;
2160
11e33f6a
MG
2161 /*
2162 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2163 * means __GFP_NOFAIL, but that may not be true in other
2164 * implementations.
2165 */
2166 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2167 return 1;
2168
2169 /*
2170 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2171 * specified, then we retry until we no longer reclaim any pages
2172 * (above), or we've reclaimed an order of pages at least as
2173 * large as the allocation's order. In both cases, if the
2174 * allocation still fails, we stop retrying.
2175 */
2176 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2177 return 1;
cf40bd16 2178
11e33f6a
MG
2179 return 0;
2180}
933e312e 2181
11e33f6a
MG
2182static inline struct page *
2183__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2184 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2185 nodemask_t *nodemask, struct zone *preferred_zone,
2186 int migratetype)
11e33f6a
MG
2187{
2188 struct page *page;
2189
2190 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2191 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2192 schedule_timeout_uninterruptible(1);
1da177e4
LT
2193 return NULL;
2194 }
6b1de916 2195
11e33f6a
MG
2196 /*
2197 * Go through the zonelist yet one more time, keep very high watermark
2198 * here, this is only to catch a parallel oom killing, we must fail if
2199 * we're still under heavy pressure.
2200 */
2201 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2202 order, zonelist, high_zoneidx,
5117f45d 2203 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2204 preferred_zone, migratetype);
7fb1d9fc 2205 if (page)
11e33f6a
MG
2206 goto out;
2207
4365a567
KH
2208 if (!(gfp_mask & __GFP_NOFAIL)) {
2209 /* The OOM killer will not help higher order allocs */
2210 if (order > PAGE_ALLOC_COSTLY_ORDER)
2211 goto out;
03668b3c
DR
2212 /* The OOM killer does not needlessly kill tasks for lowmem */
2213 if (high_zoneidx < ZONE_NORMAL)
2214 goto out;
4365a567
KH
2215 /*
2216 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2217 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2218 * The caller should handle page allocation failure by itself if
2219 * it specifies __GFP_THISNODE.
2220 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2221 */
2222 if (gfp_mask & __GFP_THISNODE)
2223 goto out;
2224 }
11e33f6a 2225 /* Exhausted what can be done so it's blamo time */
08ab9b10 2226 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2227
2228out:
2229 clear_zonelist_oom(zonelist, gfp_mask);
2230 return page;
2231}
2232
56de7263
MG
2233#ifdef CONFIG_COMPACTION
2234/* Try memory compaction for high-order allocations before reclaim */
2235static struct page *
2236__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2237 struct zonelist *zonelist, enum zone_type high_zoneidx,
2238 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
e0b9daeb 2239 int migratetype, enum migrate_mode mode,
c67fe375 2240 bool *contended_compaction, bool *deferred_compaction,
66199712 2241 unsigned long *did_some_progress)
56de7263 2242{
66199712 2243 if (!order)
56de7263
MG
2244 return NULL;
2245
aff62249 2246 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2247 *deferred_compaction = true;
2248 return NULL;
2249 }
2250
c06b1fca 2251 current->flags |= PF_MEMALLOC;
56de7263 2252 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2253 nodemask, mode,
8fb74b9f 2254 contended_compaction);
c06b1fca 2255 current->flags &= ~PF_MEMALLOC;
56de7263 2256
1fb3f8ca 2257 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2258 struct page *page;
2259
56de7263
MG
2260 /* Page migration frees to the PCP lists but we want merging */
2261 drain_pages(get_cpu());
2262 put_cpu();
2263
2264 page = get_page_from_freelist(gfp_mask, nodemask,
2265 order, zonelist, high_zoneidx,
cfd19c5a
MG
2266 alloc_flags & ~ALLOC_NO_WATERMARKS,
2267 preferred_zone, migratetype);
56de7263 2268 if (page) {
62997027 2269 preferred_zone->compact_blockskip_flush = false;
de6c60a6 2270 compaction_defer_reset(preferred_zone, order, true);
56de7263
MG
2271 count_vm_event(COMPACTSUCCESS);
2272 return page;
2273 }
2274
2275 /*
2276 * It's bad if compaction run occurs and fails.
2277 * The most likely reason is that pages exist,
2278 * but not enough to satisfy watermarks.
2279 */
2280 count_vm_event(COMPACTFAIL);
66199712
MG
2281
2282 /*
2283 * As async compaction considers a subset of pageblocks, only
2284 * defer if the failure was a sync compaction failure.
2285 */
e0b9daeb 2286 if (mode != MIGRATE_ASYNC)
aff62249 2287 defer_compaction(preferred_zone, order);
56de7263
MG
2288
2289 cond_resched();
2290 }
2291
2292 return NULL;
2293}
2294#else
2295static inline struct page *
2296__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
2298 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
e0b9daeb
DR
2299 int migratetype, enum migrate_mode mode, bool *contended_compaction,
2300 bool *deferred_compaction, unsigned long *did_some_progress)
56de7263
MG
2301{
2302 return NULL;
2303}
2304#endif /* CONFIG_COMPACTION */
2305
bba90710
MS
2306/* Perform direct synchronous page reclaim */
2307static int
2308__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2309 nodemask_t *nodemask)
11e33f6a 2310{
11e33f6a 2311 struct reclaim_state reclaim_state;
bba90710 2312 int progress;
11e33f6a
MG
2313
2314 cond_resched();
2315
2316 /* We now go into synchronous reclaim */
2317 cpuset_memory_pressure_bump();
c06b1fca 2318 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2319 lockdep_set_current_reclaim_state(gfp_mask);
2320 reclaim_state.reclaimed_slab = 0;
c06b1fca 2321 current->reclaim_state = &reclaim_state;
11e33f6a 2322
bba90710 2323 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2324
c06b1fca 2325 current->reclaim_state = NULL;
11e33f6a 2326 lockdep_clear_current_reclaim_state();
c06b1fca 2327 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2328
2329 cond_resched();
2330
bba90710
MS
2331 return progress;
2332}
2333
2334/* The really slow allocator path where we enter direct reclaim */
2335static inline struct page *
2336__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2337 struct zonelist *zonelist, enum zone_type high_zoneidx,
2338 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2339 int migratetype, unsigned long *did_some_progress)
2340{
2341 struct page *page = NULL;
2342 bool drained = false;
2343
2344 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2345 nodemask);
9ee493ce
MG
2346 if (unlikely(!(*did_some_progress)))
2347 return NULL;
11e33f6a 2348
76d3fbf8 2349 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2350 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2351 zlc_clear_zones_full(zonelist);
2352
9ee493ce
MG
2353retry:
2354 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2355 zonelist, high_zoneidx,
cfd19c5a
MG
2356 alloc_flags & ~ALLOC_NO_WATERMARKS,
2357 preferred_zone, migratetype);
9ee493ce
MG
2358
2359 /*
2360 * If an allocation failed after direct reclaim, it could be because
2361 * pages are pinned on the per-cpu lists. Drain them and try again
2362 */
2363 if (!page && !drained) {
2364 drain_all_pages();
2365 drained = true;
2366 goto retry;
2367 }
2368
11e33f6a
MG
2369 return page;
2370}
2371
1da177e4 2372/*
11e33f6a
MG
2373 * This is called in the allocator slow-path if the allocation request is of
2374 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2375 */
11e33f6a
MG
2376static inline struct page *
2377__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2378 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2379 nodemask_t *nodemask, struct zone *preferred_zone,
2380 int migratetype)
11e33f6a
MG
2381{
2382 struct page *page;
2383
2384 do {
2385 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2386 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2387 preferred_zone, migratetype);
11e33f6a
MG
2388
2389 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2390 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2391 } while (!page && (gfp_mask & __GFP_NOFAIL));
2392
2393 return page;
2394}
2395
3a025760
JW
2396static void reset_alloc_batches(struct zonelist *zonelist,
2397 enum zone_type high_zoneidx,
2398 struct zone *preferred_zone)
1da177e4 2399{
dd1a239f
MG
2400 struct zoneref *z;
2401 struct zone *zone;
1da177e4 2402
81c0a2bb 2403 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81c0a2bb
JW
2404 /*
2405 * Only reset the batches of zones that were actually
3a025760
JW
2406 * considered in the fairness pass, we don't want to
2407 * trash fairness information for zones that are not
81c0a2bb
JW
2408 * actually part of this zonelist's round-robin cycle.
2409 */
fff4068c 2410 if (!zone_local(preferred_zone, zone))
81c0a2bb
JW
2411 continue;
2412 mod_zone_page_state(zone, NR_ALLOC_BATCH,
3a025760
JW
2413 high_wmark_pages(zone) - low_wmark_pages(zone) -
2414 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 2415 }
11e33f6a 2416}
cf40bd16 2417
3a025760
JW
2418static void wake_all_kswapds(unsigned int order,
2419 struct zonelist *zonelist,
2420 enum zone_type high_zoneidx,
2421 struct zone *preferred_zone)
2422{
2423 struct zoneref *z;
2424 struct zone *zone;
2425
2426 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2427 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2428}
2429
341ce06f
PZ
2430static inline int
2431gfp_to_alloc_flags(gfp_t gfp_mask)
2432{
341ce06f
PZ
2433 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2434 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2435
a56f57ff 2436 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2437 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2438
341ce06f
PZ
2439 /*
2440 * The caller may dip into page reserves a bit more if the caller
2441 * cannot run direct reclaim, or if the caller has realtime scheduling
2442 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2443 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2444 */
e6223a3b 2445 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2446
341ce06f 2447 if (!wait) {
5c3240d9
AA
2448 /*
2449 * Not worth trying to allocate harder for
2450 * __GFP_NOMEMALLOC even if it can't schedule.
2451 */
2452 if (!(gfp_mask & __GFP_NOMEMALLOC))
2453 alloc_flags |= ALLOC_HARDER;
523b9458 2454 /*
341ce06f
PZ
2455 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2456 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2457 */
341ce06f 2458 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2459 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2460 alloc_flags |= ALLOC_HARDER;
2461
b37f1dd0
MG
2462 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2463 if (gfp_mask & __GFP_MEMALLOC)
2464 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2465 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2466 alloc_flags |= ALLOC_NO_WATERMARKS;
2467 else if (!in_interrupt() &&
2468 ((current->flags & PF_MEMALLOC) ||
2469 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2470 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2471 }
d95ea5d1
BZ
2472#ifdef CONFIG_CMA
2473 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2474 alloc_flags |= ALLOC_CMA;
2475#endif
341ce06f
PZ
2476 return alloc_flags;
2477}
2478
072bb0aa
MG
2479bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2480{
b37f1dd0 2481 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2482}
2483
11e33f6a
MG
2484static inline struct page *
2485__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2486 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2487 nodemask_t *nodemask, struct zone *preferred_zone,
2488 int migratetype)
11e33f6a
MG
2489{
2490 const gfp_t wait = gfp_mask & __GFP_WAIT;
2491 struct page *page = NULL;
2492 int alloc_flags;
2493 unsigned long pages_reclaimed = 0;
2494 unsigned long did_some_progress;
e0b9daeb 2495 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2496 bool deferred_compaction = false;
c67fe375 2497 bool contended_compaction = false;
1da177e4 2498
72807a74
MG
2499 /*
2500 * In the slowpath, we sanity check order to avoid ever trying to
2501 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2502 * be using allocators in order of preference for an area that is
2503 * too large.
2504 */
1fc28b70
MG
2505 if (order >= MAX_ORDER) {
2506 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2507 return NULL;
1fc28b70 2508 }
1da177e4 2509
952f3b51
CL
2510 /*
2511 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2512 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2513 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2514 * using a larger set of nodes after it has established that the
2515 * allowed per node queues are empty and that nodes are
2516 * over allocated.
2517 */
3a025760
JW
2518 if (IS_ENABLED(CONFIG_NUMA) &&
2519 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2520 goto nopage;
2521
cc4a6851 2522restart:
3a025760
JW
2523 if (!(gfp_mask & __GFP_NO_KSWAPD))
2524 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
1da177e4 2525
9bf2229f 2526 /*
7fb1d9fc
RS
2527 * OK, we're below the kswapd watermark and have kicked background
2528 * reclaim. Now things get more complex, so set up alloc_flags according
2529 * to how we want to proceed.
9bf2229f 2530 */
341ce06f 2531 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2532
f33261d7
DR
2533 /*
2534 * Find the true preferred zone if the allocation is unconstrained by
2535 * cpusets.
2536 */
2537 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2538 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2539 &preferred_zone);
2540
cfa54a0f 2541rebalance:
341ce06f 2542 /* This is the last chance, in general, before the goto nopage. */
19770b32 2543 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2544 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2545 preferred_zone, migratetype);
7fb1d9fc
RS
2546 if (page)
2547 goto got_pg;
1da177e4 2548
11e33f6a 2549 /* Allocate without watermarks if the context allows */
341ce06f 2550 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2551 /*
2552 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2553 * the allocation is high priority and these type of
2554 * allocations are system rather than user orientated
2555 */
2556 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2557
341ce06f
PZ
2558 page = __alloc_pages_high_priority(gfp_mask, order,
2559 zonelist, high_zoneidx, nodemask,
2560 preferred_zone, migratetype);
cfd19c5a 2561 if (page) {
341ce06f 2562 goto got_pg;
cfd19c5a 2563 }
1da177e4
LT
2564 }
2565
2566 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2567 if (!wait) {
2568 /*
2569 * All existing users of the deprecated __GFP_NOFAIL are
2570 * blockable, so warn of any new users that actually allow this
2571 * type of allocation to fail.
2572 */
2573 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2574 goto nopage;
aed0a0e3 2575 }
1da177e4 2576
341ce06f 2577 /* Avoid recursion of direct reclaim */
c06b1fca 2578 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2579 goto nopage;
2580
6583bb64
DR
2581 /* Avoid allocations with no watermarks from looping endlessly */
2582 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2583 goto nopage;
2584
77f1fe6b
MG
2585 /*
2586 * Try direct compaction. The first pass is asynchronous. Subsequent
2587 * attempts after direct reclaim are synchronous
2588 */
e0b9daeb
DR
2589 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2590 high_zoneidx, nodemask, alloc_flags,
2591 preferred_zone, migratetype,
2592 migration_mode, &contended_compaction,
66199712
MG
2593 &deferred_compaction,
2594 &did_some_progress);
56de7263
MG
2595 if (page)
2596 goto got_pg;
75f30861
DR
2597
2598 /*
2599 * It can become very expensive to allocate transparent hugepages at
2600 * fault, so use asynchronous memory compaction for THP unless it is
2601 * khugepaged trying to collapse.
2602 */
2603 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2604 migration_mode = MIGRATE_SYNC_LIGHT;
56de7263 2605
31f8d42d
LT
2606 /*
2607 * If compaction is deferred for high-order allocations, it is because
2608 * sync compaction recently failed. In this is the case and the caller
2609 * requested a movable allocation that does not heavily disrupt the
2610 * system then fail the allocation instead of entering direct reclaim.
2611 */
2612 if ((deferred_compaction || contended_compaction) &&
caf49191 2613 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2614 goto nopage;
66199712 2615
11e33f6a
MG
2616 /* Try direct reclaim and then allocating */
2617 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2618 zonelist, high_zoneidx,
2619 nodemask,
5117f45d 2620 alloc_flags, preferred_zone,
3dd28266 2621 migratetype, &did_some_progress);
11e33f6a
MG
2622 if (page)
2623 goto got_pg;
1da177e4 2624
e33c3b5e 2625 /*
11e33f6a
MG
2626 * If we failed to make any progress reclaiming, then we are
2627 * running out of options and have to consider going OOM
e33c3b5e 2628 */
11e33f6a 2629 if (!did_some_progress) {
b9921ecd 2630 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2631 if (oom_killer_disabled)
2632 goto nopage;
29fd66d2
DR
2633 /* Coredumps can quickly deplete all memory reserves */
2634 if ((current->flags & PF_DUMPCORE) &&
2635 !(gfp_mask & __GFP_NOFAIL))
2636 goto nopage;
11e33f6a
MG
2637 page = __alloc_pages_may_oom(gfp_mask, order,
2638 zonelist, high_zoneidx,
3dd28266
MG
2639 nodemask, preferred_zone,
2640 migratetype);
11e33f6a
MG
2641 if (page)
2642 goto got_pg;
1da177e4 2643
03668b3c
DR
2644 if (!(gfp_mask & __GFP_NOFAIL)) {
2645 /*
2646 * The oom killer is not called for high-order
2647 * allocations that may fail, so if no progress
2648 * is being made, there are no other options and
2649 * retrying is unlikely to help.
2650 */
2651 if (order > PAGE_ALLOC_COSTLY_ORDER)
2652 goto nopage;
2653 /*
2654 * The oom killer is not called for lowmem
2655 * allocations to prevent needlessly killing
2656 * innocent tasks.
2657 */
2658 if (high_zoneidx < ZONE_NORMAL)
2659 goto nopage;
2660 }
e2c55dc8 2661
ff0ceb9d
DR
2662 goto restart;
2663 }
1da177e4
LT
2664 }
2665
11e33f6a 2666 /* Check if we should retry the allocation */
a41f24ea 2667 pages_reclaimed += did_some_progress;
f90ac398
MG
2668 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2669 pages_reclaimed)) {
11e33f6a 2670 /* Wait for some write requests to complete then retry */
0e093d99 2671 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2672 goto rebalance;
3e7d3449
MG
2673 } else {
2674 /*
2675 * High-order allocations do not necessarily loop after
2676 * direct reclaim and reclaim/compaction depends on compaction
2677 * being called after reclaim so call directly if necessary
2678 */
e0b9daeb
DR
2679 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2680 high_zoneidx, nodemask, alloc_flags,
2681 preferred_zone, migratetype,
2682 migration_mode, &contended_compaction,
66199712
MG
2683 &deferred_compaction,
2684 &did_some_progress);
3e7d3449
MG
2685 if (page)
2686 goto got_pg;
1da177e4
LT
2687 }
2688
2689nopage:
a238ab5b 2690 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2691 return page;
1da177e4 2692got_pg:
b1eeab67
VN
2693 if (kmemcheck_enabled)
2694 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2695
072bb0aa 2696 return page;
1da177e4 2697}
11e33f6a
MG
2698
2699/*
2700 * This is the 'heart' of the zoned buddy allocator.
2701 */
2702struct page *
2703__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2704 struct zonelist *zonelist, nodemask_t *nodemask)
2705{
2706 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2707 struct zone *preferred_zone;
cc9a6c87 2708 struct page *page = NULL;
3dd28266 2709 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2710 unsigned int cpuset_mems_cookie;
3a025760 2711 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
11e33f6a 2712
dcce284a
BH
2713 gfp_mask &= gfp_allowed_mask;
2714
11e33f6a
MG
2715 lockdep_trace_alloc(gfp_mask);
2716
2717 might_sleep_if(gfp_mask & __GFP_WAIT);
2718
2719 if (should_fail_alloc_page(gfp_mask, order))
2720 return NULL;
2721
2722 /*
2723 * Check the zones suitable for the gfp_mask contain at least one
2724 * valid zone. It's possible to have an empty zonelist as a result
2725 * of GFP_THISNODE and a memoryless node
2726 */
2727 if (unlikely(!zonelist->_zonerefs->zone))
2728 return NULL;
2729
cc9a6c87 2730retry_cpuset:
d26914d1 2731 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2732
5117f45d 2733 /* The preferred zone is used for statistics later */
f33261d7
DR
2734 first_zones_zonelist(zonelist, high_zoneidx,
2735 nodemask ? : &cpuset_current_mems_allowed,
2736 &preferred_zone);
cc9a6c87
MG
2737 if (!preferred_zone)
2738 goto out;
5117f45d 2739
d95ea5d1
BZ
2740#ifdef CONFIG_CMA
2741 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2742 alloc_flags |= ALLOC_CMA;
2743#endif
3a025760 2744retry:
5117f45d 2745 /* First allocation attempt */
11e33f6a 2746 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2747 zonelist, high_zoneidx, alloc_flags,
3dd28266 2748 preferred_zone, migratetype);
21caf2fc 2749 if (unlikely(!page)) {
3a025760
JW
2750 /*
2751 * The first pass makes sure allocations are spread
2752 * fairly within the local node. However, the local
2753 * node might have free pages left after the fairness
2754 * batches are exhausted, and remote zones haven't
2755 * even been considered yet. Try once more without
2756 * fairness, and include remote zones now, before
2757 * entering the slowpath and waking kswapd: prefer
2758 * spilling to a remote zone over swapping locally.
2759 */
2760 if (alloc_flags & ALLOC_FAIR) {
2761 reset_alloc_batches(zonelist, high_zoneidx,
2762 preferred_zone);
2763 alloc_flags &= ~ALLOC_FAIR;
2764 goto retry;
2765 }
21caf2fc
ML
2766 /*
2767 * Runtime PM, block IO and its error handling path
2768 * can deadlock because I/O on the device might not
2769 * complete.
2770 */
2771 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2772 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2773 zonelist, high_zoneidx, nodemask,
3dd28266 2774 preferred_zone, migratetype);
21caf2fc 2775 }
11e33f6a 2776
4b4f278c 2777 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2778
2779out:
2780 /*
2781 * When updating a task's mems_allowed, it is possible to race with
2782 * parallel threads in such a way that an allocation can fail while
2783 * the mask is being updated. If a page allocation is about to fail,
2784 * check if the cpuset changed during allocation and if so, retry.
2785 */
d26914d1 2786 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2787 goto retry_cpuset;
2788
11e33f6a 2789 return page;
1da177e4 2790}
d239171e 2791EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2792
2793/*
2794 * Common helper functions.
2795 */
920c7a5d 2796unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2797{
945a1113
AM
2798 struct page *page;
2799
2800 /*
2801 * __get_free_pages() returns a 32-bit address, which cannot represent
2802 * a highmem page
2803 */
2804 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2805
1da177e4
LT
2806 page = alloc_pages(gfp_mask, order);
2807 if (!page)
2808 return 0;
2809 return (unsigned long) page_address(page);
2810}
1da177e4
LT
2811EXPORT_SYMBOL(__get_free_pages);
2812
920c7a5d 2813unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2814{
945a1113 2815 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2816}
1da177e4
LT
2817EXPORT_SYMBOL(get_zeroed_page);
2818
920c7a5d 2819void __free_pages(struct page *page, unsigned int order)
1da177e4 2820{
b5810039 2821 if (put_page_testzero(page)) {
1da177e4 2822 if (order == 0)
fc91668e 2823 free_hot_cold_page(page, 0);
1da177e4
LT
2824 else
2825 __free_pages_ok(page, order);
2826 }
2827}
2828
2829EXPORT_SYMBOL(__free_pages);
2830
920c7a5d 2831void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2832{
2833 if (addr != 0) {
725d704e 2834 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2835 __free_pages(virt_to_page((void *)addr), order);
2836 }
2837}
2838
2839EXPORT_SYMBOL(free_pages);
2840
6a1a0d3b 2841/*
52383431
VD
2842 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2843 * of the current memory cgroup.
6a1a0d3b 2844 *
52383431
VD
2845 * It should be used when the caller would like to use kmalloc, but since the
2846 * allocation is large, it has to fall back to the page allocator.
2847 */
2848struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2849{
2850 struct page *page;
2851 struct mem_cgroup *memcg = NULL;
2852
2853 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2854 return NULL;
2855 page = alloc_pages(gfp_mask, order);
2856 memcg_kmem_commit_charge(page, memcg, order);
2857 return page;
2858}
2859
2860struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2861{
2862 struct page *page;
2863 struct mem_cgroup *memcg = NULL;
2864
2865 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2866 return NULL;
2867 page = alloc_pages_node(nid, gfp_mask, order);
2868 memcg_kmem_commit_charge(page, memcg, order);
2869 return page;
2870}
2871
2872/*
2873 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2874 * alloc_kmem_pages.
6a1a0d3b 2875 */
52383431 2876void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2877{
2878 memcg_kmem_uncharge_pages(page, order);
2879 __free_pages(page, order);
2880}
2881
52383431 2882void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2883{
2884 if (addr != 0) {
2885 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2886 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2887 }
2888}
2889
ee85c2e1
AK
2890static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2891{
2892 if (addr) {
2893 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2894 unsigned long used = addr + PAGE_ALIGN(size);
2895
2896 split_page(virt_to_page((void *)addr), order);
2897 while (used < alloc_end) {
2898 free_page(used);
2899 used += PAGE_SIZE;
2900 }
2901 }
2902 return (void *)addr;
2903}
2904
2be0ffe2
TT
2905/**
2906 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2907 * @size: the number of bytes to allocate
2908 * @gfp_mask: GFP flags for the allocation
2909 *
2910 * This function is similar to alloc_pages(), except that it allocates the
2911 * minimum number of pages to satisfy the request. alloc_pages() can only
2912 * allocate memory in power-of-two pages.
2913 *
2914 * This function is also limited by MAX_ORDER.
2915 *
2916 * Memory allocated by this function must be released by free_pages_exact().
2917 */
2918void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2919{
2920 unsigned int order = get_order(size);
2921 unsigned long addr;
2922
2923 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2924 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2925}
2926EXPORT_SYMBOL(alloc_pages_exact);
2927
ee85c2e1
AK
2928/**
2929 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2930 * pages on a node.
b5e6ab58 2931 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2932 * @size: the number of bytes to allocate
2933 * @gfp_mask: GFP flags for the allocation
2934 *
2935 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2936 * back.
2937 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2938 * but is not exact.
2939 */
2940void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2941{
2942 unsigned order = get_order(size);
2943 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2944 if (!p)
2945 return NULL;
2946 return make_alloc_exact((unsigned long)page_address(p), order, size);
2947}
2948EXPORT_SYMBOL(alloc_pages_exact_nid);
2949
2be0ffe2
TT
2950/**
2951 * free_pages_exact - release memory allocated via alloc_pages_exact()
2952 * @virt: the value returned by alloc_pages_exact.
2953 * @size: size of allocation, same value as passed to alloc_pages_exact().
2954 *
2955 * Release the memory allocated by a previous call to alloc_pages_exact.
2956 */
2957void free_pages_exact(void *virt, size_t size)
2958{
2959 unsigned long addr = (unsigned long)virt;
2960 unsigned long end = addr + PAGE_ALIGN(size);
2961
2962 while (addr < end) {
2963 free_page(addr);
2964 addr += PAGE_SIZE;
2965 }
2966}
2967EXPORT_SYMBOL(free_pages_exact);
2968
e0fb5815
ZY
2969/**
2970 * nr_free_zone_pages - count number of pages beyond high watermark
2971 * @offset: The zone index of the highest zone
2972 *
2973 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2974 * high watermark within all zones at or below a given zone index. For each
2975 * zone, the number of pages is calculated as:
834405c3 2976 * managed_pages - high_pages
e0fb5815 2977 */
ebec3862 2978static unsigned long nr_free_zone_pages(int offset)
1da177e4 2979{
dd1a239f 2980 struct zoneref *z;
54a6eb5c
MG
2981 struct zone *zone;
2982
e310fd43 2983 /* Just pick one node, since fallback list is circular */
ebec3862 2984 unsigned long sum = 0;
1da177e4 2985
0e88460d 2986 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2987
54a6eb5c 2988 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2989 unsigned long size = zone->managed_pages;
41858966 2990 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2991 if (size > high)
2992 sum += size - high;
1da177e4
LT
2993 }
2994
2995 return sum;
2996}
2997
e0fb5815
ZY
2998/**
2999 * nr_free_buffer_pages - count number of pages beyond high watermark
3000 *
3001 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3002 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3003 */
ebec3862 3004unsigned long nr_free_buffer_pages(void)
1da177e4 3005{
af4ca457 3006 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3007}
c2f1a551 3008EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3009
e0fb5815
ZY
3010/**
3011 * nr_free_pagecache_pages - count number of pages beyond high watermark
3012 *
3013 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3014 * high watermark within all zones.
1da177e4 3015 */
ebec3862 3016unsigned long nr_free_pagecache_pages(void)
1da177e4 3017{
2a1e274a 3018 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3019}
08e0f6a9
CL
3020
3021static inline void show_node(struct zone *zone)
1da177e4 3022{
e5adfffc 3023 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3024 printk("Node %d ", zone_to_nid(zone));
1da177e4 3025}
1da177e4 3026
1da177e4
LT
3027void si_meminfo(struct sysinfo *val)
3028{
3029 val->totalram = totalram_pages;
3030 val->sharedram = 0;
d23ad423 3031 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3032 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3033 val->totalhigh = totalhigh_pages;
3034 val->freehigh = nr_free_highpages();
1da177e4
LT
3035 val->mem_unit = PAGE_SIZE;
3036}
3037
3038EXPORT_SYMBOL(si_meminfo);
3039
3040#ifdef CONFIG_NUMA
3041void si_meminfo_node(struct sysinfo *val, int nid)
3042{
cdd91a77
JL
3043 int zone_type; /* needs to be signed */
3044 unsigned long managed_pages = 0;
1da177e4
LT
3045 pg_data_t *pgdat = NODE_DATA(nid);
3046
cdd91a77
JL
3047 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3048 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3049 val->totalram = managed_pages;
d23ad423 3050 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3051#ifdef CONFIG_HIGHMEM
b40da049 3052 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3053 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3054 NR_FREE_PAGES);
98d2b0eb
CL
3055#else
3056 val->totalhigh = 0;
3057 val->freehigh = 0;
3058#endif
1da177e4
LT
3059 val->mem_unit = PAGE_SIZE;
3060}
3061#endif
3062
ddd588b5 3063/*
7bf02ea2
DR
3064 * Determine whether the node should be displayed or not, depending on whether
3065 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3066 */
7bf02ea2 3067bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3068{
3069 bool ret = false;
cc9a6c87 3070 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3071
3072 if (!(flags & SHOW_MEM_FILTER_NODES))
3073 goto out;
3074
cc9a6c87 3075 do {
d26914d1 3076 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3077 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3078 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3079out:
3080 return ret;
3081}
3082
1da177e4
LT
3083#define K(x) ((x) << (PAGE_SHIFT-10))
3084
377e4f16
RV
3085static void show_migration_types(unsigned char type)
3086{
3087 static const char types[MIGRATE_TYPES] = {
3088 [MIGRATE_UNMOVABLE] = 'U',
3089 [MIGRATE_RECLAIMABLE] = 'E',
3090 [MIGRATE_MOVABLE] = 'M',
3091 [MIGRATE_RESERVE] = 'R',
3092#ifdef CONFIG_CMA
3093 [MIGRATE_CMA] = 'C',
3094#endif
194159fb 3095#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3096 [MIGRATE_ISOLATE] = 'I',
194159fb 3097#endif
377e4f16
RV
3098 };
3099 char tmp[MIGRATE_TYPES + 1];
3100 char *p = tmp;
3101 int i;
3102
3103 for (i = 0; i < MIGRATE_TYPES; i++) {
3104 if (type & (1 << i))
3105 *p++ = types[i];
3106 }
3107
3108 *p = '\0';
3109 printk("(%s) ", tmp);
3110}
3111
1da177e4
LT
3112/*
3113 * Show free area list (used inside shift_scroll-lock stuff)
3114 * We also calculate the percentage fragmentation. We do this by counting the
3115 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3116 * Suppresses nodes that are not allowed by current's cpuset if
3117 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3118 */
7bf02ea2 3119void show_free_areas(unsigned int filter)
1da177e4 3120{
c7241913 3121 int cpu;
1da177e4
LT
3122 struct zone *zone;
3123
ee99c71c 3124 for_each_populated_zone(zone) {
7bf02ea2 3125 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3126 continue;
c7241913
JS
3127 show_node(zone);
3128 printk("%s per-cpu:\n", zone->name);
1da177e4 3129
6b482c67 3130 for_each_online_cpu(cpu) {
1da177e4
LT
3131 struct per_cpu_pageset *pageset;
3132
99dcc3e5 3133 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3134
3dfa5721
CL
3135 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3136 cpu, pageset->pcp.high,
3137 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3138 }
3139 }
3140
a731286d
KM
3141 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3142 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3143 " unevictable:%lu"
b76146ed 3144 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3145 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3146 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3147 " free_cma:%lu\n",
4f98a2fe 3148 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3149 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3150 global_page_state(NR_ISOLATED_ANON),
3151 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3152 global_page_state(NR_INACTIVE_FILE),
a731286d 3153 global_page_state(NR_ISOLATED_FILE),
7b854121 3154 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3155 global_page_state(NR_FILE_DIRTY),
ce866b34 3156 global_page_state(NR_WRITEBACK),
fd39fc85 3157 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3158 global_page_state(NR_FREE_PAGES),
3701b033
KM
3159 global_page_state(NR_SLAB_RECLAIMABLE),
3160 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3161 global_page_state(NR_FILE_MAPPED),
4b02108a 3162 global_page_state(NR_SHMEM),
a25700a5 3163 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3164 global_page_state(NR_BOUNCE),
3165 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3166
ee99c71c 3167 for_each_populated_zone(zone) {
1da177e4
LT
3168 int i;
3169
7bf02ea2 3170 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3171 continue;
1da177e4
LT
3172 show_node(zone);
3173 printk("%s"
3174 " free:%lukB"
3175 " min:%lukB"
3176 " low:%lukB"
3177 " high:%lukB"
4f98a2fe
RR
3178 " active_anon:%lukB"
3179 " inactive_anon:%lukB"
3180 " active_file:%lukB"
3181 " inactive_file:%lukB"
7b854121 3182 " unevictable:%lukB"
a731286d
KM
3183 " isolated(anon):%lukB"
3184 " isolated(file):%lukB"
1da177e4 3185 " present:%lukB"
9feedc9d 3186 " managed:%lukB"
4a0aa73f
KM
3187 " mlocked:%lukB"
3188 " dirty:%lukB"
3189 " writeback:%lukB"
3190 " mapped:%lukB"
4b02108a 3191 " shmem:%lukB"
4a0aa73f
KM
3192 " slab_reclaimable:%lukB"
3193 " slab_unreclaimable:%lukB"
c6a7f572 3194 " kernel_stack:%lukB"
4a0aa73f
KM
3195 " pagetables:%lukB"
3196 " unstable:%lukB"
3197 " bounce:%lukB"
d1ce749a 3198 " free_cma:%lukB"
4a0aa73f 3199 " writeback_tmp:%lukB"
1da177e4
LT
3200 " pages_scanned:%lu"
3201 " all_unreclaimable? %s"
3202 "\n",
3203 zone->name,
88f5acf8 3204 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3205 K(min_wmark_pages(zone)),
3206 K(low_wmark_pages(zone)),
3207 K(high_wmark_pages(zone)),
4f98a2fe
RR
3208 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3209 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3210 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3211 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3212 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3213 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3214 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3215 K(zone->present_pages),
9feedc9d 3216 K(zone->managed_pages),
4a0aa73f
KM
3217 K(zone_page_state(zone, NR_MLOCK)),
3218 K(zone_page_state(zone, NR_FILE_DIRTY)),
3219 K(zone_page_state(zone, NR_WRITEBACK)),
3220 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3221 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3222 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3223 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3224 zone_page_state(zone, NR_KERNEL_STACK) *
3225 THREAD_SIZE / 1024,
4a0aa73f
KM
3226 K(zone_page_state(zone, NR_PAGETABLE)),
3227 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3228 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3229 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3230 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3231 zone->pages_scanned,
6e543d57 3232 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3233 );
3234 printk("lowmem_reserve[]:");
3235 for (i = 0; i < MAX_NR_ZONES; i++)
3236 printk(" %lu", zone->lowmem_reserve[i]);
3237 printk("\n");
3238 }
3239
ee99c71c 3240 for_each_populated_zone(zone) {
b8af2941 3241 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3242 unsigned char types[MAX_ORDER];
1da177e4 3243
7bf02ea2 3244 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3245 continue;
1da177e4
LT
3246 show_node(zone);
3247 printk("%s: ", zone->name);
1da177e4
LT
3248
3249 spin_lock_irqsave(&zone->lock, flags);
3250 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3251 struct free_area *area = &zone->free_area[order];
3252 int type;
3253
3254 nr[order] = area->nr_free;
8f9de51a 3255 total += nr[order] << order;
377e4f16
RV
3256
3257 types[order] = 0;
3258 for (type = 0; type < MIGRATE_TYPES; type++) {
3259 if (!list_empty(&area->free_list[type]))
3260 types[order] |= 1 << type;
3261 }
1da177e4
LT
3262 }
3263 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3264 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3265 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3266 if (nr[order])
3267 show_migration_types(types[order]);
3268 }
1da177e4
LT
3269 printk("= %lukB\n", K(total));
3270 }
3271
949f7ec5
DR
3272 hugetlb_show_meminfo();
3273
e6f3602d
LW
3274 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3275
1da177e4
LT
3276 show_swap_cache_info();
3277}
3278
19770b32
MG
3279static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3280{
3281 zoneref->zone = zone;
3282 zoneref->zone_idx = zone_idx(zone);
3283}
3284
1da177e4
LT
3285/*
3286 * Builds allocation fallback zone lists.
1a93205b
CL
3287 *
3288 * Add all populated zones of a node to the zonelist.
1da177e4 3289 */
f0c0b2b8 3290static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3291 int nr_zones)
1da177e4 3292{
1a93205b 3293 struct zone *zone;
bc732f1d 3294 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3295
3296 do {
2f6726e5 3297 zone_type--;
070f8032 3298 zone = pgdat->node_zones + zone_type;
1a93205b 3299 if (populated_zone(zone)) {
dd1a239f
MG
3300 zoneref_set_zone(zone,
3301 &zonelist->_zonerefs[nr_zones++]);
070f8032 3302 check_highest_zone(zone_type);
1da177e4 3303 }
2f6726e5 3304 } while (zone_type);
bc732f1d 3305
070f8032 3306 return nr_zones;
1da177e4
LT
3307}
3308
f0c0b2b8
KH
3309
3310/*
3311 * zonelist_order:
3312 * 0 = automatic detection of better ordering.
3313 * 1 = order by ([node] distance, -zonetype)
3314 * 2 = order by (-zonetype, [node] distance)
3315 *
3316 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3317 * the same zonelist. So only NUMA can configure this param.
3318 */
3319#define ZONELIST_ORDER_DEFAULT 0
3320#define ZONELIST_ORDER_NODE 1
3321#define ZONELIST_ORDER_ZONE 2
3322
3323/* zonelist order in the kernel.
3324 * set_zonelist_order() will set this to NODE or ZONE.
3325 */
3326static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3327static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3328
3329
1da177e4 3330#ifdef CONFIG_NUMA
f0c0b2b8
KH
3331/* The value user specified ....changed by config */
3332static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3333/* string for sysctl */
3334#define NUMA_ZONELIST_ORDER_LEN 16
3335char numa_zonelist_order[16] = "default";
3336
3337/*
3338 * interface for configure zonelist ordering.
3339 * command line option "numa_zonelist_order"
3340 * = "[dD]efault - default, automatic configuration.
3341 * = "[nN]ode - order by node locality, then by zone within node
3342 * = "[zZ]one - order by zone, then by locality within zone
3343 */
3344
3345static int __parse_numa_zonelist_order(char *s)
3346{
3347 if (*s == 'd' || *s == 'D') {
3348 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3349 } else if (*s == 'n' || *s == 'N') {
3350 user_zonelist_order = ZONELIST_ORDER_NODE;
3351 } else if (*s == 'z' || *s == 'Z') {
3352 user_zonelist_order = ZONELIST_ORDER_ZONE;
3353 } else {
3354 printk(KERN_WARNING
3355 "Ignoring invalid numa_zonelist_order value: "
3356 "%s\n", s);
3357 return -EINVAL;
3358 }
3359 return 0;
3360}
3361
3362static __init int setup_numa_zonelist_order(char *s)
3363{
ecb256f8
VL
3364 int ret;
3365
3366 if (!s)
3367 return 0;
3368
3369 ret = __parse_numa_zonelist_order(s);
3370 if (ret == 0)
3371 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3372
3373 return ret;
f0c0b2b8
KH
3374}
3375early_param("numa_zonelist_order", setup_numa_zonelist_order);
3376
3377/*
3378 * sysctl handler for numa_zonelist_order
3379 */
3380int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3381 void __user *buffer, size_t *length,
f0c0b2b8
KH
3382 loff_t *ppos)
3383{
3384 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3385 int ret;
443c6f14 3386 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3387
443c6f14 3388 mutex_lock(&zl_order_mutex);
dacbde09
CG
3389 if (write) {
3390 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3391 ret = -EINVAL;
3392 goto out;
3393 }
3394 strcpy(saved_string, (char *)table->data);
3395 }
8d65af78 3396 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3397 if (ret)
443c6f14 3398 goto out;
f0c0b2b8
KH
3399 if (write) {
3400 int oldval = user_zonelist_order;
dacbde09
CG
3401
3402 ret = __parse_numa_zonelist_order((char *)table->data);
3403 if (ret) {
f0c0b2b8
KH
3404 /*
3405 * bogus value. restore saved string
3406 */
dacbde09 3407 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3408 NUMA_ZONELIST_ORDER_LEN);
3409 user_zonelist_order = oldval;
4eaf3f64
HL
3410 } else if (oldval != user_zonelist_order) {
3411 mutex_lock(&zonelists_mutex);
9adb62a5 3412 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3413 mutex_unlock(&zonelists_mutex);
3414 }
f0c0b2b8 3415 }
443c6f14
AK
3416out:
3417 mutex_unlock(&zl_order_mutex);
3418 return ret;
f0c0b2b8
KH
3419}
3420
3421
62bc62a8 3422#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3423static int node_load[MAX_NUMNODES];
3424
1da177e4 3425/**
4dc3b16b 3426 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3427 * @node: node whose fallback list we're appending
3428 * @used_node_mask: nodemask_t of already used nodes
3429 *
3430 * We use a number of factors to determine which is the next node that should
3431 * appear on a given node's fallback list. The node should not have appeared
3432 * already in @node's fallback list, and it should be the next closest node
3433 * according to the distance array (which contains arbitrary distance values
3434 * from each node to each node in the system), and should also prefer nodes
3435 * with no CPUs, since presumably they'll have very little allocation pressure
3436 * on them otherwise.
3437 * It returns -1 if no node is found.
3438 */
f0c0b2b8 3439static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3440{
4cf808eb 3441 int n, val;
1da177e4 3442 int min_val = INT_MAX;
00ef2d2f 3443 int best_node = NUMA_NO_NODE;
a70f7302 3444 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3445
4cf808eb
LT
3446 /* Use the local node if we haven't already */
3447 if (!node_isset(node, *used_node_mask)) {
3448 node_set(node, *used_node_mask);
3449 return node;
3450 }
1da177e4 3451
4b0ef1fe 3452 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3453
3454 /* Don't want a node to appear more than once */
3455 if (node_isset(n, *used_node_mask))
3456 continue;
3457
1da177e4
LT
3458 /* Use the distance array to find the distance */
3459 val = node_distance(node, n);
3460
4cf808eb
LT
3461 /* Penalize nodes under us ("prefer the next node") */
3462 val += (n < node);
3463
1da177e4 3464 /* Give preference to headless and unused nodes */
a70f7302
RR
3465 tmp = cpumask_of_node(n);
3466 if (!cpumask_empty(tmp))
1da177e4
LT
3467 val += PENALTY_FOR_NODE_WITH_CPUS;
3468
3469 /* Slight preference for less loaded node */
3470 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3471 val += node_load[n];
3472
3473 if (val < min_val) {
3474 min_val = val;
3475 best_node = n;
3476 }
3477 }
3478
3479 if (best_node >= 0)
3480 node_set(best_node, *used_node_mask);
3481
3482 return best_node;
3483}
3484
f0c0b2b8
KH
3485
3486/*
3487 * Build zonelists ordered by node and zones within node.
3488 * This results in maximum locality--normal zone overflows into local
3489 * DMA zone, if any--but risks exhausting DMA zone.
3490 */
3491static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3492{
f0c0b2b8 3493 int j;
1da177e4 3494 struct zonelist *zonelist;
f0c0b2b8 3495
54a6eb5c 3496 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3497 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3498 ;
bc732f1d 3499 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3500 zonelist->_zonerefs[j].zone = NULL;
3501 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3502}
3503
523b9458
CL
3504/*
3505 * Build gfp_thisnode zonelists
3506 */
3507static void build_thisnode_zonelists(pg_data_t *pgdat)
3508{
523b9458
CL
3509 int j;
3510 struct zonelist *zonelist;
3511
54a6eb5c 3512 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3513 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3514 zonelist->_zonerefs[j].zone = NULL;
3515 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3516}
3517
f0c0b2b8
KH
3518/*
3519 * Build zonelists ordered by zone and nodes within zones.
3520 * This results in conserving DMA zone[s] until all Normal memory is
3521 * exhausted, but results in overflowing to remote node while memory
3522 * may still exist in local DMA zone.
3523 */
3524static int node_order[MAX_NUMNODES];
3525
3526static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3527{
f0c0b2b8
KH
3528 int pos, j, node;
3529 int zone_type; /* needs to be signed */
3530 struct zone *z;
3531 struct zonelist *zonelist;
3532
54a6eb5c
MG
3533 zonelist = &pgdat->node_zonelists[0];
3534 pos = 0;
3535 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3536 for (j = 0; j < nr_nodes; j++) {
3537 node = node_order[j];
3538 z = &NODE_DATA(node)->node_zones[zone_type];
3539 if (populated_zone(z)) {
dd1a239f
MG
3540 zoneref_set_zone(z,
3541 &zonelist->_zonerefs[pos++]);
54a6eb5c 3542 check_highest_zone(zone_type);
f0c0b2b8
KH
3543 }
3544 }
f0c0b2b8 3545 }
dd1a239f
MG
3546 zonelist->_zonerefs[pos].zone = NULL;
3547 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3548}
3549
3550static int default_zonelist_order(void)
3551{
3552 int nid, zone_type;
b8af2941 3553 unsigned long low_kmem_size, total_size;
f0c0b2b8
KH
3554 struct zone *z;
3555 int average_size;
3556 /*
b8af2941 3557 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3558 * If they are really small and used heavily, the system can fall
3559 * into OOM very easily.
e325c90f 3560 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3561 */
3562 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3563 low_kmem_size = 0;
3564 total_size = 0;
3565 for_each_online_node(nid) {
3566 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3567 z = &NODE_DATA(nid)->node_zones[zone_type];
3568 if (populated_zone(z)) {
3569 if (zone_type < ZONE_NORMAL)
4f9f4774
JL
3570 low_kmem_size += z->managed_pages;
3571 total_size += z->managed_pages;
e325c90f
DR
3572 } else if (zone_type == ZONE_NORMAL) {
3573 /*
3574 * If any node has only lowmem, then node order
3575 * is preferred to allow kernel allocations
3576 * locally; otherwise, they can easily infringe
3577 * on other nodes when there is an abundance of
3578 * lowmem available to allocate from.
3579 */
3580 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3581 }
3582 }
3583 }
3584 if (!low_kmem_size || /* there are no DMA area. */
3585 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3586 return ZONELIST_ORDER_NODE;
3587 /*
3588 * look into each node's config.
b8af2941
PK
3589 * If there is a node whose DMA/DMA32 memory is very big area on
3590 * local memory, NODE_ORDER may be suitable.
3591 */
37b07e41 3592 average_size = total_size /
4b0ef1fe 3593 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3594 for_each_online_node(nid) {
3595 low_kmem_size = 0;
3596 total_size = 0;
3597 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3598 z = &NODE_DATA(nid)->node_zones[zone_type];
3599 if (populated_zone(z)) {
3600 if (zone_type < ZONE_NORMAL)
3601 low_kmem_size += z->present_pages;
3602 total_size += z->present_pages;
3603 }
3604 }
3605 if (low_kmem_size &&
3606 total_size > average_size && /* ignore small node */
3607 low_kmem_size > total_size * 70/100)
3608 return ZONELIST_ORDER_NODE;
3609 }
3610 return ZONELIST_ORDER_ZONE;
3611}
3612
3613static void set_zonelist_order(void)
3614{
3615 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3616 current_zonelist_order = default_zonelist_order();
3617 else
3618 current_zonelist_order = user_zonelist_order;
3619}
3620
3621static void build_zonelists(pg_data_t *pgdat)
3622{
3623 int j, node, load;
3624 enum zone_type i;
1da177e4 3625 nodemask_t used_mask;
f0c0b2b8
KH
3626 int local_node, prev_node;
3627 struct zonelist *zonelist;
3628 int order = current_zonelist_order;
1da177e4
LT
3629
3630 /* initialize zonelists */
523b9458 3631 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3632 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3633 zonelist->_zonerefs[0].zone = NULL;
3634 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3635 }
3636
3637 /* NUMA-aware ordering of nodes */
3638 local_node = pgdat->node_id;
62bc62a8 3639 load = nr_online_nodes;
1da177e4
LT
3640 prev_node = local_node;
3641 nodes_clear(used_mask);
f0c0b2b8 3642
f0c0b2b8
KH
3643 memset(node_order, 0, sizeof(node_order));
3644 j = 0;
3645
1da177e4
LT
3646 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3647 /*
3648 * We don't want to pressure a particular node.
3649 * So adding penalty to the first node in same
3650 * distance group to make it round-robin.
3651 */
957f822a
DR
3652 if (node_distance(local_node, node) !=
3653 node_distance(local_node, prev_node))
f0c0b2b8
KH
3654 node_load[node] = load;
3655
1da177e4
LT
3656 prev_node = node;
3657 load--;
f0c0b2b8
KH
3658 if (order == ZONELIST_ORDER_NODE)
3659 build_zonelists_in_node_order(pgdat, node);
3660 else
3661 node_order[j++] = node; /* remember order */
3662 }
1da177e4 3663
f0c0b2b8
KH
3664 if (order == ZONELIST_ORDER_ZONE) {
3665 /* calculate node order -- i.e., DMA last! */
3666 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3667 }
523b9458
CL
3668
3669 build_thisnode_zonelists(pgdat);
1da177e4
LT
3670}
3671
9276b1bc 3672/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3673static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3674{
54a6eb5c
MG
3675 struct zonelist *zonelist;
3676 struct zonelist_cache *zlc;
dd1a239f 3677 struct zoneref *z;
9276b1bc 3678
54a6eb5c
MG
3679 zonelist = &pgdat->node_zonelists[0];
3680 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3681 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3682 for (z = zonelist->_zonerefs; z->zone; z++)
3683 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3684}
3685
7aac7898
LS
3686#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3687/*
3688 * Return node id of node used for "local" allocations.
3689 * I.e., first node id of first zone in arg node's generic zonelist.
3690 * Used for initializing percpu 'numa_mem', which is used primarily
3691 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3692 */
3693int local_memory_node(int node)
3694{
3695 struct zone *zone;
3696
3697 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3698 gfp_zone(GFP_KERNEL),
3699 NULL,
3700 &zone);
3701 return zone->node;
3702}
3703#endif
f0c0b2b8 3704
1da177e4
LT
3705#else /* CONFIG_NUMA */
3706
f0c0b2b8
KH
3707static void set_zonelist_order(void)
3708{
3709 current_zonelist_order = ZONELIST_ORDER_ZONE;
3710}
3711
3712static void build_zonelists(pg_data_t *pgdat)
1da177e4 3713{
19655d34 3714 int node, local_node;
54a6eb5c
MG
3715 enum zone_type j;
3716 struct zonelist *zonelist;
1da177e4
LT
3717
3718 local_node = pgdat->node_id;
1da177e4 3719
54a6eb5c 3720 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3721 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3722
54a6eb5c
MG
3723 /*
3724 * Now we build the zonelist so that it contains the zones
3725 * of all the other nodes.
3726 * We don't want to pressure a particular node, so when
3727 * building the zones for node N, we make sure that the
3728 * zones coming right after the local ones are those from
3729 * node N+1 (modulo N)
3730 */
3731 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3732 if (!node_online(node))
3733 continue;
bc732f1d 3734 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3735 }
54a6eb5c
MG
3736 for (node = 0; node < local_node; node++) {
3737 if (!node_online(node))
3738 continue;
bc732f1d 3739 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3740 }
3741
dd1a239f
MG
3742 zonelist->_zonerefs[j].zone = NULL;
3743 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3744}
3745
9276b1bc 3746/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3747static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3748{
54a6eb5c 3749 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3750}
3751
1da177e4
LT
3752#endif /* CONFIG_NUMA */
3753
99dcc3e5
CL
3754/*
3755 * Boot pageset table. One per cpu which is going to be used for all
3756 * zones and all nodes. The parameters will be set in such a way
3757 * that an item put on a list will immediately be handed over to
3758 * the buddy list. This is safe since pageset manipulation is done
3759 * with interrupts disabled.
3760 *
3761 * The boot_pagesets must be kept even after bootup is complete for
3762 * unused processors and/or zones. They do play a role for bootstrapping
3763 * hotplugged processors.
3764 *
3765 * zoneinfo_show() and maybe other functions do
3766 * not check if the processor is online before following the pageset pointer.
3767 * Other parts of the kernel may not check if the zone is available.
3768 */
3769static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3770static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3771static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3772
4eaf3f64
HL
3773/*
3774 * Global mutex to protect against size modification of zonelists
3775 * as well as to serialize pageset setup for the new populated zone.
3776 */
3777DEFINE_MUTEX(zonelists_mutex);
3778
9b1a4d38 3779/* return values int ....just for stop_machine() */
4ed7e022 3780static int __build_all_zonelists(void *data)
1da177e4 3781{
6811378e 3782 int nid;
99dcc3e5 3783 int cpu;
9adb62a5 3784 pg_data_t *self = data;
9276b1bc 3785
7f9cfb31
BL
3786#ifdef CONFIG_NUMA
3787 memset(node_load, 0, sizeof(node_load));
3788#endif
9adb62a5
JL
3789
3790 if (self && !node_online(self->node_id)) {
3791 build_zonelists(self);
3792 build_zonelist_cache(self);
3793 }
3794
9276b1bc 3795 for_each_online_node(nid) {
7ea1530a
CL
3796 pg_data_t *pgdat = NODE_DATA(nid);
3797
3798 build_zonelists(pgdat);
3799 build_zonelist_cache(pgdat);
9276b1bc 3800 }
99dcc3e5
CL
3801
3802 /*
3803 * Initialize the boot_pagesets that are going to be used
3804 * for bootstrapping processors. The real pagesets for
3805 * each zone will be allocated later when the per cpu
3806 * allocator is available.
3807 *
3808 * boot_pagesets are used also for bootstrapping offline
3809 * cpus if the system is already booted because the pagesets
3810 * are needed to initialize allocators on a specific cpu too.
3811 * F.e. the percpu allocator needs the page allocator which
3812 * needs the percpu allocator in order to allocate its pagesets
3813 * (a chicken-egg dilemma).
3814 */
7aac7898 3815 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3816 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3817
7aac7898
LS
3818#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3819 /*
3820 * We now know the "local memory node" for each node--
3821 * i.e., the node of the first zone in the generic zonelist.
3822 * Set up numa_mem percpu variable for on-line cpus. During
3823 * boot, only the boot cpu should be on-line; we'll init the
3824 * secondary cpus' numa_mem as they come on-line. During
3825 * node/memory hotplug, we'll fixup all on-line cpus.
3826 */
3827 if (cpu_online(cpu))
3828 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3829#endif
3830 }
3831
6811378e
YG
3832 return 0;
3833}
3834
4eaf3f64
HL
3835/*
3836 * Called with zonelists_mutex held always
3837 * unless system_state == SYSTEM_BOOTING.
3838 */
9adb62a5 3839void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3840{
f0c0b2b8
KH
3841 set_zonelist_order();
3842
6811378e 3843 if (system_state == SYSTEM_BOOTING) {
423b41d7 3844 __build_all_zonelists(NULL);
68ad8df4 3845 mminit_verify_zonelist();
6811378e
YG
3846 cpuset_init_current_mems_allowed();
3847 } else {
e9959f0f 3848#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3849 if (zone)
3850 setup_zone_pageset(zone);
e9959f0f 3851#endif
dd1895e2
CS
3852 /* we have to stop all cpus to guarantee there is no user
3853 of zonelist */
9adb62a5 3854 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3855 /* cpuset refresh routine should be here */
3856 }
bd1e22b8 3857 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3858 /*
3859 * Disable grouping by mobility if the number of pages in the
3860 * system is too low to allow the mechanism to work. It would be
3861 * more accurate, but expensive to check per-zone. This check is
3862 * made on memory-hotadd so a system can start with mobility
3863 * disabled and enable it later
3864 */
d9c23400 3865 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3866 page_group_by_mobility_disabled = 1;
3867 else
3868 page_group_by_mobility_disabled = 0;
3869
3870 printk("Built %i zonelists in %s order, mobility grouping %s. "
3871 "Total pages: %ld\n",
62bc62a8 3872 nr_online_nodes,
f0c0b2b8 3873 zonelist_order_name[current_zonelist_order],
9ef9acb0 3874 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3875 vm_total_pages);
3876#ifdef CONFIG_NUMA
3877 printk("Policy zone: %s\n", zone_names[policy_zone]);
3878#endif
1da177e4
LT
3879}
3880
3881/*
3882 * Helper functions to size the waitqueue hash table.
3883 * Essentially these want to choose hash table sizes sufficiently
3884 * large so that collisions trying to wait on pages are rare.
3885 * But in fact, the number of active page waitqueues on typical
3886 * systems is ridiculously low, less than 200. So this is even
3887 * conservative, even though it seems large.
3888 *
3889 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3890 * waitqueues, i.e. the size of the waitq table given the number of pages.
3891 */
3892#define PAGES_PER_WAITQUEUE 256
3893
cca448fe 3894#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3895static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3896{
3897 unsigned long size = 1;
3898
3899 pages /= PAGES_PER_WAITQUEUE;
3900
3901 while (size < pages)
3902 size <<= 1;
3903
3904 /*
3905 * Once we have dozens or even hundreds of threads sleeping
3906 * on IO we've got bigger problems than wait queue collision.
3907 * Limit the size of the wait table to a reasonable size.
3908 */
3909 size = min(size, 4096UL);
3910
3911 return max(size, 4UL);
3912}
cca448fe
YG
3913#else
3914/*
3915 * A zone's size might be changed by hot-add, so it is not possible to determine
3916 * a suitable size for its wait_table. So we use the maximum size now.
3917 *
3918 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3919 *
3920 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3921 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3922 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3923 *
3924 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3925 * or more by the traditional way. (See above). It equals:
3926 *
3927 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3928 * ia64(16K page size) : = ( 8G + 4M)byte.
3929 * powerpc (64K page size) : = (32G +16M)byte.
3930 */
3931static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3932{
3933 return 4096UL;
3934}
3935#endif
1da177e4
LT
3936
3937/*
3938 * This is an integer logarithm so that shifts can be used later
3939 * to extract the more random high bits from the multiplicative
3940 * hash function before the remainder is taken.
3941 */
3942static inline unsigned long wait_table_bits(unsigned long size)
3943{
3944 return ffz(~size);
3945}
3946
6d3163ce
AH
3947/*
3948 * Check if a pageblock contains reserved pages
3949 */
3950static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3951{
3952 unsigned long pfn;
3953
3954 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3955 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3956 return 1;
3957 }
3958 return 0;
3959}
3960
56fd56b8 3961/*
d9c23400 3962 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3963 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3964 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3965 * higher will lead to a bigger reserve which will get freed as contiguous
3966 * blocks as reclaim kicks in
3967 */
3968static void setup_zone_migrate_reserve(struct zone *zone)
3969{
6d3163ce 3970 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3971 struct page *page;
78986a67
MG
3972 unsigned long block_migratetype;
3973 int reserve;
943dca1a 3974 int old_reserve;
56fd56b8 3975
d0215638
MH
3976 /*
3977 * Get the start pfn, end pfn and the number of blocks to reserve
3978 * We have to be careful to be aligned to pageblock_nr_pages to
3979 * make sure that we always check pfn_valid for the first page in
3980 * the block.
3981 */
56fd56b8 3982 start_pfn = zone->zone_start_pfn;
108bcc96 3983 end_pfn = zone_end_pfn(zone);
d0215638 3984 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3985 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3986 pageblock_order;
56fd56b8 3987
78986a67
MG
3988 /*
3989 * Reserve blocks are generally in place to help high-order atomic
3990 * allocations that are short-lived. A min_free_kbytes value that
3991 * would result in more than 2 reserve blocks for atomic allocations
3992 * is assumed to be in place to help anti-fragmentation for the
3993 * future allocation of hugepages at runtime.
3994 */
3995 reserve = min(2, reserve);
943dca1a
YI
3996 old_reserve = zone->nr_migrate_reserve_block;
3997
3998 /* When memory hot-add, we almost always need to do nothing */
3999 if (reserve == old_reserve)
4000 return;
4001 zone->nr_migrate_reserve_block = reserve;
78986a67 4002
d9c23400 4003 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4004 if (!pfn_valid(pfn))
4005 continue;
4006 page = pfn_to_page(pfn);
4007
344c790e
AL
4008 /* Watch out for overlapping nodes */
4009 if (page_to_nid(page) != zone_to_nid(zone))
4010 continue;
4011
56fd56b8
MG
4012 block_migratetype = get_pageblock_migratetype(page);
4013
938929f1
MG
4014 /* Only test what is necessary when the reserves are not met */
4015 if (reserve > 0) {
4016 /*
4017 * Blocks with reserved pages will never free, skip
4018 * them.
4019 */
4020 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4021 if (pageblock_is_reserved(pfn, block_end_pfn))
4022 continue;
56fd56b8 4023
938929f1
MG
4024 /* If this block is reserved, account for it */
4025 if (block_migratetype == MIGRATE_RESERVE) {
4026 reserve--;
4027 continue;
4028 }
4029
4030 /* Suitable for reserving if this block is movable */
4031 if (block_migratetype == MIGRATE_MOVABLE) {
4032 set_pageblock_migratetype(page,
4033 MIGRATE_RESERVE);
4034 move_freepages_block(zone, page,
4035 MIGRATE_RESERVE);
4036 reserve--;
4037 continue;
4038 }
943dca1a
YI
4039 } else if (!old_reserve) {
4040 /*
4041 * At boot time we don't need to scan the whole zone
4042 * for turning off MIGRATE_RESERVE.
4043 */
4044 break;
56fd56b8
MG
4045 }
4046
4047 /*
4048 * If the reserve is met and this is a previous reserved block,
4049 * take it back
4050 */
4051 if (block_migratetype == MIGRATE_RESERVE) {
4052 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4053 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4054 }
4055 }
4056}
ac0e5b7a 4057
1da177e4
LT
4058/*
4059 * Initially all pages are reserved - free ones are freed
4060 * up by free_all_bootmem() once the early boot process is
4061 * done. Non-atomic initialization, single-pass.
4062 */
c09b4240 4063void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4064 unsigned long start_pfn, enum memmap_context context)
1da177e4 4065{
1da177e4 4066 struct page *page;
29751f69
AW
4067 unsigned long end_pfn = start_pfn + size;
4068 unsigned long pfn;
86051ca5 4069 struct zone *z;
1da177e4 4070
22b31eec
HD
4071 if (highest_memmap_pfn < end_pfn - 1)
4072 highest_memmap_pfn = end_pfn - 1;
4073
86051ca5 4074 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4075 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4076 /*
4077 * There can be holes in boot-time mem_map[]s
4078 * handed to this function. They do not
4079 * exist on hotplugged memory.
4080 */
4081 if (context == MEMMAP_EARLY) {
4082 if (!early_pfn_valid(pfn))
4083 continue;
4084 if (!early_pfn_in_nid(pfn, nid))
4085 continue;
4086 }
d41dee36
AW
4087 page = pfn_to_page(pfn);
4088 set_page_links(page, zone, nid, pfn);
708614e6 4089 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4090 init_page_count(page);
22b751c3 4091 page_mapcount_reset(page);
90572890 4092 page_cpupid_reset_last(page);
1da177e4 4093 SetPageReserved(page);
b2a0ac88
MG
4094 /*
4095 * Mark the block movable so that blocks are reserved for
4096 * movable at startup. This will force kernel allocations
4097 * to reserve their blocks rather than leaking throughout
4098 * the address space during boot when many long-lived
56fd56b8
MG
4099 * kernel allocations are made. Later some blocks near
4100 * the start are marked MIGRATE_RESERVE by
4101 * setup_zone_migrate_reserve()
86051ca5
KH
4102 *
4103 * bitmap is created for zone's valid pfn range. but memmap
4104 * can be created for invalid pages (for alignment)
4105 * check here not to call set_pageblock_migratetype() against
4106 * pfn out of zone.
b2a0ac88 4107 */
86051ca5 4108 if ((z->zone_start_pfn <= pfn)
108bcc96 4109 && (pfn < zone_end_pfn(z))
86051ca5 4110 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4111 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4112
1da177e4
LT
4113 INIT_LIST_HEAD(&page->lru);
4114#ifdef WANT_PAGE_VIRTUAL
4115 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4116 if (!is_highmem_idx(zone))
3212c6be 4117 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4118#endif
1da177e4
LT
4119 }
4120}
4121
1e548deb 4122static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4123{
b2a0ac88
MG
4124 int order, t;
4125 for_each_migratetype_order(order, t) {
4126 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4127 zone->free_area[order].nr_free = 0;
4128 }
4129}
4130
4131#ifndef __HAVE_ARCH_MEMMAP_INIT
4132#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4133 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4134#endif
4135
4ed7e022 4136static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 4137{
3a6be87f 4138#ifdef CONFIG_MMU
e7c8d5c9
CL
4139 int batch;
4140
4141 /*
4142 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4143 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4144 *
4145 * OK, so we don't know how big the cache is. So guess.
4146 */
b40da049 4147 batch = zone->managed_pages / 1024;
ba56e91c
SR
4148 if (batch * PAGE_SIZE > 512 * 1024)
4149 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4150 batch /= 4; /* We effectively *= 4 below */
4151 if (batch < 1)
4152 batch = 1;
4153
4154 /*
0ceaacc9
NP
4155 * Clamp the batch to a 2^n - 1 value. Having a power
4156 * of 2 value was found to be more likely to have
4157 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4158 *
0ceaacc9
NP
4159 * For example if 2 tasks are alternately allocating
4160 * batches of pages, one task can end up with a lot
4161 * of pages of one half of the possible page colors
4162 * and the other with pages of the other colors.
e7c8d5c9 4163 */
9155203a 4164 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4165
e7c8d5c9 4166 return batch;
3a6be87f
DH
4167
4168#else
4169 /* The deferral and batching of frees should be suppressed under NOMMU
4170 * conditions.
4171 *
4172 * The problem is that NOMMU needs to be able to allocate large chunks
4173 * of contiguous memory as there's no hardware page translation to
4174 * assemble apparent contiguous memory from discontiguous pages.
4175 *
4176 * Queueing large contiguous runs of pages for batching, however,
4177 * causes the pages to actually be freed in smaller chunks. As there
4178 * can be a significant delay between the individual batches being
4179 * recycled, this leads to the once large chunks of space being
4180 * fragmented and becoming unavailable for high-order allocations.
4181 */
4182 return 0;
4183#endif
e7c8d5c9
CL
4184}
4185
8d7a8fa9
CS
4186/*
4187 * pcp->high and pcp->batch values are related and dependent on one another:
4188 * ->batch must never be higher then ->high.
4189 * The following function updates them in a safe manner without read side
4190 * locking.
4191 *
4192 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4193 * those fields changing asynchronously (acording the the above rule).
4194 *
4195 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4196 * outside of boot time (or some other assurance that no concurrent updaters
4197 * exist).
4198 */
4199static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4200 unsigned long batch)
4201{
4202 /* start with a fail safe value for batch */
4203 pcp->batch = 1;
4204 smp_wmb();
4205
4206 /* Update high, then batch, in order */
4207 pcp->high = high;
4208 smp_wmb();
4209
4210 pcp->batch = batch;
4211}
4212
3664033c 4213/* a companion to pageset_set_high() */
4008bab7
CS
4214static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4215{
8d7a8fa9 4216 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4217}
4218
88c90dbc 4219static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4220{
4221 struct per_cpu_pages *pcp;
5f8dcc21 4222 int migratetype;
2caaad41 4223
1c6fe946
MD
4224 memset(p, 0, sizeof(*p));
4225
3dfa5721 4226 pcp = &p->pcp;
2caaad41 4227 pcp->count = 0;
5f8dcc21
MG
4228 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4229 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4230}
4231
88c90dbc
CS
4232static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4233{
4234 pageset_init(p);
4235 pageset_set_batch(p, batch);
4236}
4237
8ad4b1fb 4238/*
3664033c 4239 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4240 * to the value high for the pageset p.
4241 */
3664033c 4242static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4243 unsigned long high)
4244{
8d7a8fa9
CS
4245 unsigned long batch = max(1UL, high / 4);
4246 if ((high / 4) > (PAGE_SHIFT * 8))
4247 batch = PAGE_SHIFT * 8;
8ad4b1fb 4248
8d7a8fa9 4249 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4250}
4251
169f6c19
CS
4252static void __meminit pageset_set_high_and_batch(struct zone *zone,
4253 struct per_cpu_pageset *pcp)
56cef2b8 4254{
56cef2b8 4255 if (percpu_pagelist_fraction)
3664033c 4256 pageset_set_high(pcp,
56cef2b8
CS
4257 (zone->managed_pages /
4258 percpu_pagelist_fraction));
4259 else
4260 pageset_set_batch(pcp, zone_batchsize(zone));
4261}
4262
169f6c19
CS
4263static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4264{
4265 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4266
4267 pageset_init(pcp);
4268 pageset_set_high_and_batch(zone, pcp);
4269}
4270
4ed7e022 4271static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4272{
4273 int cpu;
319774e2 4274 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4275 for_each_possible_cpu(cpu)
4276 zone_pageset_init(zone, cpu);
319774e2
WF
4277}
4278
2caaad41 4279/*
99dcc3e5
CL
4280 * Allocate per cpu pagesets and initialize them.
4281 * Before this call only boot pagesets were available.
e7c8d5c9 4282 */
99dcc3e5 4283void __init setup_per_cpu_pageset(void)
e7c8d5c9 4284{
99dcc3e5 4285 struct zone *zone;
e7c8d5c9 4286
319774e2
WF
4287 for_each_populated_zone(zone)
4288 setup_zone_pageset(zone);
e7c8d5c9
CL
4289}
4290
577a32f6 4291static noinline __init_refok
cca448fe 4292int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4293{
4294 int i;
cca448fe 4295 size_t alloc_size;
ed8ece2e
DH
4296
4297 /*
4298 * The per-page waitqueue mechanism uses hashed waitqueues
4299 * per zone.
4300 */
02b694de
YG
4301 zone->wait_table_hash_nr_entries =
4302 wait_table_hash_nr_entries(zone_size_pages);
4303 zone->wait_table_bits =
4304 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4305 alloc_size = zone->wait_table_hash_nr_entries
4306 * sizeof(wait_queue_head_t);
4307
cd94b9db 4308 if (!slab_is_available()) {
cca448fe 4309 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4310 memblock_virt_alloc_node_nopanic(
4311 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4312 } else {
4313 /*
4314 * This case means that a zone whose size was 0 gets new memory
4315 * via memory hot-add.
4316 * But it may be the case that a new node was hot-added. In
4317 * this case vmalloc() will not be able to use this new node's
4318 * memory - this wait_table must be initialized to use this new
4319 * node itself as well.
4320 * To use this new node's memory, further consideration will be
4321 * necessary.
4322 */
8691f3a7 4323 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4324 }
4325 if (!zone->wait_table)
4326 return -ENOMEM;
ed8ece2e 4327
b8af2941 4328 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4329 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4330
4331 return 0;
ed8ece2e
DH
4332}
4333
c09b4240 4334static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4335{
99dcc3e5
CL
4336 /*
4337 * per cpu subsystem is not up at this point. The following code
4338 * relies on the ability of the linker to provide the
4339 * offset of a (static) per cpu variable into the per cpu area.
4340 */
4341 zone->pageset = &boot_pageset;
ed8ece2e 4342
b38a8725 4343 if (populated_zone(zone))
99dcc3e5
CL
4344 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4345 zone->name, zone->present_pages,
4346 zone_batchsize(zone));
ed8ece2e
DH
4347}
4348
4ed7e022 4349int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4350 unsigned long zone_start_pfn,
a2f3aa02
DH
4351 unsigned long size,
4352 enum memmap_context context)
ed8ece2e
DH
4353{
4354 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4355 int ret;
4356 ret = zone_wait_table_init(zone, size);
4357 if (ret)
4358 return ret;
ed8ece2e
DH
4359 pgdat->nr_zones = zone_idx(zone) + 1;
4360
ed8ece2e
DH
4361 zone->zone_start_pfn = zone_start_pfn;
4362
708614e6
MG
4363 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4364 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4365 pgdat->node_id,
4366 (unsigned long)zone_idx(zone),
4367 zone_start_pfn, (zone_start_pfn + size));
4368
1e548deb 4369 zone_init_free_lists(zone);
718127cc
YG
4370
4371 return 0;
ed8ece2e
DH
4372}
4373
0ee332c1 4374#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4375#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4376/*
4377 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4378 * Architectures may implement their own version but if add_active_range()
4379 * was used and there are no special requirements, this is a convenient
4380 * alternative
4381 */
f2dbcfa7 4382int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4383{
c13291a5 4384 unsigned long start_pfn, end_pfn;
e76b63f8 4385 int nid;
7c243c71
RA
4386 /*
4387 * NOTE: The following SMP-unsafe globals are only used early in boot
4388 * when the kernel is running single-threaded.
4389 */
4390 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4391 static int __meminitdata last_nid;
4392
4393 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4394 return last_nid;
c713216d 4395
e76b63f8
YL
4396 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4397 if (nid != -1) {
4398 last_start_pfn = start_pfn;
4399 last_end_pfn = end_pfn;
4400 last_nid = nid;
4401 }
4402
4403 return nid;
c713216d
MG
4404}
4405#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4406
f2dbcfa7
KH
4407int __meminit early_pfn_to_nid(unsigned long pfn)
4408{
cc2559bc
KH
4409 int nid;
4410
4411 nid = __early_pfn_to_nid(pfn);
4412 if (nid >= 0)
4413 return nid;
4414 /* just returns 0 */
4415 return 0;
f2dbcfa7
KH
4416}
4417
cc2559bc
KH
4418#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4419bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4420{
4421 int nid;
4422
4423 nid = __early_pfn_to_nid(pfn);
4424 if (nid >= 0 && nid != node)
4425 return false;
4426 return true;
4427}
4428#endif
f2dbcfa7 4429
c713216d 4430/**
6782832e 4431 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4432 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4433 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d
MG
4434 *
4435 * If an architecture guarantees that all ranges registered with
4436 * add_active_ranges() contain no holes and may be freed, this
6782832e
SS
4437 * this function may be used instead of calling memblock_free_early_nid()
4438 * manually.
c713216d 4439 */
c13291a5 4440void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4441{
c13291a5
TH
4442 unsigned long start_pfn, end_pfn;
4443 int i, this_nid;
edbe7d23 4444
c13291a5
TH
4445 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4446 start_pfn = min(start_pfn, max_low_pfn);
4447 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4448
c13291a5 4449 if (start_pfn < end_pfn)
6782832e
SS
4450 memblock_free_early_nid(PFN_PHYS(start_pfn),
4451 (end_pfn - start_pfn) << PAGE_SHIFT,
4452 this_nid);
edbe7d23 4453 }
edbe7d23 4454}
edbe7d23 4455
c713216d
MG
4456/**
4457 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4458 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4459 *
4460 * If an architecture guarantees that all ranges registered with
4461 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4462 * function may be used instead of calling memory_present() manually.
c713216d
MG
4463 */
4464void __init sparse_memory_present_with_active_regions(int nid)
4465{
c13291a5
TH
4466 unsigned long start_pfn, end_pfn;
4467 int i, this_nid;
c713216d 4468
c13291a5
TH
4469 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4470 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4471}
4472
4473/**
4474 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4475 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4476 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4477 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4478 *
4479 * It returns the start and end page frame of a node based on information
4480 * provided by an arch calling add_active_range(). If called for a node
4481 * with no available memory, a warning is printed and the start and end
88ca3b94 4482 * PFNs will be 0.
c713216d 4483 */
a3142c8e 4484void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4485 unsigned long *start_pfn, unsigned long *end_pfn)
4486{
c13291a5 4487 unsigned long this_start_pfn, this_end_pfn;
c713216d 4488 int i;
c13291a5 4489
c713216d
MG
4490 *start_pfn = -1UL;
4491 *end_pfn = 0;
4492
c13291a5
TH
4493 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4494 *start_pfn = min(*start_pfn, this_start_pfn);
4495 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4496 }
4497
633c0666 4498 if (*start_pfn == -1UL)
c713216d 4499 *start_pfn = 0;
c713216d
MG
4500}
4501
2a1e274a
MG
4502/*
4503 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4504 * assumption is made that zones within a node are ordered in monotonic
4505 * increasing memory addresses so that the "highest" populated zone is used
4506 */
b69a7288 4507static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4508{
4509 int zone_index;
4510 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4511 if (zone_index == ZONE_MOVABLE)
4512 continue;
4513
4514 if (arch_zone_highest_possible_pfn[zone_index] >
4515 arch_zone_lowest_possible_pfn[zone_index])
4516 break;
4517 }
4518
4519 VM_BUG_ON(zone_index == -1);
4520 movable_zone = zone_index;
4521}
4522
4523/*
4524 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4525 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4526 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4527 * in each node depending on the size of each node and how evenly kernelcore
4528 * is distributed. This helper function adjusts the zone ranges
4529 * provided by the architecture for a given node by using the end of the
4530 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4531 * zones within a node are in order of monotonic increases memory addresses
4532 */
b69a7288 4533static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4534 unsigned long zone_type,
4535 unsigned long node_start_pfn,
4536 unsigned long node_end_pfn,
4537 unsigned long *zone_start_pfn,
4538 unsigned long *zone_end_pfn)
4539{
4540 /* Only adjust if ZONE_MOVABLE is on this node */
4541 if (zone_movable_pfn[nid]) {
4542 /* Size ZONE_MOVABLE */
4543 if (zone_type == ZONE_MOVABLE) {
4544 *zone_start_pfn = zone_movable_pfn[nid];
4545 *zone_end_pfn = min(node_end_pfn,
4546 arch_zone_highest_possible_pfn[movable_zone]);
4547
4548 /* Adjust for ZONE_MOVABLE starting within this range */
4549 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4550 *zone_end_pfn > zone_movable_pfn[nid]) {
4551 *zone_end_pfn = zone_movable_pfn[nid];
4552
4553 /* Check if this whole range is within ZONE_MOVABLE */
4554 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4555 *zone_start_pfn = *zone_end_pfn;
4556 }
4557}
4558
c713216d
MG
4559/*
4560 * Return the number of pages a zone spans in a node, including holes
4561 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4562 */
6ea6e688 4563static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4564 unsigned long zone_type,
7960aedd
ZY
4565 unsigned long node_start_pfn,
4566 unsigned long node_end_pfn,
c713216d
MG
4567 unsigned long *ignored)
4568{
c713216d
MG
4569 unsigned long zone_start_pfn, zone_end_pfn;
4570
7960aedd 4571 /* Get the start and end of the zone */
c713216d
MG
4572 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4573 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4574 adjust_zone_range_for_zone_movable(nid, zone_type,
4575 node_start_pfn, node_end_pfn,
4576 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4577
4578 /* Check that this node has pages within the zone's required range */
4579 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4580 return 0;
4581
4582 /* Move the zone boundaries inside the node if necessary */
4583 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4584 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4585
4586 /* Return the spanned pages */
4587 return zone_end_pfn - zone_start_pfn;
4588}
4589
4590/*
4591 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4592 * then all holes in the requested range will be accounted for.
c713216d 4593 */
32996250 4594unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4595 unsigned long range_start_pfn,
4596 unsigned long range_end_pfn)
4597{
96e907d1
TH
4598 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4599 unsigned long start_pfn, end_pfn;
4600 int i;
c713216d 4601
96e907d1
TH
4602 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4603 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4604 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4605 nr_absent -= end_pfn - start_pfn;
c713216d 4606 }
96e907d1 4607 return nr_absent;
c713216d
MG
4608}
4609
4610/**
4611 * absent_pages_in_range - Return number of page frames in holes within a range
4612 * @start_pfn: The start PFN to start searching for holes
4613 * @end_pfn: The end PFN to stop searching for holes
4614 *
88ca3b94 4615 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4616 */
4617unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4618 unsigned long end_pfn)
4619{
4620 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4621}
4622
4623/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4624static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4625 unsigned long zone_type,
7960aedd
ZY
4626 unsigned long node_start_pfn,
4627 unsigned long node_end_pfn,
c713216d
MG
4628 unsigned long *ignored)
4629{
96e907d1
TH
4630 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4631 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4632 unsigned long zone_start_pfn, zone_end_pfn;
4633
96e907d1
TH
4634 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4635 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4636
2a1e274a
MG
4637 adjust_zone_range_for_zone_movable(nid, zone_type,
4638 node_start_pfn, node_end_pfn,
4639 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4640 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4641}
0e0b864e 4642
0ee332c1 4643#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4644static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4645 unsigned long zone_type,
7960aedd
ZY
4646 unsigned long node_start_pfn,
4647 unsigned long node_end_pfn,
c713216d
MG
4648 unsigned long *zones_size)
4649{
4650 return zones_size[zone_type];
4651}
4652
6ea6e688 4653static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4654 unsigned long zone_type,
7960aedd
ZY
4655 unsigned long node_start_pfn,
4656 unsigned long node_end_pfn,
c713216d
MG
4657 unsigned long *zholes_size)
4658{
4659 if (!zholes_size)
4660 return 0;
4661
4662 return zholes_size[zone_type];
4663}
20e6926d 4664
0ee332c1 4665#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4666
a3142c8e 4667static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4668 unsigned long node_start_pfn,
4669 unsigned long node_end_pfn,
4670 unsigned long *zones_size,
4671 unsigned long *zholes_size)
c713216d
MG
4672{
4673 unsigned long realtotalpages, totalpages = 0;
4674 enum zone_type i;
4675
4676 for (i = 0; i < MAX_NR_ZONES; i++)
4677 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4678 node_start_pfn,
4679 node_end_pfn,
4680 zones_size);
c713216d
MG
4681 pgdat->node_spanned_pages = totalpages;
4682
4683 realtotalpages = totalpages;
4684 for (i = 0; i < MAX_NR_ZONES; i++)
4685 realtotalpages -=
4686 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4687 node_start_pfn, node_end_pfn,
4688 zholes_size);
c713216d
MG
4689 pgdat->node_present_pages = realtotalpages;
4690 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4691 realtotalpages);
4692}
4693
835c134e
MG
4694#ifndef CONFIG_SPARSEMEM
4695/*
4696 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4697 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4698 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4699 * round what is now in bits to nearest long in bits, then return it in
4700 * bytes.
4701 */
7c45512d 4702static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4703{
4704 unsigned long usemapsize;
4705
7c45512d 4706 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4707 usemapsize = roundup(zonesize, pageblock_nr_pages);
4708 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4709 usemapsize *= NR_PAGEBLOCK_BITS;
4710 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4711
4712 return usemapsize / 8;
4713}
4714
4715static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4716 struct zone *zone,
4717 unsigned long zone_start_pfn,
4718 unsigned long zonesize)
835c134e 4719{
7c45512d 4720 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4721 zone->pageblock_flags = NULL;
58a01a45 4722 if (usemapsize)
6782832e
SS
4723 zone->pageblock_flags =
4724 memblock_virt_alloc_node_nopanic(usemapsize,
4725 pgdat->node_id);
835c134e
MG
4726}
4727#else
7c45512d
LT
4728static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4729 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4730#endif /* CONFIG_SPARSEMEM */
4731
d9c23400 4732#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4733
d9c23400 4734/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4735void __paginginit set_pageblock_order(void)
d9c23400 4736{
955c1cd7
AM
4737 unsigned int order;
4738
d9c23400
MG
4739 /* Check that pageblock_nr_pages has not already been setup */
4740 if (pageblock_order)
4741 return;
4742
955c1cd7
AM
4743 if (HPAGE_SHIFT > PAGE_SHIFT)
4744 order = HUGETLB_PAGE_ORDER;
4745 else
4746 order = MAX_ORDER - 1;
4747
d9c23400
MG
4748 /*
4749 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4750 * This value may be variable depending on boot parameters on IA64 and
4751 * powerpc.
d9c23400
MG
4752 */
4753 pageblock_order = order;
4754}
4755#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4756
ba72cb8c
MG
4757/*
4758 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4759 * is unused as pageblock_order is set at compile-time. See
4760 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4761 * the kernel config
ba72cb8c 4762 */
15ca220e 4763void __paginginit set_pageblock_order(void)
ba72cb8c 4764{
ba72cb8c 4765}
d9c23400
MG
4766
4767#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4768
01cefaef
JL
4769static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4770 unsigned long present_pages)
4771{
4772 unsigned long pages = spanned_pages;
4773
4774 /*
4775 * Provide a more accurate estimation if there are holes within
4776 * the zone and SPARSEMEM is in use. If there are holes within the
4777 * zone, each populated memory region may cost us one or two extra
4778 * memmap pages due to alignment because memmap pages for each
4779 * populated regions may not naturally algined on page boundary.
4780 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4781 */
4782 if (spanned_pages > present_pages + (present_pages >> 4) &&
4783 IS_ENABLED(CONFIG_SPARSEMEM))
4784 pages = present_pages;
4785
4786 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4787}
4788
1da177e4
LT
4789/*
4790 * Set up the zone data structures:
4791 * - mark all pages reserved
4792 * - mark all memory queues empty
4793 * - clear the memory bitmaps
6527af5d
MK
4794 *
4795 * NOTE: pgdat should get zeroed by caller.
1da177e4 4796 */
b5a0e011 4797static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4798 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4799 unsigned long *zones_size, unsigned long *zholes_size)
4800{
2f1b6248 4801 enum zone_type j;
ed8ece2e 4802 int nid = pgdat->node_id;
1da177e4 4803 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4804 int ret;
1da177e4 4805
208d54e5 4806 pgdat_resize_init(pgdat);
8177a420
AA
4807#ifdef CONFIG_NUMA_BALANCING
4808 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4809 pgdat->numabalancing_migrate_nr_pages = 0;
4810 pgdat->numabalancing_migrate_next_window = jiffies;
4811#endif
1da177e4 4812 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4813 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4814 pgdat_page_cgroup_init(pgdat);
5f63b720 4815
1da177e4
LT
4816 for (j = 0; j < MAX_NR_ZONES; j++) {
4817 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4818 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4819
7960aedd
ZY
4820 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4821 node_end_pfn, zones_size);
9feedc9d 4822 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4823 node_start_pfn,
4824 node_end_pfn,
c713216d 4825 zholes_size);
1da177e4 4826
0e0b864e 4827 /*
9feedc9d 4828 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4829 * is used by this zone for memmap. This affects the watermark
4830 * and per-cpu initialisations
4831 */
01cefaef 4832 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4833 if (freesize >= memmap_pages) {
4834 freesize -= memmap_pages;
5594c8c8
YL
4835 if (memmap_pages)
4836 printk(KERN_DEBUG
4837 " %s zone: %lu pages used for memmap\n",
4838 zone_names[j], memmap_pages);
0e0b864e
MG
4839 } else
4840 printk(KERN_WARNING
9feedc9d
JL
4841 " %s zone: %lu pages exceeds freesize %lu\n",
4842 zone_names[j], memmap_pages, freesize);
0e0b864e 4843
6267276f 4844 /* Account for reserved pages */
9feedc9d
JL
4845 if (j == 0 && freesize > dma_reserve) {
4846 freesize -= dma_reserve;
d903ef9f 4847 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4848 zone_names[0], dma_reserve);
0e0b864e
MG
4849 }
4850
98d2b0eb 4851 if (!is_highmem_idx(j))
9feedc9d 4852 nr_kernel_pages += freesize;
01cefaef
JL
4853 /* Charge for highmem memmap if there are enough kernel pages */
4854 else if (nr_kernel_pages > memmap_pages * 2)
4855 nr_kernel_pages -= memmap_pages;
9feedc9d 4856 nr_all_pages += freesize;
1da177e4
LT
4857
4858 zone->spanned_pages = size;
306f2e9e 4859 zone->present_pages = realsize;
9feedc9d
JL
4860 /*
4861 * Set an approximate value for lowmem here, it will be adjusted
4862 * when the bootmem allocator frees pages into the buddy system.
4863 * And all highmem pages will be managed by the buddy system.
4864 */
4865 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4866#ifdef CONFIG_NUMA
d5f541ed 4867 zone->node = nid;
9feedc9d 4868 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4869 / 100;
9feedc9d 4870 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4871#endif
1da177e4
LT
4872 zone->name = zone_names[j];
4873 spin_lock_init(&zone->lock);
4874 spin_lock_init(&zone->lru_lock);
bdc8cb98 4875 zone_seqlock_init(zone);
1da177e4 4876 zone->zone_pgdat = pgdat;
ed8ece2e 4877 zone_pcp_init(zone);
81c0a2bb
JW
4878
4879 /* For bootup, initialized properly in watermark setup */
4880 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4881
bea8c150 4882 lruvec_init(&zone->lruvec);
1da177e4
LT
4883 if (!size)
4884 continue;
4885
955c1cd7 4886 set_pageblock_order();
7c45512d 4887 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4888 ret = init_currently_empty_zone(zone, zone_start_pfn,
4889 size, MEMMAP_EARLY);
718127cc 4890 BUG_ON(ret);
76cdd58e 4891 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4892 zone_start_pfn += size;
1da177e4
LT
4893 }
4894}
4895
577a32f6 4896static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4897{
1da177e4
LT
4898 /* Skip empty nodes */
4899 if (!pgdat->node_spanned_pages)
4900 return;
4901
d41dee36 4902#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4903 /* ia64 gets its own node_mem_map, before this, without bootmem */
4904 if (!pgdat->node_mem_map) {
e984bb43 4905 unsigned long size, start, end;
d41dee36
AW
4906 struct page *map;
4907
e984bb43
BP
4908 /*
4909 * The zone's endpoints aren't required to be MAX_ORDER
4910 * aligned but the node_mem_map endpoints must be in order
4911 * for the buddy allocator to function correctly.
4912 */
4913 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4914 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4915 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4916 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4917 map = alloc_remap(pgdat->node_id, size);
4918 if (!map)
6782832e
SS
4919 map = memblock_virt_alloc_node_nopanic(size,
4920 pgdat->node_id);
e984bb43 4921 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4922 }
12d810c1 4923#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4924 /*
4925 * With no DISCONTIG, the global mem_map is just set as node 0's
4926 */
c713216d 4927 if (pgdat == NODE_DATA(0)) {
1da177e4 4928 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4929#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4930 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4931 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4932#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4933 }
1da177e4 4934#endif
d41dee36 4935#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4936}
4937
9109fb7b
JW
4938void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4939 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4940{
9109fb7b 4941 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4942 unsigned long start_pfn = 0;
4943 unsigned long end_pfn = 0;
9109fb7b 4944
88fdf75d 4945 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4946 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4947
1da177e4
LT
4948 pgdat->node_id = nid;
4949 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4950#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4951 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4952#endif
4953 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4954 zones_size, zholes_size);
1da177e4
LT
4955
4956 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4957#ifdef CONFIG_FLAT_NODE_MEM_MAP
4958 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4959 nid, (unsigned long)pgdat,
4960 (unsigned long)pgdat->node_mem_map);
4961#endif
1da177e4 4962
7960aedd
ZY
4963 free_area_init_core(pgdat, start_pfn, end_pfn,
4964 zones_size, zholes_size);
1da177e4
LT
4965}
4966
0ee332c1 4967#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4968
4969#if MAX_NUMNODES > 1
4970/*
4971 * Figure out the number of possible node ids.
4972 */
f9872caf 4973void __init setup_nr_node_ids(void)
418508c1
MS
4974{
4975 unsigned int node;
4976 unsigned int highest = 0;
4977
4978 for_each_node_mask(node, node_possible_map)
4979 highest = node;
4980 nr_node_ids = highest + 1;
4981}
418508c1
MS
4982#endif
4983
1e01979c
TH
4984/**
4985 * node_map_pfn_alignment - determine the maximum internode alignment
4986 *
4987 * This function should be called after node map is populated and sorted.
4988 * It calculates the maximum power of two alignment which can distinguish
4989 * all the nodes.
4990 *
4991 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4992 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4993 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4994 * shifted, 1GiB is enough and this function will indicate so.
4995 *
4996 * This is used to test whether pfn -> nid mapping of the chosen memory
4997 * model has fine enough granularity to avoid incorrect mapping for the
4998 * populated node map.
4999 *
5000 * Returns the determined alignment in pfn's. 0 if there is no alignment
5001 * requirement (single node).
5002 */
5003unsigned long __init node_map_pfn_alignment(void)
5004{
5005 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5006 unsigned long start, end, mask;
1e01979c 5007 int last_nid = -1;
c13291a5 5008 int i, nid;
1e01979c 5009
c13291a5 5010 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5011 if (!start || last_nid < 0 || last_nid == nid) {
5012 last_nid = nid;
5013 last_end = end;
5014 continue;
5015 }
5016
5017 /*
5018 * Start with a mask granular enough to pin-point to the
5019 * start pfn and tick off bits one-by-one until it becomes
5020 * too coarse to separate the current node from the last.
5021 */
5022 mask = ~((1 << __ffs(start)) - 1);
5023 while (mask && last_end <= (start & (mask << 1)))
5024 mask <<= 1;
5025
5026 /* accumulate all internode masks */
5027 accl_mask |= mask;
5028 }
5029
5030 /* convert mask to number of pages */
5031 return ~accl_mask + 1;
5032}
5033
a6af2bc3 5034/* Find the lowest pfn for a node */
b69a7288 5035static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5036{
a6af2bc3 5037 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5038 unsigned long start_pfn;
5039 int i;
1abbfb41 5040
c13291a5
TH
5041 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5042 min_pfn = min(min_pfn, start_pfn);
c713216d 5043
a6af2bc3
MG
5044 if (min_pfn == ULONG_MAX) {
5045 printk(KERN_WARNING
2bc0d261 5046 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5047 return 0;
5048 }
5049
5050 return min_pfn;
c713216d
MG
5051}
5052
5053/**
5054 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5055 *
5056 * It returns the minimum PFN based on information provided via
88ca3b94 5057 * add_active_range().
c713216d
MG
5058 */
5059unsigned long __init find_min_pfn_with_active_regions(void)
5060{
5061 return find_min_pfn_for_node(MAX_NUMNODES);
5062}
5063
37b07e41
LS
5064/*
5065 * early_calculate_totalpages()
5066 * Sum pages in active regions for movable zone.
4b0ef1fe 5067 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5068 */
484f51f8 5069static unsigned long __init early_calculate_totalpages(void)
7e63efef 5070{
7e63efef 5071 unsigned long totalpages = 0;
c13291a5
TH
5072 unsigned long start_pfn, end_pfn;
5073 int i, nid;
5074
5075 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5076 unsigned long pages = end_pfn - start_pfn;
7e63efef 5077
37b07e41
LS
5078 totalpages += pages;
5079 if (pages)
4b0ef1fe 5080 node_set_state(nid, N_MEMORY);
37b07e41 5081 }
b8af2941 5082 return totalpages;
7e63efef
MG
5083}
5084
2a1e274a
MG
5085/*
5086 * Find the PFN the Movable zone begins in each node. Kernel memory
5087 * is spread evenly between nodes as long as the nodes have enough
5088 * memory. When they don't, some nodes will have more kernelcore than
5089 * others
5090 */
b224ef85 5091static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5092{
5093 int i, nid;
5094 unsigned long usable_startpfn;
5095 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5096 /* save the state before borrow the nodemask */
4b0ef1fe 5097 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5098 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5099 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5100 struct memblock_region *r;
b2f3eebe
TC
5101
5102 /* Need to find movable_zone earlier when movable_node is specified. */
5103 find_usable_zone_for_movable();
5104
5105 /*
5106 * If movable_node is specified, ignore kernelcore and movablecore
5107 * options.
5108 */
5109 if (movable_node_is_enabled()) {
136199f0
EM
5110 for_each_memblock(memory, r) {
5111 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5112 continue;
5113
136199f0 5114 nid = r->nid;
b2f3eebe 5115
136199f0 5116 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5117 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5118 min(usable_startpfn, zone_movable_pfn[nid]) :
5119 usable_startpfn;
5120 }
5121
5122 goto out2;
5123 }
2a1e274a 5124
7e63efef 5125 /*
b2f3eebe 5126 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5127 * kernelcore that corresponds so that memory usable for
5128 * any allocation type is evenly spread. If both kernelcore
5129 * and movablecore are specified, then the value of kernelcore
5130 * will be used for required_kernelcore if it's greater than
5131 * what movablecore would have allowed.
5132 */
5133 if (required_movablecore) {
7e63efef
MG
5134 unsigned long corepages;
5135
5136 /*
5137 * Round-up so that ZONE_MOVABLE is at least as large as what
5138 * was requested by the user
5139 */
5140 required_movablecore =
5141 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5142 corepages = totalpages - required_movablecore;
5143
5144 required_kernelcore = max(required_kernelcore, corepages);
5145 }
5146
20e6926d
YL
5147 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5148 if (!required_kernelcore)
66918dcd 5149 goto out;
2a1e274a
MG
5150
5151 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5152 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5153
5154restart:
5155 /* Spread kernelcore memory as evenly as possible throughout nodes */
5156 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5157 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5158 unsigned long start_pfn, end_pfn;
5159
2a1e274a
MG
5160 /*
5161 * Recalculate kernelcore_node if the division per node
5162 * now exceeds what is necessary to satisfy the requested
5163 * amount of memory for the kernel
5164 */
5165 if (required_kernelcore < kernelcore_node)
5166 kernelcore_node = required_kernelcore / usable_nodes;
5167
5168 /*
5169 * As the map is walked, we track how much memory is usable
5170 * by the kernel using kernelcore_remaining. When it is
5171 * 0, the rest of the node is usable by ZONE_MOVABLE
5172 */
5173 kernelcore_remaining = kernelcore_node;
5174
5175 /* Go through each range of PFNs within this node */
c13291a5 5176 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5177 unsigned long size_pages;
5178
c13291a5 5179 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5180 if (start_pfn >= end_pfn)
5181 continue;
5182
5183 /* Account for what is only usable for kernelcore */
5184 if (start_pfn < usable_startpfn) {
5185 unsigned long kernel_pages;
5186 kernel_pages = min(end_pfn, usable_startpfn)
5187 - start_pfn;
5188
5189 kernelcore_remaining -= min(kernel_pages,
5190 kernelcore_remaining);
5191 required_kernelcore -= min(kernel_pages,
5192 required_kernelcore);
5193
5194 /* Continue if range is now fully accounted */
5195 if (end_pfn <= usable_startpfn) {
5196
5197 /*
5198 * Push zone_movable_pfn to the end so
5199 * that if we have to rebalance
5200 * kernelcore across nodes, we will
5201 * not double account here
5202 */
5203 zone_movable_pfn[nid] = end_pfn;
5204 continue;
5205 }
5206 start_pfn = usable_startpfn;
5207 }
5208
5209 /*
5210 * The usable PFN range for ZONE_MOVABLE is from
5211 * start_pfn->end_pfn. Calculate size_pages as the
5212 * number of pages used as kernelcore
5213 */
5214 size_pages = end_pfn - start_pfn;
5215 if (size_pages > kernelcore_remaining)
5216 size_pages = kernelcore_remaining;
5217 zone_movable_pfn[nid] = start_pfn + size_pages;
5218
5219 /*
5220 * Some kernelcore has been met, update counts and
5221 * break if the kernelcore for this node has been
b8af2941 5222 * satisfied
2a1e274a
MG
5223 */
5224 required_kernelcore -= min(required_kernelcore,
5225 size_pages);
5226 kernelcore_remaining -= size_pages;
5227 if (!kernelcore_remaining)
5228 break;
5229 }
5230 }
5231
5232 /*
5233 * If there is still required_kernelcore, we do another pass with one
5234 * less node in the count. This will push zone_movable_pfn[nid] further
5235 * along on the nodes that still have memory until kernelcore is
b8af2941 5236 * satisfied
2a1e274a
MG
5237 */
5238 usable_nodes--;
5239 if (usable_nodes && required_kernelcore > usable_nodes)
5240 goto restart;
5241
b2f3eebe 5242out2:
2a1e274a
MG
5243 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5244 for (nid = 0; nid < MAX_NUMNODES; nid++)
5245 zone_movable_pfn[nid] =
5246 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5247
20e6926d 5248out:
66918dcd 5249 /* restore the node_state */
4b0ef1fe 5250 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5251}
5252
4b0ef1fe
LJ
5253/* Any regular or high memory on that node ? */
5254static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5255{
37b07e41
LS
5256 enum zone_type zone_type;
5257
4b0ef1fe
LJ
5258 if (N_MEMORY == N_NORMAL_MEMORY)
5259 return;
5260
5261 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5262 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5263 if (populated_zone(zone)) {
4b0ef1fe
LJ
5264 node_set_state(nid, N_HIGH_MEMORY);
5265 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5266 zone_type <= ZONE_NORMAL)
5267 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5268 break;
5269 }
37b07e41 5270 }
37b07e41
LS
5271}
5272
c713216d
MG
5273/**
5274 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5275 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5276 *
5277 * This will call free_area_init_node() for each active node in the system.
5278 * Using the page ranges provided by add_active_range(), the size of each
5279 * zone in each node and their holes is calculated. If the maximum PFN
5280 * between two adjacent zones match, it is assumed that the zone is empty.
5281 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5282 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5283 * starts where the previous one ended. For example, ZONE_DMA32 starts
5284 * at arch_max_dma_pfn.
5285 */
5286void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5287{
c13291a5
TH
5288 unsigned long start_pfn, end_pfn;
5289 int i, nid;
a6af2bc3 5290
c713216d
MG
5291 /* Record where the zone boundaries are */
5292 memset(arch_zone_lowest_possible_pfn, 0,
5293 sizeof(arch_zone_lowest_possible_pfn));
5294 memset(arch_zone_highest_possible_pfn, 0,
5295 sizeof(arch_zone_highest_possible_pfn));
5296 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5297 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5298 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5299 if (i == ZONE_MOVABLE)
5300 continue;
c713216d
MG
5301 arch_zone_lowest_possible_pfn[i] =
5302 arch_zone_highest_possible_pfn[i-1];
5303 arch_zone_highest_possible_pfn[i] =
5304 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5305 }
2a1e274a
MG
5306 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5307 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5308
5309 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5310 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5311 find_zone_movable_pfns_for_nodes();
c713216d 5312
c713216d 5313 /* Print out the zone ranges */
a62e2f4f 5314 printk("Zone ranges:\n");
2a1e274a
MG
5315 for (i = 0; i < MAX_NR_ZONES; i++) {
5316 if (i == ZONE_MOVABLE)
5317 continue;
155cbfc8 5318 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5319 if (arch_zone_lowest_possible_pfn[i] ==
5320 arch_zone_highest_possible_pfn[i])
155cbfc8 5321 printk(KERN_CONT "empty\n");
72f0ba02 5322 else
a62e2f4f
BH
5323 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5324 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5325 (arch_zone_highest_possible_pfn[i]
5326 << PAGE_SHIFT) - 1);
2a1e274a
MG
5327 }
5328
5329 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5330 printk("Movable zone start for each node\n");
2a1e274a
MG
5331 for (i = 0; i < MAX_NUMNODES; i++) {
5332 if (zone_movable_pfn[i])
a62e2f4f
BH
5333 printk(" Node %d: %#010lx\n", i,
5334 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5335 }
c713216d 5336
f2d52fe5 5337 /* Print out the early node map */
a62e2f4f 5338 printk("Early memory node ranges\n");
c13291a5 5339 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5340 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5341 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5342
5343 /* Initialise every node */
708614e6 5344 mminit_verify_pageflags_layout();
8ef82866 5345 setup_nr_node_ids();
c713216d
MG
5346 for_each_online_node(nid) {
5347 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5348 free_area_init_node(nid, NULL,
c713216d 5349 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5350
5351 /* Any memory on that node */
5352 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5353 node_set_state(nid, N_MEMORY);
5354 check_for_memory(pgdat, nid);
c713216d
MG
5355 }
5356}
2a1e274a 5357
7e63efef 5358static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5359{
5360 unsigned long long coremem;
5361 if (!p)
5362 return -EINVAL;
5363
5364 coremem = memparse(p, &p);
7e63efef 5365 *core = coremem >> PAGE_SHIFT;
2a1e274a 5366
7e63efef 5367 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5368 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5369
5370 return 0;
5371}
ed7ed365 5372
7e63efef
MG
5373/*
5374 * kernelcore=size sets the amount of memory for use for allocations that
5375 * cannot be reclaimed or migrated.
5376 */
5377static int __init cmdline_parse_kernelcore(char *p)
5378{
5379 return cmdline_parse_core(p, &required_kernelcore);
5380}
5381
5382/*
5383 * movablecore=size sets the amount of memory for use for allocations that
5384 * can be reclaimed or migrated.
5385 */
5386static int __init cmdline_parse_movablecore(char *p)
5387{
5388 return cmdline_parse_core(p, &required_movablecore);
5389}
5390
ed7ed365 5391early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5392early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5393
0ee332c1 5394#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5395
c3d5f5f0
JL
5396void adjust_managed_page_count(struct page *page, long count)
5397{
5398 spin_lock(&managed_page_count_lock);
5399 page_zone(page)->managed_pages += count;
5400 totalram_pages += count;
3dcc0571
JL
5401#ifdef CONFIG_HIGHMEM
5402 if (PageHighMem(page))
5403 totalhigh_pages += count;
5404#endif
c3d5f5f0
JL
5405 spin_unlock(&managed_page_count_lock);
5406}
3dcc0571 5407EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5408
11199692 5409unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5410{
11199692
JL
5411 void *pos;
5412 unsigned long pages = 0;
69afade7 5413
11199692
JL
5414 start = (void *)PAGE_ALIGN((unsigned long)start);
5415 end = (void *)((unsigned long)end & PAGE_MASK);
5416 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5417 if ((unsigned int)poison <= 0xFF)
11199692
JL
5418 memset(pos, poison, PAGE_SIZE);
5419 free_reserved_page(virt_to_page(pos));
69afade7
JL
5420 }
5421
5422 if (pages && s)
11199692 5423 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5424 s, pages << (PAGE_SHIFT - 10), start, end);
5425
5426 return pages;
5427}
11199692 5428EXPORT_SYMBOL(free_reserved_area);
69afade7 5429
cfa11e08
JL
5430#ifdef CONFIG_HIGHMEM
5431void free_highmem_page(struct page *page)
5432{
5433 __free_reserved_page(page);
5434 totalram_pages++;
7b4b2a0d 5435 page_zone(page)->managed_pages++;
cfa11e08
JL
5436 totalhigh_pages++;
5437}
5438#endif
5439
7ee3d4e8
JL
5440
5441void __init mem_init_print_info(const char *str)
5442{
5443 unsigned long physpages, codesize, datasize, rosize, bss_size;
5444 unsigned long init_code_size, init_data_size;
5445
5446 physpages = get_num_physpages();
5447 codesize = _etext - _stext;
5448 datasize = _edata - _sdata;
5449 rosize = __end_rodata - __start_rodata;
5450 bss_size = __bss_stop - __bss_start;
5451 init_data_size = __init_end - __init_begin;
5452 init_code_size = _einittext - _sinittext;
5453
5454 /*
5455 * Detect special cases and adjust section sizes accordingly:
5456 * 1) .init.* may be embedded into .data sections
5457 * 2) .init.text.* may be out of [__init_begin, __init_end],
5458 * please refer to arch/tile/kernel/vmlinux.lds.S.
5459 * 3) .rodata.* may be embedded into .text or .data sections.
5460 */
5461#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5462 do { \
5463 if (start <= pos && pos < end && size > adj) \
5464 size -= adj; \
5465 } while (0)
7ee3d4e8
JL
5466
5467 adj_init_size(__init_begin, __init_end, init_data_size,
5468 _sinittext, init_code_size);
5469 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5470 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5471 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5472 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5473
5474#undef adj_init_size
5475
5476 printk("Memory: %luK/%luK available "
5477 "(%luK kernel code, %luK rwdata, %luK rodata, "
5478 "%luK init, %luK bss, %luK reserved"
5479#ifdef CONFIG_HIGHMEM
5480 ", %luK highmem"
5481#endif
5482 "%s%s)\n",
5483 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5484 codesize >> 10, datasize >> 10, rosize >> 10,
5485 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5486 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5487#ifdef CONFIG_HIGHMEM
5488 totalhigh_pages << (PAGE_SHIFT-10),
5489#endif
5490 str ? ", " : "", str ? str : "");
5491}
5492
0e0b864e 5493/**
88ca3b94
RD
5494 * set_dma_reserve - set the specified number of pages reserved in the first zone
5495 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5496 *
5497 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5498 * In the DMA zone, a significant percentage may be consumed by kernel image
5499 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5500 * function may optionally be used to account for unfreeable pages in the
5501 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5502 * smaller per-cpu batchsize.
0e0b864e
MG
5503 */
5504void __init set_dma_reserve(unsigned long new_dma_reserve)
5505{
5506 dma_reserve = new_dma_reserve;
5507}
5508
1da177e4
LT
5509void __init free_area_init(unsigned long *zones_size)
5510{
9109fb7b 5511 free_area_init_node(0, zones_size,
1da177e4
LT
5512 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5513}
1da177e4 5514
1da177e4
LT
5515static int page_alloc_cpu_notify(struct notifier_block *self,
5516 unsigned long action, void *hcpu)
5517{
5518 int cpu = (unsigned long)hcpu;
1da177e4 5519
8bb78442 5520 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5521 lru_add_drain_cpu(cpu);
9f8f2172
CL
5522 drain_pages(cpu);
5523
5524 /*
5525 * Spill the event counters of the dead processor
5526 * into the current processors event counters.
5527 * This artificially elevates the count of the current
5528 * processor.
5529 */
f8891e5e 5530 vm_events_fold_cpu(cpu);
9f8f2172
CL
5531
5532 /*
5533 * Zero the differential counters of the dead processor
5534 * so that the vm statistics are consistent.
5535 *
5536 * This is only okay since the processor is dead and cannot
5537 * race with what we are doing.
5538 */
2bb921e5 5539 cpu_vm_stats_fold(cpu);
1da177e4
LT
5540 }
5541 return NOTIFY_OK;
5542}
1da177e4
LT
5543
5544void __init page_alloc_init(void)
5545{
5546 hotcpu_notifier(page_alloc_cpu_notify, 0);
5547}
5548
cb45b0e9
HA
5549/*
5550 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5551 * or min_free_kbytes changes.
5552 */
5553static void calculate_totalreserve_pages(void)
5554{
5555 struct pglist_data *pgdat;
5556 unsigned long reserve_pages = 0;
2f6726e5 5557 enum zone_type i, j;
cb45b0e9
HA
5558
5559 for_each_online_pgdat(pgdat) {
5560 for (i = 0; i < MAX_NR_ZONES; i++) {
5561 struct zone *zone = pgdat->node_zones + i;
5562 unsigned long max = 0;
5563
5564 /* Find valid and maximum lowmem_reserve in the zone */
5565 for (j = i; j < MAX_NR_ZONES; j++) {
5566 if (zone->lowmem_reserve[j] > max)
5567 max = zone->lowmem_reserve[j];
5568 }
5569
41858966
MG
5570 /* we treat the high watermark as reserved pages. */
5571 max += high_wmark_pages(zone);
cb45b0e9 5572
b40da049
JL
5573 if (max > zone->managed_pages)
5574 max = zone->managed_pages;
cb45b0e9 5575 reserve_pages += max;
ab8fabd4
JW
5576 /*
5577 * Lowmem reserves are not available to
5578 * GFP_HIGHUSER page cache allocations and
5579 * kswapd tries to balance zones to their high
5580 * watermark. As a result, neither should be
5581 * regarded as dirtyable memory, to prevent a
5582 * situation where reclaim has to clean pages
5583 * in order to balance the zones.
5584 */
5585 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5586 }
5587 }
ab8fabd4 5588 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5589 totalreserve_pages = reserve_pages;
5590}
5591
1da177e4
LT
5592/*
5593 * setup_per_zone_lowmem_reserve - called whenever
5594 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5595 * has a correct pages reserved value, so an adequate number of
5596 * pages are left in the zone after a successful __alloc_pages().
5597 */
5598static void setup_per_zone_lowmem_reserve(void)
5599{
5600 struct pglist_data *pgdat;
2f6726e5 5601 enum zone_type j, idx;
1da177e4 5602
ec936fc5 5603 for_each_online_pgdat(pgdat) {
1da177e4
LT
5604 for (j = 0; j < MAX_NR_ZONES; j++) {
5605 struct zone *zone = pgdat->node_zones + j;
b40da049 5606 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5607
5608 zone->lowmem_reserve[j] = 0;
5609
2f6726e5
CL
5610 idx = j;
5611 while (idx) {
1da177e4
LT
5612 struct zone *lower_zone;
5613
2f6726e5
CL
5614 idx--;
5615
1da177e4
LT
5616 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5617 sysctl_lowmem_reserve_ratio[idx] = 1;
5618
5619 lower_zone = pgdat->node_zones + idx;
b40da049 5620 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5621 sysctl_lowmem_reserve_ratio[idx];
b40da049 5622 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5623 }
5624 }
5625 }
cb45b0e9
HA
5626
5627 /* update totalreserve_pages */
5628 calculate_totalreserve_pages();
1da177e4
LT
5629}
5630
cfd3da1e 5631static void __setup_per_zone_wmarks(void)
1da177e4
LT
5632{
5633 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5634 unsigned long lowmem_pages = 0;
5635 struct zone *zone;
5636 unsigned long flags;
5637
5638 /* Calculate total number of !ZONE_HIGHMEM pages */
5639 for_each_zone(zone) {
5640 if (!is_highmem(zone))
b40da049 5641 lowmem_pages += zone->managed_pages;
1da177e4
LT
5642 }
5643
5644 for_each_zone(zone) {
ac924c60
AM
5645 u64 tmp;
5646
1125b4e3 5647 spin_lock_irqsave(&zone->lock, flags);
b40da049 5648 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5649 do_div(tmp, lowmem_pages);
1da177e4
LT
5650 if (is_highmem(zone)) {
5651 /*
669ed175
NP
5652 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5653 * need highmem pages, so cap pages_min to a small
5654 * value here.
5655 *
41858966 5656 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5657 * deltas controls asynch page reclaim, and so should
5658 * not be capped for highmem.
1da177e4 5659 */
90ae8d67 5660 unsigned long min_pages;
1da177e4 5661
b40da049 5662 min_pages = zone->managed_pages / 1024;
90ae8d67 5663 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5664 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5665 } else {
669ed175
NP
5666 /*
5667 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5668 * proportionate to the zone's size.
5669 */
41858966 5670 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5671 }
5672
41858966
MG
5673 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5674 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5675
81c0a2bb
JW
5676 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5677 high_wmark_pages(zone) -
5678 low_wmark_pages(zone) -
5679 zone_page_state(zone, NR_ALLOC_BATCH));
5680
56fd56b8 5681 setup_zone_migrate_reserve(zone);
1125b4e3 5682 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5683 }
cb45b0e9
HA
5684
5685 /* update totalreserve_pages */
5686 calculate_totalreserve_pages();
1da177e4
LT
5687}
5688
cfd3da1e
MG
5689/**
5690 * setup_per_zone_wmarks - called when min_free_kbytes changes
5691 * or when memory is hot-{added|removed}
5692 *
5693 * Ensures that the watermark[min,low,high] values for each zone are set
5694 * correctly with respect to min_free_kbytes.
5695 */
5696void setup_per_zone_wmarks(void)
5697{
5698 mutex_lock(&zonelists_mutex);
5699 __setup_per_zone_wmarks();
5700 mutex_unlock(&zonelists_mutex);
5701}
5702
55a4462a 5703/*
556adecb
RR
5704 * The inactive anon list should be small enough that the VM never has to
5705 * do too much work, but large enough that each inactive page has a chance
5706 * to be referenced again before it is swapped out.
5707 *
5708 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5709 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5710 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5711 * the anonymous pages are kept on the inactive list.
5712 *
5713 * total target max
5714 * memory ratio inactive anon
5715 * -------------------------------------
5716 * 10MB 1 5MB
5717 * 100MB 1 50MB
5718 * 1GB 3 250MB
5719 * 10GB 10 0.9GB
5720 * 100GB 31 3GB
5721 * 1TB 101 10GB
5722 * 10TB 320 32GB
5723 */
1b79acc9 5724static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5725{
96cb4df5 5726 unsigned int gb, ratio;
556adecb 5727
96cb4df5 5728 /* Zone size in gigabytes */
b40da049 5729 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5730 if (gb)
556adecb 5731 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5732 else
5733 ratio = 1;
556adecb 5734
96cb4df5
MK
5735 zone->inactive_ratio = ratio;
5736}
556adecb 5737
839a4fcc 5738static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5739{
5740 struct zone *zone;
5741
5742 for_each_zone(zone)
5743 calculate_zone_inactive_ratio(zone);
556adecb
RR
5744}
5745
1da177e4
LT
5746/*
5747 * Initialise min_free_kbytes.
5748 *
5749 * For small machines we want it small (128k min). For large machines
5750 * we want it large (64MB max). But it is not linear, because network
5751 * bandwidth does not increase linearly with machine size. We use
5752 *
b8af2941 5753 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5754 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5755 *
5756 * which yields
5757 *
5758 * 16MB: 512k
5759 * 32MB: 724k
5760 * 64MB: 1024k
5761 * 128MB: 1448k
5762 * 256MB: 2048k
5763 * 512MB: 2896k
5764 * 1024MB: 4096k
5765 * 2048MB: 5792k
5766 * 4096MB: 8192k
5767 * 8192MB: 11584k
5768 * 16384MB: 16384k
5769 */
1b79acc9 5770int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5771{
5772 unsigned long lowmem_kbytes;
5f12733e 5773 int new_min_free_kbytes;
1da177e4
LT
5774
5775 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5776 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5777
5778 if (new_min_free_kbytes > user_min_free_kbytes) {
5779 min_free_kbytes = new_min_free_kbytes;
5780 if (min_free_kbytes < 128)
5781 min_free_kbytes = 128;
5782 if (min_free_kbytes > 65536)
5783 min_free_kbytes = 65536;
5784 } else {
5785 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5786 new_min_free_kbytes, user_min_free_kbytes);
5787 }
bc75d33f 5788 setup_per_zone_wmarks();
a6cccdc3 5789 refresh_zone_stat_thresholds();
1da177e4 5790 setup_per_zone_lowmem_reserve();
556adecb 5791 setup_per_zone_inactive_ratio();
1da177e4
LT
5792 return 0;
5793}
bc75d33f 5794module_init(init_per_zone_wmark_min)
1da177e4
LT
5795
5796/*
b8af2941 5797 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5798 * that we can call two helper functions whenever min_free_kbytes
5799 * changes.
5800 */
b8af2941 5801int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5802 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5803{
da8c757b
HP
5804 int rc;
5805
5806 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5807 if (rc)
5808 return rc;
5809
5f12733e
MH
5810 if (write) {
5811 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5812 setup_per_zone_wmarks();
5f12733e 5813 }
1da177e4
LT
5814 return 0;
5815}
5816
9614634f
CL
5817#ifdef CONFIG_NUMA
5818int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5819 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5820{
5821 struct zone *zone;
5822 int rc;
5823
8d65af78 5824 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5825 if (rc)
5826 return rc;
5827
5828 for_each_zone(zone)
b40da049 5829 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5830 sysctl_min_unmapped_ratio) / 100;
5831 return 0;
5832}
0ff38490
CL
5833
5834int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5835 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5836{
5837 struct zone *zone;
5838 int rc;
5839
8d65af78 5840 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5841 if (rc)
5842 return rc;
5843
5844 for_each_zone(zone)
b40da049 5845 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5846 sysctl_min_slab_ratio) / 100;
5847 return 0;
5848}
9614634f
CL
5849#endif
5850
1da177e4
LT
5851/*
5852 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5853 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5854 * whenever sysctl_lowmem_reserve_ratio changes.
5855 *
5856 * The reserve ratio obviously has absolutely no relation with the
41858966 5857 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5858 * if in function of the boot time zone sizes.
5859 */
5860int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5861 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5862{
8d65af78 5863 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5864 setup_per_zone_lowmem_reserve();
5865 return 0;
5866}
5867
8ad4b1fb
RS
5868/*
5869 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5870 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5871 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5872 */
8ad4b1fb 5873int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5874 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5875{
5876 struct zone *zone;
5877 unsigned int cpu;
5878 int ret;
5879
8d65af78 5880 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5881 if (!write || (ret < 0))
8ad4b1fb 5882 return ret;
c8e251fa
CS
5883
5884 mutex_lock(&pcp_batch_high_lock);
364df0eb 5885 for_each_populated_zone(zone) {
22a7f12b
CS
5886 unsigned long high;
5887 high = zone->managed_pages / percpu_pagelist_fraction;
5888 for_each_possible_cpu(cpu)
3664033c
CS
5889 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5890 high);
8ad4b1fb 5891 }
c8e251fa 5892 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5893 return 0;
5894}
5895
f034b5d4 5896int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5897
5898#ifdef CONFIG_NUMA
5899static int __init set_hashdist(char *str)
5900{
5901 if (!str)
5902 return 0;
5903 hashdist = simple_strtoul(str, &str, 0);
5904 return 1;
5905}
5906__setup("hashdist=", set_hashdist);
5907#endif
5908
5909/*
5910 * allocate a large system hash table from bootmem
5911 * - it is assumed that the hash table must contain an exact power-of-2
5912 * quantity of entries
5913 * - limit is the number of hash buckets, not the total allocation size
5914 */
5915void *__init alloc_large_system_hash(const char *tablename,
5916 unsigned long bucketsize,
5917 unsigned long numentries,
5918 int scale,
5919 int flags,
5920 unsigned int *_hash_shift,
5921 unsigned int *_hash_mask,
31fe62b9
TB
5922 unsigned long low_limit,
5923 unsigned long high_limit)
1da177e4 5924{
31fe62b9 5925 unsigned long long max = high_limit;
1da177e4
LT
5926 unsigned long log2qty, size;
5927 void *table = NULL;
5928
5929 /* allow the kernel cmdline to have a say */
5930 if (!numentries) {
5931 /* round applicable memory size up to nearest megabyte */
04903664 5932 numentries = nr_kernel_pages;
a7e83318
JZ
5933
5934 /* It isn't necessary when PAGE_SIZE >= 1MB */
5935 if (PAGE_SHIFT < 20)
5936 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5937
5938 /* limit to 1 bucket per 2^scale bytes of low memory */
5939 if (scale > PAGE_SHIFT)
5940 numentries >>= (scale - PAGE_SHIFT);
5941 else
5942 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5943
5944 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5945 if (unlikely(flags & HASH_SMALL)) {
5946 /* Makes no sense without HASH_EARLY */
5947 WARN_ON(!(flags & HASH_EARLY));
5948 if (!(numentries >> *_hash_shift)) {
5949 numentries = 1UL << *_hash_shift;
5950 BUG_ON(!numentries);
5951 }
5952 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5953 numentries = PAGE_SIZE / bucketsize;
1da177e4 5954 }
6e692ed3 5955 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5956
5957 /* limit allocation size to 1/16 total memory by default */
5958 if (max == 0) {
5959 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5960 do_div(max, bucketsize);
5961 }
074b8517 5962 max = min(max, 0x80000000ULL);
1da177e4 5963
31fe62b9
TB
5964 if (numentries < low_limit)
5965 numentries = low_limit;
1da177e4
LT
5966 if (numentries > max)
5967 numentries = max;
5968
f0d1b0b3 5969 log2qty = ilog2(numentries);
1da177e4
LT
5970
5971 do {
5972 size = bucketsize << log2qty;
5973 if (flags & HASH_EARLY)
6782832e 5974 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
5975 else if (hashdist)
5976 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5977 else {
1037b83b
ED
5978 /*
5979 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5980 * some pages at the end of hash table which
5981 * alloc_pages_exact() automatically does
1037b83b 5982 */
264ef8a9 5983 if (get_order(size) < MAX_ORDER) {
a1dd268c 5984 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5985 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5986 }
1da177e4
LT
5987 }
5988 } while (!table && size > PAGE_SIZE && --log2qty);
5989
5990 if (!table)
5991 panic("Failed to allocate %s hash table\n", tablename);
5992
f241e660 5993 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5994 tablename,
f241e660 5995 (1UL << log2qty),
f0d1b0b3 5996 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5997 size);
5998
5999 if (_hash_shift)
6000 *_hash_shift = log2qty;
6001 if (_hash_mask)
6002 *_hash_mask = (1 << log2qty) - 1;
6003
6004 return table;
6005}
a117e66e 6006
835c134e
MG
6007/* Return a pointer to the bitmap storing bits affecting a block of pages */
6008static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6009 unsigned long pfn)
6010{
6011#ifdef CONFIG_SPARSEMEM
6012 return __pfn_to_section(pfn)->pageblock_flags;
6013#else
6014 return zone->pageblock_flags;
6015#endif /* CONFIG_SPARSEMEM */
6016}
6017
6018static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6019{
6020#ifdef CONFIG_SPARSEMEM
6021 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6022 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6023#else
c060f943 6024 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6025 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6026#endif /* CONFIG_SPARSEMEM */
6027}
6028
6029/**
d9c23400 6030 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
6031 * @page: The page within the block of interest
6032 * @start_bitidx: The first bit of interest to retrieve
6033 * @end_bitidx: The last bit of interest
6034 * returns pageblock_bits flags
6035 */
dc4b0caf 6036unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6037 unsigned long end_bitidx,
6038 unsigned long mask)
835c134e
MG
6039{
6040 struct zone *zone;
6041 unsigned long *bitmap;
dc4b0caf 6042 unsigned long bitidx, word_bitidx;
e58469ba 6043 unsigned long word;
835c134e
MG
6044
6045 zone = page_zone(page);
835c134e
MG
6046 bitmap = get_pageblock_bitmap(zone, pfn);
6047 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6048 word_bitidx = bitidx / BITS_PER_LONG;
6049 bitidx &= (BITS_PER_LONG-1);
835c134e 6050
e58469ba
MG
6051 word = bitmap[word_bitidx];
6052 bitidx += end_bitidx;
6053 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6054}
6055
6056/**
dc4b0caf 6057 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
6058 * @page: The page within the block of interest
6059 * @start_bitidx: The first bit of interest
6060 * @end_bitidx: The last bit of interest
6061 * @flags: The flags to set
6062 */
dc4b0caf
MG
6063void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6064 unsigned long pfn,
e58469ba
MG
6065 unsigned long end_bitidx,
6066 unsigned long mask)
835c134e
MG
6067{
6068 struct zone *zone;
6069 unsigned long *bitmap;
dc4b0caf 6070 unsigned long bitidx, word_bitidx;
e58469ba
MG
6071 unsigned long old_word, word;
6072
6073 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6074
6075 zone = page_zone(page);
835c134e
MG
6076 bitmap = get_pageblock_bitmap(zone, pfn);
6077 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6078 word_bitidx = bitidx / BITS_PER_LONG;
6079 bitidx &= (BITS_PER_LONG-1);
6080
309381fe 6081 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6082
e58469ba
MG
6083 bitidx += end_bitidx;
6084 mask <<= (BITS_PER_LONG - bitidx - 1);
6085 flags <<= (BITS_PER_LONG - bitidx - 1);
6086
6087 word = ACCESS_ONCE(bitmap[word_bitidx]);
6088 for (;;) {
6089 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6090 if (word == old_word)
6091 break;
6092 word = old_word;
6093 }
835c134e 6094}
a5d76b54
KH
6095
6096/*
80934513
MK
6097 * This function checks whether pageblock includes unmovable pages or not.
6098 * If @count is not zero, it is okay to include less @count unmovable pages
6099 *
b8af2941 6100 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6101 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6102 * expect this function should be exact.
a5d76b54 6103 */
b023f468
WC
6104bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6105 bool skip_hwpoisoned_pages)
49ac8255
KH
6106{
6107 unsigned long pfn, iter, found;
47118af0
MN
6108 int mt;
6109
49ac8255
KH
6110 /*
6111 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6112 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6113 */
6114 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6115 return false;
47118af0
MN
6116 mt = get_pageblock_migratetype(page);
6117 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6118 return false;
49ac8255
KH
6119
6120 pfn = page_to_pfn(page);
6121 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6122 unsigned long check = pfn + iter;
6123
29723fcc 6124 if (!pfn_valid_within(check))
49ac8255 6125 continue;
29723fcc 6126
49ac8255 6127 page = pfn_to_page(check);
c8721bbb
NH
6128
6129 /*
6130 * Hugepages are not in LRU lists, but they're movable.
6131 * We need not scan over tail pages bacause we don't
6132 * handle each tail page individually in migration.
6133 */
6134 if (PageHuge(page)) {
6135 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6136 continue;
6137 }
6138
97d255c8
MK
6139 /*
6140 * We can't use page_count without pin a page
6141 * because another CPU can free compound page.
6142 * This check already skips compound tails of THP
6143 * because their page->_count is zero at all time.
6144 */
6145 if (!atomic_read(&page->_count)) {
49ac8255
KH
6146 if (PageBuddy(page))
6147 iter += (1 << page_order(page)) - 1;
6148 continue;
6149 }
97d255c8 6150
b023f468
WC
6151 /*
6152 * The HWPoisoned page may be not in buddy system, and
6153 * page_count() is not 0.
6154 */
6155 if (skip_hwpoisoned_pages && PageHWPoison(page))
6156 continue;
6157
49ac8255
KH
6158 if (!PageLRU(page))
6159 found++;
6160 /*
6161 * If there are RECLAIMABLE pages, we need to check it.
6162 * But now, memory offline itself doesn't call shrink_slab()
6163 * and it still to be fixed.
6164 */
6165 /*
6166 * If the page is not RAM, page_count()should be 0.
6167 * we don't need more check. This is an _used_ not-movable page.
6168 *
6169 * The problematic thing here is PG_reserved pages. PG_reserved
6170 * is set to both of a memory hole page and a _used_ kernel
6171 * page at boot.
6172 */
6173 if (found > count)
80934513 6174 return true;
49ac8255 6175 }
80934513 6176 return false;
49ac8255
KH
6177}
6178
6179bool is_pageblock_removable_nolock(struct page *page)
6180{
656a0706
MH
6181 struct zone *zone;
6182 unsigned long pfn;
687875fb
MH
6183
6184 /*
6185 * We have to be careful here because we are iterating over memory
6186 * sections which are not zone aware so we might end up outside of
6187 * the zone but still within the section.
656a0706
MH
6188 * We have to take care about the node as well. If the node is offline
6189 * its NODE_DATA will be NULL - see page_zone.
687875fb 6190 */
656a0706
MH
6191 if (!node_online(page_to_nid(page)))
6192 return false;
6193
6194 zone = page_zone(page);
6195 pfn = page_to_pfn(page);
108bcc96 6196 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6197 return false;
6198
b023f468 6199 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6200}
0c0e6195 6201
041d3a8c
MN
6202#ifdef CONFIG_CMA
6203
6204static unsigned long pfn_max_align_down(unsigned long pfn)
6205{
6206 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6207 pageblock_nr_pages) - 1);
6208}
6209
6210static unsigned long pfn_max_align_up(unsigned long pfn)
6211{
6212 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6213 pageblock_nr_pages));
6214}
6215
041d3a8c 6216/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6217static int __alloc_contig_migrate_range(struct compact_control *cc,
6218 unsigned long start, unsigned long end)
041d3a8c
MN
6219{
6220 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6221 unsigned long nr_reclaimed;
041d3a8c
MN
6222 unsigned long pfn = start;
6223 unsigned int tries = 0;
6224 int ret = 0;
6225
be49a6e1 6226 migrate_prep();
041d3a8c 6227
bb13ffeb 6228 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6229 if (fatal_signal_pending(current)) {
6230 ret = -EINTR;
6231 break;
6232 }
6233
bb13ffeb
MG
6234 if (list_empty(&cc->migratepages)) {
6235 cc->nr_migratepages = 0;
6236 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6237 pfn, end, true);
041d3a8c
MN
6238 if (!pfn) {
6239 ret = -EINTR;
6240 break;
6241 }
6242 tries = 0;
6243 } else if (++tries == 5) {
6244 ret = ret < 0 ? ret : -EBUSY;
6245 break;
6246 }
6247
beb51eaa
MK
6248 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6249 &cc->migratepages);
6250 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6251
9c620e2b 6252 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6253 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6254 }
2a6f5124
SP
6255 if (ret < 0) {
6256 putback_movable_pages(&cc->migratepages);
6257 return ret;
6258 }
6259 return 0;
041d3a8c
MN
6260}
6261
6262/**
6263 * alloc_contig_range() -- tries to allocate given range of pages
6264 * @start: start PFN to allocate
6265 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6266 * @migratetype: migratetype of the underlaying pageblocks (either
6267 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6268 * in range must have the same migratetype and it must
6269 * be either of the two.
041d3a8c
MN
6270 *
6271 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6272 * aligned, however it's the caller's responsibility to guarantee that
6273 * we are the only thread that changes migrate type of pageblocks the
6274 * pages fall in.
6275 *
6276 * The PFN range must belong to a single zone.
6277 *
6278 * Returns zero on success or negative error code. On success all
6279 * pages which PFN is in [start, end) are allocated for the caller and
6280 * need to be freed with free_contig_range().
6281 */
0815f3d8
MN
6282int alloc_contig_range(unsigned long start, unsigned long end,
6283 unsigned migratetype)
041d3a8c 6284{
041d3a8c
MN
6285 unsigned long outer_start, outer_end;
6286 int ret = 0, order;
6287
bb13ffeb
MG
6288 struct compact_control cc = {
6289 .nr_migratepages = 0,
6290 .order = -1,
6291 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6292 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6293 .ignore_skip_hint = true,
6294 };
6295 INIT_LIST_HEAD(&cc.migratepages);
6296
041d3a8c
MN
6297 /*
6298 * What we do here is we mark all pageblocks in range as
6299 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6300 * have different sizes, and due to the way page allocator
6301 * work, we align the range to biggest of the two pages so
6302 * that page allocator won't try to merge buddies from
6303 * different pageblocks and change MIGRATE_ISOLATE to some
6304 * other migration type.
6305 *
6306 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6307 * migrate the pages from an unaligned range (ie. pages that
6308 * we are interested in). This will put all the pages in
6309 * range back to page allocator as MIGRATE_ISOLATE.
6310 *
6311 * When this is done, we take the pages in range from page
6312 * allocator removing them from the buddy system. This way
6313 * page allocator will never consider using them.
6314 *
6315 * This lets us mark the pageblocks back as
6316 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6317 * aligned range but not in the unaligned, original range are
6318 * put back to page allocator so that buddy can use them.
6319 */
6320
6321 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6322 pfn_max_align_up(end), migratetype,
6323 false);
041d3a8c 6324 if (ret)
86a595f9 6325 return ret;
041d3a8c 6326
bb13ffeb 6327 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6328 if (ret)
6329 goto done;
6330
6331 /*
6332 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6333 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6334 * more, all pages in [start, end) are free in page allocator.
6335 * What we are going to do is to allocate all pages from
6336 * [start, end) (that is remove them from page allocator).
6337 *
6338 * The only problem is that pages at the beginning and at the
6339 * end of interesting range may be not aligned with pages that
6340 * page allocator holds, ie. they can be part of higher order
6341 * pages. Because of this, we reserve the bigger range and
6342 * once this is done free the pages we are not interested in.
6343 *
6344 * We don't have to hold zone->lock here because the pages are
6345 * isolated thus they won't get removed from buddy.
6346 */
6347
6348 lru_add_drain_all();
6349 drain_all_pages();
6350
6351 order = 0;
6352 outer_start = start;
6353 while (!PageBuddy(pfn_to_page(outer_start))) {
6354 if (++order >= MAX_ORDER) {
6355 ret = -EBUSY;
6356 goto done;
6357 }
6358 outer_start &= ~0UL << order;
6359 }
6360
6361 /* Make sure the range is really isolated. */
b023f468 6362 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6363 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6364 outer_start, end);
6365 ret = -EBUSY;
6366 goto done;
6367 }
6368
49f223a9
MS
6369
6370 /* Grab isolated pages from freelists. */
bb13ffeb 6371 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6372 if (!outer_end) {
6373 ret = -EBUSY;
6374 goto done;
6375 }
6376
6377 /* Free head and tail (if any) */
6378 if (start != outer_start)
6379 free_contig_range(outer_start, start - outer_start);
6380 if (end != outer_end)
6381 free_contig_range(end, outer_end - end);
6382
6383done:
6384 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6385 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6386 return ret;
6387}
6388
6389void free_contig_range(unsigned long pfn, unsigned nr_pages)
6390{
bcc2b02f
MS
6391 unsigned int count = 0;
6392
6393 for (; nr_pages--; pfn++) {
6394 struct page *page = pfn_to_page(pfn);
6395
6396 count += page_count(page) != 1;
6397 __free_page(page);
6398 }
6399 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6400}
6401#endif
6402
4ed7e022 6403#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6404/*
6405 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6406 * page high values need to be recalulated.
6407 */
4ed7e022
JL
6408void __meminit zone_pcp_update(struct zone *zone)
6409{
0a647f38 6410 unsigned cpu;
c8e251fa 6411 mutex_lock(&pcp_batch_high_lock);
0a647f38 6412 for_each_possible_cpu(cpu)
169f6c19
CS
6413 pageset_set_high_and_batch(zone,
6414 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6415 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6416}
6417#endif
6418
340175b7
JL
6419void zone_pcp_reset(struct zone *zone)
6420{
6421 unsigned long flags;
5a883813
MK
6422 int cpu;
6423 struct per_cpu_pageset *pset;
340175b7
JL
6424
6425 /* avoid races with drain_pages() */
6426 local_irq_save(flags);
6427 if (zone->pageset != &boot_pageset) {
5a883813
MK
6428 for_each_online_cpu(cpu) {
6429 pset = per_cpu_ptr(zone->pageset, cpu);
6430 drain_zonestat(zone, pset);
6431 }
340175b7
JL
6432 free_percpu(zone->pageset);
6433 zone->pageset = &boot_pageset;
6434 }
6435 local_irq_restore(flags);
6436}
6437
6dcd73d7 6438#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6439/*
6440 * All pages in the range must be isolated before calling this.
6441 */
6442void
6443__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6444{
6445 struct page *page;
6446 struct zone *zone;
6447 int order, i;
6448 unsigned long pfn;
6449 unsigned long flags;
6450 /* find the first valid pfn */
6451 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6452 if (pfn_valid(pfn))
6453 break;
6454 if (pfn == end_pfn)
6455 return;
6456 zone = page_zone(pfn_to_page(pfn));
6457 spin_lock_irqsave(&zone->lock, flags);
6458 pfn = start_pfn;
6459 while (pfn < end_pfn) {
6460 if (!pfn_valid(pfn)) {
6461 pfn++;
6462 continue;
6463 }
6464 page = pfn_to_page(pfn);
b023f468
WC
6465 /*
6466 * The HWPoisoned page may be not in buddy system, and
6467 * page_count() is not 0.
6468 */
6469 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6470 pfn++;
6471 SetPageReserved(page);
6472 continue;
6473 }
6474
0c0e6195
KH
6475 BUG_ON(page_count(page));
6476 BUG_ON(!PageBuddy(page));
6477 order = page_order(page);
6478#ifdef CONFIG_DEBUG_VM
6479 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6480 pfn, 1 << order, end_pfn);
6481#endif
6482 list_del(&page->lru);
6483 rmv_page_order(page);
6484 zone->free_area[order].nr_free--;
0c0e6195
KH
6485 for (i = 0; i < (1 << order); i++)
6486 SetPageReserved((page+i));
6487 pfn += (1 << order);
6488 }
6489 spin_unlock_irqrestore(&zone->lock, flags);
6490}
6491#endif
8d22ba1b
WF
6492
6493#ifdef CONFIG_MEMORY_FAILURE
6494bool is_free_buddy_page(struct page *page)
6495{
6496 struct zone *zone = page_zone(page);
6497 unsigned long pfn = page_to_pfn(page);
6498 unsigned long flags;
6499 int order;
6500
6501 spin_lock_irqsave(&zone->lock, flags);
6502 for (order = 0; order < MAX_ORDER; order++) {
6503 struct page *page_head = page - (pfn & ((1 << order) - 1));
6504
6505 if (PageBuddy(page_head) && page_order(page_head) >= order)
6506 break;
6507 }
6508 spin_unlock_irqrestore(&zone->lock, flags);
6509
6510 return order < MAX_ORDER;
6511}
6512#endif
718a3821 6513
51300cef 6514static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6515 {1UL << PG_locked, "locked" },
6516 {1UL << PG_error, "error" },
6517 {1UL << PG_referenced, "referenced" },
6518 {1UL << PG_uptodate, "uptodate" },
6519 {1UL << PG_dirty, "dirty" },
6520 {1UL << PG_lru, "lru" },
6521 {1UL << PG_active, "active" },
6522 {1UL << PG_slab, "slab" },
6523 {1UL << PG_owner_priv_1, "owner_priv_1" },
6524 {1UL << PG_arch_1, "arch_1" },
6525 {1UL << PG_reserved, "reserved" },
6526 {1UL << PG_private, "private" },
6527 {1UL << PG_private_2, "private_2" },
6528 {1UL << PG_writeback, "writeback" },
6529#ifdef CONFIG_PAGEFLAGS_EXTENDED
6530 {1UL << PG_head, "head" },
6531 {1UL << PG_tail, "tail" },
6532#else
6533 {1UL << PG_compound, "compound" },
6534#endif
6535 {1UL << PG_swapcache, "swapcache" },
6536 {1UL << PG_mappedtodisk, "mappedtodisk" },
6537 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6538 {1UL << PG_swapbacked, "swapbacked" },
6539 {1UL << PG_unevictable, "unevictable" },
6540#ifdef CONFIG_MMU
6541 {1UL << PG_mlocked, "mlocked" },
6542#endif
6543#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6544 {1UL << PG_uncached, "uncached" },
6545#endif
6546#ifdef CONFIG_MEMORY_FAILURE
6547 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6548#endif
6549#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6550 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6551#endif
718a3821
WF
6552};
6553
6554static void dump_page_flags(unsigned long flags)
6555{
6556 const char *delim = "";
6557 unsigned long mask;
6558 int i;
6559
51300cef 6560 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6561
718a3821
WF
6562 printk(KERN_ALERT "page flags: %#lx(", flags);
6563
6564 /* remove zone id */
6565 flags &= (1UL << NR_PAGEFLAGS) - 1;
6566
51300cef 6567 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6568
6569 mask = pageflag_names[i].mask;
6570 if ((flags & mask) != mask)
6571 continue;
6572
6573 flags &= ~mask;
6574 printk("%s%s", delim, pageflag_names[i].name);
6575 delim = "|";
6576 }
6577
6578 /* check for left over flags */
6579 if (flags)
6580 printk("%s%#lx", delim, flags);
6581
6582 printk(")\n");
6583}
6584
d230dec1
KS
6585void dump_page_badflags(struct page *page, const char *reason,
6586 unsigned long badflags)
718a3821
WF
6587{
6588 printk(KERN_ALERT
6589 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6590 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6591 page->mapping, page->index);
6592 dump_page_flags(page->flags);
f0b791a3
DH
6593 if (reason)
6594 pr_alert("page dumped because: %s\n", reason);
6595 if (page->flags & badflags) {
6596 pr_alert("bad because of flags:\n");
6597 dump_page_flags(page->flags & badflags);
6598 }
f212ad7c 6599 mem_cgroup_print_bad_page(page);
718a3821 6600}
f0b791a3 6601
d230dec1 6602void dump_page(struct page *page, const char *reason)
f0b791a3
DH
6603{
6604 dump_page_badflags(page, reason, 0);
6605}
ed12d845 6606EXPORT_SYMBOL(dump_page);